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Abstract—We present UPPROVER, a bounded model checker
designed to incrementally verify software while it is being
gradually developed, refactored, or optimized. In contrast to its
predecessor, a SAT-based tool EVOLCHECK, our tool exploits
first-order theories available in SMT solvers, offering two more
levels of encoding precision: linear arithmetic and uninter-
preted functions, thus allowing a trade-off between precision
and performance. Algorithmically UPPROVER is based on the
reuse and repair of interpolation-based function summaries from
one software version to another. UPPROVER leverages tree-
interpolation systems in SMT to localize and speed up the checks
of new versions. UPPROVER demonstrates an order of magnitude
speedup on large-scale programs in comparison to EVOLCHECK
and HIFROG, a non-incremental bounded model checker.

I. INTRODUCTION

Software is always in a state of constant change. While ver-
ifying a large amount of closely related programs, a significant
portion of efforts is repeated. One approach to overcome this
issue is to operate incrementally by attempting to maximally
reuse the results of previous computations. Furthermore, the
performance and scalability of verification depends on the
way software is encoded. To avoid the expensive bit-blasting
during SAT-based verification, a variety of encodings offered
by Satisfiability Modulo Theories (SMT) are successfully
used in state-of-the-art tools. For instance, checking arithmetic
properties about software might often be performed by a solver
for Linear Real Arithmetic. While automatically identifying a
proper level of encoding is difficult (and not a subject of this
paper), tools at least should offer various encoding options to
the user.

This paper presents a new tool allowing for the trade-off
between efficiency and precision for the incremental analysis
of pairs of software versions. Over-approximating function
summaries are useful to enable such an analysis [1]. Sum-
maries compactly represent all safe function behaviors, can
be computed by Craig interpolation [2] from safety proofs
of one software version, then validated on another version,
and repaired if needed. An existing implementation of this
idea, EVOLCHECK [3], uses a SAT solver and scales poorly
on benchmarks that can be modeled using first-order theories.
Our new Bounded Model Checking (BMC) [4] tool, called
UPPROVER, supports several state-of-the-art SMT algorithms
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for interpolation [5] and allows the user to choose more
efficient algorithms. In addition to the purely propositional
encoding UPPROVER generates models with fragments of
quantifier-free first-order logic, in particular in Linear Real
Arithmetic (LRA) and Equality with Uninterpreted Functions
(EUF). Overall, UPPROVER distinguishes itself by:

• Reusing the efforts invested in the verification runs of
previous program versions in verification of new versions;

• Providing an ability to maintain and to repair previously
computed summaries on-the-fly and to use them in the
subsequent verification runs;

• Allowing for a more succinct summary representation in
first-order logic as opposed to purely propositional logic;

• Leveraging the power of SMT solvers by symbolic encod-
ings of program versions and function summaries using
first-order theories (the encoding is flexible and provides
an ability to adjust precision and efficiency with different
levels of encoding); and

• Demonstrating a competitive performance experimentally
compared to both EVOLCHECK and a non-incremental
BMC engine while verifying gradual changes in large-
scale programs.

II. ALGORITHMIC BACKGROUND

UPPROVER is an incremental model checker which operates
on loop-free programs that are seen as a set of functions F ,
each f ∈ F expressed in their Static Single Assignment form.
The behavior of a program is captured by the conjunction
of the SMT encodings enc(f) of each f ∈ F . The program
respects a safety property Q if and only if the safety query⋀

f∈F enc(f) ∧ ¬enc(Q) is unsatisfiable.
We use Craig interpolation from the proof of unsatisfiability

of the safety query to construct function summaries, that is,
relations over the input and output variables of a function that
over-approximate the precise function behavior [6], [5], [7].

In UPPROVER, the problem of determining whether a
changed program still meets the safety property, w.r.t. which
the summaries were created, is reduced to the problem of vali-
dating these summaries on the changed program. To guarantee
algorithmic correctness, the process requires a specialization
of Craig interpolants called tree interpolants (see [8], [1]). The
tree structure of the interpolation problem corresponds to the
call tree of the program. We use approaches that guarantee the
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Algorithm 1: Summary validation in UPPROVER

Input: function summaries of the old version,
tree= call-tree of the new version, ∆ = set
of changed functions in the new version;

Result: new version is Safe or Unsafe;
1 while all ∆ are not processed do
2 choose the first f in the reverse postorder of tree

such that f ∈ ∆;
3 if f has a summary then
4 if the summary is invalid then
5 Remove the summary;
6 if f has a parent (f is not root) then
7 Add the parent to ∆ to be processed;
8 else
9 return Unsafe , error trace;

10 else
11 Repair summaries from subtree of f by

interpolation;
12 return Safe , set of valid and repaired summaries;

tree-interpolation property by construction [9], as opposed to,
for instance, checking it on-the-fly.

Summary validation and repair, shown in Alg. 1, consists of
a series of local validation checks for all changed function calls
and their possibly affected callers, beginning at the deepest
node. If a local validation succeeded, but for some function
call in the subtree, a summary was invalidated, UPPROVER
repairs the summary (line 11) using interpolation. Note that
this local validation continues until there are no more functions
to be processed, and if it succeeds, the new version is reported
as Safe , potentially along with a set of repaired summaries that
are made available for checking the next version.

It is worth noting that when the validation check propagates
to the call tree root, i.e., main function, it corresponds to the
pure BMC check where all functions are inlined. Thus in the
worst case, since the programs that we check are bounded (a
decidable problem), the algorithm fall backs to pure BMC.

III. OVERVIEW OF UPPROVER

The overview of UPPROVER’s architecture is shown in
Fig. 1. UPPROVER implements Alg. 1 by maintaining three
levels of precision—linear real arithmetic (LRA), uninter-
preted functions with equality (EUF), and purely propositional
logic (PROP)—to check the validity of summaries of program
P1 against the encodings of the function bodies of program
P2. Repaired function summaries are produced by the range
of interpolation algorithms available in the underlying SMT
solver. Next we describe UPPROVER’s key features.

a) Efficiency / precision trade-off: A key enabler of
UPPROVER’s ability to adjust to user’s needs in precision and
efficiency is the safe over-approximation of programs with
different SMT encodings. The high-level approach is to use
linear or uninterpreted versions of the bit-precise program
instructions whenever possible. The user selects the precision
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Figure 1: Overview of the UPPROVER architecture.

of the overall encoding (i.e., LRA, EUF, and PROP) which
uniquely determines the precision of summaries that are avail-
able after the preceding verification of P1.

If the user is interested in checking program properties that
are likely sensitive to some bit operators in software, he/she
might prefer PROP encoding. The tool then bit-blasts the
program together with summaries and uses its most expensive
theory (essentially, a SAT solver). However, to accelerate the
process, the user might choose instead a light-weight theory,
forcing the tool to pick summaries appropriately. The program
statements outside of the chosen theory will be modeled
nondeterministically in this case. Thus, if a bug is detected, it
might be due to the theory usage, and the user is encouraged
to repeat the analysis with a more precise theory (and thus,
more precise summaries). Note that there is no way in general
to predict the best level of encoding for each program: even if
a program has seemingly bit-sensitive statements, they might
be sliced out or treated nondeterministically, allowing for a
successful use of a light-weight theory.

b) Summary repair: Summaries of P1 (of the selected
level of precision) are taken as input and used in the incre-
mental analysis on demand. The tool iteratively checks if the
summaries are valid for P2 and repairs them if needed. In
the best-case scenario, all summaries of P1 are validated for
P2, copied to the persistent storage, and become available for
the future analysis of P2. When some of the summaries need
repair, the tool generates new interpolants from the successful
validity checks of the parent functions and stores them as the
corresponding summaries. No summaries are produced when
the tool returns Unsafe .

c) Difference annotations / validation scope: UPPROVER
does not take P1 as input, but relies on annotating the lines
of code changed between P1 and P2. The user may choose
an inexpensive syntax-level difference, or a more expensive
and precise semantic-level difference that compares programs
after some normalization and translation to an intermediate
representation [3]. The functions that have been identified as
changed are stored in ∆ in Alg. 1. Note that if a function
f is introduced in P2, the caller of f is marked as changed
by our difference-checker. When no summary exists for f , the
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algorithm continues to check the caller. A successful validation
with inlined f generates a summary for f .

d) SMT solving and interpolation engine: For answering
BMC queries and the subsequent Craig interpolation, UP-
PROVER uses the SMT solver OPENSMT [10]. The solver
generates a quantifier-free first-order interpolant as a combi-
nation of interpolants from resolution refutations [11], proofs
obtained from a run of a congruence closure algorithm [12],
and Farkas coefficients obtained from the Simplex algorithm
in linear real arithmetic [13].

e) Implementation: UPPROVER is available as an open-
source software. Each component, from difference checker
to modeling to solving procedures, has been significantly
optimized compared to its earlier version EVOLCHECK. As
a front-end of UPPROVER, we use the infrastructure from
CPROVER v5.10 to transform C program to obtain a basic
unrolled BMC representation that we use as a basis for
producing the final logical formula.

f) Compatibility: The summaries computed by UP-
PROVER are compatible with the input to HIFROG [5], another
tool for incremental verification of different assertions in a
single program. Note the difference in the use of summaries
in HIFROG and UPPROVER: the former does not validate the
summaries, but takes them as granted (even from the user,
thus not guaranteeing the tree-interpolation property), and uses
them to accelerate the verification of several new assertions.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation
of UPPROVER. We demonstrate two key features of our
tool: (i) the usefulness of summary reuse in verifying pro-
gram revisions, and (ii) the usefulness of different levels
of modeling precision, i.e., LRA, EUF, and PROP. To
this end, we compare UPPROVER against our current im-
plementation of its predecessor EVOLCHECK and a bounded
model checker HIFROG.1 Then, we compare UPPROVER with
CPACHECKER [14] a tool that uses intermediate results called
abstraction precision for caching and reusing.

Our benchmarks, containing one or more assertions, orig-
inate from different revisions of Linux kernel device drivers
from [14].2 After excluding cases where CPROVER had fron-
tend issues, we shortlisted 1679 revision pairs (LOC on aver-
age 16K). We also included 92 pairs hand-crafted benchmarks
that stress-test our implementation. All experiments were run
with a 30 GB memory limit and a 600 s time limit. The
complete experimental results, benchmarks, and the source
code are available at http://verify.inf.usi.ch/upprover.

A. Demonstrating the effect of summary reuse in UPPROVER

In the first set of experiments, we compare UPPROVER
(incremental verification) against HIFROG (non-incremental
verification). The results of the experiment within the same
theory encodings by LRA and EUF are displayed in Fig. 2.

1The tools share the same front-end for parsing C programs, thus the
comparison is not affected by unrelated implementation differences.

2https://www.sosy-lab.org/research/RegressionVerification/.

A large amount of points (that represent pairs of runs) on the
upper triangle reveals that UPPROVER is an order of magni-
tude faster than the non-incremental verification in HIFROG.

Table I gives further details on 11 randomly selected pairs
of benchmarks comparing the non-incremental HIFROG and
incremental UPPROVER, both using the EUF encoding. Our
results in LRA are very similar and therefore omitted. Each
row in Table I refers to a pair (P1, P2) of programs. We use
acronyms |F | for number of functions in P1, |∆| for number
of changed functions in P2, diff for the time to construct ∆ be-
tween P1 and P2, itp for the time for generating all summaries
after successful bootstrapping of P1, and result for reporting
whether the second version was safe or unsafe. The columns
total in HIFROG and UPPROVER show the total verification
time for non-incremental and incremental verification of P2

respectively. Even though UPPROVER’s total time includes
overhead such as summary repair for the subsequent runs
and the difference check, in many benchmarks UPPROVER
convincingly outperforms non-incremental HIFROG.

The speedup column demonstrates the relative speedup of
UPPROVER over non-incremental verification in HIFROG. In
the majority of cases, UPPROVER gains a significant speedup
when reusing EUF summaries (typeset in bold). This occurs
especially when the two versions have the same intermedi-
ate representation (e.g., pair 3) and the validation check is
omitted. Slowdowns typically happen when both the number
of changed functions and the iterative validation checks are
big (e.g., pair 9), or when the verification task is relatively
trivial in non-incremental verification (e.g., pairs 2 and 5).
Slowdowns are demonstrated on average of 0.6x for 30% of
our benchmarks in UPPROVER. On the other hand, the positive
effect of summary reuse in UPPROVER was very evident, with
notable speedup of 10.7x on 70% of benchmarks in LRA and
EUF on average, and with an impressive max value of 109x
in EUF and 104x in LRA summary reuse.

B. Demonstrating the effect of theory encoding in UPPROVER

Figure 3 illustrates the trade-off between the precision
and run time of incremental verification by comparing
the LRA/EUF-based encodings in UPPROVER against the
PROP-based encoding in EVOLCHECK. Each point corre-
sponds to an incremental verification run on P2. Almost
universally, whenever run time exceeds one second, it is an
order of magnitude faster to verify with LRA and EUF than

Table I: UPPROVER using EUF summary vs. non-incremental HIFROG.

boot HIFROG UpProver
pair |F | itp(s) total(s) diff (s) |∆| #valid total(s) speedup result

1 2124 0.5 36.6 0.2 80 92 8.9 4.1 Safe
2 25 0.1 0.8 0.1 1 2 1.8 0.4 Unsafe
3 2291 1.3 41.8 0.2 0 0 0.5 92.9 Safe
4 2148 0.6 41.4 0.2 4 4 0.8 55.2 Safe
5 544 0.1 2.4 0.1 95 105 4.7 0.5 Unsafe
6 4350 0.7 32.1 0.5 415 552 58.1 0.6 Safe
7 665 0.1 2.5 0.1 1 1 0.2 10.8 Safe
8 357 0.1 3.8 0.1 10 13 0.4 9.9 Safe
9 5417 0.6 43.2 0.5 750 1201 101.1 0.4 Safe
10 2121 0.5 37.6 0.2 4 4 0.8 49.5 Safe
11 31246 3.2 83.2 12.1 30 41 78.2 1.1 Safe
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Figure 2: Demonstrating the impact of summary reuse by comparing verification time of UPPROVER versus HIFROG on LRA (left) and EUF (right).
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Figure 3: Demonstrating the impact of theory encoding by comparing timings of LRA/EUF encodings in UPPROVER vs. PROP encoding in EVOLCHECK.

Table II: A comparison of different encodings in UPPROVER on device
drivers (light gray) and crafted benchmarks (dark gray).

PROP LRA EUF Regret
PROP

Regret
LRA

Regret
EUF

results P1 P2 P1 P2 P1 P2 P1+P2 P1+P2 P1+P2

Safe 353 353 1591 1589 1591 1590 0+0 0+0 0+0
Unsafe 0 0 78∗ 1∗ 85∗ 1∗ n/a n/a n/a
TO 1326 2 10 1 3 0 n/a n/a n/a
Total 1679

Safe 57 38 73 57 35 28 2+2 16+17 4+6
Unsafe 6 12 16∗ 12∗ 53∗ 6∗ n/a n/a n/a
TO 27 3 3 0 4 0 n/a n/a n/a
MO 2 0 0 0 0 0 n/a n/a n/a
Total 92

with PROP. In addition, a large number of benchmarks on
the top horizontal lines suggests that it is possible to solve
many more instances with LRA/EUF-based encoding than
with PROP-based encoding. However, the loss of precision is
seen on the benchmarks on the vertical line labeled Unknown,
indicating if the incremental result using LRA/EUF is unsafe,
the result might be spurious because of abstraction.

More statistics are shown in Table II. For each encoding
within the time and memory limits, the benchmarks are
reported as Safe or Unsafe . The unsafe results might be
spurious on theory encodings (indicated by an asterisk). We

use acronyms TO for time out, MO for memory out, and
P1, P2 for two versions of a program. We notice that PROP
times out in 76% of the benchmarks, while LRA and EUF
time out for less than 1%. The last three columns (the first
number refers to P1 and the second to P2) indicate how many
benchmarks can be solved exclusively in a single encoding.
This can be interpreted as the regret of not including a solver
in an imaginary portfolio.

The results for crafted benchmarks show that the theories
are complementary, with LRA having the biggest regret. This
can be contrasted to the plot in Fig. 4 showing that LRA
encoding has a constant 30% time overhead compared to EUF
due to the more expensive decision procedure.

Our extensive experimentation reveals that LRA and EUF
encodings are crucial for scalability. At the same time, there
is a small number of benchmarks that require PROP. While
it is unsurprising that bit-blasted models are more expensive
to check than the EUF and LRA models, we find it surprising
that the light-weight encodings work so often. In effect, the
encodings complement each other, and the results suggest an
approach where the user gradually tries different precisions
until one is found that suits the benchmarks at hand.
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Figure 4: LRA vs. EUF in UPPROVER.

0 5 10 15 20 25

0

10

20

UpProver speedup with LRA summary reuseC
P
A
c
h
e
c
k
e
r
sp
ee
d
u
p
w
it
h
p
re
ci
si
on

-r
eu
se

Figure 5: Speedup in UPPROVER vs. CPACHECKER.

C. Comparison of UPPROVER and CPACHECKER

Finally, we compare UPPROVER with a widely-used tool
CPACHECKER that is able to perform incremental verification
by reusing abstraction precisions. It is an orthogonal technique
to ours, i.e., it is an unbounded verifier and aims at finding
loop invariants. Thus, comparing running times does not make
sense since running times in UPPROVER crucially depend on
the chosen bound.3 Instead, we concentrate on comparing the
speedups obtained with the two methods since the change of
a bound affects a speedup less.

Here we report the results only on device driver in-
stances which both tools could handle. Among the 250 de-
vice drivers categories reported in https://www.sosy-lab.org/
research/cpa-reuse/predicate.html, we matched 34 categories
which are suitable for UPPROVER.4 These categories contain
in total 903 verification tasks.

Fig. 5 depicts the comparison of speedup in UPPROVER and
CPACHECKER. A large amount of points on the lower triangle

3For instance, the average running times in CPACHECKER is 285.3 seconds
and in UPPROVER with LRA is 13.4 seconds for chosen bound 5. For other
bounds UPPROVER would have different average running times.

4The reported version of UPPROVER is constrained by its dependency on
the CPROVER framework which impedes its frontend from processing some
benchmarks.

lets us conclude that summary reuse in UPPROVER achieves
superior speedup than the precision reuse in CPACHECKER.
The average speedup in UPPROVER was 7.3 with standard-
deviation of 6 and in CPACHECKER the average speedup was
2.9 with standard-deviation of 1.7. There were 4 slowdowns
in UPPROVER whereas CPACHECKER did not report any
slowdowns on these 34 categories. The detailed results are
available at http://verify.inf.usi.ch/upprover/experimentation.

V. RELATED WORK

The trend towards constructing efficient tools for incremen-
tal formal verification exists since last two decades [15]. We
identify here two main approaches to incremental verification
of different revisions of a program:

a) Differential program reasoning: Reasoning over mul-
tiple programs (to, e.g., prove program equivalence) is usually
performed by creating a so-called product program [16], [17],
[18], [19], [20], [21] and analyzing this product program
using the general-purpose tools. These approaches, however,
do not usually consider properties about isolated programs. A
modular approach that works by simultaneously traversing the
call trees of both programs is proposed in [16], but it does not
use function summaries. A probabilistic framework has been
recently proposed in [22], but it is applicable to differential
bug finding, rather than to proving the absence of bugs.

b) Incremental Verification: A number of approaches
accelerate verification by reusing previous efforts. Program
changes are extensively used in incremental modal µ-
calculus [23], solving of Constrained Horn Clauses [24],
[25], predicate abstraction [14], [26], automata-based ap-
proaches [27], reusing the results from constraint solving [28],
and state-space graph for checking temporal safety proper-
ties [29]. However these groups of techniques are orthogonal
to our approach as we store and reuse the interpolation-
based function summaries in the context of BMC for verifying
revisions of programs. In addition, our tool outputs a certificate
of correctness in the form of a function summary that can be
used as a function specification.

VI. CONCLUSION AND FUTURE WORK

We presented UPPROVER, an SMT-based incremental BMC
tool for different revisions of a program. Its key innovation is
in several SMT-level encodings and the corresponding SMT-
level summarization algorithms that allow the user to adjust
the precision or efficiency of verification. UPPROVER enables
LRA and EUF theories (and in the future, more) thus allowing
a trade-off between precision and performance. Furthermore,
our approach not only extracts function summaries but pro-
vides a capability of repairing them on-the-fly and reusing
them in the subsequent verification runs. Our experimentation
reveals that UPPROVER is more efficient than its predecessor
and the two orthogonal approaches: non-incremental bounded
model checker [5] and precision reuse [14].

In future we extend the tool to handle summaries from
different theories simultaneously in the style of [7] and [30],
possibly by allowing checks for the tree-interpolation property
on-the-fly.
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