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Abstract

Mobile machinery and vehicles used for agricultural, construction, mining, and material han-

dling purposes are currently experiencing a rapid transition from exclusively mechanical to

cyber-physical systems. In order to increase the efficiency and productivity of such off-

highway vehicles, electronic components with advanced connectivity are being integrated.

However, these electronic systems and their interfaces introduce new cybersecurity vulnera-

bilities. The off-highway industry is experienced in developing safe systems, but security is

an emerging new field with less practice.

The aim of this master thesis is to closely examine an example use case for an off-highway

electronic control unit (ECU). Based on the identified cybersecurity threats identified by a

Threat Analysis and Risk Assessment (TARA), a security concept is developed, implemented

and evaluated. The security requirements resulting from the risk assessment are refined and

solutions to minimize the threats and increase cybersecurity are presented. Appropriate

cryptographic primitives for such an embedded system are selected.

For the off-highway ECU an embedded software solution is developed. The ECU contains

an automotive microprocessor with an additional security coprocessor. The software solution

consists of two programs, one executed on the main core of the microprocessor and one run-

ning on the microprocessor’s security coprocessor. The software implemented for this thesis

aims to mitigate the security threats and to make use of hardware accelerations provided by

the security coprocessor. The performance of the implementation is evaluated.
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Kurzfassung

Mobile Maschinen und Fahrzeuge, die in der Landwirtschaft, im Baugewerbe, im Bergbau

und bei der Materialhandhabung eingesetzt werden, erleben einen Übergang von ausschließ-

lich mechanischen Systemen zu Cyber-Physical Systems (CPS). Die steigende Nachfrage nach

Effizienz, Produktivität und Automatisierung für solche Off-Highway-Fahrzeuge erfordert die

Integration elektrischer und elektronischer (E/E) Komponenten mit fortschrittlicher Konnek-

tivität. Elektrische und elektronische Systeme, ihre Schnittstellen und ihre Kommunikation

bringen jedoch neue Cybersecurity-Schwachstellen mit sich. Vergleichbar mit dem Automo-

bilsektor hat die heutige Off-Highway-Industrie Erfahrung in der Entwicklung von sicheren

Systemen (Safety). Cybersecurity ist jedoch ein neues Feld, wo weniger Praxis vorhanden ist.

Das Ziel dieser Masterarbeit ist es, einen beispielhaften Anwendungsfall für ein elektroni-

sches Steuergerät (ECU) für Off-Highway-Fahrzeuge zu untersuchen. Basierend auf den durch

eine Bedrohungsanalyse und Risikobewertung (Threat Analysis and Risk Assessment, TA-

RA) identifizierten Bedrohungen wird ein Sicherheitskonzept entwickelt, implementiert und

evaluiert. Die aus der Risikoanalyse resultierenden Sicherheitsanforderungen werden konkre-

tisiert und Lösungen werden vorgestellt. Geeignete kryptographische Algorithmen werden

ausgewählt. Ein Demonstrator, der den Anwendungsfall darstellt, wird implementiert. Das

Kernstück des Demonstrators ist ein Off-Highway-Steuergerät, das mit einem hochmodernen

Automobil-Mikroprozessor ausgestattet ist. Der Mikroprozessor enthält einen zusätzlichen

Sicherheitsprozessor mit Hardwareunterstützung für verschiedene kryptographische Funktio-

nen.

Das praktische Ziel der Arbeit ist die Entwicklung einer Softwarelösung, die auf dem Steu-

ergerät ausgeführt wird. Die Software zielt darauf ab, die Sicherheitsbedrohungen abzu-

schwächen und die Hardwarebeschleunigungen des Mikroprozessors zu nutzen. Die Imple-

mentierung wird hinsichtlich ihrer Ausführungszeit und Datendurchsatzes evaluiert.
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Abbreviations

AAD additional authenticated data.

AEAD authenticated encryption with asso-

ciated data.

AES Advanced Encryption Standard.

ANSI American National Standards Institute.

API application programming interface.

AVB Audio Video Bridging.

CAN Controller Area Network.

CBC cipher block chaining.

CCM Counter with CBC-MAC.

CFB cipher feedback.

CMAC cipher-based message authentication

code.

CPS cyber-physical system.

CPU central processing unit.

CTR counter.

DES Data Encryption Standard.

DoS denial of service.

DRBG deterministic random bit generator.

DRNG deterministic random number gen-

erator.

DSS digital signature standard.

E/E electrical and electronic.

ECB electronic codebook.

ECC elliptic curve cryptography.

ECDH elliptic-curve Diffie–Hellman.

ECDHE ECDH ephemeral.

ECDSA elliptic curve digital signature algo-

rithm.

ECU electronic control unit.

EMC electromagnetic compatibility.

GCM Galois/Counter Mode.

HMAC keyed-hash message authentication

code.

HMI human-machine interface.

HSM Hardware Security Module.

IV initialization vector.

KMS key management system.

MAC media access control.

MAC message authentication code.

MII media-independent interface.

NPTRNG non-physical true random num-

ber generator.

NVM non-volatile memory.

OFB output feedback.

PCB printed circuit board.
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PHY physical layer.

PKC public key cryptography.

PRNG pseudorandom number generator.

PTRNG physical true random number gen-

erator.

RAM random access memory.

RNG random number generator.

SECG Standards for Efficient Cryptography

Group.

SHA secure hash algorithm.

SPI Serial Peripheral Interface.

TARA Threat Analysis and Risk Assessment.

TCP Transmission Control Protocol.

TLS transport layer security.

TRNG true random number generator.

TSN Time-Sensitive Networking.

UDS Unified Diagnostic Services.

VLAN virtual local area network.

XTS XEX Tweakable Block Cipher with Ci-

phertext Stealing.
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1. Introduction

The off-highway sector includes mobile machinery and vehicles used for agricultural, con-

struction, mining, and material handling purposes. The industry is experiencing an increas-

ing demand for efficiency and productivity. Increasingly automated and connected machinery

are a possible way to face the economical challenges. More efficient vehicles and processes

enable a reduction of negative effects on the environment and on animal and human health.

The emission of greenhouse gases and resource consumption can be lowered by providing

sustainable technical solutions.

Connected and automated vehicles or machinery integrate computation with physical pro-

cesses. Such systems are denoted cyber-physical systems (CPSs) [45, p. 1]. The behavior of

CPS is defined by the cyber and physical components of the system. The physical process

is controlled and monitored by embedded computers and communication networks. Terms

such as IoT (Internet of Things), Industry 4.0, and Machine-to-Machine (M2M) are related

to the expression CPS. [45]

The ECSEL AFarCloud (Aggregate FARming in the CLOUD) is a European project provid-

ing a distributed platform for autonomous farming [52]. Agricultural cyber-physical systems

such as UAVs (Unmanned Aerial Vehicles) and autonomous ground vehicles are integrated

within the system. The communication is in real-time. To measure the conditions of live-

stock and plants, intelligent sensors are used. The gathered data is uploaded to the cloud

and further analyzed with big data and real-time data mining techniques. Farm management

software makes the data accessible and enables the farmers to set the mission goals for the

autonomous machinery. Novel precision farming and automation techniques are developed

in order to increase the efficiency, the productivity, as well as to reduce farm labor costs.

Precision farming is a paradigm where pesticides and fertilizers are applied precisely only

where needed instead of over a large area.

The transition of off-highway vehicles from exclusively mechanical systems to CPSs brings

new challenges. Secure and private communication between the machines, the cloud, and the

operators is required. Cybersecurity threats jeopardize the safe and reliable operation of the

CPS. Therefore, a sector experienced with building safe systems is challenged to focus also

on security aspects.

For cars, which have similar E/E architectures, it has already been shown that advanced

attacks are feasible. In 2015 a team of researches has demonstrated on a Jeep Cherokee that

1
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they were able to control physical actions of the car by gaining access to its remote connection

[36]. The researchers managed to send CAN messages via remote exploitations. Breaking

the cyber components led to control over the physical components of this CPS. Steering and

breaking functionality of the vehicle could be affected over the cellular network. The found

issues are not limited to one model but affect many vehicles produced by Fiat Chrysler Au-

tomotive. 1.4 million cars have been recalled as result of the findings.

In 2017 another team of researchers investigated the security of a Volkswagen Golf GTE

and an Audi A3 e-tron [43]. The goal was to analyze if the driving behavior of the cars

could be influenced via their internet connection. The in-vehicle infotainment system could

be remotely compromised and arbitrary CAN messages could be sent. In this preliminary

research access to the vehicle’s central screen, speakers and microphone was achieved. A

gateway between the compromised CAN bus and the critical CAN bus prevented the team

from affecting the driving behavior.

In 2018 another research team found vulnerabilities in several BMW models [49]. Via the

USB, OBD and cellular network interface the vulnerabilities could be exploited. Not only

local but also remote access to the vehicle electronics was gained. Unauthorized diagnostic

requests could be executed by sending malicious CAN messages. The demonstrated potential

and feasibility of such attacks makes mitigation necessary.

The thesis examines how an off-highway use case can be analysed in the context of cyberse-

curity. Based on the identified threats, solutions are elaborated. Furthermore, the question

on how to efficiently implement the provided solutions on an embedded system is addressed.

The embedded system in this thesis in an electronic control unit (ECU) for off-highway vehi-

cles. Additionally, the questions on how to conduct security tests as well as on how to verify

cryptographic algorithms are answered.

1.1 Structure of the Thesis

This thesis is structured as follows. Chapter 2 contains background information. Security

standards which are used in the automotive sector and also applicable to the off-highway

sector, are presented. The security standards section is followed by an introduction to mod-

ern cryptography. The architectural specification of a hardware-based security concept for

automotive communications is described. The security concept is called Hardware Security

Module (HSM). After the introduction of the HSM, suggestions on how to verify the correct-

ness of cryptographic algorithms are provided. Security testing is the final topic described in

chapter 2. Chapter 2 will be concluded by the final topic of security testing which includes

a listing of available tools.

Chapter 3 treats the case study of an example use case for an off-highway electronic control

unit (ECU). The cybersecurity threats to the example use case are analysed and solutions to

reduce the risk are presented. The onboard architecture is reworked and a software solution

for the ECU is presented. Secure diagnostic communications between the vehicle and an

external device are enabled by the software solution.

Chapter 4 describes the technical specification of the off-highway ECU from the example use

2
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case. The focus lies on the microprocessor’s HSM.

Chapter 5 describes the embedded software implemented in the course of the thesis. The

software is developed for the previously described off-highway ECU. The program executed

on the secure core and the interface functions available to the main core of the microprocessor

are specifically developed for this thesis. Additionally on the main core a demonstration

application integrating the HSM interface functions is developed. Single components of the

developed embedded software are described in this chapter.

The performance evaluation of the implemented software is presented in chapter 6. A com-

parison with a software-only implementation is conducted.

Chapter 7 concludes the thesis and provides an outlook for further improvements of the

presented solution.

3
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2. State of the Art

At first, this chapter introduces several security standards for the automotive domain (section

2.1). In the second section an introduction to the later implemented cryptographic principles

(section 2.2) is provided, followed by the architectural specification of a security module inte-

grated in automotive microprocessors (section 2.3). The security module is called Hardware

Security Module (HSM) and provides secure and efficient cryptographic algorithms. The

introduction of the HSM is followed by two suggestions on how to verify the correctness of

cryptographic algorithms (section 2.4). The final section of the chapter introduces techniques

for security testing with a special focus on penetration tests (section 2.5).

2.1 Security Standards for Automotive

In the sector of information technology (IT) several established security standards exist.

The international standard Common Criteria for Information Technology Security Evalu-

ation (ISO/IEC 15408), referred to as CC or Common Criteria, defines a common set of

requirements to allow comparability between the results of independent security evaluations

[42]. The standard is focused on the security functionality of IT products. The hardware,

firmware and software of IT products are in the scope. The CC offers guidelines for develop-

ment, evaluation, and procurement of such IT products with security functionality.

The ISO/IEC 27000-series is another set of standards focusing on best practice recommen-

dations on information security management [31]. The focus lies on IT systems such as

databases, corporate networks, and servers. For the industrial sector the standard IEC 62443

(Network and system security for industrial-process measurement and control) is available

[31].

Such standards, although they are not intended for the automotive sector, are relevant for

production and back-end IT systems [55].

For the automotive and off-highway sector the center of attention lies on security in combi-

nation with safety. For automotive cybersecurity engineering the SAE J3061 guidebook was

published. This recommended practice defines a lifecycle process analogous to the one de-

fined in ISO26262 [55]. ISO/SAE 21434 (Road vehicles - Cybersecurity engineering) cancels

and supersedes J3061 [60]. The standard is under development with the current status of a

Draft International Standard (DIS). ISO/SAE 21434 aims to support organizations to define

cybersecurity policies and processes, manage cybersecurity risks, and foster a cybersecurity

culture [60].
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Other activities regarding the standardization of automotive security aspects are conducted

by ITU-T SG17 Q13 (Security Aspects for Intelligent Transport System) and United Nations

Economic Commission for Europe (UNECE) [55]. ITU is focused i.a. on V2X (vehicle

to X) communication, in-vehicle system security, automotive Ethernet security, and secure

updates. UNECE works on future regulations regarding vehicular cybersecurity and over-

the-air updates in context of type approval. Drafts are already available (e.g. UNECE WP29

[67]). ISO is additionally working on extended vehicle web services security (ISO 20078-

3 and ISO TR 23791) and security certificate management (ISO 20828) [55]. SAE is also

working on requirements for vehicular hardware-based security and on guidance regarding

OBD (On-Board Diagnostics) port security [55].

2.2 Cryptography

This section discusses digital cryptographic solutions which are later implemented in soft-

and hardware. Cryptography is a fundamental cybersecurity tool to provide, amongst other

properties, confidentiality and integrity [27, ch. 1.3.1].

2.2.1 Symmetric Key Cryptography

Symmetric key cryptography uses the equivalent key for encryption and decryption. To es-

tablish an encrypted communication channel both parties have to possess the same secret key

(symmetric key). The unencrypted data is denoted as plaintext and the encrypted result is

denoted as ciphertext. By using the decryption function, the plaintext can be obtained from

the ciphertext.

Two different types of ciphers can be differentiated: stream and block ciphers. Stream ciphers

and block ciphers are different symmetric key ciphers. Stream ciphers produce a continuous

output, the key stream, which is combined with the plaintext to generate the ciphertext.

Examples for stream ciphers are RC4, A5/1, and Salsa20. The German Federal Office for

Information Security (BSI) recommends no stream cipher [63, ch. 2.2].

Block ciphers encrypt plaintext blocks with a fixed length. The resulting ciphertext is also

a block with fixed length. Block ciphers are the digital successors of the codebook. The

key configures the codebook and therefore determines the output. An example for a modern

block cipher is the Advanced Encryption Standard (AES). AES is the successor of the Data

Encryption Standard (DES). The weakness of DES is a small key size (56 bit) that makes

brute force attacks feasible. AES is standardized by the United States National Institute of

Standards and Technology (NIST) [3]. The block length of AES is 128 bits. Cryptographic

key lengths of 128, 192, and 256 bits are standardized. According to the standard, at least

one of the key lengths shall be supported by an implementation of the algorithm. The length

of the key sequence for algorithm implementations is noted in the name, e.g. AES-128 stands

for 128 bit key length. The AES algorithm is recommended by the German BSI [63, ch. 2.1].
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Block Cipher Modes of Operation

If the length of the plaintext is greater than the block length of a block cipher, the encryption

requires splitting up the input. The resulting input chunks are eventually padded and fed

into a block cipher. A mode of operation ”is a technique for enhancing the effect of a cryp-

tographic algorithm or adapting the algorithm for an application, such as applying a block

cipher to a sequence of data blocks or a data stream” [48, p. 213]. NIST specifies different

modes of operation for use with any (recommended) block cipher [4].

The Electronic codebook (ECB) mode is a basic mode of operation which splits the plaintext

into equally sized blocks (padded if needed) and encrypts them with the same key. The major

weakness of ECB is that an identical plaintext block always yields an identical ciphertext

block.

A more advanced mode of operation is cipher block chaining (CBC). Each resulting ciphertext

block is XORed (exclusive-or operation) with the next plaintext block. The XORed result

is then encrypted to generate the next ciphertext block. The block ciphers are ”chained

together”. CBC also provides an additional input, the initialization vector or initial value

(IV). The first plaintext block is XORed with the IV. The IV should be randomly selected

but is not required to remain secret. Every time a new IV is used the ciphertext changes

even if plaintext and key remain the same.

The counter (CTR) mode generates a keystream which is then XORed with the plaintext.

The generated keystream is used in the same way as the keystream from a stream cipher.

The keystream is not dependent on the plaintext and can be precomputed. A nonce (number

used once) together with a counter value form the IV. The nonce remains constant while

the counter value is incremented for each block. Encryption and decryption are the same

operation and parallelizable.

The CTR and CBC modes are recommended by the German BSI [63, ch. 2.1.1]. Additional

examples for modes of operation are cipher feedback (CFB) mode and output feedback (OFB)

mode.

Authenticated Encryption

Protocols such as TLS use encryption and authentication simultaneously. The German BSI

states that ”no decryption or other processing should be performed for unauthenticated

encrypted data” [63, p. 22-23]. Authenticated encryption describes encryption systems pro-

tecting confidentiality and authenticity (integrity) of data [48, p. 402]. NIST specifies two

modes of operation for authenticated encryption, the Counter with CBC-MAC (CCM) mode

[6] and the Galois/Counter Mode (GCM) [9].

The GCM mode consists of an adapted CTR mode (GCTR function) and the GHASH func-

tion. The GHASH function is a keyed hash function. GCM is designed to enable high-

throughput implementations in software and hardware [9, p. 2]. GCM provides authenticated

encryption with associated data (AEAD). As input for the encryption plaintext, additional
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authenticated data (AAD), and an IV are taken. The output of the algorithm is the cipher-

text and the authentication tag. The ciphertext is the encrypted plaintext. Not encrypted,

but integrity-protected by the authentication tag, is the AAD. The tag protects the cipher-

text and AAD in a sense that both accidental and intentional, unauthorized modifications

are detected. The confidentiality of the plaintext is protected by encryption using a block

cipher (e.g. AES). GCM specifies an authenticated decryption function which does not only

decrypt the ciphertext but also verifies the authentication tag. The GCM as well as CCM

mode are recommended by the German BSI [63, ch. 2.1.1].

2.2.2 Asymmetric Key Cryptography

Asymmetric key cryptography, also known as public key cryptography, uses different keys for

encryption and decryption. The key pair consists of a public and a secret/private key. Each

node publishes its public key which then can be used to encrypt data. Using the private

key nodes can decrypt received data. This is the basic principle of asymmetric encryption.

Public key cryptosystems are based on trap door one-way functions [48, p. 90]. Apart from

encryption, the establishment of shared secrets as well as the generation and verification of

digital signatures are additional use cases for asymmetric cryptography. A digital signature

is generated using the private key and can be verified using the public key. More details on

different public-key cryptosystems are given below.

Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) algorithm allows the establishment of a joint secret key. Two

communicating entities agree on a shared secret. DH is based on the discrete logarithm

problem.

An enhanced variant of the static DH algorithm is the ephemeral DH algorithm. Ephemeral

DH provides (perfect) forward secrecy. Meaning that the decryption of earlier messages is not

possible if an adversary gets one key. To do so the ephemeral DH uses session keys which are

periodically renewed. The session keys are denoted as ephemeral (temporary, one-time) secret

keys. The secret intermediate values to derive the session keys are deleted right afterwards.

RSA

RSA (Rivest Shamir Adleman) uses the factoring of large integers as one-way function. Appli-

cations of the RSA scheme are digital signatures and encryption. Due to the bad performance

in signature generation, the long-time security aspect, and the great length of signatures RSA

is not considered suitable for automotive use cases [26].

Elliptic Curve Cryptography (ECC)

Applications for Elliptic Curve Cryptography are key exchange and digital signatures. ECC

makes use of elliptic curve arithmetic. An elliptic curve is the graph of a function in the
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form of y2 = x3 + ax + b in combination with a special point at infinity [27, p. 103]. Point

addition operations on such a curve are defined by the EC arithmetic and are used to estab-

lish a private and public key pair. Different representation variants of elliptic curves are the

Weierstrass-Notation, the Montgomery-Notation and the (twisted) Edwards-Notation. For

each notation standardized curve parameters are available. An advantage of ECC is that

it offers, compared to RSA, an equal level of security with far smaller key sizes [27], [48],

[56]. ECC is suitable for resource constrained devices [27, p. 103] such as embedded systems.

According to the EVITA project, ”ECC clearly outperforms every public-key cryptosystem

that uses modular exponentiation for the same effort in hardware” [22, p. 237].

Examples for EC-based digital signature schemes are the elliptic curve digital signature al-

gorithm (ECDSA) and the Edwards-curve Digital Signature Algorithm (EdDSA). The static

and ephemeral form of Diffie-Hellman Key Exchange (ECDH and ECDHE) are EC-based key

exchange protocols.

Protocols such as TLS use asymmetric encryption to authenticate the communication partner

and to establish a shared secret key. To encrypt and decrypt the bulk data, faster symmetric

encryption algorithms are used together with the established secret key.

2.2.3 Message Authentication Codes

Message authentication codes (MACs) can be used to ensure the integrity of data. The

technique generates a small fixed-size block of data using a secret key [48, p. 388]. This

cryptographic checksum, or MAC, is appended to a message. The receiver verifies the MAC

of the associated message using the secret key. The application of a MAC is not limited to

messages but can be used for integrity protection of any kind of digital data. Two common

techniques to generate MACs are described below.

Keyed-Hash Message Authentication Code (HMAC)

HMAC algorithms are based on cryptographic hash functions (see section 2.2.4). A secret

key is added to the generation of the cryptographic checksum. Otherwise anybody could

forge the MAC. NIST [11, p. 4] specifies the HMAC generation as the following operation:

MAC(text) = HMAC(K, text) = H( (K0⊕ opad) || H((K0⊕ ipad)||text) )

where K is the key, K0 is the pre-processed key, opad and ipad are the outer and inner

padding, text is the data on which the HMAC is calculated, and H is the selected hash

function. The exclusive-or operation is noted as ⊕ and the concatenation as ||. For H every

NIST-approved hash function can be used (e.g. SHA-256).

Cipher-Based Message Authentication Code (CMAC)

CMAC algorithms are based on symmetric key block ciphers such as AES. The same op-

eration is used for encryption and authentication. An example for an older, now obsolete,
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CMAC algorithm is the Data Authentication Algorithm (DAA) based on DES [48, p. 399].

The block cipher is operated in CBC mode and the last ”ciphertext” output is used as data

authentication code. An improved version of the DAA is standardized by NIST as CMAC

algorithm [38].

According to NIST [38, p. 1] and IETF [8, p. 1] both the CMAC and HMAC achieve

similar security goals leaving the decision upon the availability of either hash functions or

block ciphers on the respective system. The German BSI considers the HMAC and CMAC

as secure as long as secure hash functions, secure block ciphers and a key above a minimum

length are used [63, ch. 5.3].

2.2.4 Cryptographic Hash Functions

Cryptographic hash functions take an input of arbitrary length and generate an output of

a fixed length. These functions have to fulfill certain requirements. If, for example, the

input changes for one bit at least half of the bits of the output have to change. Additionally

it must be computationally infeasible to find two inputs which generate the same output.

Nevertheless, there must be collisions because the output space is smaller than the input

space. [48, p. 41]

In contrast to a cryptographic hash function, it is easy to construct collisions for an arbi-

trary given CRC (cyclic redundancy check) [48, p. 132]. CRCs and similar techniques are

designed to detect accidental errors but intentional, unauthorized modifications can remain

undiscovered.

Hash functions are used e.g. for the HMAC, in pseudorandom number generators, and

for ECDSA signatures. For ECDSA the message is hashed first and then the signature is

generated.

NIST specifies and recommends secure hash algorithms (SHAs) in FIPS 180-4 [34] and FIPS

202 [35]. The SHA-3 hash functions from FIPS 202 are intended to supplement the SHA-

1 and SHA-2 hash functions from FIPS 180-4. According to the German BSI the SHA-

256, SHA-512/256, SHA-384, SHA-512, SHA3-256, SHA3-384 and SHA3-512 mechanisms

are considered to be cryptographically strong [63, ch. 4.]. SHA-1 and SHA-224 are not

recommended [63, ch. 4.].

2.2.5 Random Number Generators

In cryptography random numbers are used as symmetric keys, for Diffie-Hellman key ex-

change, as RSA key pairs, and for ECDSA signatures. Cryptographic random numbers do

not only have to be statistically random but must also be unpredictable [27, p. 146]. The

Shannon Entropy is a characteristic value for unpredictability.

Random number generators (RNGs) usually consist of a non-deterministic part and a deter-

ministic part [24, ch. 2.1.2]. The non-deterministic part is an entropy source that generates

non-predictable data. The deterministic part generates the output by post-processing the

generated non-predictable data. It is also possible to omit either the deterministic or the
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non-deterministic part. Categories of RNGs are physical true random number generator

(PTRNG), non-physical true random number generator (NPTRNG), deterministic random

number generator (DRNG), and Hybrid RNG. [24]

The entropy source (non-deterministic) is the core of a PTRNG which is used to generate raw

random data. The generator may include additional post-processing (e.g. to increase entropy

or correct a bias) of the raw data stream. The entropy source is based on a physical micro-

scopic random process. Examples for such processes are radioactive atomic disintegration,

shot entropy of a diode, free running oscillators, and the thermal resistive entropy. [24]

The entropy sources of NPTRNGs are external signals. The concept of randomness is based

on the lack of information about processes and their outcomes. Examples for such processes

are disk I/O operations, interrupts, thread IDs, current local time, and human interaction

such as mouse movement and key strokes. The best known implementation of a NPTRNG

is the /dev/random in Linux operating systems [63, p. 63].

DRNGs use deterministic algorithms to generate a random number from a random seed.

Optional additional external input values can be used to improve the output quality. Speci-

fications for DRNGs based on hash functions and block ciphers are available [33].

Hybrid RNGs consist of a deterministic and a non-deterministic part. An entropy source is

used to seed the deterministic RNG.

2.3 EVITA Full HSM

This section provides an architectural description of the Hardware Security Module (HSM)

specified by the EVITA (E-Safety Vehicle Intrusion Protected Applications) project. An

HSM device enables a secure and efficient implementation of cryptographic algorithms.

The EVITA project [23] was co-funded by the European Commission and coordinated by

the Fraunhofer Institute for Secure Information Technology. Numerous companies from the

automotive industry were partners of the project. The project lasted for 42 months and was

completed in December 2011. The objectives were ”to design, to verify, and to prototype

an architecture for automotive on-board networks where security-relevant components are

protected against tampering and sensitive data are protected against compromise” [23].

The architectural specification of a Hardware Security Module (HSM) resulted from the

EVITA project and is documented in Deliverable D3.2: Secure On-board Architecture Speci-

fication [22]. The specified architecture aims to provide a hardware-based security mechanism

to protect secrets (e.g. cryptographic keys) and to securely execute computations (e.g. en-

cryption algorithms). Alternative cryptographic hardware concepts are, for example, SHE

(Secure Hardware Extension), TPM (Trusted Platform Module), and smartcards [22].

Fig. 2.1 illustrates the general architectural topology of the HSM. The left (red) block is

the HSM coprocessor which communicates with the application core via interrupts and a

shared RAM area. The application CPU (yellow block on the right side) has the ability to

trigger interrupts on the HSM and vice versa. Data is exchanged using a shared area in the

application core’s RAM. The application core has PFlash and DFlash non-volatile memory
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HSM (Hardware Security Module) Application Core

Secure CPU

Hardware Interface

Crypto Hardware Acceleration

Asymmetric Crypto
Engine TRNG/PRNG

Symmetric Crypto
Engine Hash Engine

Counters

Secure Storage

Internal RAM

Internal NVM

RAM "shared area"
(data exchange)

Application
NVM

Application CPU Bus Interface

In-vehicle bus system

data

interrupt

Figure 2.1: HSM architecture (adapted from [22, p. 31])

(NVM) to store the application and application-relevant data. Vehicle bus interfaces are also

accessed by the application core. The HSM has a hardware interface module to communi-

cate with the application core. A secure CPU is the centerpiece of the HSM. A dedicated

secure storage in form of volatile (RAM) and non-volatile memory (PFlash/PFlash) is also

provided. The HSM module executes all cryptographic applications which include symmet-

ric and asymmetric encryption/decryption, symmetric integrity checking, digital signature

verification/generation and random number generation [22]. The HSM has cryptographic

hardware acceleration for asymmetric/symmetric cryptography, random number generation,

hash generation, and counters. The random number generator is either a pseudorandom

number generator (PRNG) seeded with a true random number generator (TRNG) or an

externally seeded PRNG. The counters are used as secure clocks.

According to specification, it is necessary to place the HSM on the same chip as the application

core. The integration on the same chip mitigates the problem of eavesdropping on wires which

run along the ECU’s PCB [22, p. 31]. Furthermore, the focus of the specification lies on

flexible solutions because automotive microcontrollers are used for ”more than 20 years” [22,

p. 31]. Hardware-only solutions do not offer enough flexibility to adapt to possible new

requirements, consequently the secure CPU must be programmable.

To address different cost segments and use cases, the EVITA HSMs are specified in three

variants: full, medium, and light. Full EVITA HSMs are intended for V2X (vehicle-to-

everything) communication, medium EVITA HSMs for on-board inter-ECU communication,

and light EVITA HSMs for on-board communication with sensors and actuators [22]. Medium

and light EVITA HSMs contain a subset of the features of the full EVITA HSM. Full EVITA

HSMs support fast asymmetric and symmetric cryptographic operations, key storage, and

hash generation.

The following building blocks are provided by an EVITA full HSM [22, p. 33-34]:

❼ ECC-256-GF(p): high-performance 256-bit elliptic curve cryptographic engine using

NIST approved curve parameters [28]

❼ Whirlpool: hash function based on Advanced Encryption Standard (AES)

❼ AES-128: symmetric block encryption with 128-bit key in different modes of operation

(i.e. ECB, CBC, GCM or CCM) [3]
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❼ AES-PRNG: pseudorandom number generator seeded by an internal true random

number generator

❼ Counter: simple secure clock alternative. At least 16 monotonically increasing 64-bit

counters.

❼ CPU: internal CPU handling non-time-critical cryptographic functionality. The pro-

posed CPU is a ARM Cortex M3 or similar.

❼ RAM: volatile memory for e.g. intermediate values and for variables. At least 64kB.

❼ NVM: non-volatile memory for e.g. internal keys, certificates, counter values. At least

32kB (+10kB ROM)

❼ HW-API: secure hardware interface between the application CPU and the HSM’s

functionality

It is stated that ”the final set of cryptographic building blocks will be detailed in the imple-

mentation phase” [22, p. 34].

2.4 Verification of Cryptographic Algorithms

This section suggests methodologies for verification of implemented cryptographic algorithms.

Verifying the correctness of the result of a cryptographic algorithm is challenging due to the

algorithm’s nature. Ciphertexts, message authentication codes, signatures, hash digests,

and especially random numbers allow no trivial assessment whether they are correct or not.

For other functions, in contrast, it might be possible to check the result for plausibility,

allowing a fast initial assessment of the correctness. E.g. a calculated target position for a

hydraulic valve can be assessed by having knowledge about the use case. A hash algorithm in

contrast generates an apparently unrelated output where small changes in the input produce a

completely different digest. High quality encryption algorithms are also designed to generate

seemingly random outputs avoiding any disclosure of the plaintext. The properties of such

algorithms require advanced verification techniques. During the development and testing

phase of the HSM application (described in section 5.5), the implementations of the single

cryptographic primitives are verified by using the following techniques:

❼ Comparing results and intermediate values with test vectors

❼ Comparing results with scripting language implementations

In the following section the two techniques are outlined in more detail.

2.4.1 Test Vectors

Institutions such as IETF or NIST provide test vectors for the standardized algorithms. Such

test vectors list intermediate and/or final results for a given set of input values.

For the AES-CMAC examples are listed in the RFC 4493 [8, ch. 4]. The CMAC algorithms
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specifies the generation of subkeys. For a given example key the resulting subkeys are pro-

vided. Such test vectors for intermediate results allow the step-by-step verification of the

implemented algorithm. Subsequently, example messages with different lengths and the re-

sulting MACs are listed. Certain algorithms such as AES-CMAC can handle input messages

with arbitrary lengths but split the messages into blocks with a fixed length. Incomplete

block segments are padded with a defined pattern. It is important to perform tests with

different message lengths, in order to detect errors in the padding code.

For AES-based block cipher encryption modes such as ECB, CBC, CTR, and GCM test

vectors are available at the website of NIST [37]. The website also provides test vectors for

NIST-standardized digital signatures (e.g. ECDSA with SHA-2), hash algorithms (e.g. SHA-

256), random number generators (e.g. CTR DRBG), and message authentication codes. The

Standards for Efficient Cryptography Group (SECG) published test vectors for ECC algo-

rithms, such as ECDSA and ECDH [2].

2.4.2 Scripting Languages

The described test vectors allow to verify the correctness of results for a subset of input

values. Scripting languages are suitable for fast software prototyping. Concurrent to the

development of the embedded software, test programs are coded in a scripting language. To

verify the implementations described in section 5.5, Python (version 3.7) with the cryptog-

raphy (version 2.8) package [74] is used. The written Python code can be used as a starting

point for further test automation. Python-based test systems, such as described in [50], can

be extended with test cases from the verification process.

The cryptography package offers high level recipes and low level interfaces to cryptographic

primitives. The high level recipes include Fernet and X.509 public key infrastructure. Fernet

is an implementation of a symmetric authenticated encryption algorithm based on AES-128 in

CBC mode and SHA-256. X.509 is an ITU-T standard for digital certificates in a public-key

infrastructure. The standard is also published as ISO/IEC 9594-8 [44]. X.509 certificates are

widely used in the TLS protocol to authenticate servers. Cryptography provides functions

to generate self-signed certificates, certificate signing requests etc.

The relevant layer to verify the implemented algorithms is the lower level interface to cryp-

tographic primitives. The package supports symmetric encryption (AES in different modes

such as ECB, CBC, CTR, GCM etc.), asymmetric algorithms (digital signatures, key ex-

change), message authentication codes (CMAC, HMAC, Poly1305), and message digests

(SHA-2, SHA-3, etc.). The asymmetric algorithms module supports the generation and

verification of digital signatures with ECDSA, Ed448, and Ed25519. RSA is also supported.

Key exchange algorithms such as Diffie-Hellman key exchange, ECDH, X448, and X25519 are

supported. Elliptic curve parameters for NIST prime curves (e.g. secp256r1), NIST binary

curves (e.g. sect571k1), and Brainpool curves (e.g. brainpoolP384r1) are included.

The set of supported algorithms allows to verify the results of the implementations for arbi-

trary input values. A drawback of the ECDSA and ECDH implementations, when it comes

to testing, is that the functions are internally seeded with a random number. For every
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generation the result is different and the function interface does not provide a parameter to

manually set the random number. For real use cases it is beneficial to prevent the bypass of

the random seed because the long term private key can be obtained from several signatures

with identical random numbers. But for test cases, setting the random seed to a distinct

value is required to guarantee comparable results.

2.5 Security Testing

According to ISO/SAE 21434 [60], component testing should be performed to discover uniden-

tified vulnerabilities. Penetration testing, vulnerability scanning and fuzz testing are listed as

examples for test methods. Fuzz testing applies large amounts of random data to the system

input to find vulnerabilities and weaknesses [60]. The test is usually performed in a semi-

automated or automated way. Overflows, segmentation errors, and heap errors potentially

causing cybersecurity issues can be discovered with Fuzz testing.

Vulnerability scanning assesses and quantifies the exploitation risk of vulnerabilities [60].

Checklists of known vulnerabilities are used to perform passive and active scans. An example

for a passive scan is to look for exploitable coding errors. Active scanning can be performed

for access to memory, file systems, network protocols, or host processes.

Fuzz testing and vulnerability scanning can be used as techniques for penetration testing. In

the following section penetration testing is described and tools are presented.

2.5.1 Penetration Testing

Penetration testing, often abbreviated pen testing, is defined by NIST as ”security testing in

which accessors mimic real-world attacks to identify methods for circumventing the security

features of an application, system, or network” [13, ch. 5.2]. Penetration testers look for vul-

nerabilities on real systems and often use tools and techniques commonly used by attackers

[13]. The goal of such tests can be to assess the system’s tolerance against real-world attack

patterns, the sophistication required to compromise the system, which additional counter-

measures could mitigate the threats, and/or what is the defenders ability to detect attacks

and respond properly [13]. According to NIST, penetration testing could also include non-

technical attack methods. Such methods (e.g. social engineering) are not treated in this

thesis. Penetration testing aims to find vulnerabilities that can be exploited in order to

gain privileged access, take over control, expose privileged data, or cause a malfunction [60].

White, gray and black box tests can be performed, depending on the level of knowledge about

the system [60]. Penetration testing is labor-intensive, requires a lot of expertise and does

not necessarily lead to valuable results [13]. According to Schmittner et al [51], Pen testing

is the best representation of a human attacker but has the drawback of requiring an almost

finished system to perform tests on.

2.5.1.1 Penetration Testing Tools

In this section various software tools for penetration testing are listed. The mentioned tools

are available mainly for personal computers. Depending on the target additional hardware
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equipment might be required. For example, when access to an automotive Ethernet inter-

face (100BASE-T1) is desired an adapter for the physical layer is needed. As most personal

computers do not support cellular network standards, such as 3G and 4G, also in this case

additional hardware is required. In case the software tool modifies the settings of the network

interface card and the card is in use, it is recommended to use a dedicated one. Otherwise

the connection for other applications might be lost.

Two categories of penetration testing tools can be found: the first category are operating sys-

tems distributed with already installed programs and the second category are single programs.

Tab. 2.1 lists operating system distributions for penetration testing. The operating systems

listed provide a pre-installed set of tools for different purposes and are Linux-based. Ad-

ditional tools are installed with Linux package managers. Kali is a Linux-based operating

system available for x86 processors (32 bit and 64 bit) and for ARM processor architectures.

The ARM support enables installations on devices such as a Raspberry Pi. The OS contains

tools for information gathering, vulnerability analysis, wireless attacks, web applications, ex-

ploitation, stress testing, forensics, sniffing, spoofing, password attacks, maintaining access,

reverse engineering, reporting and hardware hacking.

BackBox is a Ubuntu-based operating system available for x86 processors (32 bit and 64 bit).

The OS contains tools for pen testing and security assessment from web application analysis

to network analysis, stress tests, sniffing, vulnerability assessment, computer forensic anal-

ysis, automotive and exploitation. The automotive analysis category of BackBox includes

can-utils.

Distribution OS Platforms License System
requirements

Kali Linux Linux x86, x86-64,
ARM

GPLv3 2048 MB
RAM, 20 GB
disk space

BackBox Linux
(Ubuntu)

x86, x86-64 mainly GPL 1024 MB
RAM, 10 GB
disk space

Table 2.1: Pen testing operating systems

Tab. 2.2 lists software tools that can be used to perform penetration tests. During pen-

etration testing an attack is mimicked. The tester applies tools and techniques used for

real-world attacks. Packet capturing tools such as Wireshark and tcpdump can be used for

attack preparations. Traffic can be sniffed and analyzed to find vulnerabilities. Subsequently,

an attack can be performed. There is a large number of tools for specific goals, e.g. arpspoof

to manipulate a router’s ARP table, but the focus of this thesis lies on broadly applicable

tools and tool sets.

Wireshark is a network protocol analyzer with a graphical user interface. Packets can be cap-

tured live and saved to a file. Captured traffic of common network protocols such as TCP,

UDP, TLS, and IP can be further analyzed. E.g. single TCP streams can be extracted and

the payload can be displayed. Wireshark is available for a wide range of operating systems.
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The program tcpdump is a Linux command-line tool to capture and analyze network traf-

fic. Despite the TCP in the name, packets from various network protocols can be captured.

Tools such as tcpdump and Wireshark use packet capture (pcap) application programming

interfaces to capture low-level network traffic. Packets are directly captured at the network

interface card circumventing the operating system’s abstraction of connections. An exam-

ple of a pcap API for Unix-like systems is Libpcap. For Windows it is Npcap. Tools such

as Nmap can actively probe the network. Hosts and open TCP/UDP ports can be discovered.

The mentioned tools are mainly designed for networks based on the internet protocol suite

(i.e. a set of communication protocols similar to the internet). Although Ethernet and IP-

based networks are increasingly used in the automotive and off-highway industry, other bus

systems such as CAN are common.

The Car Hacker’s Handbook [41] provides a practical introduction to the topic of automotive

penetration testing and lists common tools. The can-utils Linux tool set, for example, offers

utilities for the Linux CAN subsystem (SocketCAN [72]) enabling a PC to gain access to a

CAN network. Tools to display, record, generate and replay CAN messages ara available.

CAN bus access via IP sockets is possible. Tools for bus measurement, bus testing, and

utilities for the ISO-TP protocol are provided.

Caring Caribou is intended as a car security exploration tool with different modules. Modules

supporting UDS, Universal Measurement and Calibration Protocol (XCP), CAN fuzz testing,

dump CAN traffic, send CAN messages, and traffic monitoring are part of the installation.

PCAN-View is a program with a simple graphical user interface to transmit, record, and view

CAN traffic. The Aircrak-ng suite offers tools to monitor and test WiFi networks. Packets

transmitted wirelessly can be captured and exported. The tool offers functionality to crack

WEP and WPA PSK encryption.

Scapy is a versatile Python program usable as command-line tool or as library. Network

packets can be sent, sniffed or dissected. The tool further provides support for automotive

specific protocols such as UDS, GMLAN, SOME/IP, ENET, OBD, CCP, ISO-TP and CAN.

According to the Scapy documentation the automotive tools work best for Linux.

The above section presents a subset of available software tools. No claim to completeness is

made. There is a high number of different tools for specialized goals. An exhaustive list is not

in the scope of this thesis. A starting point, when searching for tools, is the Kali operating

system documentation. The available programs are listed and categorized including a short

description of each program [70].
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Name OS License Features

Wireshark Windows, Linux,
Mac OSX, Solaris,
FreeBSD, NetBSD

open source, free,
GPLv2

Network protocol
analyzer, live packet
capture

tcpdump Linux open source, free,
BSD 3

packet analyzer,
network traffic
capture

Nmap (”Network
Mapper”)

Windows, Linux,
Mac OSX

open source, free,
GPLv2 with
exceptions when
embedding Nmap
technology into
proprietary software

Network discovery
and security
auditing

PCAN-View Windows proprietary, free CAN monitor for
viewing,
transmitting, and
recording CAN data
traffic

can-utils Linux GPLv2, BSD-3 display, record,
generate and replay
CAN traffic, CAN
access via IP
sockets, CAN bus
measurement and
testing

Caring Caribou Linux open source, free,
GPLv3

car security
exploration tool

Aircrack-ng Linux (primarily),
Windows (limited
functionality), Mac
OSX, FreeBSD,
OpenBSD, NetBSD,
Solaris,
eComStation 2

open source,
GPLv2, BSD 3
Clause, OpenSSL

WiFi network
security assessment

Scapy Windows, Linux,
Mac OSX,
OpenBSD,
SunOS/Solaris

open source, free,
GPLv2

packet manipulation
program and library

Table 2.2: Pen testing tools
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3. Case Study: Onboard E/E Sys-

tem for an Off-Highway Vehicle

In this section an example use case is treated. At first the use case is described and subse-

quently analyzed in the context of cybersecurity. The use case is an electrical and electronic

(E/E) system for an off-highway vehicle. The following process is influenced by the ISO/SAE

21434 draft [60] and follows steps from the concept and product development phase. The

analysis does not conform to the standard but concepts and workflows are adopted.

3.1 Use Case

The example use case represents a common in-vehicle E/E network with different control

units and communication interfaces. One subgroup of the E/E system consists of ECUs

interconnected with a Controller Area Network (CAN) bus. The system controls the vehicle

operation. The second subgroup is a human-machine interface (HMI) with two cameras

attached. The cameras are placed at the front and at the back of the vehicle and the images

are transmitted to the HMI. The HMI displays the images and allows the operator to overview

the area. The cameras and the human-machine interface are connected to an automotive

Ethernet switch over the 100BASE-T1 physical layer. The switch is additionally a small

ECU managing the Ethernet packet distribution between the the two cameras and the human-

machine interface.
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HMI

ECU1 ECU2

CAN

ETH SWITCH

CAM1 CAM2

100BASE-T1

100BASE-T1

100BASE-T1

Figure 3.1: Preliminary vehicle E/E architecture

Fig. 3.1 illustrates the preliminary architecture of the vehicle’s E/E system. The architecture

is considered preliminary, as in the course of the following analysis the architecture is changed

to mitigate threats to the system security. CAM1 and CAM2 are the cameras at the front and

at the back of the vehicle. The HMI displays the images of the two cameras. The Ethernet

switch (ETH SWITCH) enables switched Ethernet connections on the vehicle. The upper

part of the architecture is separated from the lower part and consists of two electronic control

units (ECU1 and ECU2) on the same CAN bus. ECUs on the CAN bus perform not further

specified safety relevant actions controlling the physical actions of the system. The presented

architecture serves as characteristic off-highway use case.

The goal of this thesis is to implement a secure external diagnosis for the system depicted

in Fig. 3.1. Both subsystems shall be accessible over an external diagnostic connection. An

external computer or diagnostic tool, denoted as tester, should have access to the HMI, the

Ethernet switch ECU, and the two ECUs of the CAN bus. Diagnostic access allows the

tester to read status information from the connected devices (e.g. error logs), to update their

software, and to reconfigure settings.

3.2 TARA

In this section potential threats are analysed and the related risks are discussed.

Concerning the described use case it is assumed that the vehicular E/E system is physically

protected by anti-tamper enclosures. The bus systems between the control units are also

assumed to be inaccessible except when a connector is installed. It is important to note that

these are strong assumptions for such a system, especially because physical-access oriented

attacks are frequent in the automotive sector [57]. Nevertheless the assumptions are valid

as attacks are often performed via already installed plugs and interfaces such as OBD, Blue-

tooth, WiFi, and cellular network (see [36], [43], [49], [57]). Protection mechanisms against
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physical-access oriented attacks could influence the PCB (printed circuit board) design and

the construction of the ECU housing. Measures to protect the microprocessors debug con-

nector (e.g. locking after production) and to complicate access to the PCB’s wires can be

applied. It is also assumed that the software (i.e. bootloader, operating system, application)

on the components is protected against tampering. The ECUs, the Ethernet switch and the

HMI verify the software with protocols such as secure boot.

The assumptions made are summarized and listed:

A 1: The vehicular E/E system is physically protected by anti-tamper enclosures

A 2: The software on the components is protected against tampering

The topics covered by the assumptions are not treated in this thesis as this would go beyond

the scope. In the following, mainly vulnerabilities of the communication system are discussed.

Enabling diagnostic access to both subsystems can be done by adding an automotive Eth-

ernet and CAN connector located in the cabin. The connectors would allow direct access

to both communication channels. Although the connectors are physically protected to some

extend, if mounted inside the cabin, such an approach would expose the entire internal com-

munication of the vehicle.

Advantages of the CAN bus are low costs of wiring, resilience to electromagnetic interfer-

ence, self-diagnosis, and transmission error correction [57]. Current CAN bus systems are not

designed with security in mind. There are no native security measures implemented in the

CAN protocol. Without certain measures the CAN bus is vulnerable to attacks. Threats to

the unprotected CAN protocol are masquerading attacks, eavesdropping, injection attacks,

replay attacks, denial of service (DoS) attacks, and bus-off attacks [62].

The imitation of a legitimate node by an adversary is called masquerading attack. An eaves-

dropping attack takes place when an unauthorized party accesses the bus and manages to

record the messages. In an injection attack an attacker transmits forged messages on the CAN

bus. A replay attack happens when valid messages are resent by an adversary influencing the

functioning of the system. In a bus-off attack the CAN transmit error counter is increased

until the affected ECU disconnects from the bus. It is called a DoS attack, when high pri-

ority messages are repeatedly sent by an attacker blocking legitimate lower-priority messages.

Ethernet offers a high bandwidth and low costs of components due to the widespread use

in information technology (IT) [32, p. 138]. Proven protocols on top of the physical layer

such as IP, UDP, TCP etc. are supported by a wide range of consumer devices [32, p. 138].

Due to the exposure to electromagnetic interference, temperature, vibration, and moisture in

vehicles, the plugs and cables of standard Ethernet are only suitable to a limited extend [32,

p. 141]. Standard Ethernet (100BASE-TX) is, therefore, only used for diagnostic purposes.

A cost-efficient automotive Ethernet physical layer is used for onboard communication. The

physical layer is called BroadR-Reach and is standardized as 100BASE-T1 (IEEE 802.3bw).

The standard supports 100Mb/s full-duplex operation over a single unshielded twisted-pair

cable. Threats to automotive Ethernet networks are traffic confidentiality attacks, traffic
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integrity attacks, DoS attacks and network access attacks [62].

In a network access attack an adversary gains access to the Ethernet network e.g. through

unconnected switch ports or via remote access. Traffic confidentiality attacks allow the at-

tacker to eavesdrop the traffic. Through actively sending frames, the network topology can

be discovered or MAC tables can be manipulated (MAC flooding). Network access is required

for such attacks. In traffic integrity attacks the network traffic is altered. ARP and DHCP

poisoning attacks are attacks where the traffic is redirected to a malicious node. Replay

attacks and session hijacking attacks are other examples for traffic integrity attacks. DoS

attacks can be performed by physically damaging equipment or by overloading the system.

The internal communication channels CAN and Ethernet are used for diagnostic data and

safety relevant communication. The safety relevant communication controls the physical ac-

tions of the machine. Hence, interference in the communication could cause physical damage

to objects, animals or people.

Based on the mentioned possible attacks in this section, threat scenarios are elaborated.

Threat scenarios are potential negative actions that lead to damage. The threat scenarios

for both internal bus systems, the CAN and the Ethernet are summarized into threats for

the internal communication. In the following, the identified threat scenarios for the internal

communication are listed and enumerated:

TS 1: The communication could be interrupted (e.g. by a DoS attack or a bus-off

attack)

TS 2: Messages of the communication could be forged

TS 3: Messages of the communication could be altered

TS 4: Messages of the communication could be resent (e.g. replay attack)

TS 5: The traffic of the communication could be eavesdropped

TS 6: An attacker could mimic a legitimate communication node (e.g. perform

a masquerading attacks)

Access to the CAN and Ethernet buses is possible with readily available equipment, such as a

laptop with Ethernet and CAN adapter. A relatively low level of expertise of the attacker is

required. Hence, attacks on the internal communications are considered to be highly feasible.

Countermeasures to improve the cybersecurity of the system and to reduce any potential

risks are required.

3.3 Security Concept

Here follows the specification of cybersecurity goals to mitigate the risks from the analyzed

threats.

The threats, specified by the threat scenarios (TS 1-5) concerning the internal communication

of the system, are feasible only with direct access to the internal communication systems.

The preliminary approach to enable diagnostic access by adding connectors to the internal
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bus systems is therefore discarded. Not only diagnostic traffic could be influenced by direct

access, but also security relevant communications can be interfered by an attacker. The risk

resulting from the identified threats is considered too high. Therefore, the first security goal

is defined as:

Goal 1.1: The internal communication shall be protected from direct access

Goal 1.1 addresses the threat scenarios TS 1 to TS 6 for the internal communication.

To protect the internal CAN and Ethernet communication a security gateway is added be-

tween the diagnostic interface and the internal buses. Goal 1.1 is refined into the following

security requirement:

SeqReq 1.1: A security gateway shall protect the internal communication from

direct access

The gateway is the application of the firewall security pattern [61]. A firewall is placed be-

tween an untrusted external network and an internal network with weak security protection

mechanisms. In the presented use case the untrusted external network is the diagnostic Eth-

ernet network. The internal networks are the CAN and automotive Ethernet network. Only

diagnostic messages are forwarded by the gateway. Diagnostic access to ECU1, ECU2, and

the HMI is routed through the gateway. Fig. 3.2 presents the enhanced architecture with

the additional gateway. The gateway device also contains an automotive Ethernet switch

allowing the HMI to communicate with the two cameras (CAM1 and CAM2).

HMI

ECU1 ECU2

CAN
GATEWAY

CAM1 CAM2

100BASE-T1

100BASE-T1

100BASE-T1

CAN100BASE-TX

Diagnostic
Ethernet
Port

Gateway

Figure 3.2: Vehicle E/E architecture with gateway ECU

With the placement of the gateway between the networks and the given assumptions, the

internal vehicle buses are considered to be adequately protected. A still unresolved point is

the security of the communication between the gateway and the tester.
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To facilitate the architectural description and to select suitable protocols, a layered network

architecture model is introduced. The five-layered Internet Protocol Stack [29, p. 49-52] is

chosen for the Ethernet-based networks of the use case. The lowest abstraction layer is the

physical layer, followed by the link layer and the network, transport and application layers.

Ethernet standards, such as 100BASE-TX and 100BASE-T1, are part of the physical layer.

The media access control (MAC) protocol and the frame format defined by the IEEE 802.3

Ethernet standard, specify the link layer.

On the network layer of the gateway’s diagnostic port the Internet Protocol (IP) is selected.

The Internet Protocol enables routing, forwarding, and fragmentation of packets. Further-

more a network layer address, the IP address, is introduced. A connection establishment

with the gateway is now possible, using the IP address, which is independent from the MAC

address. The MAC address is unique for each NIC (network interface card) and changes for

every gateway hardware. The IP address can be reconfigured by the user and is independent

from the NIC. Introducing the Internet Protocol enables the tester to establish a connection

over a network to a host. Close proximity of the tester to the vehicle is no longer required.

The vehicle’s diagnostic port can be connected to a larger network making remote diagnosis

possible. Such improvements in connectivity cause challenges for cybersecurity. No assump-

tions about the topology of the network between the gateway and the tester can be made.

There could be other switches and routers in between. Furthermore wireless connections are

also possible. The channel has to be assumed to be public.

The diagnostic traffic contains status information, software updates, and commands to re-

configure settings. Access to standard Ethernet or WiFi networks is feasible with readily

available equipment. Equipment, such as a laptop with software tools (see section 2.5.1.1),

can be used to identify vulnerabilities and to mount an attack. Information about the used

protocols is publicly available for free (e.g. RFCs). To initially perform attacks on the sys-

tem an experienced technician or engineer, knowing the protocols, is needed. The lack of

protection mechanisms makes weaponizing an exploit (”take an exploit and make it easy to

execute” [41, p. 193]) feasible. After weaponization, a proficient attacker or even a layman

could pull off an exploit.

Eavesdropping attacks violate the confidentiality and privacy property of the transmitted

data. An adversary can manipulate packets leading to a loss of message integrity. An at-

tacker can also mimic a tester device and execute unauthorized commands. Overall attacks on

the unsecured diagnostic connection are estimated to be highly feasible with minimal effort.

The installation of the security gateway protects the internal bus systems from direct physical

access. The protection of the diagnostic messages is an open point which is addressed in the

following. The threat scenarios identified in section 3.2 are applied to the external diagnostic

connection. TS 1 to TS 6 are applicable also for the external connection. The fact that

the external communication is for diagnostics only, reduces the negative impact of damage

scenarios potentially caused by threat scenarios.

The following cybersecurity goals regarding the diagnostic messages are identified:

Goal 2.1: The diagnostic message’s integrity shall be protected against spoofing
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Goal 2.2: The diagnostic message’s confidentiality shall be protected against

eavesdropping

Goal 2.3: The diagnostic message shall be protected against replay attacks

Goal 2.4: The tester device shall be authenticated

Goal 2.5: The gateway device shall be authenticated

The listed additional cybersecurity goals are derived for the threat scenarios TS 2 to TS 6 in

the context of the external communication. TS 1 mentions the possibility of an interruption

of the external connection. Connection interruptions in public communication channels are

difficult to eliminate. Additionally, no detailed assumptions about the public channel can

be made. For diagnostic communication the interruption of a connection is assumed to be

acceptable in this context. Therefore, no cybersecurity goals are derived for TS 1 .

Goal 2.1 addresses the threat scenarios TS 2 and TS 3. Goal 2.3 addresses threat scenario

TS 4. TS 5 is addressed by Goal 2.2. Goal 2.4 and Goal 2.5 address the threat scenario

TS 6.

The cybersecurity goals Goal 2.1 to Goal 2.5 are further refined by specifying cybersecurity

requirements. The requirements are allocated to the gateway ECU and the tester device. The

following cybersecurity requirements are derived:

SeqReq 2.1: The diagnostic messages shall contain a message authentication

code (gateway and tester)

SeqReq 2.2: The message authentication code of the diagnostic messages shall

be verified (gateway and tester)

SeqReq 2.3: The diagnostic messages shall be encrypted (gateway and tester)

SeqReq 2.4: The communication protocol shall provide countermeasures against

replay attacks (gateway and tester)

SeqReq 2.5: The tester shall provide a digital certificate for authentication (tester)

SeqReq 2.6: The gateway shall provide a digital certificate for authentication

(gateway)

The security requirements SeqReq 2.1 and SeqReq 2.2 refine the cybersecurity goal Goal

2.1. Goal 2.2 is refined by SeqReq 2.3. SeqReq 2.4 refines Goal 2.4. SeqReq 2.5 and

SeqReq 2.6 concretize the respective security goals Goal 2.4 and Goal 2.5. Regarding the

certificates, it is assumed that certificate authorities the system relies on are already available

and appropriately managed. The management of such certificates and its associated public

key infrastructure (PKI) are out of scope for this work. Both, the tester and the gateway

shall authenticate themselves to avoid any man-in-the-middle attacks (MITM).

3.4 System Architectural Design

The development of an architectural design is the first step of the product development phase.

During this phase adequate solutions for the above-specified requirements are found.
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The hardware components of the system are off-the-shelf components. The hardware of the

gateway ECU is described in further detail in chapter 4. The gateway ECU is a TTConnect

616 from the manufacturer TTControl. The device offers the required CAN, 100BASE-TX

and 100BASE-T1 interfaces. An Ethernet switch is integrated in the ECU. The remaining

ECUs (ECU1 and ECU2) are not further specified. In this thesis only the gateway ECU and

its interfaces are of interest (denoted by a dashed square in Fig. 3.2). The HMI and the

cameras are also seen as generic components and not further specified.

The tester device is assumed to be an adequate communication counterpart with the required

functionality already implemented. In this thesis, the software components of the gateway

ECU are designed and developed.

The diagnostic protocol shall provide functionality to read status information from the con-

nected devices (e.g. error logs), to update firmware, and to reconfigure settings. The Unified

Diagnostic Services (UDS) protocol provides such functionality. The UDS standard describes

a diagnostic protocol in the application layer independent from the underlying layers [32,

chapter 5]. UDS is standardized in ISO 14229. It is decided to select UDS as diagnostic

protocol because its layered design allows integration on different bus systems. It is assumed

that the ECUs on the internal CAN bus are running a UDS on CAN stack (UDS on CAN,

ISO 14229-3). The HMI also supports UDS but over automotive Ethernet. UDS via IP-based

networks is enabled by the Diagnostics over Internet Protocol (DoIP) standardized by ISO

(ISO 13400).

DoIP lacks security mechanisms to ensure authenticity and integrity of the transmitted data

[30]. According to Kleberger et al [30] the implementation of IPsec results in the most de-

sirable security architecture. IPsec (Internet Protocol Security) enables secure connections

between devices. The protocol resides at the network layer. TLS in contrast is located

between the transport layer and the application layer. IPsec provides authentication and

encryption of packets.

A drawback of IPsec is the lack of freely available open-source implementations for embedded

systems. A partial implementation was done by Scheurer and Schild as a diploma work [5].

The implementation lacks support of modern hash and encryption algorithms. Only insecure

hash algorithms, such as MD-5 and SHA-1, are integrated. Furthermore, the authors state

that the implementation is not market-ready in a sense of robustness, flexibility, and ease of

use. The project was released in 2003 and no further development was done since then. On

the contrary, numerous free open-source implementations are available for the TLS protocol.

OpenSSL, GnuTLS, and mbed TLS are examples.

Therefore TLS is selected to secure the diagnostic communication between tester and gate-

way. TLS protects the integrity and confidentiality of messages. Messages are encrypted and

a message authentication code is appended. The communication parties are authenticated

using public-key cryptography. The underlying Transmission Control Protocol (TCP) en-

sures reliable transport. A limitation of TLS is that the broadcast functionality of UDS to

detect DoIP-capable devices in the network is not supported [30].
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Fig. 3.3 illustrates the design of the gateway software for the diagnostic port. For each of the

five layers of the Internet Protocol Stack a protocol is selected. Standard Ethernet defines

the physical and link layer. The IP protocol is selected for networking. TLS requires TCP as

transport protocol. The application layer consists of the UDS diagnostic protocol together

with DoIP and the TLS security protocol. The implementation of the gateway’s software is

described in chapter 5.

UDS/DoIP

TLS

TCP

IP

Ethernet

Application

Transport

100BASE-TXPhysical

Link

Network

Figure 3.3: Gateway software architecture

In the next chapter the ECU hardware and the microcontroller’s security features will be

described.
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4. Gateway ECU Hardware

The following chapter describes the electronic control unit (ECU) used for the thesis project.

The focus lies on security relevant interfaces and components. Features which are not of

interest for the thesis, such as digital inputs and outputs, are not described.

The gateway used for the project is an ECU developed for vehicles and machines in rugged op-

erating environments. TTControl’s off-highway ECU TTConnect 616 supports connectivity

on several interfaces [66]. The device is intended for the use as switch or gateway in modern

vehicles. The TTConnect 616 ECU is delivered in an aluminum housing with dimensions of

147 x 92 x 38 mm. Fig. 4.1 shows an image of the ECU.

Figure 4.1: TTControl TTConnect 616 (image from ttcontrol.com)

The project’s ECU is a revised variant of the TTConnect 616 [65]. The revised variant has

a newer generation microcontroller and updated Ethernet switch hardware. An overview of

the ECU’s features is given in Tab. 4.1.

As noted in Tab. 4.1, some interfaces are only supported as hardware. Hardware-only

supported means that the transceivers are mounted on the PCB, but no software support is

available to the date the project was done.

The ECU’s main components are a microcontroller and two automotive Ethernet switches.

The automotive microcontroller is used for two purposes: to configure components of the

ECU and to run an application. E.g. the two switches and the transceivers for the CAN bus

and Ethernet are configured by the microcontroller.

The switches are configured to operate in a chained mode where two 5-port switches are

used to create one 8-port switch. One port on each switch is used to interconnect the two of

them. The IEEE 802.3-compliant switch device [40] is called a MAC (media access control)

component allowing different PHYs (physical layers). The PHYs attached to switches on this

ECU are six BroadR-Reach (100BASE-T1) transceivers and a standard Ethernet (100BASE-

TX) transceiver. MAC-to-MAC and MAC-to-PHY communication is realized with the media-
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Microcontroller [59] ❼ Infineon Aurix TriCore TC377TP
❼ 32-bit
❼ 3 cores running at 300 MHz
❼ 6 MB flash
❼ 1136 kB SRAM
❼ Hardware Security Module (HSM)

Ethernet Switch 2 x SJA1105Q (5 port switch)

Interfaces ❼ 6 x 100BASE-T1 (BroadR-Reach)
❼ 1 x 100BASE-TX
❼ 6 x CAN
❼ 1 x LIN*
❼ 1 x FlexRay*

Inputs/Outputs ❼ 3 x digital input or analog input*
❼ 2 x digital output (high-side switch)*

Table 4.1: Gateway ECU features overview (*hardware support only)

independent interface (MII).

100BASE-T1 is a 100 Mbit/s Ethernet PHY standard for automotive applications. The

PHY realizes full-duplex communication via a single unshielded twisted-pair cable. The

standard aims to reduce cabling cost and weight [32]. Furthermore 100BASE-T1 components

are adapted to automotive environments regarding electromagnetic compatibility (EMC),

temperatures, vibrations and humidity exposure [32]. 100BASE-T1 is standardized in IEEE

802.3bw.

100BASE-TX is a popular standard among consumer devices such as PCs. It realizes 100

Mbit/s full-duplex communication via two twisted-pair cables. 100BASE-TX is standardized

in IEEE 802.3u. Those standard Ethernet components are not considered suitable for au-

tomotive purposes but adequate for production or repair-shop environments [32]. A benefit

of the widely supported standard is the availability of cheap equipment required to access

vehicles in the aforementioned environments.

The eighth switch port is connected to the microcontroller. There is also an additional Serial

Peripheral Interface (SPI) bus connection between the microcontroller and the switches. The

SPI bus is used to enable and configure the switches.

Fig. 4.2 shows a block diagram of the ECU’s main components. The two chained switches

are illustrated. The diagram shows only interfaces that are both, supported in software and

hardware and therefore fully available. The six CAN transceivers are directly connected to

the microcontroller as the Aurix already supports the CAN protocol. The Ethernet port

of the Aurix is connected to the Ethernet switch. This enables the communication from

the microcontroller to each of the other ports and vice versa. With the respective switch

configuration it is possible to disable or enable switch ports and to separate traffic going

through the switches.

In the following sections more insight into the architecture of the Ethernet switches and the

microcontroller is given.
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Microcontroller Ethernet Switch
(MAC)

100BASE-
T1
PHY

100BASE-
T1
PHY

100BASE-
T1
PHY

100BASE-
T1
PHY

100BASE-
T1
PHY

100BASE-
T1
PHY

100BASE-
TX
PHY

CAN
Transc.

CAN
Transc.

CAN
Transc.

CAN
Transc.

CAN
Transc.

CAN
Transc.

ECU

Ethernet Switch
(MAC)

Figure 4.2: Gateway ECU block diagram (simplified)

4.1 NXP Ethernet Switch

The ECU has two cascaded SJA1105Q automotive Ethernet switches to create one 8-port

switching unit. The automotive switches are IEEE 802.3 compliant and support IEEE 802.1Q

frame tagging and priority-based QoS handling [46]. Furthermore, features required for Time-

Sensitive Networking (TSN) and Audio Video Bridging (AVB) are supported [46]. The port’s

data rates range from 10 to 1000 Mbit/s [46].

For the current variant of the ECU TSN and AVB are not enabled. The switches are handling

best effort traffic only. The 100BASE-TX and 100BASE-T1 PHYs support a maximum

data rate of 100Mbit/s. Therefore, the switch ports are limited to 100Mbit/s. To avoid

a bottleneck in the interconnection of the two switches this connection is operating with

1000Mbit/s. IEEE 802.1Q frame tagging is enabled to separate network traffic on layer 2.

Configuration of virtual local area networks (VLANs) is implemented.

The switch also supports statistics about frames and buffer load [46]. Such diagnostic informa-

tion is not only beneficial during development but also allows error detection and monitoring

during operation.

4.2 Infineon Aurix TriCore Microcontroller

This section introduces the microcontroller integrated in the ECU. The microcontroller is

highly relevant for the overall system security as it is the ECU’s core component controlling

all the peripheral components and the communication interfaces. The microcontroller of the

ECU is an Infineon Aurix TriCore TC377TP. This second generation Aurix is a state-of-the-

art 32-bit automotive and industrial microcontroller. The chip offers three cores running at

300MHz, 6 MB of flash and 1.1 MB SRAM. Supported interfaces are CAN FD (CAN Flexible

Data-Rate), FlexRay, LIN, SPI, I2C, SENT, PSI5 and MSC. To improve safety, two out of

the three cores are running in lockstep mode. Lockstep mode is when a core has an additional

lockstep core executing the same instructions in a time-shifted manner. The result of the

main core and the lockstep core is compared subsequently. [59]

The microcontroller chip integrates an additional security feature, namely a dedicated security

coprocessor. The coprocessor is called Hardware Security Module (HSM) and is full EVITA

compliant [59]. Further details about the HSM are given in the following section.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.3 Hardware Security Module (HSM)

In this section the architecture of the HSM integrated in the Infineon Aurix TriCore micro-

processor is described. The Aurix’ HSM is categorized as EVITA full HSM. The architecture

of an EVITA full HSM is described in section 2.3.

4.3.1 Aurix TriCore HSM

The Infineon Aurix TriCore microcontroller, used in the ECU, has an integrated HSM. In

contrast to the previous generation of TriCore microcontrollers (TC2xx), the 2nd generation

Aurix TriCore (TC3xx) has an EVITA full HSM.

Not all building blocks of the 2nd generation Aurix HSM are identical to the EVITA full

HSM specification described in section 2.3. Instead of the Whirlpool hash function the

SHA256/224 has been implemented in hardware. Infineon points out that SHA-2 algorithms

have established themselves as cryptographic hash engines on the automotive market [54, p.4].

As counter block not sixteen 64-bit counters are available but two 16-bit timers [53]. Despite

the architectural differences, Infineon states the Aurix TriCore HSM being an EVITA full

HSM [59, p. 87]. The following Tab. 4.2 lists the building blocks of the Aurix 2nd generation

HSM. Blocks differing from the EVITA specification are marked with a star (*).

Full EVITA HSM building block
(Fig. 2.1)

Aurix 2G HSM module

Secure CPU ARM Cortex M3 (100MHz)

Internal RAM 96kB of RAM

Internal NVM 640kB PFlash and AES module’s private
key storage

Asymmetric Crypto Engine public key cryptography (PKC) engine

Symmetric Crypto Engine AES-128 module

TRNG/PRNG TRNG, AES- and hash module can be
used for PRNGs

Hash Engine * Hash module supporting MD-5, SHA-1,
SHA-224, SHA-256

Counters * Timer unit (two 16-bit timers)

Hardware Interface Bridge module

Table 4.2: Aurix 2G (2nd generation) EVITA full HSM based on [53] and [22] (* blocks
differing from EVITA full HSM specification)

The EVITA application core is named host system by Infineon and consists of several pe-

ripherals, RAM, Flash memory, sensors and three TriCore CPUs. In the following sections,

the different modules and features of the Aurix 2G HSM are described in more detail. The

technical specifications are taken from the Automotive Cyber Security Compendium for the

Infineon Microcontroller AURIX [53].

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.3.1.1 Secure CPU

The secure CPU is an ARM Cortex M3-based 32-bit coprocessor. A frequency of up to 100

MHz is supported. The Cortex-M3 is a low-power processor with one core [17]. Debugging

is possible during development and can be deactivated for shipment.

4.3.1.2 Internal RAM and NVM

The HSM has 96kB local RAM and local boot ROM protected from access by the host

system. The boot ROM contains code and read-only data. The contents of the boot ROM are

necessary for the boot-up of the HSM. The HSM program is stored in the microprocessor’s

PFlash and DFlash. Therefore, it is crucial to store the HSM data and code to separate

regions. Furthermore, those memory regions are required to be locked and protected before

the ECUs are shipped.

4.3.1.3 Asymmetric Crypto Engine

The HSM’s public key cryptography (PKC) module provides operations required for asym-

metric cryptography. Modular and non-modular mathematical operations on integers and

polynomials are supported. The PKC module can perform multiplications, modular addition

and subtraction, modular multiplication, modular inversion and division as well as modular

exponentiation. Integers and binary polynomials up to 256 bit length are supported. Al-

gorithms on specific elliptic curves are also provided: addition of two points, doubling of a

point and scalar multiplication. The following elliptic curves are supported [69]:

❼ NIST curves [28]

❼ Brainpool curves [19]

❼ Ed25519 curve [39]

Ed25519 is the twisted Edwards curve equivalent to the Montgomery curve Curve25519 [39,

p. 5].

The hardware module of the HSM does not support complete signature generation or shared

secret calculations based on elliptic curve cryptography (ECC). Such algorithms have to be

implemented in software with hardware support for single operations (i.e. point addition,

point doubling, and scalar multiplication). More details about algorithm implementations

are provided in chapter 5.5.

4.3.1.4 Symmetric Crypto Engine

As symmetric crypto engine, the HSM has an Advanced Encryption Standard (AES) module.

The module supports encryption and decryption of 128-bit-key AES (i.e. AES-128 [3]). The

module offers internal write-only storage for up to 8 keys. After saving, the keys are not

readable anymore. To enable encryption/decryption of data larger than the AES block size

(128 bit) different modes of operation are available. The following modes of operation are

supported:
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❼ ECB (electronic codebook) [4]

❼ CBC (cipher block chaining) [4]

❼ CTR (counter) [4]

❼ OFB (output feedback) [4]

❼ CFB (cipher feedback) [4]

❼ GCM (Galois/Counter Mode) [9]

❼ XTS (XEX Tweakable Block Cipher with Ciphertext Stealing) [20], [14]

The ECB, CBC, CTR, OFB, CFB, and XTS mode provide confidentiality. The GCM mode

provides confidentiality and authenticity of the encrypted data. Modes providing confiden-

tiality do ensure that the plaintext is converted into unreadable ciphertext but do not ensure

that the ciphertext is not altered. Additional mechanisms, such as message authentication

codes (MACs), are required to detect modifications of the ciphertext.

4.3.1.5 TRNG/PRNG

The HSM has a built-in true random number generator (TRNG) module. A non-deterministic

noise source is digitized and post-processed. The entropy of the generated bit stream is then

checked. In case the entropy is low, a warning will be raised. The random number generator

meets the requirements for the functionality class PTG.2 by the German BSI (Bundesamt

für Sicherheit in der Informationstechnik) [69]. The random number generator (RNG) class

PTG.2 describes a physical RNG with internal tests detecting a total failure of the entropy

source and non-tolerable statistical defects [24, p. 7]. Furthermore, a statistical model of the

entropy source is implemented and statistical tests on the output are performed [24, p. 7-8].

The output of such a TRNG, or physical RNG, can be used as input for a pseudorandom

number generator (PRNG), or deterministic RNG. The process of using such an entropy

source to initialize the state of a PRNG is called seeding [24, p. 15]. RNGs using an entropy

input and cryptographically post-processing it are categorized as functionality class PTG.3,

the strongest class defined by the BSI [24, p. 79]. The AES-128 module and the hash module

of the HSM can be used to build such pseudorandom number generator (PRNG) using a seed

from the HSM’s TRNG. Hash- and block cipher-based PRNGs are specified by NIST in the

freely available special publication 800-90Ar1 [33].

4.3.1.6 Hash Engine

The HSM’s hash module supports the following hash algorithms:

❼ MD-5

❼ SHA-1

❼ SHA-224 [34]
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❼ SHA-256 [34]

The MD-5 and SHA-1 hash functions are not considered collision resistant [63, p. 18]. The

term collision resistance describes that it is infeasible (computationally hard) to find two

messages that generate the same hash output or to modify a message without changing the

hash output [27, p. 126]. After thorough examination, these two hashes could be used for

applications where collision resistance is not crucial [63, p. 18]. The German BSI recommends

the usage of selected hash functions from the SHA-2 and SHA-3 family. SHA-256 is the only

hash algorithm supported by the HSM, which is considered to be cryptographically strong

according to the BSI [63, chapter 4].

4.3.1.7 Counters

The timer module of the HSM offers two independent 16-bit up-counting timers. The clock

source and the clock prescaler are configurable.

4.3.1.8 Hardware Interface

The HSM’s hardware interface to the host system is called bridge module. The bridge module

controls all interactions between the HSM and the host system. Via the bridge module the

HSM is able to trigger interrupts on the host system side and vice versa. The architecture

allows full access to the host system by the HSM. The HSM has access to memory and

peripherals, while the host system has only restricted access to the HSM. During operation

the host system can only access dedicated communication registers. The communication

registers consist of flags and 32-bit status values.

4.3.1.9 Additional Modules

The following two modules are not explicitly specified by the EVITA project (section 2.3)

and are, therefore, only briefly described.

Watchdog Timer

To monitor the system the timer module features a 16-bit watchdog timer. The watchdog

timer could be seen as additional counter in Tab. 4.2.

Debug Modules

The HSM’s debug modules allow debugging of HSM code during development.
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5. Gateway ECU Embedded Soft-

ware

The previous chapter outlines the ECU and its project-relevant hardware components. This

chapter describes the software components running on the ECU. The architectural aim of

the developed software lies in encapsulating security-relevant computations in the HSM and

making full use of the available cryptographic hardware modules. Fig. 5.1 illustrates the

main components of the developed software solution. Green components (host application,

HSM interface, and HSM application) are developed as part of this thesis project.

IO API

Host System Hardware Security Module

HSM Application

HSM
Interface

Host Application

Figure 5.1: Main components

The host system and the Hardware Security Module (HSM) in Fig. 5.1 are the two hard-

ware components executing the software. The HSM and the host system are two separate

microprocessors interacting with each other. The code running on the HSM secure CPU is

denoted HSM application. The HSM application provides cryptographic services (encryption,

decryption etc.) to the host application. The host application accesses HSM functionalities

via the HSM interface software component only.

The HSM interface manages the interconnection between the two microprocessors. The

interface deploys tasks to the HSM and notifies the host application upon completion or when

errors occur. In Fig. 5.1 the information exchange between the two software components is

represented as the two-pointed arrow between them. The communication itself is done via

shared RAM areas and communication registers.

The IO API is provided by the ECU’s manufacturer. The author of the thesis was involved

in the development of the IO API. The specific version used for the project is TTConnect

616C CAPI 1.0.0.1, the latest release. Interfaces such as CAN and Ethernet are accessed by

the application using the IO API. Furthermore, the IO API provides general initialization

routines for the ECU. Especially relevant for the project are API functions regarding the
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Ethernet transceivers, BroadR-Reach transceivers, and the Ethernet switch.

The host application defines the behavior of the ECU. Different applications can be developed

for various use cases. For example, an application could pack CAN messages into Ethernet

frames and forward them to dedicated ports. In case encryption or digital signatures are

required, the host application makes use of the HSM interface. The host application developed

for the thesis is described in detail in section 5.2.

5.1 Software Implementation

The previously described software architecture is implemented in C programming language.

The host application, the HSM interface, and the HSM application were developed during

this thesis project. The Git version-control system is used to track changes in source code

during software development. Two repositories, one for the HSM application and one for

software, running on the host system, are created. The chosen source-code editor is Visual

Studio Code by Microsoft.

Toolchain

The project’s Infineon Aurix Tricore microcontroller (TC377TP) contains two different pro-

cessor core architectures. The host system consists of three Tricore CPU cores and the HSM

secure CPU has one ARM Cortex core. For each architecture a different compiler is required.

To build the project for the Tricore, the HighTec TriCore Development Platform v4.9.3.0 is

used. As a toolchain to build for the HSM’s ARM architecture the TASKING VX-toolset for

TriCore v6.2r2 is used. The licenses for the compilers are provided by TTControl.

Debugging

For debugging a professional debugger is used, namely the Lauterbach POWER DEBUG

INTERFACE / USB 2 with DEBUG cable and TRACE32 PC software. Tricore and ARM

debug licenses are provided by TTControl.

In the following, the software components illustrated in Fig. 5.1 are outlined.

5.2 Host Application

The host application of the thesis aims at providing a demonstrator for a secure communica-

tion protocol. In the final product the host application provides secured diagnostic services.

The UDS server is listening for incoming diagnostic messages and responds to them. The

diagnostic traffic is encrypted and protected against tampering by a secure communication

protocol. Due to the limited time frame, the UDS server application is replaced by an already

available implementation of an HTTP server.
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The host application runs on the host system using functions provided by the IO API and the

HSM interface. The IO API provides an implementation of the Ethernet protocol. Physical

and link layer are, therefore, already available on the ECU. The implementations of TCP

and IP are provided by the already integrated TCP/IP stack. The integrated stack is called

lwIP [71]. LwIP is an open-source project designed for embedded systems with a focus on

reduced resource usage. The version of the integrated lwIP stack is 2.1.2.

For the use case, TLS is chosen to secure the communication between a diagnostic device

(e.g. PC) and the ECU. The lwIP TCP/IP stack supports the integration of a third party

TLS layer. For mbed TLS an example port to lwIP is already available. Mbed TLS focuses

on a small footprint and portable code [73]. The API is well documented and the code is

readable. Hardware support for certain cryptographic algorithms can be integrated. TLS is

supported up to version 1.2. Due to the ease of integration, the license (Apache-2.0), and the

available examples, mbed TLS is selected as TLS implementation and integrated in the host

application. The version of the used mbed TLS is 2.13.1.

On application layer UDS was selected during the case study in section 3.4. Integrating UDS

on the device would go beyond the scope of this master thesis. Therefore, the HTTP server

of the TCP/IP stack is enabled, providing an example web page. Using an HTTP application

with TLS results in an HTTPS (Hypertext Transfer Protocol Secure) server. The HTTPS

server application makes use of the identical underlying protocols as the secured version of

UDS with DoIP (see Fig. 3.3). Consequently, this server application is used to test and verify

the functionality of the underlying protocols (TLS, TCP, IP, and Ethernet). Simple tools

can be used to communicate with the ECU. A browser on the development PC, for exam-

ple, is used to open the web page of the server. The traffic is observed with the Wireshark tool.

According to the German BSI only TLS version 1.2 and 1.3 are recommended [64, chapter

3.2]. The highest supported version by mbed TLS is 1.2. Therefore, TLS 1.2 is selected for the

project. The configuration of mbed TLS allows to select the supported ciphersuites. Usually,

when implementing a web server it is required to support a wide range of ciphersuites in order

to avoid compatibility issues. In this case, compatibility is no concern as the client (tester

device) is developed especially for the gateway ECU. Accordingly, the strongest ciphersuite

supported by the HSM hardware acceleration is selected. The ciphersuite with the IANA

name [58] TLS ECDHE ECDSA WITH AES 128 GCM SHA256 is selected. The naming scheme for

the TLS ciphersuite is the following: ECDHE indicates that the elliptic-curve Diffie–Hellman

(Ephemeral) is used as key exchange algorithm, while ECDSA indicates the client and server

authentication mechanism which is elliptic curve digital signature algorithm (ECDSA). AES -

128 GCM indicates that AES with 128 bit key length in Galois/Counter Mode (GCM) mode

is used for encryption, and SHA256 indicates that the SHA-256 hash algorithm is used. The

ciphersuite is specified by IETF in RFC 5289 [12]. The authenticated encryption with ad-

ditional data algorithm (AES 128 GCM) provides the message encryption and the message

authentication code (MAC). The algorithms of the selected ciphersuite are also compatible

with the successor TLS 1.3.
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Mbed TLS offers the possibility to substitute provided cryptographic primitives with alterna-

tive implementations. Functions provided by the HSM Interface (section 5.4) are integrated in

the TLS implementation. The entropy source of the HSM is used (HsmIfTrngGenerate). The

hash generation is moved to the HSM secure core by integrating the HsmIfSha256Process

function. The message encryption and the generation of the MAC are also performed by the

HSM (HsmIfAesCryptGCM). As well as the message decryption and the MAC verification are

done by the HSM. Computations for the key exchange (HsmIfEcdhGenPublic, HsmIfEcd-

hComputeShared), the signature generation (HsmIfEcdsaSign) and verification (HsmIfEcdsaVerify)

are moved to the HSM core. The deterministic random bit generator of the TLS implementa-

tion makes use of the AES-ECB block decryption and encryption algorithms. The AES-ECB

computation is also moved to the HSM. All cryptographic primitives of the TLS implemen-

tation are externally computed by the HSM secure core.

Fig. 5.2 presents the implemented architecture of the host application. Compared to the

design in section 3.4 (Fig. 3.3), the UDS/DoIP segment is substituted with the HTTP server.

Except for the TLS, all parts of the TCP/IP stack are provided by the lwIP implementation.

The TCP/IP stack is integrated on top of the IO API providing the Ethernet functionality.

The TLS implementation makes use of the cryptographic functions provided by the HSM

interface.

HSM Interface

TCP (lwIP)

IP (lwIP)

Ethernet (IO API)

Host Application

HTTP server (lwIP)

TLS (mbed TLS)

Figure 5.2: Host application architecture (UDS replaced by HTTP)

5.3 IO API

The IO API offers an interface for application development in the C programming language.

The library is provided by TTControl and the complete name with version is TTConnect 616C

CAPI 1.0.0.1. This release supports the CAN interface, the Ethernet interface and Ethernet

switch and transceiver configuration. Different Buffers, baudrate and filter configurations are

available for CAN interfaces. Sending and receiving IEEE 802.1Q tagged Ethernet frames

is supported. The Ethernet switch interface offers functions to read certain frame error

counters and the number of sent frames. This version of the IO API supports only static

switch configuration. The static configuration is stored in the ECU’s flash memory and

loaded during the initialization of the switch. VLAN memberships for each port can be set
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by a tool that generates the static configuration. The tool creates files to include in the C

application project which then are compiled and flashed to the ECU’s memory. Additionally,

the tool enables the user to configure the BroadR-Reach ports either in master or slave mode.

Dynamic configuration would allow the ECU application to change the switch configuration

dynamically during runtime. For example, the VLAN memberships of ports could be changed

depending on inputs and/or messages received.

The IO API offers functions to initialize the ECU’s Ethernet transceiver and the BroadR-

Reach transceivers. Using the configuration files generated by the tool, the BroadR-Reach

transceivers can be initialized as master or slave. Additional transceiver status information

can be obtained via the API. Disabling an Ethernet or BroadR-Reach port is done by omitting

the call of the initialization function of the transceiver. The IO API is used by the host

application to transmit and receive messages via the Ethernet and CAN interface and to

initialize and configure the transceivers and Ethernet switch. The development of the IO

API is, however, not part of this thesis.

5.4 HSM Interface

The HSM interface software component manages the interaction between the host system

and the HSM. The exchange of data between the two microprocessors is done via shared

RAM areas and communication registers. While the communication registers are used to

exchange small amounts of data (32 bits) in both directions and to trigger interrupts on

HSM side, the shared RAM area is used to exchange larger amounts of data. The task

of the HSM interface software component is mainly to transfer parameters and to trigger

the execution of cryptographic algorithms on the HSM. Additionally, the interface software

initializes the communication between the two microprocessors. During the initialization, a

check is performed to ensure the HSM booted correctly and is ready for tasks. Furthermore,

the address of the memory interface is transmitted to the HSM using the host-to-HSM status

register.

The memory interface is a structure for information exchange stored in the host system’s

RAM. The structure variable holds pointers, a status value, as well as 32-bit and 64 values.

The pointers are memory addresses of buffers which are either used as input or output for

the HSM. Each buffer has an associated buffer length variable. The structure holds one

status variable which is used by the HSM to communicate error messages and general status

information.

If not an array or buffer is required, the memory interface structure also offers 32-values and

64-bit values. The structure offers in total five buffer address entries with associated buffer

length variables, four 32-bit variables, two 64-bit variables, and one status variable. 76 bytes

of RAM memory are occupied by the memory interface structure. The structure variable is

instantiate by the HSM interface in the host system’s RAM. During the initialization func-

tion, the memory address of the instantiated variable is passed to the HSM. All subsequent

HSM tasks exchange information and data with the host system using exactly this memory

interface.

Fig. 5.3 presents the memory interface and communication registers used by the HSM inter-
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face and HSM application. The figure does only include only the used registers. Registers

which can be used to trigger interrupts on the host system side are excluded as they are not

used in this software implementation. Host-to-HSM registers can only be written by the host

system. HSM-to-host registers can only be written by the HSM.

Memory Interface

uint32 * IoBuf0...4
uint32   IoBufLen0...4
uint32   IoVal0...3
uint64   IoVal4...5
enum    Status

Communication
Registers

Host-to-HSM Flags
Host-to-HSM Status

HSM-to-Host Flags
HSM-to-Host Status

HSM
Interface

HSM
Application

Figure 5.3: Host system/HSM interface

5.4.1 Task Deployment

This section describes the general task deployment process. No specific procedures for the

single cryptographic algorithms are outlined, but all tasks share a temporal execution scheme.

The process is started by the host application calling an HSM interface function. The interface

function then sets the variables of the memory interface structure depending on the desired

HSM algorithm. Subsequently, the host-to-hsm flags register is set to trigger the execution on

the HSM. Write access by the host system to host-to-hsm flags register triggers an interrupt

on the HSM. The HSM application checks the parameters of the memory interface and starts

to compute the desired cryptographic algorithm. Finally, the results are either written to the

provided buffer addresses or to individual memory interface values. In case an error occurs,

the memory interface’s status variable is set to pre-defined error code. The host application

polls the HSM-to-host flags register until the task is completed. After completion, the HSM-

to-host status register is read and compared with an expected value to diagnose bridge module

errors. Both, the HSM-to-host status register and the memory interface’s status variable, are

used to signal errors or warnings to the host system. The register value is used for errors

occurring in communication between the host system CPU and the HSM secure CPU. The

status variable of the memory interface is used to communicate errors and warnings arising

during the algorithm execution. Incorrect parameters passed, null pointers, or a failed digital

signature validation are examples.
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5.4.2 HSM Interface Functions

In this section the implemented functions of the HSM interface are listed and described. The

functions are called by the host application to initialize the HSM and to deploy tasks to the

HSM’s secure coprocessor. The provided C functions are categorized by algorithm (AES,

ECDSA etc.). In the following, each category is described and the functions are listed. For

each category one header (h) file is provided which can be included by the host application.

The function to initialize the HSM interface is called HsmIfInit and needs to be called before

any other function. Each function returns error codes in case a failure has occurred. The

return values and error codes are not described in detail as the focus is on the functionality

of the interface.

5.4.2.1 AES

This paragraph outlines the interface functions based on the AES-128 block cipher. The

functions listed launch tasks on the HSM making use of the symmetric cryptography engine

described in section 4.3.1.4. The AES module offers a key storage and different modes of

operation. Supported modes of operation are ECB (electronic codebook), CBC (cipher block

chaining), CTR (counter) [4], and GCM (Galois/Counter Mode) [9]. Tab. 5.1 lists the

provided C functions and briefly describes their functionality.

Function Name Description

HsmIfAesSetKey Sets an entry of the HSM’s AES key
storage. Afterwards the key can be used
for encryption/decryption

HsmIfAesCryptECB Encrypts or decrypts an input block using
a selected key in AES-ECB mode

HsmIfAesCryptCBC Encrypts or decrypts the input using a
selected key in AES-CBC mode

HsmIfAesCryptCTR Encrypts or decrypts the input using a
selected key in AES-CTR mode

HsmIfAesCryptGCM Encrypts or decrypts the input using a
selected key in AES-GCM mode

Table 5.1: HSM interface AES functions

For the CBC and CTR modes of operation an additional initialization vector (IV) needs to

be provided as input to the function. The GCM mode offers authenticated encryption with

associated data (AEAD) and requires an initialization vector. GCM encryption takes the

plaintext and additional authenticated data (AAD) as input and computes the ciphertext

and an authentication tag. Confidentiality and authenticity of the data are provided. The

tag is a cryptographic checksum that is designed to reveal accidental errors and intentional

modifications of the ciphertext and the AAD. The decryption process decrypts the ciphertext

and checks the validity of the tag.
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5.4.2.2 CMAC

Message authentication codes (MACs) are used to provide authenticity and integrity for a

transmitted message or any other kind of data. Cipher-based message authentication codes

(CMACs) are a keyed hash function based on a symmetric block cipher. An alternative

message authentication code (MAC) achieving similar security goals [8, p. 2] is the keyed-

hash message authentication code (HMAC). In contrast to the CMAC, the HMAC is based

on a cryptographic hash function [1], e.g. SHA-256 [25]. The HSM has modules for SHA-

256 generation and the AES block cipher. Both, CMAC and HMAC, would be possible to

implement with hardware support. The decision to implement the CMAC algorithm is made

based on the fact that the AES modules supports a read-only key storage.

The general CMAC algorithm is specified by NIST [38]. NIST does not specify a particular

block cipher. IETF specifies the NIST CMAC algorithm with the AES-128 block cipher in

RFC 4493 [8]. The selected algorithm is the one specified by IETF using the AES module of

the HSM. RFC 4493 defines a message authentication code (MAC) generation and a MAC

verification algorithm. Both are supported by the HSM interface. Tab. 5.2 lists the available

C functions.

Function Name Description

HsmIfAesCmac Generates an AES-CMAC message
authentication code for a provided message

HsmIfAesCmacVerify Verifies an AES-CMAC for a provided
message

Table 5.2: HSM interface CMAC functions

5.4.2.3 ECDH

The elliptic-curve Diffie–Hellman (ECDH) algorithm is specified in SEC 1 [15]. The algorithm

is a key agreement scheme to establish a shared secret over a public channel. The shared

secret is then used as cryptographic key. ECDH is based on the Diffie-Hellman key exchange

method and elliptic curve cryptography (ECC). The supported elliptic curve parameters are

specified in SEC 2: Recommended Elliptic Curve Domain Parameters [18]. The only available

curve is the Standards for Efficient Cryptography Group (SECG) curve secp256r1 [18, Ch.

2.4.2] (also called NIST P-256 [28, p. D.1.2.3]).

Two primitives specified in SEC 1 are provided by the HSM interface: the key pair generation

[15, Ch. 3.2.1] and the computation of the shared secret [15, Ch. 3.3.1] primitive. The

generation of the key pair yields the secret key and the associated public key. The secret key

is pseudorandomly derived from a non-deterministic seed. The public key is calculated by

using the secret key and is basically a point on the elliptic curve. In a next step, the public

key is published and the public key of the communication partner is retrieved. After the

public key exchange, the shared secret is computed by both communication partners.

Tab. 5.3 lists the interface functions for ECDH operations. Further details about the algo-

rithm implementation and the PRNG on HSM side are given in section 5.5.
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Function Name Description

HsmIfEcdhGenPublic Generates an ECDH key pair

HsmIfEcdhComputeShared Computes the shared secret

Table 5.3: HSM interface ECDH functions

5.4.2.4 ECDSA

The elliptic curve digital signature algorithm (ECDSA) is a digital signature algorithm spec-

ified by the American National Standards Institute (ANSI) [7] and based on elliptic curve

cryptography (ECC). NIST specifies the ECDSA algorithm with NIST approved hash func-

tions [28]. The digital signature standard (DSS) [28] uses a hash function to obtain a con-

densed version of the message to sign. The message digest is then used as input to the digital

signature algorithm to generate the signature. The HSM interface offers functions for sig-

nature generation and verification (see Tab. 5.4). The pre-hashing of the message must be

performed by the host application. As hash function the SHA-256 algorithm can be used.

The only supported elliptic curve is the secp256r1 (NIST P-256) 256-bit curve requiring a

256-bit hash digest. Every signature generation requires a random number, the ephemeral

private key. The generation of the ephemeral private key is done by the HSM internally seed-

ing a pseudorandom number generator with the TRNG. After the signature generation the

private key is discarded. Employing the same ephemeral private key for different signatures

can lead to extraction of the long term signing private key [21]. Such a breach allows an

adversary to generate digital signatures on its own.

Function Name Description

HsmIfEcdsaSign Computes the ECDSA signature of a
previously-hashed message

HsmIfEcdsaVerify Verifies the ECDSA signature of a
previously-hashed message

Table 5.4: HSM interface ECDSA functions

5.4.2.5 SHA-256

NIST specifies the secure hash algorithm (SHA) with different versions and digest lengths

[34]. The message digest is the output of the one-way hash function, a compressed repre-

sentation of the message (input). The messages integrity can be determined. SHA-1 is not

considered collision resistant [63, p. 18] and it is advised against a general use. The only

considered cryptographically strong hash algorithm [63, p. 39] supported by the HSM hard-

ware acceleration is the SHA-256 algorithm [34]. SHA-256 generates a 256-bit digest. Initial

hash values and message preprocessing (i.e. padding and parsing into blocks) are defined by

the standard and can optionally be performed by the HSM. Due to compatibility reasons

regarding different host applications, the HSM interface offers two functions for hash gener-

ation (Tab. 5.5). The first function (HsmIfSha256Process) processes one input block only

and preprocessing is delegated to the host application. The advantage is that the calculation
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is interruptible: a state variable is returned and as soon as a new message block appears,

the generation can be continued. The second function (HsmIfSha256) processes an arbitrary

message and returns the digest. In contrast to the first function preprocessing and setting the

initial hash value is done by the HSM. The advantage of this function is that the calculation

is entirely encapsulated in the HSM. A drawback is that the message must be complete before

the hash generation can start.

Function Name Description

HsmIfSha256Process Processes one SHA-256 input block (512
bits), simply updates and returns the state
and does not perform any padding

HsmIfSha256 Generates a SHA-256 hash digest of
arbitrary data

Table 5.5: HSM interface SHA-256 functions

5.4.2.6 TRNG

The HSM interface offers a function to retrieve random numbers from the HSM’s true random

number generator (TRNG). The output of the physical random number generator of the

HSM is directly returned to the host system. Tab. 5.6 lists the function to generate random

numbers.

Function Name Description

HsmIfTrngGenerate Generates 32-bit non-deterministic (true)
random numbers

Table 5.6: HSM interface TRNG functions

The random number obtained is compliant with functionality class PTG.2 [69]. Although

PTG.2 generators can be used for certain applications where minor biases are negligible, in

general it is recommended to use PTG.3 generators [63, p. 59].

5.5 HSM Application

An objective of this work is to develop a software focused on making use of the hardware

building blocks of the Infineon Aurix Tricore’s HSM. The available building blocks were in-

troduced in section 4.3.1. The following chapter describes the architecture and functionalities

of the developed application running on the HSM security CPU.

The HSM application offers functionalities to the host application. With the separated pro-

cessor core and memory, a barrier against possible attacks on the host side is given. E.g. a

buffer overflow attack on the host system can not corrupt the memory of the HSM secure

CPU. Futhermore, keys and certificates can be stored in HSM memory to mitigate a leak

of such information. The level of security is additionally increased by placing particular

functionality (e.g. encryption and decryption process) in hardware [22, p. 18].
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The implemented software architecture is analogous to a client-server model where the host

system is the client and the HSM is the server. On request of the host system the HSM

executes a function. The HSM offers services to the host system’s application through the

HSM interface (see section 5.4).

As outlined in section 5.4.1, the host application triggers an interrupt on the HSM as soon

as a service is requested. The HSM application then computes the desired results. Via the

memory interface buffer, addresses and parameters are exchanged. After an interrupt is trig-

gered, the HSM application switches to the desired service. At the beginning of each service

routine, the parameters set by the host system are checked. The HSM interface functions do

not perform any parameter checks. E.g. null pointers as buffer addresses are forwarded to the

HSM without signalling any error to the host application. Parameter checks are considered

security relevant and are, therefore, performed in the secure CPU of the HSM. Passing e.g.

null pointers to a function could cause the application to crash and manipulated values could

be used to provoke a DoS. In case a parameter exceeds a boundary or is invalid, the HSM ap-

plication returns an error code to the HSM interface using the memory interface. Performing

such a parameter check at the HSM increases the level of security by encapsulating the execu-

tion in the Hardware Security Module (HSM) and by following the secure by design paradigm.

The secure by design approach intends to build in security in the system from the ground up,

beginning with a robust architecture design [47]. It is not only necessary to design a robust

security architecture which will ensure the system’s software security, but it is also required to

preserve the architecture during the evolution of the software [47]. Additionally, the correct

implementation of the intended architecture is crucial in order to avoid introducing flaws.

While both, architectural weaknesses on a higher level and software bugs on a code-level,

could introduce security vulnerabilities, secure by design focuses on the first [47]. Since it

is assumed that design weaknesses have a greater impact on the systems software security [47].

By accessing the memory interface, the HSM application reads and writes the RAM of the

host system. The access is done directly without the optional caching. The caching pro-

vided by the HSM hardware increases the speed for some operations. Nevertheless, for this

prototype implementation it is decided not to use the cache and to access the host memory

directly. For future improvements the usage of the cache could be evaluated and tested. To

access the host system’s RAM, a memory window has to be set on HSM side. Each time a

read or write operation is performed the window is priorly set.

A general paradigm of the HSM application is to avoid unnecessary memory copy operations.

Input data provided by the host system is not copied to HSM RAM but directly to the HSM’s

hardware registers avoiding intermediate storage. This is possible whenever data is directly

used as input for hardware accelerators without a need to pre-process. In cases where input

data has to be preprocessed (e.g. padding), the smallest possible data block is copied to HSM

RAM and then written to registers. The same approach is used for data generated by the

HSM’s hardware accelerators. Whenever possible, output data is directly moved from the
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hardware register to the host system memory without copying it to HSM memory first.

In the following the single functions provided by the HSM application are listed. The im-

plemented algorithms are explained and, in case there are interface functions triggering the

execution, they are enlisted. The functions are categorized in software modules provided

by the HSM application. The software modules make use of the HSM’s hardware modules

outlined in section 4.3.1.

5.5.1 KMS

The key management system (KMS) module administers the keys stored on the HSM. The

software module enables the storage of keys in the HSM’s flash memory and in the AES

hardware module. Keys stored in the AES hardware module are not readable but only

writeable. The KMS module offers a function (table 5.7) to write AES-128 keys to the AES

hardware module. The function is not directly accessible by the host system but is called by

other functions of the HSM application (i.e. AesSetKey).

Function Name Description

KmsSetAesKey Writes a key to the AES-128 hardware
module

Table 5.7: Functions of the KMS software module of the HSM application

5.5.2 Bignum

The Bignum module provides functions required to handle big numbers. Numbers used in

the HSM application are up to 256 bits wide. The big numbers are represented as arrays

of unsigned 32-bit integers. Tab. 5.8 lists the module’s functions providing operations on

such numbers. The module is used internally by the random number generators (TRNG and

CTR DRBG) to generate numbers within an interval. The CTR DRBG module additionally

uses the BigNumInc function to increase the counter value. The Bignum software module

does not use any hardware accelerators and is not accessible by the host system.

Function Name Description

BigNumCmp Compare unsigned values

BigNumInInterval Checks if unsigned value in an interval

BigNumInc Increments an unsigned value by 1

Table 5.8: Functions of the Bignum software module of the HSM application

5.5.3 Hostmem

This software module provides functions to read and write the memory (RAM) of the host

system. To enable data sharing between HSM and host, a shared memory is used. The

following functions enable access of the HSM to RAM addresses of the host. The memory

is accessed through a 64KB window, which is dynamically set. The functions write to the
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required register to set the memory window. The functions listed in table 5.9 are used by

the other HSM application functions to exchange uncached data with the host system. The

functions can be used to access HSM registers or variables. Different data units, reaching

from single bytes to double words, are supported. It is also possible to exchange arrays of

data between the two CPUs. For compatibility reasons it is necessary to support inversion

of byte and word orders. Functions supporting hardware FIFOs repeatedly access the same

register memory address but increase the host memory address. Memory registers are all 32

bits wide.

Function Name Description

hostwrite byte Writes a single byte (8 bit) to a host
memory address

hostwrite bytes Writes an array of bytes to a host memory
address

hostwrite word Writes a single word (32 bits, 4 bytes) to a
host memory address

hostwrite words Writes an array of words to a host memory
address

hostwrite words inverse Inverts the word order and the byte order
of each word. Then writes the array of
words to a host memory address

hostwrite fifo Writes the content of a FIFO buffer to a
host memory address

hostread byte Read a single byte from a host memory
address

hostread bytes Read an array of bytes from a host
memory address

hostread word Read a single word (4 bytes) from a host
memory address

hostread words Read an array of words from a host
memory address

hostread words inverse Read an array of words from a host
memory address with inverted word order
and byte order

hostread dword Read a double word (64 bit) from a host
memory address

Table 5.9: Functions of the Hostmem software module of the HSM application

5.5.4 CTR DRBG

This module implements a deterministic random bit generator (DRBG) according to NIST SP

800-90Ar1 [33]. The CTR DRBG implements a pseudorandom number generator (PRNG)

based on a block cipher [33, p. 48]. The block cipher is used in counter mode (CTR). Any

NIST approved block cipher can be used. In this implementation, the AES block cipher

with 128 bit key length is used because the algorithm is approved by NIST [56, p. 28] and

supported by the HSM’s symmetric crypto engine (see section 4.3.1.4). The implemented

algorithm does not use a derivation function to derive a seed from the seed material, since
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with the HSM’s TRNG a ”full-entropy input” is provided [33, p. 52]. NIST specifies interface

functions to instantiate the generator, to generate random values and to reseed. Tab. 5.10

lists the implemented functions. The instantiate function initializes the internal state of the

random number generator and takes an entropy value and a personalization string as input.

The entropy values are bits from a randomness source. The HSM application uses the internal

TRNG as randomness source. The personalization string is optional and, if given, combined

with the entropy value to generate the final seed. The internal state is initialized depending

on entropy input and personalization string. The internal state of the DRBG is the memory

of the generator [56, p. 12], which is stored in the HSM’s RAM. Since the output of the

random number generator is derived from there, it is necessary to protect the internal state.

The generate function yields a pseudorandom output. If additional input is provided, the

internal state is updated before and after the random number generation. If no additional

input is available, the internal state is updated after the random number generation. Other

algorithms (i.e. ECDH, ECDSA) using the PRNG require random number within a certain

range. Therefore, a function is provided which checks if the pseudorandom number is within

an interval. The function interprets the generated values as unsigned integers and compares

them with a given upper and lower boundary. If the generated number is too large or too

small, the DRBG generate function is called again until the result is within the interval. It

is important to emphasize that the behavior of this function is not deterministic. Due to the

”unpredictability” of the generated pseudorandom number the algorithm can get stuck within

the loop. The chance of such a behavior increases, if the desired interval is small. Depending

on the block cipher, the generator requires reseeding after a certain amount of generated

random numbers. The reseeding function again requires an entropy value obtained from a

randomness source and an optional additional input. The additional input, if provided, is

combined with the entropy value and the internal state is updated.

Each time the internal state is updated or the output is generated, the block cipher is used.

The counter is increased in software and the AES-128 hardware module is used in ECB mode.

The use of a one-way function as state transition function and output function makes the

CTR DRBG a deterministic random number generator of the DRG.3 functionality class [24,

p. 70, 90]. Using the HSM’s TRNG, which is PTG.2 compliant [69], as entropy input re-

sults in a class PTG.3 random number generator [24, p. 79]. Class PTG.3 random number

generators are ”appropriate for any cryptographic application ” [24, p. 79]. Especially when

ECDSA signatures are generated, the quality of the random number used is crucial. Short

term dependencies or biases of the PTG.2 physical random number generator are eliminated

by the DRG.3-compliant postprocessing [24].

The CTR DRBG software module is not accessible by the host system. No corresponding

HSM interface function is implemented. The CTR DRBG module is internally used by the

HSM application to generate the ephemeral key for the ECDSA signature calculation and to

generate the secret key for the ECDH key exchange.
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Function Name Description

CtrDrbgInstantiate Instantiates the internal state of the
DRBG with a seed

CtrDrbgReseed Refresh the internal state with a new seed

CtrDrbgGenerate Generates a pseudorandom value

CtrDrbgGenInterval Generates a pseudorandom value within an
interval

CtrDrbgRunTest Runs a test of the DRBG with a test vector

Table 5.10: Functions of the CTR DRBG software module of the HSM application

5.5.5 AES

The module implements the encryption and decryption using the Advanced Encryption Stan-

dard (AES) block cipher with 128 bit key length. Different modes of operation and a function

to set the key are implemented. All provided modes of operation are also supported by HSM’s

AES hardware engine. The corresponding HSM interface functions described in section 5.4.2.1

are triggering the execution of the module’s functions listed in Tab. 5.11. The encryption and

decryption functions perform the following scheme. First the input parameters are checked.

If the checks are successful, data from the host system is copied to the registers of the HSM’s

AES hardware engine. The hardware engine then computes the result and the HSM’s CPU

waits until completed. Subsequently, the values of the output registers are copied to the host

system.

Function Name Description

AesSetKey Sets a key of the AES hardware module by
calling KmsSetAesKey

AesCryptECB Encrypts or decrypts an input block using
a selected key in AES-ECB mode

AesCryptCBC Encrypts or decrypts input data using a
selected key in AES-CBC mode

AesCryptCTR Encrypts or decrypts input data using a
selected key in AES-CTR mode

AesCryptGCM Encrypts or decrypts input data using a
selected key in AES-GCM mode

Table 5.11: Functions of the AES software module of the HSM application

5.5.6 CMAC

The cipher-based message authentication code (CMAC) software module implements the

AES-CMAC algorithm specified in RFC 4493 [8]. The module uses the HSM’s AES-128

hardware engine to encrypt the blocks. The provided functions listed in Tab. 5.12 are trig-

gered by the corresponding functions from section 5.4.2.2. The CMAC verification algorithm

takes the message, the key and the authentication code (MAC) as input. The function then

performs the same MAC generation as the AesCMAC function and compares the calculated au-

thentication code with the provided one. If the MACs are equal, the provided authentication
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code is correct, otherwise the verification failed.

Function Name Description

AesCMAC Generate the MAC of a given message

AesCMACVer Verify a given MAC of a given message

Table 5.12: Functions of the CMAC software module of the HSM application

5.5.7 ECDSA Curves

This software module stores the parameter of the supported elliptic curves. An elliptic curve

E is specified by the following equation [18, Cap. 2.1]:

E : y2 ≡ x3 + ax+ b (mod p) (5.1)

Requiring the following sextuple of domain parameters T:

T = (p, a, b,G, n, h)

Where p is an integer specifying the finite field, a and b specify the curve over the finite field,

G = (xG, yG) is the base point, the prime n is the order of G and the integer h is the cofactor.

For this implementation the recommended verifiably random 256-bit elliptic curve domain

parameters are chosen [18, Cap. 2.4.2]. The parameter set is denoted secp256r1 by the

document and is equal to the parameter set NIST P-256 [28, p. D.1.2.3]. The curve uses

the maximum supported bit length of the HSM’s asymmetric cryptography engine (section

4.3.1.3). The curve parameters are imported by the ECDSA and ECDH software modules.

No functions but global constants are provided by this module.

5.5.8 ECDH

The elliptic-curve Diffie–Hellman (ECDH) software module provides functions to generate a

key pair and to compute a shared secret. The curve parameters from the ECDSA Curves

(section 5.5.7) are imported. The key pair generation yields a private and a public key. The

public key can be shared with the communication partner. The private key is generated

using the CTR DRBG module (section 5.5.4) seeded with entropy from the TRNG (section

5.5.11). With the private key, the public key is generated using elliptic curve cryptography

with operations provided by the HSM’s asymmetric cryptography engine (section 4.3.1.3).

To compute a shared secret, the private key and the public key of the communication partner

are used. Again, the HSM’s asymmetric cryptography engine is used to calculate the shared

secret value. The shared secret is established between two communication partners and can

be further used as key material for symmetric encryption. Tab. 5.13 lists the functions

provided by the module, which are triggered by the corresponding functions from section

5.4.2.3.
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Function Name Description

EcdhGenPublic Generate a public-secret key pair

EcdhComputeShared Compute a shared secret

Table 5.13: Functions of the ECDH software module of the HSM application

5.5.9 ECDSA

The elliptic curve digital signature algorithm (ECDSA) software module provides functions

to generate and to verify a digital signature. The curve parameters from the ECDSA Curves

(section 5.5.7) are imported. The functions require a 256-bit message digest as input. The

signature generation and verification is done with operations provided by the HSM’s asym-

metric cryptography engine (section 4.3.1.3). The ephemeral private key for the signature

calculation is randomly generated using the CTR DRBG module (section 5.5.4) seeded with

entropy from the TRNG (section 5.5.11). For the signature verification, the validity of a

provided digital signature value is assessed. Tab. 5.14 lists the functions provided by the

module which are triggered by the corresponding functions from section 5.4.2.4.

Function Name Description

EcdsaSig Generate a digital signature

EcdsaVer Verify a digital signature

Table 5.14: Functions of the ECDSA software module of the HSM application

5.5.10 SHA-256

The SHA-256 software module uses the HSM’s hash engine. The SHA-256 algorithm gener-

ates a 256 bit hash digest. Functions to process one input block and a message of arbitrary

length are provided (see Tab. 5.15). An internal function, which yields the hash digest to the

HSM, is implemented. This function can be used by other modules of the HSM application

to process data with a the SHA-256 hash algorithm. Except from the internal functions, the

functions listed in Tab. 5.15 are triggered by the corresponding functions described in section

5.4.2.5.

Function Name Description

Sha256Process Process one input block

Sha256Internal Read input bytes from host and process
them, return the hash digest to HSM, no
parameter checks

Sha256 Read input bytes from host and write hash
digest back to host

Table 5.15: Functions of the SHA-256 software module of the HSM application
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5.5.11 TRNG

The TRNG software module provides functions to use the HSM’s non-deterministic random

number generator. The random numbers are used to seed the PRNG (section 5.5.4) and

are made available to the host system. The host triggering the random number generation

(using the interface function described in section 5.4.2.6) enables the HSM’s non-deterministic

random number generator. Each time a 32-bit random bit stream is completed, the interrupt

service routine (see Tab. 5.16) is called. If the desired random numbers are returned to the

host system, the generator is deactivated. For HSM-internal purposes, additional functions

enabling the generator to be used in polling mode are provided. In polling mode, the generator

is started and the HSM application waits until the result is ready. In case more than one 32-

bit random number is requested the loop continues to read values from the generator’s output

register. Furthermore, an additional function which checks if the generated value is within an

interval is implemented. Similar to the implementation outlined in section 5.5.4, the PRNG

also runs in a loop until a valid random number is obtained. The functions provided by the

module are listed in Tab. 5.16.

Function Name Description

TrngEnable Start random number generator

TrngIRQHandler Interrupt service routine called after
completed generation or when an error
occurs

TrngPoll Generate random numbers in polling mode

TrngGenInterval Generate random numbers which are
required to be within an interval

Table 5.16: Functions of the TRNG software module of the HSM application
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6. Evaluation of Implemented Soft-

ware

In this chapter the implemented concept is evaluated. The performance of the implemented

algorithms is measured and compared to an open-source software-only implementation. Due

to the limited time frame of the thesis, no penetration tests are performed.

6.1 Performance

Hardware implementations can not only improve the resistance against software attacks but

also reduce the runtime. In this section different execution times of the HSM application are

analysed and compared. The runtimes of the software implementation of this thesis and the

runtimes of the mbed TLS [73] library for equal algorithms are compared. The mbed TLS

library is executed on one core of the host systems Aurix Tricore CPU running at 300MHz.

The cryptographic algorithms of the developed software solution are executed on the HSM

on an ARM Cortex M3 with hardware accelerators. The HSM secure core runs at 100MHz.

The runtimes are measured with the System Timer (STM) of the Aurix Tricore microcon-

troller. The timer offers a 64-bit counter from which the lowest 32-bit are read. Before and

after the call of the measured function, the timer value is read from the register and stored

in a variable. The difference between the two time stamps is calculated and also stored in

a variable. The granularity of the counter ticks is 10ns. A great deal of attention must be

paid when using the lower 32-bits of the counter as an overflow occurs at some point and

the difference value becomes useless. With the given granularity, the overflow happens at

about 43 seconds (232 · 10ns = 43s) after the microcontroller’s reset. This is acceptable as all

measurements can be made within the time frame.

For the HSM software, the duration of the HSM interface function at the host system is

measured. Consequently, the time needed to provide the results to the host application is

measured. All the overhead regarding the interaction between HSM and host system is there-

fore included.

The runtime of each function is measured five times and the mean value is calculated. For

functions intended to process data, the throughput is listed. By dividing the amount of test
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data by the mean runtime value the throughput is calculated. The throughput is given in

kibibyte (1KiB = 1024 byte) and mebibyte (1MiB = 1024KiB = 1.048.576 byte) according

to IEC [16]. For an encrypting or decrypting function the throughput signifies how many

plaintext or ciphertext can be processed within a second. For the random number generation,

the throughput lists the amount of data which is generated in one second. For the SHA

functions, the throughput signifies the amount of input data which can be processed.

Tab. 6.1 lists the results of the runtime measurements of the HSM interface functions.

Tab. 6.2 lists the results of the mbed TLS functions. For functions to generate and verify a

signature, to compute a shared secret, as well as for the SHA process, the frequency parameter

is added. The frequency shows how many computations can be achieved in one second. That

means e.g. that 219 signatures can be generated and 124 can be verified per second. The

mbed TLS functions are called with the equivalent inputs and test data as the HSM interface

functions.

The relative standard deviation (RSD) of the runtime measurements for most functions is

below 1%. Such a low RSD value implies a sufficiently high confidence of the listed mean

values (Tab. 6.1 and Tab. 6.2). Exceptions are the runtime measurements for HsmIfAes-

SetKey, HsmIfAesCryptECB (ENC), and HsmIfSha256Process. The RSD values are between

3% and 10%. The confidence of the listed mean values for those functions is considered lower.

A comparison of the two implementations is made in Tab. 6.3. The runtimes of the cor-

responding functions are divided to obtain a value for comparison. As there is no result in

Tab. 6.3 smaller or equal than one, the HSM interface is faster for all of the listed algo-

rithms. Especially for functions using elliptic curve cryptography the HSM is faster. E.g.

the computation of a shared secret is 64.64 times faster on the HSM than on the host core.

For functions dealing with a small amount of data, such as AES-ECB or the processing of a

single SHA-256 block, the runtime reduction is the lowest (between a factor of 1.29 and 2.4).

It is plausible that for such small algorithms the overhead for the interaction between the two

processors is large compared to the computation time of the result. For HsmIfAesCmacVerify

and HsmIfTrngGenerate no corresponding function in mbed TLS is available.
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Function Name Runtime (mean) Throughput

HsmIf* Time tHSM (µs) Frequency (1/s) Test data (B) MiB/s

AesSetKey 9.0 - - -

AesCryptECB (ENC) 10.6 - 16 1.438

AesCryptECB (DEC) 8.6 - 16 1.769

AesCryptCBC (ENC) 944.2 - 8192 8.274

AesCryptCBC (DEC) 1012.1 - 8192 7.719

AesCryptCTR 975.7 - 8192 8.007

AesCryptGCM (ENC) 1072.4 - 8192 7.285

AesCryptGCM (DEC) 989.3 - 8192 7.897

AesCmac 868.2 - 8192 8.998

AesCmacVerify 862.4 - 8192 9.059

EcdhGenPublic 4421.3 226.2 - -

EcdhComputeShared 3877.0 257.9 - -

EcdsaSign 4547.6 219.9 - -

EcdsaVerify 8029.7 124.5 - -

Sha256Process 16.8 59424.8 64 3.627

Sha256 414.3 - 8192 18.858

TrngGenerate 32150.1 - 2000 0.059

Table 6.1: HSM interface functions runtime measurement

Function Name Runtime (mean) Throughput
mbedtls * Time tmbed (µs) Frequency (1/s) Test data (B) MiB/s

aes setkey dec 30.3 - - -
aes crypt ecb (ENC) 13.7 - 16 1.111
aes crypt ecb (DEC) 15.2 - 16 1.006
aes crypt cbc (ENC) 8392.2 - 8192 0.931
aes crypt cbc (DEC) 8487.2 - 8192 0.921
aes crypt ctr 8361.4 - 8192 0.934
gcm crypt and tag 17764.8 - 8192 0.440
gcm auth decrypt 17762.8 - 8192 0.440
cipher cmac 8577.8 - 8192 0.911
ecp gen keypair 254470.6 3.9 - -
ecdh compute shared 250606.5 4.0 - -
ecdsa sign 101470.9 9.9 - -
ecdsa verify 361171.7 2.8 - -
sha256 update ret 40.3 24788.1 64 1.513
sha256 ret 4945.5 - 8192 1.580

Table 6.2: mbed TLS functions runtime measurement
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HSM Interface Function mbed TLS Function tmbed/tHSM

HsmIfAesSetKey mbedtls aes setkey dec 3.36
HsmIfAesCryptECB (ENC) mbedtls aes crypt ecb (ENC) 1.29
HsmIfAesCryptECB (DEC) mbedtls aes crypt ecb (DEC) 1.76
HsmIfAesCryptCBC (ENC) mbedtls aes crypt cbc (ENC) 8.89
HsmIfAesCryptCBC (DEC) mbedtls aes crypt cbc (DEC) 8.39
HsmIfAesCryptCTR mbedtls aes crypt ctr 8.57
HsmIfAesCryptGCM (ENC) mbedtls gcm crypt and tag 16.57
HsmIfAesCryptGCM (DEC) mbedtls gcm auth decrypt 17.96
HsmIfAesCmac mbedtls cipher cmac 9.88
HsmIfEcdhGenPublic mbedtls ecp gen keypair 57.56
HsmIfEcdhComputeShared mbedtls ecdh compute shared 64.64
HsmIfEcdsaSign mbedtls ecdsa sign 22.31
HsmIfEcdsaVerify mbedtls ecdsa verify 44.98
HsmIfSha256Process mbedtls sha256 update ret 2.40
HsmIfSha256 mbedtls sha256 ret 11.94

Table 6.3: Comparison of runtime measurement
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7. Summary and Reflections

In this chapter the results and possible future works are discussed.

7.1 Conclusions

As stated in the introduction, the main aim of this thesis was to apply cybersecurity-

engineering techniques to an off-highway use case. Not only an analysis was conducted but

solutions were implemented on an off-highway ECU. It has been shown that it is feasible to

implement advanced secure communication protocols (TLS) on such embedded systems.

The thesis provides an introduction to the topic of off-highway security engineering and mod-

ern cryptography. Furthermore, the available theory is applied to a realistic example use case.

A solution addressing the cybersecurity threats to such embedded systems is developed. The

thesis has shown an application of the security pattern approach to an in-vehicle E/E system.

A solution to enable secure diagnostic communication has been designed and developed. The

developed embedded software provides a secure stack from the lowest layer up to the appli-

cation layer where TLS is located. To remain within the time frame, instead of a diagnostic

protocol, an HTTP server was integrated. The TLS protocol is integrated on an off-highway

ECU making use of the microcontroller’s (Aurix 2G) security coprocessor (HSM). Addition-

ally, the software running on the security coprocessor was designed and developed. Several

verification methodologies for cryptographic algorithms have been shown and a subset of

freely available tools suitable for automotive penetration testing were presented. The focus

was on maximizing performance and security. It has been shown that the use of the HSM

and especially its hardware accelerators reduces the computation time for cryptographic al-

gorithms. The runtime and throughput of the implemented software has been measured and

listed in tables. Furthermore, a comparison with an open-source software-only implementa-

tion has been done. For every chosen algorithm, the developed implementation is faster than

the software-only implementation. In particular the runtime for public-key cryptography is

lowered significantly (up to 65 times faster). This enables new use cases especially in the field

of real-time secure communications. Additional advantages of the dedicated security proces-

sor architecture are the better protected computations in hardware as well as the securely

stored secrets (e.g. keys).
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7.2 Future Work

It is clear that the software implementation of this thesis has to be viewed as a prototype.

The reason being that the whole project was conducted entirely by a single person and not

(peer-)reviewed by experts in the field. It is highly necessary to apply high standards, when

security-critical software is developed. This includes code reviews and extended testing. Due

to the limited time frame of a diploma thesis, the possibility to perform enhanced testing,

validation and verification was not given.

The developed software supports a wide range of cryptographic primitives, but there is po-

tential for extension. It has to be noted that the HSM application solely supports one elliptic

curve. Therefore, a possible consideration would be to add more curve parameters, supported

by the HSM asymmetric crypto engine. Furthermore, SafeCurves [68] and the German BSI

[63] have security concerns about the implemented EC algorithms (ECDSA) and curve pa-

rameters (NIST P-256). On the other hand, the chosen algorithms are supported by TLS

and the Infineon HSM. Hence, further research and evaluation is required.

The ECDSA algorithm supports the generation of a signature based on a hash digest. The

hash function has to be called separately by the host application. The resulting hash digest

needs to be forwarded to the signature generation/verification by the host application. This

enables possible manipulation attacks on the hash result while it is stored in host memory.

Implementing an additional function on the HSM, triggering internally the hash generation,

would further increase security. The entire signature generation process from the input data

to the signature value would be encapsulated in the HSM’s secure CPU.

The functionality of the random number generator could be also extended. To give an example

of what is meant: the PRNG is only available to the HSM application. In the future work

the PRNG could be added to HSM interface and the host application developer could decide

whether to seed the PRNG with the HSM’s TRNG or with another random source.

Another limitation of the implementation is the blocking characteristic of the API. The host

system waits in while loop until the HSM has completed the calculation. Due to the width of

the communication register, the interface solely supports up to 32 commands. By extending

the memory interface, it would be possible to increase the number of commands, allowing for

more features.

When using public-key cryptography, a management of the public keys and certificates is

required. A trust anchor, certificate authorities, certificate revocation lists, and certification

paths might additionally be needed. The efforts related to key and certificate management

should not be underestimated.

The HSM application does not support the storage of certificates. This functionality could be

added in the future by extending the KMS software module of the HSM application. X.509

certificates [10] could be stored in the HSM’s flash memory to further increase protection

against manipulation.

Security aspects such as secure boot or secure firmware updates are not covered in this thesis

but are considered crucial for the overall system security.

Security aspects regarding the transition from development to production and operation are

not dealt with, but could be of further interest. Furthermore, additional security measures
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need to be applied considering for example debug ports and locking memory regions, to avoid

tampering with the ECU’s firmware.
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Jamshid Shokrollahi, and Anselm Keil, Deliverable D3.2: Secure On-board Architecture

Specification, Aug. 2011. [Online]. Available: https://www.evita- project.org/

Deliverables/EVITAD3.2.pdf (visited on 06/03/2020).

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
https://tools.ietf.org/html/rfc5289
https://doi.org/10.6028/NIST.SP.800-115
https://doi.org/10.6028/NIST.SP.800-115
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=4493431
http://ieeexplore.ieee.org/servlet/opac?punumber=4493431
http://www.secg.org/
http://www.secg.org/
https://tools.ietf.org/html/rfc5639
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://www.evita-project.org/Deliverables/EVITAD3.2.pdf
https://www.evita-project.org/Deliverables/EVITAD3.2.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[23] European Commission – Information Society and Media, EVITA E-Safety Vehicle In-

trusion Protected Applications Fact Sheet, Apr. 2011.

[24] W. Killmann and W. Schindler,
”
A proposal for Functionality classes for random num-

ber generators“, en, p. 133, 2011.

[25] M. Nystrom ¡magnus@rsasecurity.com¿, Identifiers and Test Vectors for HMAC-SHA-

224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512, en, Library Catalog:

tools.ietf.org, Mar. 2011. [Online]. Available: https://tools.ietf.org/html/rfc4231

(visited on 06/15/2020).

[26] T. Schütze,
”
Automotive Security: Cryptography for Car2X Communication“, en, p. 16,

Mar. 2011.

[27] M. Stamp, Information security: principles and practice, 2nd ed. Hoboken, NJ: Wiley,

2011, isbn: 978-0-470-62639-9.

[28] Information Technology Laboratory,
”
Digital Signature Standard (DSS)“, en, National

Institute of Standards and Technology, Tech. Rep. NIST FIPS 186-4, Jul. 2013. doi:

10.6028/NIST.FIPS.186- 4. [Online]. Available: https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.186-4.pdf (visited on 06/09/2020).

[29] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach, en, 6th ed.

Boston: Pearson, 2013, OCLC: ocn769141382, isbn: 978-0-13-285620-1.

[30] P. Kleberger and T. Olovsson,
”
Securing Vehicle Diagnostics in Repair Shops“, in Com-

puter Safety, Reliability, and Security, A. Bondavalli and F. Di Giandomenico, Eds.,

Cham: Springer International Publishing, 2014, pp. 93–108, isbn: 978-3-319-10506-2.

[31] C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch,
”
Security Application of Fail-

ure Mode and Effect Analysis (FMEA)“, in Computer Safety, Reliability, and Security,

A. Bondavalli and F. Di Giandomenico, Eds., Cham: Springer International Publishing,

2014, pp. 310–325, isbn: 978-3-319-10506-2.

[32] W. Zimmermann and R. Schmidgall, Bussysteme in der Fahrzeugtechnik: Protokolle,

Standards und Softwarearchitektur, de. Wiesbaden: Springer Fachmedien Wiesbaden,

2014, isbn: 978-3-658-02418-5 978-3-658-02419-2. doi: 10.1007/978-3-658-02419-2.

[Online]. Available: http://link.springer.com/10.1007/978-3-658-02419-2

(visited on 06/01/2020).

[33] E. B. Barker and J. M. Kelsey,
”
Recommendation for Random Number Generation

Using Deterministic Random Bit Generators“, en, National Institute of Standards and

Technology, Tech. Rep. NIST SP 800-90Ar1, Jun. 2015. doi: 10.6028/NIST.SP.800-

90Ar1. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-90Ar1.pdf (visited on 05/30/2020).

[34] Q. H. Dang,
”
Secure Hash Standard“, en, National Institute of Standards and Technol-

ogy, Tech. Rep. NIST FIPS 180-4, Jul. 2015. doi: 10.6028/NIST.FIPS.180-4. [Online].

Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (vis-

ited on 06/12/2020).

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://tools.ietf.org/html/rfc4231
https://doi.org/10.6028/NIST.FIPS.186-4
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://doi.org/10.1007/978-3-658-02419-2
http://link.springer.com/10.1007/978-3-658-02419-2
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[35] M. J. Dworkin,
”
SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions“, en, National Institute of Standards and Technology, Tech. Rep. NIST FIPS

202, Jul. 2015. doi: 10.6028/NIST.FIPS.202. [Online]. Available: https://nvlpubs.

nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf (visited on 06/16/2020).

[36] D. C. Miller and C. Valasek,
”
Remote Exploitation of an Unaltered Passenger Vehicle“,

en, p. 91, Aug. 2015. [Online]. Available: http://illmatics.com/Remote%20Car%

20Hacking.pdf.

[37] I. T. L. Computer Security Division, Example Values - Cryptographic Standards and

Guidelines — CSRC — CSRC, EN-US, Library Catalog: csrc.nist.gov, Dec. 2016. [On-

line]. Available: https://content.csrc.e1a.nist.gov/projects/cryptographic-

standards-and-guidelines/example-values (visited on 07/15/2020).

[38] M. J. Dworkin,
”
Recommendation for block cipher modes of operation: the CMACmode

for authentication“, en, National Institute of Standards and Technology, Gaithersburg,

MD, Tech. Rep. NIST SP 800-38b, 2016, Edition: 0. doi: 10.6028/NIST.SP.800-38b.

[Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-38b.pdf (visited on 06/15/2020).

[39] A. Langley and M. Hamburg, Elliptic Curves for Security, en, Library Catalog: tools.ietf.org,

Jan. 2016. [Online]. Available: https://tools.ietf.org/html/rfc7748 (visited on

06/12/2020).

[40] NXP Semiconductors, SJA1105: 5-port automotive Ethernet switch, product data sheet

Rev. 1, Nov. 2016.

[41] C. Smith, The Car Hacker’s Handbook: A Guide for the Penetration Tester, en. War-

rendale, PA: SAE International, Mar. 2016, isbn: 978-1-59327-703-1. doi: 10.4271/

1593277032. [Online]. Available: https://saemobilus.sae.org/content/B-981/

(visited on 07/14/2020).

[42] CCRA, Common Criteria for Information Technology Security Evaluation, Part 1: In-

troduction and general model, Version 3.1 Revision 5, Apr. 2017.

[43] Daan Keuper and Thijs Alkemade, The Connected Car: Ways to get unauthorized access

and potential implications, 2017.

[44] ISO/IEC, ISO/IEC 9594-8: Information Technology - Open Systems Interconnection -

The Directory - Public-key and attribute certificate frameworks, May 2017.

[45] E. A. Lee and S. A. Seshia, Introduction to embedded systems: a cyber-physical systems

approach, en, Second edition. Cambridge, Massachuetts: MIT Press, 2017, isbn: 978-0-

262-53381-2.

[46] NXP Semiconductors, SJA1105P/Q/R/S: Objective short data sheet Rev. 1, Nov. 2017.

[47] J. C. S. Santos, K. Tarrit, and M. Mirakhorli,
”
A Catalog of Security Architecture

Weaknesses“, en, in 2017 IEEE International Conference on Software Architecture

Workshops (ICSAW), Gothenburg, Sweden: IEEE, Apr. 2017, pp. 220–223, isbn: 978-1-

5090-4793-2. doi: 10.1109/ICSAW.2017.25. [Online]. Available: http://ieeexplore.

ieee.org/document/7958491/ (visited on 06/18/2020).

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.6028/NIST.FIPS.202
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://content.csrc.e1a.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://content.csrc.e1a.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://doi.org/10.6028/NIST.SP.800-38b
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
https://tools.ietf.org/html/rfc7748
https://doi.org/10.4271/1593277032
https://doi.org/10.4271/1593277032
https://saemobilus.sae.org/content/B-981/
https://doi.org/10.1109/ICSAW.2017.25
http://ieeexplore.ieee.org/document/7958491/
http://ieeexplore.ieee.org/document/7958491/


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[48] W. Stallings, Cryptography and network security: principles and practice, en, Seventh

edition. Boston: Pearson, 2017, isbn: 978-0-13-444428-4.

[49] Keen Security Lab,
”
Experimental Security Assessment of BMW Cars: A Summary

Report“, Tech. Rep., May 2018.

[50] Lukas Reier, Automated Testing of Embedded Systems Software - Python Application

Programming Interface for Test Case Designers, Bachelor Thesis, Feb. 2018.

[51] C. Schmittner, G. Griessnig, and Z. Ma,
”
Status of the Development of ISO/SAE

21434“, en, in Systems, Software and Services Process Improvement, X. Larrucea, I.

Santamaria, R. V. O’Connor, and R. Messnarz, Eds., vol. 896, Series Title: Communi-

cations in Computer and Information Science, Cham: Springer International Publishing,

2018, pp. 504–513, isbn: 978-3-319-97924-3 978-3-319-97925-0. doi: 10.1007/978-3-

319-97925-0_43. [Online]. Available: http://link.springer.com/10.1007/978-3-

319-97925-0_43 (visited on 04/09/2020).

[52] P. Castillejo, B. Curuklu, R. Fresco, G. Johansen, S. Bilbao-Arechabala, B. Martinez-

Rodriguez, L. Pomante, J.-F. Martinez-Ortega, and M. Santic,
”
The AFarCloud ECSEL

Project“, en, in 2019 22nd Euromicro Conference on Digital System Design (DSD),

Kallithea, Greece: IEEE, Aug. 2019, pp. 414–419, isbn: 978-1-72812-862-7. doi: 10.

1109 / DSD . 2019 . 00066. [Online]. Available: https : / / ieeexplore . ieee . org /

document/8875170/ (visited on 07/17/2020).

[53] Infineon Technologies AG, Automotive Cyber Security Compendium: Infineon Micro-

controller AURIX, 2019.

[54] Martin Brunner, M. Machold, and Bjoern Steurich, Future requirements for automotive

hardware security: Post EVITA Semiconductor Security Quo Vadis?, 2019. [Online].

Available: https://www.infineon.com/dgdl/Infineon- Future_requirements_

for _ automotive _ hardware _ security - Whitepaper - v01 _ 00 - EN . pdf ? fileId =

5546d4626df6ee62016e3709e03b03b1 (visited on 06/10/2020).

[55] C. Schmittner and G. Macher,
”
Automotive Cybersecurity Standards - Relation and

Overview“, en, in Computer Safety, Reliability, and Security, A. Romanovsky, E. Troubit-

syna, I. Gashi, E. Schoitsch, and F. Bitsch, Eds., vol. 11699, Series Title: Lecture Notes

in Computer Science, Cham: Springer International Publishing, 2019, pp. 153–165,

isbn: 978-3-030-26249-5 978-3-030-26250-1. doi: 10.1007/978-3-030-26250-1_12.

[Online]. Available: http://link.springer.com/10.1007/978-3-030-26250-1_12

(visited on 04/08/2020).

[56] E. Barker,
”
Recommendation for Key Management Part 1: General“, en, National In-

stitute of Standards and Technology, Tech. Rep. NIST SP 800-57pt1r5, May 2020.

doi: 10 . 6028 / NIST . SP . 800 - 57pt1r4. [Online]. Available: https : / / nvlpubs .

nist.gov/nistpubs/SpecialPublications/NIST.SP.800- 57pt1r4.pdf (visited

on 06/21/2020).

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1007/978-3-319-97925-0_43
https://doi.org/10.1007/978-3-319-97925-0_43
http://link.springer.com/10.1007/978-3-319-97925-0_43
http://link.springer.com/10.1007/978-3-319-97925-0_43
https://doi.org/10.1109/DSD.2019.00066
https://doi.org/10.1109/DSD.2019.00066
https://ieeexplore.ieee.org/document/8875170/
https://ieeexplore.ieee.org/document/8875170/
https://www.infineon.com/dgdl/Infineon-Future_requirements_for_automotive_hardware_security-Whitepaper-v01_00-EN.pdf?fileId=5546d4626df6ee62016e3709e03b03b1
https://www.infineon.com/dgdl/Infineon-Future_requirements_for_automotive_hardware_security-Whitepaper-v01_00-EN.pdf?fileId=5546d4626df6ee62016e3709e03b03b1
https://www.infineon.com/dgdl/Infineon-Future_requirements_for_automotive_hardware_security-Whitepaper-v01_00-EN.pdf?fileId=5546d4626df6ee62016e3709e03b03b1
https://doi.org/10.1007/978-3-030-26250-1_12
http://link.springer.com/10.1007/978-3-030-26250-1_12
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[57] M. Bozdal, M. Samie, S. Aslam, and I. Jennions,
”
Evaluation of CAN Bus Security

Challenges“, en, Sensors, vol. 20, no. 8, p. 2364, Apr. 2020, issn: 1424-8220. doi: 10.

3390/s20082364. [Online]. Available: https://www.mdpi.com/1424-8220/20/8/2364

(visited on 05/25/2020).

[58] IANA, Transport Layer Security (TLS) Parameters, Jun. 2020. [Online]. Available:

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

(visited on 07/19/2020).

[59] Infineon Technologies AG, AURIX 32-bit microcontrollers for automotive and industrial

applications: Highly integrated and performance optimized, 2020. [Online]. Available:

https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-

microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/ (visited

on 06/01/2020).

[60] International Organization for Standardization, ISO/SAE DIS 21434: Road vehicles -

Cybersecurity engineering, Feb. 2020.

[61] H. Martin, Z. Ma, C. Schmittner, B. Winkler, M. Krammer, D. Schneider, T. Amorim,

G. Macher, and C. Kreiner,
”
Combined automotive safety and security pattern engi-

neering approach“, en, Reliability Engineering & System Safety, vol. 198, p. 106 773,

Jun. 2020, issn: 09518320. doi: 10.1016/j.ress.2019.106773. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S095183201830499X (visited on

04/29/2020).

[62] Z. El-Rewini, K. Sadatsharan, D. F. Selvaraj, S. J. Plathottam, and P. Ranganathan,

”
Cybersecurity challenges in vehicular communications“, en, Vehicular Communica-

tions, vol. 23, p. 100 214, Jun. 2020, issn: 22142096. doi: 10.1016/j.vehcom.2019.

100214. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S221420961930261X (visited on 04/29/2020).

[63] B. für Sicherheit in der Informationstechnik, Cryptographic Mechanisms: Recommen-

dations and Key Lengths, Jan. 2020.

[64] ——, Cryptographic Mechanisms: Recommendations and Key Lengths, Part 2 – Use of

Transport Layer Security (TLS), Jan. 2020.

[65] TTControl GmbH, TTControl TTConnect 616 Datasheet V1.4, 2020. [Online]. Avail-

able: https://www.ttcontrol.com/products/connectivity/advanced-platforms/

ttconnect-616/ (visited on 05/30/2020).

[66] ——, TTControl TTConnect 616 Flyer V3.1, 2020. [Online]. Available: https://www.

ttcontrol.com/products/connectivity/advanced-platforms/ttconnect-616/

(visited on 05/30/2020).

[67] United Nations Economic Commission for Europe, Proposal for amendments to ECE/TRANS/WP.29/GR

Mar. 2020. [Online]. Available: http://www.unece.org/fileadmin/DAM/trans/doc/

2020/wp29grva/GRVA-06-19r1e.pdf (visited on 06/08/2020).

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.3390/s20082364
https://doi.org/10.3390/s20082364
https://www.mdpi.com/1424-8220/20/8/2364
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc37xtp/
https://doi.org/10.1016/j.ress.2019.106773
https://linkinghub.elsevier.com/retrieve/pii/S095183201830499X
https://doi.org/10.1016/j.vehcom.2019.100214
https://doi.org/10.1016/j.vehcom.2019.100214
https://linkinghub.elsevier.com/retrieve/pii/S221420961930261X
https://linkinghub.elsevier.com/retrieve/pii/S221420961930261X
https://www.ttcontrol.com/products/connectivity/advanced-platforms/ttconnect-616/
https://www.ttcontrol.com/products/connectivity/advanced-platforms/ttconnect-616/
https://www.ttcontrol.com/products/connectivity/advanced-platforms/ttconnect-616/
https://www.ttcontrol.com/products/connectivity/advanced-platforms/ttconnect-616/
http://www.unece.org/fileadmin/DAM/trans/doc/2020/wp29grva/GRVA-06-19r1e.pdf
http://www.unece.org/fileadmin/DAM/trans/doc/2020/wp29grva/GRVA-06-19r1e.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[68] Daniel J. Bernstein and Tanja Lange, SafeCurves: choosing safe curves for elliptic-

curve cryptography. [Online]. Available: https://safecurves.cr.yp.to/ (visited on

07/16/2020).

[69] Infineon Technologies AG, AURIX➋ Security Solutions - Infineon Technologies. [On-

line]. Available: https://www.infineon.com/cms/en/product/microcontroller/

32-bit-tricore-microcontroller/aurix-security-solutions/ (visited on 08/30/2020).

[70] Kali Linux Tools Listing, en-US, Library Catalog: tools.kali.org. [Online]. Available:

https://tools.kali.org/tools-listing (visited on 07/14/2020).

[71] lwIP - A Lightweight TCP/IP stack - Summary [Savannah]. [Online]. Available: https:

//savannah.nongnu.org/projects/lwip/ (visited on 06/17/2020).

[72] Readme file for the Controller Area Network Protocol Family (aka SocketCAN). [On-

line]. Available: https://www.kernel.org/doc/Documentation/networking/can.

txt (visited on 07/14/2020).

[73] SSL Library mbed TLS / PolarSSL. [Online]. Available: https://tls.mbed.org/

(visited on 06/13/2020).

[74] Welcome to pyca/cryptography — Cryptography 3.0.dev1 documentation. [Online]. Avail-

able: https://cryptography.io/en/latest/ (visited on 07/15/2020).

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://safecurves.cr.yp.to/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://tools.kali.org/tools-listing
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/Documentation/networking/can.txt
https://tls.mbed.org/
https://cryptography.io/en/latest/


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Erklärung
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