
Formal Methods in Computer-Aided Design 2020

Automating Modular Verification of Secure
Information Flow

Lauren Pick∗, Grigory Fedyukovich† , Aarti Gupta∗
∗Princeton University, Princeton, NJ, USA

†Florida State University, Tallahassee, FL, USA

Abstract—Verifying secure information flow by reducing it
to safety verification is a popular approach, based on con-
structing product programs or self-compositions of given pro-
grams. However, most such existing efforts are non-modular,
i.e., they do not infer relational specifications for procedures
in interprocedural programs. Such relational specifications can
help to verify security properties in a modular fashion, e.g.,
for verifying clients of library APIs. They also provide security
contracts at procedure boundaries to aid code understanding
and maintenance. There has been recent interest in constructing
modular product programs, but where users are required to
provide procedure summaries and related annotations. In this
work, we propose to automatically infer relational specifications
for procedures in modular product programs. Our approach uses
syntax-guided synthesis techniques and grammar templates that
target verification of secure information flow properties. This
enables automation of modular verification for such properties,
thereby reducing the annotation burden. We have implemented
our techniques on top of a solver for constrained Horn clauses
(CHC). Our evaluation demonstrates that our tool is capable
of inferring adequate relational specifications for procedures
without requiring annotations. Furthermore, it outperforms an
existing state-of-the-art hyperproperty verifier and a modular
CHC-based verifier on benchmarks with loops or recursion.

Index Terms—Formal verification, information security, model
checking

I. INTRODUCTION

The problem of verifying secure information flow is to
check that a program does not leak private inputs to pub-
lic outputs. To solve this problem, one can verify non-
interference [1]: for any two runs of a program with the same
public inputs but possibly different private inputs, the public
outputs of the program are equal. This property is an instance
of a hyperproperty, i.e., a relational property involving more
than one execution of the same program. In practice, non-
interference is often too strong a property to enforce. For
example, a password recognizer would have its public output
be influenced by whether or not the user-provided private input
is the correct password. A common approach is to allow values
that need to be leaked to be declassified [2].

Barthe et al. proposed verifying secure information flow by
reducing it to safety verification on a product or self-composed

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-
1656466. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. This work was supported in
part by the National Science Foundation award FMitF 1837030.

program [3]. Despite advancements in automated program
verifiers, the ability to perform successful safety verification in
practice can depend critically on how the product program is
constructed. Construction of product programs has thus been a
focus in subsequent efforts [4]–[14]. These efforts encompass
various syntactic and semantic transformations, heuristics, and
use of reinforcement learning for constructing suitable product
programs. Some relational property verifiers avoid explicitly
constructing product programs altogether [15]–[19].

A. Motivation

In this paper, we address a related but distinct limitation
of existing efforts based on reduction to safety. Most such
techniques are non-modular, i.e., they neither leverage nor
infer relational specifications for procedures in interprocedural
programs. In general, modular verification offers significant
benefits over non-modular techniques – it is inherently more
scalable, can provide procedure interface contracts (not only
verification results), and can improve code understanding
and maintenance. For example, relational specifications of
procedures can provide security contracts for library APIs,
such as in the S2N implementation of the TLS protocol [20].

A few existing approaches do leverage relational specifica-
tions of procedures, but they either restrict both copies of the
program to always follow the same control flow [6] or are not
automated [8], [21]. In particular, the work by Eilers et al. [21]
proposes a modular product program (MPP) construction,
which is suitable for performing modular relational program
verification. Intutively, this enables reduction to safety on a
per-procedure basis without constructing a monolithic product
program. In their implementation, VIPER back-end verifiers
checked secure-information-flow properties on benchmarks,
but each procedure required user-provided relational invariants
and related annotations rather than relying on tools to derive
them automatically. Placing this annotation burden on users
becomes a barrier to automated verification.

In general, deriving sufficient relational invariants for pro-
cedures is a challenging problem, and existing off-the-shelf
safety verifiers [22]–[28] may not be able to infer them. As
we will show, for verifying secure information flow, such
invariants often have a special form that is unlikely to be
produced by standard interpolation and existing heuristics in
these verifiers. For example, our experimental results (§VII)
show that SPACER often fails to infer invariants needed to
verify information flow in programs with recursion.

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_23

https://fmcad.org/FMCAD20
https://orcid.org/0000-0003-1727-4043
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_23

B. Overview of Proposed Approach

In this work, we propose to use Syntax-Guided Synthesis
(SyGuS) [29] to automatically infer useful relational specifi-
cations about information flow in procedures. The structure
in information-flow specifications makes them suitable targets
for grammar-based enumerative search and synthesis. We have
chosen to work with MPPs because they enable modular
relational verification and they allow leveraging existing tech-
niques for construction of suitable product programs within
each procedure. We represent an MPP as a set of constrained
Horn clauses (CHCs), and our approach automatically infers
relational specifications that are sufficient for verifying the
program with respect to given security properties. If there
are no given security properties, our approach can still infer
relational specifications for procedures that are useful for code
understanding or subsequent verification.

Our SyGuS-based approach is based on an enumera-
tive search using grammars extracted from program syn-
tax. Enumerate-and-check approaches have been shown to
be effective for synthesis of quantifier-free invariants [27],
[30]–[32] and more recently quantified invariants for CHCs
handling arrays [33]. We show that such an approach is also
effective for information-flow properties.

We propose three templates to generate grammars for invari-
ant synthesis: one that expresses quantifier-free information-
flow properties, and two that express quantified properties,
which are often difficult to handle by existing automated
verifiers. Of the latter two, one infers quantified information-
flow properties over arrays, and the other infers specifications
involving the context in which a procedure is called, making
this template well-suited for inferring properties where de-
classification has occurred prior to the procedure being called,
since the declassified values will be low-security in the callee.

We have implemented our approach in a tool called
FLOWER. An evaluation on available benchmark exam-
ples demonstrates that it is effective in inferring useful
relational specifications of procedures, without requiring
any user-provided annotations. We also compared FLOWER
with other state-of-the-art tools: a hyperproperty verifier
(DESCARTES [15]) and a modular CHC-based verifier
(SPACER [25]). Our experiments demonstrate that our tool
generally outperforms them, especially on benchmark exam-
ples that contain loops or recursion.

In summary, this paper makes the following contributions:

• We propose a SyGuS-based approach for inference of
quantifier-free relational specifications for procedures for
verifying secure information flow (§IV, §V).

• We propose grammar templates for inferring such spec-
ifications with quantifiers, which are challenging for
existing verifiers (§VI).

• We have implemented our approach in a prototype tool
FLOWER and present an evaluation that shows its effec-
tiveness on several benchmarks1 (§VII).

1Our tool and translated benchmarks will be made publicly available.

main (int[] a, int n) {
a := init(a, 0);
outputter(a, 0);
return n;

}

init(a, i) {
if (i ≥ 64) return a;
declassify(a[i] = 0);
return init(a, i + 1);

}

outputter(a, i) {
if (i ≥ 64) return;
if (a[i] = 0) {
assert(low(a[i]));
print(a[i]);

}
outputter(a, i + 1);

}

main (b1, b2, a1, a2, n1, n2) {
a1, a2 := init(b1, b2, a1,

a2, 0, 0);
assert(outputter(b1, b2, a1,

a2, 0, 0));
return n1, n2;

}

init(b1, b2, a1, a2, i1, i2) {
if (¬(b1 ∧ i1 < 64 ∨

b2 ∧ i2 < 64))
return a1, a2;

l1 := b1 ∧ i1 < 64
l2 := b2 ∧ i2 < 64
assume (l1 ∧ l2 ⇒
(a1[i1] = 0) = (a2[i2] = 0));

return
init(l1, l2, a1,

a2, i1 + 1, i2 + 1);
}

outputter(b1, b2, a1, a2, i1, i2) {
if (¬(b1 ∧ i1 < 64 ∨

b2 ∧ i2 < 64))
return true;

l1 := b1 ∧ i1 < 64;
l2 := b2 ∧ i2 < 64;
t1 := l1 ∧ a1[i1] = 0;
t2 := l2 ∧ a2[i2] = 0;
print(t1, t2, a1[i1], a2[i2]);
ok := t1 ∧ t2 ⇒ a1[i1] = a2[i2];
ok := ok ∧

outputter(b1, b2, a1, a2,
i1 + 1, i2 + 1);

return ok;
}

Fig. 1: Example (left: original (P), right: modular product program (MP)).

To the best of our knowledge, among methods based on
product program construction, our work is the first to automate
modular relational verification for secure information flow.

II. MOTIVATING EXAMPLE

We demonstrate our approach on an example program P
shown in Fig. 1, inspired by a related work [34]. In main, a
call to init makes initial assumptions about the array a: for
each of the first 64 values in the array, the information about
whether or not the value is 0 is declassified recursively. Then,
these 64 entries are printed out by the recursive procedure
outputter, which contains an assertion that checks that
each of the values printed out is public (i.e., low-security)
output. Finally, main returns its second argument.

The security primitives used in this example are low,
which is a predicate that holds iff its argument is a low-
security variable, and declassify, which has the effect
of making the value of its argument low-security after the
point where declassify is invoked. Without assumptions
stating otherwise (i.e., either assume statements that indicate
that a value is low-security by using the low primitive or
declassify statements), we assume that all inputs are high-
security. In the example, after init is called and it declassifies
each a[i] = 0 value for i < 64, then the information
about whether or not any of the first 64 entries in a is
0 is considered to be public information. The outputter
procedure prints out the value of values of a[i] for i < 64
only under the condition that a[i] = 0. This behavior leaks

159

exactly only the declassified information, so the assertion is
expected to hold for each call to outputter.

The modular product program MP for this example is shown
in Fig. 1 (right). Note that for each variable in P (even if
irrelevant to verification), MP has two copies reflecting the two
executions of the program, e.g., n is translated to n1 and n2.
For each procedure in P, two Boolean activation variables b1
and b2 are added as inputs to the corresponding procedure
in MP, where they respectively indicate whether the control
flow in the corresponding copy of the program has reached
the callsite. The idea is that relational specifications for
procedures hold when both copies of the program have reached
the same callsite, i.e., when both activation variables of the
callee are true. As a result, all the relational specifications that
we infer are implications in which the antecedent contains at
least b1 and b2 as conjuncts.

The translation to MP also shows how the information-flow
operation declassify is encoded as an assumption, and
how the information-flow specification low(a[i]) is trans-
lated into a relational property t1 ∧ t2⇒ a1[i1] = a2[i2] in
MP, where t1 and t2 were the activation variables under which
the specification low(a[i]) occurred. Finally, note that the
assertion in outputter has been hoisted to main in MP,
with the return value of outputter being true if and only
if no assertion failed.

We infer quantifier-free information-flow properties2 for
each procedure. For example, we can infer that for main of
MP, the property b1 ∧ b2 ∧ n1 = n2 ⇒ res1 = res2 holds,
where res1 and res2 represent the return values of main.
This property says that the output of main depends only on its
second argument, and it does not rely on any information about
whether the second argument or output of main is public or
private, nor does it express any such information.

We also infer quantified invariants, e.g., φ(i1):

∀j1, j2.i1 ≤ j1 ≤ 64∧j1 = j2 ⇒ (a1[j1] = 0) = (a2[j2] = 0)

We can then instantiate this property for the call to init
in main to determine that φ(0) is true when the call to
outputter is made. However, we cannot yet verify the
program because at this point we have not inferred sufficient
properties for outputter.

Finally, we use the context in which outputter is called
to influence the guesses that we make for the antecedent
in its relational specification. Then we infer the following
property for outputter, where res is the return value of
outputter: b1∧b2∧φ(0)∧i1 = i2∧0 ≤ i1⇒ res . Note
that this property contains quantifiers because φ(0) does. This
property enables us to verify that the assertion for the program
holds, leading to a successful conclusion.

III. BACKGROUND AND NOTATION

Here we describe the background on modular product
programs and their modeling as CHCs, secure information
flow, and relational invariants.

2We use properties interchangeably with procedure specifications.

proc(cond, x) {
if (cond)

x = x + 1;
else
x = 0;

return x;
}

proc(b1, b2, cond1, cond2, x1, x2) {
t1 = b1 ∧ cond1; f1 = b1 ∧ ¬ cond1;
t2 = b2 ∧ cond2; f1 = b2 ∧ ¬ cond2;
if (t1) x1 = x1 + 1; if (f1) x1 = 0;
if (t2) x2 = x2 + 1; if (f2) x2 = 0;
return x1, x2;

}

Fig. 2: Original (left) and modular product (right) programs.

A. Modular Product Programs

A k-hyperproperty expresses a property over k runs of the
same program. Product programs convert k-hyperproperties
into safety properties by creating k renamed versions of all the
original variables. In contrast to ordinary product programs,
modular product programs (MPP) avoid duplicating control
structures such as procedure calls by introducing Boolean ac-
tivation variables that indicate whether each program copy has
reached a certain execution point [21]. The current activation
variable for copy i is true if and only if copy i is currently at
that location. While the principles of construction of a modular
product program are defined in [21], we illustrate it with the
following example.

Example 1. Consider the procedure in Fig. 2, for which the
activation variables are initially b1 and b2. The activation
variables inside the then-branch (resp., else-branch) are t1
and t2 (resp., f1 and f2). Each update to variable x1 (resp.,
x2) is guarded by a condition so that the update is made only
when the corresponding current activation variable for the first
(resp., second) copy of the program is true. Note that any call
to proc will also be guarded by a condition that at least one of
b1 or b2 is true . If this doesn’t hold, then neither procedure
copy has reached the program point at which the procedure is
called, so the call should not be made.

For a modular product program with k copies, we define
partial functions idx and getIdx for conveniently handling
expressions with renamed copies of variables. For any expres-
sion e, getIdx (e) = i iff e represents an expression only over
variables from the ith copy; and for any expression e such
that getIdx (e) is defined: getIdx (idx (e, i)) = i. For example,
idx (b1 ∧ i1 < 64, 2) = b2 ∧ i2 < 64. We also use idx to
denote the lifting of idx to sets of expressions.

B. Secure Information Flow

We use a standard reduction [3] of a (termination-
insensitive) secure-information-flow property to a 2-
hyperproperty called non-interference [1], which ensures that
private inputs do not impact public outputs. For a procedure
f, this is formalized as follows:

∀l̄i , l̄o, h̄i , h̄o, ¯li ′, ¯lo′, h̄i ′, h̄o′ .

l̄o, h̄o = f(l̄i , h̄i) ∧ ¯lo′, h̄o′ = f(¯li ′, h̄i
′
) ∧ l̄i = ¯li ′ ⇒ l̄o = ¯lo′

Variables l̄i and ¯li ′ represent public inputs to f and l̄o and ¯lo′

represent public outputs. Variables h̄i and h̄i ′ represent private
input variables to f and h̄o and h̄o′ represent private outputs.

160

Non-interference states that for any two runs of f, one with
inputs l̄i , h̄i and one with inputs ¯li ′, h̄i ′, if their public inputs
are equal (i.e., l̄i = l̄i

′), then their public outputs should be
equal (i.e., l̄o = l̄o

′) regardless of the private inputs’ values.
In a modular product program, relational properties become

properties over a single run and take the form of an implication
whose antecedent implies the truth of all activation variables,
e.g., non-interference takes the following shape:

∀b1, b2, l̄i , l̄o, h̄i , h̄o, ¯li ′, ¯lo′, h̄i ′, h̄o′ .

b1 ∧ b2∧
l̄o, h̄o, ¯lo′, h̄o′ = f(b1, b2, l̄i ,

¯li ′, h̄i , h̄i ′) ∧ l̄i = ¯li ′ ⇒ l̄o = ¯lo′

Requiring non-interference can be restrictive since programs
may need some amount of leakage to exhibit the desired
behavior. Declassification can allow secure-information-flow
properties to be checked even for programs that leak some
information about high-security variables. Declassification is
encoded in modular product programs as an assumption that if
both programs reach the same declassify statement (i.e.,
if both activation variables are true), then the value being
declassified is equal across both copies of the program. Thus
declassify(e) is encoded as assume b1 ∧ b2 ⇒ e1 = e2.

C. Constrained Horn Clauses for Modular Verification

The problem of modular program verification can be ex-
pressed as a system of CHCs [35].

Definition 1. A CHC is an implicitly universally-quantified
implication, which is of the form body ⇒ head . LetR be a set
of uninterpreted predicates. The formula head may take either
the form R(ȳ) for R ∈ R or else ⊥. Implications in which
head =⊥ are called queries. The formula body may take the
form φ(x̄) or φ(x̄) ∧ R1(x̄1) ∧ . . . ∧ Rn(x̄n), where each Ri

is an uninterpreted predicate, and φ(x̄) is a fully interpreted
formula over x̄, which may contain all variables in each x̄i
and (if the head is of the form R(ȳ)) all variables in ȳ.

A system of CHCs for a particular program can be generated
by introducing an uninterpreted predicate per procedure (or a
loop head) and encoding the semantics of each procedure (or
a loop body) using these predicates. Fig. 3 gives an example
encoding of program MP in Fig. 1 (right). Note that print is
encoded as a nondeterministic procedure with no output.

Definition 2. A solution for a system of CHCs is a set
of interpretations for predicates in R that makes all CHC
implications valid.

Each interpretation can be viewed as a procedure summary
and expresses an invariant for the procedure. In the case of the
example program, the following interpretations are sufficient:

main 7→ λx̄.> print 7→ λȳ.>
init 7→ λb1, b2, a1, a2, i1, i2.φ(b1, b2, a1, a2, i1, i2)

outputter 7→ λb1, b2, a1, a2, i1, i2, res. 0 ≤ i1 ⇒ res ∧
i1 = i2 ∧ b1 ∧ b2 ∧ φ(b1, b2, a1, a2, i1, i2)

where φ(b1, b2, a1, a2, i1, i2) = ∀j1, j2.i1 ≤ j1 < 64 ∧ i1 =
i2 ∧ j1 = j2 ⇒ (a1[j1] = 0) = (a2[j2] = 0) and x̄ and ȳ are
vectors of variables of lengths 6 and 4, respectively.

Definition 3. For a mapping M of uninterpreted predicates
to interpretations, we say that the interpretations of M are
inductive iff they satisfy all non-query CHCs.

In particular, an M that maps each n-ary predicate R to
λx1, . . . , xn.> is inductive. For a formula F containing unin-
terpreted predicates, we let M(F) be the result of replacing
each predicate with its interpretation in M . For an inductive
M , for each predicate R that represents a program procedure
r, M(R) is an overapproximation of the behavior of procedure
r. For a given CHC C in the system of CHCs, where C
is of the form R1(x̄1) ∧ . . . ∧ Rn(x̄n) ∧ φ(x̄) ⇒ head ,
an uninterpreted predicate Ri in its body can be unfolded
in the CHC by replacing the occurrence of Ri(x̄i) with
fresh(body i[ȳi 7→ x̄i], x̄i, x̄), where body i ⇒ Ri(ȳi) is
another CHC in the system of CHCs, body i[ȳi 7→ x̄i] is the
simultaneous substitution of variables in ȳi with variables in
x̄i in body i, and fresh(e, x̄i, x̄) is the result of replacing each
variable in e that does not occur in x̄i with a variable not in
x̄. We call the result of unfolding a predicate in a CHC C
(possibly many times) an unfolding of C.

Example 2. An unfolding of init in the CHC for main in
Fig. 3 is as follows: ¬(b1 ∧ k1 < 64 ∨ b2 ∧ k2 < 64) ∧ i1 =
i2 = k1 = k2 = 0∧ok ∧outputter(b1, b2, a1, a2, i1, i2, ok)⇒
main(b1, b2, a1, a2, n1, n2).

For a CHC C of the form R1(x̄1)∧ . . .∧Rn(x̄n)∧φ(x̄)⇒
head , we say that the following formula is the context (denoted
ctx (Ri, C)) for the uninterpreted predicate application Ri(x̄i):
j 6=i∧

1≤j≤n
M(Rj)(x̄j) ∧ φ(x̄). We naturally extend the mappings

M from uninterpreted predicates to contexts. That is, for the

formula above: M(ctx (Ri, C)) =
j 6=i∧

1≤j≤n
M(Rj)(x̄j) ∧ φ(x̄).

IV. SYGUS-BASED SUMMARY INFERENCE

This section describes our SyGuS-based algorithm for in-
ferring procedure summaries of modular product programs. It
takes CHCs as input and maintains a mapping M from unin-
terpreted predicates in the CHCs to inductive interpretations.
The algorithm updates M as it runs and maintains the invariant
that M ’s interpretations are inductive.

Our top-level procedure (Fig. 4) begins with an initial
mapping M from each n-ary predicate R ∈ R to the
coarsest interpretation possible. In pseudocode, we write
CHECKGUESSES(G,M,R) to refer to an iterative procedure
over all CHCs, where each application R(x̄) of symbol R is
replaced by formula λx̄.M(R)(x̄)∧makeGuess(G)(x̄), where
G is a set of guessed interpretations for R based on our gram-
mar templates and makeGuess(G) = λx̄.

∧
{g(x) | g ∈ G}.

The CHCs after the replacement are checked for validity
using an SMT solver: if for some CHC C, the corresponding
implication does not hold, then the current interpretation for R

161

init(b1, b2, a1, a2, k1, k2) ∧ k1 = 0 ∧ k2 = 0∧
outputter(b1, b2, a1, a2, i1, i2, ok) ∧ i1 = 0 ∧ i2 = 0 ∧ ok ⇒ main(b1, b2, a1, a2, n1, n2)

¬(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ⇒ init(b1, b2, a1, a2, i1, i2)

(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ∧ l1 = b1 ∧ i1 < 64 ∧ l2 = b2 ∧ i2 < 64∧
(l1 ∧ l2 ⇒ (a1[i1] = 0) = (a2[i2] = 0)) ∧ init(l1, l2, a1, a2, i1 + 1, i2 + 1) ⇒ init(b1, b2, a1, a2, i1, i2)

¬(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ⇒ outputter(b1, b2, a1, a2, i1, i2,>)

(b1 ∧ i1 < 64 ∨ b2 ∧ i2 < 64) ∧ l1 = b1 ∧ i1 < 64 ∧ l2 = b2 ∧ i2 < 64∧
t1 = b1 ∧ a1[i1] = 0 ∧ t2 = b2 ∧ a2[i2] = 0 ∧ print(t1, t2, a1[i1], a2[i2])∧
ok = t1 ∧ t2 ⇒ a1[i1] = a2[i2] ∧ outputter(l1, l2, a1, a2, i1, i2, res) ⇒ outputter(b1, b2, a1, a2, i1, i2, ok ∧ res)

> ⇒ print(l1, l2, i1, i2)

init(b1, b2, a1, a2, k1, k2) ∧ k1 = 0 ∧ k2 = 0∧
outputter(b1, b2, a1, a2, i1, i2, ok) ∧ i1 = 0 ∧ i2 = 0 ∧ ¬ok ⇒⊥

Fig. 3: CHC encoding of program M from Fig. 1 (right).

1: procedure INFERSUM(CHCs C)
2: for R ∈ R do M(R)← λx1, . . . , xn.>
3: for C ∈ C where C = body ⇒ R(x̄) do
4: G← GETQFGUESSES(C) ∪ GETQUANTIFIEDGUESSES(C)
5: M ← CHECKGUESSES(G, M , R)
6: while M is not a solution for C do
7: Q← GETUNSATISIFIEDQUERY(C)
8: M ← SOLVE(Q, C, M)
9: return M

Fig. 4: Top-level summary inference procedure.

1: procedure SOLVE(Q, C, M)
2: unfoldings ← ∅
3: if M(bodyQ) is unsatisfiable, then return M
4: for R in Q’s body do
5: for body ⇒ R(x̄) ∈ C do
6: G← GETPDGUESS(Q, body ⇒ R(x̄),M)
7: M ′ ← CHECKGUESSES(G, M , R)
8: if M ′ 6= M then return M ′

9: unfoldings ← unfoldings ∪unfold(R,Q)

10: for U ∈ unfoldings do
11: M ′ ← SOLVE(U , C, M)
12: if M ′ 6= M then return SOLVE(Q, C, M ′)

Fig. 5: Inference procedure for property-directed guesses.

(which must appear in C) is weakened (using, e.g., the HOU-
DINI algorithm [22]), and the internal loop in CHECKGUESSES
is repeated. Note that a new inductive mapping M ′ is returned
as the result of CHECKGUESSES. Note also that M is already
inductive whenever CHECKGUESSES is called, so it would be
sufficient to weaken M(R)(x̄)∧makeGuess(G)(x̄) based on
G, and CHECKGUESSES would return M in the worst case.

a) General quantifier-free and quantified guesses: For
each CHC C, the algorithm generates initial guesses for an
uninterpreted predicate in the head of C based on the templates
specified later in Sec. V and VI-A.

After M has been updated based on these guesses, M ’s
interpretations will have captured information-flow summaries
for each procedure. If M is a solution for the system of
CHCs, then these summaries may be sufficient for proving
that the assertions of the program hold. Otherwise, the current
procedure summaries are not strong enough for proving that

the assertions hold, and the algorithm aims to learn additional
property-directed summaries.

b) Property-directed guesses: Additional summaries are
generated by our third template, which is described later in
Sec. VI-B. Given a query CHC Q that contains an application
of some R ∈ R to variables ȳ in its body, a CHC of the form
body ⇒ R(x̄), and an inductive mapping M , each property-
directed guess in G = GETPDGUESS(Q, body ⇒ R(x̄),M)
is such that if it is used as an interpretation for R in the query
CHC with all the other predicates using their interpretations
in M , then the query CHC will be satisfied (i.e., the body of
Q will be unsatisfiable).

For such a G, makeGuess(G)(ȳ) can be viewed as an
interpolant separating body [x̄ 7→ ȳ] and M(ctx (Ri, Q)); to
populate G, GETPDGUESS generates guesses that obey the
syntactic requirements for such an interpolant and adds them
to G only after checking that they maintain the invariant that
makeGuess(G)(ȳ) is an interpolant. The query CHC should
be the result of unfolding a currently-unsatisfied query from
the original system of CHCs zero or more times. The way in
which the algorithm explores unfoldings is shown in Fig. 5.
Our algorithm starts with an unsatisfied query Q and tries
to infer property-directed summaries for each predicate in Q’s
body. If no summary can be inferred, it unfolds each predicate
in Q and repeats the process on each of these unfoldings,
reconsidering Q with each resulting updated interpretation M ′.

Let a query U be an unfolding of the query Q. After each
update in an interpretation M ′(R) of each R ∈ R in U , the
query Q is reconsidered with M ′.

Lemma 1. If a query U that leads to an interpretation
update was obtained by unfolding R(ȳ) in Q using CHC
body ⇒ R(x̄), then there exists an interpolant I separating
M ′(body [x̄ 7→ ȳ]) and M ′(ctx).

Reconsidering Q with the mapping M ′ allows us to try to
guess this interpolant. This finding of interpolants is similar
to prior uses of interpolants [36], [37], but in our case, rather
than using an interpolating solver, we rely on SyGuS to
obtain quantified interpolants that cannot be generated by usual
methods used in interpolating solvers.

162

Example 3. Consider a modification of the system
of CHCs for our motivating example in Fig. 3 such
that the CHC for main and the query Q are as
follows: outputter(b1, b2, a1, a2, i1, i2, ok) ∧ i1 =
0 ∧ i2 = 0 ⇒ main(b1, b2, a1, a2, n1, n2, ok),
main(b1, b2, a1, a2, n1, n2, ok) ∧ ¬ok ⇒⊥.
Let U be the unfolding of main in Q, and let
M contain the following interpretations: main 7→
λx̄.>, outputter 7→ λz̄.>, print 7→ λȳ.>, init 7→
λb1, b2, a1, a2, i1, i2.φ(b1, b2, a1, a2, i1, i2).
The result of unfolding of outputter in U allows us to update
the summary (using the successfully checked guesses) of
outputter to the following:

λb1, b2, a1, a2, i1, i2, res.

b1 ∧ b2 ∧ φ(b1, b2, a1, a2, i1, i2) ∧ i1 = i2 ∧ 0 ≤ i1 ⇒ res

Note that the mapping M ′ containing this updated interpreta-
tion for outputter is such that the following implication holds:

M ′(outputter(b1, b2, a1, a2, i1, i2, ok)∧i1 = 0∧i2 = 0)⇒ ok

The antecedent of this implication is the interpretation of the
body of the CHC for main , and the consequent is the negation
of main’s context in Q. We can thus look for an interpolant
that separates the body of main and its context in Q.

Different orders in exploring unfoldings may result in
learning different summaries. However, regardless of the order
of unfoldings, the summaries discovered constitute a solution
for the system of CHCs.

Note that if our templates cannot guess the required invari-
ants, our top-level algorithm may not terminate, either because
the second top-level loop may never terminate or because the
recursive calls in the algorithm in Fig. 5 may never return.
Our algorithm can be terminated early by the user and still
return the properties discovered so far, which may be useful
for code understanding and can provide hints to the user about
manual annotations that may be required. In our experiments
(Sect. VII), we did not need any manual annotations in the
benchmark examples.

The following theorem implies that if INFERSUM returns a
solution for a system of CHCs, the assertions in the original
program that are captured by the query CHCs hold.

Theorem 1. INFERSUM always returns an inductive map M .

Proof. INFERSUM begins with M being the inductive map
that maps each n-ary predicate R to λx1, . . . , xn.>. M can
be updated only by assigning it to the result of calls to
CHECKGUESS, which always returns an inductive map. It
follows that M is inductive when returned by INFERSUM.

Finally, we note that our proposed SyGuS approach is not
inherently limited to verifying secure information flow or to
two copies of a program (k = 2). It can be adapted to
verify k-hyperproperties for k > 2 by extending the basic
grammar (shown later in Fig. 6) to cover target properties.
Furthermore, our ideas on property-directed guesses are not
specific to information flow and can apply to other properties.

guess ::= λx̄.lhs ⇒ rhs

lhs ::= b1 ∧ b2 | inEq ∧ lhs | inIneq ∧ lhs

rhs ::= outEq | ok | declassify
inEq ::= Eq(inArg) | EqArr(inArrArg, ctr)

outEq ::= Eq(outArg) | EqArr(outArrArg, ctr)

inIneq ::= c < inIntArg | c ≤ inIntArg | c > inIntArg | c ≥ inIntArg

Fig. 6: Grammar for generating quantifier-free guesses for information flow.

V. GRAMMAR TEMPLATES WITHOUT QUANTIFIERS

Fig. 6 lists the grammar used in the INFERSUM algorithm
(Fig. 4) to generate quantifier-free guesses that represent
information-flow properties. Each guess has the form of an
implication and corresponds to a relational property because
the activation variables b1 and b2 always occur positively
in the antecedent. The antecedent (lhs) allows additional con-
juncts expressing equalities (inEq) and inequalities (inIneq)
over input arguments of procedures (inArg), including arrays
(inArrArg) indexed by expressions (ctr). The consequent
(rhs) allows conjuncts expressing equalities (outEq) over out-
put arguments of procedures (outArg , outArrArg), the results
of assertions (ok), or declassify expressions (declassify). In
the equalities, the expression Eq(e) represents the equality
e = idx (e, 2), and EqArr(e, i) represents the equality e[i] =
idx (e[i], 2). The inequalities allow comparison of input integer
arguments (inIntArgs) against constants (c).

The terminals in our grammar are populated from a combi-
nation of variable types and a syntactic analysis of the CHC
encoding of the body of the target procedure. The candidate
variables include input/output parameters of procedure and
outputs that store the result of assertions. We extract various
expressions, e.g., representing indices in array accesses, or
consequents in declassify assertions. The complete set of
terminals is listed in Appendix A. Other than activation
variables and the results of assertions, all terminals e in our
grammar are such that getIdx (e) = 1 to reduce redundancy
among guesses due to symmetry resulting from indices, e.g.,
in equality expressions.

VI. GRAMMAR TEMPLATES WITH QUANTIFIERS

In this section, we present two templates for generating
guesses with quantifiers – one for arrays and the other for
property-directed invariants.

A. Quantified Templates for Arrays

We generate guesses for quantified invariants for a given
procedure by adapting a technique from prior work [33] to
target relational properties. We consider here the task of
generating a quantified invariant for a CHC body(x̄)⇒ R(x̄).
We construct guess for a quantified invariant from four parts:
• a set of quantified variables qVars not in x̄,
• a range formula over the variables in inIntArgs ∪qVars ,
• a set of equalities over variables in qVars ∪ inIntArgs ∪

idx (inIntArgs, 2),

163

• a cell property formula over the variables in x̄ ∪ qVars .
All these components except equalities come directly from
prior work [33], which combined them to form a candidate
invariant: ∀qVars.range ⇒ cell property . We take a similar
approach but use equalities to guess invariants over both pro-
gram copies. We also use activation variables in the antecedent
of the implication so that the candidate invariant only applies
when both program copies are aligned. Here we only generate
range formulas over variables for the first program copy and
use the equalities to ensure that the corresponding variables in
the second copy are equal to those in the first.

Quantified variables and range variables are determined
similarly to previous work [33]. For each variable i in
inIntArgs ∩ ctrs used to access an array index, two fresh
quantified variables q1 and q2 are added to qVars , where
idx (q1, 2) = q2. We let quant(i) = q1. For each such
variable, we also generate a range formula that is an inductive
invariant for R of the form:

range ::= i ≤ q1 < boundGt | boundLt < q1 ≤ i

Here, boundGt is the set of expressions e over variables
x̄ for which i < e or e > i occurs as a subexpression of
body , the body of a procedure. Similarly, boundLt is the set
of expressions e over variables x̄ for which e < i or i > e
occurs as a subexpression of body . Let the set ranges denote
the set of such range expressions that are inductive for R
(which we first check for each such candidate).

For each variable i in inIntArgs ∩ ctrs , we generate the
equality quant(i) = idx (quant(i), 2) and the equality i =
idx (i, 2) and add them to the set equalities .

Finally, to generate cell properties, we consider the subset
of expressions generated by the grammar in Fig. 6 that contain
accesses to array cells (also known as select-terms and denoted
[·]) with indices Idx such that for each i ∈ Idx , ranges
contains an expression containing idx (i, 1). We take each such
expression e and substitute each occurrence of any variable
i ∈ inIntArg ∩ ctr with quant(i) and then add the resulting
expression to the set cellProps .

For each cellProp ∈ cellProps , we generate the following
candidate invariant:

λx̄.∀qVars.
∧

ranges ∧
∧

equalities ∧ b1 ∧ b2 ⇒ cellProp

B. Property-Directed Templates
The final template allows us to generate property-directed

guesses for a particular procedure r given a mapping M to
inductive interpretations. This template consists of two parts:
a context guess and a quantifier-free guess. As mentioned
previously, we aim to find interpolants using SyGuS rather
than an interpolating solver. The context guess is used to
incorporate relevant properties from the context into the guess,
and the quantifier-free guess is used to strengthen it.

We first describe how to generate the context guess given
a CHC C that is an unfolding of a query Q, a predicate
application R(ȳ) for procedure r that occurs in the body of the
unfolding, and a CHC body ⇒ R(x̄). Let ctx be the context
for R(ȳ) in the unfolding of Q.

1: procedure FILTER(Ands , R(ȳ), C, M)
2: M ′ ←M [R 7→ λȳ.

∧
Ands]

3: for body ⇒ R(x̄) ∈ C do
4: for application R(x̄′) in body , context ctx do
5: query ←M ′(R)(x̄) ∧M ′(ctx) ∧ ¬M ′(R)(x̄′)
6: if query satisfiable then
7: m ←GETMODEL(query)
8: FC ←FALSECONJS(m , M ′(R)(x̄′), Ands)
9: return FILTER(Ands \ FC , R, C, M)

10: return Ands

Fig. 7: Procedure to find largest useful element in P(Ands).

Let Ands be the set of conjuncts in M(ctx). Each element
of the powerset P(Ands) can become a context guess. We are
interested only in elements p in P(Ands) that represent prop-
erties that, while initially not guaranteed to be true whenever r
is called, are guaranteed to hold for any subsequent recursive
calls to r provided that they held at the initial invocation of
r. We discover the largest set conseqAnds ⊆ P(Ands) that
represents such properties through a procedure based on the
Houdini algorithm [22] (as shown in the algorithm in Fig. 7).

The procedure in Fig. 7 examines each CHC in C with
an application of R to variables x̄ in its head. The mapping
M ′ maps R to the interpretation λȳ.

∧
Ands but is otherwise

the same as the current mapping M . For each such CHC, it
checks if M(R) is inductive (line 5) and uses a model (called
a counterexample-to-induction) to weaken Ands . We can now
use P(conseqAnds) as the set of context guesses.

We generate quantifier-free guesses QFGuesses for body ⇒
R(x̄) as shown in Sec. V, except now the set c of integer
constants also includes all integer constants in ctx .

The algorithm in Fig. 8 describes how the context and
quantifier-free guesses are combined to make a guess for R
with context ctx and the current set of interpretations M . For
each λx̄.lhs ⇒ rhs ∈ QFGuess and p ∈ P(conseqAnds),
we consider the mapping M ′ = M [R 7→ λx̄.M(R)(x̄)∧ rhs],
which is the same as the mapping M except the interpretation
for R is updated to λx̄.M(R)(x̄)∧rhs . If M ′(ctx) is unsatisfi-
able and lhs∧p is satisfiable (line 5), we generate the following
guess: λx̄.lhs ∧ p⇒ rhs. We only consider guesses such that
M ′(ctx) is unsatisfiable because these guesses are such that
if they are treated as an interpretation for R in C, they make
M ′(C) satisfiable. This requirement ensures that the guesses
considered help make progress toward proving the assertion in
the original program corresponding to query Q. The checks on
line 5 guarantee that each element added to Guesses , when
applied to ȳ, is an interpolant separating body [x̄ 7→ ȳ] and
M ′(ctx). If all guesses in Guesses are interpolants separating
these formulas, then it follows that makeGuess(Guesses)(ȳ)
is also such an interpolant. Note that these guesses may contain
quantifiers if the interpretations in M contain quantifiers.

VII. IMPLEMENTATION AND EVALUATION

We have implemented our technique in a prototype tool
called FLOWER, developed on top of the CHC solver FREQ-

164

1: procedure COMBINEGUESS(QFGuess , conseqAnds , M , R, ctx)
2: for λx̄.lhs ⇒ rhs ∈ QFGuess do
3: for p ∈ P(conseqAnds) do
4: M ′ ←M [R 7→ λx̄.M(R)(x̄) ∧ rhs]
5: if M ′(ctx) unsat, lhs ∧ p sat then
6: Guesses ← Guesses ∪ {λx̄.lhs ∧ p⇒ rhs}

Fig. 8: Inference procedure for property-directed guesses.

HORN [27], [38]. We evaluated it on a suite of benchmarks3

from the literature and real-world examples.
In our implementation, all candidate guesses allowed by

our grammars are enumerated and checked, i.e., there is no
further heuristic selection (currently) in our tool. Although this
can be problematic if there are too many guesses, we did not
encounter this issue in practice. For property-directed guesses,
the unfoldings are explored in a breadth-first like manner.

a) Benchmarks: Of our 29 benchmarks, 15 are based
on a subset4 of the evaluation set for MPPs [4], [6], [19],
[21], [34], [39]–[42]. While small in size, with the original
programs ranging from 24-70 lines of VIPER [43] code,
these programs include non-trivial features such as arrays and
declassification that are challenging for automated verifiers.
We added two benchmarks based on code from Amazon Web
Service’s S2N [20], about 160 lines of SMT-LIB2 code that
involve reading/writing from buffers. We also translated six
benchmarks based on BLAZER’s “Literature” and “STAC”
benchmarks [19], which ranged from 41-208 lines of Java.

The VIPER benchmarks contained many manual annotations
of information-flow specifications for both procedures and
loops. We treated the specification for the apparent top-
level procedure as an assertion, and eliminated the remaining
annotations. Loops were encoded as recursion, as is typical
in CHC encodings. Memory locations and memory-related
annotations in the benchmarks were not encoded in CHCs;
structures were either flattened or encoded as arrays.

The BLAZER benchmarks considered were written in Java
and originally checked for timing side channels. This can
be reduced to checking for noninterference with appropriate
instrumentation [44]. We manually instrumented and encoded
these benchmarks into CHCs.

b) Evaluation: We also compared our tool against a
state-of-the-art relational verifier DESCARTES [15] and a mod-
ular CHC-based verifier SPACER5 [25]. For DESCARTES, we
translated CHC benchmarks to intraprocedural Java programs.

Results from experiments on our suite of 29 benchmarks
with a timeout of 10 minutes are shown in Table I. BLAZER
benchmarks are prefixed with “B” and S2N benchmarks are
prefixed with “s2n.” A timeout is indicated with TO and an
unknown result with U. N/A indicates that DESCARTES was
unable to handle the benchmark because of the presence of
arrays or declassification. Benchmarks were run on a MacBook
Pro, with a 2.7GHz Intel Core i5 processor and 8GB RAM.

3Available at https://github.com/lmpick/flower-benchmarks
4We left out termination-related properties; automation would require

synthesis of ranking functions, which we do not currently support.
5SPACER outperformed all tools in CHC-Comp’19 in all LIA cate-

gories [45].

TABLE I: Results for 29 benchmarks. Times shown in seconds.

Example Recursive Flower Spacer Descartes
Time Time Time

Banerjee 8.00 0.04 N/A
B GPT14 X 73.91 TO U
B K96 X 12.60 TO U
B Login X 18.20 TO N/A
B ModPow1 X 60.86 TO U
B ModPow2 X 104.59 TO U
B PWCheck X 18.04 TO N/A
Costanzo (2) X 3.94 0.65 N/A
Costanzo (4) X 3.85 7.10 N/A
Costanzo (8) X 3.85 62.50 N/A
Costanzo (16) X 4.08 TO N/A
Costanzo (32) X 3.88 TO N/A
Costanzo (64) X 3.93 TO N/A
Costanzo (unbounded) X 8.17 TO N/A
Darvas 2.04 0.03 N/A
Declassification X 4.91 0.03 N/A
Joana Fig. 1 top left 0.96 0.03 N/A
Joana Fig. 2 bottom left 0.90 0.02 0.06
Joana Fig. 2 top 0.58 0.02 0.08
Joana Fig. 13 left 0.25 0.03 0.07
Kusters 8.07 0.03 0.09
Main Example X 135.90 U N/A
Main Example (det.) X 13.98 TO N/A
s2n Ex. 1 X 352.70 0.06 N/A
s2n Ex. 2 X 30.95 TO N/A
Smith X 23.26 TO N/A
Terauchi Fig. 1 0.40 0.03 0.08
Terauchi Fig. 2 0.84 0.03 N/A
Terauchi Fig. 3 X 3.55 TO U

Our tool FLOWER is able to solve all 29 benchmarks,
including all 15 benchmarks originally used to assess the
usefulness of MPPs. Note that our tool successfully solved
all these examples without the annotations required by VIPER
[43]. This demonstrates the effectiveness of our approach in
reducing the annotation burden for verifying secure informa-
tion flow.

SPACER is able to solve 14 of the 29 benchmarks, timing out
for 14, and reporting U for one. DESCARTES cannot handle the
majority of the benchmarks; of the 10 benchmarks it can take
as input, DESCARTES solves 5. Out of the 20 examples with
recursion (marked in Column 2), SPACER can only solve 5,
whereas our tool can handle all 20. SPACER finds invariants via
interpolation, which is unlikely to directly capture relational
properties, so it is unable to find suitable invariants for these
recursive procedures. For recursion-free examples, relational
invariants are less crucial; invariants capturing precise behav-
iors are easier to find and are often sufficient for verification.

DESCARTES is similarly unable to find appropriate invari-
ants. For each of the 5 recursive benchmarks that it can take as
input, it is unable to find the required loop invariant to verify
the program. Although DESCARTES also uses a template-based
approach for generating candidate invariants, the templates are
insufficient for these benchmarks.

To evaluate scalability, we considered versions of the
Costanzo benchmark with different array bounds (shown in
parentheses in Table I). Fig. 9 shows the performance compar-
ison against SPACER as the array bound increases. SPACER’s
behavior indicates its inability to find relational properties; it

165

https://github.com/lmpick/flower-benchmarks

2 4 8 16 32 64

1

10

100

Array Bound

R
un

tim
e

(s
)

of
To

ol FLOWER

SPACER

Fig. 9: Timing results for Costanzo benchmark with different array bounds.

learns properties for each array index individually, rendering
it unable to solve the Costanzo benchmark within 10 minutes
after the array bound reaches 16 (note that the original
Costanzo benchmark has bound 64). Although it was run in
a mode that allows it to learn quantified properties, SPACER
is unable to find the desired relational property. In contrast,
our approach solves all the bounded Costanzo benchmarks
in about the same time because the quantified guesses are
the same except for the constant bound. Our approach is also
able to solve the Costanzo benchmark in which the array is
unbounded, which SPACER is unable to do.

VIII. RELATED WORK

There are many related efforts in relational program verifica-
tion, information-flow checkers, and syntax-guided synthesis.

a) Relational Program Verification: While this work
focuses on modular product programs [21], many other ap-
proaches also reduce relational program verification to safety
verification [3]–[9], including those that employ a reduction to
systems of CHCs [10], [46]. However, most do not perform
modular reasoning over procedures but inline them, and do not
generate relational specifications for procedures. One modular
approach restricts both copies of the program to always follow
the same control flow [6]. Another uses mutual summaries
but does not provide an automatic procedure for inferring
summaries as we do [8].

Other relational verifiers avoid explicitly constructing a
product program. Some use program logics to work with Hoare
triples [15]–[17], construct product programs implicitly [18],
use decomposition instead of composition [19], or employ
reinforcement learning [12]. These approaches also do not
modularly reason about nor infer relational specifications for
procedures, though they may modularly handle loops [15].

b) Information-Flow Checkers: Most automatic hyper-
property verifiers can handle information-flow properties by
constructing product programs either implicitly [15], [18], or
by lazily performing self-composition [13], [14] or synchro-
nization [10], [46]. However, most of these techniques do
not perform modular reasoning over the product programs
or results of self-composition. One synchronization approach
uses property-directed reachability and use modular reasoning
for inference of relational procedure summaries [25], [46],
[47], but our experiments show that the property-directed
reachability tool SPACER upon which this tool was built often
fails to infer the needed invariants in programs with recursion.

Other efforts focus on verifying resource leakage, such as
the presence of timing side channels [11], [19], [44]. With

appropriate instrumentation for resource leakage [11], [44],
checking for timing leakage can be reduced to hyperproperty
verification. As seen in our evaluation, our tool can be used
to check the absence of timing side channels after appropriate
resource usage instrumentation.

Approaches based on types and abstract interpretation can
modularly infer information-flow properties of procedures.
There are many type-inference-based approaches for checking
secure information flow [48]–[51]. Such approaches employ
a security type system such that terms only type check if
they do not have any illegal information flows (e.g., from low-
security to high-security variables). There are also approaches
based on dynamic taint analysis [52]–[57], which involves
instrumenting code with taint variables and code to track taint.
However, type-inference-based and taint analysis approaches
suffer from imprecision (e.g., due to path-insensitivity or an
inability to infer invariants over arrays) that may lead to failure
in type inference even for leakage-free programs. In contrast,
our approach is path-sensitive and requires only the annota-
tions that specify the property to be verified. One abstract-
interpretation-based approach can infer possible information-
flow dependencies, indicating which variables’ values may
depend on others’ [58]. This approach, like ours, does not
require annotations indicating which inputs and outputs are
public or private. However, unlike our approach, it does not
handle programs with procedures, arrays, or declassification.

c) Syntax-Guided Synthesis: Our approach is also related
to a wide range of guess-and-check SyGuS techniques [27],
[29]–[33], [38]. Especially relevant are enumerate-and-check
approaches to solve CHCs [27], [33], [38]. Our template for
guessing quantified invariants for arrays adapts a previous
technique [33] to the setting of reasoning about secure infor-
mation flow. As far as we know, such techniques have not been
applied to inferring or verifying information-flow properties.
The structure of information-flow properties makes them ideal
targets for grammar-based enumerative search and synthesis.

IX. CONCLUSIONS

We have introduced a SyGuS-based technique for automatic
inference of modular relational specifications that are use-
ful for verifying secure information flow in interprocedural
programs. Our technique relies on three grammar templates
to infer procedure summaries in modular product programs,
where these procedure summaries are of a particular form.
The first template guesses quantifier-free summaries for infor-
mation flow, the second guesses quantified summaries for ex-
pressing properties over arrays, and the third template guesses
summaries that depend on the calling context of a procedure.
An implementation of our techniques on top of a CHC solver
and an experimental evaluation on benchmarks demonstrates
that our approach finds useful procedure summaries to ver-
ify secure information flow, thereby reducing the annotation
burden in prior work. Our tool outperforms a state-of-the-art
hyperproperty verifier and a modular CHC-based verifier on
several benchmark examples.

166

REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[2] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifica-
tion,” in CSFW. IEEE Computer Society, 2005, pp. 255–269.

[3] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by
self-composition,” in CSFW. IEEE Computer Society, 2004, pp. 100–
114.

[4] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,”
in SAS, ser. Lecture Notes in Computer Science, vol. 3672. Springer,
2005, pp. 352–367.

[5] G. Barthe, J. M. Crespo, and C. Kunz, “Product programs and relational
program logics,” J. Log. Algebraic Methods Program., vol. 85, no. 5,
pp. 847–859, 2016.

[6] ——, “Relational verification using product programs,” in FM, ser.
Lecture Notes in Computer Science, vol. 6664. Springer, 2011, pp.
200–214.

[7] ——, “Beyond 2-safety: Asymmetric product programs for relational
program verification,” in LFCS, ser. Lecture Notes in Computer Science,
vol. 7734. Springer, 2013, pp. 29–43.

[8] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebêlo, “Towards
Modularly Comparing Programs Using Automated Theorem Provers,”
in CADE, ser. LNCS, vol. 7898. Springer, 2013, pp. 282–299.

[9] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[10] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, “Relational
verification through horn clause transformation,” in SAS, ser. Lecture
Notes in Computer Science, vol. 9837. Springer, 2016, pp. 147–169.

[11] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel vul-
nerabilities using quantitative cartesian hoare logic,” in ACM Conference
on Computer and Communications Security. ACM, 2017, pp. 875–890.

[12] J. Chen, J. Wei, Y. Feng, O. Bastani, and I. Dillig, “Relational verifica-
tion using reinforcement learning,” Proc. ACM Program. Lang., vol. 3,
no. OOPSLA, pp. 141:1–141:30, 2019.

[13] W. Yang, Y. Vizel, P. Subramanyan, A. Gupta, and S. Malik, “Lazy self-
composition for security verification,” in CAV (2), ser. Lecture Notes in
Computer Science, vol. 10982. Springer, 2018, pp. 136–156.

[14] R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel, “Property directed
self composition,” in CAV (1), ser. Lecture Notes in Computer Science,
vol. 11561. Springer, 2019, pp. 161–179.

[15] M. Sousa and I. Dillig, “Cartesian hoare logic for verifying k-safety
properties,” in PLDI. ACM, 2016, pp. 57–69.

[16] G. Barthe, B. Köpf, F. Olmedo, and S. Z. Béguelin, “Probabilistic
relational reasoning for differential privacy,” in POPL. ACM, 2012,
pp. 97–110.

[17] N. Benton, “Simple relational correctness proofs for static analyses and
program transformations,” in POPL. ACM, 2004, pp. 14–25.

[18] A. Farzan and A. Vandikas, “Automated hypersafety verification,” in
CAV (1), ser. Lecture Notes in Computer Science, vol. 11561. Springer,
2019, pp. 200–218.

[19] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” in PLDI. ACM, 2017, pp. 362–375.

[20] Amazon Web Services, “https://github.com/awslabs/s2n,” 2019.
[21] M. Eilers, P. Müller, and S. Hitz, “Modular product programs,” in ESOP,

ser. Lecture Notes in Computer Science, vol. 10801. Springer, 2018,
pp. 502–529.

[22] C. Flanagan, R. Joshi, and K. R. M. Leino, “Annotation inference for
modular checkers,” Inf. Process. Lett., vol. 77, no. 2-4, pp. 97–108, 2001.

[23] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “From under-
approximations to over-approximations and back,” in TACAS, ser. LNCS,
vol. 7214. Springer, 2012, pp. 157–172.

[24] P. Rümmer, H. Hojjat, and V. Kuncak, “Disjunctive interpolants for
Horn-Clause verification,” in CAV, ser. LNCS, vol. 8044. Springer,
2013, pp. 347–363.

[25] A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model checking
for recursive programs,” Formal Methods in System Design, vol. 48,
no. 3, pp. 175–205, 2016.

[26] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in PLDI. ACM, 2016,
pp. 614–630.

[27] G. Fedyukovich, S. J. Kaufman, and R. Bodı́k, “Sampling invariants
from frequency distributions,” in FMCAD. IEEE, 2017, pp. 100–107.

[28] H. Zhu, S. Magill, and S. Jagannathan, “A data-driven CHC solver,” in
PLDI. ACM, 2018, pp. 707–721.

[29] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in FMCAD. IEEE, 2013, pp. 1–8.

[30] S. Padhi, R. Sharma, and T. D. Millstein, “Data-driven precondition
inference with learned features,” in PLDI. ACM, 2016, pp. 42–56.

[31] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling Enumerative Program
Synthesis via Divide and Conquer,” in TACAS, Part I, ser. LNCS, vol.
10205, 2017, pp. 319–336.

[32] A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli,
“cvc4sy: Smart and Fast Term Enumeration for Syntax-Guided Syn-
thesis,” in CAV, Part II, ser. LNCS, vol. 11562. Springer, 2019, pp.
74–83.

[33] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Quantified
invariants via syntax-guided synthesis,” in CAV (1), ser. Lecture Notes
in Computer Science, vol. 11561. Springer, 2019, pp. 259–277.

[34] D. Costanzo and Z. Shao, “A separation logic for enforcing declarative
information flow control policies,” in POST, ser. Lecture Notes in
Computer Science, vol. 8414. Springer, 2014, pp. 179–198.

[35] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI. ACM,
2012, pp. 405–416.

[36] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, ser.
Lecture Notes in Computer Science, vol. 4144. Springer, 2006, pp.
123–136.

[37] ——, “Lazy annotation revisited,” in CAV, ser. Lecture Notes in Com-
puter Science, vol. 8559. Springer, 2014, pp. 243–259.

[38] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Solving
Constrained Horn Clauses Using Syntax and Data,” in FMCAD. ACM,
2018, pp. 170–178.

[39] A. Banerjee and D. A. Naumann, “Secure information flow and pointer
confinement in a java-like language,” in CSFW. IEEE Computer
Society, 2002, p. 253.

[40] Á. Darvas, R. Hähnle, and D. Sands, “A theorem proving approach
to analysis of secure information flow,” in SPC, ser. Lecture Notes in
Computer Science, vol. 3450. Springer, 2005, pp. 193–209.

[41] D. Giffhorn and G. Snelting, “A new algorithm for low-deterministic
security,” Int. J. Inf. Sec., vol. 14, no. 3, pp. 263–287, 2015.

[42] G. Smith, “Principles of secure information flow analysis,” in Malware
Detection, ser. Advances in Information Security. Springer, 2007,
vol. 27, pp. 291–307.

[43] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in VMCAI, ser. Lecture
Notes in Computer Science, vol. 9583. Springer, 2016, pp. 41–62.

[44] K. Athanasiou, B. Cook, M. Emmi, C. MacCárthaigh, D. Schwartz-
Narbonne, and S. Tasiran, “Sidetrail: Verifying time-balancing of cryp-
tosystems,” in VSTTE, ser. Lecture Notes in Computer Science, vol.
11294. Springer, 2018, pp. 215–228.

[45] CHC-Comp, “https://chc-comp.github.io,” 2019.
[46] D. Mordvinov and G. Fedyukovich, “Property directed inference of

relational invariants,” in FMCAD. IEEE, 2019, pp. 152–160.
[47] K. Hoder and N. Bjørner, “Generalized property directed reachability,”

in SAT, ser. Lecture Notes in Computer Science, vol. 7317. Springer,
2012, pp. 157–171.

[48] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Commun. ACM, vol. 20, no. 7, pp. 504–513, 1977.

[49] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound type system for
secure flow analysis,” Journal of Computer Security, vol. 4, no. 2/3, pp.
167–188, 1996.

[50] A. C. Myers, “Jflow: Practical mostly-static information flow control,”
in POPL. ACM, 1999, pp. 228–241.

[51] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens, “Secure compilation to protected module architectures,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 6:1–6:50, 2015.

[52] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kâafar, “On the effective-
ness of dynamic taint analysis for protecting against private information
leaks on android-based devices,” in SECRYPT. SciTePress, 2013, pp.
461–468.

[53] M. Costa, J. Crowcroft, M. Castro, A. I. T. Rowstron, L. Zhou, L. Zhang,
and P. Barham, “Vigilante: end-to-end containment of internet worms,”
in SOSP. ACM, 2005, pp. 133–147.

167

https://github.com/awslabs/s2n
https://chc-comp.github.io

[54] J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in MICRO. IEEE Computer Society,
2004, pp. 221–232.

[55] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++:
dynamic taint analysis with targeted control-flow propagation,” in NDSS.
The Internet Society, 2011.

[56] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2010, pp. 317–331.

[57] D. X. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new
approach to computer security via binary analysis,” in ICISS, ser. Lecture
Notes in Computer Science, vol. 5352. Springer, 2008, pp. 1–25.

[58] M. Zanioli and A. Cortesi, “Information leakage analysis by abstract
interpretation,” in SOFSEM, ser. Lecture Notes in Computer Science,
vol. 6543. Springer, 2011, pp. 545–557.

APPENDIX

A. Terminals in SyGuS Grammar for Secure Information Flow

The terminals in our grammar to generate quantifier-free
guesses (Fig. 6) are populated by a combination of tagging
types of variables and a syntactic analysis of the CHC encod-
ing of the body of the target procedure under consideration.

a) Tagging the types: For a CHC with head R(x̄) that
encode a modular product procedure r, each x ∈ x̄ is tagged
as follows:
• in: if x corresponds to a non-activation input argument
x in r with getIdx (x) = 1;

• out: if x corresponds to an output ret in r with
getIdx (ret) = 1;

• arr: if x is an array;
• int: if x is an integer;
• ok: if x is an output value storing the result of assertions.
The following metavariables specify what the terminals

based on tags range over:
• inArg : the set inArgs of variables tagged in;
• inArrArg : the set inArrArgs of variables tagged both
in and arr;

• outArg : the set of variables outArgs tagged out;
• outArrArg : the set of variables outArrArgs of variables

tagged both out and arr;
• inIntArg : the set of variables inIntArg tagged in and
int;

• ok : the set of variables tagged ok.
The activation variables in x̄ are denoted b1 and b2.

b) Syntactic Analysis: The terminal ctr is based on a
syntactic analysis of the body of the CHC. It ranges over a
set ctrs comprising the following:
• all expressions e with getIdx (e) = 1 that occur in the

procedure body within subexpressions of the form a[e]
for some a;

• terminals that c ranges over, consisting of all integer
constants that occur as the right- or left-hand side of
equalities or inequalities in the body of the procedure;

• terminals that declassify ranges over, which consists of
the consequents e1 = e2 of any implications of the form
b1∧b2 ⇒ e1 = e2, where b1 and b2 are Boolean variables,
getIdx (e1) = 1, and getIdx (e2) = 2.

168

	Introduction
	Motivation
	Overview of Proposed Approach

	Motivating Example
	Background and Notation
	Modular Product Programs
	Secure Information Flow
	Constrained Horn Clauses for Modular Verification

	SyGuS-based Summary Inference
	Grammar Templates without Quantifiers
	Grammar Templates with Quantifiers
	Quantified Templates for Arrays
	Property-Directed Templates

	Implementation and Evaluation
	Related Work
	Conclusions
	References
	Appendix
	Terminals in SyGuS Grammar for Secure Information Flow

