
Formal Methods in Computer-Aided Design 2020

ART: Abstraction Refinement-Guided Training for
Provably Correct Neural Networks

Xuankang Lin∗, He Zhu†, Roopsha Samanta∗ and Suresh Jagannathan∗
∗Purdue University, West Lafayette, IN 47907
†Rutgers University, Piscataway, NJ 08854

Abstract—Artificial Neural Networks (ANNs) have demon-
strated remarkable utility in various challenging machine learn-
ing applications. While formally verified properties of their
behaviors are highly desired, they have proven notoriously
difficult to derive and enforce. Existing approaches typically
formulate this problem as a post facto analysis process. In this
paper, we present a novel learning framework that ensures such
formal guarantees are enforced by construction. Our technique
enables training provably correct networks with respect to a
broad class of safety properties, a capability that goes well-beyond
existing approaches, without compromising much accuracy. Our
key insight is that we can integrate an optimization-based
abstraction refinement loop into the learning process and operate
over dynamically constructed partitions of the input space that
considers accuracy and safety objectives synergistically. The
refinement procedure iteratively splits the input space from which
training data is drawn, guided by the efficacy with which such
partitions enable safety verification. We have implemented our
approach in a tool (ART) and applied it to enforce general safety
properties on unmanned aviator collision avoidance system ACAS
Xu dataset and the Collision Detection dataset. Importantly, we
empirically demonstrate that realizing safety does not come at
the price of much accuracy. Our methodology demonstrates that
an abstraction refinement methodology provides a meaningful
pathway for building both accurate and correct machine learning
networks.

I. INTRODUCTION

Artificial neural networks (ANNs) have emerged in recent
years as the primary computational structure for implementing
many challenging machine learning applications. Their success
has been due in large measure to their sophisticated architec-
ture, typically comprised of multiple layers of connected neu-
rons (or activation functions), in which each neuron represents
a possibly non-linear function over the inputs generated in a
previous layer. In a supervised setting, the goal of learning is to
identify the proper coefficients (i.e., weights) of these functions
that minimize differences between the outputs generated by the
network and ground truth, established via training samples.
The ability of ANNs to identify fine-grained distinctions
among their inputs through the execution of this process makes
them particularly useful in a variety of diverse domains such as
classification, image recognition, natural language translation,
or autonomous driving.

However, the most accurate ANNs may still be incorrect.
Consider, for instance, the ACAS Xu (Airborne Collision
Avoidance System) application that targets avoidance of midair
collisions between commercial aircraft [1], whose system
is controlled by a series of ANNs to produce horizontal

maneuver advisories. One example safety property states that
if a potential intruder is far away and is significantly slower
than one’s own vehicle, then regardless of the intruder’s and
subject’s direction, the ANN controller should output a Clear-
of-Conflict advisory (as it is unlikely that the intruder can
collide with the subject). Unfortunately, even a sophisticated
ANN handler used in the ACAS Xu system, although well-
trained, has been shown to violate this property [2]. Thus,
ensuring the reliability of ANNs, especially those adopted
in safety-critical applications, is increasingly viewed as a
necessity.

The programming languages and formal methods commu-
nity has responded to this familiar, albeit challenging, problem
with increasingly sophisticated and scalable verification ap-
proaches [2]–[5] — given a trained ANN and a property, these
approaches either certify that the ANN satisfies the property
or identify a potential violation of the property. Unfortunately,
when verification fails, these approaches provide no insight
on how to effectively leverage verification counterexamples to
repair complex, uninterpretable networks and ensure safety.
Further, many verification approaches focus on a popular, but
ultimately, narrow class of properties — local robustness —
expressed over some, but not all of a network’s input space.

In this paper, we address the limitations of existing veri-
fication approaches by proposing a novel training approach
for generation of ANNs that are correct-by-construction with
respect to a broad class of correctness properties expressed
over the network’s inputs. Our training approach integrates
correctness properties into the training objective through a
correctness loss function that quantifies the violation of the
correctness properties. Further, to enable certification of cor-
rectness of a possibly infinite set of network behaviors, our
training approach employs abstract interpretation methods [4],
[6] to generate sound abstractions of both the input space and
the network itself. Finally, to ensure the trained network is both
correct and accurate with respect to training data, our approach
iteratively refines the precision of the input abstraction, guided
by the value of the correctness loss function. Our approach is
sound — if the correctness loss reduces to 0, the generated
ANN is guaranteed to satisfy the associated correctness prop-
erties.

The workflow of this overall approach — Abstraction
Refinement-guided Training (ART) — is shown in Fig. 1.
ART takes as input a correctness property (Φin,Φout) that pre-
scribes desired network output behavior using logic constraints

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 22 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD20
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_22
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_22
https://creativecommons.org/licenses/by/4.0/

Fig. 1: The ART framework.

Φout when the inputs to the network are within a domain
described by Φin. ART is parameterized by an abstract domain
D that yields an abstraction over inputs in Φin. Additionally,
ART takes a set of labeled training data. The correctness loss
function quantifies the distance of the abstract network output
from the correctness constraint Φout. In each training iteration,
ART both updates the network weights and refines the input
abstraction. The network weights are updated using classical
gradient descent optimization to mitigate the correctness loss
(upper loop of Fig. 1) and the standard accuracy loss (lower
loop of Fig. 1). The abstraction refinement utilizes information
provided by the correctness loss to improve the precision of
the abstract network output (the top arrow of Fig. 1). As we
show in Section V, the key novelty of our approach - exploiting
the synergy between refinement and approximation - (a) often
leads to, at worst, mild impact on accuracy compared to a safe
oracle baseline; and (b) provides significantly higher assurance
on network correctness than existing verification or training [7]
methods which do not exploit abstraction refinement.

This paper makes the following contributions. (1) We
present an abstract interpretation-guided training strategy for
building correct-by-construction neural networks, defined with
respect to a rich class of safety properties, including functional
correctness properties that relate input and output structure.
(2) We define an input space abstraction refinement loop that
reduces training on input data to training on input space
partitions, where the precision of the abstraction is, in turn,
guided by a notion of correctness loss as determined by the
correctness property. (3) We formalize soundness claims that
capture correctness guarantees provided by our methodology;
these results characterize the ability of our approach to ensure
correctness with respect to domain-specific correctness prop-
erties. (4) We have implemented our ideas in a tool (ART) and
applied it to challenging benchmarks including the ACAS Xu
collision avoidance dataset [1], [2] and the Collision Detection
dataset [8]. We provide a detailed evaluation study quantifying
the effectiveness of our approach and assess its utility to
ensure correctness guarantees without compromising accuracy.
We additionally provide a comparison of our approach with
post facto counterexample-guided verification strategies to
demonstrate the benefits of ART’s methodology compared to

vSpeed
v = 4

θDirection

θ = 1

p1

p1 = 4.5

p2

p2 = 3

q1

q1 = 4.5

q2

q2 = 3

y1 Report

y1 = 1.5

y2 Ignore

y2 = 5.25

1

1 0.5

−1

relu

relu

1

0.5 −1

1

Input
layer

Hidden
layer

Hidden
layer

Output
layerF :

Fig. 2: A monitoring system using 2-layer ReLU network.

such techniques.
The remainder of the paper is organized as follows. In

the next section, we provide a detailed motivating example
that illustrates our approach. Section III provides background
and Section IV formalizes our approach. Details about ART’s
implementation and evaluation are provided in Section V.
Related work and conclusions are presented in Section VI
and VII, resp.

II. ILLUSTRATIVE EXAMPLE

We illustrate and motivate the key components of our
approach by starting with a realistic, albeit simple, end-to-end
example. We consider the construction of a learning-enabled
system for autonomous driving. The learning objective is to
identify potentially dangerous objects within a prescribed
range of the vehicle’s current position.

Problem Setup. For the purpose of this example, we simplify
our scenario by assuming that we track only a single object and
that the information given by the vehicle’s radar is a feature
vector of size two, containing (a) the object’s normalized
relative speed v ∈ [−5, 5] where the positive values mean
that the objects are getting closer; and (b) the object’s relative
angular position θ ∈ [−π, π] in a polar coordinate system
with our vehicle located in the center. Either action Report or
action Ignore is advised by the system for this object given
the information.

Consider an implementation of an ANN for this problem
that uses a 2-layer ReLU neural network F with initialized
weights as depicted in Fig. 2. The network takes an input
vector x = (v, θ) and outputs a prediction score vector
y = (y1, y2) for actions Report and Ignore, respectively. The
action with higher prediction score is picked by the advisory
system. For simplicity, both layers in F are linear layers with
2 neurons and without bias terms. An element-wise ReLU
activation function relu(x) = max(x, 0) is applied after the
first layer.

Correctness Property. To serve as a useful advisory system,
we can ascribe some correctness properties that we would like
the network to always satisfy. While our approach generalizes
to an arbitrary number of the correctness properties that one
may wish to enforce, we focus on one such correctness
property Φ in this example: Objects in front of the vehicle
that are stationary or moving closer should not be ignored.
The meaning of “stationary or moving closer” and “in front
of ” can be interpreted in terms of predicates Φin and Φout over

149

feature vector components such as v ≥ 0 and θ ∈ [0.5, 2.5]1,
respectively. Using such representations and recalling that
v ∈ [−5, 5], Φ = (Φin,Φout) can be precisely formulated
as:

∀v, θ. v ∈ [0, 5] ∧ θ ∈ [0.5, 2.5]
Φin

∧ y = F (v, θ)⇒ y1 > y2
Φout

.

Observe that this property is violated with the network and
the example input shown in Fig. 2.

Concrete Correctness Loss Function. To quantify how correct
F is on inputs satisfying predicate Φin, we define a correctness
loss function, denoted distg , over the output y of the neural
network and the output predicate Φout:

distg(y,Φout) = min
q|=Φout

g(y, q),

parameterized on a distance function g over the input
space such as the Manhattan distance (L1-norm), Euclidean
distance (Euclid-norm), etc. The correctness distance function
is intentionally defined to be semantically meaningful—when
distg(y,Φout) = 0, it follows that y satisfies the output
predicate Φout. This function can then be used as a loss
function, among other training objectives to train the
neural network towards satisfying (Φin,Φout). For this
example, we can compute the correctness distance of the
network output y = (y1, y2) from Φout = y1 > y2 to be
distEuclid(y,Φout) = max

(
(y2 − y1)/

√
2, 0

)
which is

calculated based on the Euclidean distance between point
(y1, y2) and line y2 − y1 = 0.

Abstract Domain. A general correctness property like Φ is
often defined over an infinite set of data points; however,
since training necessarily is performed using only a finite set
of samples, we cannot generalize observations made on just
these samples to assert the validity of Φ on the trained network.
Our approach, therefore, leverages abstract interpretation tech-
niques to generate sound abstractions of both the network input
space and the network itself. By training on these abstractions,
our method obtains a finite approximation of the infinite set of
possible network behaviors, enabling correct-by-construction
training.

We parameterize our approach on any abstract domain that
serves as a sound over-approximation of a neural network’s
behavior, i.e., abstractions in which an abstract output is
guaranteed to subsume all possible outputs for the set of
abstract inputs. In the example, we consider the interval
abstract domain I that is simple enough to motivate the core
ideas of our approach. We note that ART is not bound to
specific abstract domains, the interval domain is used only for
illustrative purposes here, our experiments in Section V are
conducted using more precise abstractions.

An interval abstraction of our 2-layer ReLU network,
denoted FI , is shown in Fig. 3. The concrete neural network

1We pick [0.5, 2.5] because it is slightly wider than the front view angle
of [π

4
, 3π

4
].

vSpeed

v ∈ [0, 5]

θDirection

θ ∈ [0.5, 2.5]

p1

p1 ∈ [0.25, 6.25]

p2

p2 ∈ [−2.5, 4.5]

q1

q1 ∈ [0.25, 6.25]

q2

q2 ∈ [0, 4.5]

y1 Report

y1 ∈ [−4.25, 6.25]

y2 Ignore

y2 ∈ [0.125, 7.625]

1

1 0.5

−1

relu

relu

1

0.5 −1

1

Input
layer

Hidden
layer

Hidden
layer

Output
layerFI :

Fig. 3: The 2-layer ReLU network over interval domain.

computation F is abstracted by maintaining the lower and
upper bounds [u, u] of each neuron u. For neuron p2 in this
example, following interval arithmetic [9], the lower bound
of neuron is computed by p2 = 1 · v + (−1) · θ = −2.5 and
the upper bound p2 = 1 · v + (−1) · θ = 4.5. For ReLU
activation function, FI resets negative lower bounds to 0 and
preserves everything else. Consider neurons p2 → q2, lower
bound q2 is reset to 0 while its upper bound q2 remains
unchanged. In this way, FI soundly over-approximates all
possible outputs generated by the network given any inputs
satisfying Φin. Applying FI , the neural network’s abstract
output is y1 ∈ [−4.25, 6.25] and y2 ∈ [0.125, 7.625], which
fails to show that y1 > y2 always holds. As a counterexample
depicted in Fig. 2, the input v = 4∧ θ = 1 leads to violation.

Abstract Correctness Loss Function. Given Φin, to quantify
how correct F is based on the abstract output y#, we can also
define an abstract correctness loss function, denoted Lg , over
y# and the output predicate Φout:

Lg(y
#,Φout) = max

y∈γ(y#)
distg(y,Φout),

where γ(y#) maps y# to the set of values it represents in
the concrete domain and g is a distance function over the
input space as before. In our example, LEuclid(y

#,Φout) =

max
(
(y2 − y1)/

√
2, 0

)
= 11.875/

√
2.

Measuring the worst-case distance of possible outputs
to Φout, Lg is also semantically meaningful — when
Lg(y

#,Φout) = 0, it follows that all possible values rep-
resented by y# satisfy the output predicate Φout. In other
words, the trained neural network F is certified safe w.r.t.
the correctness property Φ.
Lg can be leveraged as the objective function during

optimization. The min and max units in Lg can be
implemented using MaxPooling and MinPooling units,
and hence is differentiable. Then we can use off-the-shelf
automatic differentiation libraries [10] in the usual fashion
to derive and backpropagate the gradients and readjust F ’s
weights towards minimizing Lg .

Input Space Abstraction Refinement. The abstract correctness
loss function Lg provides a direction for neural network
weight optimization. However, Lg could be overly imprecise
since the amount of spurious cases introduced by the neural
network abstraction is correlated with the size of the abstract
input region. This kind of imprecision leads to sub-optimal

150

optimization, ultimately hurting the feasibility of correct-by-
construction as well as the model accuracy.

Such imprecision arises easily when using less precise
abstract domains like the interval domain. For our running
example, by bisecting the input space along each dimen-
sion, the resulting abstract correctness loss values of each
region range from 3.125/

√
2 to 9.125/

√
2. If the original

abstract correctness loss 11.875/
√
2 pertains to a real input,

it should be reflected in some sub-region as well. Now that
9.125/

√
2 < 11.875/

√
2, the original abstract correctness loss

must be spurious and thus suboptimal for optimization.
To use more accurate gradients for network weight

optimization, our approach leverages the above observation
to also iteratively partition the input region Φin during
training. In other words, we seek for an input space
abstraction refinement mechanism that reduces imprecise
abstract correctness loss introduced by abstract interpretation.
Notably, incorporating input space abstraction refinement
with the gradient descent optimizer does not compromise the
soundness of our approach. As long as all sub-regions of Φin

are provably correct, the network’s correctness with respect
to Φin trivially holds.

Iterative Training. Our training algorithm interweaves input
space abstraction refinement and gradient descent training on
a network abstraction in each training iteration by leveraging
the correctness loss function produced by the network abstract
interpreter (as depicted in Fig. 1), until a provably correct
ANN is trained. The refined input abstractions computed in
an iteration are used for training over the abstract domain in
the next iteration.

For our illustrative example, we set the learning rate of
the optimizer to be 0.01. In our experiment, the maximum
correctness loss among all refined input space abstractions
drops to 0 after 11 iterations. Convergence was achieved by
heuristically partitioning the input space Φin into 76 regions.
The trained ANN is guaranteed to satisfy the correctness
property (Φin,Φout).

III. BACKGROUND

Definition III.1 (Neural network). Neural networks are func-
tions F : Rd → Re composed of Q layers and Q−1 activation
functions. Each layer is a function fk(·) ∈ Rmk−1 → Rmk

for k = 1, . . . , Q where m0 = d and mQ = e. Each
activation function is of the form σk(·) ∈ Rmk → Rmk for
k = 1, . . . , Q−1. Then, F = fQ ◦σQ−1 ◦fQ−1 ◦ . . .◦σ1 ◦f1.

Definition III.2 (Abstraction). An abstraction D is defined as
a tuple: ⟨Dc,Da, α, γ, T ⟩ where

• Dc : {x | x ∈ Rd} and where d ∈ Z+ is the concrete
domain;

• Da is the abstract domain of interest;
• α(·) is an abstraction function that maps a set of concrete

elements to an abstract element;
• γ(·) is a concretization function that maps an abstract

element to a set of concrete elements;

• T =
{
(Tc, Ta) | Tc(·) : Dc → Dc, Ta(·) : Da → Da

}
is

a set of transformer pairs over Dc and Da.

An abstraction is sound if for all S ⊆ Dc, S ⊆ γ(α(S)) holds
and given (Tc, Ta) ∈ T ,

∀c ∈ Dc, a ∈ Da, c ∈ γ(a) =⇒ Tc(c) ∈ γ(Ta(a)).

Definition III.3 (D-compatible). Given a sound abstraction
D = ⟨Dc,Da, α, γ, T ⟩, a neural network F is D-compatible
iff for every layer or activation function ι(·) in F , there exists
an abstract transformer Ta such that

(
ι(·), Ta

)
∈ T , and Ta is

differentiable at least almost everywhere.
For a D-compatible neural network F , we denote by FD :
Da → Da the over-approximation of F where every layer
fk(·) and activation function σk(·) in F are replaced in FD
by their corresponding abstract transformers in D.

Although our approach is parametric over abstract domains,
we do require every abstract transformer Ta associated with
these domains to be differentiable, so as to enable training
using the worst cases over-approximated over D via gradient-
descent style optimization algorithms.

To reason about a neural network over an abstraction D, we
need to first characterize what it means for an ANN to operate
over D.

Definition III.4 (Evaluation over Abstract Domain). Given
a D-compatible neural network F , the evaluation of F over
D and a range of inputs X ∈ Da is FD(X) where FD(X)
over-approximates all possible outputs in the concrete domain
corresponding to any input covered by X .

Theorem III.1 (Over-approximation Soundness). For sound
abstraction D, given a D-compatible neural network F , a
range of inputs X ∈ Da,

∀x. x ∈ γ(X) ⇒ F (x) ∈ γ
(
FD (X)

)
.

Proofs of all theorems are provided in the supplemental
material [11].

IV. CORRECT-BY-CONSTRUCTION TRAINING

Our approach aims to train an ANN F with respect to a
correctness property Φ, which is formally defined in Sec-
tion IV-A. The abstraction of F w.r.t. Φ based on abstract
domain D essentially can be seen as a function parameterized
over the weights of F , which can nonetheless be trained to
fit Φ using standard optimization algorithms. Section IV-B
formally defines the abstract correctness loss function LD to
guide the optimization of F ’s weights over D. Such an abstrac-
tion inevitably introduces spurious data samples into training
due to over-approximation. Section IV-C introduces the idea
of input space abstraction and refinement as a mechanism
that can reduce such spuriousness during optimization over
D. The detailed pseudocode of ART algorithm, including the
refinement procedure, is presented in Section IV-D.

151

A. Correctness Property

The correctness properties we consider are expressed as
logical propositions over the network’s inputs and outputs. We
assume that an ANN correctness property expresses constraints
on the outputs, given assumptions on the inputs.

Definition IV.1 (Correctness Property). Given a neural net-
work F : Rd → Re, a correctness property Φ = (Φin,Φout)
is a tuple in which Φin defines a bounded input domain over
Rd in the form of an interval [x, x] where x, x ∈ Rd, are
lower, upper bounds, resp., on the network input; and Φout

is a quantifier-free Boolean combination of linear inequalities
over the network output vector y ∈ Re:

⟨Φout⟩ ::= ⟨P⟩ | ¬⟨P⟩ | ⟨P⟩ ∧ ⟨P⟩ | ⟨P⟩ ∨ ⟨P⟩;

⟨P⟩ ::= A · y ≤ b where A ∈ Re, b ∈ R;

An input vector x ∈ Rd is said to satisfy Φin = [x, x],
denoted x |= Φin, iff x ≤ x ≤ x. An output vector y ∈ Re

satisfies Φout, denoted y |= Φout, iff Φout(y) is true. A neural
network F : Rd → Re satisfies Φ, denoted F |= Φ, iff ∀x. x |=
Φin ⇒ F (x) |= Φout.

Definition IV.2 (Concrete Correctness Loss Function). For
an atomic output predicate P , the concrete correctness loss
function, distg(y, P), quantifies the distance from an output
vector y ∈ Re to P :

distg(y, P) = min
q|=P

g(y, q)

where g : Rd×Rd ↦→ Z≥0 is a differentiable distance function
over the inputs. Similarly, distg(y,Φout), the “distance” from
an output vector y ∈ Re to general output predicate Φout, can
be computed efficiently by induction as long as g(·, ·) can be
computed efficiently:

• distg(y, P) and distg(y,¬P) can be computed using
basic arithmetic;

• distg(y, P1 ∧ P2) = max(distg(y, P1), distg(y, P2));
• distg(y, P1 ∨ P2) = min(distg(y, P1), distg(y, P2)).

Note that distg(y,Φout) may not represent the minimum
distance for arbitrary Φout, but it is efficient to compute while
still retaining the following soundness theorem.

Theorem IV.1 (Zero Concrete Correctness Loss Soundness).
Given output predicate Φout over Re and output vector y ∈ Re,

distg(y,Φout) = 0 =⇒ y |= Φout.

B. Over-approximation

To reason about correctness properties defined over an
infinite set of data points, our approach generates sound
abstractions of both the network input space and the network
itself, obtaining a finite approximation of the infinite set
of possible network behaviors. We start by quantifying the
abstract correctness loss of over-approximated outputs.

Definition IV.3 (Abstract Correctness Loss Function). Given
a sound abstraction D = ⟨Dc,Da, α, γ, T ⟩, a D-compatible

neural network F , and a correctness property Φ = (Φin,Φout),
the abstract correctness loss function is defined as:

LD,g(F,Φ) = max
p∈γ(YD)

distg(p,Φout)

where YD = FD(α(Φin)).

Here g : Rd × Rd ↦→ Z≥0 is a differentiable distance function
over concrete inputs as before.

The abstract correctness loss function measures the worst-
case distance to Φout of any neural network outputs subsumed
by the abstract network output. It is designed to extend the
notion of concrete correctness loss to the abstract domain with
a similar soundness guarantee, as formulated in the following
theorem.

Theorem IV.2 (Zero Abstract Correctness Loss Soundness).
Given a sound abstraction D, a D-compatible neural network
F , and a correctness property Φ,

LD,g(F,Φ) = 0 =⇒ F |= Φ.

In what follows, we fix the distance function g over concrete
inputs and denote the abstract correctness loss function simply
as LD.

C. Abstraction Refinement

Recall that in Section II we illustrated how imprecision in
the correctness loss for a coarse abstraction can be mitigated
using an input space abstraction refinement mechanism. Our
notion of refinement is formally defined below.

Definition IV.4 (Input Space Abstraction). An input space
abstraction S refines a correctness property Φ = (Φin,Φout)

into a set of correctness properties S =
{(

Φi
in,Φout

)}
such

that Φin =
⋃

i Φ
i
in. Given a neural network F and an input

space abstraction S, F |= S ⇐⇒
⋀

Φ∈S F |= Φ.

Definition IV.5 (Input Space Abstraction Refinement). A well-
founded abstraction refinement ⊑ is a binary relation over a
set of input abstractions S = {S1, S2, . . .} such that:

• (reflexivity): ∀Si ∈ S, Si ⊑ Si;
• (refinement): ∀Si ∈ S and correctness property

(Ψin,Ψout),⎛⎜⎝Ψin =
⋃

(Φj
in,)∈Si

Φj
in

⎞⎟⎠ ∧
⎛⎜⎝ ⋀

(,Φj
out)∈Si

Φj
out ⇔ Ψout

⎞⎟⎠
=⇒ Si ⊑ {(Ψin,Ψout)};

• (transitivity): ∀S1, S2, S3 ∈ S , S1 ⊑ S2 ∧ S2 ⊑ S3 =⇒
S1 ⊑ S3;

• (composition): ∀S1, S2, S3, S4 ∈ S, S1 ⊑ S3 ∧ S2 ⊑
S4 =⇒ S1 ∪ S2 ⊑ S3 ∪ S4.

The reflexivity, transitivity, and compositional requirements
for a well-founded refinement are natural. The refinement
rule states that an input space abstraction S refines some
correctness property (Ψin,Ψout) if the union of all input
domains in S is equivalent to Ψin and all output predicates in

152

S are logically equivalent to Ψout. This rule enables Ψin to
be safely decomposed into a set of sub-domains. As a result,
the problem of enforcing coarse-grained correctness properties
on neural networks can be converted into one that enforces
multiple fine-grained properties, an easier problem to tackle
because much of the imprecision introduced by the coarse-
grained abstraction can now be eliminated.

Theorem IV.3 (Sufficient Condition via Refinement).

∀F, S1, S2, S1 ⊑ S2 ∧ F |= S1 =⇒ F |= S2.

To do this, we naturally extend the notion of abstract correct-
ness loss over one property to an input space abstraction.

Definition IV.6 (Abstract Correctness Loss Function for In-
put Space Abstraction). Given a sound abstraction D, D-
compatible neural network F , and input space abstraction S,
the abstract correctness loss of F with respect to S is denoted
by2

LD(F, S) =
∑
Φ∈S

LD(F,Φ).

Theorem IV.4 (Zero Abstract Correctness Loss for Input
Space Abstraction). Given a sound abstraction D, a D-
compatible neural network F , and an input space abstraction
S,

LD(F, S) = 0 =⇒ F |= S.

D. The ART Algorithm

The goal of our ANN training algorithm, given in Fig. 4, is
to optimize the network to have LD(F, S) reduce to 0, thereby
ensuring a correct-by-construction network. The algorithm
takes as input both an initial input space abstraction S and a
set of labeled training data

{
(xtrain, ylabel)

}
in order to achieve

correctness while maintaining high accuracy on the trained
model. The abstract correctness loss, denoted ℓD, is computed
at Line 4 according to Def. IV.3 and checked correctness by
comparing against 0. If ℓD = 0, as long as the accuracy loss,
denoted ℓA, is also satisfactory, ART returns a correct and
accurate network following Thm. IV.4.

The joint loss of ℓD and ℓA is used to guide the optimization
of neural network parameters using standard gradient-descent
algorithms. The requirement of abstract transformers being
differentiable at least almost anywhere in Def. III.3 enables
computation of gradients ℓD using off-the-shelf automatic
differentiation libraries [10].

Starting from Line 10, abstractions in S that have the largest
ℓD values represent the potentially most imprecise cases and
thus are chosen for refinement. During refinement, ART first
picks a dimension to refine using heuristic scores similar to [3].
The heuristic coarsely approximates the cumulative gradient
over one dimension, with a larger score suggesting greater
potential of decreasing correctness loss. The input abstraction
is then bisected along the picked dimension as refinement.

2We can refine the definition to have positive weighted importance of each
correctness property in S; ascribing different weights to different correctness
properties does not affect soundness.

Fig. 4: ART correct-by-construction training algorithm.

Require: Abstract domain D, D-compatible neural network
F , input space abstraction S, learning rate η ∈ R+,
training data set {(xtrain, ylabel)}, accuracy loss function
LA, accuracy loss bound ϵA ∈ R+, hyper-parameter k.

Ensure: Return the optimized F whose correctness properties
are enforced and accuracy loss bounded by ϵA.

1: procedure ART
2: W⃗ ← all weights in F to optimize
3: while true do
4: ℓD, ℓA ← LD(F, S), LA(F, {(xtrain, ylabel)})
5: if ℓD = 0 ∧ ℓA ≤ ϵA then
6: return F
7: end if

▷ optimization
8: ∇F ← ∂(ℓD+ℓA)

∂W⃗

9: W⃗ ← W⃗ − η · ∇F
▷ refinement

10: T ← Subset of S with k largest ℓD values
11: S′ ← S \ T
12: for all (Φi

in,Φ
i
out) ∈ T do

13: for all Ψj
in ∈ REFINE(Φi

in, ℓD) do
14: S′ ← S′ ∪ {(Ψj

in,Φ
i
out)}

15: end for
16: end for
17: S ← S′

18: end while
19: end procedure

20: procedure REFINE(Ψin, ℓD)
21: for all dimension i of Ψin do
22: scorei = ∂ℓD

∂{Ψin}i
× |{Ψin}i|

23: end for
24: dim← argmax scorei ▷ pick dimension
25: Ψ1

in,Ψ
2
in ← Ψin bisected along dimension dim

26: return
{
Ψ1

in,Ψ
2
in

}
27: end procedure

Corollary 1 (ART Soundness). Given a sound abstraction D,
a D-compatible neural network F , and an initial input space
abstraction S of correctness properties, if the ART algorithm
in Fig. 4 generates a neural network F ′, LD(F

′, S) = 0 and
F ′ |= S.

V. EVALUATION

We have performed an evaluation of our approach to vali-
date the feasibility of building neural networks that are correct-
by-construction over a range of correctness properties.3 All
experiments reported in this section were performed on a
Ubuntu 16.04 system with 3.2GHz CPU and NVidia GTX
1080 Ti GPU with 11GB memory. All experiments uses the

3The code is available at https://github.com/XuankangLin/ART.

153

https://github.com/XuankangLin/ART

DeepPoly abstract domain [12] implemented on Python 3.7
and PyTorch 1.4 [10].

A. ACAS Xu Dataset

Our first evaluation study centers around the network archi-
tecture and correctness properties described in the Airborne
Collision Avoidance System for Unmanned Aircraft (ACAS
Xu) dataset [1], [2]. A family of 45 neural networks are used
in the avoidance system; each of these networks consists of
6 hidden layers with 50 neurons in each hidden layer. ReLU
activation functions are applied to all hidden layer neurons.
All 45 networks take a feature vector of size 5 as input
that encodes various aspects of an airborne environment. The
outputs of the networks are prediction scores over 5 advisory
actions to select the advisory action.

In the evaluation, we reason about sophisticated correctness
conditions of the ACAS Xu system in terms of its aggregated
ability to preserve up to 10 correctness properties [2] among
all 45 networks. Each network is supposed to satisfy some
subset of these 10 properties. All correctness properties Φ
can be formulated in terms of input (Φin) and output (Φout)
predicates as in Section IV-A.

Setup. Among the 45 provided networks, 36 are reported with
safety property violations and 9 are reported safe [2]. We
evaluate ART on those 36 unsafe networks to demonstrate the
effectiveness of generating correct-by-construction networks.
The test sets from unsafe networks may contain unsafe points
and are thus unauthentic, so we apply ART on those 9 already
safe networks to demonstrate the accuracy overhead when
enforcing the safety properties. Unfortunately, the training
and test sets to build these ACAS Xu networks are not
publicly available online. In spite of that, the ACAS Xu
dataset provides the state space of input states that is used for
training and over which the correctness properties are defined.
We, therefore, uniformly sample a total of 10k training set
and 5k test set data points from the state space. The labels are
collected by evaluating each of the provided 45 networks on
these sampled inputs, with those ACAS Xu networks serving
as oracles. Each network is then trained by ART using its
safety specification and the prepared training set, starting
with the provided weights when available or otherwise
randomly initialized weights. We record whether the trained
network is correct-by-construction, as well as their accuracy
evaluated on the prepared test set and the overall training time.

Applying ART. During each training epoch (i.e., each iteration
of the outermost while loop in Fig. 4), our implementation
refines up to k = 200 abstractions at a time that expose
the largest correctness losses. Larger k leads to finer-grained
abstractions but incurs more training cost. The Adam optimizer
[13] is used in both training tasks and runs up to 100 epochs
with learning rate 0.001 and a learning rate decay policy if
the loss has been stable for some time. Cross entropy loss is
used as the loss function for accuracy . For all experiments
with refinement enabled, refinement operations are applied to

TABLE I: Applying ART to ACAS Xu Dataset.

Refinement Safe% Min Accu. Mean Accu. Max Accu.

36 unsafe nets Yes
No

100%
94.44%

90.38%
87.88%

96.10%
94.45%

98.70%
98.22%

9 safe nets Yes
No

100%
88.89%

93.82%
86.32%

96.25%
94.29%

99.92%
99.92%

N1 N2 N3 N4 N5 N6 N7 N8

0

20

40

60

80

100

Correctness rate (%)

Sampled points
Counterexamples

N1 N2 N3 N4 N5 N6 N7 N8

−20

−10

0

10

Accuracy change (%)

Sampled points
Counterexamples

Fig. 5: Correctness rate and accuracy change of post facto
training using sampled points or counterexamples. Results are
normalized based on the baseline networks.

derive up to 5k refined input space abstractions before weight
update starts. The detailed results are shown in Table I.

To demonstrate the importance of abstraction refinement
mechanism, we also compare between the results with
and without refinement (as done in existing work [6]).
For completeness, we record the correct-by-construction
enforced rate (Safe%) and the evaluated accuracy statistics
for both tasks among multiple runs. Observe that ART
successfully generates correct-by-construction networks for
all scenarios with only minimal loss in accuracy. On the
other hand, if refinement is disabled, it fails to generate
correct-by-construction networks for all cases, and displays
lower accuracy than the refinement-enabled instantiations.
The average training time for each network is 69.39s if with
refinement and 57.85s if without.

Comparison with post facto training loop. We also consider
a comparison of our abstraction refinement-guided training for
correct-by-construction networks against a post facto training
loop that feed concrete correctness related data points to
training loops. Such concrete points may be sampled from the
provided specification or the collected counterexamples from
an external solver. We show the results on 8 representative
networks comparing to the same baseline in Figure 5. These 8
networks belong to a representative set of networks that cover
all 10 provided safety properties.

For the experiment using sampled data points, 5k points
sampled from correctness properties are used during training.
For the experiment using counterexamples, all counterexam-
ples from correctness queries to external verifier ReluVal [3]
are collected and used during training. In both experiments, the
points from original training set are used for jointly training
to preserve accuracy and the correctness distance functions
following that in Section IV-B are used as loss functions.

154

TABLE II: Applying ART to Collision Detection Dataset.

Refinement Enforced Accuracy Time

Original [8] N/A 328/500 99.87% N/A

ART
Yes
No

481/500
420/500

96.83%
86.3%

583s
419s

We concluded the experiments using counterexamples after
20 epochs since no improvement was seen after this point.
Both experiments fail to enforce correctness properties in most
cases and they may impose great impact to model accuracy
compared to the baseline network. We believe this result
demonstrates the difficulty of applying a counterexample-
guided training loop strategy for generating safe networks
compared an abstraction-guided methodology.

B. Collision Detection Dataset

Our second evaluation task focuses on the Collision Detec-
tion Dataset [8] where a neural network controller is used to
predict whether two vehicles running curve paths at different
speeds would collide. The network takes as input a feature
vector of size 6, containing the information of distances,
speeds, and directions of the two vehicle. The network output
prediction score are used to classify the scenario as a colliding
or non-colliding case.

A total of 500 correctness properties are proposed in the
Collision Detection dataset that identify the safety margins
around particular data points. The network presented in the
dataset respects 328 such properties. In our evaluation, we
use a 3-layer fully-connected neural network controller with
50, 128, 50 neurons in different hidden layers. Using the same
training configurations as in Section V-A and evaluating on the
same training and test sets provided in the dataset, the results
are shown in Table II. After 100 epochs, ART converged to
a local minimum and managed to certify 481 out of all 500
safety properties. Although it did not achieve zero correctness
loss, ART can produce a solution that satisfies significantly
more correctness properties than the oracle neural network, at
the cost of only a small accuracy drop.

VI. RELATED WORK

Neural Network Verification. Inspired by the success of
applying program analysis to large software code bases, ab-
stract interpretation-based techniques have been adapted to
reason about ANNs by developing efficient abstract trans-
formers that relax nonlinearity of activation functions into
linear inequality constraints [4], [6]–[8], [12], [14], [15].
Similar approaches [16]–[19] encode nonlinearity via linear
outer bounds of activation functions and may delegate the
verification problem to SMT solvers [2], [20] or Mixed Integer
Programming solvers [21]–[23]. Most of those verifiers focus
on robustness properties only and do not support verifiable
training of network-wide correctness properties. For example,
[12] encodes concrete ANN operations into ELINA [24], a
numeric abstract transformer, and therefore disables opportu-
nities for training or optimization thereafter.

Correctness properties may also be retrofitted onto a
trained neural network for safety concerns [25]–[28]. These
approaches usually synthesize a reactive system that monitors
the potentially controller network and corrects any potentially
unsafe actions. Comparing to correct-by-construction methods,
runtime overheads are inevitable for such post facto shielding
techniques.

Correctness Properties in Neural Networks. There have been
a large number of recent efforts that have explored verifying
the robustness of networks against adversarial attacks [29]–
[31]. Recent work has shown how symbolic reasoning
approaches [3], [4] can be used to help validate network
robustness; other efforts combine optimization techniques
with symbolic reasoning to guide symbolic analysis [5]. Our
approach looks at the problem of verification and certification
from the perspective of general safety specifications that are
typically richer than notions of robustness governing these
other techniques and provide the correct-by-construction
guarantee upon training termination. Encoding logical
constraints other than robustness properties into loss functions
has been explored in [32]–[35]. However, they operate
only on concrete sample instances and do not provide any
correct-by-construction guarantees.

Training over Abstract Domains. The closest approach to our
setting is the work in [6], [36]. They introduced geometric
abstractions that bound activations as they propagate through
the network via abstract interpretation. Importantly, since
these convex abstractions are differentiable, neural networks
can optimize towards much tighter bounds to improve the
verified accuracy. A simple bounding technique based on
interval bound propagation was also exploited in [7] (similar
to the interval domain from [6]) to train verifiably robust
neural networks that even beat the state-of-the-art networks
in image classification tasks, demonstrating that a correct-
by-construction approach can indeed save the need of more
expensive verification procedures in challenging domains.
They did not, however, consider verification in the context
of global safety properties as discussed here, in which the
over-approximation error becomes non-negligible; nor did they
formulate their approach to be parametric in the specific form
of the abstractions chosen. Similar ideas have been exploited
in provable defenses works [36]–[39], however, they apply
best-effort adversarial defenses only and provide no guarantee
upon training termination.

VII. CONCLUSIONS

This paper presents a correct-by-construction toolchain that
can train neural networks with provable guarantees. The key
idea is to optimize a neural network over the abstraction of
both the input space and the network itself using abstraction
refinement mechanisms. Experimental results show that our
technique realizes trustworthy neural network systems for a
variety of properties and benchmarks with only mild impact
on model accuracy.

155

ACKNOWLEDGMENT

This work was supported by C-BRIC, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA; NSF under award CCF-1846327; and
NSF under Grant No. CCF-SHF 2007799.

REFERENCES

[1] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy compression for aircraft collision avoidance systems,” in 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sep.
2016, pp. 1–10.

[2] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J.
Kochenderfer, “Reluplex: An efficient SMT solver for verifying
deep neural networks,” in Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I, 2017, pp. 97–117. [Online]. Available:
https://doi.org/10.1007/978-3-319-63387-9 5

[3] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018., 2018, pp. 1599–1614. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

[4] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. T. Vechev, “AI2: safety and robustness certification of neural
networks with abstract interpretation,” in 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA, 2018, pp. 3–18. [Online]. Available:
https://doi.org/10.1109/SP.2018.00058

[5] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri, “Optimization
and abstraction: a synergistic approach for analyzing neural network
robustness,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019., 2019, pp. 731–744. [Online].
Available: https://doi.org/10.1145/3314221.3314614

[6] M. Mirman, T. Gehr, and M. T. Vechev, “Differentiable abstract
interpretation for provably robust neural networks,” in Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018,
pp. 3575–3583. [Online]. Available: http://proceedings.mlr.press/v80/
mirman18b.html

[7] S. Gowal, K. D. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. Mann, and P. Kohli, “Scalable verified training
for provably robust image classification,” in The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[8] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Automated Technology for Verification and Analysis
- 15th International Symposium, ATVA 2017, Pune, India, October
3-6, 2017, Proceedings, 2017, pp. 269–286. [Online]. Available:
https://doi.org/10.1007/978-3-319-68167-2 19

[9] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction
to Interval Analysis. SIAM, 2009. [Online]. Available: https:
//doi.org/10.1137/1.9780898717716

[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019,
8-14 December 2019, Vancouver, BC, Canada, 2019, pp. 8024–
8035. [Online]. Available: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library

[11] X. Lin, H. Zhu, R. Samanta, and S. Jagannathan, “ART: abstraction
refinement-guided training for provably correct neural networks,”
CoRR, vol. abs/1907.10662, 2019. [Online]. Available: http://arxiv.org/
abs/1907.10662

[12] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “An Abstract Domain
for Certifying Neural Networks,” PACMPL, vol. 3, no. POPL, pp. 41:1–
41:30, 2019. [Online]. Available: https://dl.acm.org/citation.cfm?id=
3290354

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[14] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., 2018, pp. 10 825–10 836. [Online]. Available: http:
//papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

[15] G. Singh, T. Gehr, M. Puschel, and M. Vechev, “Robustness
certification with refinement,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/
forum?id=HJgeEh09KQ

[16] H. Zhang, T. Weng, P. Chen, C. Hsieh, and L. Daniel, “Efficient neural
network robustness certification with general activation functions,”
in Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada., 2018, pp. 4944–4953.
[Online]. Available: http://papers.nips.cc/paper/7742-efficient-neural-
network-robustness-certification-with-general-activation-functions

[17] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. S.
Boning, and I. S. Dhillon, “Towards fast computation of certified
robustness for relu networks,” in Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, 2018, pp. 5273–5282. [Online].
Available: http://proceedings.mlr.press/v80/weng18a.html

[18] S. Wang, Y. Chen, A. Abdou, and S. Jana, “Mixtrain: Scalable training
of formally robust neural networks,” CoRR, vol. abs/1811.02625, 2018.
[Online]. Available: http://arxiv.org/abs/1811.02625

[19] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient
formal safety analysis of neural networks,” in Advances in
Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada., 2018, pp. 6369–6379.
[Online]. Available: http://papers.nips.cc/paper/7873-efficient-formal-
safety-analysis-of-neural-networks

[20] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer,
and C. W. Barrett, “The marabou framework for verification and
analysis of deep neural networks,” in Computer Aided Verification -
31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I, 2019, pp. 443–452. [Online].
Available: https://doi.org/10.1007/978-3-030-25540-4 26

[21] C. Cheng, G. Nührenberg, and H. Ruess, “Maximum resilience of
artificial neural networks,” in Automated Technology for Verification
and Analysis - 15th International Symposium, ATVA 2017, Pune,
India, October 3-6, 2017, Proceedings, 2017, pp. 251–268. [Online].
Available: https://doi.org/10.1007/978-3-319-68167-2 18

[22] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NASA Formal
Methods - 10th International Symposium, NFM 2018, Newport News,
VA, USA, April 17-19, 2018, Proceedings, 2018, pp. 121–138. [Online].
Available: https://doi.org/10.1007/978-3-319-77935-5 9

[23] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=HyGIdiRqtm

[24] G. Singh, M. Püschel, and M. T. Vechev, “Fast polyhedra abstract
domain,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, 2017, pp. 46–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3009885

[25] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan, “An Inductive
Synthesis Framework for Verifiable Reinforcement Learning,” in
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ,
USA, June 22-26, 2019, 2019, pp. 686–701. [Online]. Available:
https://doi.org/10.1145/3314221.3314638

[26] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe Reinforcement Learning via Shielding,” AAAI, 2018.

[27] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, “Shield synthe-
sis: - runtime enforcement for reactive systems,” in Tools and Algorithms

156

https://doi.org/10.1007/978-3-319-63387-9_5
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3314221.3314614
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://arxiv.org/abs/1907.10662
http://arxiv.org/abs/1907.10662
https://dl.acm.org/citation.cfm?id=3290354
https://dl.acm.org/citation.cfm?id=3290354
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
https://openreview.net/forum?id=HJgeEh09KQ
https://openreview.net/forum?id=HJgeEh09KQ
http://papers.nips.cc/paper/7742-efficient-neural-network-robustness-certification-with-general-activation-functions
http://papers.nips.cc/paper/7742-efficient-neural-network-robustness-certification-with-general-activation-functions
http://proceedings.mlr.press/v80/weng18a.html
http://arxiv.org/abs/1811.02625
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-77935-5_9
https://openreview.net/forum?id=HyGIdiRqtm
http://dl.acm.org/citation.cfm?id=3009885
https://doi.org/10.1145/3314221.3314638

for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, 2015, pp. 533–548.

[28] C. Fan, U. Mathur, S. Mitra, and M. Viswanathan, “Controller synthesis
made real: Reach-avoid specifications and linear dynamics,” pp. 347–
366, 2018.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards Deep Learning Models Resistant to Adversarial Attacks,”
in 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, 2018. [Online]. Available: https://openreview.net/
forum?id=rJzIBfZAb

[30] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in Proceedings of
the 26th Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017, 2017, pp. 1–18. [Online]. Available:
https://doi.org/10.1145/3132747.3132785

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015. [Online]. Available:
http://arxiv.org/abs/1412.6572

[32] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang,
and M. Vechev, “DL2: Training and querying neural networks with
logic,” in Proceedings of the 36th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97, Long Beach,
California, USA, 09–15 Jun 2019, pp. 1931–1941. [Online]. Available:
http://proceedings.mlr.press/v97/fischer19a.html

[33] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. V. den
Broeck, “A semantic loss function for deep learning with symbolic
knowledge,” in Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, 2018, pp. 5498–5507. [Online]. Available:
http://proceedings.mlr.press/v80/xu18h.html

[34] P. Minervini and S. Riedel, “Adversarially regularising neural NLI
models to integrate logical background knowledge,” in Proceedings of
the 22nd Conference on Computational Natural Language Learning,
CoNLL 2018, Brussels, Belgium, October 31 - November 1, 2018,
2018, pp. 65–74. [Online]. Available: https://aclanthology.info/papers/
K18-1007/k18-1007

[35] Z. Hu, X. Ma, Z. Liu, E. H. Hovy, and E. P. Xing, “Harnessing deep
neural networks with logic rules,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.
[Online]. Available: http://aclweb.org/anthology/P/P16/P16-1228.pdf

[36] M. Balunovic and M. Vechev, “Adversarial training and provable
defenses: Bridging the gap,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=SJxSDxrKDr

[37] E. Wong and J. Z. Kolter, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” in Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018,
pp. 5283–5292. [Online]. Available: http://proceedings.mlr.press/v80/
wong18a.html

[38] E. Wong, F. R. Schmidt, J. H. Metzen, and J. Z. Kolter,
“Scaling provable adversarial defenses,” in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., 2018, pp. 8410–8419. [Online]. Available:
http://papers.nips.cc/paper/8060-scaling-provable-adversarial-defenses

[39] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings, 2018. [Online]. Available:
https://openreview.net/forum?id=Bys4ob-Rb

157

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3132747.3132785
http://arxiv.org/abs/1412.6572
http://proceedings.mlr.press/v97/fischer19a.html
http://proceedings.mlr.press/v80/xu18h.html
https://aclanthology.info/papers/K18-1007/k18-1007
https://aclanthology.info/papers/K18-1007/k18-1007
http://aclweb.org/anthology/P/P16/P16-1228.pdf
https://openreview.net/forum?id=SJxSDxrKDr
https://openreview.net/forum?id=SJxSDxrKDr
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://papers.nips.cc/paper/8060-scaling-provable-adversarial-defenses
https://openreview.net/forum?id=Bys4ob-Rb

	Introduction
	Illustrative Example
	Background
	Correct-by-Construction Training
	Correctness Property
	Over-approximation
	Abstraction Refinement
	The Art Algorithm

	Evaluation
	ACAS Xu Dataset
	Collision Detection Dataset

	Related Work
	Conclusions
	References

