
Formal Methods in Computer-Aided Design 2020

EUFicient Reachability in Software with Arrays
Denis Bueno

Computer Science and Engineering
University of Michigan

Email: dlbueno@umich.edu

Arlen Cox
Institute for Defense Analyses
Center for Computing Sciences

Email: arlen@super.org

Karem Sakallah
Computer Science and Engineering

University of Michigan
Email: karem@umich.edu

Abstract—Whether representing strings, heap objects, or nu-
merical vectors, arrays are pervasive in software. Unfortunately,
while several software model checkers support arrays, they tend
to struggle with many array-manipulating programs due to work
expended generating theory lemmas that are ultimately irrelevant
or redundant. By judicious abstraction of array operations to the
logic of equality with uninterpreted functions (EUF), we show
that we can directly reason about array reads and adaptively learn
lemmas about array writes leading to significant performance
improvements over existing approaches. We find that our model
checker solves more than 100 more SV-COMP benchmarks than
SPACER, a leading model checker.

I. INTRODUCTION

Arrays and array-like structures are pervasive in the software
world. From C/C++ arrays and vectors to Python lists, it
is difficult to find software that doesn’t use and manipulate
arrays. Despite this, research of software model checkers has
largely focused on finding numerical invariants and proving
numerical properties of programs. As results of the software
verification competition (SV-COMP) show, even when model
checkers support arrays, there are a significant number of
programs that cannot be automatically verified—some for a
lack of expressivity and some for a lack of performance. Our
focus is on the latter.

The key challenge that we face is adequately controlling
theory reasoning in the SMT solver underlying the model
checker. While SMT solvers typically have an array theory
and can therefore directly solve array problems, the interface
that SMT solvers provide does not provide for adequate
incrementality and hinting to enable maximal performance.
For instance, we find that, in SV-COMP benchmarks, as many
as 90% of the array lemmas that the SMT solver is learning are
either redundant or ultimately irrelevant. Most lemmas either
do not advance the cause of the model checker or were thrown
away by the SMT solver due to imperfect caching. Thus time
spent learning those lemmas was wasted effort.

To eliminate this waste, we do incremental inductive model
checking on top of an equality with uninterpreted functions
(EUF) theory [1]. This removes the need for SMT array
theories in the core incremental model checking process,
relegating the array theory solely to abstraction refinement
operations, and yielding a thousand-fold reduction in the
number of operations that do redundant or irrelevant work.
Additionally this means that array lemmas are only learned
where they are pertinent to proving or disproving the property.

Moreover our strategy addresses a fundamental tension. On
the one hand, incremental model checkers [2], which construct
a safety proof bit by bit, are particularly scalable because their
many individual queries are simple to solve and generalize. On
the other hand, these queries lack error path information that
could simplify overall checking.

For example, consider model checking the following pro-
gram, assuming that a, b, and f are distinct constant values:

int[] A; int i, a, b, f;
`1: A[3] = f;
`2: A[1] = a;

A[2] = b;
assume(1 <= i <= 3);
if (A[i] == f);

`3: error();
else

`4: exit();

The model checker is trying to find if any values of i lead to
the error at location `3. Of course it can reach `3 if i = 3,
which the checker takes two SMT queries to discover. The
first query corresponds to reaching `3, where A[i] = f, from
`2. The solver deduces i 6∈ {1, 2}, meaning the property may
yet be violated, so the checker moves on to the next query,
which corresponds to reaching the failure from `1. The first
query involves two array stores and one read; the SMT array
theory will generate theory lemmas to deduce that A[i] is
not set to f by any assignment from `2. Several of these
lemmas ultimately do not matter, however, since the property
is discovered to be violated by the antecedent assignment at
`1.

We study arrays and array abstraction in the context of EUF
model checking and make the following contributions:

1) We develop an algorithm for integrating array abstrac-
tion into EUFORIA, an EUF-based, incremental, induc-
tive, model checker (Section III).

2) We introduce a refinement procedure for learning rele-
vant array lemmas (Section IV).

3) We evaluate the integration of array abstraction with
EUF-based model checking using a variety of device
driver benchmarks from SV-COMP (Section V). We find
that EUFORIA performs well compared to SPACER and
ICIA.

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_12

https://fmcad.org/FMCAD20
https://orcid.org/0000-0001-6944-5022
dlbueno@umich.edu
arlen@super.org
https://orcid.org/0000-0002-5819-9089
karem@umich.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_12

II. BACKGROUND

a) Equality with Uninterpreted Functions (EUF): We
consider a first-order language with equality with signature
S and two common sorts, BOOLs and INTs. Our setting
is standard quantifier-free, first-order logic (FOL) with the
standard notions of theory, satisfiability, validity, entailment,
and models. Much of this background is adapted from previous
work [1].

The EUF logic grammar is presented here:
type production explanation
term (t) ::= x | y | z | · · · 0-arity term

| F(t1, t2, . . . , tn) uninterp. function (UF)
| ite(f, t1, t2) if-then-else

atom (a) ::= t1 = t2 equality atom
| x | y | z | · · · Boolean atom
| P(t1, t2, . . . , tn) uninterp. predicate (UP)

formula (f) ::= a
| ¬a negation
| f1 ∧ f2 conjunction
| f1 ∨ f2 disjunction

Atomic formulas (atoms) are made up of Boolean identifiers,
uninterpreted predicates (UPs), and equalities between terms.
Formulas are made up of terms combined with arbitrary
Boolean structure. For simplicity, but without loss of gener-
ality, we only consider formulas in negation normal form. A
literal is a (possibly-negated) atom containing no occurrences
of ITE. A clause is a disjunction of literals. A cube is a
conjunction of literals. When convenient, a formula F may be
treated as a set of its top-level conjuncts, e.g., x = 1 ∈ F if
F = (x > 17∧x = 1). a |= b means that a entails b. We write
uninterpreted objects—terms x, functions F, and predicates
P—in sans serif face. The semantics of these formulas is
standard.

b) Arrays: We consider a theory of arrays with exten-
sionality and constant-initialized arrays. This theory has the
particular function symbols select, store, and const-array.
The theory is defined by McCarthy’s axioms [3], extended
with axioms for extensionality and constant initialization:

∀aije. i = j =⇒ select(store(a, i, e), j) = e (1)
∀aije. i 6= j =⇒ select(store(a, i, e), j) = select(a, j) (2)
∀ab. (∀i. select(a, i) = select(b, i)) =⇒ a = b (3)
∀ik. select(const-array(k), i) = k (4)

The first two axioms specify array accesses. The third axiom
specifies that equal arrays have identical elements at identical
indices. The fourth axiom specifies that every index of a
constant-initialized array has the initializer value.

We consider this array theory—specifically including equal-
ity and constant initialization—because of its utility for soft-
ware verification. Programs commonly bulk-initialize arrays
and array equality allows encodings to be easily composed.

c) Transition Systems for Programs: A transition sys-
tem [4], [5] is a tuple T = (X,Y, I, T) consisting of a (non-
empty) set of state variables X = {x1, . . . , xn}, a (possibly
empty) set of input variables Y = {y1, . . . , ym}, and two
formulas: I , the initial states, and T , the transition relation.
Formulas over state variables, or state formulas, are identified

with the sets of states they denote; for example, the formula
(x1 = x2) denotes all states where x1 and x2 are equal,
and other variables may have any value. The state space
of T is the set of all valuations to variables in X . The
set of next-state variables is X ′ = {x′1, x′2, . . . , x′n}. For a
formula σ, Vars(σ) denotes the set of state variables free in σ
(respectively, Vars′(σ) denotes the set of next-state variables
in σ). We may write σ as σ(X) when we wish to emphasize
that the free variables in σ are drawn solely from the set X ,
i.e., Vars(σ(X)) ⊆ X; similarly for σ(X ′) (also written σ′).
The system’s transition relation T (X,Y,X ′) is a formula over
the current-state, next-state, and input variables.

A (possibly-infinite) sequence of states σ0(X), σ1(X), . . .
is an execution of a transition system if σ0(X) |= I(X) and
for every pair (σi(X), σi+1(X)), σi(X) ∧ T |= σ′i+1(X).

A safety property is specified by a formula, P (X). The
model checking problem is to determine whether any state
satisfying ¬P (X) is reachable through an execution of T .
A counterexample to a safety property P (X) is a k-step
execution such that σk(X) |= ¬P (X).

A concrete transition system (CTS) is defined over bit vector
and array state variables and operations in the quantifier-free
logic of bit vectors and arrays (QF_ABV from SMT-LIB [6]).

III. MODEL CHECKING WITH EUF AND ARRAYS

To better understand how arrays are handled within EUF-
ORIA, we first review EUFORIA’s data abstraction approach. It
is the inspiration and basis for our array abstraction.

EUFORIA homomorphically maps bit vector operations into
uninterpreted functions in order to avoid potentially expensive
reasoning (e.g., nonlinear computations). EUF operation ab-
straction was introduced by Burch and Dill [7] for checking
the equivalence between pipelined computer architectures and
their single-step specifications. EUFORIA adopts and extends
this abstraction to check for general safety properties. For
purposes of this paper, we assume there is an abstraction
function J.K that homomorphically maps a given concrete
transition relation to an EUF transition relation. For instance,
Jx′ = x + 1K = (x̂′ = ADD(x̂, 1̂)). State variables, inputs,
and constants are mapped to uninterpreted 0-arity terms with
hats (e.g., x 7→ x̂, and 1 7→ 1̂). Operations are mapped to
appropriately-named UFs. The crucial property guaranteed by
this abstraction is that executions of the EUF transition system
over-approximate the executions of the concrete transition
system. The details of EUFORIA’s translation are available in
previous work [1].

EUFORIA performs an incremental induction reachability
search based on IC [2], a model checking algorithm for finite,
Boolean transition systems. EUFORIA uses a counterexample-
guided abstraction refinement (CEGAR) [8] approach that
extends IC to apply to EUF transition systems while retaining
termination.

EUFORIA takes a model checking problem as input,
(X,Y, I, T, P). It maps the CTS and property to produce
a corresponding EUF abstract transition system (ATS) and
property, (X̂, Ŷ , Î, T̂ , P̂). EUFORIA then alternates between

58

two phases: EUF reachability and abstraction refinement. EUF
reachability searches for a counterexample in the ATS. If no
counterexample is found, soundness of the ATS proves that the
property holds in the CTS. Otherwise, abstraction refinement
analyzes the counterexample to determine if it is feasible in
the CTS and, if not, modifies the EUF abstraction to increase
its fidelity to the CTS. We first give a brief review of EUF
reachability [1] before focusing on refinement.

As in IC, EUF reachability operates on an iteratively
deepened sequence of reachable sets of formulas, Ri, each
denoting an over-approximation of the set of states reachable
in i transitions (0 ≤ i ≤ N). The algorithm maintains the
following invariants:

R0 = Î(X̂) (5)
Ri |= Ri+1 (6)

Ri |= P̂ (X̂) (i < N) (7)
Ri+1 over-approximates the image of Ri (8)

EUF reachability computes an inductive invariant for P̂ or a
counterexample to the safety property. An inductive invariant
Ŝ for P̂ has the following properties:

Î |= Ŝ, Ŝ ∧ T̂ |= Ŝ′, and Ŝ |= P̂ .

This paper brings arrays into the mix. In order to avoid
the overhead of instantiating array axioms, array operations
and terms may be abstracted. The operations select, store,
and const-array are mapped into corresponding uninterpreted
functions, select, store, and const-array by extending the
EUF abstraction mapping J·K to array terms and operations as
follows:

Ja : ArrayK = â (9)
Jselect(a, i)K = select(JaK, JiK) (10)

Jstore(a, i, x)K = store(JaK, JiK, JxK) (11)
Jconst-array(k)K = const-array(JkK) (12)

The array abstraction fits neatly into EUFORIA’s data ab-
straction approach. In fact, this abstraction approach keeps
EUFORIA reasoning at the pure (quantifier-free) uninterpreted
function level, for which there are efficient decision proce-
dures.

IV. ABSTRACTION REFINEMENT FOR ARRAYS

EUF reachability may find an abstract counterexample
(ACX). Due to EUF abstraction, the concretized abstract coun-
terexample (CACX) may not be a counterexample in the CTS.
For example, consider the transition system E = (X,Y, I, T)
defined as

({A, i}, ∅, [select(A, i) = 3], [A′ = store(A, i, 3)])

with the property, P = [select(A, i) = 3], which is its
own safety invariant. Nevertheless, JP K does not hold in
Ê , since EUF abstraction does not preserve the relationship
between store and select, and yields the two-step CACX
(I, select(A, i) 6= 3) which is infeasible in the QF_ABV

theory. EUFORIA uses this contradictory CACX to refine,
or increase the fidelity of, the abstraction. Refinement is
accomplished by conjoining formulas, called lemmas, to the
abstract transition relation.

In this example, EUFORIA learns an instance of McCarthy’s
axiom (1), to eliminate the spurious behavior caused by the
abstraction:

Â′ = store(Â, î, 3̂)⇒ select(Â′, î) = 3̂

This lemma constrains the abstract state space of Ê and is
therefore appropriately called a constraint lemma. Constraint
lemmas restrict the behavior of uninterpreted functions to
make them conform more closely to the behavior of their
concrete counterparts. A second type of refinement involves
learning expansion lemmas, which introduce new terms from
CACXs. We will discuss these after we present our implemen-
tation of abstraction refinement.

A. Implementation of Abstraction Refinement

Our implementation first attempts to derive constraint lem-
mas by examining individual states and transitions of the
abstract counterexample. If none are found, it performs a
bounded model check (BMC) of the entire counterexample.
If that check is inconsistent, then EUFORIA calculates inter-
polants from which it derives expansion lemmas. We use a
Horn clause solver (SPACER) for convenience to calculate the
interpolants; but the interpolants could be obtained using any
interpolating theorem prover for QF_ABV. We will discuss
each part of refinement in turn.

An n-step abstract counterexample is an execution
Â0, Â1, . . . , Ân in T̂ where each Âi (0 ≤ i ≤ n) is a state
formula. An abstract formula σ̂ is feasible if its concretization
σ is satisfiable over QF_ABV; therefore, an abstract counterex-
ample is feasible if its concretization is a counterexample in
the CTS.

EUFORIA’s refinement procedure, BUILDCX, is given in
Figure 1a; it has three stages. The first stage (lines 1–3) checks
whether each Âi is feasible (0 ≤ i ≤ n). The second stage
(lines 4–6) checks whether each Âi−1 ∧ T̂ ∧ Â′i is feasible
(0 < i ≤ n). If an infeasible state or transition is found during
the first two stages, we compute an UNSAT core, negate it,
and abstract it to form a constraint lemma (in LEARNLEMMA).
States and transitions are prioritized over the third stage, BMC,
because it is advantageous to learn constraint lemmas, since
they make the abstract state space smaller.

Nevertheless, EUFORIA must learn across multiple coun-
terexample steps in general. Therefore, the third stage, BUILD-
BMCCX, performs a BMC query to learn across multiple steps
of the counterexample; this is shown in Figure 1b. This stage
of refinement has two phases.

a) BUILDBMCCX phase one, BMC solving: In phase
one (lines 1–2), BMCFORMULA constructs the instance as

59

BUILDCX():
Returns true if counterexample is true, false if abstraction is
refined
input: counterexample (Â0, Â1, . . . , Ân) in T̂

1: if ∃i ∈ {0, . . . , n}. ¬SAT[Ai] then
2: LEARNLEMMA(UNSATCORE())
3: return false
4: if ∃i ∈ {1, . . . , n}. ¬SAT[Ai−1 ∧ T ∧A′i] then
5: LEARNLEMMA(UNSATCORE())
6: return false
7: return BUILDBMCCX()

(a) The first two stages of refinement: examining concretized states
and transitions.

BUILDBMCCX():

1: B ← BMCFORMULA()
2: if ¬SAT[B] then
3: REFINEWITHINTERPOLANTS(UNSATCORE())
4: return false
5: return true . feasible counterexample

(b) The third stage of refinement, bounded model checking and
interpolant calculation.

Fig. 1: EUFORIA’s refinement procedure, BUILDBMCCX.

1: procedure MBPOUTER(M , f)
2: S ← ∅; r ← MBP(f); return S ∪ {Lit(r)}
3: procedure MBP(f)
4: switch f do
5: case x . x a 0-arity term
6: return x
7: case F(t1, t2, . . . , tn)
8: return F(MBP(t1),MBP(t2), . . . ,MBP(tn))

9: case ite(c, t1, t2) . traverse satisfied branch
10: S ← S ∪ {Lit(MBP(c))}
11: if M |= c then return MBP(t1)
12: else return MBP(t2)

13: case b . b a Boolean variable or its negation
14: return Lit(b)

15: case t1 = t2
16: return Lit(MBP(t1) = MBP(t2))

17: case P(t1, t2, . . . , tn)
18: return Lit(P(MBP(t1),MBP(t2), . . . ,MBP(tn)))

19: case f1 ∧ f2
20: if M |= f then return MBP(f1) ∧MBP(f2)
21: else if M |= ¬f1 then return MBP(f1)
22: else return MBP(f2) . M |= ¬f2
23: case f1 ∨ f2
24: if M |= f1 then return MBP(f1)
25: else if M |= f2 then return MBP(f2)
26: else return MBP(f1) ∧MBP(f2) . M |= ¬f

Fig. 2: Model-based projection of a formula f with model M
where M |= f . MBPOUTER(M,f) = SMBP computes a set
SMBP of constraints for a formula f such that M |= SMBP

and SMBP |= f . Essentially, it justifies the model of f . In the
figure, Lit(b) = b if M |= b and Lit(b) = ¬b if M |= ¬b.

below by explicitly renaming variables and using multiple
copies of T :

B = A(X0) ∧ I(X0) ∧ T (X0, Y1, X1) ∧
A(X1) ∧ T (X1, Y2, X2) ∧ . . . ∧
A(Xn−1) ∧ T (Xn−1, Yn, Xn) ∧A(Xn)

B is then checked for feasibility. Solving BMC queries is
challenging for several reasons. First, there are multiple copies
of T . Second, T is monolithic because it encodes the entire
program, even though only part of the program is relevant for
a given counterexample step. Third, even if we could reduce
T at each step by removing irrelevant parts, using a large-step
encoding [9] for T means that the reduced T would likely still
contain a whole pile of nested Boolean logic, not all of which
is necessarily relevant.

At a high level, we address these difficulties by conjoining
extra constraints onto B that significantly prune its search
space. These constraints are derived from abstract models
gathered during EUFORIA’s EUF reachability (see Section III).
We use our model-based projection procedure, MBPOuter,
given in Figure 2, to derive these extra constraints from the
abstract transition relation. We now detail how we solve B.

Let M̂ i+1
i denote the abstract model for the transition

(Âi, Âi+1) in the abstract counterexample (0 ≤ i < n).
We augment the query B so that each T (Xi, Yi+1, Xi+1)
is conjoined with the concretization of the constraints in
MBPOuter(M̂ i+1

i , T̂ (X̂i, Ŷi+1, X̂i+1)). The effect of this is
that nested logic in T̂ is projected away by justifying the
model M̂ i+1

i of the transition. Next, we pre-process B by an
equation solving pass that performs Gaussian elimination and
variable elimination.1 Variables assigned to constants at the
top-level will be removed, possibly opening up other elimi-
nation opportunities. Linear constraints are solved, leading to
further variable elimination. Combining equation-solving with
extra constraints addresses difficulties two (T is monolithic)
and three (T contains much nested logic). In practice, their
combination achieves efficiency far beyond what either does
in isolation. Finally, if B is feasible (BUILDBMCCX line 5),
it is a counterexample to the property. If B is infeasible,
BUILDBMCCX enters phase two.

b) BUILDBMCCX phase two, interpolants: Phase two
is implemented in REFINEWITHINTERPOLANTS, given in
Figure 3. BUILDHORN uses B’s UNSAT core to create a
(reduced) inductive interpolant sequence problem BHC [10]
using only the constraints from B that occur in the core. BHC

is a set of recursion-free Horn clauses in which uninterpreted

1The solve-eqs tactic in Z.

60

REFINEWITHINTERPOLANTS(core):
1: BHC ← BUILDHORN(core)
2: M← HORNSOLVE(BHC)
3: for i ∈ {1, . . . , n} do
4: pi ← GETINTERPOLANT(M, i)
5: pi+1 ← GETINTERPOLANT(M, i+ 1)
6: l← pi−1(X) ∧ bodyi(X,Y,X ′) ∧ ¬pi(X ′)
7: LEARNLEMMA(l)

Fig. 3: Constructs lemmas from an inductive interpolant se-
quence derived from a solution to (satisfiable) Horn clauses.
GETINTERPOLANT(M, i) returns a formula, the ith inter-
polant in the interpolant sequence, given a model for BHC .

predicates pi stand for step-wise interpolants:

p0(X0)⇐ true

p1(X1)⇐ p0(X0) ∧A∗(X0) ∧ I(X0) ∧ T ∗(X0, Y1, X1)

p2(X2)⇐ p1(X1) ∧A∗(X1) ∧ T ∗(X1, Y2, X2)

...
pn(Xn)⇐ pn−1(Xn−1) ∧A∗(Xn−1) ∧ T ∗(Xn−1, Yn, Xn)

false⇐ pn(Xn)

where F ∗ =
∧
{f ∈ F | f ∈ UnsatCore(B)} for F ∈

{A, T}.2 These Horn clauses are satisfiable by construction
since B is infeasible.

For each nontrivial solution to the Horn clauses, we extract
a lemma from the corresponding Horn clause as follows:

¬[pi−1(X)∧bodyi(X,Y,X ′)∧¬pi(X ′)] 0 < i ≤ n (13)

where bodyi stands for the interpreted body predicates from
the rule whose head is pi.

We now return to the topic of expansion lemmas. Consider
a program x = 3;x = x + 3; assert(x < 7). Consider an
(infeasible) 2-step counterexample (x = 3, x ≥ 7) and its
corresponding set of Horn clauses:

p0(3) (14)
p1(x

′)⇐ p0(x) ∧ x′ = x+ 3 (15)
false⇐ p1(x) ∧ x ≥ 7 (16)

A solution is p0(x) = (x = 3) and p1(x) = (x = 6) which
results in the following lemmas (see (13)):

¬[x = 3 ∧ y = x+ 3 ∧ y 6= 6] (17)
¬[x = 6 ∧ x ≥ 7] (18)

The key take-away here is that these lemmas introduce the new
term 6 into the abstraction, which previously only contained
terms from the program text, namely 3, i, 7, and the addition
and less-than. These lemmas increase the granularity of the

2BHC could be computed without B’s UNSAT core, but using it promotes
learning concise lemmas, because it substantially reduces the complexity of
the Horn clause bodies. See equation (13).

LEARNLEMMA(f):
Precondition: f is unsatisfiable in QF_ABV

1: f̂ ← ABSTRACTANDNORMALIZE(f) . abstract and
eliminate input variables

2: if f contains no inputs then
3: if VARS(f) ⊆ X then . only present-state vars
4: Simplify and add lemma ¬f̂(X̂ ′)
5: if VARS(f) ⊆ X ′ then . only next-state vars
6: Simplify and add lemma ¬f̂(X̂)

7: Simplify and add lemma ¬f̂

Fig. 4: Learns a lemma by abstracting and conjoining ¬f̂ to
T̂

abstraction. This kind of learning is similar to learning new
predicates in a predicate abstraction (e.g., [11]).

Lemmas are expansion lemmas only when the interpolants
contain new terms. Using our method implies that the in-
terpolation system itself decides whether a particular lemma
is expansive or not; EUFORIA does not make this decision
explicitly. EUFORIA’s back-end uses SPACER to solve BHC .

Refinement is not guaranteed to succeed. We require
quantifier-free interpolants but interpolants for arrays in gen-
eral are not quantifier-free [12]. Moreover, the interpolant
back-end may give up.

To sum up, constraint lemmas specialize UFs to particular
concrete behaviors. Expansion lemmas increase the granularity
of the EUF abstraction. EUFORIA learns array lemmas only if
they crop up in a CACX’s contradiction, ensuring that the
lemmas are directly relevant to the property that is being
checked. Empirically speaking, contradictions usually feature
a small handful of UFs which are ultimately relevant to the
property, resulting in targeted lemmas. Our process avoids
most of the expense of array lemma generation, as we will
see in the evaluation.

B. Exceptionally Lazy Learning of Array Lemmas

Fundamentally, the procedure LEARNLEMMA (Figure 4)
learns its lemmas by negating formulas found to be un-
satisfiable in QF_ABV and conjoining them to T̂ . It also
simplifies the formulas in order to generalize the lemmas as
much as possible, specifically by eliminating input variables
(line 1). We eliminate input variables from formulas by (1)
collecting top-level equalities and computing their equality
closure, resulting in equivalence classes of terms; and (2)
substituting every input with a member of its equivalence class
that doesn’t contain inputs (if possible). Next, if the lemma
formula is a state formula, then two versions are learned: one
on current-state variables and one on next-state variables (lines
2–6).

Consequently, EUFORIA generates property-directed instan-
tiations of array theory axioms. For instance, here is a lemma
learned in one of our benchmarks:

A 6= const-array(0) ∨ 0 6= select(A, i) (19)

61

This lemma is an instance of axiom (4). We also find instances
of McCarthy’s axiom (1):

select(A′, i) = 0 ∨ i′ 6= i ∨A′ 6= store(A, i′, 0) (20)

Array lemmas may also include bit-vector function symbols
to learn targeted lemmas about composite behavior:

B 6= store(A, i, 0) ∨ extract(7, 0, select(B, i)) 6= 0 (21)

Finally, some lemmas combine multiple array axioms:

store(B, i, 0) 6= A ∨ store(A, i, 0) = A (22)

This lemma relates stores and array extensionality. It is not a
direct instance of any axiom (1)–(4), but rather a consequence
of several instantiations.

We note that LEARNLEMMA is not specialized to produce
array lemmas. Rather, it generalizes formulas from unsatisfi-
able refinement queries that themselves pinpoint which array
lemma instantiations to learn. This design allows LEARN-
LEMMA to produce lemmas that are property-directed com-
binations of array theory axiom instantiations.

V. EVALUATION

To evaluate EUFORIA, we rely on benchmarks from SV-
COMP’17 [13], as they are widely used and relatively well
understood. We evaluate on C programs from the Sys-
tems DeviceDriversLinux64 ReachSafety benchmark set,
hereafter abbreviated DeviceDrivers. This set contains 64-bit
C programs and contains “problems that require the analysis of
pointer aliases and function pointers.” EUFORIA was originally
designed for control properties, so our benchmark set includes
benchmarks with control properties and arrays.

We consider two other model checkers, SPACER and ICIA.
SPACER [14], [15], [16] is an over- and under-approximation
driven incremental model checker that is tightly integrated
with Z. It computes procedure summaries to support checking
programs with recursive functions. It is capable of inferring
quantified array invariants and uses model-based projection
array procedures to lazily instantiate property-directed array
axioms, making the checker particularly efficient. ICIA [11] is
an IC-style CEGAR model checker that implements implicit
predicate abstraction. ICIA’s architecture is quite similar
EUFORIA’s, more similar than SPACER’s. As discussed in
Cimatti [11], ICIA is superior to state-of-the-art bit-level
IC implementations and can support hundreds of predicates,
around an order of magnitude more than what explicit pred-
icate abstraction tools practically support. We also evaluated
ELDARICA [17], a predicate-abstraction based CEGAR model
checker that supports integers, algebraic data types, arrays, and
bit vectors. Unfortunately, ELDARICA either threw errors, ran
out of time, or ran out of memory on all of our benchmarks,
so we do not consider it further.

We use SeaHorn as a front-end to encode programs into
Horn clauses. SeaHorn [18] is a verification condition (VC)
generator for C and C++ programs that uses LLVM in order
to optimize and generate large-step, Horn clause benchmarks
in SMT-LIB declare-rel format [19]. Note that we use the

term benchmark to refer both to the C programs and their
encoded counterparts. Since SeaHorn is not able to produce
bit-vector encoded benchmarks, we modified it to produce bit-
vector VCs.3 Moreover, since EUFORIA does not yet support
procedure calls, we instruct SeaHorn to inline all procedures,
resulting in linear Horn clauses. We ran SeaHorn on each
benchmark, limiting it to one hour of runtime and 8GB of
memory. SeaHorn can fail to produce a usable benchmark
due to lack of resources or because the input is trivially
solved during optimization. All told, SeaHorn produced 948
DeviceDrivers Horn clause benchmarks out of 2703 original
C programs. 687 are safe and 261 are unsafe.

SPACER natively supports Horn clauses, but EUFORIA and
ICIA take VMT files as input. The VMT format [20] is a
syntax-compatible extension of the SMT-LIB format that spec-
ifies a syntax for labeling formulas denoting initial state, the
transition relation, and property. In order to create comparable
benchmarks for EUFORIA and ICIA, we translate the Horn
clause benchmarks into VMT using Horn2VMT [21], resulting
in 948 VMT files that correspond to the 948 Horn benchmarks.
The benchmarks range in size from 29 to more than 223, with
a median size of 219; this size is the number of distinct SMT-
LIB expressions used to define (I, T, P). When compressed
with gzip, their sizes range from 2K to 153 MB.

All checkers run on 2.6 GHz Intel Sandy Bridge (Xeon
E5-2670) machines with 2 sockets, 8 cores with 64GB RAM,
running RedHat Enterprise Linux 7. Each checker run was
assigned to one socket during execution and was given a 30
minute timeout. For every benchmark solved by any checker,
we verified that its result was consistent with other checkers.

A. EUFORIA compared with SPACER

Figure 5 shows a scatter plot of runtime for EUFORIA
and SPACER on DeviceDrivers benchmarks. Overall, EUFORIA
solves 491 benchmarks and SPACER solves 386. EUFORIA
times out on 33 benchmarks that SPACER solves. SPACER times
out on 138 benchmarks that EUFORIA solves.

a) When SPACER solves EUFORIA’s timeouts: In the
33 cases where spacer was able to solve a benchmark that
EUFORIA could not, we identified several causes:

1) SPACER’s preprocessor is able to solve 19 benchmarks
without even invoking search. By comparison, EUF-
ORIA’s front-end takes excessive time to parse and
normalize the benchmarks. EUFORIA parses VMT files
using MathSAT5, since it the simplest API to do so. In
addition to parsing, MathSAT normalizes and simplifies
the resulting formula.

2) Another 12 benchmarks are quite large, and the overhead
of a monolithic transition relation dominates EUFORIA’s
abstract reachability. To explain: SeaHorn produces an
explicitly sliced transition relation which SPACER ex-
ploits by making sliced incremental queries. EUFORIA
consumes and queries a monolithic transition relation as
produced by Horn2VMT.

3We worked from SeaHorn commit id
8e51ef84360a602804fce58cc5b7019f1f17d2dc.

62

0

500

1000

1500

0 500 1000 1500
 spacer−4.8.7, 386 solved

 e
uf

or
ia

, 4
91

 s
ol

ve
d

expected status
safe

unsafe

runtime plot, timeout 1800, 524 points

Fig. 5: Benchmarks solved by either solver (or both). Note
the points on the right hand side of this plot. Each point
is a benchmark that EUFORIA solved within 30 minutes that
SPACER did not solve during that time.

3) In one benchmark EUFORIA gets stuck in a single
interpolation query. We suspect this is because some
interpolation queries generated by EUFORIA are unex-
pectedly difficult for SPACER.

In the last un-accounted for benchmark, there was no ob-
vious cause. We believe that front-end improvements would
address the issues identified in item 2. For instance, SPACER’s
preprocessor could be made independent of Z so that it
could be applied before Horn2VMT.4 Alternatively, EUFORIA
could be integrated into Z so that it could exploit the same
preprocessing as SPACER, but exploring this remains future
work.

b) When EUFORIA solves SPACER’s timeouts: In the 138
cases where EUFORIA was able to solve a benchmark that
SPACER did not, we examined causes. In over half of the cases,
SPACER gets stuck solving concrete incremental queries. In the
other 52 cases, SPACER gives up before the timeout (it returns
unknown). In other words, in every case individual queries
were unable to be tackled given the resources constraints.
Therefore we emphasize that, in contrast, EUFORIA has the
strong benefit of making individual queries predictably fast.

We wondered: is EUFORIA only winning because it hardly
needs to do refinement? The answer is no. Figure 6 shows the
same scatter plot as Figure 5 but restricted to EUFORIA-solved
benchmarks that required at least one abstraction refinement.
It shows that EUFORIA requires refinement for many of the
benchmarks for which SPACER times out.

4We tried dumping the benchmark after SPACER’s preprocessing step, but
the benchmark was no longer guaranteed to be Horn, so it was not a valid
input for encoding to VMT with Horn2VMT.

0

500

1000

1500

0 500 1000 1500
 spacer−4.8.7, 38 solved

 e
uf

or
ia

, 9
1

so
lv

ed

expected status
safe

unsafe

runtime plot, timeout 1800, 95 points

Fig. 6: EUFORIA vs SPACER restricted to those benchmarks
that require at least one abstraction refinement.

0

500

1000

1500

0 500 1000 1500
 ic3ia, 128 solved

 e
uf

or
ia

, 4
91

 s
ol

ve
d

expected status
safe

unsafe

runtime plot, timeout 1800, 494 points

Fig. 7: EUFORIA vs ICIA

B. EUFORIA compared with ICIA

Figure 7 shows a scatter plot of our results compared with
ICIA. ICIA solves 128 benchmarks total. Excepting three of
these, EUFORIA solves all the benchmarks that ICIA solves,
usually in orders of magnitude less time. Our results are
significant because ICIA and EUFORIA are quite similar: both
implement a PDR-style [22] algorithm, both operate on exactly
the same VMT instance encoding, and both are written it C++.
They differ in two respects: (1) ICIA uses (implicit) predicate
abstraction and EUFORIA uses EUF abstraction; (2) ICIA’s
SMT solver backend is MathSAT5 and EUFORIA’s is Z.

On the benchmarks where EUFORIA times out, two bench-
marks get stuck after several seconds in an interpolant query;
the other learns a pile of lemmas but doesn’t converge in time.

63

0

500

1000

1500

0 500 1000 1500
 euforia−NAA, 227 solved

 e
uf

or
ia

, 4
91

 s
ol

ve
d

expected status
safe

unsafe

runtime plot, timeout 1800, 494 points

Fig. 8: EUFORIANAA (no array abstraction) (x axis) compared
with EUFORIA (y axis).

C. EUFORIA and array abstraction

For solvers that use lazy theory lemma learning or a trigger-
based saturation method [23], array lemmas will be learned in
response to property-directed queries. Does EUFORIA’s array
abstraction really provide a benefit over such an approach?

To address this question, we modified EUFORIA to compute
a hybrid abstraction using the theory of EUF and arrays.
It abstracts bit-vector operations into UFs (as before), but
uses array theory operations for arrays. Call this configuration
EUFORIANAA, for No Array Abstraction.

As demonstrated in Figure 8, EUFORIANAA is significantly
slower almost everywhere and strictly slower in all cases
but four. One important difference between EUFORIA and
EUFORIANAA is an enormous disparity in array theory lemmas
learned by the underlying SMT solver. Between configura-
tions, the difference of the number of array theory lemma
instantiations is almost two orders of magnitude (1.9), on
95% of the benchmarks; almost four orders of magnitude
(3.8), on 50% of the benchmarks; and more than seven
orders of magnitude (7.2), on 5%. To calculate this result,
we measure the number of array theory axiom instantiations
in the underlying SMT solver (Z). Then, for each benchmark,
we took the difference of the logs (base 10) between the two
configurations; this quantity is proportional to the order of
magnitude difference between the numbers.

We conclude that EUFORIANAA spends a lot of time rea-
soning about arrays despite the fact that EUFORIA required
relatively little array reasoning to solve the same benchmarks.
Moreover, compared to SPACER’s 386 solves, EUFORIANAA
solves only 227 instances, which (1) shows that array abstrac-
tion is critical to performance and (2) gives some additional
evidence that SPACER’s array projection helps its runtime.

1

10

100

0 25 50 75
benchmarks

nu
m

be
r o

f e
uf

or
ia

 le
m

m
as

 le
ar

ne
d

Lemma type
Array lemmas

Non−array lemmas

Fig. 9: Breakdown of lemmas as array-related and non array-
related on the subset of benchmarks (91) for which any lemma
learning was required (y axis is log scale).

D. EUFORIA in itself—the role of lemmas

This section discusses EUFORIA’s learned lemmas as de-
tailed in Section IV. Lemmas in general play a relatively
minor role; they’re only required in 19% of benchmarks
that EUFORIA solved (91). Moreover, only 22 benchmarks
required interpolants. Figure 9 shows the count of total lemmas
learned, broken down by whether EUFORIA learned array
lemmas or non-array lemmas. First, we can see that there
is a trend that EUFORIA learns fewer array lemmas than
data lemmas. Second, all but two benchmarks required fewer
than 100 lemmas. These results suggest our benchmarks only
depend sparingly on the behavior of memory manipulations,
and confirm the suitability of EUFORIA’s abstraction. SPACER
solves 34 of these benchmarks; out of 34, 14 benchmarks
require array lemmas and 20 do not.

VI. RELATED WORK

The relationship between EUF and the theory of arrays has
been long recognized [24], [12] and analyzed [25] and ex-
ploited in decision procedures [26] and in the implementation
of several SMT solvers, including Yices [27] and Z [28].
Array terms are compiled into EUF or a ground theory to
instantiate the needed array axioms. Our approach lifts EUF
outside the SMT solver, to the model checking level, and
refines it on demand.

Komuravelli et al. introduce a model-based projection for
pre-images in order to rewrite array operators into terms
in a scalar theory [16]; this algorithm is implemented in
SPACER [15] used in our evaluation. Predicate abstraction ap-

64

plies to programs with arrays directly [11], with the limitation
that quantifier-free interpolants do not exist in general for the
theory of arrays [12]. We inherit that limitation, but contribute
a different, inexpensive way to place array constraints in pre-
images and refine them lazily.

Broadly, SMT solvers solve constraints over arrays in three
ways (sometimes combined): (1) by rewriting selects and
stores into a finite number of terms and axiom instantiations
in a ground theory, possibly combined with EUF [29], [30],
[24], [31], [25], [32], [33], [23], [26]; (2) by abstraction-
refinement procedures over the array constraints [34], [35];
(3) by rewriting into (non-abstract) representations which are
solved with specialized algorithms [36], [37], [38]. The issue
addressed by our paper is applicable to each of these: we
use an abstraction that inexpensively supports (limited) array
reasoning and we only invoke an SMT array solver at the last
possible moment.

VII. CONCLUSION AND FUTURE WORK

This paper introduces an approach for model checking soft-
ware with arrays that avoids substantial computational effort
spent in reasoning about arrays by using EUF abstraction. We
integrated our approach inside a incremental model checker
that natively supports EUF abstraction. Our approach bests
stiff competition on control-oriented benchmarks, solving over
100 more benchmarks.

We demonstrated that our approach reduces the amount
of redundant or irrelevant array reasoning by several orders
of magnitude in most cases. We are eager to investigate the
possibilities of expanding our universe of target programs. As
software size grows, its sheer size begins to overwhelm the
checker, even if the property to prove is relatively simple (for a
machine). Inlining all functions only exacerbates the problem.
In future work we plan to explore compositional reasoning, in
particular analyzing programs with procedures by integrating
it efficiently with our EUF abstraction.

We find that for some benchmarks, stronger lemmas are
required to speed up convergence. We would like to address
this by inferring quantified lemmas during search. One issue
is how to generalize counterexamples to quantified lemmas.
A second issue is how to keep the abstraction tractable in
the presence of quantified lemmas. Both of these issues form
important future work.

ACKNOWLEDGMENT

We thank Arie Gurfinkel and Nikolaj Bjørner for their help
regarding SPACER and Z internals. We thank the anonymous
reviewers for their helpful feedback.

REFERENCES

[1] D. Bueno and K. A. Sakallah, “EUFORIA: Complete software model
checking with uninterpreted functions,” in Verification, Model Checking,
and Abstract Interpretation - 20th International Conference, VMCAI
2019, Cascais, Portugal, January 13-15, 2019, Proceedings, ser. Lecture
Notes in Computer Science, C. Enea and R. Piskac, Eds., vol. 11388.
Springer, 2019, pp. 363–385.

[2] A. R. Bradley, “SAT-based model checking without unrolling,” in
Verification, Model Checking, and Abstract Interpretation, ser. Lecture
Notes in Computer Science, R. Jhala and D. A. Schmidt, Eds., vol. 6538,
Springer. Springer, 2011, pp. 70–87.

[3] J. McCarthy, “Towards a mathematical science of computation,” in
Information Processing, Proceedings of the 2nd IFIP Congress 1962,
Munich, Germany, August 27 - September 1, 1962. North-Holland,
1962, pp. 21–28.

[4] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–
1542, 1994.

[5] A. R. Bradley and Z. Manna, “Checking safety by inductive generaliza-
tion of counterexamples to induction,” in Formal Methods in Computer-
Aided Design. IEEE Computer Society, 2007, pp. 173–180.

[6] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Workshop on Satisfiability Modulo Theories, A. Gupta and
D. Kroening, Eds., 2010.

[7] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micro-
processor control,” in Computer Aided Verification, ser. Lecture Notes
in Computer Science, D. L. Dill, Ed., vol. 818. Springer, 1994, pp.
68–80.

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, E. A. Emerson
and A. P. Sistla, Eds., vol. 1855. Springer, 2000, pp. 154–169.

[9] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in Formal Methods
in Computer-Aided Design. IEEE, 2009, pp. 25–32.

[10] P. Rümmer, H. Hojjat, and V. Kuncak, “Classifying and solving
horn clauses for verification,” in Verified Software: Theories, Tools,
Experiments, ser. Lecture Notes in Computer Science, E. Cohen and
A. Rybalchenko, Eds., vol. 8164. Springer, 2013, pp. 1–21. [Online].
Available: https://doi.org/10.1007/978-3-642-54108-7 1

[11] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories
via implicit predicate abstraction,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science, E. Ábrahám and K. Havelund, Eds., vol. 8413. Springer, 2014,
pp. 46–61.

[12] D. Kapur, R. Majumdar, and C. G. Zarba, “Interpolation for data
structures,” in SIGSOFT FSE, M. Young and P. T. Devanbu, Eds.
ACM, 2006, pp. 105–116. [Online]. Available: https://doi.org/10.1145/
1181775.1181789

[13] D. Beyer, “Software verification with validation of results - (report on
SV-COMP 2017),” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. Lecture Notes in Computer Science, A. Legay
and T. Margaria, Eds., vol. 10206, 2017, pp. 331–349.

[14] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke, “Automatic
abstraction in smt-based unbounded software model checking,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds., vol. 8044. Springer, 2013, pp. 846–
862. [Online]. Available: https://doi.org/10.1007/978-3-642-39799-8 59

[15] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-Based Model
Checking for Recursive Programs,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds., vol.
8559. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 17–34. [Online].
Available: https://doi.org/10.1007/978-3-319-08867-9

[16] A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan, “Com-
positional verification of procedural programs using horn clauses over
integers and arrays,” in Formal Methods in Computer-Aided Design,
R. Kaivola and T. Wahl, Eds. IEEE, 2015, pp. 89–96.

[17] H. Hojjat and P. Rümmer, “The ELDARICA horn solver,” in
2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018, N. Bjørner
and A. Gurfinkel, Eds. IEEE, 2018, pp. 1–7. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8603013

[18] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The SeaHorn
verification framework,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, D. Kroening and C. S. Pasareanu, Eds.,
vol. 9206. Springer, 2015, pp. 343–361.

[19] N. Bjørner, K. L. McMillan, and A. Rybalchenko, “Program verification
as satisfiability modulo theories,” in Workshop on Satisfiability Modulo
Theories, ser. EPiC Series in Computing, P. Fontaine and A. Goel,
Eds., vol. 20. EasyChair, 2012, pp. 3–11. [Online]. Available:
https://easychair.org/publications/paper/qGkT

65

https://doi.org/10.1007/978-3-642-54108-7_1
https://doi.org/10.1145/1181775.1181789
https://doi.org/10.1145/1181775.1181789
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-319-08867-9
https://doi.org/10.23919/FMCAD.2018.8603013
https://easychair.org/publications/paper/qGkT

[20] F. B. Kessler, The VMT format, 2020 (accessed May 13, 2020).
[Online]. Available: https://nuxmv.fbk.eu/index.php?n=Languages.VMT

[21] D. Bueno and K. Sakallah, “Horn2VMT: Translating horn reachability
into transition systems,” in Workshop on Horn Clauses for Verification
and Synthesis, 2020, p. To appear.

[22] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in Formal Methods in Computer-Aided
Design. IEEE, 2011, pp. 125–134.

[23] L. M. de Moura and N. Bjørner, “Generalized, efficient array decision
procedures,” in Formal Methods in Computer-Aided Design. IEEE,
2009, pp. 45–52. [Online]. Available: https://doi.org/10.1109/FMCAD.
2009.5351142

[24] D. Kapur and C. G. Zarba, “A reduction approach to decision proce-
dures,” University of New Mexico, Tech. Rep., 2005.

[25] A. Goel, S. Krstić, and A. Fuchs, “Deciding array formulas with frugal
axiom instantiation,” in International Workshop on Satisfiability Modulo
Theories, ser. SMT ’08. New York, NY, USA: ACM, 2008, pp. 12–17.
[Online]. Available: http://doi.acm.org/10.1145/1512464.1512468

[26] A. R. Bradley, Z. Manna, and H. B. Sipma, “What’s decidable about
arrays?” in Verification, Model Checking, and Abstract Interpretation,
ser. Lecture Notes in Computer Science, E. A. Emerson and K. S.
Namjoshi, Eds., vol. 3855. Springer, 2006, pp. 427–442. [Online].
Available: https://doi.org/10.1007/11609773 28

[27] B. Dutertre and L. M. de Moura, “A fast linear-arithmetic solver
for DPLL(T),” in Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, ser. Lecture Notes in Computer Science, T. Ball and R. B.
Jones, Eds., vol. 4144. Springer, 2006, pp. 81–94. [Online]. Available:
https://doi.org/10.1007/11817963 11

[28] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,
Eds., vol. 4963. Springer, 2008, pp. 337–340.

[29] N. Suzuki and D. Jefferson, “Verification decidability of presburger array
programs.” CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
COMPUTER SCIENCE, Tech. Rep., 1977.

[30] J. Jaffar, “Presburger arithmetic with array segments,” Inf. Process.
Lett., vol. 12, no. 2, pp. 79–82, 1981. [Online]. Available:
https://doi.org/10.1016/0020-0190(81)90007-7

[31] C. Lynch and B. Morawska, “Automatic decidability,” in IEEE
Symposium on Logic in Computer Science. IEEE Computer Society,
2002, p. 7. [Online]. Available: https://doi.org/10.1109/LICS.2002.
1029813

[32] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz, “New
results on rewrite-based satisfiability procedures,” ACM Trans. Comput.
Log., vol. 10, no. 1, pp. 4:1–4:51, 2009. [Online]. Available:
https://doi.org/10.1145/1459010.1459014

[33] J. Christ and J. Hoenicke, “Weakly equivalent arrays,” in International
Symposium on Frontiers of Combining Systems, ser. FroCoS 2015.
Berlin, Heidelberg: Springer-Verlag, 2015, pp. 119–134.

[34] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification, ser. Lecture Notes in Computer
Science, W. Damm and H. Hermanns, Eds., vol. 4590. Springer, 2007,
pp. 519–531.

[35] R. Brummayer and A. Biere, “Lemmas on demand for the extensional
theory of arrays,” JSAT, vol. 6, no. 1-3, pp. 165–201, 2009. [Online].
Available: https://satassociation.org/jsat/index.php/jsat/article/view/74

[36] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt, “A decision
procedure for an extensional theory of arrays,” in IEEE Symposium on
Logic in Computer Science. IEEE Computer Society, 2001, pp. 29–37.

[37] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “A write-based solver for SAT modulo the theory of
arrays,” in Formal Methods in Computer-Aided Design, A. Cimatti
and R. B. Jones, Eds. IEEE, 2008, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/FMCAD.2008.ECP.18

[38] P. Habermehl, R. Iosif, and T. Vojnar, “What else is decidable about
integer arrays?” in Foundations of Software Science and Computational
Structures, ser. Lecture Notes in Computer Science, R. M. Amadio, Ed.,
vol. 4962. Springer, 2008, pp. 474–489.

[39] Formal Methods in Computer-Aided Design. IEEE, 2009.

66

https://nuxmv.fbk.eu/index.php?n=Languages.VMT
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1109/FMCAD.2009.5351142
http://doi.acm.org/10.1145/1512464.1512468
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11817963_11
https://doi.org/10.1016/0020-0190(81)90007-7
https://doi.org/10.1109/LICS.2002.1029813
https://doi.org/10.1109/LICS.2002.1029813
https://doi.org/10.1145/1459010.1459014
https://satassociation.org/jsat/index.php/jsat/article/view/74
https://doi.org/10.1109/FMCAD.2008.ECP.18

	Introduction
	Background
	Model Checking with EUF and Arrays
	Abstraction Refinement for Arrays
	Implementation of Abstraction Refinement
	Exceptionally Lazy Learning of Array Lemmas

	Evaluation
	euforia compared with spacer
	euforia compared with ic3ia
	euforia and array abstraction
	euforia in itself—the role of lemmas

	Related Work
	Conclusion and Future Work
	References

