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Abstract—Current state of the art for reasoning about
quantifier-free bit-vector constraints in Satisfiability Modulo
Theories (SMT) is a technique called bit-blasting, an eager
translation into propositional logic (SAT). While efficient in
practice, it may not scale for large bit-widths when the input
size cannot be sufficiently reduced with preprocessing techniques.
A recent propagation-based local search procedure was shown
to be effective on hard satisfiable instances, in particular in
combination with bit-blasting in a sequential portfolio setting.
However, a major weakness of this approach is its obliviousness
to bits that can be simplified to constant values. In this paper,
we generalize propagation-based local search with respect to
such constant bits to ternary values. We further extend the
procedure to handle more bit-vector operators, and introduce
heuristics for more precise inverse value computation via bound
tightening for inequality constraints. We provide an extensive
experimental evaluation and show that the presented techniques
yield a considerable improvement in performance.

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers for the theory
of fixed-width bit-vectors provide bit-precise reasoning for
many applications in hardware and software verification. In
particular the quantifier-free fragment of this theory has re-
ceived a lot of interest in recent years, as witnessed by the high
and increasing number of participants in the corresponding
divisions of the annual SMT competition [35]. Current state of
the art for solving quantifier-free bit-vector formulas in SMT
is a technique called bit-blasting, where the input formula is
first simplified and then eagerly translated into propositional
logic (SAT). While efficient in practice, it does not necessarily
scale for large bit-widths, in particular if the size of the input
cannot be sufficiently reduced during preprocessing.

In [24], we attacked the problem from a different an-
gle and proposed a complete propagation-based local search
procedure for quantifier-free bit-vector formulas. It is based
on propagating target values from the outputs to the inputs,
does not require bit-blasting, brute-force randomization or
restarts, and lifts the concept of backtracing of Automatic
Test Pattern Generation (ATPG) [19] to the word-level. Even
though it only allows to determine satisfiability (as expected
for local search), it is particularly effective in a sequential
portfolio [36] combination with bit-blasting. One of its main
weaknesses, however, is its obliviousness to bits that can
be simplified to constant values [22]. For example, consider
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a formula (1110 & x) 6≈ 0000, where the left operand
of the bitwise and (&) operation forces its least significant
bit (LSB) to constant 0. The procedure in [24] is oblivious
to this information and may select invalid target values for
(1110 & x) where the LSB is set to 1. Propagating such
values that are invalid due to constant bits and can therefore
never be assumed may introduce significant overhead.

In this paper, we generalize the propagation-based local
search approach presented in [24] with respect to constant bits
to ternary values. We extract constant bit information from the
bit-level circuit representation of the input formula, use ternary
bit-vectors to represent this information and propagate target
values with respect to these constant bits. This allows us to
propagate more precise target values since we can guarantee
that we only propagate target values that can actually be
assumed. We show in our experiments that this considerably
reduces redundant work and improves performance.

Down-propagating values as in [24] utilizes inverse value
(and its less restrictive variant, consistent value) computation.
Computing inverse values is, however, not always possible.
For example, finding an inverse value for x in multiplication
x · s such that it produces value t given value s, i.e., x · s ≈ t,
is only possible if the value of t has at least as many right-
most zeroes in its binary representation as the value of s,
i.e., if the invertibility condition (s | −s) & t ≈ t is true.
A consistent value for x, on the other hand, is any value that
produces t disregarding value s, i.e., there exists a value v such
that x · v ≈ t. Finding consistent values for x is in general
always possible. When considering constant bits in x, however,
inverse and consistent value computation is further restricted,
and the latter becomes conditional. In [24] we defined in-
vertibility conditions without considering constant bits in x
in pseudocode, which we then formalized and verified in [26].
In this paper, we provide and verify invertibility conditions
and consistency conditions with respect to constant bits in the
operand to solve for. We further extend the set of natively
supported bit-vector operators, and introduce heuristics for
more precise inverse value computation via bound tightening
for inequality constraints. To summarize, this paper makes the
following contributions.
• We introduce the notion of consistency condition. We

further derive and present invertibility conditions and
consistency conditions with respect to constant bits for
a representative set of bit-vector operators that allows us
to model all bit-vector operators defined in SMT-LIB [4].
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• We verify the correctness of all presented conditions up
to a certain bit-width.

• We present a (probabilistically approximately) com-
plete [17] generalization of the propagation-based local
search procedure in [24] with respect to constant bits.

• We extend the set of bit-vector operators from [24] with
bit-wise xor, signed less than, sign extension and arith-
metic right shift, and provide invertibility and consistency
conditions modulo constant bits for all of them.

• We introduce two heuristics for inequality predicates
that allow us to infer more precise inverse values based
on tightening bounds with respect to its operands and
satisfied top-level inequalities.

Related Work. In previous years, a new generation of SAT
solvers implementing Stochastic Local Search (SLS) achieved
remarkable results in SAT competitions [2, 3, 6]. Hybrid
combinations of SLS and CDCL [30] SAT procedures aim
to get more than the best out of both worlds by tightly
integrating SLS strategies into the CDCL approach, with
promising results in last year’s SAT race [8, 31, 33]. Attempts
to utilize SLS techniques in SMT by integrating an SLS
SAT solver into the DPLL(T)-framework of the SMT solver
MathSAT [12], on the other hand, were not able to compete
with bit-blasting [16]. In [15], Fröhlich et al. lifted stochas-
tic local search (SLS) from the bit-level to the word-level
without bit-blasting, with promising results. Their approach,
however, does not fully exploit the word-level structure but
rather simulates bit-level local search by focusing on single
bit flips. In [25], we proposed a propagation-based extension
of [15], which introduced an additional strategy to propagate
assignments from the outputs to the inputs. Our propagation-
based local search approach in [24] expands on this idea and
does not employ any SLS strategies. Invertibility conditions
have been formalized, verified and utilized for quantified bit-
vector formulas to generate symbolic instantiations in [26].
Recently, in [10] the concept of invertibility conditions has
been lifted to the theory of floating-points by means of Syntax-
Guided Synthesis (SyGuS) [1].

II. PRELIMINARIES

We assume the usual notions and terminology of many-
sorted first-order logic with equality (denoted by ≈) (see, e.g.,
[14, 20]). We will focus on the quantifier-free fragment of
the theory of fixed-size bit-vectors TBV = (ΣBV , IBV ) as
defined by the SMT-LIB 2 standard [4]. The signature ΣBV
includes a unique sort σ[w] for each bit-width w, function
symbols overloaded for every σ[w], all bit-vector constants
of sort σ[w] for each w, and a sort Bool and the Boolean
constants > (true) and ⊥ (false). We further assume that ΣBV
includes the Boolean operators ¬ (not) and ∧ (and). Without
loss of generality, we will interpret Boolean expressions as
bit-vector expressions of size one. The non-empty class of
ΣBV -interpretations IBV (the models of TBV ) interpret sort
and functions symbols as specified in SMT-LIB 2.
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Fig. 1: Basic idea of propagation-based local search.

We denote a ΣBV -term (or bit-vector term) a of width w
as a[w] when we want to specify its bit-width explicitly. The
width of a bit-vector sort or term is given by the function κ,
e.g., κ(σ[w]) = w and κ(t[w]) = w. We will omit the bit-width
from the notation when it is clear from the context.

We represent a bit-vector constant c[w] as a bit-string of 0s
and 1s, with the most significant bit (MSB) as the left-most
bit c[msb] at index msb = w − 1, and the least significant
bit (LSB) as the right-most bit c[lsb] at index lsb = 0. We
use smax[w] or smin[w] for the maximum or minimum signed
value of width w, e.g., smax[4] = 0111 and smin[4] = 1000,
and ones[w] for the maximum unsigned value, e.g., ones[4]
= 1111. We refer to the bit at index i of a bit-vector t as
t[i] and use ctz (t) to denote the count of trailing zeros of a
bit-vector t. Similarly, clz (t) and clo(t) denote the count of
leading zeros and leading ones in t. When interpreting t as
signed value, we use cnt(t) to denote clo(t) when t[msb] ≈ 1,
and clz (t) when t[msb] ≈ 0. We further use function min to
determine the unsigned minimum value of two bit-vectors, and
functions addo and mulo, which return true if the addition and
multiplication of two bit-vectors overflows, respectively.

Without loss of generality, for a given input formula we
consider a restricted set of bit-vector function symbols (or bit-
vector operators) as listed in Table I. The selection in this set
is arbitrary but complete in the sense that it suffices to express
all bit-vector operators defined in SMT-LIB 2. This means that
our approach is not restricted to this particular set of operators
and can be lifted to any other set of bit-vector operators.

Note that we extend the set of operators considered in [24]
with <s, ⊕, >>a and sign extension. Further, we sometimes
use the logical connectives ∨ (or), ⇒ (implication) and ⇔
(if and only if), and the bit-vector operators 6≈ (disequality),
| (bit-wise or) and (un)signed inequalities ≤u, ≥u, ≤s and ≥s
as shorthand when convenient.

III. PROPAGATION-BASED LOCAL SEARCH

The basic idea of the propagation-based local search pro-
cedure for quantifier-free bit-vector constraints as presented
in [24] is illustrated in Figure 1 and lifts the concept of
backtracing from ATPG [19] from the bit-level to the word-
level. The procedure iteratively moves from a non-satisfying
to a satisfying assignment by propagating target values from
the outputs towards the inputs as follows.

Given a quantifier-free bit-vector formula as a directed
acyclic graph (DAG) with a single root node r. We start
from a random initial assignment to the inputs that does
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not satisfy r, i.e., root r evaluates to 0, and assume that its
target value is 1 (this desired transition from actual to target
value is indicated in Figure 1 by 0  1). Starting from the
root, this target value is then propagated along a single path
towards an input, and this process is repeated until the root is
satisfied, i.e., a solution is found. Down-propagation of target
values is performed as a down-traversal where each traversal
step represents a propagation step. In each propagation step,
we first select the propagation path, i.e., the operand of the
current node (representing a bit-vector operation) for which
we want to compute the next target value. After selecting the
propagation path, we then select the propagation value (the
new target value) for the selected operand.

Propagation path and value selection are the two main
sources of non-determinism of this procedure. Paths are non-
deterministically selected with a preference to essential inputs.
The concept of essential inputs was introduced in [24] to
lift the notion of controlling inputs from the bit-level to the
word-level, e.g., for 00 · 01 ≈ t with target value t = 10,
the left operand of the multiplication is essential since t can
not be assumed without changing its value. Target values are
determined via inverse and (its less strict variant) consistent
value computation, and non-deterministically chosen if multi-
ple possible values exist. An inverse value for an operand x
allows to immediately produce a given target value assuming
that the current value of the other operand (if any) does not
change, e.g., for x · 10 ≈ t with target value t = 10, both 01
and 11 are inverse values for x. A consistent value for x, on
the other hand, allows to produce a given target value after
changing the value of the other operand (if necessary), e.g.,
for x · 00 ≈ t with target value t = 10, any value greater
than zero is a consistent value for x. Notice that for every bit-
vector literal x � s ≈ t (with � a bit-vector operator as listed
in Table I), any inverse value is also a consistent value for x.

When down-propagating values, inverse value computation
can only be applied if such an inverse value exists. Computing
a consistent value, on the other hand, is always possible (if
constant bits are not considered, as in [24]). Inverse value
computation is usually preferred over consistent value com-
putation if possible. If no inverse value exists, the procedure
falls back to consistent value computation. However, even if
an inverse value exists, it is necessary to non-deterministically
select between inverse and consistent value computation in
order to guarantee completeness, as shown in [24].

Propagation-based local search as in [24] is not able to
determine unsatisfiability, as expected for local search. How-
ever, when determining satisfiability it is probabilistically
approximately complete (PAC) [17], i.e., it is guaranteed to
(eventually) find a solution if there exists one.

IV. PROPAGATING CONSTANT BITS

In this section, we generalize the propagation-based local
search procedure as presented in [24] with respect to constant
bits to ternary values. Figure 2 describes the generalized algo-
rithm in pseudocode, with all parts of the original algorithm (as
given in [24]) that are affected by the generalization indicated

Symbol SMT-LIB Syntax Sort

≈, <u, <s =, bvult, bvslt σ[w] × σ[w] → Bool

∼ bvnot σ[w] → σ[w]

&, ⊕ bvand, bvxor σ[w] × σ[w] → σ[w]

<<, >>, >>a bvshl, bvlshr, bvashr σ[w] × σ[w] → σ[w]

+, · bvadd, bvmul σ[w] × σ[w] → σ[w]

mod, ÷ bvurem, bvudiv σ[w] × σ[w] → σ[w]

◦ concat σ[w] × σ[m] → σ[w+m]

〈m〉 sign extend σ[w] → σ[m+w]

[u : l] extract ( l ≤ u < w) σ[w] → σ[u−l+1]

TABLE I: Set of considered bit-vector operators.

function sat(r,At,Ab):
1 while Ab(r) 6≈ 1:
2 n = r, t = 1
3 while ¬isLeaf (n):
4 nx = select(n, t,Ab)
5 if ¬isConsistent(n, nx, t,At):
6 break // conflict
7 v = value(n, nx, t,At,Ab)
8 t = v, n = nx

9 if ¬const(n):
10 Ab = Ab{n 7→ t}
11 return true

Fig. 2: The propagation-based local search algorithm gener-
alized with respect to constant bits to ternary values. Parts
affected and lifted are indicated in blue.

in blue (with boxed line numbers). In the following, we first
introduce notation, and then describe how to lift all relevant
parts of the procedure to ternary values.

Without loss of generality and as in [24], we assume that a
quantifier-free bit-vector formula φ is represented as a single-
rooted DAG with root r of bit-width one. Its set of nodes N
includes r and is partitioned into a set of bit-vector operations
and a set of leaf nodes, the latter consisting of bit-vector
constants and bit-vector variables (the primary inputs).

In the following, given a bit-vector literal �x ≈ t or x�s ≈ t
(with � a bit-vector operator as listed in Table I), we will use t
for the target value of the bit-vector operation, x to identify
the operand we compute a value for, and s for the value of
the other operand (if any).

We define a binary bit-vector as introduced above, and a
ternary bit-vector x as a vector of three-valued bits where
each bit can assume the values true (1), false (0) and unde-
termined (•). We either use a string representation or a range-
based representation for x, where the latter is a pair of binary
bit-vectors 〈xlo, xhi〉 that determine the lower and upper bound
of x, respectively. If x[i] = •, then xlo[i] = 0 and xhi[i] = 1,
and x[i] otherwise. For example, a ternary bit-vector of size 4
with a true MSB and all other bits undetermined is represented
as 1••• when represented as a string, and as the pair of two
binary bit-vectors 〈1000, 1111〉 when represented as a bit-
vector range. In the following, we only consider valid range
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representations for ternary bit-vectors, i.e., pairs 〈xlo, xhi〉 for
which the validity check (∼xlo | xhi ≈ ones) from [21] evalu-
ates to true. For example, a range 〈1100, 1000〉 is invalid since
xlo[2] >u x

hi[2], and thus ∼1100 | 1000 ≈ 1011 6≈ 1111. We
use function valid(xlo, xhi) to check if x is valid.

In the following, we will use x for ternary bit-vectors, and
s, t and v for binary bit-vectors. Further, to simplify notation,
we will frequently use bit-vector literal patterns �x ≈ t and
x�s ≈ t (s�x ≈ t) for unary and binary literals, where we mix
ternary and binary bit-vectors. We use x in these patterns as
a placeholder, which represents constant bits in the operand
we want to compute a binary bit-vector value for. Further,
we sometimes give definitions only for one binary case (e.g.,
x � s ≈ t) when the other case is treated symmetrically.

We define assignment Ab : N 7→ {0, 1}+ of formula φ as a
complete function that maps nodes n ∈ N to binary bit-vector
values. We use Ab{n 7→ t} to update node n to map to the new
binary bit-vector value t, and assume that such an update prop-
agates with respect to the semantics of the operators listed in
Table I, e.g., Ab(nx+ns) = Ab(nx)+Ab(ns) for nx, ns ∈ N .
We further define assignment At : N 7→ {0, 1, •}+ as a com-
plete function that represents constant bits and maps nodes
n ∈ N to ternary bit-vectors. Assignment At is precomputed
as described in Section IV-B.

Definition 1 (Matching Constant Bits). Given a ternary bit-
vector x represented as a pair of binary bit-vectors 〈xlo, xhi〉.
A binary bit-vector v matches the constant bits in x if and
only if (xhi & v ≈ v) ∧ (xlo | v ≈ v).

We use function mcb to check for matching constant
bits, i.e., mcb(x, v) (alternatively, mcb(xlo, xhi, v)) is true if v
matches the constant bits in x.

Given a bit-vector operation �nx or nx � ns (ns � nx) with
operand ns ∈ N , operand nx ∈ N the operand to solve for,
and � an operator as defined in Table I. As a first step, we lift
the notion of random, inverse and consistent values from [24]
to consider constant bits in nx as follows.

Definition 2 (Random Value). A binary bit-vector v is a
random value for a ternary bit-vector x = At(nx) if κ(v) ≈
κ(x) ∧mcb(x, v).

Definition 3 (Consistent Value). Given a bit-vector literal
�x ≈ t or x � s ≈ t, with x = At(nx) a ternary bit-vector
representing constant bits in nx, and s = Ab(ns) and t binary
bit-vectors. Given a target value t, a random value v is a
consistent value for x if (there exists a binary bit-vector value
s′ such that) �v ≈ t or v � s′ ≈ t evaluates to >.

Definition 4 (Inverse Value). Given a bit-vector literal and x,
s and t as above. Given a target value t (and a value s), a
consistent value v is called an inverse value for x if �v ≈ t
or v � s ≈ t evaluates to >.

As an example, consider a ternary bit-vector x[2] = 1• with
xlo = 10 and xhi = 11. For x · 11 ≈ 01, v = 11 is an inverse
value for x. For x · 00 ≈ 01, there exists no inverse value,
but v = 11 is a consistent value for x since 11 · s′ ≈ 01 with

s′ = 11. A random value for x that is neither an inverse value
nor a consistent value for both examples is v = 10.

Given a binary bit-vector operation n = nx�ns with n ∈ N
and � an operator as defined in Table I. We lift the notion of
essential input of n from [24] to consider constant bits in its
operands nx, ns ∈ N as follows.

Definition 5 (Essential Input). Let nx be an operand of a
node n ∈ N with n = nx �ns and Ab(n) = Ab(nx)�Ab(ns).
Further, let t be the target value of n. We say that nx is an
essential input with respect to t if there exists no value v for ns
with respect to constant bits in ns such that Ab(nx) � v ≈ t.

For example, consider inequality nx <u ns with target value
t = 1, Ab(nx) = 1011, Ab(ns) = 1000 and At(ns) = 100•.
When only considering the current assignment of nx and ns in
Ab, neither of the operands is essential—operand nx would be
if Ab(nx) = ones[4], and ns if Ab(ns) = 0[4]. However, con-
sidering constant bits in ns, operand nx is essential since ns
can not assume a value greater than Ab(nx). More generally,
for any nx <u ns with At(nx) = 〈xlo, xhi〉 and At(ns) =
〈slo, shi〉, nx is essential if Ab(nx) ≈ ones∨Ab(nx) ≥u shi,
and ns is essential if Ab(ns) ≈ 0 ∨ xlo ≥u Ab(ns).

As an interesting general observation, an operand nx is es-
sential if there exists no inverse value for the other operand ns
given Ab(nx), At(ns) and target value t. Operands to unary
bit-vector operations are always essential.

Algorithm Overview. Function sat in Figure 2 determines
the satisfiability of a given input formula, and takes as input
root r, an initial assignment Ab, and a precomputed fixed
assignment At. Assignment Ab is updated in each iteration
of the outer loop (lines 1–8), whereas At is determined
before function sat is called. Each iteration of the outer loop
represents a move, i.e., the down propagation of target value
t = 1 for root r along a single path until a primary input
is reached, which then triggers an update of assignment Ab
(lines 9–10) where input n is mapped to the new value t. Each
iteration of the inner loop (lines 3–8) represents a single down
propagation (a propagation step), which mainly consists of two
phases: path selection (line 4) and value selection (line 7).

Path Selection. In each propagation step, on line 4, we first
select the next leg of the propagation path as follows. For a
bit-vector operation n, function select first determines which
of its operands are essential with respect to target value t and
constant bits in the other operand (if any). If all or none of the
operands are essential, we non-deterministically select one of
them. Else, the essential operand is selected.

To determine if an operand nx is essential, we check if it
is possible to find an inverse value for the other operand ns
given t, Ab(nx) and At(ns), i.e., we check if the corre-
sponding invertibility condition when solved for ns is false.
For example, for nx + ns with t = 11, Ab(nx) = 10 and
At(ns) = •0, nx is essential since mcb(•0, 11− 10) is false.

Value Selection. After selecting the path, we then propagate t
as target value for n to its selected operand nx by computing
an inverse or consistent value for nx. An inverse value,
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however, does not always exist, even when constant bits in
the selected operand are not considered. And while it is
always possible to find a consistent value when constant bits
are not considered, this is not the case when they are. We
therefore generalize the notion of invertibility conditions [24,
26] and introduce the new notion of consistency conditions to
determine if there exists a value for nx with respect to At(nx)
such that target value t can be assumed. These conditions are
utilized when selecting the propagation value as follows.

In each propagation step in Figure 2, before selecting a value
with respect to constant bits for operand nx (line 7), function
isConsistent tests the corresponding consistency condition for
bit-vector operation n and its operand nx with respect to target
value t and x = At(nx) (line 5). If this determines that no
consistent value exists, the current target value for n can never
be assumed (notice that every inverse value is also consistent)
and we stop the current down propagation by breaking out of
the inner loop to restart from the root (line 6). Note that this
is in contrast to the original procedure, where it was always
possible to find a consistent value for nx.

If the consistency condition is true, in function value on
line 5, we select a consistent value if no inverse value exists,
i.e., if the invertibility condition for n with respect to nx, t,
s = Ab(ns) (if any other operand ns) and x = At(nx) is
false. Else, we non-deterministically choose between inverse
and consistent values (with a preference for inverse values).
As shown in [24], the latter non-deterministic choice between
inverse and consistent values (as opposed to always choosing
inverse values if possible) is necessary for the sake of com-
pleteness. Note that if multiple possible inverse or consistent
values exist, we non-deterministically select one of them.

Invertibility Conditions. Given target value t for bit-vector
operation n and the current assignment s = Ab(ns) of its
operand other than nx (if any), computing an inverse value
is in general not always possible, even when not considering
constant bits in nx. As in [26], we refer to the exact condition
under which an inverse value can be computed for x given s
and t as invertibility condition (IC ), e.g., for bit-vector literal
x � s ≈ t we have that ∀s, t. (IC (s, t) ⇔ ∃y. (y � s ≈ t)).
We lift this to consider constant bits in nx by interpreting x
as a ternary bit-vector x = At(nx), and yield generalized
invertibility conditions for all operators in Table I as given in
Tables II–III. Thus, for literal x � s ≈ t we now have that

∀x, s, t. (IC (x, s, t)⇔ ∃y. (y � s ≈ t ∧mcb(x, y))). (1)

The unary case is defined analogously. Note that invertibility
conditions without considering constant bits in nx were first
given in pseudocode in [24], and formalized and verified for
up to 65 bits in [26]. In Tables II and III, we indicate the
part of an invertibility condition that is the condition without
considering constant bits in nx in blue. For cases that do not
include such a condition, this condition is >. For example, for
x·s ≈ t, the blue part of the invertibility condition ensures that
ctz (s) ≤u ctz (t), and the remainder determines if possible
solutions match constant bits in x.

Consistency Conditions. Computing a consistent value when
not considering constant bits is always possible, and thus in
the procedure in [24], it was never possible to encounter a case
where no inverse and no consistent value exists. In contrast,
when considering constant bits in nx, it is not always possible
to determine a consistent value for nx, e.g., for •0·s ≈ 01 there
is no value that x can assume such that t can be produced for
some s. We therefore introduce the new notion of consistency
condition when considering constant bits in nx as follows.

Definition 6. (Consistency Condition) Given a bit-vector
literal �x ≈ t or x � s ≈ t, we refer to the exact condition
under which a consistent value can be computed for x given t
as consistency condition (CC ).

For unary operations, any invertibility condition is also a
consistency condition. For x � s ≈ t, we have that

∀x, t. (CC (x, t)⇔ ∃y, s. (y � s ≈ t ∧mcb(x, y))) (2)

and the other binary case is defined analogously. The consis-
tency conditions with respect to constant bits in x for bit-vector
operators in Table I are given in Tables IV and V.

Synthesizing Conditions. Previous work utilized SyGuS tech-
niques to synthesize invertibility conditions for bit-vector [26]
and floating-point [10] literals. For this work, we adopted the
SyGuS approach from [26] to find invertibility and consistency
conditions with respect to constant bits. We encoded Equa-
tions 1 and 2 as SyGuS problems to synthesize functions IC
and CC and defined a general grammar that includes all bit-
vector operators from Table I (excl. concatenation and sign
extension), common logical connectives and the additional
operators mcb, clz , ctz , and clo. For the invertibility condition
problems, we further added the corresponding condition that
must hold without considering constant bits (indicated in blue
in Tables II–III) as pre-condition. In total, we generated 30
(15 invertibility, 15 consistency) SyGuS problems and used the
SyGuS solver in CVC4 [29] with a time limit of 7200 seconds
and 8GB memory limit. Overall, CVC4 was able to synthesize
10 conditions (3 invertibility and 7 consistency conditions).
Unfortunately, all three invertibility conditions were trivial
and we were not successful in synthesizing any complex
invertibility conditions. Of the seven consistency conditions,
on the other hand, three were significantly simpler than the
manually crafted ones (marked with F in Table V).

Completeness (PAC). As in [24], the two main sources
of non-determinism of our procedure are path and value
selection when down-propagating target values. However, we
now aim to only propagate target values that can actually
be assumed, i.e., mcb(At(nx),Ab(nx)) = >. Path selection
still implements the same strategy as in [24], i.e., essential
inputs are selected over non-essential inputs. The notion of
essential input has been lifted to constant bits, however, this
only excludes values that can never be assumed. Generalizing
value selection to ternary values, as intended, significantly
changes the behavior of the algorithm compared to [24]. Since
we compute consistent and inverse values with respect to
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(x ≈ s) ≈ t (t ⇒ mcb(x, s)) ∧ (∼t ⇒ (xhi 6≈ xlo ∨ xhi 6≈ s))

(x <u s) ≈ t (t ⇒ s 6≈ 0 ∧ xlo <u s) ∧ (∼t ⇒ (s ≥u x) ≈ t)
(s <u x) ≈ t (t ⇒ s 6≈ ones ∧ xhi >u s) ∧ (∼t ⇒ xlo ≤u s)

(x <s s) ≈ t (t ⇒ (s 6≈ smin ∧ ((x[msb] ≈ 0 ∧ xlo <s s) ∨
(x[msb] ∈ {1, •} ∧ (smin | xlo) <s s)))) ∧

(∼t ⇒ (((x[msb] ≈ 1 ∧ xhi ≥s s) ∨
(x[msb] ∈ {0, •} ∧ (smax & xhi) ≥s s))))

(s <s x) ≈ t (t ⇒ (s 6≈ smax ∧ ((x[msb] ≈ 1 ∧ s <s xhi) ∨
(x[msb] ∈ {0, •} ∧ s <s (smax & xhi))))) ∧

(∼t ⇒ (((x[msb] ≈ 0 ∧ s ≥s xlo) ∨
(x[msb] ∈ {1, •} ∧ s ≥s (smin | xlo)))))

TABLE II: Invertibility conditions for bit-vector predicates
modulo constant bits in x.

constant bits and break on conflict when no consistent value
exists, it is guaranteed that every target value that is propagated
down all the way to the primary inputs can be assumed with
respect to constant bits in the inputs. As a consequence, we
only exclude target values that can never be part of a satisfying
assignment of the input formula. Our procedure is thus still
probabilistically approximately complete (PAC), following the
same line of argument as in [24].

A. Verifying Invertibility and Consistency Conditions

The invertibility and consistency conditions in Tables II–V
are utilized in our procedure to determine whether a given
target value can be down-propagated. Incorrect conditions
will not result in unsoundness of the procedure, but may
affect completeness (PAC). To verify the correctness of these
conditions we check for each literal and bit-width up to 65
if the negation of the corresponding quantified formula as
defined above is unsatisfiable. For unary literals, consistency
conditions are also invertibility conditions and we only have
to check the unsatisfiability of

∃xlo, xhi, t. valid(xlo, xhi) ∧
¬(IC (x, t)⇔ ∃y. (�y ≈ t ∧mcb(xlo, xhi, y))).

Note that we do not test the conditions for extracts since they
can essentially be reduced to the checks for equality, which
makes tests for all combinations of upper and lower indices
redundant. Further, in order to keep the number of queries
manageable, we only check for signed extensions of up to 4
bits. For binary literals, we check each of the formulas

∃xlo, xhi, s, t. valid(xlo, xhi) ∧
¬(IC (x, s, t)⇔ ∃y. (y � s ≈ t ∧mcb(xlo, xhi, y)))

∃xlo, xhi, t. valid(xlo, xhi) ∧
¬(CC (x, t)⇔ ∃y, s. (y � s ≈ t ∧mcb(xlo, xhi, y)))

The other binary case is defined analogously. Note that for
the sake of simplicity, we only use operands of the same bit-
width (from 1 to 65) for concatenation. Concatenation can
again be seen as a special case of equality, i.e., x ◦ s ≈ t can
be interpreted as x◦ s ≈ tx ◦ ts, and the check can be reduced
to checking the condition IC ((x ≈ tx) ≈ 1) ∧ s ≈ ts. Hence,

x+ s ≈ t mcb(x, t− s)

x · s ≈ t (−s | s) & t ≈ t ∧
(s ≈ 0 ∨ ((odd(s) ⇒ mcb(x, t · s−1)) ∧
(¬odd(s) ⇒ mcb(x<<c, y <<c))))

with c = ctz (s) and y = (t>> c) · (s>>c)−1

x mod s ≈ t ∼(−s) ≥u t ∧
((s ≈ 0 ∨ t ≈ ones) ⇒ mcb(x, t)) ∧
((s 6≈ 0 ∧ t 6≈ ones) ⇒ ∃y. (mcb(x, s · y + t) ∧
¬mulo(s, y) ∧ ¬addo(s · y, t)))

s mod x ≈ t (t+ t− s) & s ≥u t ∧
(s ≈ t ⇒ (xlo ≈ 0 ∨ xhi >u t)) ∧
(s 6≈ t ⇒ ∃y. (mcb(x, y) ∧ y >u t ∧

(s− t) mod y ≈ 0))

x÷ s ≈ t (s · t)÷ s ≈ t ∧ (t ≈ 0 ⇒ xlo <u s) ∧
((t 6≈ 0 ∧ s 6≈ 0) ⇒ ∃y. (mcb(x, y) ∧

(¬c ⇒ y <u s · t+ 1) ∧ (c ⇒ y ≤u ones)))
with c = mulo(s, t+ 1) ∨ addo(t, 1)

s÷ x ≈ t s÷ (s÷ t) ≈ t ∧ (t 6≈ ones ⇒ xhi >u 0) ∧
((s 6≈ 0 ∨ t 6≈ 0) ⇒ (s÷ xhi ≤u t) ∧
∃y. (mcb(x, y) ∧ (t ≈ ones ⇒ y ≥u 0 ∧ y ≤u s÷ t)∧

(t 6≈ ones ⇒ y >u t+ 1 ∧ y ≤u s÷ t))))

x & s ≈ t t & s ≈ t ∧ ((s & xhi) & c) ≈ (t & c)

with c = ∼(xlo ⊕ xhi)

x⊕ s ≈ t mcb(x, s⊕ t)

x<<s ≈ t (t>>s)<<s ≈ t ∧mcb(x<<s, t)

s<<x ≈ t ctz (s) ≤u ctz (t) ∧ (t 6≈ 0 ⇒ s<<c ≈ t) ∧
(t ≈ 0 ⇒ (xhi ≥u c ∨ s ≈ 0)) ∧ (t 6≈ 0 ⇒ mcb(x, c))

with c = ctz (t)− ctz (s)

x>>s ≈ t (t<<s)>>s ≈ t ∧mcb(x>>s, t)

s>>x ≈ t clz (s) ≤u clz (t) ∧ (t 6≈ 0 ⇒ s>>c ≈ t) ∧
(t ≈ 0 ⇒ (xhi ≥u c ∨ s ≈ 0)) ∧ (t 6≈ 0 ⇒ mcb(x, c))

with c = clz (t)− clz (s)

x>>a s ≈ t (s <u κ(s) ⇒ ((t<<s)>>a s ≈ t)) ∧
(s ≥u κ(s) ⇒ (t ≈ ones ∨ t ≈ 0)) ∧mcb(x>>a s, t)

s>>a x ≈ t s[msb] ≈ 0 ⇒ IC (s>>x = t) ∧
s[msb] ≈ 1 ⇒ IC (∼s>>x = ∼t)

x ◦ s ≈ t s ≈ ts ∧mcb(x, tx)

with tx = t[msb : κ(s)] and ts = t[κ(s)− 1 : lsb]

s ◦ x ≈ t s ≈ ts ∧mcb(x, tx)

with ts = t[msb : κ(s)] and tx = t[κ(s)− 1 : lsb]

x〈n〉 ≈ t (tn ≈ 0 ∨ tn ≈ ones) ∧mcb(x, tx)

with tn = t[msb : κ(x)− 1] and tx = t[κ(x)− 1 : lsb]

x[u : l] ≈ t mcb(x[u : l], t)

TABLE III: Invertibility conditions for non-predicate bit-
vector operators modulo constant bits in x.

(x ≈ s) ≈ t >

(x <u s) ≈ t ∼t ∨ xlo 6≈ ones

(s <u x) ≈ t ∼t ∨ xhi 6≈ 0

(x <s s) ≈ t ∼t ∨ (xlo ≈ xhi ⇒ xlo 6≈ smax)

(s <s x) ≈ t ∼t ∨ (xlo ≈ xhi ⇒ xlo 6≈ smin)

TABLE IV: Consistency conditions for bit-vector predicates
modulo constant bits in x.

219



x+ s ≈ t >

x · s ≈ t (t 6≈ 0 ⇒ xhi 6≈ 0) ∧ (odd(t) ⇒ xhi[lsb] 6≈ 0) ∧
(¬odd(t) ⇒ ∃y. (mcb(x, y) ∧ ctz (t) ≥u ctz (y)))

x mod s ≈ t (t ≈ ones ⇒ mcb(x, ones)) ∧
(t 6≈ ones ⇒ (t >u (ones− t) ⇒ mcb(x, t)) ∧
(t ≤u (ones− t) ⇒ (mcb(x, t) ∨
∃y. (mcb(x, y) ∧ y >u 2 · t))))

F s mod x ≈ t (xlo>>(t÷ xhi)) ≈ xlo

x÷ s ≈ t (t 6≈ ones ⇒ xhi ≥u t) ∧ (t ≈ 0 ⇒ xlo 6≈ ones) ∧
((t 6≈ 0 ∧ t 6≈ ones ∧ t 6≈ 1 ∧ ¬mcb(x, t)) ⇒
(¬mulo(2, t) ∧ ∃y, o. (mcb(x, y · t+ o) ∧ y ≥u 1 ∧

o ≤u c ∧ ¬mulo(y, t) ∧ ¬addo(y · t, o))))
with c = min(y − 1, xhi − y · t)

s÷ x ≈ t (t ≈ ones ⇒ (mcb(x, 0) ∨mcb(x, 1))) ∧
(t 6≈ ones ⇒ (¬mulo(xlo, t) ∧
∃y. (y >u 0 ∧mcb(x, y) ∧ ¬mulo(y, t))))

x & s ≈ t t & xhi ≈ t

x⊕ s ≈ t >

x<<s ≈ t ∃y. (y ≤u ctz (t) ∧mcb(x<<y, t))

F s<<x ≈ t ((ones<<xlo) & t) ≈ t

x>>s ≈ t ∃y. (y ≤u clz (t) ∧mcb(x>>y, t))

F s>>x ≈ t ((ones>>xlo) & t) ≈ t

x>>a s ≈ t (t ≈ 0 ∨ t ≈ ones) ⇒
∃y. (y[msb] ≈ t[msb] ∧mcb(x, y)) ∧

(t 6≈ 0 ∧ t 6≈ ones) ⇒
(∃y. (c ⇒ y ≤u clo(t) ∧ ∼c ⇒ y ≤u clz (t) ∧

mcb(x>>a y, t)))

with c = (t<<y)[msb] ≈ 1

s>>a x ≈ t t ≈ 0 ∨ t ≈ ones ∨ ∃y. (c ⇒ y <u clo(t) ∧
∼c ⇒ y <u clz (t)) ∧mcb(x, y)

with c = t[msb] ≈ 1

x ◦ s ≈ t mcb(x, t[msb : κ(s)])

s ◦ x ≈ t mcb(x, t[msb − κ(s) : lsb])

x〈n〉 ≈ t IC (x〈n〉 = t)

x[u : l] ≈ t IC (x[u : l] = t)

TABLE V: Consistency conditions for non-predicate bit-
vector operators modulo constant bits in x. Conditions marked
with F are conditions synthesized with SyGuS.

it is not necessary to check the condition for concatenation for
all possible combinations of bit-widths of the operands.

We split the conditions for the predicates by the value of t
and generated in total 3575 quantified bit-vector verification
problems for 55 conditions (30 invertibility and 25 consistency
conditions). To verify these problems, we used our SMT solver
Bitwuzla [23] and the solvers CVC4 [5] and Z3 [13]. Note that
we had to exclude Q3B [18] due to disagreements with all
three other solvers on 2/3 of the commonly solved instances.
We used a time limit of 3600 seconds and a memory limit of
8GB and ran this verification task on a cluster with Intel Xeon
CPU E5-2620 CPUs with 2.1GHz and 128GB memory.

We consider a condition to be verified for a certain bit-
width, if all solvers that don’t run into the time limit agree on
its status, and the status is unsat. Overall we were able to verify
2867 out of 3575 instances (80.2%). For operators {≈, <u,
&,⊕, <<,>>,>>a,+, ◦, 〈〉, [:]} we were able to verify all
invertibility conditions, and for operators {≈, <u,&,+, ·, ◦}

we were able to verify all consistency conditions for all bit-
widths up to 65. For x <s s, no solver was able to verify the
invertibility condition for bit-width 36, and for x⊕s no solver
was able to verify the consistency condition for bit-widths 32,
49, 52 and 58. The remaining conditions were verified at least
for bit-widths up to (and including) 7.

Verifying the correctness of the presented invertibility and
consistency conditions up to some bit-width establishes a
certain level of trust but does not prove that they are correct
for all possible bit-widths. Proving the correctness for all bit-
widths is more involved since it requires bit-width independent
proofs [27] and is left to future work.

B. Computing Assignment At
Assignment At : N 7→ {0, 1, •}+ maps each node n ∈ N

to a ternary bit-vector, which represents constant bits in n.
We determine these constant bits upfront by utilizing the
And-Inverter Graph (AIG) circuit representation of the input
formula. Rewriting on the AIG layer during the translation [11]
allows to simplify gates to constants, which are then mapped
back to the word-level and represented as the constant bits of
the corresponding ternary bit-vectors in At.

Bit-blasting the input formula to AIGs introduces additional
overhead, both in terms of time and memory, in particular
for large bit-widths. In [21], the authors proposed word-level
propagators based on ternary bit-vectors for a limited set of
bit-vector operators, which was later extended in [34]. These
propagators might allow to determine constant bits without the
additional overhead of bit-blasting to AIGs. We leave utilizing
these propagators to compute At to future work.

V. EXTENSIONS

Tables III and V include invertibility conditions and consis-
tency conditions for the bit-vector operators ⊕, >>a, <s and
sign extension, which are not considered in [24]. Instead, they
are rewritten in terms of a smaller set of base operators. For
example, signed bit-vector operators are encoded by means of
unsigned operations only, and bit-wise operations are mostly
expressed in terms of & and ∼ . As a consequence, the overall
size of the formula (in terms of number of nodes) increases.
This can have a negative impact on our local search procedure,
since the number of paths that need to be considered when
propagating target values potentially increases. Further, elimi-
nating bit-vector operators can introduce multiple occurrences
of their operands, which can make it harder to find a value
that is part of a satisfying assignment. For example, the bit-
vector exclusive or operation t1 = x ⊕ s can be represented
as t2 = ((x | s) & ∼(x & s)). Selecting an inverse value for x
in t1 only requires one propagation step, whereas for x in t2
we have to find a value that is also consistent with x | s and
∼(x & s), which may take multiple propagation steps.

We extended the set of operators in [24] to natively support
bit-vector operators ⊕, >>a, <s, and sign extension since they
are widely used in SMT-LIB benchmarks. Other operators
such as signed division and remainder operators do not occur
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as frequently and we leave the native support for these
operators to future work.

A. Tightening Bounds for Inequalities

Given a bit-vector inequality literal x � s ≈ t (s � x ≈ t)
with � ∈ {<u, <s}, an inverse value for x is a random
value within a certain range. The lower (upper) bound is
determined by s, whereas the other bound is at least the
(un)signed minimum (at most the (un)signed maximum) value,
depending on constant bits in x. For example, for x <u s
with target value t = 1, the range of possible inverse values v
for x is xlo ≤u v <u s. When such a range is large and
only few values within this range are part of a satisfying
assignment, randomly picking the right value can have a very
low probability. For example, for x0 <u s with target value
t = 1 and x0 = x1〈w〉, we first compute an inverse value v0
for x0 within range xlo ≤u v0 <u s, and then propagate v0 to
x1〈w〉. The sign extension of x1 requires that the w + 1 left-
most bits of v0 are either 0[w+1] or ones[w+1], i.e., the value of
bit v0[κ(x1)−1] determines the w left-most bits. However, this
information is not known when computing an inverse value
for x0 since we do not consider its kind. As a consequence,
we may select inverse values where the w+1 left-most bits are
neither ones[w+1] or 0[w+1], which will immediately produce
a conflict in the next propagation step.

In the following, we discuss heuristics that address this
weakness and further tighten the bounds based on the currently
satisfied top-level inequality constraints.

Inequalities with Sign Extension. Consider an unsigned
inequality over sign extension x〈w〉 <u s with target value
t = 1. We can define the following two ranges when comput-
ing an inverse value v for x〈w〉.

ones[w+1] ◦ 0[κ(x)−1] ≤u v <u s (3)
0 ≤u v <u min(s, 0[w] ◦ smin[κ(x)]) (4)

Each of these ranges can only be considered if it is valid,
i.e., if the lower bound is strictly less than the upper bound.
Further, range (3) is only applicable if x[msb] ∈ {1, •}, and
range (4) if x[msb] ∈ {0, •}. Picking an inverse value v with
mcb(x, v) from any of these two ranges guarantees that the
w + 1 left-most bits are either 0[w+1] or ones[w+1]. Similar
ranges can be derived for t = 0 and <s.

Satisfied Inequality Constraints. An additional, more general
way to tighten the bounds of inverse value computation for an
inequality literal with operand nx is to determine these bounds
with respect to other inequality constraints on nx that are
currently satisfied in Ab. We consider all satisfied inequalities
on nx that are conjuncts reachable from the root. If this results
in an invalid range, i.e., the lower bound is greater than the
upper bound, we fall back to computing a consistent value
without this bound tightening strategy.

We only consider this heuristic for inverse values and
not for consistent values in order to maintain completeness.
For example, consider formula nx <u 100 ∧ na <u nx with
Ab(nx) = 110 and Ab(na) = 101. Assignment Ab satisfies

inequality na <u nx, but falsifies nx <u 100. We select node
nx <u 100, assume x <u 100 ≈ 1 with x = At(nx), and
determine 100 as upper and Ab(nx) as lower bound of the
inverse value for x. Since this range is invalid, we fall back to
computing a consistent value. If we compute a consistent value
with the bound tightening strategy above, we would ignore the
upper bound and use Ab(nx) as lower bound. However, this
would result in getting stuck in computing consistent values
greater than Ab(nx), which will never satisfy nx <u 100 and
would therefore be incomplete.

Note that in our implementation, we currently only consider
inequality constraints that have the same signedness as the
inequality we currently compute an inverse for. Further, this
heuristic can be generalized to apply to inverse value computa-
tion in general (not only for inequality literals), which requires
to incorporate ranges into all inverse value computations. We
leave these extensions to future work.

VI. EVALUATION

We implemented our techniques in our SMT solver Bitwu-
zla [23], which is the successor of our SMT solver Boolec-
tor [28]. It supports the theories of arrays, bit-vectors, floating-
points and uninterpreted functions and their combinations.
We first evaluate our generalized procedure and the proposed
extensions in comparison to the base procedure presented
in [24]. We then show the performance of a sequential
portfolio combination of our procedure with state-of-the-art
bit-blasting as implemented in Bitwuzla. We performed all
experiments on a cluster with Intel Xeon CPU E5-2620 CPUs
with 2.1GHz and 128GB memory. We use an 8GB memory
limit for each solver/benchmark pair and count memory out
as time out. We consider the following configurations:

1) base The propagation-based local search procedure pre-
sented in [24], which serves as a baseline for our
propagation-based local search configurations.

2) prop-c Our ternary propagation-based local search pro-
cedure (Section IV).

3) prop-c+ Configuration prop-c with additional propaga-
tors for ⊕, >>a, and sign extension enabled.

4) prop-cb+ Configuration prop-c+ with all bound tighten-
ing heuristics from Section V and <s propagator enabled.

5) bb The bit-blasting engine of Bitwuzla with CaDi-
CaL [8] version 1.2.1, CryptoMiniSat [32] version 5.7.0,
Kissat [9] version sc2020 (winner of SAT competition
2020), and Lingeling [7] version bcj as SAT back ends.

6) bb-prop-cb+ Sequential portfolio of bb and prop-cb+,
where prop-cb+ is run prior to invoking bb with a limit
of 10k propagation steps and 2M steps for updating Ab.

We evaluated configurations base, prop-c, prop-c+, and
prop-cb+ on all 14,382 QF BV benchmarks from SMT-
LIB with status “sat”. We ran each configuration with 20
different seeds for the random number generator and a time
limit of 60 seconds. Figure 3 shows the number of solved
instances of base, prop-c, prop-c+, and prop-cb+ over all
20 runs with different seeds as box-and-whiskers plots. The
box of a plot shows the interquartile range (IQR), and the
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Fig. 3: Number of solved instances over 20 runs (with different
seeds) of configurations base, prop-c, prop-c+, and prop-cb+.

orange line indicates the median value over all runs of a
configuration. The ends of the whiskers indicate minimum
and maximum values excluding outliers, which are shown as
circles. IQR measures the distance between the lower and
upper quartile. Additionally, we also determine the median
absolute deviation (MAD), which is a measure for how much
one run deviates from the median. Configuration prop-c (IQR:
26.5, MAD: 13.4) clearly outperforms base (IQR: 10.3, MAD:
9.0) with +120 (median) solved instances. Enabling additional
propagators for ⊕, >>a, and sign extension in prop-c+ (IQR:
23.0, MAD: 14.5) increases the number of solved instances
by +3 (median) in comparison to prop-c. Enabling the bound
tightening heuristics achieves the best results, with over 400
additional solved instances (median) compared to prop-c+
(IQR: 31.3, MAD: 18.9).

Value computation in prop-c is expected to propagate more
precise values than base, i.e., we expect the number of moves
required to solve a problem to decrease. In an additional
experiment, we compare the runs of base and prop-c that
are closest to their median on commonly solved instances. As
expected, configuration prop-c requires 70% less moves, 63%
less propagations and 44% less updates of Ab than base while
being 9% faster in terms of solving time.

By enabling the additional operators ⊕, >>a, and sign ex-
tension (as discussed in Section V), we observed that the me-
dian of configuration prop-c+ increased by 3 solved instances.
Further, enabling <s for configuration prop-c+ resulted in a
considerable loss of 262 median solved instances. This is due
to the uclid benchmark family, which contains many signed
inequalities that effectively define (small) ranges over posi-
tive/unsigned values only. For these instances, rewriting <s in
terms of <u thus significantly reduces the number of possible
values for its operands1. However, natively handling <s in
combination with our bound tightening heuristics in configu-
ration prop-cb+ solves all 262 uclid benchmarks. Generally,
natively handling different sets of operators yields (sometimes
significantly) different results. Identifying a minimal set that

1Bitwuzla rewrites a <s b to (a[msb] > b[msb]) ∨ (a[msb] ≈ b[msb] ∧
a[msb− 1 : 0] <u b[msb− 1 : 0]).
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Fig. 4: bb versus bb-prop-cb+ with Lingeling (4a), Crypto-
MiniSat (4b), Kissat (4c), and CaDiCaL (4d) with a time limit
of 1200 seconds.

allows for best performance may simplify the implementation
and is an interesting direction for future work.

Figure 4 shows the performance of the sequential portfolio
combination bb-prop-cb+ in comparison to configuration bb
with a time limit of 1200 seconds on all QF BV benchmarks
(41,713 total). We compare bb-prop-cb+ against bit-blasting
with CaDiCaL, CryptoMiniSat, Kissat, and Lingeling as SAT
back ends. Our sequential portfolio combination clearly com-
pensates weaknesses of CryptoMiniSat, Kissat, and Lingeling
on satisfiable instances. The bit-blasting engine with CaDiCaL
as a back end significantly improves over the other configura-
tions, but bb-prop-cb+ still improves over the configuration
with CaDiCaL in terms of runtime. Overall, the overhead
introduced on unsatisfiable instances is negligible.

All experimental data is available at https://bitwuzla.github.
io/papers/fmcad2020.

VII. CONCLUSION

We have presented a generalization of propagation-based
local search for quantifier-free bit-vector formulas with respect
to constant bits to ternary values. We have derived and verified
invertibility and consistency conditions modulo constant bits
for a majority of the bit-vector operators defined in SMT-
LIB 2. We have shown that our approach yields more precise
value propagation and considerably improves the performance.

Our sequential portfolio utilizes propagation-based local
search and improves over pure bit-blasting. When falling back
to the bit-blasting engine, however, it does not share any
information, which is an interesting direction for future work.

222

https://bitwuzla.github.io/papers/fmcad2020
https://bitwuzla.github.io/papers/fmcad2020


REFERENCES

[1] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Formal Methods in Computer-Aided Design,
FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 1–8.
IEEE, 2013.

[2] A. Balint, A. Belov, M. J. H. Heule, and M. Järvisalo, editors. SAT
Competition 2013, volume B-2013-1 of Department of Computer Sci-
ence Series of Publications B. University of Helsinki, 2013.

[3] A. Balint, A. Belov, M. Järvisalo, and C. Sinz. Overview and analysis
of the SAT challenge 2012 solver competition. Artificial Intelligence,
223:120–155, 2015.

[4] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK), 2010.

[5] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and
S. Qadeer, editors, Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Pro-
ceedings, volume 6806 of Lecture Notes in Computer Science, pages
171–177. Springer, 2011.

[6] A. Belov, M. J. H. Heule, and M. Järvisalo, editors. SAT Competition
2014, volume B-2014-2 of Department of Computer Science Series of
Publications B. University of Helsinki, 2014.

[7] A. Biere. CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
Entering the SAT Competition 2018. In M. Heule, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2018 – Solver and
Benchmark Descriptions, volume B-2018-1 of Department of Computer
Science Series of Publications B, pages 13–14. University of Helsinki,
2018.

[8] A. Biere. CaDiCaL at the SAT Race 2019. In M. Heule, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Race 2019 – Solver and Benchmark
Descriptions, volume B-2019-1 of Department of Computer Science
Series of Publications B, pages 8–9. University of Helsinki, 2019.

[9] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020. In Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, page 49, 2020. To appear.

[10] M. Brain, A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and
C. Tinelli. Invertibility conditions for floating-point formulas. In I. Dillig
and S. Tasiran, editors, Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II, volume 11562 of Lecture Notes in Computer
Science, pages 116–136. Springer, 2019.

[11] R. Brummayer and A. Biere. Local Two-Level And-Inverter Graph Min-
imization without Blowup. In 2nd Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS’06), Mikulov,
Czechia, October 2006, Proceedings, 2006.

[12] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The
mathsat5 SMT solver. In N. Piterman and S. A. Smolka, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture
Notes in Computer Science, pages 93–107. Springer, 2013.

[13] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In
C. R. Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[14] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press,
2nd edition, 2001.
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