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Abstract—Inferring correct and meaningful specifications of
complex (black-box) systems is an important problem in practice,
which arises naturally in debugging, reverse engineering, formal
verification, and explainable AI, to name just a few examples.
Usually, one here assumes that both positive and negative
examples of system traces are given—an assumption that is often
unrealistic in practice because negative examples (i.e., examples
that the system cannot exhibit) are typically hard to obtain.

To overcome this serious practical limitation, we develop a
novel technique that is able to infer specifications in the form
of universal very-weak automata from positive examples only.
This type of automata captures exactly the class of properties
in the intersection of Linear Temporal Logic (LTL) and the
universal fragment of Computation Tree Logic (ACTL), and
features an easy-to-interpret graphical representation. Our pro-
posed algorithm reduces the problem of learning a universal
very-weak automaton to the enumeration of elements in the
Pareto front of a specifically-designed monotonous function
and uses classical automaton minimization to obtain a concise,
finite-state representation of the learned property. In a case
study with specifications from the Advanced Microcontroller
Bus Architecture, we demonstrate that our approach is able
to infer meaningful, concise, and easy-to-interpret specifications
from positive examples only.

I. INTRODUCTION

The engineering process of reactive systems requires a
good understanding of the specification that the system should
fulfill. For instance, while model checking can prove a system
design to be correct with respect to a specification, the result-
ing proof is only meaningful if the specification captures the
requirements of the application. Similarly, while the process of
synthesizing reactive systems from their specifications is well-
researched, both the system specification and the specification
of the environment in which the system needs to operate must
be correct in order for synthesis to be useful.

Writing correct and complete specifications is hard. Crucial
properties of an application are easy to miss, and formalizing
the specification as automata or in a logic such as linear tem-
poral logic (LTL) is difficult. The problem can be addressed
in multiple ways. Easier to use specification formalisms can
support the writing process of specifications. Alternatively,
approaches for inferring specifications from existing system
implementations or examples can avoid the burden of man-
ually writing the specifications. Such specification learning
techniques are especially useful when a design is already
available, so that its implicit specification can be documented

by examining the set of its traces. Furthermore, a set of human-
given examples may be available from which the wanted
requirements should be distilled. Classical specification mining
requires both examples that violate the (implicit) specification
and examples that satisfy it, as with only one of these classes,
either false or true can be valid specifications, making the
problem ill-defined.

Unfortunately, both negative and positive examples are not
always available. For instance, when inferring the specification
of a system that is too big to be fully analyzed, but whose
implementation is given, we can extract input/output traces
that represent possible executions of the system. Proving that
a certain input/output trace is not a possible execution of
the system is however a model checking problem, which
can be infeasible to solve for complex designs. Similarly, we
may want to deduce an environment specification to be used
in synthesis from observing the environment. For a black-
box environment, we can never know that some behavior
observation sequence cannot occur. These observations give
rise to the question if there is some way to learn from positive
(or negative) example traces only.

To make this problem well-posed, we need to introduce
some kind of measure of how tight the specification should be
that we want to obtain. For the case of positive examples, there
is a spectrum of possible specification solutions ranging from
true all the way to the specification that only allows exactly
the set of traces in the example set. Both extremes make little
sense, and a learning procedure to solve the problem should
be parameterized by a tightness value n. At the same time,
the intuitive idea of tightness with respect to some parameter
n must be concretized in a way such that an efficient learning
procedure to learn n-tight specifications can be given and we
can observe that in practice, the learned specifications capture
some relevant specification parts of systems while being easy
enough to understand by an engineer.

In this paper, we give such a learning procedure for speci-
fications from positive examples only. We identified universal
very-weak word automata (UVWs) over infinite words as a
specification representation that has a natural definition of
tightness, lends itself to an efficient learning procedure, and
leads to easily readable learned specifications. This automaton
class has been identified as characterizing the class of proper-
ties representable both in linear temporal logic (LTL) and in
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the universal fragment of computation tree logic (ACTL) [1].
While this implies that there are some ω-regular properties
that cannot be learned by our framework, the intersection
of LTL and ACTL includes the vast majority of specifica-
tions found in case studies on specification shapes [2]. By
trading away the full ω-regular expressivity, we get multiple
advantages that make learning from only positive examples
feasible: UVWs can be decomposed into simple chains [3]
that each represent a scenario and how the system satisfying
the specification is required to react. Thus, they are easy to
examine by a specification engineer. We will demonstrate that
the maximum length of such a chain is also a natural notion
of the complexity of a specification part, making it a good
candidate for the concretization of the concept of tightness of
a learned specification. Most importantly, simple chains have
a natural approximation of language inclusion that enables us
to efficiently learn a specification by enumerating all strictest
chains that are not in contradiction to any example trace.

The algorithm for learning tight UVWs in this paper starts
from a representation of the set of positive traces as ultimately
periodic words, i.e., words of the form uvω for some finite
words u and v. It is well-known that ω-regular specifications
(or automata) are precisely characterized by the set of ulti-
mately periodic words that satisfy the specification (or are
included in the language of the automaton). Since ultimately
periodic words can be encoded in a finite format, they are a
natural choice of representation for the positive examples that
are input to our algorithm.

We evaluate our approach on benchmarks from a case study
on the AMBA AHB protocol [4]. Starting from LTL formulas
describing the allowed behavior of the AMBA bus clients,
we randomly generate sets of positive examples. We run our
algorithm on the generated sets of different sizes and note how
big the learned UVW is and how long it takes to compute it
with our prototype implementation. Our experiments show that
if the set of positive examples to learn from is big enough, the
algorithm computes a UVW representation of the right LTL
formula. The experiments also show that if too few positive
examples are available, the UVWs grow quite large to capture
the automaton language with the desired tightness value n.

Related Work

The problem of automata learning from data traditionally
comes in two different settings: active [5]–[7] and passive [8]–
[10]. In an active setting, the learning algorithm interacts
with a teacher. The teacher answers two kinds of queries:
membership queries (whether a proposed word is in the
language of the automaton) and equivalence queries (whether
a proposed automaton is the correct one). Learning stops once
the teacher answers an equivalence query positively. Having a
teacher that is able to answer equivalence queries is a strong
assumption. Our work focuses on the passive setting, where the
learning algorithm only has access to data, a set of classified
examples.

The standard problem formulation of passive learning is
that a sample consisting of positive and negative examples

is given. For such a setup, several methods have been pro-
posed for learning not only automata [9], [10], but also LTL
formulas [11]–[13], or STL formulas [14], [15]. None of these
methods provides good results when they are presented with
only one class of examples—they return a trivial solution, one
that accepts (or rejects) all possible examples.

Our problem—learning a specification from system traces—
fits into the process mining framework (see Aalst et al. [16]
for an overview): given an event log from a process, find a
process model that satisfies certain properties. The properties
are fitness (the model should be consistent with the examples
from the log), precision (the model should not be overly
general, e.g., modeling arbitrary examples), generalization (the
model should not be overly tight, e.g., consistent only with
the examples from the log), and simplicity (the model should
be simple). Different operationalizations of the four properties
give rise to different problem formulations and solutions. By
choosing UVWs as our model, we get (structural) simplicity
and connect it to the generalization property by the tightness
value n, for which we require the tightest possible UVW
consistent with the data.

Closely related to our approach is an algorithm by Avel-
laneda and Petrenko [17] for inferring deterministic automata
over finite words (DFAs) from positive finite-word examples
alone. Their algorithm searches for an automaton A with a
given number of states n that is consistent with the given
positive examples and for which no n-state DFA A′ exists
such that the language of A′ is a strict subset of the language
of A. Both their approach and ours identify the language to be
learned in the limit and use a single additional parameter for
choosing the complexity of the language to be learned. Unlike
in our approach, the resulting language in their algorithm is
not unique for a given value of n. Furthermore, while our
approach is relatively simple to adapt to the finite-word setting,
their approach is difficult to adapt to the infinite-word setting,
which we support in our work. This observation is rooted in
the fact that their approach employs a SAT solver to search for
candidate solutions, where clauses for the positive examples
not found in previous solutions are added step-by-step. For the
case of automata over infinite words, this requires the encoding
of product runs between the deterministic automaton and the
words to be accepted in SAT clauses (as described in [18],
[19]). Every positive example requires additional clauses and
variables, and for large numbers of positive examples, this
easily leads to prohibitive sizes of the SAT instances.

Another direction of previous work is the identification of
Live Sequence Charts (LSCs) [20], [21] from system runs.
Live Sequence Charts [22] are a specification formalism that
is popular for its compliance to the UML standard and the
corresponding tools (e.g., IBM RSA). The set of properties
representable as Live Sequence Charts, when not using free
variables, was shown to be contained in the intersection of
LTL and ACTL [23], which is characterized by UVWs (the
version with free variables is characterized as a subset of first-
order CTL* [24]). The existing work on mining LSCs [20],
[21] borrows the concepts of support and consistency from
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data mining [25]. With user-defined thresholds for support
and consistency, charts are enumerated until one exceeding
that threshold is found. Rather than giving more credibility to
patterns occurring most often in the example traces (as it is
the case when using the notion of support), our method prefers
semantically stronger UVWs, controlled by their size. This lets
our approach converge to the same property regardless of the
distribution of the traces, as long as all traces (in the form
of ultimately periodic words) have a non-zero probability of
occurring.

A problem related to ours by the fact that the learning
happens over (positive) demonstrations only, is inverse re-
inforcement learning [26]. There, however, it is the reward
function that is being learned. Obtaining only the reward
function does not provide a human-understandable task speci-
fication. Inspired by inverse reinforcement learning, Vazquez-
Chanlatte et al. [27] learn LTL-like temporal specifications
from demonstrations. In order to do so, they have to pre-
compute the implication lattice between the possible specifi-
cations, which limits the applicability of their approach. This
is not necessary in our work, as we take advantage of the
syntactic approximation of language inclusion between simple
chains of UVWs. On the other hand, they successfully handle
noise in the sample.

II. PRELIMINARIES

a) Basics: Given an alphabet Σ, the expression Σ∗

represents the set of finite words with characters in Σ, and
Σω represents the set of words of infinite length in which
each element is in Σ.

Let B = {1, 0} denote the set of Boolean values, with
1 representing true and 0 representing false. Moreover,
let S1, . . . , Sm be sets and vi for i ∈ {1, . . . ,m} be
a partial order over the set Si. Then, we call a function
f : S1 × · · · × Sm → B monotone if si vi s′i for each
i ∈ {1, . . . ,m} implies f(s1, . . . , sm) ≤ f(s′1, . . . , s

′
m).

Adopting terminology from multicriterial optimization, we say
that some tuple (s1, . . . , sm) is a Pareto optimum for f if
f(s1, . . . , sm) = 1 and for no (s′1, . . . , s

′
m) 6= (s1, . . . , sm)

with componentwise inequality (s′1, . . . , s
′
m) ≤ (s1, . . . , sm),

we have f(s′1, . . . , s
′
m) = 1. The set of Pareto optima is called

the Pareto front. Likewise, we say that some tuple (s1, . . . , sm)
is an element of the co-Pareto front if f(s1, . . . , sm) = 0
and for all (s′1, . . . , s

′
m) 6= (s1, . . . , sm) with (s′1, . . . , s

′
m) ≥

(s1, . . . , sm), we have f(s′1, . . . , s
′
m) = 1.

b) Automata over infinite words: Given an alphabet Σ, an
automaton over infinite words is a tuple A = (Q,Σ, δ, QI , F ),
where Q is a finite set of states, δ ⊆ Q×Σ×Q is a transition
relation, QI ⊆ Q is a set of initial states, and F is a set of
final states.

Given an infinite word w = a0a1 . . . ∈ Σω , we say that A
induces a run π = π0π1 . . . ∈ Qω if π0 ∈ QI and for every
i ∈ N, we have that (πi, ai, πi+1) ∈ δ. An automaton defines a
language L(A), i.e., a subset of Σω that it accepts. Universal
co-Büchi automata accept all words w for which all (infinite)
runs π = π0π1 . . . induced by the word w visit states from

F only finitely often, i.e., there exists an i ∈ N such that for
every j ∈ N with i ≤ j we have πj /∈ F . The final states are
also called rejecting states in this case.

Another type of automaton over infinite words are non-
deterministic Büchi automata, which accept all words that
have runs that visit F infinitely often. Such an automaton is
furthermore called deterministic if for each (q, a) ∈ Q × Σ,
we have at most one q′ ∈ Q with (q, a, q′) ∈ δ.

We say that a automaton is one-weak or very weak if there
exists a ranking function r : Q → N such that for every
(q, a, q′) ∈ δ, we have that either r(q′) < r(q) or q and q′

are identical. More intuitively, this means that all loops in A
are self-loops.

c) Linear Temporal Logic: The logic LTL (Linear Tem-
poral Logic) [28] extends propositional Boolean logic with
temporal modalities, which allow reasoning about sequences
of events. Formulas of LTL are inductively defined as follows:
• each atomic proposition is an LTL formula;
• if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ

(“next”), and ψUϕ (“until”).
As syntactic sugar we add to the set of formulas true, false ,
ψ∧ϕ and ψ → ϕ, which are defined as usual for propositional
logic. Moreover, we add the derived temporal operators F ψ :=
true U ψ (“finally”) and G ψ := ¬F¬ψ (“globally”).

The semantics of propositional operators is defined as usual
and here we describe the semantics of temporal modalities.

An LTL formula over some set of atomic propositions AP
is evaluated on a word w = a0a1 . . . ∈ (2AP)ω and a time
point i ∈ N of the sequence.
• w, i |= p for p ∈ AP if p ∈ ai
• w, i |= Xϕ if w, i+ 1 |= ϕ
• w, i |= ϕUψ if ∃j ≥ i. w, j |= ψ and ∀k.i ≤ k < j ⇒
w, k |= ϕ

d) Universal very weak automata: Universal very-weak
automata (UVW) are universal co-Büchi automata that are
also very-weak. While universal co-Büchi automata are as
expressive as Linear Temporal Logic (LTL) [29], universal
very-weak automata are less expressive and only capture the
properties whose satisfaction by a reactive system can be
expressed both in computational tree logic with only universal
path quantifiers (ACTL) and linear temporal logic [1], [30].

The language represented by a finite ω-automaton (such as a
UVW) is uniquely determined by the set of ultimately periodic
words uvω with u, v ∈ Σ∗ in the language of the automaton.

A universal very-weak automaton can be decomposed into
simple chains [3], i.e., such that no state is directly reachable
from more than one other state (apart from possibly itself).
More formally, a simple chain is a sequence of different states
q1, . . . , qn such that for all i ∈ {1, . . . , n − 1}, there exists
some a ∈ Σ with (qi, a, qi+1) ∈ δ.

A simple chain is called longest (or maximal) in an au-
tomaton if it cannot be extended by an additional state at
the beginning or the end of the sequence without losing the
property that it is contained in the automaton. We say that
a UVW is in decomposed form if there are no transitions

106



between the maximal simple chains of the UVW and for
every such simple chain q1, . . . , qn, there are no “jumping
transitions”, i.e., for no i, j ∈ N and a ∈ Σ, we have
(qi, a, qj) ∈ δ with j > i + 1. Without loss of generality,
we can assume that in a decomposed UVW, every chain has
an initial state and the last state is rejecting, as otherwise the
whole chain or the last state, respectively, can be removed.

III. LEARNING UNIVERSAL VERY-WEAK AUTOMATA

In this section, we describe our approach to learn universal
very weak automata (UVW) from positive examples alone. We
first define the notion of n-tightness of a UVW, which specifies
what languages we want to learn from positive examples alone.
We prove that the languages of n-tight automata are unique,
which ensures that the learning problem is well-posed.

We then establish in Section III-B how the simple chains of
n-tight automata can be learned. As per the acceptance defi-
nition of UVW, the chains describe the words to be rejected.
Hence, learning n-tight automata amounts to enumerating all
simple chains of length up to n that do not reject any of the
positive examples. We show that enumerating them all can
be posed as the problem of enumerating the co-Pareto front
elements of a monotone function.

In Section III-C, we then show how this insight leads to
an efficient learning process: we show that the monotone
function can be evaluated by solving a relatively simple model
checking problem, and for enumerating all chains, we can use
a Pareto optima enumeration algorithm from existing work,
which outputs the co-Pareto front as a byproduct. To obtain
reasonably-sized UVW, the last step is then to run the usual
simulation-based automaton minimization steps.

A. Defining tight universal very-weak automata

Given a set of positive examples P ⊂ Σω , we want to
compute (learn) an automaton A such that P ⊆ L(A), where
we assume that for each p ∈ P , we have that p = up(vp)ω

for some finite words up, vp ∈ Σ∗ with |vp| ≥ 1.
Since there are infinitely many automata A satisfying this

condition, we need an optimization criterion for finding the
automaton A. Minimizing the number of states of the solution
is not a meaningful optimization criterion in this context, as
the smallest automaton is always the one with 0 states – such
an automaton does not visit final states, and by the acceptance
definition of UVW, this means that all words are accepted.

To permit learning from positive examples only, we hence
define an alternative learning criterion: we learn the strictest
automaton (i.e., with the smallest language) that satisfies some
syntactic cut-off criterion. For UVWs, there is a natural such
criterion: the size of the co-domain of the ranking function,
or equivalently, the length of the longest chain in a UVW.

Definition 1: Let P ⊂ Σω be a set of positive examples and
A be a UVW with L(A) ⊇ P . We say that A is n-tight for
some n ∈ N if the following conditions hold:

1) There does not exist a simple chain of states longer than
n in A (or equivalently, there exists a ranking function
proving the very-weakness with co-domain {1, . . . , n}),

2) For no other UVW A′ with P ⊆ L(A′) ⊂ L(A), we
have that all simple chains of states in A′ are of length
at most n.

Lemma 1: Given a set of positive examples P and some
value n ∈ N, there exists an n-tight UVW A with P ⊆ L(A).
All other n-tight UVWs have the same language.

Proof: We construct a universal very weak automaton in
its decomposed form, i.e., where the UVW consists of a finite
set of simple chains without transitions between them. Let C
be a set of all possible simple chains of length up to n. We
ignore the state identities/names, so that a chain of length n
is characterized completely by transitions between the states,
of which there are fewer than 2|Σ|·(2n−1) many different ones
(as there can be at most 2|Σ| different self-loops on n states
and fewer than 2|Σ|·(n−1) many transitions between different
states). This makes the set C finite. We choose an automaton
A to consist of the set of all chains c ∈ C such that P ⊆ L(c).
We claim that this is an n-tight UVW accepting all words from
P and that its language is the language of all n-tight automata.

Indeed, for a tighter UVW A′ (i.e., such that P ⊆ L(A′) ⊂
L(A)) with maximal chain length n, there must exist α ∈ Σω

such that α ∈ L(A) \ L(A′). The fact that α 6∈ L(A′) means
that a run of A′ on α will end up in one of its final (rejecting)
states going through a chain of up to n states. But by P ⊆
L(A′) and by our definition of A, this chain should be a part
of A. Therefore, α /∈ L(A), which yields a contradiction.

Let now A and A′ be two n-tight automata. If they are not
equivalent, then there exists a word α ∈ Σω \ P accepted by
one of them but not by the other. Wthout loss of generality, let
a /∈ L(A). Since all chains in A and A′ are of length at most
n, this means that the word is rejected by one of such chains in
A. As the chain can be added to A′ without making it reject
a word in P , this proves that A′ is not n-tight, yielding a
contradiction. Hence, the assumption that the two automata A
and A′ are not equivalent but both n-tight cannot be fulfilled.

The lemma shows that for a given set of positive examples
P , n-tight automata have a unique language. It also shows
how such an automaton can be computed: we first enumerate
all simple chains of length n that a decomposed automaton
accepting all elements from P could have. Taking these chains
together, we obtain an n-tight UVW.

B. Enumerating All Simple Chains of a UVW to be Learned

The n-tightness definition of the previous subsection states
what language the automaton that we want to learn from a
set of positive examples should have. However, enumerating
all simple chains that are consistent with the given positive
examples is computationally inefficient as their number grows
exponentially with n and the size of the alphabet. We show
in this subsection how this problem can be mitigated.

To do so, we represent simple chains syntactically by so-
called chain strings. Then, we define a partial order over
these strings that is consistent with language inclusion between
automata consisting only of the represented chains. In order
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q0 q1 q2

a,b b,c c

b b,c

q′0 q′1 q′2

a,b,c b,c c

a,b a,b,c

Fig. 1. Two example simple chains, where the lower one is syntactically
stronger than the first one.

to obtain n-tight UVWs, we then only need to enumerate all
chain strings that are strongest according to this partial order.

We visualize this idea in Figure 1 for the case of n = 3
and Σ = {a, b, c}. The simple chains given there are rep-
resented by the chain strings ({a, b}, {b}, {b, c}, {b, c}, {c})
and ({a, b, c}, {a, b}, {b, c}, {a, b, c}, {c}), which denote the
edge labels along the chain, alternating between self-loops
and edges between states. Assuming that both chains are com-
patible with some set of positive examples over the alphabet
Σ = {a, b, c}, the lower one is stronger than the upper one in
the sense that it rejects strictly more words.

This can be seen from the fact that both chains have the
same length, and at each self-loop and each edge between
the states, the labels for the lower chain are supersets of
the respective labels for the upper automaton. On the chain
string level, we can easily see that by looking at every pair of
elements in the string and comparing the respective sets for
set inclusion. Hence, every rejecting run for the upper chain is
a rejecting run for the lower one as well. Chain strings induce
a natural order by element-wise inclusion, and as already
mentioned, the main idea of our approach is to enumerate
only the largest chain strings with respect to the partial order
that are consistent with the set of positive examples, which
decreases the number of chains to be enumerated.

To simplify the presentation henceforth, the formal chain
string definition also permits interrupted chains of states,
which are not simple chains according to their definition in
Section II. Furthermore, we only care about chains in which
exactly the first state is initial and exactly the last state is
rejecting. The generality is, however, not lost: if a simple
chain does not have this form (so it has additional initial or
rejecting states), then it contains another shorter simple chain
of this form. This shorter simple chain can be extended to a
chain of length n by duplicating the last (rejecting) state and
rerouting the outgoing transitions of the previously last state
to the new last state. This yields another chain of length n
that is not missed when enumerating all maximal (w.r.t. their
partial order) chain strings of length n that are compatible
with P according to the definitions to follow. Figure 2 depicts
this observation. The leftmost chain is split into a chain for
the rejecting state q2 and a chain for the rejecting state q3.
The now shorter chain is post-processed to a longer chain by

duplicating the last state.
Definition 2: Let Σ and n be given. A chain string for Σ

and n is of the form s = (l1,m1, l2,m2, . . . , ln) ∈ (2Σ ×
2Σ)n−1 × 2Σ. Such a string s induces a chain-like automaton
A = (Q,Σ, δ, QI , F ) with

• Q = {q1, . . . , qn};
• QI = {q1};
• δ = {(qi, x, qi) | x ∈ li, i ∈ {1, . . . , n}} ∪ {(qi, x, qi+1) |
x ∈ mi, i ∈ {1, . . . , n− 1}}; and

• F = {qn}.
Note that the induced automaton A consists of at most one
single simple chain that is reachable from an initial state.

The main idea of the following enumeration procedure is
to cast the problem of finding all strongest simple chains as
a problem of finding the co-Pareto front of a monotonous
function fn over chain strings. This enables the use of a Pareto
front enumeration algorithm [31] for monotone functions to
enumerate all simple chains that are consistent with the given
positive examples.

The said algorithm however finds the Pareto front elements
of a rectangular finite subset of Nu for some u ∈ N. To
make it compatible with the problem of finding simple chains,
we have to encode chain strings into Nu. The fact that all
chain string elements are powersets enables a relatively simple
encoding. We set u = |Σ| · (2n − 1) and for every chain
string s = (l1,m1, l2,m2, . . . , ln) ∈ (2Σ × 2Σ)n−1 × 2Σ,
the corresponding encoded string in Nu is of the form
s′ = (l11, . . . , l

|Σ|
1 ,m1

1, . . . ,m
|Σ|
1 , l12, . . . , l

|Σ|
2 , . . . , l1n, . . . , l

|Σ|
n ),

where every every element lij and mi
j is either 0 or 1,

depending on whether the ith element of Σ is part of the
encoded lj . The order of the elements of Σ used in this
encoding is arbitrary but fixed.

A Pareto-front enumeration algorithm necessarily also enu-
merates the co-Pareto front to be sure it found all Pareto front
points [31], which we exploit to find all strongest chain strings,
as these form the co-Pareto front. The monotone function itself
implements a model checking step of all elements in P against
the chain, which due to the lasso-like structure of the examples
is relatively easy to solve.

Lemma 2: Let P be a set of positive examples over the
alphabet Σ, n ∈ N, and fn : (2Σ × 2Σ)n−1 × 2Σ → B be a
function that maps a chain string over Σ and n to 1 if and only
if the automaton induced by the string rejects some element
in P . Then, the function fn is monotone.

Proof: Let s = (l1,m1, l2, . . . ,mn−1, ln) and s′ =
(l′1,m

′
1, l
′
2, . . . ,m

′
n−1, l

′
n) be two chain strings with li ⊆ l′i for

each i ∈ {1, . . . , n} and mi ⊆ m′i for each i ∈ {1, . . . , n−1}.
Furthermore, let As = (Qs,Σ, δs, QI,s, Fs) and As′ =
(Qs′ ,Σ, δs′ , QI,s′ , Fs′) be the corresponding UVWs as in
Definition 2 with Qs = Q′s = {q1, . . . , qn}.

As li ⊆ l′i for each i ∈ {1, . . . , n} and mi ⊆ m′i for each i ∈
{1, . . . , n− 1}, by the fact that by Definition 2, the transition
relation of As is monotone in l1 . . . ln and m1 . . .mn, we
have that δs ⊆ δs′ . Hence, every run π of As for some word
w ∈ Σω is also a run of As′ for the same word.
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q0 q1 q2 q3

a,b b,c c b

b b,c a,b

q′0 q′1 q′2
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q′0 q′1 q′2 q′3

a,b b,c c

b b,c c

q′′0 q′′1 q′′2 q′′3

a,b b,c c b

b b,c a,b

Fig. 2. Splitting a chain with multiple rejecting states

As universal automata accept all words that do not induce
any rejecting run, this means that all words rejected by As will
also be rejected by As′ , and hence, we have L(As′) ⊆ L(As).

To show that fn is monotone, recall that the function fn
maps a chain string t to whether the UVW At rejects a word
in P . Towards a contradiction, assume that fn(As) = 1 but
fn(As′) = 0. This means that there exists a word w ∈ P
such that w /∈ L(As) and w ∈ L(As′). Thus, w witnesses
L(As′) 6⊆ L(As), which is a contradiction to the previous part
of the proof. In conclusion, we obtain that fn is monotone.

We obtain the following corollary:
Corollary 1: Let P be a set of positive examples over the

alphabet Σ, n ∈ N, and A be the set of automata induced by
the co-Pareto front elements of the function fn. The automaton
for the language

⋂
A∈A L(A) is n-tight for P and Σ.

The automaton from this corollary can be built easily,
as universal very-weak automata are closed under language
intersection by just merging the state sets, transition relations,
and initial states [3]. This enables us to simply merge all chains
found together into a single UVW.

C. Engineering Considerations of the Learning Algorithm

After the co-Pareto front of strongest chains has been
enumerated, the last step in the construction of the UVWs
is merging them to a single UVW. We add the chains one-
by-one to a solution UVW. After every such step, we use
the automaton minimization techniques described in [2] to
reduce the size of the automaton. If the process is stopped
prematurely, the result is still useful—a UVW that accepts a
subset of the language that the final automaton (given sufficient
computation resources) would accept. This property makes it
possible to use the algorithm in the anytime fashion, stopping
it when a given resource budget is exceeded.

It remains to be described how fn can be computed ef-
ficiently. We implemented this process as follows: let P =
{(u1, v1), . . . , (um, vm)} and A = (Q,Σ, δ, QI , F ) with Q =
{q1, . . . , qn} be an automaton induced by a chain string to be
checked. For every j ∈ {1, . . . ,m}, we translate (uj , vj) to a
deterministic Büchi automaton A′ accepting exactly uj(vj)ω .
Such an automaton has |uj |+ |vj |+ 1 states. We then check
if A′ admits a word rejected by A, i.e., if L(A′)∩L(A) 6= ∅.
Since the complement of a universal co-Büchi word automaton
can be obtained in the form of a non-deterministic Büchi
automaton by just interpreting A as such, the standard product

construction from linear-time model checking can be applied
to test if L(A′)∩L(A) 6= ∅. The function fn can then simply
iterate over all examples j ∈ {1, . . . ,m} and test if this is the
case for any of them. Whenever it finds that L(A′)∩L(A) 6= ∅
for some automaton A′ built from a positive example, the
function fn returns 1. Otherwise, it returns 0 after iterating
through all values for j ∈ {1, . . . ,m}.

Note that in an actual implementation of fn, there is no
need to explicitly build A′ or construct the product Büchi
automaton. Rather, the implementation can make use of the
fact that only the last state of the simple chain is rejecting.
So it can compute the states of the product that are reachable
and then check if state qn in the A component of the product
is reachable while at the same time, all characters in vj are
contained in the self-loop label of state qn. If and only if that
is the case, positive example number j is rejected by A.

IV. EMPIRICAL EVALUATION

We implemented the approach from this paper in a prototype
toolchain [32], which is available on Github. The enumeration
of the simple chains is performed by a tool written in C++,
while the subsequent minimization of the resulting UVWs is
implemented in Python 3.

In order to assess the performance of our approach on
practically relevant properties, we considered the specification
of the industrial on-chip bus arbiter of the AMBA AHB
bus [33]. Specifically, we considered ten assumptions made
for the master of the AHB bus, as described in [4]. For
simplicity we abstracted from the concrete variable names
and rewrote predicates over categorial values into individual
propositions. For instance, the original property A8 from [4]
referring to a burst sequence of unspecified length (denoted
by the value INCR) is G[HLOCK ∧ (HBURST = INCR) →
XF(¬REQ VLD)]. It is rewritten into G[(a ∧ b)→ XF(¬c)].
All the resulting formulas are shown on the left-hand-side of
Table I.

Except for Property 3, all properties can be represented in
UVW form by a single simple chain with two states each. For
Property 3, we need two chains of length 3. The properties em-
ploying two to four atomic propositions have been learned over
words with characters that encode this number of propositions.
Propery 6 has been learned over positive examples in which
each character has three proposition values, while for Property
9, we used two propositions. This deviation was necessary to
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TABLE I
MEAN COMPUTATION TIMES FOR UVW LEARNING FOR THE TEN LTL

PROPERTIES CONSIDERED IN SECTION IV

Time in s

Property chain len. 2 chain len. 3

1) G[a→ (b ∨ c ∨ d)] 0.763 timeout
2) G[a→ (b ∨ c)] 0.517 1.029
3) G[X¬a→ (¬b↔ X(¬b))] 0.493 1.184
4) G[a→ ¬b] 0.408 0.713
5) G[a→ (¬b ∧ ¬c)] 0.533 1.059
6) G a 0.526 1.057
7) G[a→ F b] 0.442 0.870
8) G[(a ∧ b)→ XF(¬c)] 0.634 119.123
9) GF a 0.423 0.685

10) GF(¬a ∧ ¬b) 0.428 0.702

ensure that there are enough distinct positive examples for
these properties.

For each property, we computed 50,000 different ultimately
periodic words uvω that satisfy the property, where |u| is of
length 0, 1, 2, 3, or 4, while |v| is of length 1, 2, 3, or 4.
The characters of the words are the subsets of propositions
holding, and all word part lengths are equally likely to be
chosen. We also use a uniform probability distribution over the
characters when computing the positive examples. Whenever
a non-positive example for the property is found during the
positive example computation, it is discarded and another
example word is computed instead. We ran every experiment
on 10 different example sets generated in this way and report
the mean values obtained in the following.

The experiments were conducted on a computer with four
AMD EPYC 7251 processors running at 2,1 GHz and an x64
version of Linux. The available main memory per run of the
learner was restricted to 3 GB. We used a computation time
limit of 600 s per learning problem.

Table I contains the mean computation times for all proper-
ties when using all 50,000 positive examples as input in each
case. It can be seen that for most combinations, our approach
computes a UVW rather quickly. Only for one property with
a higher number of atomic propositions and an unnecessarily
long chosen chain length, the toolchain times out.

Figure 3 shows for nine of the ten properties how big the
computed UVW are, where sizes for both chain lengths of 2
and 3 are reported. Here, we varied the number of positive
examples provided to the learner along the X axis (minimum:
100, in steps of 100). For very low number of examples, our
toolchain often times out. This is rooted in the fact that the
tightest UVW is often very large when not enough positive
examples are available. It can also be observed that for a lower
chain length, the computed UVW converges to a small one
much earlier.

Figure 4 depicts the relationship between computation time
and the sizes of the computed UVWs in more detail, using
Property 3, the one that was left out of Figure 3. It can be
observed that computation times are very short when enough
positive examples are available, and they grow only very

mildly with additional positive examples. When, however,
not enough examples are available, the approach computes
a much larger number of simple chains, which also increases
the workload of the UVW minimization heuristic.

Finally, Figure 5 depicts the UVWs learned for Property
3. The property can only be learned correctly with a chain
length of 3, and the two paths through the UVW on the right-
hand side show the two conjunctive requirements that the LTL
property G[X¬a → (¬b ↔ X(¬b))] imposes, namely that
(1) after a character with b = true is seen, b needs to retain a
value of true until a gets a false value afterwards and (2) after
a character with b = false is seen, b needs to retain a value of
false until a gets a false value afterwards. The automaton has a
simple structure and is quite easy to read. The computed UVW
for a chain length of 2 is, as expected, an overapproximation of
the language to be learned. Interestingly, the encoded language
is a liveness language, even though the approximated LTL
property is not.

For all ten LTL properties considered in our experiments,
the learned UVWs for the correct chain lengths represent
the correct languages and have a minimal number of states.
Moreover, the resulting UVWs are fairly easy to understand
(we refer the reader to the extended version of the experiments,
available in the code repository [32] for their depiction),
which underpins the use of UVWs as an easy-to-understand
specification formalism.

V. DISCUSSION OF THE PROPOSED APPROACH

In this section, we discuss potential challenges for the
application of our approach as well as strategies to mitigate
them.

First, our learning algorithm depends on a well-chosen
tightness value n: if the value is too small, then the resulting
UVW is too permissive and imprecise; if the value is chosen
too large, on the other hand, the computational effort for
learning an UVW can become prohibitive. Determining an
appropriate value for n remains an open question. A potential
strategy to find such a value in practice—apart from relying on
domain knowledge—could be to perform a search that starts
with a reasonably small tightness value and then increments
the value until the resulting UVW does no longer change. As
Table I suggest, our learning algorithm is fast enough (less than
1 s given sufficiently many examples) so that such a search is a
viable approach. On a more general note, however, we would
like to reiterate that without such a parameter, the problem of
learning from only positive examples is ill-defined.

Second, as our experimental evaluation has shown, our
learning algorithm requires a fair amount of positive examples
(several thousands) to perform well. However, compared to
most other learning algorithms, which require negative exam-
ples, we believe that this is not a major restriction in practice
because (a) positive examples are usually much easier to obtain
than negative examples and (b) positive examples are often
readily available (e.g., from log files) or can be generated
automatically (e.g., by means of simulations).
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Finally, our learning algorithm is designed to learn prop-
erties of infinite words and, hence, requires infinite words
(in the form of ultimately periodic words uvω) as input. In
practice however, one will only be able to observe or simulate
finite executions. To mitigate this challenge, we propose two
strategies. If the examples are obtained from simulations, it
is fairly easy to detect repetitions of system states that can
be used to partition the execution into an initial fragment u
and a repeating part v. On the other hand, if the examples are

q0

q1 q2

true

¬a ∧ ¬b ¬a ∧ b

b ¬b

q0

q1 q2

q3

true

¬a ∨ b ¬a ∨ ¬b

true

b ¬b

¬a ∧ ¬b ¬a ∧ b

Fig. 5. Learned UVW (for chain lengths of 2 on the left and 3 on the right)
from the positive examples for the LTL property G[X¬a→ (¬b↔ X(¬b))].

obtained from observing an existing system without access to
its internal state, one can use acceleration-like techniques [34]
to detect cycles based on repeating patterns in the observations.

VI. CONCLUSION AND DIRECTION FOR FUTURE WORK

We have developed an effective method for learning formal
specifications in the form of universal very-weak automata
from positive examples only. Our learning algorithm reduces
the problem of learning such an automaton to the enumeration
of elements in a Pareto front and uses an effective minimiza-
tion technique to obtain a unique finite-state representation
of the learned property. Experiments with properties from

111



the Advanced Microcontroller Bus Architecture (AMBA) have
demonstrated that our approach is able to infer concise and
easy-to-interpret specifications from positive examples.

For future work, we plan to adapt our learning algorithm
to be able to learn from finite rather than infinite words.
A relatively straightforward way to do this would be to
restrict the chain enumeration to only consider chains that
have true as final state. The class of languages learnable
by this approach would then exactly be the set of languages
that can be accepted by so-called universal very-weak finite
automata, studied, for instance, by Bojańczyk [30].

Finally, we are interested in determining an appropriate
tightness value automatically from the sample, which seems
to be a non-trivial problem.
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