
Formal Methods in Computer-Aided Design 2020

Smart Induction for Isabelle/HOL (Tool Paper)
Yutaka Nagashima

CIIRC, Czech Technical University in Prague
University of Innsbruck

Email: yutaka.nagashima@cvut.cz

Abstract—Proof assistants offer tactics to facilitate inductive
proofs; however, deciding what arguments to pass to these tactics
still requires human ingenuity. To automate this process, we
present smart_induct for Isabelle/HOL. Given an inductive
problem in any problem domain, smart_induct lists promising
arguments for the induct tactic without relying on a search. Our
in-depth evaluation demonstrate that smart_induct produces
valuable recommendations across problem domains. Currently,
smart_induct is an interactive tool; however, we expect that
smart_induct can be used to narrow the search space of
automatic inductive provers.

I. INTRODUCTION

Proof by induction lies at the heart of verification of
computer programs that involve recursive data-structures, re-
cursion, or iteration [1]. To facilitate proofs by induction, inter-
active theorem provers, such as Isabelle/HOL [2], Coq [3], and
HOL[4], offers tactics. Yet, it requires prover specific expertise
to be familiar with such tactics, and human developers have
to manually investigate each inductive problem to decide how
to apply such tactics.

Unfortunately, the automation of proof by induction is
considered as a long standing challenge in computer science,
for which Gramlich [1] presented the following conjecture in
2005:

in the near future, inductive theorem proving will
only be successful for very specialised domains for
very restricted classes of conjectures. Inductive the-
orem proving will continue to be a very challenging
engineering process [1].

We challenge his conjecture with smart_induct, a rec-
ommendation tool for proof by induction in Isabelle/HOL.
Given an inductive problem in any domain, smart_induct
suggests how one should apply the induct tactic to attack
that problem.

II. PROOF BY INDUCTION IN ISABELLE/HOL

Given the following two simple reverse functions defined in
Isabelle/HOL [2], how do you prove their equivalence [5]?

primrec rev::"α list => α list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"

fun itrev::"α list => α list => α list"
where

"itrev [] ys = ys"
| "itrev (x#xs) ys = itrev xs (x#ys)"

lemma "itrev xs ys = rev xs @ ys"

where # is the list constructor, and @ appends two lists.
Using the induct tactic of Isabelle/HOL, we can prove this
inductive problem in multiple ways:

lemma prf1: "itrev xs ys = rev xs @ ys"
apply(induct xs arbitrary: ys) by auto

lemma prf2: "itrev xs ys = rev xs @ ys"
apply(induct xs ys rule:itrev.induct)
by auto

prf1 applies structural induction on xs while generalising ys
before applying induction by passing ys to the arbitrary
field. It is worth noting that the induct tactic determines the
default induction principle in prf1 from the induction term,
xs. On the other hand, prf2 applies functional induction
(also known as computation induction) on itrev by the
induction principle, itrev.induct, to the rule field.

There are other lesser-known techniques to handle difficult
inductive problems using the induct tactic, and sometimes
users have to develop useful auxiliary lemmas manually;
however, for most cases the problem of how to apply induction
boils down to the the following three questions:

• On which terms to apply induction?
• Which variables to generalise using the arbitrary

field?
• Which rule to use for functional induction or rule inver-

sion (as known as rule induction) in the rule field?
To answer these questions automatically, we previously de-

veloped a proof strategy language, PSL [6]. Given an inductive
problem, PSL produces various combinations of induction
arguments for the induct tactic and conducts an extensive
proof search based on a given strategy. If PSL completes
a proof search, it identifies the appropriate combination of
arguments for the problem and presents the combination to
the user; however, when the search space becomes enormous,
PSL cannot find a proof within a realistic timeout and fails to
provide any recommendation, even if PSL produces the right
combination of induction arguments. For further automation of
proof by induction, we need a tool that satisfies the following
two criteria:

• The tool suggests right induction arguments without
completing a proof search.

• The tool suggests right induction arguments for any
inductive problems.

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 32 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD20
https://orcid.org/0000-0001-6693-5325
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_32
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_32
https://creativecommons.org/licenses/by/4.0/


goal
Step 1: creating many inductions

Step 2: multi-stage screening

Step 3: scoring using LiFtEr and sorting

1818 1818 172020

Step 4: short-listing

Fig. 1: The workflow of smart_induct.

In this paper we present smart_induct, a recommen-
dation tool that addresses these criteria. smart_induct is
available at GitHub [7] together with our running example and
the evaluation files discussed in Section IV.

The implementation of smart_induct is specific to
Isabelle/HOL; however, the underlying concept is transferable
to other tactic-based proof assistants including HOL4 [4],
Coq [3], and Lean [8]. We developed smart_induct as an
interactive tool, but one can take its approach to narrow the
search space for automatic inductive provers, such as ACL2
[9] and Imandra [10].

To the best of our knowledge smart_induct is the
first recommendation tool that uses a logic to analyze the
syntactic structures of proof goals and advises how to apply the
induct tactic across problem domains without completing to
a proof search.

III. GENERATING AND FILTERING TACTICS

Fig. 1 illustrates the internal workflow of smart_induct:
when invoked by a user, the first step produces many variants
of the induct tactic with different combinations of argu-
ments. Secondly, the multi-stage screening step filters out less
promising combinations of induction arguments. Thirdly, the
scoring step evaluates each combination to a natural number
using logical feature extractors implemented in LiFtEr [11]
and reorder the combinations based on their scores. Lastly, the
short-listing step takes the best 10 candidates and prints them
in the Output panel of Isabelle/jEdit as shown in Fig. 2. In
this section, we explore details of Step 1 to Step 3.

A. Step 1: Creation of Many Induction Tactics.

smart_induct inspects the given proof goal and pro-
duces a number of combinations of arguments for the induct
tactic taking the following procedure: smart_induct col-
lects variables and constants appearing in the goal. If a con-
stant has an associated induction rule in the underlying proof
context, smart_induct also collects that rule. From these
variables and induction rules, smart_induct produces the
power set of combinations of arguments for the induct tac-
tic. Then, for each member of the power set smart_induct
computes the permutation of the induction variables since

Fig. 2: The user-interface of smart_induct.

the induct tactic behaves differently for different orders
of induction variables. Finally, smart_induct produces a
tactic for each well-typed permutation of induction variables
for each member of the power set.

In our example, smart_induct picks up xs and ys as
variables and itrev and rev as constants, from which it
finds itrev.induct as an induction rule, which Isabelle
derived automatically when defining itrev. From these vari-
ables and rule, smart_induct produces 40 combinations of
induction arguments.

If the size of this set is enormous, we cannot store all
the produced induction tactics in our machines. Therefore,
smart_induct produces this set as a lazy sequence and
takes only the first 10,000 combinations for further processing.

B. Step 2: Multi-Stage Screening.

10,000 is still a large number, and feature extractors used in
Step 3 often involve nested traversals of nodes in the syntax
tree representing a proof goal, leading to high computational
costs. Fortunately, the application of the induct tactic itself
is not computationally expensive in most cases: we can apply
the induct tactic to a proof goal and have intermediate sub-
goals at a low cost. Therefore, in Step 2, smart_induct
applies the induct tactic to the given proof goal using the
various combinations of arguments from Step 1 and filter out
some of them through the following two stages.

Stage 1 focuses on the induct tactics that return
some results: in the first stage, smart_induct filters out
those combinations of induction arguments, with which Is-
abelle/HOL does not produce an intermediate goal. Since we
have no known theoretical upper bound for the computational
cost for the induct tactic, we also filter out those combina-
tions of arguments, with which the induct tactic does not
return a result within a pre-defined timeout. In our running
example, this stage filters out 8 combinations out of 40.

Stage 2 discards the induct tactic tactics that return
unpromising results: taking the results from the previous
stage, Stage 2 scans both the original goal and the newly
introduced intermediate sub-goals at the same time to further
filter out less promising combinations. More concretely, this

246



stage filters out all combinations of arguments if they satisfy
any of the following conditions.

• Some of newly introduced sub-goals are identical to each
other.

• A newly introduced sub-goal contains a schematic vari-
able even though the original first sub-goal did not
contain a schematic variable.

In our example, Stage 2 does not filter out any combination.
Note that these tests on the original goal and resulting sub-
goals do not involve nested traversals of nodes in the syntax
tree representing goals. For this reason, the computational cost
of this stage is often lower than that of Step 3.

C. Step 3: Scoring Induction Arguments using LiFtEr.

Step 3 carefully investigates the remaining candidates us-
ing heuristics implemented in LiFtEr [11]. LiFtEr is a
domain-specific language to encode induction heuristics in a
style independent of problem domains. Given a proof goal and
combination of induction arguments, the LiFtEr interpreter
mechanically checks if the combination is appropriate for
the goal in terms of a heuristic written in LiFtEr. The
interpreter returns True if the combination is compatible with
the heuristic and False if not. We illustrated the details of
LiFtEr in our previous work [11] with many examples. In
this paper, we focus on the essence of LiFtEr and show one
example heuristic used in smart_induct.
LiFtEr supports four types of variables: natural numbers,

induction rules, terms, and term occurrences. An induction
rule is an auxiliary lemma passed to the rule field of the
induct tactic. The domain of terms is the set of all sub-terms
appearing in a given goal. The logical connectives (∨, ∧, →,
and ¬) correspond to the connectives in the classical logic.
LiFtEr offers atomic assertions, such as is_rule_of, to
examine the property of each atomic term. Quantifiers bring
the power of abstraction to LiFtEr, which allows LiFtEr
users to encode induction heuristics that can transcend problem
domains. Quantification over term can be restricted to the
induction terms used in the induct tactic.

We encoded 19 heuristics in LiFtEr for smart_induct
and assign weights to these heuristics. Some of them examine
a combination of induction arguments in terms of functional
induction or rule inversion, whereas others check the combina-
tion for structural induction. Program 1, for example, encodes
a heuristic for functional induction. In English this heuristic
reads as follows:

if there exists a rule, r1, in the rule field of the
induct tactic, then there exists a term t1 with an
occurrence to1, such that r1 is derived by Isabelle
when defining t1, and for all induction terms t2,
there exists an occurrence to2 of t2 such that, there
exists a number n, such that to2 is the nth argument
of to1 and that t2 is the nth induction terms passed
to the induct tactic.

If we apply this heuristic to our running example, prf2,
the LiFtEr interpreter returns True: there is an argument,

Program 1 A LiFtEr heuristic used in smart_induct.
∃ r1 : rule. True

→
∃ r1 : rule.
∃ t1 : term.
∃ to1 : term_occurrence ∈ t1 : term.

r1 is_rule_of to1
∧
∀ t2 : term ∈ induction_term.
∃ to2 : term_occurrence ∈ t2 : term.
∃ n : number.
is_nth_argument_of (to2, n, to1)

∧
t2 is_nth_induction_term n

itrev.induct, in the rule field, and the occurrence of its
related term, itrev, in the proof goal takes all the induction
terms, xs and ys, as its arguments in the same order.

Attentive readers may have noticed that Program 1 is
independent of any types or constants specific to prf2.
Instead of handling specific constructs explicitly, Program
1 analyzes the structure of the goal with respect to the
arguments passed to the induct tactic in an abstract way
using quantified variables and logical connectives. This power
of abstraction let smart_induct evaluate whether a given
combination of arguments to the induct tactic is appropri-
ate for a user-defined proof goal consisting of user-defined
types and constants, even though such constructs are not
available to the smart_induct developers. In fact, none
of the LiFtEr heuristics used in smart_induct relies
on constructs specific to any problem domain except for one
heuristic, which involves a heuristic about Set.member. We
developed this particular heuristic for conjectures involving
Set.member since Set.member appears in the standard
library of Isabelle/HOL and is used by many Isabelle users.

In Step 3, smart_induct applies these heuristics to the
results from Step 2. For each heuristic, smart_induct gives
certain predefined points to each combination of induct
arguments if the LiFtEr interpreter returns True for that
combination. Then, smart_induct reorders these combi-
nations based on their scores and presents the most promising
combinations to the user in Step 4.

D. User-Interface

Fig. 2 shows a screenshot of Isabelle/jEdit interface with
smart_induct. The seamless integration into Isabelle’s
ecosystem makes smart_induct easy to install and easy
to use: smart_induct is free from any dependency to
external tools except for Isabelle/HOL itself, and we have in-
corporated smart_induct into Isabelle/Isar [12], Isabelle’s
proof language, and Isabelle/jEdit, its standard editor. This
allows Isabelle users to invoke smart_induct by typing
smart_induct within their proof document and to copy a
recommended use of the induct tactic to the right location
in the document with one click.

247



Challenge(12)

11.0%

DFS(10)

9.2%

Goodstein(52)
47.7%

NN(11)

10.1%

PST(24)
22.0%

Fig. 3: Breakdown of the evaluation dataset.

wR-wA(9)
8.3%

wR-woA(55)

50.5%

woR-wA(14)

12.8%

woR-woA(31)

28.4%

Fig. 4: Use of rule and arbitrary fields.

Since smart_induct is a meta-tool to use Isabelle’s de-
fault induction tactic, once smart_induct has been called
and the tactic inserted, one can remove the smart_induct
call.

IV. EVALUATION

We evaluated smart_induct by measuring its perfor-
mance. We conducted all evaluations using a MacBook Pro
(15-inch, 2019) with 2.6 GHz Intel Core i7 6-core memory
32 GB 2400 MHz DDR4.

A. Database for evaluation.

As our evaluation target, we chose five Isabelle theory
files with many inductive problems developed by various
researchers from the Archive of Formal Proofs [13]. In the
following, we use the following short names to denote these
files:

1) Challenge stands for Challenge1A.thy, which is a
part of the solution for VerifyThis2019, a program ver-
ification competition associated with ETAPS2019 [14],

2) DFS stands for DFS.thy, which is a formalisation of
depth-first search [15],

3) Goodstein is for Goodstein_Lambda.thy, which is
an implementation of the Goodstein function in lambda-
calculus [16],

4) NN stands for Nearest_Neighbors.thy, which
is from the formalisation of multi-dimensional binary
search trees [17], and

TABLE I: Scope of smart_induct.

- w/ handwritten rule w/o handwritten rule

w/ compound term 1 (0.9%) 1 (0.9%)
w/o compound term 5 (4.6%) 102 (93.6%)

5) PST stands for PST_RBT.thy, which is from the
formalisation of priority search tree [18].

As a whole these files contain 109 calls of the induct
tactic. Fig. 3 shows the demographics of our dataset. For exam-
ple, NN(11) 10.1% mean that Nearest_Neighbor.thy
contains 11 invocations of the induct tactic, which accounts
for 10.1% of all invocations of the induct tactic in our
dataset.

Fig. 4, on the other hand, shows how often proof authors
used the rule and arbitrary fields. In the labels of Fig. 4,
“w” and “wo” stand for “with” and “without”, respectively;
whereas “R” and “A” stand for “Rule” and “Arbitrary”. For
example, “wR-woA(55) 50.5%” represents that among the
109 applications of the induct tactic 55 of them have an
argument in the rule field but have no argument in the
arbitrary field, and this amounts to 50.5%. We greyed the
area corresponding to the applications of the induct tactic
with an argument in the rule field.

This figure illustrates that in our dataset
• more than half of applications come with a rule, and
• applications of the induct tactic with a rule are less

likely to involve generalisation.
Table I shows how many proofs by induction in the eval-

uation dataset reside within the scope of smart_induct.
For example, 102(93.6%) for “w/o compound term” and “w/o
handwritten rule” means the following: for 102 proofs by
induction out of 109, developers of this dataset used the
induct tactic without applying induction on a compound
term nor using an induction rule in the rule field that was
conjectured and proved manually by a human developer.

These 102 proofs by induction are the only ones that
reside within the scope of smart_induct because Step
1 of smart_induct does not create the induct tactics
on compound terms or the induct tactics with induction
principles that were not derived by Isabelle automatically when
defining a constant appearing in the proof goal at hand.

Conversely, the remaining three entries in Table I corre-
spond to the invocations of the induct tactic that lie outside
the scope of smart_induct. And such invocations amount
to 7 (6.4%) out of 109.

B. Coincidence Rate.

The most important aspect of this tool would be the accu-
racy of its recommendation. Unfortunately, it is in general not
possible to measure if a combination of induction arguments
is correct for a goal because many proofs by induction can be
valid for one inductive problem. For our running example,
we have two proofs, prf1 and prf2, and both of them
are equally good. In this particular case, we can confirm

248



Challenge DFS Goodstein NN PST overall
0

50

100

75

50

28.8

9.1

100

49.5

75
80

51.9

9.1

100

63.3
75

80
69.2

18.2

100

72.575
80 80.8

63.6

100

82.6

co
in

ci
de

nc
e

ra
te

[%
]

top 1 top 3 top 5 top 10

Fig. 5: Coincidence rates for each theory file.

Challenge DFS Goodstein NN PST

0

50

100
100

70

40.4

0

100

8.3
0

25

81.8

0

In
vo

ca
tio

ns
of

th
e
i
n
d
u
c
t

ta
ct

ic
[%

]

rule arbitrary

Fig. 6: Inductions with a rule or generalization.

the correctness of these combinations of induction arguments
by completing the corresponding proof attempts; however,
the necessary proof scripts that follow the induct tactic,
in general, can be arbitrarily long, and for this reason it is
not possible to mechanically check whether a combination of
induction arguments is correct or not.

Since we cannot directly measure the true success rate
of smart_induct, we evaluated the trustworthiness of
smart_induct’s recommendations using coincidence rates:
we counted how often its recommendation coincides with
the choices of Isabelle experts. Since we often have multi-
ple equally valid combinations of induction arguments for a
given proof goal, we should regard a coincidence rate as a
conservative estimate of true success rate.

On the other hand, we can safely consider our coincidence
rates as the lower bound for the true success rates since we
collected our evaluation targets from the Archive of Formal
Proofs [13], which accepts Isabelle proof documents only after
the peer-reviewing process by Isabelle experts.

Fig. 5 shows coincidence rates for each theory file and
the entire dataset separately. The four bars for each theory
file represent the corresponding success rates among top n

recommendations, where n is 1, 3, 5, and 10 from left to
right. For example, top 3 for Goodstein is 51.9%. This means
the following: when smart_induct recommends three most
promising combinations induction arguments to 52 inductive
problems in Goodstein_Lambda.thy, for 51.9% out of
52 problems in this file one of the three combinations of induc-
tion arguments recommended by smart_induct coincides
with the choice of human proof author.

As mentioned earlier, we should regard a coincidence rate
as a conservative estimate of true success rate. Therefore,
51.9% mentioned above should be interpreted as following:
smart_induct’s recommendation coincides with the choice
of experienced Isabelle user for 51.9% of times when it is
allowed to recommend three combinations of arguments, but
the real success rate of smart_induct’s recommendation
can be higher than 51.9%.

Notably the rightmost group of bars in Fig. 5 shows
that smart_induct can recommend the choice of human
engineer as the most promising application of the induct
tactic for at least roughly half of the cases (49.5%).

A quick glance over Fig. 5 would give the impression that
smart_induct’s performance depends heavily on problem
domains: smart_induct demonstrated the perfect result for
PST, whereas the coincidence rate for NN remains at 18.2%
for top 5.

However, a closer investigation of the results reveals that
the different coincidence rates come from the style of induc-
tion rather than domain specific items such as the types or
constructs appearing in goals.

To corroborate this claim, we illustrate how each proof
author used the induct tactic to develop each theory file
in Fig. 6. In this figure each pair of bars presents how often
the induct tactic comes with an argument in the rule field
and arbitrary field, respectively. For example, the left bar
for Goodstein is 40.4% whereas its right bar is 25.0%. This
means that the induct tactic is applied with an argument
in the rule field for 40.4% of times in Goodstein, and the
induct tactic generalises a variable using the arbitrary
field for 25.0% of times in the same file.

Together with Fig. 5, Fig. 6 shows that smart_induct

249



tends to show a higher coincidence rate for theory files with
a high proportion of the induct tactics with an argument
in the rule field and a lower proportion of the tactics with
generalisation using the arbitrary field. NN and PST
are two extreme examples: In NN, 81.8% of applications
of the induct tactic involve generalisation while no appli-
cation of the tactic has an argument in the rule field in
Fig. 6, and smart_induct’s coincidence rates are lowest
for NN. On the contrary, PST has no application involving
generalisation while all applications use the rule field, and
smart_induct’s showed the perfect result for PST.

To further investigate how the style of induction affects the
coincidence rate of smart_induct, we measured coinci-
dence rates based on the use of the rule and arbitrary
fields in Fig. 7 where “w” and “wo” stand for “with” and
“without”, respectively. For example, the leftmost group la-
belled with “w-rule-w-arb” represents the coincidence rates
among the applications of the induct tactic that have argu-
ments in both the rule and arbitrary fields.

The two right most groups of bars represent the coincidence
rates based on the use of rule field regardless of the
use of the arbitrary field. These two groups show that
smart_induct tends to perform better in predicting how
human engineers use the induct tactic when the induct
tactic has an argument in the rule field, which correspond
to functional induction and rule inversion.

Interestingly, the two groups in the middle of Fig. 7 show
that if we focus on the cases without generalisation we can
see that the trend among the gaps between the coincidence
rates for rule-based inductions (function induction and rule
inversion) and the corresponding rates for structural inductions
is less clear: we have a wider gap for “top 1”, but narrower
gaps for “top 3” and “top 5”. And for “top 10” we even have
a lower coincidence rate for rule-based inductions. Moreover,
if we focus on the induct tactics involving generalisation,
smart_induct shows even lower coincidence rates for rule-
based inductions as shown by the two leftmost groups in Fig.
7; even though smart_induct overall tends to show higher
coincidence rates for rule-based inductions.

This seemingly paradoxical phenomenon is best explained
by Fig. 4, which shows that rule-based inductions less of-
ten involve generalisation (14.0%) than structural induction
(31.1%) in the dataset: it is still difficult for smart_induct
to predict which variable to generalise, especially for rule-
based inductions, but rule-based inductions tend not to involve
variable generalisation to begin with.

To investigate how far generalisation of variables leads to
poor coincidence rates, we computed the coincidence rates
for NN again based on a different criterion: this time we
ignored the arbitrary fields and took only induction terms
and arguments in the rule into consideration to measure
coincidence rates presented in Fig. 8. In Fig. 8, the coincidence
rate among top 1 is still as low as 9.1% since smart_induct
often chooses a rule-based induction for the most promising
candidate, but the overall trend is much better and similar to
the rates for w-rule-wo-arb in Fig 7. The large discrepancies

between the numbers for NN in Fig. 5 and those in Fig. 8
show that even for the most problematic theory file, NN, which
contains many structural inductions smart_induct is often
able to predict on which variables experts apply induction, but
it fails to predict which variables to generalise.

The limited performance in predicting experts’ use of the
arbitrary field stems from LiFtEr’s limited capability
to examine semantic information of proof goals. Even though
LiFtEr offers quantifiers, logical connectives, and atomic
assertions to analyze the syntactic structure of a goal in an
abstract way, LiFtEr does not offer enough supports to
analyze the semantics of the goal. For more accurate prediction
of variable generalisation, smart_induct needs a language
to analyze not only the structure of a goal itself but also the
structure of the definitions of types and constants appearing
in the goal abstractly.

C. Pruning.

Section III showed how smart_induct produces many
candidates of the induct tactic and prunes less promising
ones step by step. We measured how each of these steps
contributes to the production of recommendations by counting
how many candidates are produced and pruned at each step.

Fig. 9 illustrates how many candidates smart_induct
produced at each step for each proof by induction. The vertical
axis denotes the number of candidates after each step for the
corresponding proof by induction. White circles and “+”es
represent the number of remaining candidates for invocations
of smart_induct when the choice of induction arguments
by human authors coincides with one of the 10 most promising
combinations recommended by smart_induct. For such
successful cases, we also used a white diamond to depict
the corresponding “rank” given by smart_induct. For
example, if smart_induct gives a rank of 3, this means
smart_induct recommended the choice of human engineer
as the third most promising combination of arguments to the
induct tactic.

Along the horizontal axis in Fig. 9, we sorted proofs by
induction based on the number of candidates after Step 1. For
example, at the right-end of the horizontal axis, we have a
circle, a plus, and a diamond. This means for the proof by
induction represented by these three points Step 1 produced
10,000 candidates, and Step 2 pruned them down to 128
candidates, and Step 3 ranked the choice of human engineer
as the most promising candidate.

On the other hand, black circles and “x”es represent the
number of candidates for failed cases where the choice of
induction arguments by human authors did not appear among
the top 10 recommendations by smart_induct.

One can see that black circles are broadly distributed
along the horizontal axis, indicating that the number of initial
candidates after Step 1 does not have a strong influence on
the accuracy of smart_induct.

The use of the logarithmic scale for the vertical axis makes it
clear that the number of candidates after Step 1 differs wildly.

250



w-rule-w-arb wo-rule-w-arb w-rule-wo-arb wo-rule-wo-arb w-rule wo-rule

0

50

100

0

14.3

78.2

29

67.2

24.4

11.1
21.4

83.6

61.3
73.4

48.9

22.2
28.6

87.3
80.6 78.1

64.4

33.3

50

90.9
96.8

82.8 82.2
co

in
ci

de
nc

e
ra

te
[%

]

top 1 top 3 top 5 top 10

Fig. 7: Coincidence rates with regard to the rule and arbitrary fields.

NN ignoring generalisation

0

50

100

9.1

63.6

81.8

100

co
in

ci
de

nc
e

ra
te

[%
]

top 1 top 3 top 5 top 10

Fig. 8: Coincidence rates when ignoring arbitrary.

On the other hand, the number of candidates after Step 2 are
mostly contained under 200 with a single exception of 592.

Fig. 9 also shows that we had 6 cases where Step 1
reached its upper limit, 10,000. Interestingly, all these cases
are successful and 5 of them have the rank of 1. From this,
we can judge that the pre-defined upper limit of 10,000 is a
descent compromise, which excludes some possible combina-
tions of induction arguments without seriously damaging the
coincidence rates of smart_induct.

Finally the wide gaps between each “+” and its corre-
sponding diamond in Fig. 9 indicate that smart_induct’s
heuristics written in LiFtEr effectively nailed down the
combination of induction arguments used by human engineers
out of many plausible options.

D. Execution Time.

For smart_induct to be useful, it has to be able to
provide valuable recommendations within a realistic time out.

Fig. 10 illustrates the distribution of smart_induct’s
execution time necessary to produce recommendations. The
vertical axis represents the execution times in second for each
data point, which are sorted along the horizontal axis. As is
the case in Section IV-C, we filled circles for unsuccessful
cases with black.

Similarly to Fig. 9, Fig. 10 also shows that the unsuccessful
cases are spread along the horizontal axis, meaning there is
no clear correlation between execution time and the accuracy
of recommendation.

We again used the logarithmic scale for the vertical axis.
This means that execution times vary largely for different
proofs by induction, even though the numbers of candidates
after Step 2 are mostly kept below 200, as we saw in Section
IV-C, This is because the computational cost for each LiFtEr
heuristic in Step 3 depends on the syntactic structure of each
inductive problem, smart_induct’s execution time varies
for different problems.

The overall median value is 25.5 seconds, which means
smart_induct can produce a recommendation within 25.5
seconds for half of the problems. In the future we plan to
identify and discard less valuable heuristics in Step 3 to speed
up smart_induct.

V. CONCLUSION

We presented smart_induct, a recommendation tool for
proof by induction in Isabelle/HOL. Our evaluation showed
smart_induct’s excellent performance in recommending
how to apply functional induction and rule inversion and good
performance at identifying induction variables for structural
induction for various inductive problems across problem do-
mains. This partially refutes Gramlich’s bleak conjecture from
2005. However, recommendation of variable generalisation
remains as a challenging task.

It remains as an open question how far we can improve
the accuracy and speed of smart_induct by combining it
with search based systems [6], [19] and approaches based on
evolutionary computation [20] or statistical machine learning
[21].

Related Work: The most well-known approach for in-
ductive problems is called the Boyer-Moore waterfall model
[22]. This approach was invented for a first-order logic on
Common Lisp. ACL2 [23] is a commonly used waterfall
model based prover. When deciding how to apply induction,
ACL2 computes a score, called hitting ratio, to estimate how
good each induction scheme is for the term which it accounts

251



20 40 60 80 100
1

10

100

1,000

10,000

Invocations with nth most numerous candidates.N
um

be
r

of
ca

nd
id

at
es

af
te

r
ea

ch
st

ag
e.

after-step1-success.
after-step2-success.
after-step1-failure.
after-step2-failure.

rank.

Fig. 9: Number of Candidates After Each Step.

20 40 60 80 100
1

10

100

1,000

Nth most time consuming invocation.

E
xe

cu
tio

n
tim

e
[s

ec
on

d]
. Expert’s choice appeared among the top 10 candidates.

Expert’s choice did not appear among the top 10 candidates.

Fig. 10: Execution Time of smart_induct.

for and proceeds with the induction scheme with the highest
hitting ratio [9], [24].

Instead of computing the hitting ratios, smart_induct
analyzes the structures of proof goals directly using LiFtEr.
While ACL2 produces many induction schemes and computes
their hitting ratios, smart_induct does not directly produce
induction schemes but analyzes the given proof goal, the
arguments passed to the induct tactic, and the emerging
sub-goals.

Jiang et al. ran multiple waterfalls [25] in HOL Light
[26]. However, when deciding induction variables, they naively
picked the first free variable with a recursive type and left the
selection of appropriate induction variables as future work.

Machine learning applications to tactic-based provers [27],
[28], [29], [30], [31], [32] focus on selections of tactics, and
the selections of tactic arguments are restricted to premise
selections for general-purpose tactics; even though one often
has to choose terms for induction arguments to use the
induct tactic effectively.

Sometimes it is not enough to apply the induct tactic to
discharge an inductive problem in Isabelle/HOL but we have
to conjecture useful auxiliary lemmas, which we can use to

prove the original problem effectively. There are two schools to
automate such conjecturing step: bottom-up approach known
as theory exploration [33], [34] and top-down approach known
as goal-oriented conjecturing [19]. For both cases, conjectured
lemmas themselves are often inductive problems, which one
has to prove by applying proof by induction. For this reason,
we plan to achieve complementary strengths by incorporating
smart_induct into a conjecturing tool.

There was a series of attempts to automate proof by
induction in Isabelle/HOL in the style of rippling [35], [36].
Compared to their approach, we built smart_induct on top
of the default induct tactic, which allowed us to exploit the
widely used existing framework for proof by induction in Is-
abelle/HOL and made the resulting proof scripts maintainable
without smart_induct.

Reger et al. incorporated lightweight automated induction
into Vampire [37] for saturation-based automated first-order
theorem proving [38], while we built smart_induct for
Isabelle/HOL, a tactic-based interactive theorem prover for
higher-order logic.

252



ACKNOWLEDGMENT

This work was supported by the European Regional De-
velopment Fund under the project AI & Reasoning (reg.no.
CZ.02.1.01/0.0/0.0/15 003/0000466) and by NII under NII-
Internship Program 2019-2nd call.

REFERENCES

[1] B. Gramlich, “Strategic issues, problems and challenges in inductive
theorem proving,” Electr. Notes Theor. Comput. Sci., vol. 125, no. 2, pp.
5–43, 2005. [Online]. Available: https://doi.org/10.1016/j.entcs.2005.01.
006

[2] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - a proof
assistant for higher-order logic, ser. Lecture Notes in Computer Science.
Springer, 2002, vol. 2283.

[3] The Coq development team, “The Coq proof assistant.” [Online].
Available: https://coq.inria.fr

[4] K. Slind and M. Norrish, “A brief overview of HOL4,” in
Theorem Proving in Higher Order Logics, 21st International
Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008.
Proceedings, 2008, pp. 28–32. [Online]. Available: https://doi.org/10.
1007/978-3-540-71067-7 6

[5] T. Nipkow and G. Klein, Concrete Semantics - With
Isabelle/HOL. Springer, 2014. [Online]. Available: https://doi.org/
10.1007/978-3-319-10542-0

[6] Y. Nagashima and R. Kumar, “A proof strategy language and proof
script generation for Isabelle/HOL,” in Automated Deduction - CADE 26
- 26th International Conference on Automated Deduction, Gothenburg,
Sweden, August 6-11, 2017, Proceedings, ser. Lecture Notes in Computer
Science, L. de Moura, Ed., vol. 10395. Springer, 2017, pp. 528–545.
[Online]. Available: https://doi.org/10.1007/978-3-319-63046-5 32

[7] Y. Nagashima, “data61/psl.” [Online]. Available: https://github.com/
data61/PSL/releases/tag/0.1.7-alpha

[8] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von
Raumer, “The Lean Theorem Prover (System Description),” in
Automated Deduction - CADE-25 - 25th International Conference
on Automated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, 2015, pp. 378–388. [Online]. Available: https://doi.org/10.
1007/978-3-319-21401-6 26

[9] R. S. Boyer and J. S. Moore, A computational logic handbook, ser.
Perspectives in computing. Academic Press, 1979, vol. 23.

[10] G. O. Passmore, S. Cruanes, D. Ignatovich, D. Aitken, M. Bray,
E. Kagan, K. Kanishev, E. Maclean, and N. Mometto, “The
imandra automated reasoning system (system description),” CoRR, vol.
abs/2004.10263, 2020. [Online]. Available: https://arxiv.org/abs/2004.
10263

[11] Y. Nagashima, “LiFtEr: Language to encode induction heuristics for
Isabelle/HOL,” in Programming Languages and Systems - 17th Asian
Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December
1-4, 2019, Proceedings, 2019, pp. 266–287. [Online]. Available:
https://doi.org/10.1007/978-3-030-34175-6 14

[12] M. Wenzel, “The Isabelle/Isar reference manual,” 2011.
[13] G. Klein, T. Nipkow, L. Paulson, and R. Thiemann, The Archive of

Formal Proofs, 2004. [Online]. Available: https://www.isa-afp.org/
[14] P. Lammich and S. Wimmer, “Verifythis 2019 – polished isabelle so-

lutions,” Archive of Formal Proofs, Oct. 2019, http://isa-afp.org/entries/
VerifyThis2019.html, Formal proof development.

[15] T. Nishihara and Y. Minamide, “Depth first search,” Archive of
Formal Proofs, Jun. 2004, http://isa-afp.org/entries/Depth-First-Search.
html, Formal proof development.

[16] B. Felgenhauer, “Implementing the goodstein function in lambda-
calculus,” Archive of Formal Proofs, Feb. 2020, http://isa-afp.org/entries/
Goodstein Lambda.html, Formal proof development.

[17] M. Rau, “Multidimensional binary search trees,” Archive of Formal
Proofs, May 2019, http://isa-afp.org/entries/KD Tree.html, Formal proof
development.

[18] P. Lammich and T. Nipkow, “Priority search trees,” Archive of Formal
Proofs, Jun. 2019, http://isa-afp.org/entries/Priority Search Trees.html,
Formal proof development.

[19] Y. Nagashima and J. Parsert, “Goal-oriented conjecturing for
Isabelle/HOL,” in Intelligent Computer Mathematics - 11th International
Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018,
Proceedings, 2018, pp. 225–231. [Online]. Available: https://doi.org/10.
1007/978-3-319-96812-4 19

[20] Y. Nagashima, “Towards evolutionary theorem proving for
Isabelle/HOL,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO 2019, Prague, Czech
Republic, July 13-17, 2019, 2019, pp. 419–420. [Online]. Available:
https://doi.org/10.1145/3319619.3321921

[21] Towards Machine Learning Mathematical Induction, 2018. [Online].
Available: http://arxiv.org/abs/1812.04088

[22] J. S. Moore, “Computational logic : structure sharing and proof of
program properties,” Ph.D. dissertation, University of Edinburgh, UK,
1973. [Online]. Available: http://hdl.handle.net/1842/2245

[23] Symbolic Simulation: An ACL2 Approach, 1998. [Online]. Available:
https://doi.org/10.1007/3-540-49519-3 22

[24] J. S. Moore and C. Wirth, “Automation of mathematical induction as
part of the history of logic,” CoRR, vol. abs/1309.6226, 2013. [Online].
Available: http://arxiv.org/abs/1309.6226

[25] Y. Jiang, P. Papapanagiotou, and J. D. Fleuriot, “Machine learning
for inductive theorem proving,” in Artificial Intelligence and Symbolic
Computation - 13th International Conference, AISC 2018, Suzhou,
China, September 16-19, 2018, Proceedings, 2018, pp. 87–103.
[Online]. Available: https://doi.org/10.1007/978-3-319-99957-9 6

[26] J. Harrison, “HOL light: A tutorial introduction,” in Formal Methods in
Computer-Aided Design, First International Conference, FMCAD ’96,
Palo Alto, California, USA, November 6-8, 1996, Proceedings, 1996,
pp. 265–269. [Online]. Available: https://doi.org/10.1007/BFb0031814

[27] Y. Nagashima and Y. He, “PaMpeR: proof method recommendation
system for isabelle/hol,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, 2018, pp. 362–372.
[Online]. Available: https://doi.org/10.1145/3238147.3238210

[28] Y. Nagashima, “Simple dataset for proof method recommendation in
isabelle/hol,” in Intelligent Computer Mathematics, C. Benzmüller and
B. Miller, Eds. Cham: Springer International Publishing, 2020, pp.
297–302.

[29] K. Bansal, S. M. Loos, M. N. Rabe, C. Szegedy, and S. Wilcox,
“HOList: An environment for machine learning of higher order
logic theorem proving,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, 2019, pp. 454–463. [Online]. Available:
http://proceedings.mlr.press/v97/bansal19a.html

[30] T. Gauthier, C. Kaliszyk, and J. Urban, “TacticToe: Learning to reason
with HOL4 tactics,” in LPAR-21, 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Maun,
Botswana, May 7-12, 2017, ser. EPiC Series in Computing, T. Eiter
and D. Sands, Eds., vol. 46. EasyChair, 2017, pp. 125–143. [Online].
Available: http://www.easychair.org/publications/paper/340355

[31] L. Blaauwbroek, J. Urban, and H. Geuvers, “Tactic learning
and proving for the Coq proof assistant,” in LPAR 2020: 23rd
International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020,
ser. EPiC Series in Computing, E. Albert and L. Kovács, Eds.,
vol. 73. EasyChair, 2020, pp. 138–150. [Online]. Available:
https://easychair.org/publications/paper/JLdB

[32] L. Blaauwbroek et al., “The Tactician,” in Intelligent Computer Mathe-
matics, C. Benzmüller and B. Miller, Eds. Cham: Springer International
Publishing, 2020, pp. 271–277.

[33] B. Buchberger, “Theory exploration with theorema,” 2000.
[34] M. Johansson, D. Rosén, N. Smallbone, and K. Claessen, “Hipster: Inte-

grating theory exploration in a proof assistant,” in Intelligent Computer
Mathematics CICM 2014.

[35] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill,
“Rippling: A heuristic for guiding inductive proofs,” Artif. Intell.,
vol. 62, no. 2, pp. 185–253, 1993. [Online]. Available: https:
//doi.org/10.1016/0004-3702(93)90079-Q

[36] A. Bundy, D. A. Basin, D. Hutter, and A. Ireland, Rippling - meta-
level guidance for mathematical reasoning, ser. Cambridge tracts in
theoretical computer science. Cambridge University Press, 2005,
vol. 56.

[37] G. Reger and A. Voronkov, “Induction in saturation-based proof
search,” in Automated Deduction - CADE 27 - 27th International

253

https://doi.org/10.1016/j.entcs.2005.01.006
https://doi.org/10.1016/j.entcs.2005.01.006
https://coq.inria.fr
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-63046-5_32
https://github.com/data61/PSL/releases/tag/0.1.7-alpha
https://github.com/data61/PSL/releases/tag/0.1.7-alpha
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://arxiv.org/abs/2004.10263
https://arxiv.org/abs/2004.10263
https://doi.org/10.1007/978-3-030-34175-6_14
https://www.isa-afp.org/
http://isa-afp.org/entries/VerifyThis2019.html
http://isa-afp.org/entries/VerifyThis2019.html
http://isa-afp.org/entries/Depth-First-Search.html
http://isa-afp.org/entries/Depth-First-Search.html
http://isa-afp.org/entries/Goodstein_Lambda.html
http://isa-afp.org/entries/Goodstein_Lambda.html
http://isa-afp.org/entries/KD_Tree.html
http://isa-afp.org/entries/Priority_Search_Trees.html
https://doi.org/10.1007/978-3-319-96812-4_19
https://doi.org/10.1007/978-3-319-96812-4_19
https://doi.org/10.1145/3319619.3321921
http://arxiv.org/abs/1812.04088
http://hdl.handle.net/1842/2245
https://doi.org/10.1007/3-540-49519-3_22
http://arxiv.org/abs/1309.6226
https://doi.org/10.1007/978-3-319-99957-9_6
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1145/3238147.3238210
http://proceedings.mlr.press/v97/bansal19a.html
http://www.easychair.org/publications/paper/340355
https://easychair.org/publications/paper/JLdB
https://doi.org/10.1016/0004-3702(93)90079-Q
https://doi.org/10.1016/0004-3702(93)90079-Q


Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019,
Proceedings, ser. Lecture Notes in Computer Science, P. Fontaine,
Ed., vol. 11716. Springer, 2019, pp. 477–494. [Online]. Available:
https://doi.org/10.1007/978-3-030-29436-6 28

[38] L. Kovács and A. Voronkov, “First-order theorem proving and Vampire,”

in Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, ser.
Lecture Notes in Computer Science, N. Sharygina and H. Veith,
Eds., vol. 8044. Springer, 2013, pp. 1–35. [Online]. Available:
https://doi.org/10.1007/978-3-642-39799-8 1

254

https://doi.org/10.1007/978-3-030-29436-6_28
https://doi.org/10.1007/978-3-642-39799-8_1

	Introduction
	Proof by Induction in Isabelle/HOL
	Generating and Filtering Tactics
	Step 1: Creation of Many Induction Tactics.
	Step 2: Multi-Stage Screening.
	Step 3: Scoring Induction Arguments using LiFtEr.
	User-Interface

	Evaluation
	Database for evaluation.
	Coincidence Rate.
	Pruning.
	Execution Time.

	Conclusion
	References

