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Abstract—Witnessing subsystems for probabilistic reach-
ability thresholds in discrete Markovian models are an
important concept both as diagnostic information on why
a property holds, and as input to refinement algorithms.
We present SWITSS, a tool for the computation of Small
WITnessing SubSystems. SWITSS implements exact and
heuristic approaches based on reducing the problem to
(mixed integer) linear programming. Returned subsystems
can automatically be rendered graphically and are accompa-
nied with a certificate which proves that the subsystem is
indeed a witness.

I. INTRODUCTION

A standard notion of a witness for a property in proba-
bilistic systems is that of a subsystem [1, 6, 15, 17, 26, 27].
This is a part of the system that by itself already reaches
a given probability threshold and thus serves as an
explanation of why or where the property holds. Subsys-
tems can also be used as input to automated refinement
and synthesis algorithms. In [14] a counterexample guided
abstraction refinement (CEGAR) method for probabilistic
models is presented that iteratively refines a predicate
abstraction by analyzing counterexamples (which are
witnessing subsystems to the negated property). An
application of small witnessing subsystems to synthesis
is described in [8], where they are used to infer properties
of a family of Markov chains from (a subsystem of) one
of its members.

The aforementioned applications heavily benefit from
witnessing subsystems that are small in terms of their
state space. This paper presents SWITSS, a novel tool
for the computation of small witnessing subsystems for
reachability properties in Markovian models. Following
[11], SWITSS proceeds by reduction to finding points of
a polyhedron containing a large number of zero entries.
These points also serve as certificates [22] for the fact that
the computed subsystem indeed constitutes a witness.

We tackle the above problem from discrete geometry
heuristically with an iterative linear programming (LP)
approach. By adding binary variables to the LP, thus
resulting in a mixed integer linear program (MILP),
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SWITSS can also compute minimal witnessing subsystems.
In many applications, however, minimizing merely the
state space of witnessing subsystems is insufficient in that
it ignores the underlying structure of the model. For this
reason, SWITSS supports label-based minimization, where
syntactic units of the system can be subsumed under
common labels.

Transparency and reliability are important factors for
the evaluation of modern model checking software.
SWITSS comes with a toolkit for the automated visu-
alization of Markovian models and subsystems therein.
For the convenience of (third-party) users, the framework
includes a separate module for the independent verifica-
tion of the associated certificates. In this way, results can
be checked both visually and mathematically.

The translation to discrete geometry paired with the
high level of encapsulation in our implementation makes
SWITSS easily extendable. New heuristic approaches for
finding vertices with many zeros (like vertex enumeration
techniques) as well as different LP and MILP solvers used
as backend engines can be integrated flexibly into SWITSS.

Comparison with related tools.

There are, to the best of our knowledge, three existing
tools for the computation of witnessing subsystems:
DIPRO [3], COMICS [16], and ltlsubsys [27]. We now
compare each of these to SWITSS. A foreword that
applies to all of them is that for Markov decision process
(MDP), they only compute witnessing subsystems for
lower bounds on maximal reachability probabilities. We
emphasize that lower bounds on minimal reachability
probabilities cannot be reduced to this case, but only to
upper bounds on maximal reachability probabilities.

DIPRO implements several heuristics for the computa-
tion of probabilistic counterexamples, only one of which
directly operates on subsystems. This heuristic called
XBF is available only for discrete-time Markov chains
(DTMC), however. The other heuristics gather individual
paths satisfying criteria like high probability mass or
short length until the threshold is met. The subsystem
resulting from these paths is not optimized along our
state-minimality criterion (rather, the number of paths is
minimized), so a comparison is problematic.
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TABLE I: Overview of Farkas certificates for reachability
properties in MDPs, where / ∈ {≤,<} and . ∈ {≥,>}.

Property Source Condition

Prmin
s0

(♦goal) . λ z ∈ RS Az ≤ b ∧ z(s0) . λ

Prmax
s0

(♦goal) . λ y ∈ RM≥0 yA ≤ δs0 ∧ yb . λ

Prmin
s0

(♦goal) / λ y ∈ RM≥0 yA ≥ δs0 ∧ yb / λ

Prmax
s0

(♦goal) / λ z ∈ RS Az ≥ b ∧ z(s0) / λ

COMICS implements heuristics for computing small
subsystems in DTMCs, which are significantly different
from the ones implemented in SWITSS. They rely on
iteratively adding “probable” paths to the subsystem
until the threshold is met. To compute the next such
path, COMICS uses graph algorithms. As each iteration
requires computing the probability that has already been
gathered, this approach often suffers from a substantial
increase in time and memory consumption for growing
thresholds, in contrast to our approach. With a prototypi-
cal implementation of what has now become SWITSS, we
found that either our minimal or maximal reachability
formulation (both of which are available for DTMCs)
usually outperforms both COMICS modes [11].
ltlsubsys [27] is the only tool for the computation

of minimal witnesses in MDPs (it is, however, not publicly
available). This tool also reduces the task of computing
witnessing subsystems for maximal probabilities to a
MILP which is related to our MILP formulations (cf.
[11, Remark 6.2]). Its results in terms of upper and
lower bounds on the number of states in a minimal
witness found when hitting the timeout (which usually
happens for bigger models) are comparable to ours [11].
As mentioned above, ltlsubsys cannot handle minimal
reachability probabilities.

Summarizing the functionality, SWITSS is the first tool
that implements (1) both exact and heuristic algorithms,
with support for (2) both DTMCs and, more generally,
MDPs, for (3) thresholds on both minimal and maximal
reachability probabilities.

II. THEORETICAL BACKGROUND

A Markov decision process (MDP) is a tuple M =
(Sall, Act, P, s0), where Sall is a finite set of states, Act
is a finite set of actions, P : Sall × Act×Sall → [0, 1]
is the transition probability function where we require
∑s′∈Sall

P(s, α, s′) ∈ {0, 1} for all (s, α) ∈ Sall × Act,
and s0 is the initial state of M. We assume that there
are two distinguished absorbing states fail, goal ∈ Sall,
representing desirable and undesirable outcomes of the
system. We will henceforth use the notation S = Sall \
{fail, goal}. We let Act(s) be the set of actions satisfying
∑s′∈Sall

P(s, α, s′) = 1. We require Act(s) 6= ∅ for all s ∈ S
and sometimes write M = {(s, α) | s ∈ S, α ∈ Act(s)}.

The system begins in s0 and evolves as follows: in state
s, an action α ∈ Act(s) is chosen non-deterministically
and the next state is picked according to the distribution
P(s, α, ·). A scheduler S is some resolution of the non-
determinism and induces a probability PrSM,s0

(♦goal)
to eventually reach goal (see [5, Section 10.6]). We
are interested in the minimal and maximal reachability
probabilities attained among all schedulers, denoted by
Prmin
M,s0

(♦goal) and Prmax
M,s0

(♦goal). They represent worst-
and best-case scenarios for the behavior of the system.

A subsystem of M is an MDP obtained from M by
deleting states from S and redirecting transitions to fail. If
M satisfies Pr∗M,s0

(♦goal) ≥ λ for ∗ ∈ {min, max}, one
way of analyzing which parts of the system are sufficient
for this inequality is to find a subsystemM′ ofM already
satisfying the lower bound, i.e., Pr∗M′ ,s0

(♦goal) ≥ λ. We
call these witnessing subsystems. We aim at finding small
(or minimal) witnessing subsystems in terms of how many
states they include.

In [11] we proposed a translation between witnessing
subsystems and Farkas certificates (which are vectors
satisfying the conditions in Table I) for lower-bounded
reachability thresholds. Here, A ∈ RM×S and b ∈ RS

are defined as follows: A((s, α), t) = 1− P(s, α, s) if s = t
and −P(s, α, t) otherwise, and b(s, α) = P(s, α, goal).

In this paper, we are mainly interested in the first two
rows of Table I with . =≥, and denote the correspond-
ing sets of Farkas certificates by Pmin

M (λ) ⊆ RS
≥0 and

Pmax
M (λ) ⊆ RM≥0. The passage from a Farkas certificate

z ∈ Pmin
M (λ) (resp. y ∈ Pmax

M (λ)) to a subsystem
of M works by including all states with z(s) > 0
(resp. y(s, α) > 0 for some α), and all edges between
such states. All other edges are redirected to fail. Thus,
computing minimal (small) witnessing subsystems for
Pr∗M,s0

(♦goal) ≥ λ can be reduced to finding points in
P∗M(λ) with a maximal (large) number of zeros.

As in [11] we have to assume that the only maximal end
components of M are {goal} and {fail}. This means that
almost all paths reach either of these two states under
every scheduler. This can be ensured by a preprocessing
step whose time-complexity is at most quadratic in the
underlying graph, see [2, 9].

III. IMPLEMENTATION AND FEATURES

SWITSS1 is a complete re-implementation and sub-
stantial extension of the prototype implementation that
was used to run the experiments presented in [11]. An
overview of the structure of SWITSS is given in Figure 1.
Apart from increased usability and an extensive docu-
mentation and testing suite, the main extensions are the
following:
• Functions to generate and verify certificates for all

senses (≤,<,≥,>) and modes (min/max).
• Visualization of MDP subsystems.

1https://github.com/simonjantsch/switss
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Fig. 1: SWITSS contains modules for modeling DTMCs and MDPs (switss.model), different approaches to
finding small (or minimal) subsystems (switss.problem) and interfaces to MILP and LP solvers, built on
top of the PuLP library (switss.solver). The model.ReachabilityForm class is a wrapper for DTMCs/MDPs
which fulfill the requirements as given in Section II (having a single target and fail state, etc.). Finding small
subsystems is done through implementations of problem.ProblemFormulation, e.g. by using the quotient sum
heuristics (problem.QSHeur) or the MILP formulation (problem.MILPExact). Additionally included are modules
for benchmarking (switss.benchmarks), generating and verifying Farkas certificates (switss.certfication) and
interaction with PRISM and PRISM file formats (switss.prism).

• A generalized notion of minimality that allows to
minimize “active labels” [25] in the subsystem (both
exactly and heuristically).

• New heuristics for the computation of witnessing
subsystems with few states.

• Support for various LP/MILP solvers.
SWITSS is implemented in python and can be included

as a library, or used as a stand-alone tool. MDPs and
DTMCs can be loaded either from the explicit transition
matrix format (.tra), or from a model specified in the
PRISM [19] guarded command language. In the latter case,
SWITSS uses PRISM to derive an explicit transition matrix
representation. The library PuLP2 is used as modeling
language for linear programs, and as an interface to
various LP/MILP solvers, where we currently support:
GUROBI [12], CPLEX3, CBC4 and GLPK5. While the
first two are proprietary software (both offer academic
licenses), the latter two are open source.

A. Computing and verifying Farkas certificates
Generating Farkas certificates (for a specified threshold,

sense and mode) amounts to finding a vector satisfy-
ing the corresponding linear inequalities as presented
in Table I. For the non-strict inequalities, this can be
done directly by solving an LP, where the objective
function can be arbitrary. Handling strict inequalities can
be done by replacing the strict inequality by its non-strict
counterpart, and then optimizing in the direction where

2https://coin-or.github.io/pulp/
3https://www.ibm.com/analytics/cplex-optimizer
4https://github.com/coin-or/Cbc
5https://www.gnu.org/software/glpk/

strict inequality is required. A Farkas certificate exists if
and only if the solution satisfies the strict inequality (and
the solution is then a certificate).

To verify that a given vector v is a Farkas certificate,
it is enough to check that it satisfies the inequalities.
Due to the varying precision of solvers and the python
numerical libraries, it can happen that exact satisfaction
of the certificate condition is not given. Hence we allow
a tolerance t to be passed as an option to the certificate
verifier, which will then check, for example, that:

Av− t ≤ b ∧ v(s0) + t ≥ λ

where t is the vector of appropriate dimension containing
t in every entry. In the future, we plan to explore how
robust certificates (which can be verified with t = 0)
can be generated efficiently and consistently (e.g. by
searching for vectors that do not lie on the boundary
of the polytope).

B. New heuristics

To find points in P∗M(λ) with many zeros, the quotient-
sum (QS) heuristic [11] iteratively solves LPs over the
polytope P∗M(λ). The objective function is updated in
every step in a way that aims at pushing as many entries
of the solutions vectors to zero as possible. The LP that
is solved for Pmin

M (λ) is:

min ∑
s∈S

oi(s)z(s) s.t. z ∈ Pmin
M (λ) (III.1)

We put o0 = (1, . . . , 1) ∈ RS and compute oj+1 from
a solution zj of the j-th iteration by the quotient rule:
oj+1(s) = 1/zj(s) if zj(s) > 0, and else oj+1(s) = C for
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some big C. Hence, a dimension close to zero will have
a high “cost” in the next iteration.

While the heuristics generally yield small subsystems
fast (especially when compared with the time it takes to
exactly minimize the number of states with a MILP),
sometimes “spikes” were observed: the heuristics re-
turned a worse result when decreasing λ. As a witnessing
subsystem for λ is also witnessing for all λ′ ≤ λ, this is
undesirable.

In SWITSS both the initial objective o0 and the update
can be customized. As shown by our experiments (Sec-
tion V), the choice of o0 may have a substantial effect on
the performance of the heuristics (first experiments on
changing the update did not lead to better performance).
We propose the following candidate values for o0. For the
heuristic related to Prmax, we take o0 to be the inverse
of a solution to the following LP (where the inverse is
the result of pointwise 1/·, if the corresponding entry is
greater 0, and a big constant otherwise):

max yb s.t. y ∈ Pmax
M (0) (III.2)

For Prmin we let o0 be the inverse of a solution to:

max ∑
s∈S

z(s) s.t. z ∈ Pmin
M (0) (III.3)

Putting λ = 0 discards the constraint z(s0) ≥ λ for
∗ = min and yb ≥ λ for ∗ = max (compare Table I). If
M is a DTMC, then a solution vector of Equation (III.2)
contains the expected number of visits to a state and a
solution of Equation (III.3) contains the probability to
reach goal from every state. Intuitively, states with a low
entry in these vectors contribute less to the probability of
reaching goal from the initial state, and hence should get
a higher value in o0. Similar importance measures where
considered in the context of counterexample generation
in [7].

C. Label-based minimization

The idea of minimizing not the number of states, but
the number of labels present in a subsystem was first
considered in [25]. There it was used to minimize the
number of “active” commands for MDPs given in PRISM
language. We have extended the approach of [11] to
allow label-based minimization in a similar way as was
done in [25]. This allows applying the QS-heuristic to the
computation of subsystems with few active labels. Further
interesting use cases could be minimizing participating
components (for compositional systems) in a witnessing
subsystem, or the number of controllable states.

Our extension works as follows. Take an MDP M
with states S ∪ {goal, fail} a finite set of labels L and
Λ : S → 2L. Now let σ be a vector with |L| variables
with domain [0, 1] and consider the following LPs, which

generalize the LPs of [11, Section 6]:

min ∑
l∈L

σ(l) s.t.
z ∈ Pmin

M (λ)

z(s) ≤ σ(l) f.a. s∈S
l∈Λ(s)

(III.4)

min ∑
l∈L

σ(l) s.t.
y ∈ Pmax

M (λ)

y(s, α) ≤ K · σ(l) f.a.
(s,α)∈M
l∈Λ(s)

(III.5)

The factor K in Equation (III.5) is an upper bound on any
entry of any vector y ∈ Pmax

M (λ) (here we use that P∗M(λ)
is bounded, cf. [11, Lemma 5.1]). It can be computed by
first maximizing the sum of all entries over all vectors
in Pmax

M (λ) using an LP, and taking the objective value
of the solution to be K. The first LP does not need this
step, as 1 is an upper bound on all entries in any vector
z ∈ Pmin

M (λ).
A solution (z, σ) of Equation (III.4) with N non-zero

entries in σ can be translated into a witnessing subsystem
for Prmin

M (♦goal) ≥ λ with N labels. Conversely, a
witnessing subsystem with N active labels induces a
solution (z, σ) such that σ has N non-zero entries. The
same holds for Equation (III.5).

The QS-heuristic can be adapted to label-based mini-
mization by trying to push only the entries of σ to zero.
This algorithm is implemented in SWITSS. Restricting
the domain of σ-variables in Equations (III.4) and (III.5)
to {0, 1} yields a MILP, whose solutions correspond to
witnessing subsystems with a minimal amount of present
labels.

IV. A TOUR OF SWITSS

The following tour can be reproduced using the
supplementary material [18]. We first load an MDP:
In: mc = MDP.from_file(

"ex_mdp.lab", "ex_mdp.tra")

The following command renders the MDP (we have
rebuilt the MDP in tikz for a better presentation and
refer to Figure 2 for an example output of SWITSS):
In: mc.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

We first transform the MDP into so-called reachability form
(RF), which can be thought of as a standardized format
for reachability analysis. It can be constructed from a
DTMC or MDP, an initial state (which should be unique),
and a set of target states. The method reduce performs
forward (from the intial state) and backward (from the
target states) reachability queries and removes all states
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init
c[0]=0.10000

a

b

c[1]=0.10000

1.0

c[4]=0.10000

1.0

0.6

goal
c[6]=0.50000

0.2

rf_fail

0.2

0.7 0.3

1.0

c[5]=0.20000

0.50.5

1.0

rf_target

1.0

1.0

1.0

Fig. 2: Visualization of a subsystem (which excludes the
gray states) by SWITSS . The other colors indicate a user
defined labeling. If the subsystem is induced by a Farkas
certificate (e.g. as returned by the QS-heuristic) SWITSS
prints the corresponding values in each state (or action,
for “max”-queries).

that are either unreachable, or do not reach goal. A new
distinguished target state is added, which receives an
incoming edge from each original target state.
In: rf,_,_ = ReachabilityForm.reduce(

mc, "init", "goal")
rf.system.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

A. Certification
Next we demonstrate how Farkas certificates can be

generated (by generate_farkas_certificate) and ver-
ified (by check_farkas_certificate). These methods
take an RF and a specification of the threshold property
to be certified. We first generate a certificate using CBC
and verify its validity.
In: cert = generate_farkas_certificate(

rf, "max", ">=", 0.55, solver="cbc")

In: check_farkas_certificate(
rf, "max", ">=", 0.55, cert)

Out: True

If the threshold property is not satisfied by the model,
no Farkas certificate can be produced.
In: fark_cert = generate_farkas_certificate(

rf, "min", ">=", 0.55, solver="cbc")

Out: Property is not satisfied!

B. Witnessing subsystems

We illustrate the computation of witnessing subsystems,
beginning with the methods for exactly minimizing the
number of states. In contrast to the certification module,
we only consider lower-bounded thresholds here, as
reachability probabilities cannot increase in subsystems.

1) Minimal witnessing subsystems: The class MILPExact

(an instance of ProblemFormulation) is used to specify
queries for exact minimization of an RF for a given
threshold property. It is initialized by specifying mode
(min or max) and solver:
In: milp_exact_max = MILPExact(

"max", solver="cbc")

The solve method now takes an RF and a threshold,
constructs the MILP and solves it by calling the specified
solver.
In: res = milp_exact_max.solve(rf, 0.1)

If successful, the result contains a subsystem that can
also be rendered graphically, where pale states do not
belong to the subsystem:
In: res.subsystem.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

If the threshold is increased to 0.3, the minimal wit-
nessing subsystem uses the upper branch:
In: res = milp_exact_max.solve(rf, 0.3)

In: res.subsystem.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

We now consider witnesses for minimal reachability.
Such a witness needs to ensure that the threshold is met
by all possible schedulers. For 0.1, it is enough to include
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the upper branch and the first state in the lower branch,
but for 0.3 already all states have to be included.
In: milp_exact_min = MILPExact(

"min", solver="cbc")

In: res = milp_exact_min.solve(rf, 0.1)
res.subsystem.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

2) The QS-heuristic: The counterpart of MILPExact

for the heuristic computations of small (rather than
minimal) witnessing subsystems is QSHeur. As it is an
iterative heuristic, we can use the method solveiter to
return an iterator over the results. In our example, all
three iterations return the same subsystem, which is not
optimal, however (compare with the results of the exact
query for maximum probability and threshold 0.1).
In: qs_max_heur = QSHeur(

"max", solver="cbc", iterations=3)
results = list(

qs_max_heur.solveiter(rf, 0.1))
print_results(results)

Out: -- results --
subsys states:5, value: 5
subsys states:5, value: 5
subsys states:5, value: 5

In: results[2].subsystem.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

The corresponding computation for minimum proba-
bilities improves after the first iteration and returns the
optimal witness (the default number of iterations of the
heuristics is three).
In: qs_min_heur = QSHeur(

"min", solver="cbc")
results = list(

qs_min_heur.solveiter(rf, 0.1))
print_results(results)

Out: -- results --
subsys states:7, value: 7
subsys states:5, value: 5
subsys states:5, value: 5

In: results[2].subsystem.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

C. Label-based minimization

Now suppose that we do not want to minimize the
amount of states present in the subsystem, but the amount
of colors that it includes. The colors stand for some
labeling that may interest the user. That is, the lower
branch counts as one, as it only includes one color, while
the upper branch counts two although it has a state
less. We specify this optimization objective by using the
labels parameter of the solve method.
In: milp_exact_labels = MILPExact(

"max", solver="cbc")
result_labels = milp_exact_labels.solve(

rf, 0.3,labels=["blue","green","brown"])
print_result(result_labels)

Out: subsys states: 5, value: 1.0

In contrast to minimizing the number of states, now
taking the entire lower branch is optimal for maximal
reachability probabilities and threshold 0.3. The objective
value of this subsystem is 1, as it only includes one of
the labels.
In: result_labels.subsystem.digraph()

Out:

init fail

goal

α

β

0.6

0.2

0.2

0.3

0.7

0.5

0.5

rf target

V. EXPERIMENTS

We have run experiments on a number of models
available in the benchmark suite6 of PRISM. The results
and all scripts used to produce them are included in
the supplementary material [18]. We used a computer
with two Intel Xeon L5630 CPUs at 2.13GHz with four
cores each and 189GB of RAM. Each computation was
assigned four cores, a memory limit of 10GB and each
call to an LP/MILP solver (we use Gurobi, version 9.0.1)
was limited to 20 minutes.

6https://github.com/prismmodelchecker/prism-benchmarks/
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Fig. 3: Comparison of subsystem sizes achieved by the heuristics of SWITSS for benchmark DTMCs.

We consider the following models, where the first two
are DTMCs and the last two are MDPs: the bounded re-
transmission protocol [10, 13] (brp-N-K), the crowds pro-
tocol [23, 24] (crowds-N-K), the randomized consensus
protocol [4, 20] (consensus-N-K) and the csma-N-K
protocol for data channels [21]. In all cases increasing
N and K, (which, for example, stand for the number of
participating members, or a bound on possible random
walks) leads to larger models. For each model we fixed a
reachability objective, inspired by properties considered
in the benchmark suite.

We contrast the results of the QS-heuristic with initial
objective (1, . . . , 1) (called AO for “all-ones”), and the
initial objectives InvF and InvP , which are inverses of
solutions of Equations (III.2) and (III.3), respectively. As
InvF is derived from the Pmax

M (λ) polytope, we apply
it to the max-queries, and conversely for InvP . We let
the QS-heuristic compute five iterations. The subscripts
i in AOi, InvF i and InvP i refer to the result at iteration
i. As the last iterations do not yield much improvement
we only consider the first three iterations in Figure 3
and Figure 4. If no improvement was made after the i-th
iteration, we do not show the following ones.

We examine for each model the time needed to com-
pute the reachability form (from an explicit transition

matrix) and the maximal time (over min/max-forms,
all considered thresholds and initial values) needed to
compute five iterations of the QS-heuristic, given the RF.
This latter value is called max-time.

We first consider the DTMCs: crowds-5-8 (27,849
states, 11.3 s to construct RF, max-time: 191.6 s) and
brp-1024-2 (31,749 states, 9.4 s to construct RF,
max-time: 366.1 s). As Prmax

M (♦goal) = Prmin
M (♦goal) if

M is a DTMC, witnesses for max- and min-probabilities
coincide. Still, the QS-heuristic applied to the polytopes
Pmax
M (λ), and Pmin

M (λ) yields different results. This was
already observed in [11], where it was also noted that
one of the two usually performs well with the initial
objective AO (the only one considered in [11]). The
new experiments show that InvF and InvP are better
initial vectors for the considered instances (see the
difference between AO3 and InvF1 in crowds-5-8 max
and, respectively, InvP2 in brp-1024-2 min of Figure 3).
The new heuristics also tend to stabilise after fewer
iterations.

The MDPs that we consider are: consensus-2-6
(786 states, 1170 state-action pairs, 0.3 s to construct RF,
max-time: 3.5 s) and CSMA-2-6 (66,720 states, 66,790
state-action pairs, 18.5 s to construct RF, max-time:
512.7 s). The new heuristics have a mixed effect
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Fig. 4: Comparison of subsystem sizes achieved by the heuristics of SWITSS for benchmark MDPs.

here: in the max-case, CSMA-2-6 profits while for
consensus-2-6 the AO-initialization yields better re-
sults. For min, AO and InvP perform equally well. It
should be noted that in CSMA-2-6 the number of actions
per state is very close to one, and hence it is “close” to
being a DTMC. For consensus-2-6 it is noteworthy
that relatively small subsystems are possible for maximal
reachability throughout all considered thresholds.

The experiments show that the QS-heuristic is able to
compute small witnessing subsystems in a reasonable
time for models with over 60,000 states, and that the
new heuristics perform well. As the exact computations
via MILP run into the timeout for all of the models
in Figure 3 and Figure 4, we cannot say how far the
computed subsystems are from the optimal ones in
terms of their size. However, generalizing from smaller
instances (see Figure 5) indicates that the performance
of the heuristic is good.

VI. CONCLUSION

We have presented SWITSS, a tool for computing small
witnessing subsystems in discrete Markovian models.
Contrary to other tools in the field, SWITSS takes a unified
approach for all scenarios that have been considered
in the literature (minimal and maximal probabilities,
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Fig. 5: The QS-heuristic vs. exact minimization.

exact and heuristic computation). New initial objective
functions in the QS-heuristic have been shown to improve
previous results for DTMCs. Our tool also comes with
the complete functionality of a certificate generator and
verifier for reachability problems in MDPs.

In future work we will investigate which properties
of a DTMC benefit either the minimal or the maximal
probability formulation, and add an automated detection
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scheme to SWITSS in order to avoid redundant compu-
tations. We also intend to incorporate a new class of
heuristics based on vertex enumeration algorithms.
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