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Abstract

This work is a further development of its predecessor, the topic of which
was verification of serviceability limit states of reinforced concrete hinges.
Herein, the same conceptual approach is used to derive analytical formulae,
supporting verification of ultimate limit states. These formulae limit tolera-
ble relative rotations as a function of the compressive normal force transmit-
ted across the neck. The mechanical model is based on the Bernoulli-Euler
hypothesis and on linear-elastic and ideally-plastic stress-strain relationships
for both concrete in compression and steel in tension. The usefulness of the
derived formulae and the corresponding dimensionless design diagrams is as-
sessed by means of experimental data from structural testing of reinforced
concrete hinges, taken from the literature. This way, it is shown that the
proposed mechanical model is suitable for describing ultimate limit states.
Corresponding design recommendations are elaborated and exemplarily ap-
plied to verification of ultimate limit states of the reinforced concrete hinges
of a recently built integral bridge. Since the reinforcement is explicitly ac-
counted for, the tolerable relative rotations are larger than those according to
existing guidelines. It is included that bending-induced tensile macrocrack-
ing beyond one half of the smallest cross-section of the neck is acceptable,
because the tensile forces carried by the reinforcement ensure the required
position stability of the hinges.
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1. Introduction1

Concrete hinges are marginally reinforced necks in reinforced concrete2

structures, see Fig. 1. They are used, e.g., as supports in integral bridge3

construction. Because of the throat, threedimensional compressive stress4

states are activated in the region of the neck. The resulting confinement of the5

concrete increases both its strength and ductility. Current design standards,6

such as the Eurocode [1, 2, 3, 4], require the verification of serviceability7

and ultimate limit states prior to the construction of reinforced concrete8

structures. This provided the motivation for the companion paper [5] and9

the present contribution.
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Figure 1: Geometric dimensioning of a concrete hinge with reinforcement crossing at the
centerline of the neck; ac denotes the width of the compressed ligament [5]
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Recommendations for the verification of serviceability limit states of rein-11

forced concrete hinges were the focus of a previous paper [5]. The engineering12

mechanics approach of Leonhardt and Reimann [6] was extended in order to13

account explicitly for centrally crossing steel rebars. Linear-elastic material14

behavior was assumed for concrete in compression and for steel in tension.15

The tensile strength of concrete was set equal to zero. The steel rebars were16

accounted for only if subjected to tension. The Bernoulli-Euler hypothesis17

was used to derive analytical expressions for elastic limit states of reinforced18

concrete hinges. They are assumed to occur if the maximum compressive19
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normal stress of concrete reaches the triaxial compressive strength and/or if20

the steel rebars start to yield. This approach allowed for assigning a maxi-21

mum tolerable relative rotation to each value of the normal force transmitted22

across the neck. Results were illustrated in the form of dimensionless dia-23

grams. Comparing model-predicted elastic limits with results from structural24

testing, it was shown that the modeling approach is useful for specification of25

serviceability limit states of reinforced concrete hinges. Finally, recommen-26

dations regarding verification of serviceability limit states were elaborated.27

They were used for the a posteriori verification of the reinforced concrete28

hinges of an integral bridge in Austria. Since the reinforcement was explic-29

itly accounted for, the serviceability limits of relative rotations are larger30

than those according to the guidelines of Leonhardt and Reimann [6].31

Recommendations for verification of ultimate limit states of reinforced32

concrete hinges are the focus of the present paper. The target is the deriva-33

tion of analytical formulae, describing maximum tolerable relative rotations34

as a function of the normal force transmitted across the neck. To this end,35

linear-elastic and ideally-plastic material behavior is assumed for concrete36

in compression and for steel in tension. The triaxial compressive strength37

of concrete is estimated based on regulations regarding partially loaded ar-38

eas [1]. The tensile strength of concrete is set equal to zero. The steel rebars39

are accounted for only if subjected to tension.40

The Bernoulli-Euler hypothesis is used to derive analytical expressions for41

ultimate limit states of reinforced concrete hinges. These limits are assumed42

to occur if the maximum compressive normal strain of concrete and/or if the43

maximum tensile normal strain of the steel rebars reach the corresponding44

ultimate limit strain. The analysis involves consideration of six different op-45

erating conditions of reinforced concrete hinges. Notably, the ultimate limit46

strain of concrete subjected to triaxial compression is still not fully under-47

stood. This provides the motivation to perform sensitivity analyses with re-48

spect to different confinement levels. It is based on recommendations for the49

effective strength of concrete in the core of reinforced concrete columns [7].50

The extended engineering mechanics model is used to derive analytical51

formulae as the basis for dimensionless diagrams. They illustrate the limits of52

the tolerable relative rotation as a function of the transmitted normal force.53

The formulae and, hence, the dimensionless diagrams can be specified for54

specific geometric and material properties of reinforced concrete hinges. The55

usefulness of the described approach is assessed with the help of experimen-56

tal data taken from the open literature. Subsequently, recommendations for57

3



verification of ultimate limit states of reinforced concrete hinges are elabo-58

rated. They are applied to a posteriori verification of the reinforced concrete59

hinges of an integral bridge in Austria [8].60

The present paper is structured as follows. Section 2 contains the theo-61

retical description of ultimate limits of reinforced concrete hinges. Section 362

deals with an assessment of the derived formulae by means of experimental63

data taken from the open literature. Section 4 is devoted to recommenda-64

tions for verification of ultimate limit states of reinforced concrete hinges65

and to their application to the aforementioned bridge. The paper ends with66

a discussion (Section 5), followed by conclusions (Section 6).67

2. Theoretical investigation of ultimate limits of reinforced con-68

crete hinges69

Double-symmetric reinforced concrete hinges are geometrically described70

by means of Cartesian coordinates x, y, z, see Fig. 1. In this illustration, a71

denotes the width and b the depth of the neck, bR the depth of the front-side72

notches, c the depth of the adjacent reinforced concrete parts, d their width,73

t the height of the throat of the neck, and β the opening angle of the throat.74

Analytical formulae, expressing the normal force N as a function of both75

the change of length in the x-direction, ∆`, and the relative rotation ∆ϕ,76

are derived in the following. Thereby, ∆` > 0 indicates an elongation and77

∆` < 0 a shortening of the neck, see Fig. 2. The neck is idealized as a78

cuboid with geometric dimensions a, b, and a, in the x, y, and z-direction,79

respectively, see Fig. 2.

a

u, x

a

w, z

∆ℓ < 0

|∆
ℓ|

∆ϕ ≪ 1

Figure 2: Idealized concrete hinge subjected to axial shortening ∆` < 0 and to a relative
rotation ∆ϕ; the out-of-plane dimension b of the neck is not shown [5]

80
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2.1. Derivation of an expression for N as a function of ∆` and ∆ϕ81

The Bernoulli-Euler hypothesis is used. This leads to the following ex-82

pression for the axial normal strain [5],83

ε =
∆`

a
+

∆ϕ

a
z . (1)

Eq. (1) underlines that the slope of ε along the z-axis is proportional to ∆ϕ84

[5]:85

∂ε

∂z
=

∆ϕ

a
. (2)

In order to calculate the axial normal stresses, linear-elastic, ideally-86

plastic material behavior is assumed for both concrete and steel. This is87

consistent with both the fib Model Code 2010 [7] and the Eurocode 2 [1].88

It is assumed that concrete is unable to carry tension. Regarding compres-89

sion, linear-elastic material behavior is assumed up to the elastic limit stress90

|Ffc|. The symbol F denotes the triaxial-to-uniaxial compressive strength91

ratio. It is estimated based on the Eurocode-recommendations for partially92

loaded areas [1, 5, 9, 10, 11] as:93

F =
√
FaFb , (3)

where Fa and Fb account for the lateral and the thickness contraction. They94

are defined as [5]95

Fa = min
[

3 ;
d

a

]
, (4)

and96

Fb = min
[

3 ;
c

b

]
. (5)

Ideally plastic behavior refers to a stress plateau, extending from the elastic97

limit strain, εc,e, to the ultimate limit strain, εc,u:98

σc = 0 . . . . . . . . . . . . . . . . εc ≥ 0 , (6)

σc = −|Ffc|
ε

εc,e
. . . . . . . . . . 0 ≥ εc ≥ εc,e , (7)

σc = −|Ffc| . . . . . . . εc,e ≥ εc ≥ εc,u , (8)

see Fig 3 (a). The values of εc,e and εc,u will be discussed in Subsection 2.9.99
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Figure 3: Linear-elastic and ideally-plastic material behavior of (a) concrete and (b) steel;
σc, ε, and |Ffc|, denote the normal stress, the normal strain, and the compressive strength
of concrete, respectively; σs, εs, and fy stand for the normal stress, the normal strain, and
the yield stress of steel, respectively

As for steel, the reinforcement is assumed to influence the structural be-100

havior significantly only if subjected to tension. Thus, compressive stresses101

of steel are disregarded. In case of tension, steel is assumed to behave in a102

linear-elastic fashion up to the yield stress, fy.
1 This is followed by a stress103

plateau, extending from the elastic limit strain, εy, to the ultimate limit104

strain of steel, εs,u:105

σs = fy . . . . . . . . εy ≤ εs ≤ εs,u , (9)

σs = fy
εs
εy

. . . . . . . . . . . 0 ≤ εs ≤ εy , (10)

σs = 0 . . . . . . . . . . . . . . . . εs ≤ 0 , (11)

see Fig 3 (b). The values of εy and εs,u will be discussed in Subsection 2.9.106

The normal force, which is transmitted across the neck, is equal to the107

integral of the axial normal stresses over the cross-sectional area A of the108

neck [5]:109

N =

∫
A

σ dA , (12)

where dA = b dz. The width of the compressed ligament of concrete is110

1Although conceptually desirable, no clear distinction between the proportionality limit
and the elastic limit is made.
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denoted as ac, see Fig. 1. It is subdivided into two parts. Concrete behaves111

in an ideally-plastic fashion in the interval from z=−a/2 to z=−a/2 + ap,112

see also Fig. 4. Thus, ap denotes the width of the plastic ligament of concrete.113

Concrete behaves in a linear-elastic fashion in the interval from z=−a/2+ap114

to z=−a/2 + ac. Thus, Eq. (12) can be re-formulated as:115

N =

−a/2+ap∫
−a/2

−|Ffc| b dz +

−a/2+ac∫
−a/2+ap

σc b dz + σsAs χ . (13)

The third term on the right-hand-side of Eq. (13) refers to the reinforcement,116

with As denoting the cross-sectional area of the rebars running across the117

neck. The factor χ is equal to 1 in case of tensile loading and equal to 0118

otherwise:119

χ =

{
1 . . . ∆` > 0 ,
0 . . . ∆` ≤ 0 .

(14)

The sought expression for N as a function of ∆` and ∆ϕ is obtained from120

inserting Eqs. (6)-(11) into Eq. (13), and specializing the resulting expressions121

for Eq. (1):122

N = −|Ffc| b
{
ap +

1

εc,e

[
∆`

a
(ac − ap) +

∆ϕ

2

(
a2c
a
− ac −

a2p
a

+ ap

)]}
+ σs ρab χ , (15)

where ρ denotes the reinforcement ratio [5]:123

ρ =
As

ab
. (16)

In Eq. (16), ab denotes the cross-sectional area of the neck, see Fig. 1.124

In order to transform N into a dimensionless quantity, the degree of125

utilization ν is introduced [5]. It is equal to N divided by the maximum126

compressive normal force that can be transmitted across the neck:127

ν =
N

−|Ffc| ab
≤ 1 . (17)

The denominator in Eq. (17) refers to the maximum compressive normal128

force according Eq. (15). It is obtained in case of pure compression of the129

neck, where ∆ϕ = 0, ac = ap = a, and χ = 0.130

7



2.2. Ultimate limit states of reinforced concrete hinges for different operating131

conditions132

In the following, a maximum tolerable relative rotation ∆ϕ` is assigned133

to every bearable degree of utilization of the normal force, ν. Thereby, ∆ϕ`134

corresponds to an ultimate limit state (ULS) of a reinforced concrete hinge.135

It is reached if the maximum compressive strain of the concrete is equal to136

the ultimate limit strain εc,u and/or if the maximum tensile strain of the137

steel rebars is equal to the ultimate limit strain εs,u. Notably, the used138

model is based on linear strain distributions across the width of the neck,139

see Eq. (1). Seven specific strain distributions represent bounding scenarios140

for six operating conditions of reinforced concrete hinges, see Fig. 4. At141

operating conditions I to IV which are bounded by the scenarios (a) and142

(e), the ultimate limit strain of concrete is always reached at the left edge143

of the neck. At operating conditions V and VI which are bounded by the144

scenarios (e) and (g), the ultimate limit strain of steel is always reached.145

The corresponding state variables ∆``, ∆ϕ`, ac, ap, χ, σs, and ν are listed in146

Table 1.

Table 1: State variables associated with the ultimate limit states of reinforced concrete
hinges illustrated in Fig. 4

ULS ∆`` ∆ϕ` ac ap χ σs ν

(a) a
(εc,e + εc,u)

2
(εc,e − εc,u) a a 0

fy
εy

∆``
a

1

(b) a
εc,u
2

−εc,u a Eq. (22) 0
fy
εy

∆``
a

1− εc,e
2 εc,u

(c) 0 −2 εc,u
a

2
Eq. (22) 0 0

1

2

(
1− εc,e

2 εc,u

)
(d) a εy 2(εy − εc,u) Eq. (28) Eq. (22) 1 fy

1
2εc,e − εc,u
2(εy − εc,u)

− ρ fy
|Ffc|

(e) a εs,u 2(εs,u − εc,u) Eq. (28) Eq. (22) 1 fy

1
2εc,e − εc,u

2(εs,u − εc,u)
− ρ fy
|Ffc|

(f) a εs,u 2(εs,u − εc,e) Eq. (28) 0 1 fy
−εc,e

4(εs,u − εc,e)
− ρ fy
|Ffc|

(g) a εs,u 2 εs,u 0 0 1 fy − ρ fy
|Ffc|

147
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Figure 4: Seven schematic linear strain distributions, referring to ultimate limit states of
reinforced concrete hinges, representing boundary scenarios for six operating conditions;
and corresponding stress distributions, see also Eqs. (1) and (2)9



2.3. Ultimate limits of operating condition I148

In this case, the ultimate limits are bounded by the scenarios (a) and (b),149

illustrated in Fig. 4, see also Table 1. The ultimate limit strain of concrete150

is always reached at the left edge of the neck:151

εc(z=−a/2) = εc,u . (18)

At the right edge of the neck, the strain of concrete ranges between εc,e and152

0, see Fig. 4. The slope of the strain distributions is proportional to the153

maximum tolerable relative rotation, see Eq. (2). Thus,154

(a) . . . (εc,e − εc,u) ≤ ∆ϕ` ≤ −εc,u . . . (b) , (19)

see Fig. 4 and Table 1. The corresponding values of ∆`` follow from inserting155

Eq. (18) into Eq. (1) and solving the resulting expression for ∆``:156

∆`` = a

(
∆ϕ`

2
+ εc,u

)
. (20)

The expression for ap as a function of ∆`` and ∆ϕ` is obtained as follows:157

The value of z at the elastic limit strain is obtained by setting Eq. (1) equal158

to εc,e and solving the resulting expression for z. This gives159

z(ε=εc,e) = a
εc,e
∆ϕ`

− ∆``
∆ϕ`

. (21)

The width of the plastic ligament, ap, is by a/2 larger than z(ε=εc,e), see160

Fig. 4. Thus, ap follows as161

ap =
a

2
+ a

εc,e
∆ϕ`

− ∆``
∆ϕ`

. (22)

The degree of utilization, ν, is obtained by inserting ac = a and χ = 0,162

see Fig. 4 and Table 1, together with Eq. (22) into Eq. (15), specializing163

the resulting expression for ∆`` according to Eq. (20), and substituting the164

obtained expression for N into Eq. (17). This gives165

ν =

[
1

∆ϕ`

(
1

2
εc,e − εc,u

)
+

1

2

∆ϕ`

εc,e

(
εc,u
∆ϕ`

+ 1

)2
]
. (23)
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The sought expression for the maximum tolerable relative rotation as a func-166

tion of ν follows from solving Eq. (23) for ∆ϕ` as167

∆ϕ` = εc,e

(ν − εc,u
εc,e

)
−
√(

ν − εc,u
εc,e

)2

−
(
εc,u
εc,e
− 1

)2
 . (24)

Notably, inserting Eq. (19) into Eq. (23) shows that the operating condition I168

is related to169

ν ∈
[

1− εc,e
2 εc,u

; 1

]
, (25)

see the part of the abscissa between the labels (a) and (b) in Fig. 5.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

Figure 5: Maximum tolerable relative rotation of reinforced concrete hinges as a function of
the degree of utilization of the normal force; evaluation of Eqs. (24), (30), (35), (39), (45),
and (49) for |Ffc| = 100 MPa, εc,e = −3.53 × 10−3, εc,u = −8.00 × 10−3, fy = 550 MPa,
Es = 200 GPa, εy = fy/Es, εs,u = 25.0 × 10−3, and ρ = 1.5 %; ν < 0 refers to the
theoretical case of a tensile normal force transmitted across the neck.

170

2.4. Ultimate limits of operating condition II171

In this case, the ultimate limits are bounded by the scenarios (b) and (c),172

illustrated in Fig. 4, see also Table 1. The ultimate limit strain of concrete is173

always reached at the left edge of the neck, see Eq. (18). The zero-position174

of the strain ranges between z = a/2 and z = 0, see Fig. 4. The slope of175
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the strain distributions is proportional to the maximum tolerable relative176

rotation, see Eq. (2). Thus,177

(b) . . . − εc,u ≤ ∆ϕ` ≤ −2 εc,u . . . (c) , (26)

see Fig. 4 and Table 1. The corresponding values of ∆`` are given in Eq. (20).178

The expression for ac as a function of ∆`` and ∆ϕ` is obtained as follows:179

The value of z at the zero-position of the strain is obtained by setting Eq. (1)180

equal to zero and solving the resulting expression for z. This gives [5]181

z(ε=0) = −∆``
∆ϕ`

. (27)

The width of the compressed ligament is by a/2 larger than z(ε=0), see182

Fig. 4. Thus, ac follows as [5]183

ac =
a

2
− ∆``

∆ϕ`

. (28)

The degree of utilization, ν, is obtained by inserting χ = 0 together with184

Eq. (22) and Eq. (28) into Eq. (15), specializing the resulting expression for185

∆`` according to Eq. (20), and substituting the obtained expression for N186

into Eq. (17). This gives187

ν =
1

∆ϕ`

(εc,e
2
− εc,u

)
. (29)

The sought expression for the maximum tolerable relative rotation as a func-188

tion of ν follows from solving Eq. (29) for ∆ϕ` as189

∆ϕ` =
1

ν

(εc,e
2
− εc,u

)
. (30)

Notably, inserting Eq. (26) into Eq. (29) shows that the operating condition II190

is related to191

ν ∈
[

1

2

(
1− εc,e

2 εc,u

)
; 1− εc,e

2 εc,u

]
, (31)

see the part of the abscissa between the labels (b) and (c) in Fig. 5.192
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2.5. Ultimate limits of operating condition III193

In this case, the ultimate limits are bounded by the scenarios (c) and (d),194

illustrated in Fig. 4, see also Table 1. The ultimate limit strain of concrete195

is always reached at the left edge of the neck, see Eq. (18). The strain of196

steel at the center of the neck ranges between 0 and εy, see Fig. 4. Thus, the197

maximum tolerable relative rotation ranges in the following interval198

(c) . . . − 2 εc,u ≤ ∆ϕ` ≤ 2(εy − εc,u) . . . (d) , (32)

see Fig. 4, Eq. (2), and Table 1. The corresponding values of ∆`` are given199

in Eq. (20).200

The stress of the steel rebars, σs, is a function of ∆``. It is obtained as201

follows: The rebars run across the centerline of the neck (y, x = z = 0).202

Thus, their strain follows from inserting z = 0 into Eq. (1) as εs = ∆``/a.203

Inserting this expression into Eq. (10) delivers204

σs =
fy
εy

∆``
a

. (33)

The degree of utilization, ν, is obtained by inserting χ = 1 together205

with Eq. (22), Eq. (28), and Eq. (33) into Eq. (15), specializing the result-206

ing expression for ∆`` according to Eq. (20), and substituting the obtained207

expression for N into Eq. (17). This gives208

ν =
1

∆ϕ`

(εc,e
2
− εc,u

)
−
(

∆ϕ`

2
+ εc,u

)
fy
|Ffc|

ρ

εy
. (34)

The sought expression for the maximum tolerable relative rotation as a func-209

tion of ν follows from solving Eq. (34) for ∆ϕ` as210

∆ϕ` =
−|Ffc|
fy

εy
ρ

(ν + εc,u
fy
|Ffc|

ρ

εy

)

−
√(

ν + εc,u
fy
|Ffc|

ρ

εy

)2

+ 2
fy
|Ffc|

ρ

εy

(εc,e
2
− εc,u

) . (35)

Notably, inserting Eq. (32) into Eq. (34) shows that the operating condi-211

tion III is related to212

ν ∈
[ 1

2
εc,e − εc,u

2(εy − εc,u)
− ρ fy
|Ffc|

;
1

2

(
1− εc,e

2 εc,u

)]
, (36)

see the part of the abscissa between the labels (c) and (d) in Fig. 5.213
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2.6. Ultimate limits of operating condition IV214

In this case, the ultimate limits are bounded by the scenarios (d) and (e),215

illustrated in Fig. 4, see also Table 1. The ultimate limit strain of concrete is216

always reached at the left edge of the neck, see Eq. (18). The strain of steel217

at the center of the neck ranges between εy and εs,u, see Fig. 4. Thus, the218

maximum tolerable relative rotation ranges in the following interval219

(d) . . . 2(εy − εc,u) ≤ ∆ϕ` ≤ 2(εs,u − εc,u) . . . (e) , (37)

see Fig. 4, Eq. (2), and Table 1. The corresponding values of ∆`` are given220

in Eq. (20).221

The degree of utilization, ν, is obtained by inserting χ = 1 together222

with Eq. (22), Eq. (28), and σs = fy into Eq. (15), specializing the result-223

ing expression for ∆`` according to Eq. (20), and substituting the obtained224

expression for N into Eq. (17). This gives225

ν =
1

∆ϕ`

(εc,e
2
− εc,u

)
− ρ fy
|Ffc|

. (38)

The sought expression for the maximum tolerable relative rotation as a func-226

tion of ν follows from solving Eq. (38) for ∆ϕ` as227

∆ϕ` =
(εc,e

2
− εc,u

)(
ν +

ρ fy
|Ffc|

)−1

. (39)

Notably, inserting Eq. (37) into Eq. (38) shows that the operating condi-228

tion IV is related to229

ν ∈
[ 1

2
εc,e − εc,u

2(εs,u − εc,u)
− ρ fy
|Ffc|

;
1
2
εc,e − εc,u

2(εy − εc,u)
− ρ fy
|Ffc|

]
, (40)

see the part of the abscissa between the labels (d) and (e) in Fig. 5.230

2.7. Ultimate limits of operating condition V231

In this case, the ultimate limits are bounded by the scenarios (e) and (f)232

illustrated in Fig. 4, see also Table 1. The ultimate limit strain of steel is233

always reached, i.e.234

ε(z=0) = εs,u . (41)
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At the left edge of the neck, the strain of concrete ranges between εc,u and235

εc,e, see Fig. 4. Thus, the maximum tolerable relative rotation ranges in the236

following interval237

(e) . . . 2(εs,u − εc,u) ≥ ∆ϕ` ≥ 2(εs,u − εc,e) . . . (f) , (42)

see Fig. 4, Eq. (2), and Table 1. The corresponding value of ∆`` follows from238

inserting Eq. (41) into Eq. (1) and solving the resulting expression for ∆``239

as240

∆`` = a εs,u . (43)

The degree of utilization, ν, is obtained by inserting χ = 1 together241

with Eq. (22), Eq. (28), and σs = fy into Eq. (15), specializing the result-242

ing expression for ∆`` according to Eq. (43), and substituting the obtained243

expression for N into Eq. (17). This gives244

ν =

(
1

2
+

εc,e
2 ∆ϕ`

− εs,u
∆ϕ`

)
− ρ fy
|Ffc|

. (44)

The sought expression for the maximum tolerable relative rotation as a func-245

tion of ν follows from solving Eq. (44) for ∆ϕ` as246

∆ϕ` =
(εc,e

2
− εs,u

)(
ν − 1

2
+

ρ fy
|Ffc|

)−1

. (45)

Notably, inserting Eq. (42) into Eq. (44) shows that the operating condition V247

is related to248

ν ∈
[ −εc,e

4(εs,u − εc,e)
− ρ fy
|Ffc|

;
1
2
εc,e − εc,u

2(εs,u − εc,u)
− ρ fy
|Ffc|

]
, (46)

see the part of the abscissa between the labels (e) and (f) in Fig. 5.249

2.8. Ultimate limits of operating condition VI250

In this case, the ultimate limits are bounded by the scenarios (f) and251

(g), illustrated in Fig. 4, see also Table 1. The ultimate limit strain of steel252

is always reached, see Eq. (41). At the left edge of the neck, the strain of253

concrete ranges between εc,e and 0, see Fig. 4. Thus, the maximum tolerable254

relative rotation ranges in the following interval255

(f) . . . 2(εs,u − εc,e) ≥ ∆ϕ` ≥ 2εs,u . . . (g) , (47)
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see Fig. 4, Eq. (2), and Table 1. The corresponding value of ∆`` is given in256

Eq. (43).257

The degree of utilization, ν, is obtained by inserting χ = 1 together with258

ap = 0, Eq. (28), and σs = fy into Eq. (15), specializing the resulting expres-259

sion for ∆`` according to Eq. (43), and substituting the obtained expression260

for N into Eq. (17). This gives261

ν =

(
1

2

εs,u
εc,e
− 1

2∆ϕ`

ε2s,u
εc,e
− 1

8

∆ϕ`

εc,e

)
− ρ fy
|Ffc|

. (48)

The sought expression for the maximum tolerable relative rotation as a func-262

tion of ν follows from solving Eq. (48) for ∆ϕ` as263

∆ϕ` = 4 εc,e

(1

2

εs,u
εc,e
− ν − ρ fy

|Ffc|

)

−
√(

1

2

εs,u
εc,e
− ν − ρ fy

|Ffc|

)2

− 1

4

ε2s,u
ε2c,e

 . (49)

Notably, inserting Eq. (47) into Eq. (48) shows that the operating condi-264

tion VI is related to265

ν ∈
[
− ρ fy
|Ffc|

;
−εc,e

4(εs,u − εc,e)
− ρ fy
|Ffc|

]
, (50)

see the part of the abscissa between the labels (f) and (g) in Fig. 5.266

2.9. Design values of elastic and ultimate limit strains of steel and concrete267

The design value of the elastic limit strain of steel, εyd, is taken from268

[1, 7]:269

εyd =
fy
γS

1

Esm

, (51)

where fy denotes the characteristic value of the yield stress, γS = 1.15 stands270

for the partial safety factor for steel, and Esm denotes its modulus of elasticity.271

The design value of the ultimate limit strain of steel is obtained as [1, 7]272

εs,ud = 0.9 εuk ≈
εuk
γS

, (52)
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where εuk denotes the characteristic ultimate limit strain of steel accord-273

ing to European design specifications. The Eurocode [1] defines the most274

unfavorable (= smallest) value of εuk as 25× 10−3. This delivers275

εs,ud = 22.5× 10−3 . (53)

As for concrete, the design values of the elastic limit strain, εc,ed, and of276

the ultimate limit strain, εc,ud, deserve special considerations. The difference277

|εc,ud − εc,ed| defines the length of the stress plateau of concrete in com-278

pression in case of ideally-plasticity, see Fig 3 (a). The ductility of concrete279

decreases with increasing strength, but increases with increasing confine-280

ment. Herein, these dependencies are accounted for analogous to regulations281

of Eurocode 2 [1] and recommendations of the fib Model Code 2010 [7].282

Regarding unconfined (= uniaxial) compression of normal-strength con-283

crete, with strength values in the interval 12 MPa≤ |fck| ≤ 50 MPa, the Eu-284

rocode 2 [1] and the fib Model Code 2010 [7] suggest285

|εunic,ed| = 1.75× 10−3 (54)

and286

|εunic,ud| = 3.50× 10−3 . (55)

For high-strength concrete, with characteristic strength values larger than287

50 MPa, εc,ed and εc,ud depend on the strength class, see [1, 7] and Table 2.

Table 2: Values of the elastic limit strain and the ultimate limit strain of high-strength
concretes C70 and C100, respectively [1, 7]

high strength high strength
concrete C70 concrete C100

|εunic,ed| 2.00× 10−3 2.40× 10−3

|εunic,ud| 2.70× 10−3 2.40× 10−3

288 With increasing confinement of concrete, the absolute values of both εc,ed289

and εc,ud increase. Qualitatively, this is suggested by triaxial experiments, see290

e.g. [12, 13]. However, some quantitative details are yet not fully understood.291

Regarding concrete located in the core of columns containing confining292

reinforcement, the fib Model Code 2010 [7] suggests the following formulae293

17



for εc,ed and εc,ud. Based on research by Mander et al. [14, 15], they read as294

|εc,ed| = |εunic,ed|
[
1 + 17.5

( σ2
fck

)3
4

]
, (56)

and295

|εc,ud| = |εunic,ud|+ 0.2
σ2
fck

, (57)

respectively, where σ2 = σ3 denotes the effective lateral compressive stress at296

the ultimate limit state. Concerning reinforced concrete columns, the ratio297

σ2/fck amounts to ≈ 0.003.298

Corners of reinforced concrete frames are characterized by larger confine-299

ment than reinforced concrete columns. Ultimate limit states under seismic300

loading frequently refer to plastic hinges, developing at the corners of frames.301

These regions are strongly reinforced in order to enable the transfer of sig-302

nificant bending moments. The resulting confinement of concrete increases303

its ultimate limit strain to characteristic values that are two to four-times304

larger than |εunic,ud|, see e.g. [16]:305

2 |εunic,ud| ≤ |εc,ud| ≤ 4 |εunic,ud| . (58)

The corresponding values of σ2/fck follow from inserting expressions (58) and306

Eq. (55) into Eq. (57) as307

0.0175 ≤ σ2
fck
≤ 0.0525 . (59)

In order to quantify the confinement, which is activated in concrete hinges308

designed according to the recommendations of Leonhardt and Reimann [6],309

nonlinear Finite Element simulations were carried out [10]. They revealed310

that the ratio between the three principal compressive stresses amounts to311

1.00 : 0.45 : 0.30.312

The discussed confinement levels are separated by orders of magnitude.313

The one of reinforced concrete columns is the smallest. It is given as ≈ 0.003.314

The one at corners of reinforced concrete frames is by one order of magnitude315

larger, i.e. ≈ 0.03, and the one of concrete hinges is another order of mag-316

nitude larger, i.e. ≈ 0.3. This underlines that the Eqs. (56) and (57) should317

not be expected to be reliable, from a quantitative viewpoint, for assessing318

the confinement of reinforced concrete hinges. In the interest of developing319

design recommendations that are based on developments of the fib Model320

18



Code 2010, these formulae are nonetheless used for sensitivity analyses. The321

sensitivity of ultimate limit envelopes (ULE), see Fig. 5, with respect to the322

confinement parameter σ2/fck is analyzed in the following section. In or-323

der to identify a useful value of σ2/fck, different ultimate limit envelopes324

are assessed by means of experimental data from bearing capacity tests of325

reinforced concrete hinges.326

3. Assessment of the theoretical investigation by means of experi-327

mental data328

The usefulness of the theoretical investigation is assessed by applying329

the derived formulae to the analysis of bearing capacity tests of reinforced330

concrete hinges, see Table 3. Two different test protocols were the basis331

of the experimental program. Eccentric compression tests were carried out332

by Schlappal et al. [5, 17], see Subsection 3.1. The normal force and the333

relative rotation were controlled independently by Schlappal et al. [5], see334

Subsection 3.2, and by Base [18], see Subsection 3.3.335

In order to assess the measured experimental data, expected values of the336

material properties of steel and concrete are taken into account when com-337

puting ultimate limit envelopes. As for steel, this includes the characteristic338

value of the yield stress, fy, and the expected value of modulus of elasticity,339

Esm, see Table 3. The expected value of the elastic limit strain follows from340

Eq. (51) as341

εy =
fy
Esm

= εyd γS . (60)

The expected value of the ultimate limit strain follows from Eq. (52) as342

εs,u =
εs,ud
0.9
≈ εs,ud γS . (61)

As for concrete, the expected material properties include the experimentally343

determined value of the uniaxial compressive strength, fc. The expected344

values of the elastic and ultimate limit strains of concrete are obtained, anal-345

ogous to steel, see Eqs. (60) and (61), from multiplying the corresponding346

design values, see Eq. (56) and Eq. (57), respectively, with the partial safety347

factor for concrete, γC = 1.5,348

|εc,e| = |εc,ed| γC , (62)
349

|εc,u| ≈ |εc,ud| γC . (63)
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Sensitivity analyses with respect to the confinement level were carried350

out. For each one of the analyzed tests, five ultimate limit envelopes were351

computed by means of the formulae derived in Section 2 for five particular352

confinement levels, see the second column in Table 4. Corresponding values353

of εc,e and εc,u are also listed in Table 4. They were computed according to354

Eqs. (54)-(57), Table 2, and Eqs. (62) and (63).355

• Normal-strength concrete was used to produce the specimens for the356

test sets A1, A2, B1, B2, Base 1, Base 2, and Base 3. The corresponding357

values of |εunic,ed| and |εunic,ud| are given in Eqs. (54) and (55).358

• High-strength concrete with |fc| ≈ 75 MPa was used to produce the359

specimens for the test set A3. The corresponding values of |εunic,ed| and360

|εunic,ud|, referring to the strength class C70, are shown in Table 2.361

• High-strength concrete with |fc| ≈ 108 MPa was used to produce the362

specimens for the test set B3. The corresponding values of |εunic,ed| and363

|εunic,ud|, referring to the strength class C100, are shown in Table 2.364

Notably, the obtained values of εc,u are still smaller than ultimate limit strains365

observed in experiments on plain concrete subjected to triaxial compression366

[12, 13].

Table 4: Expected values of the elastic limit strain, εc,e, and of the ultimate limit strain,
εc,u, as functions of the confinement level σ2/fck, according to the fib Model Code 2010 [7],
for normal-strength concrete and high-strength concretes C70 and C100, see also Eqs. (54)-
(57), Table 2, and Eqs. (62) and (63)

confinement normal-strength high-strength high-strength
level concrete concrete C70 concrete C100

σ2/fck |εc,e| |εc,u| |εc,e| |εc,u| |εc,e| |εc,u|
ULE [10−2] [10−3] [10−3] [10−3] [10−3] [10−3] [10−3]

A 0.00 2.63 5.25 3.00 4.05 3.60 3.60
B 0.75 3.80 7.50 4.34 6.30 5.21 5.85
C 1.50 4.59 9.75 5.25 8.55 6.30 8.10
D 2.25 5.30 12.0 6.05 10.8 7.26 10.4
E 3.00 5.94 14.3 6.78 13.1 8.15 12.6

367
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3.1. Eccentric compression tests by Schlappal et al. (2017/2019)368

Schlappal et al. [5, 17] subjected three sets of reinforced concrete hinges369

to monotonously increasing eccentric compression up to their bearing capac-370

ity, see data labeled as A1, A2, and A3 in Table 3. Set A1 refers to three371

nominally identical specimens, produced with normal-strength concrete and372

aggregates with maximum diameters of 16 mm, see [17]. Set A2 refers to373

two nominally identical specimens, normal-strength concrete, and maximum374

aggregate diameters of 8 mm. Set A3 refers to three nominally identical spec-375

imens, high-strength concrete, and maximum aggregate diameters of 8 mm,376

see [5]. The recorded data of sets A1, A2, and A3 are shown in Figs. 6 (a),377

(c), and (e), respectively.378

Ultimate limit envelopes were computed based on the formulae derived379

in Section 2, see Figs. 6 (b), (d), and (f). Eqs. (24), (30), (35), (39), (45),380

and (49) were evaluated based on the geometric dimensions of the tested381

concrete hinges and the properties of the concrete and the rebars used, see382

Table 3. As for the values of εc,e and εc,u, sensitivity analyses with respect383

to five different confinement levels were carried out, see Table 4. Graphs,384

illustrating the test data, are added to the diagrams showing the ultimate385

limit envelopes. In the present context of eccentric compression tests, M is386

directly proportional to N . Thus, the relation between ∆ϕ and M is affine to387

the one between ∆ϕ and ν, compare Figs. 6 (a), (c), and (e) with Figs. 6 (b),388

(d), and (f).389

The points at which the graphs of the experimental data intersect the390

graphs of the ultimate limit envelopes, represent candidates for ultimate391

limit state values consisting of a specific normal force and a specific relative392

rotation, see the circles in Figs. 6 (b), (d), and (f). The points concerned393

in the graphs of the experimental data, see Figs. 6 (a), (c), and (e), are394

candidates for ultimate limit states (ULS) of the tested concrete hinges.395

All of the investigated values of the confinement level result in a conser-396

vative assessment of the ultimate limit state of the tested reinforced concrete397

hinges. The model-predicted ULS values “A” refer to loading states beyond398

which an additional significant increase of both the bending moment and the399

relative rotation was experimentally possible, see Figs. 6 (a), (c), and (e).400

Thus, the model-predicted ULS values “A” appear to be overly conservative.401

The model-predicted ULS values “D” refer to loading states which are close402

to the maximum bending moment of the tested specimen. On the other403

hand, the corresponding limits ∆ϕ` appear to be still conservative, because404
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Figure 6: Analysis of eccentric compression tests of reinforced concrete hinges A1, A2, and
A3: (a), (c), and (e) show experimental data [5, 17]; (b), (d), and (f) show ultimate limit
envelopes computed by means of the formulae derived in Section 2, Table 3, and Table 4
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the relative rotation could be increased experimentally to even larger values405

in all eight analyzed experiments, see Figs. 6 (a), (c), and (e).406

3.2. Cyclic bending tests by Schlappal et al. (2019)407

Schlappal et al. [5] subjected three types of specimens of reinforced con-408

crete hinges to cyclic bending, see data labeled as B1, B2, and B3 in Table 3.409

Specimens B1 were produced with an a/d-ratio amounting to 0.3, with a410

normal-strength concrete, specimens B2 with a/d = 0.2, with a normal-411

strength concrete, and specimens B3 with a/d = 0.2, with a high-strength412

concrete. In each one these three cases, three pairs of crossing steel rebars,413

with a diameter of 1.2 cm, were running across the neck.414

Three nominally identical reinforced concrete hinges were produced and415

tested for each one of the three specimen types, resulting in a total of nine416

specimens, see Table 3. At first, the specimens were subjected to a specific417

compressive normal force which was kept constant thereafter. As for the three418

specimens of type B1, the normal forces amounted to −1300 kN, −2600 kN,419

and −4500 kN, respectively. The same values of the normal forces were used420

for the tests on specimens B2. As for specimens B3, these forces amounted421

to −2600 kN, −3500 kN, and −5400 kN, respectively. Subsequently, relative422

rotations were imposed in a cyclic fashion and with increasing amplitudes,423

followed by removal of the applied bending moment. The maximum relative424

rotation amounted to ≈ 20 mrad. Notably, in the experiments the bearing425

capacity of the concrete hinges was never reached, see the test results, illus-426

trated in Figs. 7 (a), (b), (c), 8 (a), (b), (c), and 9 (a), (b), (c).427

Ultimate limit envelopes were computed based on the formulae derived428

in Section 2, see Figs. 7 (d), 8 (d), and 9 (d). Eqs. (24), (30), (35), (39), (45),429

and (49) were evaluated based on the geometric dimensions of the tested430

concrete hinges and the properties of the concrete and the rebars used, see431

Table 3. As for the values of εc,e and εc,u, sensitivity analyses with respect432

to five different confinement levels were carried out, see Table 4. Graphs,433

illustrating the test data, are added to the diagrams showing the ultimate434

limit envelopes. In the tests, carried out with a constant normal force, ∆ϕ435

was increased and decreased at a constant value of ν, see Figs. 7 (d), 8 (d),436

and 9 (d). The three experiments each for the three specimen types are437

highlighted in red, green, and blue, respectively.438

The points at which the graphs of the experimental data intersect the439

graphs of the ultimate limit envelopes, represent candidates for ultimate440

limit state values consisting of a specific normal force and a specific relative441
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Figure 7: Analysis of tests with cyclic bending, at a constant normal force, on reinforced
concrete hinges B1: (a), (b), and (c) show experimental data [5]; (d) refers to identification
of ultimate limit envelopes, computed by means of the formulae derived in Section 2,
Table 3, and Table 4; the square symbols highlight the residual relative rotations measured
at the end of the last test cycles
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Figure 8: Analysis of tests with cyclic bending, at a constant normal force, on reinforced
concrete hinges B2: (a), (b), and (c) show experimental data [5]; (d) refers to identification
of ultimate limit envelopes, computed by means of the formulae derived in Section 2,
Table 3, and Table 4; the square symbol highlights the residual relative rotation measured
at the end of the last test cycle
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Figure 9: Analysis of tests with cyclic bending, at a constant normal force, on reinforced
concrete hinges B3: (a), (b), and (c) show experimental data [5]; (d) refers to identification
of ultimate limit envelopes, computed by means of the formulae derived in Section 2,
Table 3, and Table 4; the square symbols highlight the residual relative rotations measured
at the end of the last test cycles
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rotation, see the circles in Figs. 7 (d), 8 (d), and 9 (d). The points concerned442

in the graphs of the experimental data, see Figs. 7 (a), (b), (c), 8 (a), (b),443

(c), and 9 (a), (b), (c), are candidates for ultimate limit states (ULS) of the444

tested concrete hinges.445

In four out of the nine tests the model-predicted ULS values “C” were446

surpassed, see Figs. 7 (c), 8 (b) and (c), as well as 9 (c). As for the other447

five tests, the small values of residual relative rotations, measured at the end448

of the last test cycles, i.e. after unloading to M = 0 kNm, indicate that the449

respective bearing capacities were far from being reached, see the squares in450

Figs. 7 (a) and (b), 8 (a), as well as 9 (a) and (b). Thus, ULS values “C”451

appear to be reasonable.452

3.3. Experiments by Base (1962)453

Base [18] tested four concrete hinges. Three of them were reinforced.454

They are labeled as Base 1, Base 2, and Base 3, see Table 3. Their structural455

performance is described in the following.456

The test Base 1, see also the squares in Fig. 10, was carried out as follows:457

at first, the specimen was subjected to a normal force amounting to −750 kN.458

While it was kept constant, the relative rotation was monotonously increased459

to 25 mrad. Then, it was decreased to 10 mrad. Simultaneously, the absolute460

value of normal force was increased to −1480 kN. Finally, the new value of461

the normal force was kept constant, and the relative rotation was increased462

up to failure, which occurred at 21 mrad.463

The test Base 2, see also the squares in Fig. 11, was carried out as fol-464

lows: at first, the specimen was subjected to a normal force amounting to465

−1450 kN. Then, the relative rotation was increased to 20 mrad, followed466

by cyclic loading in the interval from 10 mrad to 20 mrad and −1400 kN to467

−1650 kN, respectively. After 900 cycles, the relative rotation was increased468

to 70 mrad. Larger values could not be applied by the testing machine.469

Therefore, the relative rotation was kept constant and the normal force was470

increased to −2500 kN. Larger values could not be applied by the testing471

machine. The specimen did not fail. The test was terminated.472

The test Base 3, see also the squares in Fig. 12, was carried out as follows:473

at first, the specimen was subjected to a normal force amounting to −760 kN.474

Then, the relative rotation was increased to 20 mrad, followed by cyclic load-475

ing in the interval from 10 mrad to 20 mrad and −810 kN to −990 kN, re-476

spectively. After 200 cycles, the relative rotation was increased to 25 mrad.477

Then, a shear force was imposed and increased to 500 kN. The normal force478
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Figure 10: Analysis of the test Base 1: experimental data from [18] and ultimate limit
envelopes, computed by means of the formulae derived in Section 2, Table 3, and Table 4
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Figure 11: Analysis of the test Base 2: experimental data from [18] and ultimate limit
envelopes, computed by means of the formulae derived in Section 2, Table 3, and Table 4
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was varied between −520 kN and −820 kN. Finally, the normal force was set479

equal to −760 kN, the shear force to 440 kN, and the relative rotation was480

increased to up failure, which occurred at 64 mrad.
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Figure 12: Analysis of the test Base 3: experimental data from [18] and ultimate limit
envelopes, computed by means of the formulae derived in Section 2, Table 3, and Table 4

481

Ultimate limit envelopes were computed for the three tested concrete482

hinges. The Eqs. (24), (30), (35), (39), (45), and (49) were evaluated based483

on the geometric dimensions of the concrete hinges and the properties of the484

concrete and the rebars used, see Table 3. Because Base did not document the485

quality of the steel used, B550 A was assumed, see Table 3. As for the values486

of εc,e and εc,u, sensitivity analyses with respect to five specific confinement487

levels were carried out, see Table 4.488

The obtained ultimate limit envelopes are added to the graphs showing489

the experimental data, see Figs. 10 - 12. The failure states of the specimens490

Base 1 and Base 3 and the final state of specimen Base 2 are outside the491

ultimate limit envelope “C”, see Figs. 10 - 12. This confirms that ULS492

values “C” appear to be reasonable.493

3.4. Recommended confinement level for reinforced concrete hinges494

The derived ultimate limit envelopes were assessed by means of experi-495

mental data from 20 different tests of reinforced concrete hinges.496

• Two specimens failed. The other 18 tests were stopped before failure497

was observed.498
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• In 15 tests, including the two ones where failure was observed, the ul-499

timate limit envelope “C” was surpassed. In the other five tests, where500

the specimens did not fail, the residual relative rotations were measured501

after complete unloading. They are rather small. This indicates that502

the bearing capacities of the reinforced concrete hinges were far from503

being reached.504

It is concluded from the presented analysis of experimental data that the505

ULS values “C” are reasonably conservative. This refers to a computed506

confinement value of507
σ2
fck

= 1.5× 10−2 , (64)

see Table 4. Inserting this value into Eqs. (56) and (57) delivers design values508

of the elastic and ultimate limit strains of concrete as509

|εc,ed| = 1.75 |εunic,ed| (65)

and510

|εc,ud| = |εunic,ud|+ 3.0× 10−3 . (66)

These values are recommended for verification of ultimate limit states of511

reinforced concrete hinges.512

4. Verification of ultimate limit states of reinforced concrete hinges513

in integral bridge construction514

The formulae derived in Section 2 were shown to be suitable for descrip-515

tion of ultimate limits of reinforced concrete hinges, see Section 3. This was516

the motivation for using them as the basis for recommendations regarding517

verification of ultimate limit states in integral bridge construction. Recom-518

mendations concerning the layout of the structural dimensions of concrete519

hinges and verification of serviceability limit states are documented in [5].520

4.1. Layout of the geometric shape of reinforced concrete hinges521

As for the layout of structural dimensions of concrete hinges, the following522

recommendations are adopted from Leonhardt and Reimann [6]523

a ≤ 0.3 d , (67)
524

t ≤
{

0.2 a ,
2 cm ,

(68)
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525

tan β ≤ 0.1 , (69)
526

bR ≥
{

0.7 a ,
5 cm ,

(70)

see Fig. 1 for the definition of the letter symbols used. Eqs. (67)-(70) ensure527

that beneficial triaxial compressive stress states are activated in the region528

of the neck and that undesirable tensile macrocracking of concrete is avoided529

further away from the neck, see [6, 9] and Fig. 13.

(a) (b)

Figure 13: Concrete hinges at the Viaduto de Gonçalo Cristóvão, built in 1961, in Porto,
Portugal: (a) shows the structural subsystem; (b) refers to structural damage that could
have been avoided, if the conditions (67)-(70) had been respected; after [5].

530

4.2. Verification of ultimate limit states531

It is recommended to use a two-step procedure, referring to the investi-532

gation of two bounding scenarios [5].533

Step 1: The concrete hinge shall be modeled as a classical hinge without534

bending stiffness, see Fig 14 (a). The structural analysis concerned535

delivers an upper bound of the relative rotation and a lower bound of536

the absolute value of the bending moment: M = 0 kNm. The design of537

the concrete hinge is based on computed design values for the normal538

force Nd and the relative rotation ∆ϕd.539
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Step 2 The largest bending moment that can be activated at the designed540

reinforced concrete hinge is calculated. It represents the maximum541

bending moment that can be carried by the reinforced concrete hinge.542

The design value of this maximum bending moment, Md,max, is im-543

posed on the concrete hinge, and the structural analysis is repeated,544

see Eq. (74) and Fig 14 (b). This delivers a lower bound for the relative545

rotation and an upper bound for the bending moment. The obtained546

inner forces are the basis for the design of the starter bars and the split-547

ting tensile reinforcement of the adjacent reinforced concrete members.548

The latter refers to the transport of transverse tensile forces.549

Realistic scenarios must fall in between the two analyzed bounds.

∆ϕd

Nd

(a)

Nd

Md,max

(b)

Figure 14: Bounding scenarios for the design of concrete hinges: (a) classical hinge without
bending stiffness; (b) application of the design value of the maximum bending moment
Md,max to the concrete hinge

550

As for step 1, quantification of normal forces and relative rotations is551

based on combinations of permanent loads (index G), prestressing (index P ),552

and variable loads (index Q). The design values of the normal forces, Nd,553

are obtained from the regulations of the Eurocode for structural design of554

bridges [2, 3, 4]:555

Nd =
∑
j

γG,j NG,j + γP NP + γQ,1NQ,1 +
∑
i>1

γQ,i ψ0,iNQ,i , (71)

where the coefficients ψ0,i ≤ 1 account for the small probability that several556

unfavorable non-permanent actions occur simultaneously. The symbols γG,557

γP , and γQ denote the partial safety factors. As for the related design values558

of the relative rotations, it is recommended to account for visco-elastic stress-559

relaxation of concrete, which reduces the bending stresses associated with560
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permanent relative rotations [17]. Following Leonhardt and Reimann [6], this561

can be accounted for by applying a 50 %-reduction to the relative rotations562

resulting from permanent loads and prestressing, respectively:563

∆ϕd =
1

2

[∑
j

γG,j ∆ϕG,j +γP ∆ϕP

]
+γQ,1 ∆ϕQ,1 +

∑
i>1

γQ,i ψ0,i ∆ϕQ,i . (72)

Given that creep of concrete is simply accounted for by the reduction factor564

1/2 in Eq. (72), the value of Ecm involved in the elastic part of the analysis565

refers to the secant modulus of elasticity of concrete [1].566

It is recommended to verify the ultimate limit states after the serviceabil-567

ity limit states, see [5] and item “A” in Table 5. Thus, the geometric dimen-568

sions of the concrete hinge, the reinforcement ratio, the triaxial-to-uniaxial569

compressive strength ratio, and the strength classes of both concrete and570

steel are already known. As for the verification of ultimate limit states, the571

design strength values fcd and fyd are relevant, see [1, 7]. The ultimate limit572

envelope is determined based on Eqs. (24), (30), (35), (39), (45), and (49).573

As for the values of εc,ed and εc,ud, it is recommended to set the confinement574

level σ2/fck equal to 1.50× 10−2, see also Eqs. (64)-(66). All possible combi-575

nations of values of νd and |∆ϕd| are inserted into the diagram containing the576

ultimate limit envelope. Thereby, the degrees of utilization νd are quantified577

according to Eq. (17), based on the computed normal forces, see Eq. (71).578

An acceptable layout is obtained, if all combinations of νd and |∆ϕd| are579

within the ultimate limit envelope.580

As for step 2, the maximum of the absolute value of the bending moment581

that can be activated at the designed reinforced concrete hinge is determined.582

For that purpose, the Eurocode-inspired interaction envelope, developed by583

Kalliauer et al. [10] is used. The largest bending moment follows as584

Mmax =
1

8
|Ffc|a2b . (73)

As for quantification of the design value of the maximum bending moment, fc585

in Eq. (73) must be set equal to an upper quantile of the uniaxial compressive586

strength, i.e. to fck + 16 MPa, see also [5, 19]. In addition, the partial safety587

factor for concrete γC must be applied multiplicatively. Thus, the design588

value of the maximum bending moment is obtained as589

Md,max =
γC
8
F
(
|fck|+ 16 MPa

)
a2b . (74)
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Table 5: Step-by-step design procedure for verification of ultimate limit states of reinforced
concrete hinges

A. Verify the serviceability limit states according to Schlappal et al. [5]

B. Model the concrete hinge as a classical hinge without bending stiffness; analyze all load cases

Nd

∆ϕd

Nd =
∑
j

γG,j NG,j + γP NP + γQ,1NQ,1 +
∑
i>1

γQ,i ψ0,iNQ,i

∆ϕd =
1

2

[∑
j

γG,j ∆ϕG,j + γP ∆ϕP

]
+ γQ,1 ∆ϕQ,1 +

∑
i>1

γQ,i ψ0,i ∆ϕQ,i

C. Quantify the degrees of utilization

νd =
Nd

−|Ffcd| ab
D. Determine the ultimate limit envelope

1. ∆ϕ`d = εc,ed

(νd − εc,ud
εc,ed

)
−
√(

νd −
εc,ud
εc,ed

)2

−
(
εc,ud
εc,ed

− 1

)2
 νd ∈

[
1− εc,ed

2 εc,ud
; 1

]

2. ∆ϕ`d =
1

νd

(εc,ed
2
− εc,ud

)
νd ∈

[
1

2

(
1− εc,ed

2 εc,ud

)
; 1− εc,ed

2 εc,ud

]
3. ∆ϕ`d =

−|Ffcd|
fyd

εyd
ρ

(νd + εc,ud
fyd
|Ffcd|

ρ

εyd

)
−
√(

νd + εc,ud
fyd
|Ffcd|

ρ

εyd

)2

+ 2
fyd
|Ffcd|

ρ

εyd

(εc,ed
2
− εc,ud

)
νd ∈

[ 1
2εc,ed − εc,ud
2(εyd − εc,ud)

− ρ fyd
|Ffcd|

;
1

2

(
1− εc,ed

2 εc,ud

)]
4. ∆ϕ`d =

(εc,ed
2
− εc,ud

)(
νd +

ρ fyd
|Ffcd|

)−1

νd ∈
[ 1

2εc,ed − εc,ud
2(εs,ud − εc,ud)

− ρ fyd
|Ffcd|

;
1
2εc,ed − εc,ud
2(εyd − εc,ud)

− ρ fyd
|Ffcd|

]
5. ∆ϕ`d =

(εc,ed
2
− εs,ud

)(
νd −

1

2
+

ρ fyd
|Ffcd|

)−1

νd ∈
[ −εc,ed

4(εs,ud − εc,ed)
− ρ fyd
|Ffcd|

;
1
2εc,ed − εc,ud

2(εs,ud − εc,ud)
− ρ fyd
|Ffcd|

]
6. ∆ϕ`d = 4 εc,ed

(1

2

εs,ud
εc,ed

− νd −
ρ fyd
|Ffcd|

)
−
√(

1

2

εs,ud
εc,ed

− νd −
ρ fyd
|Ffcd|

)2

− 1

4

ε2s,ud
ε2c,ed


νd ∈

[
− ρ fyd
|Ffcd|

;
−εc,ed

4(εs,ud − εc,ed)
− ρ fyd
|Ffcd|

]
E. Check whether all combinations of νd and |∆ϕd| are within the ultimate limit envelope

F. Apply the design value of the maximum bending moment to the concrete hinge;

re-analyze all load cases

Nd

Md,max
Md,max =

γC
8
F
(
|fck|+ 16 MPa

)
a2b
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This bending moment is applied to the concrete hinge as the basis for the590

design of the adjacent parts of the reinforced concrete structure.591

4.3. Exemplary application to the existing Huyck-bridge592

The Huyck-bridge [8, 20] is a post-tensioned reinforced concrete structure593

with a span of 43 m, see also [5]. The two abutments are connected to the594

structure by three reinforced concrete hinges each, see Fig. 15. There are two

(a) (b)

Figure 15: (a) One half of the longitudinal section, taken from [20], showing the positions
of the reinforced concrete hinges, and (b) vertical section through one of the concrete
hinges, showing the reinforcement crossing the neck [21]

595

types of concrete hinges, labeled CH1 and CH2. They differ in the depths of596

the necks and, thus, in the cross-sectional area, see Table 6.597

The reinforced concrete hinges of the Huyck-bridge were designed accord-598

ing to the guidelines of Marx and Schacht [9, 22]. These guidelines are based599

on the verification of ultimate limit states. They were obtained by trans-600

lating the design recommendations of Leonhardt and Reimann [6] into the601

nomenclature of the current Eurocode.602

Structural analysis of the Huyck-bridge was carried out according to the603

regulations of the Eurocode for structural design of bridges [2, 3, 4]. In order604

to calculate the normal forces and relative rotations, the concrete hinges were605

modeled as classical hinges without bending stiffness [20, 21]. Design values606

of the normal forces and the relative rotations were computed according to607
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Table 6: Material properties of the concrete and the steel rebars and geometric dimensions
of the two types of concrete hinges of the Huyck-bridge [21]

strength class for concrete: C30

|fck| 30 MPa
Ecm 33 GPa
γC 1.50
εunic,ed 1.75× 10−3

εunic,ud 3.50× 10−3

εc,ed 3.06× 10−3

εc,ud 6.50× 10−3

strength class for steel: B550

fyk 550 MPa
Esm 200 GPa
γS 1.15
εyd 2.39× 10−3

εs,ud 22.50× 10−3

geometric dimensions

a1 = a2 150 mm
b1 2250 mm
b2 2650 mm
c1 3100 mm
c2 5275 mm

d1 = d2 1000 mm

ratio of triaxial-to-uniaxial compressive strength
F1 2.03
F2 2.44

cross-sectional area of the reinforcement
As1 12667 mm2

As2 16286 mm2

reinforcement ratio
ρ1 3.75 %
ρ2 4.10 %

37



Eqs. (71) and (72). The most unfavorable combinations of the normal forces608

and the relative rotations are listed in Table 7.

Table 7: Most unfavorable combinations of the relative rotations and the normal forces of
the reinforced concrete hinges of the Huyck-bridge, taken from [20, 21]

|∆ϕd| |Nd| νd

CH1 6.63 mrad 3402 kN 0.248

CH2 6.63 mrad 4007 kN 0.207

609

The design engineers faced a challenge regarding the following condition610

of the guidelines of Marx and Schacht [9, 22]:611

ab ≤ 12.8
|Nd|

|∆ϕd|Ecm

. (75)

Inserting the desired values of b and Ecm as well as the calculated values of612

|Nd| and |∆ϕd|, see Tables 6 and 7, delivered the condition a < 9 cm. It was613

concluded that this limitation of the width of the neck does not allow for the614

proper monolithic production of the structure, because the concrete for the615

abutments and the lower parts of the concrete hinges must pass through the616

necks, before being compacted. As a remedy, the consequences resulting from617

violation of the condition (75) were discussed and assessed very carefully by a618

team of experienced bridge engineers. Finally, it was agreed to set the width619

of the necks equal to 15 cm, and to accept the risk that tensile cracking of the620

concrete hinges may extend beyond half of the width of the neck. This was621

tolerated because of the stabilizing effect of the reinforcement running across622

the neck and because of the fact that failure of the concrete hinges does not623

result in the collapse of the bridge. It was also agreed that further research624

is needed for a proper scientific justification of the chosen design approach.625

This resulted in the first research project mentioned in the acknowledgments.626

Verification of the ultimate limit states of the reinforced concrete hinges627

of the Huyck-bridge is re-visited in the context of the approach developed628

herein. The aforementioned values of Nd are translated into design values of629

νd according to Eq. (17), see the last two columns of Table 7. The computed630

pairs of values of νd and |∆ϕd| are labeled as circles in dimensionless design631

diagrams, see Fig. 16. Ultimate limit envelopes are added to these diagrams.632
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Figure 16: Dimensionless design diagram used for verification of the ultimate limit states
of the reinforced concrete hinges of the Huyck-bridge: relative rotations as a function of
the degree of utilization of the normal force: concrete hinge (a) CH1 and (b) CH2

They are computed by means of the Eqs. (24), (30), (35), (39), (45), and633

(49) and of the material and geometric properties of the concrete hinges,634

see Table 6. The design values of νd and |∆ϕd| turned out to be within635

the ultimate limit envelopes. Thus, the ultimate limit states are verified636

a posteriori. Finally, it is interesting to add graphs illustrating the violated637

condition (75) to the dimensionless diagrams of Fig. 16. To this end, the638

“≤”-sign in condition (75) is replaced by an “=”-sign, and the resulting639

expression is rearranged as640

∆ϕd = 12.8
|Nd|
abEcm

= 12.8 νd
|Ffcd|
Ecm

, (76)

see the by lines shaded areas in Fig. 16. A slight difference between the two641

types of concrete hinges is observed due to the different ratios of triaxial-to-642

uniaxial compressive strength, see also Tables 6 and 7.643

5. Discussion644

The present paper is focused on reinforced concrete hinges, transmitting645

a bending moment and a normal force. According to the investigated ulti-646

mate limit states of reinforced concrete hinges, the maximum compressive647

normal strain of concrete and/or the maximum tensile normal strain of the648
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steel rebars reach the corresponding ultimate limit strain. As regards failure,649

induced by shear forces and/or yielding of the tensile splitting reinforcement650

inside the adjacent members, it it is recommended to follow the guidelines of651

Marx and Schacht [9, 22]. These guidelines are based on experimental obser-652

vations and theoretical developments of Dix [23], Leonhardt and Reimann [6],653

as well as Mönnig and Netzel [24].654

Noting that there is no experience concerning verification of ultimate655

limit states with yielding steel rebars, it is recommended to make a conser-656

vative estimation of the ductility of steel. According to the Eurocode [1]657

and Eq. (52), the most unfavorable (= smallest) value of the ultimate limit658

strain of steel, εs,u, amounts to 22.5 × 10−3. Although this value can be659

increased up to 67.5 × 10−3 when investing into better steel qualities, it is660

recommended to stay with the smallest value, in order to limit the crack661

opening displacement inside the neck. Thus, it is recommended to set the662

ultimate limit strain of steel equal to the most unfavorable value according663

to European design specifications. Also in the context of the operating con-664

ditions IV to VI, in which the steel of the rebars yields, it will be interesting665

to extend the presented developments to crossed rebars and to account for666

tension stiffening [25]. However, the typical use of concrete hinges refers to667

operating conditions I to III, in which the steel of the rebars is behaving in668

a linear-elastic fashion.669

It is worth emphasizing that the Bernoulli-Euler hypothesis was used in670

order to enable the derivation of easy-to-apply analytical formulae as the671

basis for dimensionless design diagrams. The latter allow practitioners to672

account, in a simple and customized fashion, for specific geometric and mate-673

rial properties of reinforced concrete hinges. The Bernoulli-Euler hypothesis674

could be replaced by more enhanced models for reinforced concrete beams,675

but expectedly at the cost that closed-form solutions turn out of reach.676

6. Conclusions677

The derived analytical formulae and the corresponding dimensionless de-678

sign diagrams, expressing maximum tolerable relative rotations as a function679

of the normal force transmitted across reinforced concrete hinges, are useful680

estimates of ultimate limit states. This was shown by means of relationships681

between the normal force and the relative rotation, obtained from structural682

testing of reinforced concrete hinges. 20 tests were carried out, using concrete683
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hinges produced with normal-strength concrete and high-strength concrete.684

In this context, the following conclusions are drawn:685

• Two specimens failed. The other 18 tests were stopped before failure686

was observed. In 15 tests, including the two ones where failure was ob-687

served, the recommended ultimate limit envelope was surpassed. In the688

other five tests, where the specimens did not fail, the residual relative689

rotations were measured after complete unloading. They are rather690

small. This indicates that the bearing capacities of the reinforced con-691

crete hinges were far from being reached. This underlines that the692

developed approach is sufficiently conservative for engineering design.693

• A trade-off occurs when it comes to the selection of the strength class of694

concrete. The larger the strength of concrete, the larger are the service-695

ability limits described in the previous paper [5], but the smaller are the696

ultimate limits described in the present companion paper. The latter697

effect is related to the decrease of the ductility of concrete, associated698

with an increase of the strength of the material.699

The present developments can be interpreted as a two-fold extension of700

the guidelines of Marx and Schacht [9, 22]. The first one refers to the toler-701

ance of bending-induced tensile macrocracking beyond one half of the smallest702

cross-section of the neck. This is acceptable because of the stabilizing role of703

the reinforcement, which was explicitly accounted for in the underlying me-704

chanical model. The second extension refers to the use of a linear-elastic and705

ideally-plastic stress-strain relationship for both concrete and steel. Both ex-706

tensions have turned out to be beneficial to the re-analysis of ultimate limit707

states of the reinforced concrete hinges of the Huyck-bridge.708

The developed design recommendations agree with the following basic709

principles concerning verification of ultimate limit states according to the fib710

Model Code 2010 [7] and the Eurocode [1, 2, 3, 4]:711

• Linear-elastic and ideally-plastic material behavior is assumed for con-712

crete in compression and for steel in tension.713

• Accepting tensile macrocracking of concrete, the compressive strains714

of concrete and the tensile strains of steel must stay below the corre-715

sponding ultimate limits.716
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• Elastic limit strains and ultimate limit strains of concrete subjected to717

triaxial compression were quantified analogous to recommendations of718

the fib Model Code 2010 for reinforced concrete columns.719

• The triaxial compressive strength of concrete is estimated based on720

regulations of Eurocode 2 regarding partially loaded areas.721

• Unfavorable choices are made when it comes to quantification of722

strength values.723

• Load combinations are estimated based on the regulations of the Eu-724

rocode.725

Acknowledgments726

Financial support of the experiments by the Austrian Ministry for Trans-727

port, Innovation and Technology (BMVIT), the Austrian Research Pro-728
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