
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

A General Framework for Choice
Logics

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Michael Bernreiter, BSc

Matrikelnummer 01307069

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran

Mitwirkung: Univ.Ass. Jan Maly, MSc

Wien, 25. August 2020

Michael Bernreiter Stefan Woltran

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A General Framework for Choice
Logics

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Michael Bernreiter, BSc

Registration Number 01307069

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran

Assistance: Univ.Ass. Jan Maly, MSc

Vienna, 25th August, 2020

Michael Bernreiter Stefan Woltran

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Michael Bernreiter, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. August 2020

Michael Bernreiter

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

There are many people without whom I could not have written this thesis. First and
foremost, I want to thank my supervisors Stefan Woltran and Jan Maly for their support,
suggestions, and patience. I am grateful to all of my friends that accompanied me during
my studies. It would have been no fun without them. Special thanks go to Matthias
König for his feedback, and David Penz, who started to work on choice logics with me.
Of course, I am also grateful to my family, especially my mother and my father. They
have provided for me, were always there for me, and have accepted all of my decisions.
Last but not least, I want to thank Yol, who I could always rely on.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Eine Vielzahl an Forschungsbereichen, darunter auch die der Informatik und der künst-
lichen Intelligenz, beschäftigen sich mit Präferenzen. Zwei bereits bestehende formale
Systeme, welche sich mit Präferenzen auseinandersetzen, sind Qualitative Choice Lo-
gic (QCL) und Conjunctive Choice Logic (CCL). In beiden Logiken schreiben Interpre-
tationen Formeln anstatt eines Wahrheitswertes eine natürliche Zahl, auch Satisfaction
Degree genannt, zu. Dabei werden jene Interpretationen bevorzugt, die in einem ge-
ringstmöglichen Satisfaction Degree resultieren. In dieser Arbeit werden QCL und CCL
durch die Einführung eines formalen Frameworks für Choice Logics generalisiert. Es wird
gezeigt dass sowohl QCL, als auch CCL, Teil des Frameworks sind. Neue Choice Logics,
welche auf neuen, nichtklassischen Konnektiven basieren, werden eingeführt. Da das
Framework nicht sehr restriktiv definiert wird, und deswegen viele verschiedene Choice
Logics mit unterschiedlichen Eigenschaften spezifiziert werden können, werden mehrere
Klassen von Choice Logics eingeführt und untersucht. Ein Begriff der starken Äquivalenz
zwischen den Formeln einer Choice Logic wird definiert, und anderen Äquivalenzbegriffen
gegenübergestellt. Dabei wird bewiesen, dass der von uns eingeführte Begriff der starken
Äquivalenz bezüglich QCL und CCL ident mit einem von Brewka et al. verwendeten
Äquivalenzbegriff ist. Schlußendlich wird eine Komplexitätsanalyse durchgeführt. Da-
durch ergeben sich auch neue Resultate für QCL und CCL, etwa dass das Hauptproblem
bezüglich bevorzugten Modellen für beide Logiken Θ2P-vollständig ist. Das selbe Problem
ist für eine andere, im Zuge dieser Arbeit eingeführte, Logik ∆2P-vollständig.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

The topic of preferences is of importance in many areas of research, including computer
science, and, more specifically, artificial intelligence. Two formal systems in the literature
that are designed for preference handling are Qualitative Choice Logic (QCL) and
Conjunctive Choice Logic (CCL). Both of these logics extend classical propositional logic
by a non-classical choice connective, with which preferences can be expressed. Instead of
evaluating formulas to true or false, formulas in QCL and CCL are ascribed a satisfaction
degree, by which interpretations are ranked. In this thesis, QCL and CCL are generalized
by the formal introduction of a choice logic framework. Besides showing that QCL and
CCL are captured by this framework, several new choice logics, based on new choice
connectives, are introduced. Since the specified framework is not very restrictive, and
therefore a multitude of different choice logics can be expressed, several classes of choice
logics are defined and examined. A notion of strong equivalence between the formulas of
a choice logic is introduced and related to other notions of equivalence. In the course
of this analysis, it is proven that for QCL and CCL, our notion of strong equivalence is
interchangeable with another notion of equivalence introduced by Brewka et al. in the
original QCL paper. Lastly, the computational complexity of different reasoning tasks
relevant for choice logics is examined. Although this complexity analysis is conducted
in a general manner, it also yields new results regarding QCL and CCL. For example,
the main decision problem regarding preferred models is Θ2P-complete in both of these
logics. For the same problem, we show ∆2P-completeness for Lexicographic Choice Logic
(LCL), a logic introduced in this thesis.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 A Brief History of Choice Logics . 1
1.2 Problem Definition and Main Contributions 3
1.3 Structure . 4
1.4 Published Work . 4

2 Preliminaries 5
2.1 Propositional Logic . 5
2.2 Qualitative Choice Logic . 10
2.3 Conjunctive Choice Logic . 13
2.4 Complexity Theory . 15

3 Choice Logic Framework 21
3.1 Basic Concepts . 21
3.2 Properties . 26
3.3 Examples . 28

4 Classes of Choice Logics 39
4.1 Exhaustive Choice Logics . 39
4.2 Basic Exhaustive Choice Logics . 42
4.3 Optionality Ignoring Choice Logics . 45
4.4 Optionality Differentiating Choice Logics 47
4.5 Reasonable Choice Logics . 49

5 Strong Equivalence 55
5.1 Qualitative Choice Logic . 55
5.2 Conjunctive Choice Logic . 58
5.3 Choice Logics in General . 60

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Computational Complexity 65
6.1 Tractable Choice Logics . 65
6.2 Model Checking for Choice Logics . 66
6.3 Satisfiability for Choice Logics . 67
6.4 Preferred Model Checking . 68
6.5 Preferred Model Satisfiability . 70
6.6 Summary of Complexity Results . 76

7 Conclusion 77
7.1 Summary . 77
7.2 Related Work . 79
7.3 Future Work . 80

Bibliography 83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

In a broad sense, this thesis is concerned with two main topics, namely logic, and
preferences. The study of logic is relevant to many fields of research, including computer
science [Gen12]. Two prominent logic formalisms are those of classical propositional logic
and classical first-order logic. However, there exist many other logics, generally referred
to as non-classical logics, which often extend (propositional or first-order) classical logic
by additional functionalities.

The concept of preferences is a point of interest in many research areas such as economics,
psychology, philosophy, but also computer science. For example, the fields of artificial
intelligence and databases often deal with analyzing "human choice behavior", and are
therefore concerned with preferences [PTV16].

There are many formalisms that are designed to handle preferences, including various non-
classical logics. In this thesis, we will investigate and generalize two such logics, namely
Qualitative Choice Logic (QCL) and Conjunctive Choice Logic (CCL) [BBB04, BB16].

1.1 A Brief History of Choice Logics

QCL was first described in 2004 by Brewka, Benferhat, and Le Berre [BBB04]. It
extends classical propositional logic by an additional binary connective

#»

×, called ordered
disjunction. Let A and B be propositional formulas. Then the intuitive meaning of A

#»

×B
is that if possible, A should be satisfied. If this is not possible, then it is still acceptable,
but less preferable, to satisfy only B. Satisfying neither A nor B is not acceptable.
In this way, ordered disjunction is based on classical disjunction, but additionally, it
has the capability to express preferences. More specifically, the satisfaction relation of
QCL ascribes a natural number (called satisfaction degree) to a formula, given some
interpretation. We then prefer those interpretations that result in the smallest satisfaction
degree for a given formula.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Alternative satisfaction relations for QCL formulas have been proposed in 2008 by Ben-
ferhat and Sedki in order to address issues with "negated and conditional preferences"
[BS08b]. These alternative semantics do not alter the meaning ascribed to ordered dis-
junction (

#»

×), but rather change how the classical connectives of negation (¬), conjunction
(∧), and disjunction (∨) operate with respect to satisfaction degrees.

In CCL, which was introduced in 2016 by Boudjelida and Benferhat [BB16], the ordered
disjunction of QCL is replaced by another binary connective

#»

⊙, called ordered conjunction.
The intuitive meaning of A

#»

⊙B is that if possible, A and B should be satisfied. If this
is not possible, then at least A should be satisfied. Like in QCL, the formulas of CCL
are ascribed a satisfaction degree by interpretations. The semantics of the classical
connectives (¬,∧,∨) in CCL are based on the original definition of QCL rather than on
the alternative satisfaction relations introduced by Benferhat and Sedki.

One possible application for both QCL and CCL is to reason about preferences provided
by users within a system, for example, a travel planner. When booking a journey, e.g.
from Vienna to Amsterdam, a user could specify their preferred mode of transportation.
One might wish to go by train in order to limit the environmental impact of their travel,
but still prefer a flight to a bus journey for reasons of comfort. This could be expressed
as a QCL formula as follows:

train
#»

× plane
#»

× bus.

Further constraints, such as the maximum travel time or price, can be encoded as classical
formulas. The inference relation of QCL can then be used to automatically find the most
preferable form of transport which is compatible with the additional constraints. For
example, a train journey from Vienna to Amsterdam might be too expensive, and the
best solution could be to take a plane.

In contrast to QCL, CCL is designed to encode preferences where, if possible, all options
should be satisfied. For example, when deciding on which restaurant to go to with a
group of people, different desires have to be taken into account. It would, of course, be
best to go to a restaurant that satisfies the need of everyone in the group. But such
an establishment might not exist. Therefore, one might want to encode the following
preference list as a CCL formula:

vegetarian
#»

⊙ fish
#»

⊙ meat.

Again, further constraints, such as available restaurants, or which restaurant offers which
kind of food, can be encoded as classical formulas.

In addition to reasoning about user preferences, it has been proposed that QCL can
be employed when dealing with other practical problems such as alert correlation or
database querying [BS08a, LHR14].

Of course, one could define logics similar to QCL and CCL, based on new non-classical
connectives. In some cases, given a formula A ◦B, it might be sensible to prefer solutions

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Problem Definition and Main Contributions

satisfying A and B to those that satisfy only A, which in turn would be preferred to
solutions satisfying only B. Note that this is neither the behavior of ordered disjunction
nor ordered conjunction. Another reasonable connective would be one that prefers A
over B but does not allow both A and B to be true at the same time. This might be
useful when specifying preferences over items that are in conflict, for example time slots.
Moreover, since the semantics of these non-classical connectives may also be based on
satisfaction degrees, i.e. natural numbers, they can be implemented in several different
ways. This leaves us with a myriad of non-classical connectives, and therefore a wide
variety of choice logics, to be defined.

1.2 Problem Definition and Main Contributions

This thesis aims to generalize QCL and CCL by formally defining and examining a
framework for logics in which preferences can be expressed by extending propositional
logic with additional non-classical connectives. A logic of this framework will be referred
to as a choice logic.

Both QCL and CCL, but also propositional logic itself, must be captured by this
framework. It will also be possible to represent the alternative satisfaction relations for
QCL introduced by Benferhat and Sedki. In general, the framework is intended to be as
nonrestrictive as possible. This might mean that our framework will feature somewhat
insensible choice logics, but it will also give us the freedom to define new choice logics,
which will be equipped to deal with other forms of preference than those featured in QCL
or CCL.

The framework’s properties will be formally examined. This includes an investiga-
tion of the impact of non-occurring atoms in formulas, and the renaming of variables.
Furthermore, several classes of choice logics will be defined and investigated.

An analysis of strong equivalence between choice logic formulas, in the sense of replace-
ability [FTW13a] with respect to preferred models, will be conducted. It will be shown
that for some choice logics, including QCL and CCL, this notion of strong equivalence
is identical to the notion of strong equivalence defined by Brewka et al. in the original
QCL paper.

Lastly, the computational complexity of choice logics with polynomial-time computable
inference relations will be examined by defining suitable decision problems and providing
membership- and hardness proofs for these problems with respect to applicable complexity
classes. This will be done by specifying algorithms and certificate relations to show
membership, and by providing reductions from other decision problems, whose complexity
is known, to show hardness. For example, we will prove that the complexity of the main
decision problem regarding preferred models can vary, depending on the choice logic,
from NP-complete (propositional logic) to Θ2P-complete (QCL/CCL) to ∆2P-complete
(a newly introduced choice logic).

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

To our knowledge, neither QCL nor CCL has yet been analyzed in detail in terms of
strong equivalence or computational complexity. Therefore, our results do not only apply
to choice logics in general but also yield new insights regarding QCL and CCL. A lower
bound for the complexity of QCL was given by Lang [Lan04]. There, it is stated that
certain decision problems related to QCL are "at least as hard" as those associated with
lexicographically minimal orderings, but possibly harder.

1.3 Structure

In Chapter 2, the formal preliminaries necessary for this thesis will be established.
This includes a brief establishment of some notation, a formal introduction to classical
propositional logic, QCL, and CCL, and a section on complexity theory, where the
complexity classes needed in this thesis are introduced.

The definition of the choice logic framework is contained in Chapter 3. The syntax and
semantics of choice logics are specified in Section 3.1, and some important properties of
the framework are established in Section 3.2. Proofs for how QCL and CCL fit into our
framework, and examples for new choice logics that can be defined within the framework
are contained in Section 3.3. In Section 3.3.3, we explain how two choice logics can be
combined to create a completely new choice logic.

Chapter 4 establishes various classes of choice logics and examines these classes with
respect to certain properties. This includes a class of choice logics whose non-classical
connectives are related in a natural way to classical binary connectives (Section 4.5).

In Chapter 5, the notion of strong equivalence between the formulas of a given choice logic
will be considered and compared to other forms of equivalence. We will first do this for
QCL and CCL (Sections 5.1 and 5.2), and then for choice logics in general (Section 5.3).

The computational complexity of choice logics is examined in Chapter 6. First, we
introduce the idea of tractable choice logics, before defining relevant decision problems
and investigating their complexity.

Lastly, in Chapter 7, we will summarize our findings, provide an overview of work related
to choice logics, and discuss possible future work.

1.4 Published Work

Part of this work has been accepted for publication at the ASPOCP 2020 workshop
under the title Encoding Choice Logics in ASP [BMW20]. In that paper, the choice logic
framework is defined in more or less the same way as in this thesis. However, most of
the results provided in this thesis, including classification and complexity analysis, are
novel. In the paper, it is also shown how choice logics can be encoded using Answer Set
Programming (ASP), which will not be part of this thesis.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Preliminaries

This chapter aims to explain and formally define some concepts necessary for the remaining
text. This includes Propositional Logic, Qualitative Choice Logic, Conjunctive Choice
Logic, and some basic complexity theory.

Before doing so, we will establish some notation which might be misunderstood without
clarification. In this text, zero will not be considered a natural number, i.e. N = {1, 2, . . .}.
The power set of a set S is written as 2S . We will also make use of the special symbol ∞.

Definition 1. The symbol ∞ is given the meaning that k <∞ for all k ∈ N.

The functions max and min, which return the maximum/minimum number from a given
set, can be extended to use ∞: Let S ⊆ 2N ∪ {∞}. Then max(S) = ∞ if ∞ ∈ S and
min(S) =∞ if S = {∞}. For the purpose of readability, we write max(k1, . . . , kn) for
max({k1, . . . , kn}), and likewise for min.

2.1 Propositional Logic

Classical propositional logic (PL) is a tool to reason about propositions, i.e. statements
that are either true or false [Hod13]. For example, "The sky is blue" is a proposition,
and it depends on the reality we are reasoning about whether the statement is true (e.g.
on Earth) or false (e.g. on Mars). Historically, PL has its roots as far back as ancient
Greece, and was first described in a mathematical system in the 19th century by George
Boole [Smu14]. In what follows, the syntax and semantics of PL will be defined. Several
sources were used to this end, namely [Hod13], [Smu14], and [Gen12].

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

2.1.1 Syntax

Formally, elementary propositions are captured with propositional variables, also referred
to as atoms. These variables can be joined together with the help of logical connectives
to create formulas, which are more complex propositions.

Definition 2. The set of all propositional variables, also called the universe, is denoted
as U = {ai | i ∈ N}.

Note that, by the above definition, there are countably-infinitely many propositional vari-
ables. Lower case letters such as x, y, or z will be used to refer to arbitrary propositional
variables. As for connectives, we will make use of ¬ (negation), ∧ (conjunction), and ∨
(disjunction).

Definition 3. The set of formulas of propositional logic FPL is defined inductively as
follows:

1. if x ∈ U , then x ∈ FPL.

2. if F ∈ FPL, then (¬F) ∈ FPL.

3. if F, G ∈ FPL, then (F ∧G) ∈ FPL and (F ∨G) ∈ FPL.

For example, ((a1 ∨ a2) ∧ (¬a3)) is a formula of PL, while (a1¬ ∧ a2) is not. Upper case
letters such as F , G, or H will be used to refer to arbitrary formulas. If parenthesis are
omitted, we follow the convention that ¬ takes precedence over ∧, and ∧ takes precedence
over ∨. This means that the formula ¬F ∧G ∨H is to be read as (((¬F) ∧G) ∨H).

We will also be interested in which variables (and connectives) appear in a formula.

Definition 4. The set of all propositional variables occurring in a formula F is denoted
as var(F).

Consider, for instance, F = (x ∨ ¬y). Then var(F) = {x, y}. As for connectives, ∨ and
¬ occur in F , while ∧ does not. Observe that any formula consists of only finitely many
variables and connectives.

2.1.2 Semantics

The semantics of PL is based on interpretations, which assign a value of either true or
false to propositional variables. For example, an interpretation could set a1 to true and
a2 to false. Then, under this interpretation, the formula (a1 ∨ a2) would be true and
(a1 ∧ a2) would be false, since (F ∧ G) is true exactly when F and G are true. As for
negation and disjunction, we have that ¬F is true if and only if F is false, and (F ∨G)
is true if and only if F or G (or both) are true.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Propositional Logic

One way to formally describe an interpretation is to define a corresponding function
that takes propositional variables as input, and outputs either true or false. Another
possibility is to characterize an interpretation by the set of exactly those propositional
variables that are assigned a value of true by this interpretation. The latter approach is
used by both [BBB04] and [BB16], and will be used by us as well.

Definition 5. An interpretation I is a set of propositional variables, i.e. I ⊆ U .

For example, {x, y} is an interpretation that sets x and y to true, and all other proposi-
tional variables to false. Interpretations will most often be denoted with the letters I
and J . We can now define a function that ascribes a truth value to every formula, given
some interpretation.

Definition 6. The truth value of a PL formula under any interpretation I is given by
the function v : 2U ×FPL → {true, false} such that

1. v(I, x) = true iff x ∈ I, for every x ∈ U .

2. v(I,¬F) = true iff v(I, F) = false.

3. v(I, F ∧G) = true iff v(I, F) = true and v(I, G) = true.

4. v(I, F ∨G) = true iff v(I, F) = true or v(I, G) = true.

Consider the formula (x ∧ ¬y), and the two interpretations {x} and {x, y}. Then
v({x}, x) = v({x, y}, x) = true, while v({x},¬y) = true and v({x, y},¬y) = false.
Therefore, we have that v({x}, x ∧ ¬y) = true and v({x, y}, x ∧ ¬y) = false.

We also write I |= F for v(I, F) = true, and I 6|= F for v(I, F) = false. If I |= F holds,
we say that F is (classically) satisfied by I, or that I is a model of F .

Another point of interest are so called logically equivalent formulas. These are formulas
that behave in the same way under all interpretations. For example, (x∧y) and ¬(¬x∨¬y)
are not the same formula, but the have the same truth values, given any interpretation.

Definition 7. PL-formulas F and G are logically equivalent, written as F ≡ G, if for
all interpretations I we have that v(I, F) = v(I, G).

We defined the formulas of PL with the use of two binary connectives, namely ∧ and
∨. Other binary connectives, such as → (implication), are not used here, but can be
expressed with the use of ¬, ∧, and ∨. Indeed, {¬,∧,∨} is a functionally complete
set of operators [Wer42]. In total, classical propositional logic has 16 different binary
connectives, which represent the 16 possibilities for how the truth values of two formulas
can be mapped to a single truth value. We call these 16 connectives the classical binary
connectives.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Since choice logics introduce new non-classical binary connectives, and since we would
like to compare these new connectives to the classical binary connectives, we listed all 16
classical binary connectives, and how they can be expressed via ¬, ∧, and ∨, in Table 2.1.
Note that the constant truth and falsity functions are often denoted by the symbols ⊤
and ⊥ respectively.

Name Notation Logically Equivalent to

Conjunction, AND F ∧G F ∧G
Disjunction, OR F ∨G F ∨G
Implication, IF F → G ¬F ∨G
Biconditional, IFF F ↔ G (F ∧G) ∨ (¬F ∧ ¬G)
Joint Denial, NOR F ↓ G ¬(F ∨G)
Alternative Denial, NAND F ↑ G ¬(F ∧G)
Exclusive Disjunction, XOR F ⊕G (F ∧ ¬G) ∨ (¬F ∧G)
Negated Implication F 6→ G (F ∧ ¬G)
Inverse Implication F ← G (F ∨ ¬G)
Negated Inverse Implication F 6← G (¬F ∧G)
First Projection proj1(F, G) F
Second Projection proj2(F, G) G
Negated First Projection proj1(F, G) ¬F
Negated Second Projection proj2(F, G) ¬G
Constant Truth Function fT (F, G) (F ∨ ¬F)
Constant Falsity Function fF (F, G) (F ∧ ¬F)

Table 2.1: The 16 classical binary connectives

Of course, all connectives can be written in prefix notation if required, e.g. (F → G) can
be written as (→ (F, G)). Conversely, all connectives can also be written in infix notation.
For convenience, we will sometimes use the classical binary connectives as shorthand
notation for the equivalent PL-formula. For example, we might write (x → (y ⊕ z))
instead of (¬x ∨ ((y ∧ ¬z) ∨ (¬y ∧ z))).

2.1.3 Properties

When investigating whether a formula is satisfied by some interpretation, it suffices to
look at those variables in the interpretation that actually occur in the formula. For
example, whether z is part of some interpretation I or not makes no difference when
determining whether I satisfies the formula (x ∧ ¬y).

Lemma 1. Let I be an interpretation. If a propositional variable x does not occur in a
PL-formula F , then I |= F iff (I \ {x}) |= F .

Proof. We prove the statement by structural induction.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Propositional Logic

• Base case: Let y be a propositional variable such that x 6= y. Thus,

I |= y ⇐⇒ y ∈ I ⇐⇒ y ∈ (I \ {x}) ⇐⇒ (I \ {x}) |= y.

• Induction step: Assume x does not occur in F and G. Then, by the I.H., I |= F iff
(I \ {x}) |= F and I |= G iff (I \ {x}) |= G. It follows that

I |= ¬F ⇐⇒ I 6|= F ⇐⇒ (I \ {x}) 6|= F ⇐⇒ (I \ {x}) |= ¬F,

I |= F ∧G ⇐⇒ I |= F and I |= G

⇐⇒ (I \ {x}) |= F and (I \ {x}) |= G

⇐⇒ (I \ {x}) |= F ∧G,

I |= F ∨G ⇐⇒ I |= F or I |= G

⇐⇒ (I \ {x}) |= F or (I \ {x}) |= G

⇐⇒ (I \ {x}) |= F ∨G.

Some properties that will be shown to be true in this thesis are concerned with the
replacement (or substitution) of subformulas within formulas. For instance, when
considering a formula F in which A occurs as a subformula, one might want to also
examine a formula identical to F , except that A has been replaced by B.

Definition 8. Let F , A, and B be formulas of PL. Then F [A/B]i is the formula obtained
by replacing the i-th occurrence of A in F by B.

For example, in the formula

F = ((x ∨ y) ∧ (x ∨ z)) ∨ (x ∧ ¬x)

there are 4 occurrences of x. Replacing the second occurrence of x in F by x′ yields

F [x/x′]2 = ((x ∨ y) ∧ (x′ ∨ z)) ∨ (x ∧ ¬x).

If F has less than i occurrences of A, then it is convenient to simply let F [A/B]i = F .
Since we will be interested in proving that certain properties hold even if arbitrary
occurrences of subformulas are replaced, we will use the notation F [A/B] to mean that
F [A/B] is a formula obtained from F by replacing an arbitrary occurrence of A in F by
B. If F contains no occurrence of A, then F [A/B] = F .

An important fact regarding replacement in propositional logic is that if two formulas
are logically equivalent, then substituting one for the other has no impact with respect
to truth values.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Lemma 2. Let A, B, and F be PL-formulas. If A ≡ B, then F ≡ F [A/B].

Proof. Assume A ≡ B. Note that if A is not contained in F , then trivially F [A/B] = F ,
and therefore F ≡ F [A/B]. The case that A does appear in F can be proven by structural
induction. This induction is similar to the proof of Lemma 1, and will not be given
explicitly here.

2.2 Qualitative Choice Logic

Qualitative Choice Logic (QCL) extends PL by adding to it a new binary connective
#»

×,
called ordered disjunction. As we will see, this enables us to express preferences about
which propositional variables should be satisfied. The syntax and semantics of QCL were
first defined by Brewka et al. [BBB04].

2.2.1 Syntax

QCL-formulas are built in the same way as PL-formulas, except that
#»

× is part of the
inductive definition.

Definition 9. Let FPL be the set of formulas of classical propositional logic, defined over
the connectives ∧, ∨, and ¬. Then the set of QCL-formulas FCCL is defined inductively
as follows:

1. if F ∈ FPL, then F ∈ FQCL.

2. if F ∈ FQCL, then (¬F) ∈ FQCL.

3. if F, G ∈ FQCL, then (F ◦G) ∈ FQCL for ◦ ∈ {∧,∨,
#»

×}.

By the above definition, every PL-formula is also a QCL-formula. The non-classical
formulas of QCL are those that contain an occurrence of ordered disjunction, e.g. ¬(x

#»

×z)
or ((x

#»

×y)∧z). In [BBB04, p. 206], it is stated that "all classical connectives have stronger
bindings than

#»

×". This means that the formula x ∧ y
#»

×z is to be read as ((x ∧ y)
#»

×z).
We will follow this convention.

2.2.2 Semantics

The semantics of QCL is based on satisfaction degrees: Interpretations ascribe a natural
number to formulas. The lower this number (satisfaction degree) is, the more preferable
this interpretation is for that particular formula. Before we can define the inference
relation |∼QCL

k for satisfaction degrees, we need to define the concept of optionality, which
expresses the number of satisfaction degrees that a formula can possibly have.

Definition 10. The optionality of a QCL-formula is defined as follows:

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Qualitative Choice Logic

1. opt(x) = 1, for every x ∈ U .

2. opt(¬F) = 1.

3. opt(F ∧G) = max(opt(F), opt(G)).

4. opt(F ∨G) = max(opt(F), opt(G)).

5. opt(F
#»

×G) = opt(F) + opt(G).

The optionality of a propositional variable is 1, since there is only a single way for how a
variable can be satisfied. However, (x

#»

×y) can be satisfied in two different ways: Either x
is satisfied (preferable) or x is not satisfied, but y is satisfied (less preferable). Therefore,
we have that opt(x

#»

×y) = 2. Now we can define the notion of satisfaction degrees formally.

Definition 11. The satisfaction degree k ∈ N of a QCL-formula under any interpretation
I is defined as follows:

1. I |∼QCL
k x iff k = 1 and x ∈ I, for every x ∈ U .

2. I |∼QCL
k ¬F iff k = 1 and for no m ∈ N: I |∼QCL

m F .

3. I |∼QCL
k F ∧G iff I |∼QCL

m F and I |∼QCL
n G and k = max(m, n).

4. I |∼QCL
k F ∨G iff [I |∼QCL

m F or I |∼QCL
n G] and

k = min({r | I |∼QCL
r F or I |∼QCL

r G}).

5. I |∼QCL
k F

#»

×G iff I |∼QCL
k F or [I |∼QCL

1 ¬F , I |∼QCL
m G, and k = m + opt(F)].

If there is a k ∈ N such that I |∼QCL
k F , we say that I satisfies F with a degree of k.

Otherwise, we say that F is not satisfied under I (or that I |∼QCL
1 ¬F). As an example,

let us consider the formula F = ((x∧ y)
#»

×x). Intuitively, F expresses that it is preferable
to satisfy both x and y. If this is not possible, then it is still acceptable to satisfy only
x. More formally, we have that {x} |∼QCL

1 x as well as {x, y} |∼QCL
1 x. However, while

{x, y} |∼QCL
1 (x ∧ y) holds, there is no k ∈ N such that {x} |∼QCL

k (x ∧ y). This means

that {x, y} |∼QCL
1 F and {x} |∼QCL

2 F . Also note that ∅ does not satisfy F .

QCL has the following important properties, which are also contained as Lemma 1 and 2
in [BBB04]:

Lemma 3. If I |∼QCL
k F and I |∼QCL

j F , then i = j.

Lemma 4. If I |∼QCL
k F , then k ≤ opt(F).

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Furthermore, as we know from Proposition 2 in [BBB04],
#»

× is associative, which means
that for arbitrary F , G, and H, the formulas ((F

#»

×G)
#»

×H) and (F
#»

×(G
#»

×H)) have the
same optionality and the same satisfaction degrees under all interpretations.

Lastly, we will discuss preferred models in the context of QCL. In the above example, we
had that {x, y} |∼QCL

1 F and {x} |∼QCL
2 F , which means that the interpretation {x, y} is

preferable to {x} when considering the formula F . However, both {x, y} and {x} satisfy
F (with some satisfaction degree), i.e. both {x, y} and {x} are models of F . Since the
purpose of QCL is to express preferences, we are most often interested in those models
that satisfy a formula with minimal satisfaction degree.

Definition 12. Let I be an interpretation, and F be a QCL-formula. Then I is a
preferred model of F if I |∼QCL

k F and for all other interpretations J we have J |∼QCL
m F

with k ≤ m.

2.2.3 Alternative Definitions

There are two alternative definitions of QCL, namely Prioritized Qualitative Choice
Logic (PQCL) and Positive Qualitative Choice Logic (QCL+). Both were described by
Benferhat and Sedki in [BS08b] and introduce alternative semantics for the classical
connectives ¬, ∧, and ∨. The semantics of ordered disjunction remains unchanged in
both PQCL and QCL+.

In PQCL, the optionalities of the classical connectives are defined as follows:

1. opt(¬F) = opt(F).

2. opt(F ∧G) = opt(F) · opt(G).

3. opt(F ∨G) = opt(F) · opt(G).

The satisfaction degree regarding the classical connectives in PQCL is given as:

1. I |∼PQCL
k ¬F iff one of the following holds:

a) F = x and k = 1 and x 6∈ I,

b) F = (G ∧H) and I |∼PQCL
k (¬G ∨ ¬H),

c) F = (G ∨H) and I |∼PQCL
k (¬G ∧ ¬H),

d) F = (G
#»

×H) and I |∼PQCL
k (¬G

#»

×¬H).

2. I |∼PQCL
k F ∧G iff I |∼PQCL

i F and I |∼PQCL
j G and k = (i− 1) · opt(G) + j.

3. I |∼PQCL
k F ∨G iff one of the following holds:

a) I |∼PQCL
1 F or I |∼PQCL

1 G and k = 1,

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Conjunctive Choice Logic

b) (∃i : i > 1 and I |∼PQCL
i F) and (6 ∃ j : I |∼PQCL

j G) and k = (i−1) ·opt(G)+1,

c) ((∃i : i > 1 and I |∼PQCL
i F) or (6 ∃ l : I |∼PQCL

l F)) and (∃j : I |∼PQCL
j G)

and k = j.

The idea behind PQCL is to deal with prioritized preferences via the classical connectives.
For example, the intuitive meaning of F ∧ G in PQCL is that while both F and G
must be satisfied, if F and G can not both be satisfied to a minimal degree, then it is
preferable to satisfy F with a lower degree rather than G. This has as a consequence
that, in contrast to QCL, neither conjunction nor disjunction are commutative in PQCL.
Let I be an interpretation and let F and G be formulas s.t. I |∼PQCL

2 F , I |∼PQCL
3 G,

and opt(F) = opt(G) = 3. Then I |∼PQCL
6 (F ∧ G), but I |∼PQCL

8 (G ∧ F). Similarly,

I |∼PQCL
3 (F ∨G), but I |∼PQCL

2 (G ∨ F).

Regarding QCL+, the satisfaction relation for optionalities and satisfaction degrees
of the classical connectives is not given explicitly in [BS08b], but the semantics are
provided via a normal form transformation to so called basic QCL-formulas. Basic
choice formulas are a concept that we will introduce for our choice logic framework in
Section 3.1.1 (see Definition 27), and investigate further in Section 4.2. From the normal
form transformation mentioned above we can infer that negation in QCL+ is defined in
the same way as in PQCL, and that disjunction is defined in the same way as in QCL.
The optionality of conjunction in QCL+ is given by

opt(F ∧G) = max(opt(F), opt(G)),

and for the satisfaction degree we have that

I |∼QCL+
k (F ∧G) iff (I |∼QCL+

k F and I |∼QCL+
k G) or

(I |∼QCL+
k F and k > opt(G)) or

(I |∼QCL+
k G and k > opt(F)).

QCL+ is designed to work with positive preferences, i.e. preferences in which solutions
are simply ranked, but not excluded.

In this thesis, we will focus on the original semantics of QCL. In Section 3.1.2 we
discuss why we prefer the semantics of QCL for the classical connectives rather than
the alternative semantics of PQCL or QCL+, and in Section 3.3 we explain how PQCL
and QCL+ can still fit into the general framework of choice logics that we define in
Section 3.1.

2.3 Conjunctive Choice Logic

Conjunctive Choice Logic (CCL) was described by Boudjelida and Benferhat in [BB16].
Similarly to QCL, CCL extends PL by adding a new binary connective

#»

⊙, called ordered
conjunction.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

2.3.1 Syntax

The formulas of CCL are defined analogously to those of QCL.

Definition 13. Let FPL be the set of formulas of classical propositional logic, defined over
the connectives ∧, ∨, and ¬. Then the set of CCL-formulas FCCL is defined inductively
as follows:

1. if F ∈ FPL, then F ∈ FCCL.

2. if F ∈ FCCL, then (¬F) ∈ FCCL.

3. if F, G ∈ FCCL, then (F ◦G) ∈ FCCL for ◦ ∈ {∧,∨,
#»

⊙}.

For example, ((x
#»

⊙y) ∧ z) is a CCL-formula. We will follow the convention that, when
omitting brackets, the classical connectives bind more strongly than

#»

⊙, analogously to
QCL.

2.3.2 Semantics

The semantics of CCL is based on that of QCL. Optionality was renamed to npsd, which
simply stands for "number of possible satisfaction degrees".

Definition 14. The optionality (or npsd) of a CCL-formula is defined as follows:

1. npsd(x) = 1, for every x ∈ U .

2. npsd(¬F) = 1.

3. npsd(F ∧G) = max(npsd(F), npsd(G)).

4. npsd(F ∨G) = max(npsd(F), npsd(G)).

5. npsd(F
#»

⊙G) = npsd(F) + npsd(G).

As one can see, npsd in CCL is defined analogously to how opt is defined in QCL. As
for satisfaction degree, CCL uses the symbol ∞ when a formula is not satisfied to some
(finite) satisfaction degree. Otherwise, the inference relation for the classical connectives
remains unchanged between CCL and QCL. Of course, the semantics of

#»

⊙ differs to that
of

#»

×.

Definition 15. The satisfaction degree k of a CCL-formula under any interpretation I
is defined as follows:

1. I |∼CCL
k x, for every x ∈ U , with

k =

{

1 if x ∈ I

∞ otherwise

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Complexity Theory

2. I |∼CCL
k ¬F with

k =

{

1 if I |∼CCL
∞ F

∞ otherwise

3. I |∼CCL
k F ∧G with

k =

max(m, n) if I |∼CCL
m F and I |∼CCL

n G

with m 6=∞ and n 6=∞.

∞ otherwise

4. I |∼CCL
k F ∨G with

k =

min(m, n) if I |∼CCL
m F and I |∼CCL

n G

with m 6=∞ or n 6=∞.

∞ otherwise

5. I |∼CCL
k F

#»

⊙G with

k =

m + npsd(G) if I |∼CCL
m F , m 6= 1, and m 6=∞

m if I |∼CCL
1 F and I |∼CCL

m G

∞ otherwise

We say that I is a model of F if we have that I |∼CCL
k F with k <∞. Preferred models

in CCL are defined analogously to preferred models in QCL.

Definition 16. Let I be an interpretation, and F be a CCL-formula. Then I is a
preferred model of F if I |∼CCL

k F with k < ∞ and for all other interpretations J we
have J |∼CCL

m F with k ≤ m.

It has to be mentioned that the above semantics does not capture the intended meaning
of ordered conjunction. In [BB16], an example is given that the interpretation {x}
should ascribe a satisfaction degree of 2 to (x

#»

⊙y). However, with the semantics given in
Definition 15, we have that {x} |∼CCL

∞ (x
#»

⊙y). Therefore, we will describe an alternative
semantics for CCL in Section 3.3.

2.4 Complexity Theory

In complexity theory, computational problems are categorized depending on how efficiently
they can be solved. In this introduction we will briefly define the basic complexity classes
P, NP, and coNP. We will then introduce the notion of oracles and the complexity classes
∆2P and Θ2P. The primary sources used in this section are [Pap94], [AB09] and [Sip12].

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

We assume familiarity with the concepts of deterministic Turing machines (TMs), decision
problems, O-notation, and reductions between decision problems. An example for a
decision problem concerned with propositional logic is ModelChecking:

ModelChecking

Instance: A PL-formula F and an interpretation I.

Question: I |= F?

We say that (F, I) is an instance of ModelChecking. More specifically, (F, I) is called
a yes-instance of ModelChecking if the question part of the problem can be answered
with yes, i.e. if I |= F . Otherwise, (F, I) is called a no-instance. The efficiency of an
algorithm is measured relative to input size, that is, to the size of the instance.

2.4.1 Basic Complexity Classes

The class P consists of exactly those decision problems that can be decided in polynomial
time (with respect to input size) by a TM.

Definition 17. A decision problem Q is in P if there is a deterministic Turing machine
M and a constant c ∈ N such that, given an arbitrary instance I of Q, M decides whether
I is a yes-instance of Q in O(nc) time, where n is the length of the input string that
encodes I.

We have already seen a decision problem that is in P, namely ModelChecking. Before
we prove this, let us fix some notation: We will use |F | to denote the total number of
variable occurrences in a propositional formula F . For example, if G = (x ∨ (¬x ∧ y)),
then |G| = 3, since there are 2 occurrences of x and 1 occurrence of y in G. Regardless
of the method by which formulas are encoded, |F | will always be smaller than the size of
F ’s encoding on the tape of a TM. Thus, an algorithm that runs in polynomial time with
respect to |F | also runs in polynomial time with respect to the input of ModelChecking.
Conversely, there are encodings such that the size of F on the tape of a TM is polynomial
in |F |. Since we can also assume that I ⊆ var(F) for any interpretation I we are dealing
with (see Lemma 1), we can safely use |F | as the input size of ModelChecking (or
similar problems).

The strong form of the Church-Turing thesis states that "every physically realizable
computation model can be simulated by a TM with polynomial overhead" [AB09, p. 26].
This statement is not uncontroversial, especially because of quantum computers. But
since we do not deal with quantum algorithms here, we can resort to informal descriptions
of algorithms instead of specifying Turing machines.

Proposition 5. ModelChecking is in P.

Proof. The truth value of F under I can be computed by applying v to I and F (see
Definition 6). Clearly, every step in this recursion runs in polynomial time. The depth of

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Complexity Theory

the recursion does not exceed |F |. Neither does the width of the recursion exceed |F |,
since every atom in F will be reached exactly once in the recursion. If v(I, F) = true we
return "yes", and if v(I, F) = false we return "no". This shows that ModelChecking is
in P.

Another important complexity class is NP, which is sometimes characterized by non-
deterministic Turing machines. However, we will define it over so called certificate
relations. Often, a certificate (or witness) is the corresponding solution to a yes-instance
of the decision problem in question. For example, consider the problem of satisfiability:

Sat

Instance: A PL-formula F .

Question: Is there an interpretation I such that I |= F?

Then F = (x ∨ y) ∧ (¬x ∨ z) is a yes-instance of Sat, and {x, z} is a certificate for
F . Before we can define NP using certificates, we have to introduce the following two
concepts regarding binary relations:

Definition 18. A binary relation R is polynomially decidable if there is an algorithm
that decides whether (x, y) ∈ R for any x and y in polynomial time.

Definition 19. A binary relation R is polynomially balanced if there is a constant c such
that for every (x, y) ∈ R we have that |y| ≤ |x|c.

Now we can formally define the class NP.

Definition 20. A decision problem Q is in NP if there exists a polynomially balanced
and polynomially decidable relation R such that I is a yes-instance of Q if and only if
there is a certificate C such that (I, C) ∈ R.

With this definition, it is easy to show that Sat is in NP. Let

R = {(F, I) | I |= F}.

Clearly, an instance F is a yes-instance of Sat if and only if there is a certificate, i.e. an
interpretation I, such that (F, I) ∈ R. R is polynomially balanced, since we can assume
that I ⊆ var(F). Furthermore, R is polynomially decidable, since ModelChecking

is in P. Thus, ModelChecking is in NP. Besides NP-membership, we are often also
interested in NP-hardness:

Definition 21. A decision problem Q is NP-hard if there exists a polynomial-time
reduction from every decision problem in NP to Q.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

By the Cook-Levin Theorem, we know that Sat is NP-hard. Since we have both NP-
membership and NP-hardness, Sat is NP-complete. Of course, the concepts of hardness
and completeness can be extended to complexity classes other than NP.

The class coNP consists of the complimentary problems of the decision problems in NP.
For example, the complement of Sat asks whether a given formula F is unsatisfiable.

Unsat

Instance: A PL-formula F .

Question: Does I 6|= F hold for all interpretations I?

Since Unsat is the complementary problem of Sat, it is in coNP. Furthermore, we know
that the problem Tautology, which asks whether a given formula is satisfied by all
interpretations, is coNP-complete. Since I |= F ⇐⇒ I 6|= ¬F , it is easy to see that
Tautology can be reduced to Unsat, and that therefore Unsat is coNP-complete as
well.

2.4.2 Oracle Complexity Classes

The classes P, NP and coNP can be generalized by the polynomial hierarchy, which is
built out of infinitely many complexity classes. In this thesis, we only need two classes of
the polynomial hierarchy other than P, NP and coNP, namely ∆2P and Θ2P. To define
these two classes, we first have to introduce the concept of oracles.

Definition 22. A Q-oracle is a machine that is given an instance I of a decision problem
Q as input, and decides whether I is a yes-instance of Q or not in constant time.

If, for example, we could physically realize a Sat-oracle, then we could use it to solve Sat

in constant time, which would also mean that Sat is in P. Since Sat is NP-complete,
this in turn would imply that P = NP. Whether we can physically realize oracles or not,
we can use them to define new complexity classes, such as P

Sat:

Definition 23. A decision problem Q is in P
Sat if it can be decided in polynomial time

by an algorithm which is allowed an arbitrary number of calls to a Sat-oracle.

In fact, because Sat is NP-hard, we could take any decision problem Q in NP, reduce
it to Sat in polynomial time, and then use a Sat-oracle to solve Q in constant time.
Thus, a Sat-oracle can function as an oracle for any problem in NP with only polynomial
overhead. We can therefore also see P

Sat as consisting of exactly those decision problems
that can be solved in polynomial time by an algorithm which is allowed an arbitrary
number of calls to any NP-oracle, i.e. any Q-oracle where Q is a decision problem in NP.
Consequently, P

Sat is often referred to as P
NP. Another name commonly used for P

Sat is
that of ∆2P, which we will use from now on.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Complexity Theory

An example for a ∆2P-complete problem is that of LexMaxSat, which is called a
prototypical ∆2P-problem by Creignou, Pichler, and Woltran [CPW18].

LexMaxSat

Instance: A PL-formula F and an order x1 > · · · > xn on the variables in F .

Question: Is xn true in the lexicographically largest model of F?

We say that an interpretation I is lexicographically larger than another interpretation J
with respect to the ordering x1 > · · · > xn if there is an index k ∈ {1, . . . , n} such that
xi ∈ I ⇐⇒ xi ∈ J for all i < k, and xk ∈ I but xk 6∈ J . For example, with respect to
the ordering x1 > x2 > x3, the lexicographically largest interpretation is {x1, x2, x3}, the
second largest is {x1, x2}, the third largest is {x1, x3}, and so on. Observe that ∅ is the
lexicographically smallest interpretation with respect to any ordering.

Another complexity class closely related to ∆2P is that of Θ2P. Instead of allowing an
arbitrary number of calls to NP oracles, we restrict ourselves to only logarithmically
many oracle calls.

Definition 24. A decision problem Q is in Θ2P if it can be decided in polynomial time
by an algorithm which is allowed O(log n) number of calls to an NP-oracle, where n is
the size of the input.

Θ2P is sometimes also referred to as ∆2P[log n] or P
NP[log n]. An example for a Θ2P-

complete problem, which also appears in [CPW18], is that of LogLexMaxSat.

LogLexMaxSat

Instance: A PL-formula F and an order x1 > · · · > xn on some of the variables in F
such that n ≤ log(|F |).

Question: Is xn true in the lexicographically largest interpretation J ⊆ {x1, . . . , xn}
that can be extended to a model of F?

We say that an interpretation J ⊆ {x1, . . . , xn} can be extended to a model of F if there
is an interpretations I which is a model of F , and which behaves in the same way as J
regarding the variables {x1, . . . , xn}, i.e. I ∩ {x1, . . . , xn} = J .

The classes ∆2P and Θ2P have a connection to optimization problems, as was pointed
out by Krentel [Kre88]. Indeed, if LexMaxSat could be solved in polynomial time,
then one could also find the lexicographically largest model I of F in polynomial time as
follows:

• Let I = ∅.

• For each x ∈ var(F), do the following:

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

– If x is contained in the lexicographically largest model of F , then let I = I∪{x}
and modify F by replacing every occurrence of x by a tautology.

– Else, modify F by replacing every occurrence of x by a contradiction.

If we could solve LexMaxSat in polynomial time, then clearly this procedure would
also run in polynomial time. Furthermore, by replacing a variable x with a tautology
(or contradiction), we limit the search space to interpretations in which x is contained
(or not contained). In this way, we can find the lexicographically largest model of F .
LexMaxSat, and analogously LogLexMaxSat, can therefore be viewed as decision
problems which capture the computational complexity of an optimization problem.

The complexity classes that we have encountered so far have a hierarchical relationship
to each other. For example, P is a subset of NP, coNP, ∆2P and Θ2P respectively, which
means that every problem that is contained in P is also contained in NP, coNP, ∆2P

and Θ2P. Whether P is a proper subset of any of these classes is not known, however.
Similarly, NP and coNP are both subsets of ∆2P and Θ2P, but it is unclear if this inclusion
is strict or not. It is also easy to see that Θ2P is contained in ∆2P, since a problem than
can be solved in polynomial time with a logarithmic number of oracle calls can also be
solved in polynomial time with an arbitrary number of oracle calls.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Choice Logic Framework

In this chapter, we will formally define a framework for choice logics (CLs) and investigate
some properties of the logics belonging to this framework. Additionally, we will show
how QCL and CCL can be expressed in our framework, give examples for new choice
logics, and show how two choice logics can be combined into a new choice logic.

3.1 Basic Concepts

When formally defining the framework of choice logics, there are some things that we
would like to ensure: Most importantly, both QCL and CCL must be choice logics.
Secondly, PL should be a CL as well. Furthermore, defining the semantics of a given CL
ought to be, in a broad sense, similar to defining the semantic of QCL or CCL. More
specifically, the notions of optionality and satisfaction degree will be present in every CL.
In addition to capturing QCL, we also want to be able to represent PQCL and QCL+.
Lastly, it should be possible to define new choice logics, based on different non-classical
connectives.

3.1.1 Syntax

The formulas of a CL can be built with two types of connectives: Classical connectives
(here we use ¬, ∧, and ∨), and binary choice connectives with which a certain preference
can be expressed.

Definition 25. The set of choice connectives CL of a choice logic L is a finite set of
binary connectives such that CL ∩ {¬,∧,∨} = ∅.

For example, CQCL = {
#»

×}, and CCCL = {
#»

⊙}. Note that the above definition does allow
for CLs with multiple choice connectives.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

Definition 26. Let FPL be the set of formulas of classical propositional logic, defined
over the connectives ∧, ∨, and ¬. Then the set FL of formulas of a choice logic L is
defined inductively as follows:

1. if F ∈ FPL, then F ∈ FL.

2. if F ∈ FL, then (¬F) ∈ FL.

3. if F, G ∈ FL, then (F ◦G) ∈ FL for ◦ ∈ {∧,∨} ∪ CL.

If a formula F of some choice logic contains a choice connective, then we call it a choice
formula. Otherwise, F is simply a PL-formula, and we refer to it as a classical formula.
QCL and CCL both feature the notion of so called basic choice formulas. These are
formulas in which classical connectives are applied only to classical formulas. If F1, . . . , Fn

are PL-formulas, then (F1
#»

× · · ·
#»

×Fn) is a basic QCL-formula. However, ((F
#»

×G) ∧H)
is not a basic QCL-formula, since ∧ is applied to the non-classical formula (F

#»

×G).
Analogously for CCL. The concept of basic choice formulas can be defined for arbitrary
choice logics.

Definition 27. Let L be a choice logic. Then the set of basic L-formulas is defined
inductively as follows:

1. if F is a PL-formula, then F is a basic L-formula.

2. if F and G are basic L-formulas, then (F ◦G) is a basic L-formula, where ◦ ∈ CL.

It is evident that for any choice logic L, the set of basic L-formulas is a proper subset of
the set of all L-formulas.

For the replacement of subformulas, we use the same notation as in PL (see Definition 8).
Consequently, F [A/B]i stands for replacing the i-th occurrence of A in F by B, and
F [A/B] denotes replacing an arbitrary occurrence of A in F by B.

3.1.2 Semantics

First, we will discuss the semantics for the classical connectives. In order to easily
capture both QCL and CCL within our framework, we could simply use the semantics of
the classical connectives provided in both QCL and CCL (see Sections 2.2.2 and 2.3.2).
Another possibility is to use one of the alternative semantics of QCL, i.e. PQCL or
QCL+, for the classical connectives (see Section 2.2.3).

However, in PQCL, neither disjunction nor conjunction is commutative. This behavior
is not satisfactory, as we want ∧ and ∨ to function as similarly as possible to classical
propositional logic in order to make specifications easy and intuitive. In fact, disjunction
and conjunction in PQCL operate more like choice connectives, as they express a
preference over which operand should be satisfied to a lower degree. The semantics

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Basic Concepts

for conjunction in QCL+ is problematic as well, as it is designed to deal with positive
preferences only.

Negation in both PQCL and QCL+ is defined to distribute over non-atomic formulas.
But the same effect can be achieved in QCL by restricting ourselves to formulas where
¬ occurs only in front of propositional variables. Indeed, there is an argument for not
applying negation to choice formulas, since a sentence of the form "I do not prefer
A over B" does not express a preference, but rather the absence of a preference. In
some way, the negation featured in standard QCL can be seen as classical negation
when applied to a classical formula, and as a tool to neutralize satisfaction degrees when
applied to a choice formula.

For the above reasons, we will use the semantics of the classical connectives featured in
QCL and CCL. A discussion about how PQCL and QCL+ fit into our framework can
be found in Section 3.3. There, it will also become evident that if alternative semantics
for the classical connectives are required, they can be implemented in our framework via
choice connectives.

Now we will turn to the semantics of choice connectives. In QCL, there are two levels of
preference for how the formula (x

#»

×y) can be satisfied: It is best to satisfy x (level 1),
and less optimal to satisfy only y (level 2). If neither x or y are satisfied, the formula is
not satisfied. However, one can consider a choice connective ◦ such that (x ◦ y) has three
or four levels of preference for how a formula can be satisfied. For example, it could be
optimal to satisfy both x and y (level 1), less optimal to satisfy only x (level 2), and even
less optimal to satisfy only y (level 3). If neither x nor y are satisfied, then the formula
could be either not satisfied, or be satisfied even less preferably (level 4). Therefore,
computing the optionality of (F ◦G) by simply adding up the optionalities of F and G
does not work for every choice connective. Instead, we could simply give an upper bound
for a choice connective’s optionality, e.g.

optL(F) ≤ 2N+1,

where N is the number of occurrences of choice connectives in F . The idea is that
(x ◦ y) can induce at most 22 = 4 different satisfaction degrees, and more generally
(x1 ◦ (x2 ◦ · · · (xn−1 ◦ xn))) can induce at most 2n different satisfaction degrees. Another
possible upper bound is

optL(F ◦G) ≤ (optL(F) + 1) · (optL(G) + 1).

F can have at most optL(F) many finite satisfaction degrees, plus the infinite degree ∞,
i.e. there are at most optL(F) + 1 degrees for F . Analogously for G. Thus, there are
(optL(F) + 1) · (optL(G) + 1) possible combinations for how satisfaction degrees can be
ascribed to (F ◦G). The advantage of this upper bound is that the optionality of F ◦G
only depends on the optionalities of its immediate subformulas, i.e. F and G. It is not
necessary to look inside F or G to count the occurrences of choice connectives.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

In addition to giving an upper bound, we might also want to give a lower bound, e.g.

optL(F ◦G) ≥ max(optL(F), optL(G)).

The reasoning behind this is that a choice connective should introduce new ways to
distinguish between interpretations, or at least not give less options for doing so.

Lastly, the optionality of (F ◦G) should only depend on the optionality of F and G. No
other factors, such as the structure of F or G, should have an influence in this matter.

Definition 28. Let L be a choice logic. Then the optionality of an L-formula is given
by the function optL : FL → N such that

1. optL(x) = 1, for every x ∈ U .

2. optL(¬F) = 1.

3. optL(F ∧G) = max(optL(F), optL(G)).

4. optL(F ∨G) = max(optL(F), optL(G)).

5. for every ◦ ∈ CL there is a function f : N2 → N such that

optL(F ◦G) = f(optL(F), optL(G))

with max(optL(F), optL(G)) ≤ optL(F ◦G) ≤ (optL(F) + 1) · (optL(G) + 1).

We are now ready to define the notion of satisfaction degrees for an arbitrary choice logic.
As in CCL, we will use ∞ to signify unsatisfied formulas. The degrees of the classical
connectives will be computed in the same way as in QCL and CCL. For the semantics of
choice connectives, we impose two crucial restrictions.

Firstly, the satisfaction degree of a formula under any given interpretation should never
be bigger than its optionality, unless the degree is∞. After all, the purpose of optionality
is to assert the number of possible satisfaction degrees that a formula can possibly have.

Secondly, the satisfaction degree of a formula F ◦G under any given interpretation should
only depend on the optionalities and satisfaction degrees of F and G. The structure
of the formula or interpretation must not impact the satisfaction degree. For example,
whether an interpretation consists of an even or uneven number of propositional variables
should have no influence on satisfaction degree.

Definition 29. Let L be a choice logic. Then the satisfaction degree of an L-formula
under any interpretation I ⊆ U is given by the function degL : 2U ×FL → N ∪ {∞} such
that

1. degL(I, x) =

{

1 if x ∈ I

∞ otherwise
, for every x ∈ U .

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Basic Concepts

2. degL(I,¬F) =

{

1 if degL(I, F) =∞

∞ otherwise

3. degL(I, F ∧G) = max(degL(I, F), degL(I, G)).

4. degL(I, F ∨G) = min(degL(I, F), degL(I, G)).

5. for every ◦ ∈ CL there is a function g : (N ∪ {∞})4 → (N ∪ {∞}) such that

degL(I, F ◦G) = g(optL(F), optL(G), degL(I, F), degL(I, G))

with degL(I, F ◦G) ≤ optL(F ◦G) or degL(I, F ◦G) =∞.

We also write I |=L
k F for degL(I, F) = k, and say that I satisfies F with a degree of

k. If I satisfies F with a finite degree, then I is called a model of F . Observe that for
classical formulas, we have that I |= F ⇐⇒ I |=L

1 F , and I 6|= F ⇐⇒ I |=L
∞ F .

Now we will come to the central feature of choice logics, namely preferred models. Like
in the specific cases of QCL and CCL, a model of a formula is an interpretation that
ascribes to this formula a finite satisfaction degree. However, we are not only interested
whether an interpretation is a model of some formula. Most often, we are interested in
those interpretations that are the most preferable, i.e. that have the lowest satisfaction
degree for a given formula.

Definition 30. Let I be an interpretation, and F be a formula of some choice logic L.
Then I is a preferred model of F , written as I ∈ModL(F), if degL(I, F) 6=∞ and for
all other interpretations J we have degL(I, F) ≤ degL(J , F).

Another important concept to consider is that of equivalence between formulas. We
have already discussed equivalence in the context of classical propositional logic, see
Definition 7. In choice logics, one could say that two formulas F and G are equivalent if
they have the same preferred models, i.e. if ModL(F) = ModL(G). This is the weakest
notion of equivalence in choice logics. Consider the following, stronger definition.

Definition 31. Let F and G be formulas of some choice logic L. F and G are degree-
equivalent, written as F ≡L

d G, if for all interpretations I we have that degL(I, F) =
degL(I, G).

It is easy to see that degree-equivalence of two formulas implies that they also have the
same preferred models.

Lemma 6. If F ≡L
d G, then ModL(F) = ModL(G).

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

Proof. Assume F ≡L
d G. Then

I ∈ModL(F) ⇐⇒ degL(I, F) 6=∞ and degL(I, F) ≤ degL(J , F) for all J

⇐⇒ degL(I, G) 6=∞ and degL(I, G) ≤ degL(J , G) for all J

⇐⇒ I ∈ModL(G).

The idea of degree-equivalence, while arguably natural, does not express that two formulas
are completely semantically equivalent. For this, it is necessary that the formulas also
have the same optionality.

Definition 32. Let F and G be formulas of some choice logic L. F and G are fully
equivalent, written as F ≡L

f G, if F ≡L
d G and optL(F) = optL(G).

The concept of full equivalence is called strong equivalence in [BBB04]. We will use the
term strong equivalence differently, see Chapter 5. There, we will further investigate all
notions of equivalence mentioned above.

3.2 Properties

From Item 5 in Definition 29 we can infer that, as intended, the satisfaction degree
of (F ◦ G) only depends on the optionalities and satisfaction degrees of F and G.
More formally, if optL(F) = optL(F ′), optL(G) = optL(G′), degL(I, F) = degL(I, F ′),
and degL(I, G) = degL(I, G′), then degL(I, F ◦ G) = degL(I, F ′ ◦ G′) for any choice
connective ◦. From this it also follows that the satisfaction degree of a formula F only
depends on those variables that actually occur in F , which is a generalization of Lemma 1.

Lemma 7. Let L be a choice logic, and let I be an interpretation. If a propositional
variable x does not occur in an L-formula F , then degL(I, F) = degL(I \ {x}, F).

Proof. By structural induction.

• Base case: If F = y for some propositional variable y, and x does not occur in F ,
then x 6= y. Thus, y ∈ I if y ∈ I \ {x}, i.e.

degL(I, y) =

{

1 if y ∈ I

∞ otherwise

=

{

1 if y ∈ I \ {x}

∞ otherwise

= degL(I \ {x}, y).

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Properties

• Induction step: Assume x does not occur in F and G. Then, by the I.H.,
degL(I, F) = degL(I \ {x}, F) and degL(I, G) = degL(I \ {x}, G). It follows
that

degL(I,¬F) =

{

1 if degL(I, F) =∞

∞ otherwise

=

{

1 if degL(I \ {x}, F) =∞

∞ otherwise

= degL(I \ {x},¬F),

degL(I, F ∧G) = max(degL(I, F), degL(I, G))

= max(degL(I \ {x}, F), degL(I \ {x}, G))

= degL(I \ {x}, F ∧G),

degL(I, F ∨G) = min(degL(I, F), degL(I, G))

= min(degL(I \ {x}, F), degL(I \ {x}, G))

= degL(I \ {x}, F ∨G),

and for all ◦ ∈ CL

degL(I, F ◦G) = g(optL(F), optL(G), degL(I, F), degL(I, G))

= g(optL(F), optL(G), degL(I \ {x}, F), degL(I \ {x}, G))

= degL(I \ {x}, F ◦G)

for some function g.

From Lemma 7, and from the fact that every formula F consists of only finitely many
propositional variables, it follows that for every infinite interpretation I there exists a finite
interpretation J such that degL(I, F) = degL(J , F). For this reason, interpretations
will be assumed to be finite in the remaining text, unless explicitly stated otherwise.

The following lemma is concerned with the impact of renaming variables within a formula:

Lemma 8. Let F be a L-formula of some choice logic L. Then there exists an L-formula
F ′ such that F ′ has no variables in common with F , and F ′ can be satisfied with degree
k if and only if F can be satisfied with degree k.

Proof. Let F be a L-formula. Construct F ′ by replacing every variable x in F by a
fresh variable x′. Now consider an arbitrary interpretation I ⊆ var(F). Then for
I ′ = {x′ | x ∈ I} we have degL(I, F) = degL(I ′, F ′).

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

3.3 Examples

This section gathers various choice logics. We will express already existing formalisms
(PL, QCL, and CCL) in our framework of choice logics, as well as introduce entirely new
CLs. Lastly, the possibility of combining CLs will be discussed.

3.3.1 Capturing Existing Choice Logics

First, we would like to ensure that our definition for choice logics given in Section 3.1
captures propositional logic.

Proposition 9. PL is the choice logic such that CPL = ∅.

Proof. We can observe that if a choice logic has no choice connective, then the only
possible satisfaction degrees that can be ascribed to any formula of this choice logic are
1 and ∞. If we see 1 as another symbol for true, and ∞ as another symbol for false,
then we can see that the semantics given to the classical connectives (¬, ∧, and ∨) in
Definition 6 and Definition 29 are equivalent.

Next, it will be shown that our framework encapsulates both QCL and CCL.

Proposition 10. QCL and CCL are choice logics.

Proof. Choose CQCL = {
#»

×} with

optQCL(F
#»

×G) = optQCL(F) + optQCL(G),

and

degQCL(I, F
#»

×G) =

degQCL(I, F) if degQCL(I, F) <∞

degQCL(I, G) + optQCL(F) if degQCL(I, F) =∞

and degQCL(I, G) <∞

∞ otherwise.

First, let us verify that the above definition indeed describes a CL. The requirements for the
optionality of choice connectives are met: Since optQCL(F

#»

×G) = optQCL(F)+optQCL(G),
we have that optQCL(F

#»

×G) only depends on the optionalities of F and G, and that

max(optQCL(F), optQCL(G)) < optQCL(F
#»

×G)

< optQCL(F) · optQCL(G) + optQCL(F) + optQCL(G) + 1

= (optQCL(F) + 1) · (optQCL(G) + 1).

The requirements for the satisfaction degree of choice connectives are met as well:
degQCL(I, F

#»

×G) only depends on the optionality of F and the satisfaction degrees of F

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Examples

and G. Furthermore, the degree of (F
#»

×G) never exceeds optQCL(F
#»

×G) = optQCL(F) +
optQCL(G).

It remains to show that our choice logic is equivalent to QCL as it was defined in
Section 2.2. Clearly, the above choice logic consists of exactly the same formulas as QCL.
It is also evident that optQCL(F) = opt(F) holds for any QCL-formula F . Lastly, one
can see that the semantics of QCL and the above choice logic are defined in such a way
that degQCL(I, F) = k with k <∞ iff I |∼QCL

k F and degQCL(I, F) =∞ iff there is no

k such that I |∼QCL
k F .

For CCL, choose CCCL = {
#»

⊙} with

optCCL(F
#»

⊙G) = optCCL(F) + optCCL(G),

and

degCCL(I, F
#»

⊙G) =

degCCL(I, F) + optCCL(G) if 1 < degCCL(I, F) <∞

degCCL(I, G) if degCCL(I, F) = 1

∞ otherwise.

The rest of the proof is analogous to the proof for QCL, except that is has to be shown
that degCCL(I, F) = k iff I |∼CCL

k F .

To encode PQCL as a choice logic, one could express the alternative semantics for
negation, conjunction, and disjunction given in PQCL as choice connectives ¬̇, ∧̇, and ∨̇.
Then one can consider the fragment of this choice logic that does not contain formulas
with the classical connectives (¬, ∧, and ∨). Note that unary connectives, such as
negation, can also be represented as binary connectives by simply ignoring one of the
operands. As we will see, defining ∧̇ and ∨̇ can be done quite easily. But expressing
¬̇ is problematic, as the semantic of negation in PQCL depends on the structure of F .
The case that ¬̇F = ¬̇(G∧̇H) would need to be handled differently than the case that
¬̇F = ¬̇(G∨̇H), and therefore the negation of PQCL can not be encoded as a function
over the optionality and satisfaction degree of its operand.

However, by the semantics of negation in PQCL, any PQCL-formula F can be transformed
into a degree- and optionality-equivalent formula F ∗ such that negations only appear
in front of atoms in F ∗. But when applied to atoms, the negation of QCL and PQCL
behave identically. Therefore, we will use the QCL semantics for negation in our choice
logic.

We define the choice logic PQCL′ with CPQCL′ = {
#»

×, ∧̇, ∨̇},

optPQCL′(F
#»

×G) = optPQCL′(F) + optPQCL′(G),

optPQCL′(F ∧̇G) = optPQCL′(F) · optPQCL′(G),

optPQCL′(F ∨̇G) = optPQCL′(F) · optPQCL′(G),

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

and1

degPQCL′(I, F
#»

×G) = degQCL(I, F
#»

×G),

degPQCL′(I, F ∧̇G) =

(i− 1) · optPQCL′(G) + j if degPQCL′(I, F) = i,

degPQCL′(I, G) = j,

i <∞, and j <∞;

∞ otherwise.

degPQCL′(I, F ∨̇G) =

1 if degPQCL′(I, F) = 1

or degPQCL′(I, G) = 1;

(i− 1) · optPQCL′(G) + 1 if degPQCL′(I, F) = i,

1 < i <∞,

and degPQCL′(I, G) =∞;

degPQCL′(I, G) if degPQCL′(I, F) > 1

and 1 < degPQCL′(I, G) <∞;

∞ otherwise.

Take any PQCL formula F , and transform it into F ∗ such that negations appear only in
front of atoms in F ∗ and

I |∼PQCL
k F ⇐⇒ I |∼PQCL

k F ∗.

This can be done by simply pushing the negation inwards according to the semantics
of ¬ in PQCL, see Section 2.2.3. Furthermore, replace every occurrence of ∧ and ∨ in
F ∗ by ∧̇ and ∨̇ respectively to obtain a PQCL′ formula F ′. Then

I |∼PQCL
k F ∗ ⇐⇒ degPQCL′(I, F ′) = k

with k <∞, and

6 ∃ k : I |∼PQCL
k F ∗ ⇐⇒ degPQCL′(I, F ′) =∞.

This means that PQCL is semantically equivalent to the fragment of PQCL′ where ¬
only appears in front of atoms, and where ∧ and ∨ do not appear at all.

QCL+ can be represented in our framework as well, similarly to PQCL. Define the choice
logic QCL+′ with CQCL+′ = {

#»

×, ∧̇},

optQCL+′(F
#»

×G) = optQCL+′(F) + optQCL+′(G),

optQCL+′(F ∧̇G) = max(optQCL+′(F), optQCL+′(G)),

1By slight abuse of notation, we write degL(I, F ◦ G) = degL′ (I, F ◦ G) when the satisfaction degree
of ◦ is defined by the same function in both L and L

′, see Definition 29. Analogously, we will sometimes
write optL(F ◦ G) = optL′ (F ◦ G), see Definition 28.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Examples

and

degQCL+′(I, F
#»

×G) = degQCL(I, F
#»

×G),

degQCL+′(I, F ∧̇G) =

k if degQCL+′(I, F) = degQCL+′(I, G) = k,

degQCL+′(I, F) if degQCL+′(I, F) > optQCL+′(G),

degQCL+′(I, G) if degQCL+′(I, G) > optQCL+′(F).

Analogously to our encoding of PQCL, we can conclude that QCL+ is semantically
equivalent to the fragment of QCL+′ where ¬ only appears in front of atoms, and where
∧ does not appear at all.

3.3.2 Introducing New Choice Logics

Our definition of choice logics is not very restrictive. As a consequence, many different
choice logics can be defined. Here we will look at some arguably sensible CLs.

An Alternative Semantics for Conjunctive Choice Logic (CCL)

As was already mentioned in Section 2.3, we want to give an alternative semantic for
ordered conjunction. The following choice logic is what we will refer to as CCL from now
on.

Definition 33. CCL is the choice logic such that CCCL = {
#»

⊙},

optCCL(F
#»

⊙G) = optCCL(F) + optCCL(G),

and

degCCL(I, F
#»

⊙G) =

degCCL(I, G) if degCCL(I, F) = 1

and degCCL(I, G) <∞

m + optCCL(G) if degCCL(I, F) = m, m <∞

and (m > 1 or degCCL(I, G) =∞)

∞ otherwise.

Let F = (x
#»

⊙(y
#»

⊙z)). Then we can see that, at least for F , this new definition of CCL
captures the intuitive meaning of ordered conjunction: {x, y, z} |=CCL

1 F , {x, y} |=CCL
2 F ,

{x} |=CCL
3 F , and ∅ |=CCL

∞ F . Furthermore, we can show that
#»

⊙ is associative under this
new semantics, as was intended in [BB16].

Lemma 11. The choice connective
#»

⊙ ∈ CCCL is associative, i.e.

((F
#»

⊙G)
#»

⊙H) ≡CCL
f (F

#»

⊙(G
#»

⊙H))

holds for arbitrary CCL-formulas F , G, and H.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

Proof. By the definition of full equivalence (Definition 32), we need to show that
((F

#»

⊙G)
#»

⊙H) and (F
#»

⊙(G
#»

⊙H)) have the same optionality, and that they are degree-
equivalent, i.e. that they are ascribed the same satisfaction degree by every interpretation.
First, observe that

optCCL((F
#»

⊙G)
#»

⊙H) = optCCL(F) + optCCL(G) + optCCL(H)

= optCCL(F
#»

⊙(G
#»

⊙H)).

It remains to show that ((F
#»

⊙G)
#»

⊙H) ≡CCL
d (F

#»

⊙(G
#»

⊙H)). Let I be an arbitrary inter-
pretation. We distinguish the following cases:

• degCCL(I, F) = 1, degCCL(I, G) = 1, and degCCL(I, H) <∞. Then
degCCL(I, F

#»

⊙G) = 1 and degCCL(I, G
#»

⊙H) = degCCL(I, H), which entails that

degCCL(I, (F
#»

⊙G)
#»

⊙H) = degCCL(I, H) = degCCL(I, F
#»

⊙(G
#»

⊙H)).

• degCCL(I, F) = 1, degCCL(I, G) = 1, and degCCL(I, H) =∞. Then
degCCL(I, F

#»

⊙G) = 1, and degCCL(I, G
#»

⊙H) = 1 + optCCL(H), which entails that

degCCL(I, (F
#»

⊙G)
#»

⊙H) = 1 + optCCL(H) = degCCL(I, F
#»

⊙(G
#»

⊙H)).

• degCCL(I, F) = 1 and 1 < degCCL(I, G) <∞. Then
degCCL(I, F

#»

⊙G) = degCCL(I, G) and
degCCL(I, G

#»

⊙H) = degCCL(I, G) + optCCL(H), which entails that

degCCL(I, (F
#»

⊙G)
#»

⊙H) = degCCL(I, G) + optCCL(H) = degCCL(I, F
#»

⊙(G
#»

⊙H)).

• degCCL(I, F) = 1 and degCCL(I, G) =∞. Then
degCCL(I, F

#»

⊙G) = 1 + optCCL(G) and degCCL(I, G
#»

⊙H) =∞, which entails that

degCCL(I, (F
#»

⊙G)
#»

⊙H) = 1 + optCCL(G) + optCCL(H) = degCCL(I, F
#»

⊙(G
#»

⊙H)).

• 1 < degCCL(I, F) < ∞. Then degCCL(I, F
#»

⊙G) = degCCL(I, F) + optCCL(G),
which entails that

degCCL(I, (F
#»

⊙G)
#»

⊙H) = degCCL(I, F) + optCCL(G) + optCCL(H)

= degCCL(I, F
#»

⊙(G
#»

⊙H)).

• degCCL(I, F) =∞. Then degCCL(I, F
#»

⊙G) =∞, which entails that

degCCL(I, (F
#»

⊙G)
#»

⊙H) =∞ = degCCL(I, F
#»

⊙(G
#»

⊙H)).

There are several reasons for why we characterize associativity by full equivalence. First
of all, it is the characterization of associativity used by Brewka et al. for QCL (see
Section 2.2.2). Secondly, as we will show in Section 5.2, full equivalence in CCL is
the same as equivalence with respect to the replacement of subformulas. Thirdly, full
equivalence is the strongest form of equivalence in choice logics (Section 5.3).

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Examples

Exclusive Disjunctive Choice Logic (XCL)

As another example for a new choice logic, we can consider a choice connective
#»

⊕
that is based on exclusive disjunction (also called XOR), similar to how

#»

× is based on
regular disjunction. We name this connective ordered exclusive disjunction, and call the
corresponding choice logic Exclusive Disjunctive Choice Logic (XCL).

Definition 34. XCL is the choice logic such that CXCL = {
#»

⊕},

optXCL(F
#»

⊕G) = optXCL(F) + optXCL(G),

and

degXCL(I, F
#»

⊕G) =

degXCL(I, F) if degXCL(I, F) <∞

and degXCL(I, G) =∞

degXCL(I, G) + optXCL(F) if degXCL(I, F) =∞

and degXCL(I, G) <∞

∞ otherwise

Intuitively, F
#»

⊕G expresses that it is preferable to satisfy F . If this is not possible,
then G should be satisfied. However, it is not acceptable to satisfy both F and G.
As an example, consider F ∗ = (x

#»

⊕(y
#»

⊕z)). Then {x} |=XCL
1 F ∗, {y} |=XCL

2 F ∗, and
{z} |=XCL

3 F ∗. Furthermore, {x, y, z} |=XCL
1 F ∗, since (y

#»

⊕z) is satisfied to a degree of
∞ in this interpretation. In contrast to ordered disjunction,

#»

⊕ is not associative. Let
F ′ = ((x

#»

⊕y)
#»

⊕z). While {x}, {y}, and {z} ascribe the same degrees to both F ∗ and F ′,
we have that {x, y, z} |=XCL

3 F ′.

As we will show in Lemma 12, F
#»

⊕G can also be expressed in QCL. However, if exclusive
ordered disjunction has to be expressed often in a given system, then a dedicated choice
connective can simplify specifications. An example for such a system could be a calendar,
in which preferences over time slots need to be considered. Since only one time slot may
be assigned to each appointment, exclusive ordered disjunction might be used instead of
exclusive disjunction.

Lemma 12. Let H be an XCL-formula. Let H ′ be QCL-formula obtained by recursively
replacing every occurrence of F

#»

⊕G in H by ((F
#»

×G) ∧ ¬(F ∧G)). Then H and H ′ are
fully equivalent.

Proof. We show this by structural induction. The base case (H is a propositional variable)
and the cases for the classical connectives are trivial. We will therefore only look at F

#»

⊕G,
where F and G are XCL-formulas. Then, as our I.H., let F ′ and G′ be QCL-formulas such
that optXCL(F) = optQCL(F ′), optXCL(G) = optQCL(G′), degXCL(I, F) = degQCL(I, F ′),
and degXCL(I, G) = degQCL(I, G′) for all interpretations I.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

Regarding optionality, we have that

optXCL(F
#»

⊕G) = optXCL(F) + optXCL(G)

= optQCL(F ′) + optQCL(G′)

= max(optQCL(F ′) + optQCL(G′), 1)

= max(optQCL(F ′ #»

×G′), optQCL(¬(F ′ ∧G′)))

= optQCL((F ′ #»

×G′) ∧ ¬(F ′ ∧G′)).

For satisfaction degree, we will look at four cases:

1. degXCL(I, F) <∞ and degXCL(I, G) <∞. Then

degXCL(I, F
#»

⊕G) =∞

= max(degQCL(I, F ′ #»

×G′),∞)

= max(degQCL(I, F ′ #»

×G′), degQCL(I,¬(F ′ ∧G′)))

= degQCL(I, (F ′ #»

×G′) ∧ ¬(F ′ ∧G′)).

2. degXCL(I, F) <∞ and degXCL(I, G) =∞. Then

degXCL(I, F
#»

⊕G) = degXCL(I, F)

= max(degQCL(I, F ′), 1)

= max(degQCL(I, F ′ #»

×G′), degQCL(I,¬(F ′ ∧G′)))

= degQCL(I, (F ′ #»

×G′) ∧ ¬(F ′ ∧G′)).

3. degXCL(I, F) =∞ and degXCL(I, G) <∞. Then

degXCL(I, F
#»

⊕G) = degXCL(I, G) + optXCL(F)

= max(degQCL(I, G′) + optQCL(F ′), 1)

= max(degQCL(I, F ′ #»

×G′), degQCL(I,¬(F ′ ∧G′)))

= degQCL(I, (F ′ #»

×G′) ∧ ¬(F ′ ∧G′)).

4. degXCL(I, F) =∞ and degXCL(I, G) =∞. Then

degXCL(I, F
#»

⊕G) =∞

= max(∞, degQCL(I,¬(F ′ ∧G′)))

= max(degQCL(I, F ′ #»

×G′), degQCL(I,¬(F ′ ∧G′)))

= degQCL(I, (F ′ #»

×G′) ∧ ¬(F ′ ∧G′)).

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Examples

Simple Conjunctive Choice Logic (SCCL)

Now we will look at a CL based on a very simple choice connective:

Definition 35. SCCL is the choice logic such that CSCCL = {◦},

optSCCL(F ◦G) = optSCCL(F) + 1,

and

degSCCL(I, F ◦G) =

degSCCL(I, F) if degSCCL(I, F) <∞

and degSCCL(I, G) <∞

degSCCL(I, F) + 1 if degSCCL(I, F) <∞

and degSCCL(I, G) =∞

∞ otherwise

The idea behind F ◦G in SCCL is that it is preferable to satisfy both F and G. If this
is not possible, at least F should be satisfied. In this sense, the choice connective of
SCCL fulfills the same purpose as ordered conjunction in CCL. However, SCCL does not
use optionality to penalize less preferable interpretations. Instead, the degree of such
interpretations is simply incremented by 1.

Consider F = (x◦ (y ◦ z)). Then both {x, y} and {x, y, z} ascribe a degree of 1 to F . The
fact that (y ◦ z) is not optimally satisfied by {x, y} is irrelevant, as long as it is satisfied
to some finite satisfaction degree. This is in contrast to CCL, where (x

#»

⊙(y
#»

⊙z)) would
be satisfied to a degree of 2 by {x, y}. Also, ◦ ∈ CSCCL is not associative, since {x, y}
ascribes a degree of 2 to ((x ◦ y) ◦ z).

Lexicographic Choice Logic (LCL)

Next, let us introduce a CL based on a choice connective ◦ that expresses more than two
levels of satisfaction: For F ◦ G, the best option will be the one that satisfies both F
and G. If this is not possible, then at least F should be satisfied. But if this is also not
possible, then it is still acceptable to satisfy only G. Satisfying neither F nor G is not
acceptable.

Definition 36. LCL is the choice logic such that CLCL = {◦},

optLCL(F ◦G) = (optLCL(F) + 1) · (optLCL(G) + 1)− 1,

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

and

degLCL(I, F ◦G) =

(m− 1) · optLCL(G) + n if degLCL(I, F) = m,

degLCL(I, G) = n,

m <∞, and n <∞;

optLCL(F) · optLCL(G) + degLCL(I, F) if degLCL(I, F) <∞,

degLCL(I, G) =∞;

optLCL(F) · optLCL(G) + optLCL(F) + n if degLCL(I, F) =∞,

degLCL(I, G) = n,

and n <∞;

∞ otherwise

If both F and G are satisfied, then the degree of F ◦G is determined in exactly the same
way as for the regular conjunction (∧) of PQCL. This is also why, if G is not satisfied,
we have to add optLCL(F) · optLCL(G) to the degree of F . LCL is based on classical
disjunction, just as QCL is. However, their semantics differ greatly.

Let F = (x ◦ (y ◦ z)). The only interpretation that ascribes a degree of ∞ to F is ∅. The
remaining 7 interpretations applicable to F each result in a different degree, ranging from
1 to 7. For example, {x, y, z} |=LCL

1 F , {x, y} |=LCL
2 F , {x, z} |=LCL

3 F , and {z} |=LCL
7 F .

In fact, LCL enables us to encode a lexicographic ordering over variables. Recall
from Section 2.4.2 that an interpretation I is lexicographically larger than another
interpretation J with respect to an ordering x1 > · · · > xn if there is an index k ∈
{1, . . . , n} such that xi ∈ I ⇐⇒ xi ∈ J for all i < k, and xk ∈ I but xk 6∈ J .

Lemma 13. Let x1 > · · · > xn be an ordering over n propositional variables. Let
Ik ⊆ {x1, . . . , xn} be the lexicographically k-th largest interpretation over this ordering,
and let Fn = (x1 ◦ (x2 ◦ (· · · (xn−1 ◦ xn)))) be an LCL-formula. Then

degLCL(Ik, Fn) =

{

k if k < 2n

∞ if k = 2n

Proof. First, we prove that optLCL(Fn) = 2n − 1 by induction over n:

• Base case: n = 1. Then Fn = x1, and therefore optLCL(Fn) = optLCL(x1) = 1 =
2n − 1.

• Step case: n > 1. Then Fn = (x1 ◦A), where A = (x2 ◦ (· · · (xn−1 ◦ xn))). By our

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Examples

I.H., optLCL(A) = 2n−1 − 1, and thus

optLCL(Fn) = optLCL(x1 ◦A)

= (optLCL(x1) + 1) · (optLCL(A) + 1)− 1

= (1 + 1) · ((2n−1 − 1) + 1)− 1

= (2 · 2n−1)− 1

= 2n − 1.

Now we proceed with the main proof, again by induction over n:

• Base case: n = 1. Then Fn = x1, I1 = {x1}, and I2 = ∅. Clearly, degLCL(I1, Fn) =
1 and degLCL(I2, Fn) =∞, as required.

• Step case: n > 1. Then Fn = (x1 ◦A), where A = (x2 ◦ (· · · (xn−1 ◦ xn))). Let Jk

be the lexicographically k-th largest interpretation over x2 > · · · > xn. By our
I.H., degLCL(Jk, A) = k if k < 2n−1, and degLCL(Jk, A) =∞ if k = 2n−1. We can
obtain the k-th largest interpretation Ik over x1 > · · · > xn in one of two ways:

1. If k ≤ 2n−1, then Ik = Jk ∪{x1}, and therefore degLCL(Ik, x1) = 1. There are
two cases:

a) degLCL(Jk, A) <∞. Then degL(Ik, Fn) = degL(Jk, A) = k.

b) degLCL(Jk, A) =∞. Then k = 2n−1. Thus,
degL(Ik, Fn) = optLCL(A) + 1 = (2n−1 − 1) + 1 = 2n−1 = k.

2. If k > 2n−1, then Ik = J(k−2n−1), and therefore degLCL(Ik, x1) = ∞. There
are two cases:

a) degLCL(Jk, A) <∞. Then degL(Ik, Fn) = optLCL(A)+1+degL(Jk, A) =
(2n−1 − 1) + 1 + (k − 2n−1) = k.

b) degLCL(Jk, A) = ∞. Then k − 2n−1 = 2n−1, and therefore k = 2n.
Furthermore, degL(Ik, Fn) =∞, as required.

The above result will be important when examining the computational complexity of
LCL, as can be seen in Section 6.5.

3.3.3 Combining Choice Logics

So far, we have mostly dealt with CLs that consist of a single choice connective. But the
CL-framework also allows for choice logics with multiple choice connectives. For example,
we can define the choice logic that combines ordered disjunction from QCL and ordered
conjunction from CCL.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Choice Logic Framework

Definition 37. QCCL is the choice logic such that CQCCL = {
#»

×,
#»

⊙},

optQCCL(F
#»

×G) = optQCL(F
#»

×G),

optQCCL(F
#»

⊙G) = optCCL(F
#»

⊙G),

degQCCL(I, F
#»

×G) = degQCL(I, F
#»

×G), and

degQCCL(I, F
#»

⊙G) = degCCL(I, F
#»

⊙G).

In QCCL, different types of preferences can be expressed in the same formula. An
example for a QCCL formula is (x

#»

×(y
#»

⊙z)), which expresses that it is most preferable to
satisfy x, and less preferable, but still acceptable, to satisfy y and z. Satisfying only y is
also acceptable, but it constitutes the least preferred option.

In general, a choice logic L consisting of multiple choice connectives CL can always be
seen as the combination of other CLs, since one could take any choice connective from
CL and built a choice logic solely from this connective. We will now define this notion of
combining choice logics formally.

Definition 38. Let L1 and L2 be choice logics such that CL1
∩ CL2

= ∅. Then the choice
logic L is the combination of L1 and L2 if CL = CL1

∪ CL2
, and for every ◦ ∈ CLi

, where
i ∈ {1, 2}, we have that

optL(F ◦G) = optLi
(F ◦G),

degL(I, F ◦G) = degLi
(I, F ◦G).

Note that we can always assume that CL1
∩ CL2

= ∅, since connectives can be renamed
if there are conflicts. This assumption is necessary, as otherwise, if a choice connective
appears in both L1 and L2, it would be unclear whether we should use the optionality and
degree functions of L1 or L2. We will use the notation L = L1 ∪L2 if L is a combination
of L1 and L2. For example, we have that QCCL = QCL ∪ CCL.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Classes of Choice Logics

Not all choice logics exhibit the same properties. For example, one could consider a CL in
which optionality plays no role, or a CL where the satisfaction degree can never be higher
than some fixed number. Such classes of choice logics will be defined and investigated in
this chapter. We will also examine under which circumstances these classes are closed
under combination.

4.1 Exhaustive Choice Logics

Our framework allows for CLs in which certain optionalities or satisfaction degrees can
be skipped. For example, we can devise a CL in which no formula can have an even
optionality, simply by specifying

optL(F ◦G) = optL(F) + optL(G) + 1

for our only choice connective. Similarly, one can define a CL in which no formula can
be ascribed an even satisfaction degree. It would also be possible to skip only a specific
optionality or degree, e.g. there can be a CL in which no formula has an optionality of
3, while all other optionalities can be attained. As we will see in some of the coming
sections, such behavior can be problematic, especially when we are combining two CLs.
Therefore, we will now look at CLs in which skipping optionalities or satisfaction degrees
is not possible. We will refer to such CLs as exhaustive choice logics.

Definition 39. Let L be a choice logic. Then an L-formula F is called exhaustive if for
every n ∈ {1, . . . , optL(F),∞} there exists an interpretation I such that degL(I, F) = n.

For example, F = (x1
#»

×x2
#»

×x3) is an exhaustive QCL-formula, since {xi} ascribes a
degree of i to F for every i ∈ {1, 2, 3}, and since ∅ ascribes a degree of ∞ to F . On the
other hand, ((x ∧ ¬x)

#»

×y) is not exhaustive, since there is no way of obtaining a degree

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

of 1. By definition, every satisfaction degree in an exhaustive formula can be obtained,
given the right interpretation.

Definition 40. A choice logic L is called exhaustive if for every k ∈ N there is an
exhaustive L-formula F with optL(F) = k.

In an exhaustive CL, for every pair k ∈ N, n ∈ {1, . . . , k,∞}, there exists a formula F
and an interpretation I such that optL(F) = k and degL(I, F) = n. This means that,
in principle, every possible combination of optionality and satisfaction degree can be
obtained in an exhaustive CL.

Proposition 14. QCL, CCL, XCL, and SCCL are exhaustive.

Proof. We proof this by constructing appropriate formulas for each logic:

• QCL: Let Fk = (x1
#»

× · · ·
#»

×xk). It is easy to verify that optQCL(Fk) = k. For any
n ≤ k, we have that degQCL({xn}, Fk) = n. Furthermore, degQCL(∅, Fk) =∞.

• CCL: Let Fk = (x1
#»

⊙ · · ·
#»

⊙xk). Again, optCCL(Fk) = k. For any n ≤ k, we have
that degCCL({x1, . . . , xk−n+1}, Fk) = n. Furthermore, degCCL(∅, Fk) =∞.

• XCL: Let Fk = (x1 ◦ (x2 ◦ · · · (xk−1 ◦ xk))). Then, like in QCL, optXCL(Fk) = k,
degXCL({xn}, Fk) = n for all n ≤ k, and degXCL(∅, Fk) =∞.

• SCCL: Let Fk = (x1 ◦ (x2 ◦ · · · (xk−1 ◦ xk))). Then, like in CCL, optSCCL(Fk) = k,
degSCCL({x1, . . . , xk−n+1}, Fk) = n for all n ≤ k, and degSCCL(∅, Fk) =∞.

Note that neither PL nor LCL are exhaustive, since it is not possible to obtain a formula
with an optionality of 2 in either logic (compare Definition 36 for LCL).

It is easy to show that combining an exhaustive choice logics with any other CL yields
another exhaustive choice logic.

Lemma 15. Let L be an exhaustive choice logic, and let L′ be any choice logic. Then
L ∪ L′ is an exhaustive choice logic.

Proof. Because L is exhaustive, there is an exhaustive L-formula F with optL(F) = k
for every k ∈ N. Since every L-formula is also a (L ∪ L′)-formula, we know that there
is an exhaustive (L ∪ L′)-formula F with optL∪L′(F) = k for every k ∈ N, i.e. L ∪ L′ is
exhaustive.

From Proposition 14 and Lemma 15 it directly follows that QCCL is exhaustive. In
exhaustive CLs, it is also possible to take any interpretation, and find a formula that has
a desired optionality and is satisfied by this interpretation to a desired degree.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Exhaustive Choice Logics

Lemma 16. Let L be an exhaustive choice logic. Let k ∈ N and n ∈ {1, . . . , k,∞}.
Then there is an L-formula F such that optL(F) = k and degL(I, F) = n for all
interpretations I.

Proof. Let L be an exhaustive choice logic, and let I be an interpretation. Let k ∈ N and
n ∈ {1, . . . , k,∞}. Since L is exhaustive, there is a formula G such that optL(G) = k,
and degL(J , G) = n for some interpretation J . Let A and B be subformulas of G, and
x be a propositional variable occuring in G. We obtain F = T (G) by transforming G as
follows:

1. T (x) =

{

(x ∨ ¬x) if x ∈ J

(x ∧ ¬x) otherwise

2. T (¬A) = ¬T (A)

3. T (A ◦B) = T (A) ◦ T (B), where ◦ ∈ {∧,∨} ∪ CL.

The above transformation takes G, and replaces every x that is contained in J by (x∨¬x).
If x is not contained in J , then it will be replaced by (x ∧ ¬x). We can show that
optL(F) = optL(G) and degL(I, F) = degL(J , G) by structural induction. Note that this
means that optL(F) = k and degL(I, F) = n, as we intend to show.

• Base case: Let x be a propositional variable. Then either T (x) = (x ∨ ¬x) or
T (x) = (x ∧ ¬x). In both cases we have optL(T (x)) = 1 = optL(x). Furthermore,

degL(I, T (x)) =

{

degL(I, x ∨ ¬x) if x ∈ J

degL(I, x ∧ ¬x) otherwise
=

{

1 if x ∈ J

∞ otherwise
= degL(J , x).

• Step case: As our I.H., assume that optL(T (A)) = optL(A), degL(I, T (A)) =
degL(J , A), optL(T (B)) = optL(B), and degL(I, T (B)) = degL(J , B). Since the
optionality and satisfaction degree of ¬A is given by a function over the optionality
and degree of A, we can conclude that

optL(T (¬A)) = optL(¬T (A)) = optL(¬A), and

degL(I, T (¬A)) = degL(I,¬T (A)) = degL(J ,¬A).

The cases for the other connectives are analogous, since their optionalities and
degrees are also given by functions over the optionalities and degrees of their
operands.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

With the above lemma, we can tackle the issue of synthesis in choice logics. In classical
logic, synthesis describes the process of constructing a formula over a given set of variables
such that this formula is satisfied by a certain set of interpretations. In choice logics, we
will construct a formula over a set of variables such that this formula is satisfied to a
given degree by certain interpretations.

Proposition 17. Let L be an exhaustive choice logic. Let V be a finite set of propositional
variables, and let s be a function s : 2V → (N ∪∞). Then there is an L-formula F such
that for every I ⊆ V we have that degL(I, F) = s(I) .

Proof. Let V be a finite set of propositional variables. Because of Lemma 7, we can
assume that every interpretation we are dealing with is a subset of V . Let GJ be a
classical formula that characterizes an interpretation J , i.e.

GJ =
(

∧

x∈J

x
)

∧
(

∧

x∈(V \J)

¬x
)

.

Observe that J |= GJ , but J ′ 6|= GJ for all J ′ 6= J . Since L is exhaustive, and
from Lemma 16, we know that for every J , there is an L-formula SJ such that
degL(J , SJ) = s(J). Furthermore, let

F =
∨

J ⊆V

(GJ ∧ SJ).

Let I be an arbitrary interpretation, and let C be an arbitrary clause in F , i.e.
C = (GJ ∧ SJ) for some J . We distinguish two cases:

1. I = J . Then degL(I, GJ) = 1 and degL(I, SJ) = s(I), which implies that
degL(I, C) = s(I).

2. I 6= J . Then degL(I, GJ) =∞ and therefore degL(I, C) =∞.

By construction, there is exactly one clause in F such that I = J . Since this clause is
satisfied with degree s(I) by I, and all other clauses are ascribed a degree of ∞ by I, we
have that degL(I, F) = s(I).

4.2 Basic Exhaustive Choice Logics

Recall the definition of basic choice formulas (Definition 27). As we know from [BBB04],
any QCL-formula F can be transformed into a basic QCL-formula F ′ such that F ≡QCL

f F ′.
This transformation is realized with a normal form function. Such a function is also
described in [BB16] for the original CCL. We will now examine under which circumstances
a transformation to basic formulas is possible in general. For this, we need a variant of
exhaustive choice logics.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Basic Exhaustive Choice Logics

Definition 41. A choice logic L is called basic-exhaustive if for every k ∈ N there is a
basic, exhaustive L-formula F with optL(F) = k.

Of course, every basic-exhaustive choice logic is also exhaustive. As can be deduced
from the proof of Proposition 14, QCL, CCL, XCL, and SCCL are basic-exhaustive.
PL and LCL on the other hand are not, since they are not exhaustive. Combining a
basic-exhaustive CL with another choice logic yields a basic-exhaustive CL. The proof is
analogous to the proof of Lemma 15.

Proposition 18. Let L be a basic-exhaustive choice logic. Then for every L-formula
there exists a basic L-formula F ′ such that F ≡L

f F ′.

Proof. Let F be an L-formula. Let Mk = {I | I |=L
k F}. Without loss of generality, we

can assume that Mk is a finite set, and that every interpretation we are dealing with
is finite (see Lemma 7). Let Gk be the formula that characterizes the interpretations
ascribing a degree of k to F , i.e.

Gk =
∨

I∈Mk

(

(

∧

x∈I

x
)

∧
(

∧

x∈var(F)\I

¬x
)

)

.

We are assuming L to be basic-exhaustive, and therefore there is a basic, exhaustive
L-formula F ∗ such that optL(F ∗) = optL(F). Let A1, . . . , Ar be those classical formulas
in F ∗ to which the choice connectives are applied, e.g. F ∗ = A1 ◦ · · · ◦Ar if F ∗ is built
with an associative choice connective. Of course, F ∗ could have any other structure,
e.g. F ∗ = ((A1 ◦A2) ◦ (A3 ◦A4)). To satisfy F ∗ with a degree of k, a certain subset of
{A1, . . . , Ar} needs to be satisfied. This information will be contained in a set of indices,
named Sk: For every k ∈ {1, . . . , optL(F),∞}, we pick exactly one interpretation Jk

such that Jk |=L
k F ∗. This is possible, since F ∗ is exhaustive. Let Sk = {i | Jk |= Ai}.

Observe that Sk ⊆ {1, . . . , r} and Sk 6= Sl if k 6= l. Let Ti = {k | i ∈ Sk} for 1 ≤ i ≤ r,
and consider

Ci =
∨

k∈Ti

Gk.

We now construct F ′ by replacing Ai in F ∗ by Ci for every 1 ≤ i ≤ r. Because A1, . . . Ar

and C1, . . . Cr are classical formulas, we have that optL(F) = optL(F ∗) = optL(F ′). It
remains to show that F ≡L

d F ′:

• Assume I |=L
k F . Then I ∈Mk, which entails that I |= Gk and I 6|= Gl for k 6= l.

Thus, by construction, we have that I |= Ci iff k ∈ Ti iff i ∈ Sk. Also observe that
the basic structure of F ∗ is still intact in F ′, i.e. the choice connectives are still
arranged in the same way as before, except that every Ai has been replaced with
Ci. Therefore, if an interpretation satisfies exactly those Ci such that i ∈ Sk, then
this interpretation satisfies F ′ with a degree of k. Thus, I |=L

k F ′.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

• Assume I |=L
k F ′. Towards a contradiction, assume that I |=L

s F with s 6= k. By
the same argument as above, we have that I |=L

s F ′. But this is impossible, since
degL is defined by a function, and therefore it cannot be that I |=L

k F ′ and I |=L
s F ′

hold simultaneously. Contradiction.

As a small example for the above construction, we will transform the QCL-formula

F = (x
#»

×y) ∧ z.

into a fully equivalent basic formula, using the above semantic transformation. Observe
that optQCL(F) = 2, as well as M1 = {{x, z}, {x, y, z}}, M2 = {{y, z}}, and M∞ =
{∅, {x}, {y}, {z}, {x, y}}. We now construct Gk for every k ∈ {1, 2,∞}, i.e.

G1 = (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z),

G2 = (¬x ∧ y ∧ z), and

G3 = (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z).

For our basic, exhaustive QCL-formula, we pick F ∗ = a1
#»

×a2. Then we pick one
interpretation Jk for every k ∈ {1, 2,∞} such that Jk |= F ∗: J1 = {a1, a2}, J2 = {a2},
J∞ = ∅. Note that we could have also picked {a1} as our interpretation satisfying F ∗

with a degree of 1. However, it is necessary to pick exactly one interpretation for every
satisfaction degree. Next, we have S1 = {1, 2}, S2 = {2}, and S∞ = ∅. Finally, T1 = {1},
since 1 ∈ S1, and T2 = {1, 2}, since 2 ∈ S1 and 2 ∈ S2. This gives us C1 = G1 and
C2 = G1 ∨G2, i.e.

F ′ = G1
#»

×(G1 ∨G2).

We can verify that optQCL(F) = optQCL(F ′) and I |=QCL
k F ′ for every I ∈ Mk, which

means that F ≡QCL
f F ′.

As another example, consider the CCL-formula

F = (x1
#»

⊙x2) ∧ (y1
#»

⊙y2
#»

⊙y3).

Then optCCL(F) = 3. The construction of Gk for every k ∈ {1, 2, 3,∞} is analogous to
the QCL example above. We then pick F ∗ = (a1

#»

⊙a2
#»

⊙a3). We choose S1 = {1, 2, 3},
since all of a1, a2, and a3 would need to be satisfied in order for F ∗ to be ascribed a
degree of 1. Likewise, we choose S2 = {1, 2}, S3 = {1}, and S∞ = ∅. Observe that, for
example, we could have also picked S3 = {1, 3} or S∞ = {2, 3}. We can now construct

F ′ = C1
#»

⊙C2
#»

⊙C3

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Optionality Ignoring Choice Logics

with the help of our index sets, i.e.

C1 = G1 ∨G2 ∨G3,

C2 = G1 ∨G2,

C3 = G1.

Now, if all of C1, C2, and C3 are satisfied, this must be because G1 is satisfied. Then
one of the interpretations ascribing a degree of 1 to F must be satisfied, i.e. both F and
F ′ are ascribed a degree of 1. Similarly, if only C1 and C2 are satisfied, then G2 must be
satisfied, and therefore both F and F ′ are ascribed a degree of 2.

The transformation to basic choice formulas provided in Proposition 18 is semantic in
nature. However, the transformations described in [BBB04] and [BB16] are syntactic in
nature, i.e. the formulas are transformed purely on the basis of their structure. In both
cases, a function N is given that transforms non-basic formulas into basic formulas as
follows:

1. N(¬(A1 ◦ · · · ◦Am)) = C

2. N((A1 ◦ · · · ◦Am) ∧ (B1 ◦ · · · ◦Bn)) = C1 ◦ · · · ◦ Ck

3. N((A1 ◦ · · · ◦Am) ∨ (B1 ◦ · · · ◦Bn)) = C ′
1 ◦ · · · ◦ C ′

k

In the above, ◦ is a choice connective, Ai, Bi, C, Ci, and C ′
i are classical formulas, and

k = max(m, n). If N is defined in a way such that F ≡L
f N(F), then N can be applied

repeatedly to any formula until a fully equivalent basic formula is obtained. We will
not give all transformations for QCL or CCL here, but as an example, we provide the
transformation for disjunction in QCL:

N((A1
#»

× · · ·
#»

×Am) ∨ (B1
#»

× · · ·
#»

×Bn)) = C1 ◦ · · · ◦ Ck, where k = max(m, n) and

Ci =

(Ai ∨Bi) if i ≤ min(m, n)

Ai if m < i ≤ n

Bi if n < i ≤ m

Such a syntactic transformation depends highly on the semantics of the given choice
connective. We will therefore not attempt to generalize this result to other choice logics
at this point.

4.3 Optionality Ignoring Choice Logics

For any choice connective ◦, the satisfaction degree of F ◦G can depend on the optionalities
and satisfaction degrees of F and G. Of course, it does not have to depend on all of
these. It could, for example, depend only on the degrees of F and G, but not on their
optionalities. In such a CL, formulas with differing optionalities might exist, but this
never has any effect on satisfaction degree.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

Definition 42. A choice logic L is called optionality-ignoring if for all ◦ ∈ CL it holds
that if degL(I, F) = degL(I, F ′) and degL(I, G) = degL(I, G′), then degL(I, F ◦ G) =
degL(I, F ′ ◦G′).

An example for an optionality-ignoring CL is SCCL (Definition 35). It is clear that the
satisfaction degree of any formula in SCCL never depends on optionality in any way, and
that therefore SCCL is optionality-ignoring. PL is optionality-ignoring as well. QCL,
CCL, XCL, and LCL on the other hand are not. For example, in QCL, x and (x

#»

×x) are
degree-equivalent. However, we have {y} |=QCL

2 (x
#»

×y) but also {y} |=QCL
3 ((x

#»

×x)
#»

×y).
The constructions for CCL and LCL are analogous. In XCL, (x ∧ ¬x) and (x

#»

⊕x) are
degree-equivalent, but ((x ∧ ¬x)

#»

⊕y) and ((x
#»

⊕x)
#»

⊕y) are not.

Combining two optionality-ignoring choice logics L and L′ does not necessarily yield
another optionality-ignoring choice logic. Consider the following:

Definition 43. L1 is the choice logic such that CL1
= {•},

optL1
(F •G) = max(optL1

(F), optL1
(G)), and

degL1
(I, F •G) = max(optL1

(F), optL1
(G)).

Observe that every formula in L1 has an optionality of 1, and thus, degL1
(I, F •G) = 1

for any I, F , and G. This means that L1 is optionality-ignoring. If we now combine
SCCL and L1, we have deg(SCCL∪L1)(∅, x) = ∞ and deg(SCCL∪L1)(∅, x ◦ x) = ∞, but
deg(SCCL∪L1)(∅, x • y) = 1 and deg(SCCL∪L1)(∅, (x ◦ x) • y)) = 2. Therefore, (SCCL ∪ L1)
is not optionality-ignoring. The underlying reason for this is that optionality does play a
role in L1, but only if there exist formulas with optionalities other than 1. As it turns out,
optionality-ignoring choice logics can be combined and still remain optionality-ignoring,
as long as they are also exhaustive. Note that L1 is not exhaustive, since it is not possible
to obtain a degree of ∞ for F •G.

Lemma 19. Let L and L′ be exhaustive, optionality-ignoring choice logics. Then L ∪ L′

is optionality-ignoring.

Proof. Let I be an interpretation. Let F , F ′, G, and G′ be (L ∪ L′)-formulas such
that deg(L∪L′)(I, F) = deg(L∪L′)(I, F ′) and deg(L∪L′)(I, G) = deg(L∪L′)(I, G′). Let ◦
be any choice connective of L ∪ L′. There are two possibilities: Either ◦ ∈ CL, or
◦ ∈ CL′ . Because of symmetry, we only need to consider the case that ◦ ∈ CL. Since
L is exhaustive, and by Lemma 16, we know that there is an L-formula A such that
optL(A) = opt(L∪L′)(F) and degL(I, A) = deg(L∪L′)(I, F). Analogously, there are L-
formulas A′, B and B′ that are equivalent in the same way to F ′, G, and G′ respectively.
Therefore, because the semantics of ◦ in (L ∪ L′) is given by the same function as in L,
we have deg(L∪L′)(I, F ◦G) = degL(I, A◦B) and deg(L∪L′)(I, F ′ ◦G′) = degL(I, A′ ◦B′).
Since L is optionality-ignoring, we also have degL(I, A ◦B) = degL(I, A′ ◦B′), i.e.

deg(L∪L′)(I, F ◦G) = degL(I, A ◦B) = degL(I, A′ ◦B′) = deg(L∪L′)(I, F ′ ◦G′).

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Optionality Differentiating Choice Logics

4.4 Optionality Differentiating Choice Logics

If a choice logic is not optionality-ignoring, then the satisfaction degree of F ◦G may
depend on the optionality of F or G. Even if it does, it might depend on the optionality of
only some F ,G. For example, a CL could be defined in a way such that the optionality of
G only plays a role if it is equal to some constant number, e.g. if optL(G) = 3. Therefore,
one could define a more restrictive family of CLs, in which as soon as F and G have
different optionalities, this can have an impact on satisfaction degree.

Definition 44. A choice logic L is called optionality-differentiating if for all L-formulas
A and B with optL(A) 6= optL(B), there is an L-formula F such that F 6≡L

d F [A/B].

Observe that QCL and CCL are optionality-differentiating choice logics. Let A and B be
QCL (or CCL) formulas such that optL(A) 6= optL(B). For QCL, choose F = ((A ∧ x ∧
¬x)

#»

×y). Since (A∧x∧¬x) can never be satisfied, and optQCL(A∧x∧¬x) = optQCL(A),
we have that F is satisfied by {y} with a degree of optQCL(A) + 1. On the other hand,
F [A/B] is satisfied by {y} with a degree of optQCL(B) + 1. Similarly, for CCL we can
choose F = (y

#»

⊙(A ∧ x ∧ ¬x)). Interestingly, classical propositional logic is optionality-
differentiating as well. Since there are no formulas A and B such that optL(A) 6= optL(B),
the statement in Definition 44 is vacuously true. Consequently, PL is both optionality-
ignoring and optionality-differentiating.

SCCL is, however, not optionality-differentiating: While optSCCL(x) 6= optSCCL(x ◦ x)
holds, it is also true that x ≡SCCL

d (x ◦ x). More generally, since the degree of F ◦ G
depends only on the satisfaction degrees of F and G, and not on their optionalities, we
have that F ≡SCCL

d F [x/(x ◦ x)] for all F ∈ FSCCL.

There also exist choice logics that are neither optionality-ignoring, nor optionality-
differentiating. Consider the following:

Definition 45. L2 is the choice logic such that CL2
= {◦},

optL2
(F ◦G) = optL2

(F) + optL2
(G),

and

degL2
(I, F ◦G) =

degL2
(I, F) if degL2

(I, F) <∞ and optL2
(G) 6= 3

degL2
(I, F) + optL2

(I, G) if degL2
(I, F) <∞ and optL2

(G) = 3

∞ otherwise

In L2, when the optionality of G is equal to 3, the satisfaction degree of F ◦G depends on
the optionality of G. Otherwise, the degree of F ◦G does not depend on optionality in any
way. To concretely show that L2 is not optionality-ignoring, we will look at the formulas
x and (x ◦ (x ◦ x)). Both are satisfied to a degree of 1 under the interpretation {x, y}.
However, {x, y} ascribes a degree of 1 to (y ◦ x) and, because of optionality, a degree of

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

4 to (y ◦ (x ◦ (x ◦ x))). To show that L2 is not optionality-differentiating, consider the
formulas A = (x◦ (x◦ (x◦x))) and B = (x◦ (x◦ (x◦ (x◦x)))). Observe that optL2

(A) = 4
and optL2

(B) = 5. This means that a formula G has an optionality of 3 if and only if
G[A/B] has an optionality of 3 as well. Also observe that A ≡L2

d B. From these two
facts, we can infer that for any formula F , it holds that F ≡L2

d F [A/B]. Therefore, since
also optL2

(A) 6= optL2
(B), we know that L2 is not optionality-differentiating. One could

prove this more formally by structural induction.

As for combining optionality-differentiating choice logics, we have essentially the same
problem as the one we encountered for optionality-ignoring CLs: A choice logic may be
optionality-differentiating, but when combined with another choice logic, new formulas
with new optionality values could be created, and the combined choice logic may no
longer be optionality-differentiating. We therefore introduce the following:

Definition 46. Let L be a choice logic, and let ◦ ∈ CL. Let g be the function over which
the satisfaction degree of ◦ is defined, i.e.

degL(I, F ◦G) = g(optL(F), optL(G), degL(I, F), degL(I, G))

for all L-formulas F and G. Then ◦ is called naturally optionality-differentiating if either
g(k, 1,∞, 1) 6= g(k′, 1,∞, 1) or g(1, k, 1,∞) 6= g(1, k′, 1,∞) holds for all k, k′ ∈ N such
that k 6= k′.

Choice logics that have a naturally optionality-differentiating choice connective will
themselves be called naturally optionality-differentiating. By their semantics, QCL, CCL,
XCL, and LCL are naturally optionality-differentiating.

Lemma 20. If a choice logic is naturally optionality-differentiating, then it is also
optionality-differentiating.

Proof. Let L be a naturally optionality-differentiating choice logic. Let A and B be
L-formulas such that optL(A) 6= optL(B). Then, since L is naturally optionality-
differentiating, there are two cases:

1. g(optL(A), 1,∞, 1) 6= g(optL(B), 1,∞, 1). Then choose F = ((A ∧ x ∧ ¬x)
#»

×y).
Since (A ∧ x ∧ ¬x) can never be satisfied, and optQCL(A ∧ x ∧ ¬x) = optQCL(A),
we have that F is satisfied by {y} with a degree of g(optL(A), 1,∞, 1). On the
other hand, F [A/B] is satisfied by {y} with a degree of g(optL(B), 1,∞, 1). Thus,
degL({y}, F) 6= degL({y}, F [A/B]), i.e. F 6≡L

d F [A/B].

2. g(1, optL(A), 1,∞) 6= g(1, optL(B), 1,∞). Analogous to the first case, except that
we choose F = (y

#»

×(A ∧ x ∧ ¬x)).

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Reasonable Choice Logics

By definition, combining a naturally optionality-differentiating CL with any other CL
yields a naturally optionality-differentiating CL.

Lemma 21. Let L be a naturally optionality-differentiating choice logic, and let L′ be
any choice logic. Then L ∪ L′ is a naturally optionality-differentiating choice logic.

Proof. This follows directly from the fact that if ◦ ∈ CL, then ◦ ∈ C(L∪L′), and from
Definition 46.

From Lemma 21, and from the fact that QCL is naturally optionality-differentiating, we
can infer that QCCL is naturally optionality-differentiating as well.

4.5 Reasonable Choice Logics

If a formula has a finite satisfaction degree under some interpretation, we say that it
is satisfied to this degree. If it has a satisfaction degree of ∞ however, we say that the
formula is not satisfied to any (finite) degree. We will now examine how this concept of
satisfaction with respect to degrees relates to the notion of satisfaction in PL. Choice
logics in which the two concepts are related in a natural way will be called reasonable.
We will first attempt the following:

Definition 47. A choice logic L is called seemingly reasonable if for every L-formula F
there exists a PL-formula F ′ such that for all interpretations I it holds that degL(I, F) <
∞ iff I |= F ′.

This is actually the case for all choice logics. Because of Lemma 7, we only need to consider
interpretations such that I ⊆ var(F), i.e. we only need to consider a finite number of
interpretations. For any formula F , there is a finite set S of these interpretations such
that degL(I, F) <∞. If S = ∅, then construct F ′ = (x ∧ ¬x). Otherwise, construct

F ′ =
∨

I∈S

((

∧

x∈I

x
)

∧
(

∧

x∈var(F)\I

¬x
))

.

Then for all I it holds that degL(I, F) <∞ iff I |= F ′. However, this is hardly satisfying.
The above transformation from F into F ′ is not natural in the sense that the structure
of F is not preserved in F ′ in any shape or form.

A possible remedy is to require that every choice connective of a CL has a designated
classical binary connective as a counterpart, as is the case for QCL and CCL. The
choice connective in QCL is called ordered disjunction, and can indeed be (partly)
characterized by classical disjunction: For any interpretation I, it holds that x

#»

×y has a
finite satisfaction degree under some interpretation I exactly when x ∨ y is classically
satisfied by I. The ordered conjunction in CCL can not be characterized by classical
conjunction in quite the same way. It can, however, be characterized by another classical

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

binary connective, namely by the first projection: x
#»

⊙y has a finite satisfaction degree
under some interpretation I exactly when x is classically satisfied by I. For now, we will
only consider connectives applied to atoms:

Definition 48. Let L be a choice logic, let ◦ ∈ CL, and let ⊛ be one of the 16 classical
binary connectives. Then ⊛ is a classical counterpart for ◦ if

degL(I, x ◦ y) <∞ iff I |= (x ⊛ y).

holds for all interpretations I and all propositional variables x and y.

Looking, for example, at XCL, one can easily see that exclusive disjunction is a classical
counterpart for ordered exclusive disjunction. Should we therefore call those choice logics
reasonable for which every choice connective possesses a classical counterpart? No, since
again, this is the case for every CL.

Proposition 22. Let L be a choice logic and let ◦ ∈ CL. Then ◦ has exactly one classical
counterpart.

Proof. There are four interpretations relevant to (x ◦ y), namely ∅, {x}, {y}, and {x, y}.
For any of them, we will either have degL(I, x ◦ y) <∞ or degL(I, x ◦ y) =∞. We can
simply pick the classical binary connective that is true under I when degL(I, x ◦ y) <∞
and false under I when degL(I, x ◦ y) =∞. There is exactly one such classical binary
connective.

The point is not that
#»

× has a classical counterpart, but that one can take any formula F
of QCL, replace

#»

× by its counterpart, and obtain a formula F ′ of PL such that F has a
finite degree under I if and only if F ′ is classically satisfied by I. This fact is contained
as Proposition 1 in [BBB04]. We therefore define the following:

Definition 49. Let L be a choice logic. Let x be a propositional variable, and let F and
G be L-formulas. Then the classical counterpart of an L-formula is given by the function
cpL : FL → FPL such that

1. cpL(x) = x;

2. cpL(¬F) = ¬(cpL(F));

3. cpL(F ∧G) = (cpL(F) ∧ cpL(G));

4. cpL(F ∨G) = (cpL(F) ∨ cpL(G));

5. cpL(F ◦ G) = (cpL(F) ⊛ cpL(G)) for every ◦ ∈ CL, where ⊛ is the classical
counterpart of ◦.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Reasonable Choice Logics

The above transformation from L-formula to PL-formula simply replaces every choice
connective by its classical counterpart. Note that we distinguish between the classical
counterpart of a choice connective (e.g. ∨ for

#»

×) and the classical counterpart of a formula
(e.g. (x ∨ (y ∧ z)) for (x

#»

×(y ∧ z))).

Definition 50. A choice logic L is called reasonable if

degL(I, F) <∞ iff I |= cpL(F).

holds for all interpretations I and all L-formulas F .

PL is trivially reasonable in this sense. We will now show that some of the other choice
logics we have encountered so far are reasonable as well.

Proposition 23. QCL, CCL, XCL, SCCL, LCL, and L2 are reasonable choice logics.

Proof. We will prove that XCL is reasonable by structural induction. The proofs for the
remaining choice logics are analogous.

• Base case: F = x. Then cpXCL(x) = x. For any interpretation I we have that
degXCL(I, x) = 1 if x ∈ I, and degXCL(I, x) =∞ if x 6∈ I. Thus, degXCL(I, x) <∞
iff I |= cpL(F).

• Step case: Assume that degL(I, G) < ∞ iff I |= cpL(G) and degL(I, H) < ∞ iff
I |= cpL(H) holds for all interpretations I.

1. F = ¬G. Then

degXCL(I, F) <∞ ⇐⇒ degXCL(I, G) =∞

⇐⇒ I 6|= cpXCL(G)

⇐⇒ I |= ¬(cpXCL(G))

⇐⇒ I |= cpXCL(F).

2. F = G ∧H. Then

degXCL(I, F) <∞ ⇐⇒ max(degXCL(I, G), degXCL(I, H)) <∞

⇐⇒ degXCL(I, G) <∞ and degXCL(I, H) <∞

⇐⇒ I |= cpXCL(G) and I |= cpXCL(H)

⇐⇒ I |= (cpXCL(G) ∧ cpXCL(H))

⇐⇒ I |= cpXCL(F).

3. F = G ∨H. Analogous to the case that F = G ∧H.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Classes of Choice Logics

4. F = G
#»

⊕H. Then

degXCL(I, F) <∞ ⇐⇒ (degXCL(I, G) <∞ and degXCL(I, H) =∞) or

(degXCL(I, G) =∞ and degXCL(I, H) <∞)

⇐⇒ (I |= cpXCL(G) and I 6|= cpXCL(H)) or

(I 6|= cpXCL(G) and I |= cpXCL(H))

⇐⇒ I |= (cpXCL(G)⊕ cpXCL(H))

⇐⇒ I |= cpXCL(F).

We still need to ensure that we have not again accidentally captured every choice logic
with our definition of reasonable. We therefore introduce the following CL, which is
based on SCCL.

Definition 51. L3 is the choice logic such that CL3
= {◦},

optL3
(F ◦G) = optL3

(F) + 1,

and

degL3
(I, F ◦G) =

degL3
(I, F) if degL3

(I, F) < 3 and degL3
(I, G) < 3

degL3
(I, F) + 1 if degL3

(I, F) < 3 and degL3
(I, G) ≥ 3

∞ otherwise

The classical counterpart for the choice connective of L3 is the first projection, just as in
SCCL. This means that cpL3

(x ◦ y) = x. Consider the L3-formula F = (((x ◦ y) ◦ y) ◦ y).
Since {x} |=L3

∞ y, we have that{x} |=L3

2 (x ◦ y). Consequently, {x} |=L3

3 ((x ◦ y) ◦ y).
It follows that {x} |=L3

∞ F . But cpL3
(F) = x, and therefore {x} |= cpL3

(F). We can
conclude that L3 is not a reasonable CL.

Reasonable choice logics can be combined and will remain reasonable, provided they are
exhaustive.

Lemma 24. Let L and L′ be exhaustive, reasonable choice logics. Then L ∪ L′ is
reasonable.

Proof. We will show this by structural induction. The base case and the case for the
classical connectives are already contained in the proof of Proposition 23. Therefore, we
only need to consider the case that F = G ◦H, where ◦ ∈ L. Because of symmetry, the
case that ◦ ∈ L′ is analogous. Let I be any interpretation. As our I.H., assume that
deg(L∪L′)(I, G) <∞ iff I |= cp(L∪L′)(G) and deg(L∪L′)(I, H) <∞ iff I |= cp(L∪L′)(H).

Because L is exhaustive, and by Lemma 16, there are L-formulas G′ and H ′ such
that optL(G′) = opt(L∪L′)(G), degL(I, G′) = deg(L∪L′)(I, G), optL(H ′) = opt(L∪L′)(H),

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Reasonable Choice Logics

and degL(I, H ′) = deg(L∪L′)(I, H). Since the semantics of ◦ depends only on the
optionalities and satisfaction degrees of its operands, we also have that degL(I, G′ ◦H ′) =
deg(L∪L′)(I, G ◦H). By the I.H. and the fact that L is reasonable we have that

I |= cp(L∪L′)(G) ⇐⇒ deg(L∪L′)(I, G) <∞ ⇐⇒ degL(I, G′) <∞ ⇐⇒ I |= cpL(G′).

Analogously, I |= cp(L∪L′)(H) iff I |= cpL(H ′). Let ⊛ be the classical counterpart of ◦.
Then, since L is reasonable,

deg(L∪L′)(I, G ◦H) <∞ ⇐⇒ degL(I, G′ ◦H ′) <∞

⇐⇒ I |= cpL(G′ ◦H ′)

⇐⇒ I |= cpL(G′) ⊛ cpL(H ′)

⇐⇒ I |= cp(L∪L′)(G) ⊛ cp(L∪L′)(H)

⇐⇒ I |= cp(L∪L′)(G ◦H).

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Strong Equivalence

We have already introduced the notions of degree-equivalence and full equivalence in
Definitions 31 and 32. This section aims to investigate what we will call strong equivalence.

Definition 52. Let A and B be formulas of some choice logic L. A and B are strongly
equivalent, written as A ≡L

s B, if ModL(F) = ModL(F [A/B]) for all L-formulas F .

This definition is based on the concept of strong equivalence described by Faber et al.
in [FTW13a]. In Sections 5.1 and 5.2 we will show that strong equivalence is the same as
full equivalence in QCL and CCL. Section 5.3 will relate strong equivalence to degree- and
full equivalence for choice logics in general, as well as specifically for optionality-ignoring
and optionality-differentiating choice logics.

5.1 Qualitative Choice Logic

Before examining strong equivalence for arbitrary choice logics, we will investigate it in
the context of QCL. The following lemma is analogous to Lemma 2, which is concerned
with propositional logic.

Lemma 25. A ≡QCL
f B if and only if F ≡QCL

f F [A/B] for all QCL-formulas F .

Proof. The only-if-direction is already contained as a lemma in [BBB04]. The proof is
not given explicitly there, but it is stated that it can be done by structural induction.
The validity of the if-direction is not mentioned in [BBB04], but can be easily shown
by contrapositive: Assume that A 6≡QCL

f B. Choose F = A. Then F [A/B] = B, and

therefore F 6≡QCL
f F [A/B].

For the sake of completeness, we will now explicitly prove the only-if-direction by
structural induction. Assume A ≡QCL

f B. Note that if A is not contained in F , then

trivially F [A/B] = F , and therefore F ≡QCL
f F [A/B].

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Strong Equivalence

• Base case: If F = x, where x is a propositional variable, and if A is contained in
F , then A = x. Thus, F = A and F [A/B] = B. Since A ≡QCL

f B, we have that

F ≡QCL
f F [A/B].

• Induction step: As the I.H., assume that G ≡QCL
f G[A/B] and H ≡QCL

f H[A/B]
for QCL-formulas G and H.

1. F = ¬G. Then

optQCL(¬G) = 1 = optQCL(¬G[A/B])

and

degQCL(I,¬G) =

{

1 if I |=QCL
∞ G

∞ otherwise

=

{

1 if I |=QCL
∞ G[A/B]

∞ otherwise

= degQCL(I,¬G[A/B])

for any interpretation I. Thus, ¬G ≡QCL
f ¬G[A/B], i.e. F ≡QCL

f F [A/B].

2. F = G ∧H. Then the replacement of A by B in F could occur in either G
or H, i.e. F [A/B] = (G[A/B] ∧H) or F [A/B] = (G ∧H[A/B]). Because of
symmetry, we only need to consider the case that F [A/B] = (G[A/B] ∧H):

optQCL(G ∧H) = max(optQCL(G), optQCL(H))

= max(optQCL(G[A/B]), optQCL(H))

= optQCL(G[A/B] ∧H)

and

degQCL(I, G ∧H) = max(degQCL(I, G), degQCL(I, H))

= max(degQCL(I, G[A/B]), degQCL(I, H))

= degQCL(I, G[A/B] ∧H)

for any interpretation I. Thus, (G ∧H) ≡QCL
f (G[A/B] ∧H), i.e. F ≡QCL

f

F [A/B].

3. F = G ∨H. Identical to F = G ∧H, except for using min instead of max for
degQCL(I, G ∨H).

4. F = G
#»

×H. Consider the case that F [A/B] = (G[A/B]
#»

×H). Then

optQCL(G
#»

×H) = optQCL(G) + optQCL(H)

= optQCL(G[A/B]) + optQCL(H)

= optQCL(G[A/B]
#»

×H)

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Qualitative Choice Logic

and

degQCL(I, G
#»

×H) =

m if I |=QCL
m G and m 6=∞

n + optQCL(G) if I |=QCL
∞ G, I |=QCL

n H, and n 6=∞

∞ otherwise

=

m if I |=QCL
m G[A/B] and m 6=∞

n + optQCL(G[A/B]) if I |=QCL
∞ G[A/B], I |=QCL

n H,

and n 6=∞

∞ otherwise

for any interpretation I. Thus, (G
#»

×H) ≡QCL
f (G[A/B]

#»

×H), i.e. F ≡QCL
f

F [A/B]. The case that F [A/B] = (G
#»

×H[A/B]) is analogous.

With the help of Lemma 25, we can show that strong equivalence can be characterized
by full equivalence in QCL.

Proposition 26. A ≡QCL
s B if and only if A ≡QCL

f B.

Proof. The if-direction of Proposition 26 is quite straight forward: If A ≡QCL
f B, then, by

Lemma 25, F ≡QCL
f F [A/B] holds for all QCL-formulas F . Consequently, by Lemma 6,

ModQCL(F) = ModQCL(F [A/B]) holds for all QCL-formulas F , i.e. A ≡QCL
s B.

As for the only-if-direction, we proceed by contrapositive: Assume A 6≡QCL
f B. It

remains to show that A 6≡QCL
s B, i.e. that there is a formula F such that ModQCL(F) 6=

ModQCL(F [A/B]). If A 6≡QCL
f B, there are two cases:

1. A 6≡QCL
d B. Then there exists an interpretation I such that I |=QCL

m A and
I |=QCL

n B with m 6= n. Let k = min(m, n), and let xi and yi with 1 ≤ i ≤ k be fresh
variables that do not appear in I, A, or B. We then construct F = ((A ∧ x1) ∨ y1)
if k = 1, and

F = (A ∧ (x1
#»

× · · ·
#»

×xk) ∧
k−1
∧

i=1

¬xi) ∨ ((y1
#»

× · · ·
#»

×yk) ∧
k−1
∧

i=1

¬yi)

if k > 1. Observe that the minimal degree with which F (or F [A/B]) can possibly
be satisfied is k, as either xk or yk need to be satisfied. Furthermore, {yk} |=

QCL
k F

and {yk} |=
QCL
k F [A/B]. This means that any preferred model of F must satisfy

F with a degree of k. The same is true for preferred models of F [A/B].

We can again distinguish two cases:

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Strong Equivalence

a) k = m. Then, I |=QCL
k A, and therefore also I ∪ {xk} |=

QCL
k A. Thus,

I ∪ {xk} |=
QCL
k F , i.e. I ∪ {xk} ∈ModQCL(F). Analogously, since I |=QCL

n B,
we have that I ∪ {xk} |=QCL

n B and I ∪ {xk} |=QCL
n F [A/B]. Since n > k,

I ∪ {xk} 6∈ModQCL(F [A/B]).

b) k = n. Analogous to (a), but with I ∪ {xk} 6∈ ModQCL(F) and I ∪ {xk} ∈
ModQCL(F [A/B]).

2. optQCL(A) 6= optQCL(B). Let k = min(optQCL(A), optQCL(B)), and let x, y and
zi with 1 ≤ i ≤ k + 1 be fresh variables that do not appear in A or B. We then
construct

F = ((A ∧ x ∧ ¬x)
#»

×y) ∨ ((z1
#»

× · · ·
#»

×zk+1) ∧
k

∧

i=1

¬zi).

Observe that (A ∧ x ∧ ¬x) can not be satisfied, and that optQCL(A ∧ x ∧ ¬x) =
optQCL(A). Analogously, (B ∧ x ∧ ¬x) can not be satisfied, and optQCL(B ∧ x ∧
¬x) = optQCL(B). Thus, the the minimal degree with which F (or F [A/B]) can
possibly be satisfied is k + 1, as either y or zk+1 need to be satisfied. Furthermore,
{zk+1} |=

QCL
k+1 F and {zk+1} |=

QCL
k+1 F [A/B]. This means that any preferred model

of F must satisfy F with a degree of k + 1. The same is true for preferred models
of F [A/B].

We can again distinguish two cases:

a) k = optQCL(A). Then {y} |=QCL
k+1 F , and therefore {y} ∈ ModQCL(F).

But {y} |=QCL
n+1 F [A/B] with n = optQCL(B). Thus, since n > k, {y} 6∈

ModQCL(F [A/B])

b) k = optQCL(B). Analogous to (a), but with {y} 6∈ ModQCL(F) and {y} ∈
ModQCL(F [A/B]).

5.2 Conjunctive Choice Logic

Similar results to those regarding strong equivalence in QCL can be found for CCL.

Lemma 27. A ≡CCL
f B if and only if F ≡CCL

f F [A/B] for all CCL-formulas F .

Proof. This proof is analogous to the proof for Lemma 25. The structural induction of
the only-if-direction can be altered to fit the definition of CCL rather than QCL: Instead
of the case that F = G

#»

×H, we have the case that F = G
#»

⊙H. If F [A/B] = G[A/B]
#»

⊙H,

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Conjunctive Choice Logic

then

optCCL(G
#»

⊙H) = optCCL(G) + optCCL(H)

= optCCL(G[A/B]) + optCCL(H)

= optCCL(G[A/B]
#»

⊙H)

and

degCCL(I, G
#»

⊙H) =

n if I |=CCL
1 G and I |=CCL

n H with n 6=∞

m + optCCL(H) if I |=CCL
m G, m 6=∞,

and (m > 1 or I |=CCL
∞ H)

∞ otherwise

=

n if I |=CCL
1 G[A/B] and I |=CCL

n H with n 6=∞

m + optCCL(H) if I |=CCL
m G[A/B], m 6=∞,

and (m > 1 or I |=CCL
∞ H)

∞ otherwise

= degCCL(I, G[A/B]
#»

⊙H)

for any interpretation I. Thus, (G
#»

⊙H) ≡CCL
f (G[A/B]

#»

⊙H), i.e. F ≡CCL
f F [A/B]. The

case that F [A/B] = (G
#»

⊙H[A/B]) is analogous.

Proposition 28. A ≡CCL
s B if and only if A ≡CCL

f B.

Proof. The if-direction of this proof is analogous to the proof of Proposition 26. The only-
if-direction is also similar to Proposition 26, but requires a slightly different construction
of F . We again argue by contrapositive: Assume A 6≡CCL

f B. Now there are two cases:

1. A 6≡CCL
d B. Then there exists an interpretation I such that I |=CCL

m A and
I |=CCL

n B with m 6= n. Let k = min(m, n), and let xi and yi with 1 ≤ i ≤ k be fresh
variables that do not appear in I, A, or B. We then construct F = ((A ∧ x1) ∨ y1)
if k = 1, and

F = (A ∧ (x1
#»

⊙ · · ·
#»

⊙xk) ∧
k

∧

i=2

¬xi) ∨ ((y1
#»

⊙ · · ·
#»

⊙yk) ∧
k

∧

i=2

¬yi)

if k > 1. Observe that the minimal degree with which F (or F [A/B]) can possibly
be satisfied is k, as either x1 or y1 need to be satisfied, but xi or yi with 2 ≤ i ≤ k
can not be satisfied. Furthermore, {y1} |=CCL

k F and {y1} |=CCL
k F [A/B]. This

means that any preferred model of F must satisfy F with a degree of k. The same
is true for preferred models of F [A/B].

We can again distinguish two cases:

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Strong Equivalence

a) k = m. Then, I |=CCL
k A, and therefore also I ∪ {x1} |=CCL

k A. Thus,
I ∪ {x1} |=CCL

k F , i.e. I ∪ {x1} ∈ModCCL(F). Analogously, since I |=CCL
n B,

we have that I ∪ {x1} |=CCL
n B and I ∪ {x1} |=CCL

n F [A/B]. Since n > k,
I ∪ {x1} 6∈ModCCL(F [A/B]).

b) k = n. Analogous to (a), but with I ∪ {x1} 6∈ ModCCL(F) and I ∪ {x1} ∈
ModCCL(F [A/B]).

2. optCCL(A) 6= optCCL(B). Let k = min(optCCL(A), optCCL(B)), and let x, y and
zi with 1 ≤ i ≤ k + 1 be fresh variables that do not appear in A or B. We then
construct

F = (y
#»

⊙(A ∧ x ∧ ¬x)) ∨ ((z1
#»

⊙ · · ·
#»

⊙zk+1) ∧
k+1
∧

i=2

¬zi).

Observe that (A ∧ x ∧ ¬x) can not be satisfied, and that optCCL(A ∧ x ∧ ¬x) =
optCCL(A). Analogously, (B∧x∧¬x) can not be satisfied, and optCCL(B∧x∧¬x) =
optCCL(B). Thus, the the minimal degree with which F (or F [A/B]) can possibly
be satisfied is k+1, as either y or z1 need to be satisfied. Furthermore, {z1} |=CCL

k+1 F
and {z1} |=CCL

k+1 F [A/B]. This means that any preferred model of F must satisfy F
with a degree of k + 1. The same is true for preferred models of F [A/B].

We can again distinguish two cases:

a) k = optCCL(A). Then {y} |=CCL
k+1 F , and therefore {y} ∈ ModCCL(F).

But {y} |=CCL
n+1 F [A/B] with n = optCCL(B). Thus, since n > k, {y} 6∈

ModCCL(F [A/B])

b) k = optCCL(B). Analogous to (a), but with {y} 6∈ ModCCL(F) and {y} ∈
ModCCL(F [A/B]).

5.3 Choice Logics in General

We have already examined QCL and CCL with regard to some properties of strong
equivalence. In both QCL and CCL, strong equivalence can be characterized by full
equivalence. We will now examine whether this also holds for choice logics in general.

Lemma 29. Let L be a choice logic. Then A ≡L
f B if and only if F ≡L

f F [A/B] for all
L-formulas F .

Proof. The if-direction is analogous to the proof for QCL: Assume that A 6≡L
f B. Choose

F = A. Then F [A/B] = B, and therefore F 6≡L
f F [A/B]. The only-if-direction can be

carried out by structural induction, similar to the proof of Lemma 25. The cases for
the classical connectives remain unchanged. For any choice connective ◦ ∈ CL, we know

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Choice Logics in General

that optL(F ◦ G) depends only on optL(F) and optL(G). Furthermore, degL(I, F ◦ G)
depends only on optL(F), optL(G), degL(I, F), and degL(I, G). By I.H., we also know
that F ≡L

f F [A/B] and G ≡L
f G[A/B]. Therefore we can conclude that optL(F ◦G) =

optL((F ◦G)[A/B]) and degL(I, F ◦G) = degL(I, (F ◦G)[A/B]), i.e. F ≡L
f F [A/B].

With the help of the above lemma, we can compare strong equivalence with full equivalence
for arbitrary choice logics.

Proposition 30. Let L be a choice logic. If A ≡L
f B, then A ≡L

s B.

Proof. Assume A ≡L
f B. Then, by Lemma 29, F ≡L

f F [A/B] holds for all formulas F .
By Lemma 6, this entails that any F and F [A/B] have the same preferred models, i.e.
A ≡L

s B.

However, unlike for the analogous QCL- and CCL-statements (see Propositions 26
and 28), the converse of Proposition 30 does not hold: Consider a choice logic L
that is not optionality-differentiating. Then there are L-formulas A and B such that
optL(A) 6= optL(B), and for all F ∈ FL we have that F ≡L

d F [A/B]. Therefore,
also ModL(F) = ModL(F [A/B]) for all F ∈ FL, i.e. A ≡L

s B. But A 6≡L
f B, since

optL(A) 6= optL(B).

To examine how strong equivalence and degree-equivalence are related, we first introduce
the following lemma:

Lemma 31. If I |=L
k F for some interpretation I, then there exists an L-formula G

such that the minimum degree that satisfies G is k.

Proof. Let I be an interpretation and F be a formula such that I |=L
k F . Due to Lemma 7

we can assume that I ⊆ var(F). Consider

G = F ∧
(

∧

x∈I

x
)

∧
(

∧

x∈var(F)\I

¬x
)

.

Then I |=L
k G. Also, I ∪ J |=L

k G, for any J with J ∩ var(F) = ∅. All other
interpretations ascribe an infinite satisfaction degree to G.

Proposition 32. Let L be a choice logic. If A ≡L
s B, then A ≡L

d B.

Proof. We proceed by contrapositive. Assume A 6≡L
d B. We want to show that A 6≡L

s B,
i.e. that there is a formula F such that ModL(F) 6= ModL(F [A/B]).

Since A 6≡L
d B, there exists an interpretation I such that I |=L

m A and I |=L
n B with

m 6= n. Let k = min(m, n). Due to Lemma 31, we know that there are formulas G and H
such that the minimum degree that satisfies G or H is k. Thus, there are interpretations
IG, IH such that IG |=L

k G and IH |=L
k H. Because of Lemma 8 we can assume that G

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Strong Equivalence

and H are variable disjoint from each other as well as from A and B. By Lemma 7, this
implies that I ∩ IG = ∅, I ∩ IH = ∅, and IG ∩ IH = ∅. We now construct

F = (A ∧G) ∨ (x ∧H),

where x is a fresh variable that does not occur in A, B, G or H. We can therefore also
assume that x is not contained in I, IG, or IH .

Observe that the minimal degree with which F (or F [A/B]) can possibly be satisfied is
k, as either G or H need to be satisfied. Furthermore, IH ∪ {x} |=L

k F and IH ∪ {x} |=L
k

F [A/B]. This means that any preferred model of F must satisfy F with a degree of
k. The same is true for preferred models of F [A/B]. Also observe that since x is not
contained in I or IG, I ∪ IG |=L

∞ (x ∧H).

We can distinguish two cases:

1. k = m. Then I |=L
k A, and therefore I ∪ IG |=L

k (A ∧G). Thus, I ∪ IG |=L
k F , i.e.

I ∪ IG ∈ModL(F). Analogously, since I |=L
n B, we have that I ∪ IG |=L

n (B ∧G).
Therefore I ∪ IG |=L

n F [A/B]. Since n > k, we have I ∪ IG 6∈ModL(F [A/B]).

2. k = n. Analogous to (a), but with I∪IG 6∈ModL(F) and I∪IG ∈ModL(F [A/B]).

The converse of Proposition 32 does not hold. In the proof of Proposition 26 we
have already seen how to construct a formula F in QCL such that A ≡QCL

d B but
ModQCL(F) 6= ModQCL(F [A/B]).

In summary, the different notions of equivalence for choice logics are related as follows:

A ≡L
f B =⇒ A ≡L

s B =⇒ A ≡L
d B =⇒ ModL(A) = ModL(B).

For all of the implications above, the inverse direction does not hold in general. But
when dealing with choice logics where optionality plays no role, it can be shown that
strong equivalence is interchangeable with degree-equivalence.

Proposition 33. Let L be an optionality-ignoring choice logic. Then A ≡L
s B if and

only if A ≡L
d B.

Proof. The only-if-direction follows directly from Proposition 32. For the if-direction,
we prove that if A ≡L

d B, then F ≡L
d F [A/B] for all L-formulas F , which implies

that ModL(F) = ModL(F [A/B]) for all L-formulas F . This can be done by structural
induction, analogous to the proof of Lemma 29. However, in this case, since L is
optionality-ignoring, an I.H. of F ≡L

d F [A/B] and G ≡L
d G[A/B] is enough to conclude

that degL(I, F ◦G) = degL(I, (F ◦G)[A/B]) for any ◦ ∈ CL.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Choice Logics in General

Similar to how strong equivalence can by characterized by degree-equivalence in optionality-
ignoring choice logics, we can characterize strong equivalence by full equivalence in
optionality-differentiating choice logics.

Proposition 34. Let L be an optionality-differentiating choice logic. Then A ≡L
s B if

and only if A ≡L
f B.

Proof. The if-direction follows directly from Proposition 30. For the only-if-direction,
assume that A ≡L

s B. Then, from Proposition 32, we know that A ≡L
d B. It remains to

show that optL(A) = optL(B).

Towards a contradiction, assume that optL(A) 6= optL(B). This means that, since L
is optionality-differentiating, there exists a formula A′ ∈ FL such that A′ 6≡L

d A′[A/B].
Observe that therefore A must occur in A′. Let B′ = A′[A/B]. Then A′ 6≡L

d B′. By
the contrapositive of Proposition 32, there exists a formula F such that ModL(F) 6=
ModL(F [A′/B′]). By the construction of F in the proof for Proposition 32, we can
assume that A′ occurs only once in F , and that A only occurs in A′. Therefore, replacing
A′ by A′[A/B] in F is the same as simply replacing A by B in F , i.e. F [A′/B′] =
F [A′/A′[A/B]] = F [A/B]. Thus, ModL(F) 6= ModL(F [A/B]). But then A 6≡L

s B.
Contradiction.

In fact, as we have already argued, if a choice logic is not optionality-differentiating,
then strong equivalence and full equivalence are not interchangable. We can therefore
conclude that A ≡L

s B ⇐⇒ A ≡L
f B holds only when L is optionality-differentiating.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Computational Complexity

This chapter contains results for the complexity of certain decision problems pertaining
to choice logics. We will not investigate the complexity of all choice logics, but rather
of those in which the satisfaction degree of a formula given an interpretation can be
computed in polynomial time. Such a choice logic will be referred to as tractable.

In total, we will introduce four new decision problems: L-ModelChecking and L-Sat are
similar to the classical decision problems of ModelChecking and Sat (see Section 2.4),
but instead of asking whether classical formulas evaluate to true or false, they ask
questions regarding the satisfaction degree of L-formulas. L-PrefModelChecking asks
if a given interpretation is a preferred model of a given L-formula, and L-PrefModelSat

asks whether a given L-formula has a preferred model containing a given variable.

In the following, by Lemma 7, we can assume that if F is the input to a decision problem,
then I ⊆ var(F) for any interpretation I we are dealing with. Just as for propositional
logic, we denote the input size of our decision problems by |F |, i.e. the total number of
variable occurrences in F (compare Section 2.4).

6.1 Tractable Choice Logics

Since the degree- and optionality-functions of choice connectives can be given by arbitrary
functions over the natural numbers, they can also be given by non-computable functions.
For example, consider the following choice logic, where Mi is the i-th Turing machine:

Definition 53. L4 is the choice logic such that CL4
= {◦},

optL4
(F ◦G) = optL4

(F) + optL4
(G),

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Computational Complexity

and

degL4
(I, F ◦G) =

{

1 if MoptL4
(F) halts on input optL4

(G).

∞ otherwise

Then the simple decision problem of asking whether a formula is satisfied to a degree
of 1 by some interpretation is not computable for L4. By the definition of optL4

, we
can construct L4-formulas F and G with any optionality we require. Also note that
degL4

(I, F ◦G) does not depend on I at all, but only on the optionalities of F and G.
Thus, asking whether degL4

(I, F ◦ G) is equal to 1 is the same as asking whether the
Turing machine with the index optL4

(F) halts on the input optL4
(G). If there was an

algorithm that would decide our problem, then this algorithm would also decide the
halting problem, which is known to be undecidable [AB09]. We can therefore conclude
that our decision problem is not computable. But when analyzing problems with respect
to their complexity, we are only interested in computable problems. Thus, we need to
exclude at least some of the choice logics that can be defined in our framework.

For all of the choice logics we have seen so far, except L4, the degree- and optionality-
functions over which the choice connectives are defined are polynomial time computable.
This is convenient when analyzing complexity, as we do not need to worry about how the
complexity of a certain decision problem might change if e.g. the degree-function of some
choice connective is not polynomial time computable.

Definition 54. A choice logic L is called tractable if for every ◦ ∈ CL, the optionality-
and degree functions which define the semantics of ◦ are polynomial-time computable.

We will only consider tractable choice logics in this chapter. Alternatively, one could also
analyze the complexity of choice logics with respect to oracles. But since (almost) all
choice logics we encountered so far are tractable, and since a non-tractable choice logic
can arguably be seen as impractical, we will not do so.

Note that the term tractable only refers to the complexity of the degree- and optionality
functions, and does not imply that all decision problems concerned with tractable choice
logics are solvable in polynomial time.

6.2 Model Checking for Choice Logics

In ModelChecking, which is concerned with classical propositional logic, we ask
whether a given formula F is satisfied by a given interpretation I. A similar problem
can be defined for a choice logic L.

L-ModelChecking

Instance: An L-formula F , an interpretation I, and a satisfaction degree k ∈ N∪{∞}.

Question: degL(I, F) ≤ k?

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Satisfiability for Choice Logics

L-ModelChecking is a generalization of ModelChecking: If F is a classical formula,
and k = 1, then the two problems are equivalent. Since we are dealing with tractable
choice logics only, we can show that L-ModelChecking is decidable in polynomial time,
just like the standard ModelChecking problem.

Proposition 35. Let L be a tractable choice logic. Then L-ModelChecking is in P.

Proof. We can compute the degree of F under I by applying degL to I and F (see
Definition 29). Since L is tractable, we know that every step in this recursion runs in
polynomial time. The depth of the recursion can not exceed the length of F . Neither can
the width of the recursion exceed the length of F , since every atom in F will be reached
exactly once in the recursion. After we computed degL(I, F), we can simply compare
the result with k, and return either "yes" or "no" accordingly.

Note that, in L-ModelChecking, we ask whether F is satisfied to a degree less or
equal to k by I, instead of whether F is satisfied to a degree of exactly k by I. But, as
a matter of fact, there is no significant difference between these two questions: Since
L-ModelChecking is in P, and since P is closed under complement [HMU07], the com-
plementary problem of L-ModelChecking is also in P. By solving L-ModelChecking

we can find out if degL(I, F) ≤ k, and by solving the complimentary problem, we can find
out if degL(I, F) ≥ k. This procedure clearly constitutes a polynomial time algorithm,
and it is enough to solve the question of whether degL(I, F) = k.

6.3 Satisfiability for Choice Logics

In Sat, the satisfiability problem for classical propositional logic, we ask whether a
formula F is satisfiable, i.e. if there is an interpretation I such that I |= F . Similarly, we
can ask if a formula of some choice logic L can be satisfied to a given degree.

L-Sat

Instance: An L-formula F and a satisfaction degree k ∈ N ∪ {∞}.

Question: Is there an interpretation I such that degL(I, F) ≤ k?

L-Sat is a generalization of the standard Sat problem, just as L-ModelChecking is a
generalization of ModelChecking. Just like Sat, L-Sat is in NP for tractable choice
logics.

Proposition 36. Let L be a tractable choice logic. Then L-Sat is in NP.

Proof. We prove this by providing a polynomially balanced and polynomially decidable
certificate relation for L-Sat. Let

R = {((F, k), I) | degL(I, F) ≤ k}.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Computational Complexity

Clearly, (F, k) is a yes-instance of L-Sat iff there is an interpretation I such that
((F, k), I) ∈ R. R is polynomially balanced, since we can assume that I ⊆ var(F).
Furthermore, R is polynomially decidable, since L-ModelChecking is in P.

In addition to being contained in NP, L-Sat is also NP-hard. This is easy to show, since
Sat is NP-hard, and because L-Sat is a generalization of Sat.

Proposition 37. Let L be a tractable choice logic. Then L-Sat is NP-hard.

Proof. We prove this by providing a reduction from Sat to L-Sat. Let F be an arbitrary
instance of Sat. Then we construct an instance (F, 1) of L-Sat. Since F is a classical
formula, for any interpretation I it holds that I |= F ⇐⇒ I |=L

1 F ⇐⇒ degL(I, F) ≤ 1.
Thus,

F is a yes-instance of Sat ⇐⇒ there is an interpretation I such that I |= F

⇐⇒ there is an interpretation I such that degL(I, F) ≤ 1

⇐⇒ (F, 1) is a yes-instance of L-Sat.

In conclusion, L-Sat is NP-complete for a tractable L, as it is both contained in NP and
NP-hard.

6.4 Preferred Model Checking

The main question regarding a choice formula and an interpretation is most often not
to what degree the formula is satisfied by the interpretation, but rather whether the
interpretation is a preferred model of the formula.

L-PrefModelChecking

Instance: An L-formula F and an interpretation I.

Question: I ∈ModL(F)?

To solve L-PrefModelChecking, we essentially need to ensure that no interpretation
has a smaller degree than I. Intuitively, this places L-PrefModelChecking in coNP,
and in fact we can prove this:

Proposition 38. Let L be a tractable choice logic. Then L-PrefModelChecking is
in coNP.

Proof. We will show that the complementary problem is in NP by providing a polynomially
balanced, polynomially decidable certificate relation. First of all, observe that (F, I) is a

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Preferred Model Checking

yes-instance of co-L-PrefModelChecking iff I 6∈ModL(F). Let

R = {((F, I),J) | degL(J , F) < degL(I, F) or degL(I, F) =∞}.

Then ((F, I),J) ∈ R iff there is an interpretation J such that degL(J , F) < degL(I, F)
or degL(I, F) = ∞, which is the case exactly when I 6∈ ModL(F). R is polynomially
balanced, since we can assume that J ⊆ var(F). Furthermore, R is polynomially
decidable, since we can compute degL(I, F) and degL(J , F) in polynomial time.

As it turns out, we can also show coNP-hardness of L-ModelChecking for certain choice
logics. However, we have to exclude at least PL from this proof, since I ∈ModPL(F) ⇐⇒
I |=PL

1 F . Therefore, PL-ModelChecking and PL-PrefModelChecking are identical.
If we showed that PL-PrefModelChecking is coNP-hard, then PL-ModelChecking

would be both coNP-hard and contained in P, which would mean that coNP is equal to P.
Because P is closed under complement, this in turn would imply that P is equal to NP,
which is widely believed to not be the case [Aar17]. Therefore, we will only consider
choice logics where degrees other than 1 and ∞ can be obtained.

Definition 55. A choice logic L is called non-binary if there is an L-formula G and an
interpretation I such that I |=L

k G with k 6∈ {1,∞}.

With this restriction, we can show coNP hardness. Note that most choice logics mentioned
in this thesis (including QCL, CCL, XCL, SCCL, and LCL) are non-binary. Also observe
that a binary choice logic must not necessarily amount to PL. If this were the case, then
L4 would be equivalent to PL, and would therefore be decidable.

Proposition 39. Let L be a tractable, non-binary choice logic. Then
L-PrefModelChecking is coNP-hard.

Proof. We prove this by providing a reduction from Unsat to L-PrefModelChecking.
Let F be an arbitrary instance of Unsat. Since L is non-binary, there exists an L-formula
G and an interpretation I such that I |=L

k G with k 6∈ {1,∞}. Then, by Lemma 31,
there must be a formula H such that the minimum degree that satisfies H is k, i.e. there
is an interpretation I ′ such that I ′ |=L

k H and degL(I ′, H) ≤ degL(J , H) for all other
interpretations J . Crucially, by the construction in the proof of Lemma 31, we can also
assume that there is an interpretation I∗ such that I∗ |=L

∞ H. By Lemma 8, we can
assume F and H to be variable disjoint. Observe that the size of H is constant with
respect to the size of F . We construct an instance (F ′, I ′) of L-PrefModelChecking,
where

F ′ = (F ∨H) ∧ ¬(F ∧H).

We will show that F is a yes-instance of Unsat if and only if (F ′, I ′) is a yes-instance of
L-PrefModelChecking:

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Computational Complexity

" =⇒ ": Assume F is a yes-instance of Unsat. Then there is no interpretation J such
that J |= F , i.e. degL(J , F) = ∞ for all J . Since degL(I ′, H) = k, we have that
degL(I ′, F ′) = k. Indeed, F ′ can not be satisfied to a degree lower than k since F is
unsatisfiable and since k is the lowest degree with which H can be satisfied. Thus,
I ′ ∈ModL(F ′), which means that (F ′, I ′) is a yes-instance of L-PrefModelChecking.

"⇐= ": We proceed by contrapositive. Assume F is a no-instance of Unsat. Then there
is an interpretation J such that J |= F . Because F and H are variable disjoint, we
can assume that I∗ ∩ J = ∅. Since I∗ |=L

∞ H, we have that (I∗ ∪ J) |=L
1 (F ∨H) and

(I∗ ∪ J) |=L
1 ¬(F ∧H), which implies that (I∗ ∪ J) |=L

1 F ′. Recall that I ′ |=L
k H. We

distinguish two cases:

1. I ′ |= F . Then I ′ |=L
1 (F ∨H) and I ′ |=L

∞ ¬(F ∧H), and therefore I ′ |=L
∞ F ′.

2. I ′ 6|= F . Then I ′ |=L
k (F ∨H) and I ′ |=L

1 ¬(F ∧H), and therefore I ′ |=L
k F ′.

In both cases, it holds that degL(I ′, F ′) > degL(I∗ ∪ J , F ′). This means that I ′ is not a
preferred model of F ′. Thus, I ′ ∈ModL(F ′), which implies that (F ′, I ′) is a no-instance
of L-PrefModelChecking.

In conclusion, L-PrefModelChecking is coNP-complete for a tractable and non-binary
L, as it is both contained in coNP and coNP-hard.

6.5 Preferred Model Satisfiability

The last decision problem regarding choice logics that we will investigate is that of
preferred model satisfiability. Instead of simply asking whether a formula F has a
preferred model, we will ask if F has a preferred model containing a given variable
x ∈ var(F). In fact, asking whether F has a preferred model is the same as asking
if there is an interpretation I such that degL(I, F) ≤ optL(F). But this question can
be answered by solving L-Sat, and is therefore in NP, as we have already shown in
Proposition 36. In preferred model satisfiability however, we are interested in how
difficult it is to find a preferred model. As we have already discussed in Section 2.4.2, an
optimization problem of this form can be represented as a decision problem by asking
whether there is a preferred model containing a variable x.

L-PrefModelSat

Instance: An L-formula F and a variable x such that x ∈ var(F).

Question: Is there an interpretation I such that x ∈ I and I ∈ModL(F)?

Before analyzing the complexity of L-PrefModelSat, we will give an upper bound for
the optionality of a choice formula relative to its size:

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Preferred Model Satisfiability

Lemma 40. Let L be a choice logic. Then, for every L-formula F it holds that
optL(F) < 2(|F |2).

Proof. We show this by structural induction over the formulas of L.

• Base case. F = x, where x is a propositional variable. Then |F | = 1 and
optL(F) = 1 < 2(|F |2).

• Step case. As our I.H., let G and H be L-formulas such that optL(G) < 2(|G|2) and
optL(H) < 2(|H|2). We distinguish the following cases:

1. F = (¬G). Then |F | = |G| ≥ 1 and optL(F) = 1 < 2(|F |2).

2. F = (G ∧H) or F = (G ∨H). Then |F | = |G|+ |H| and

optL(F) = max(optL(G), optL(H)) < max(2(|G|2), 2(|H|2)) < 2(|F |2).

3. F = (G ◦H), where ◦ ∈ CL. Then |F | = |G|+ |H|. Observe that
optL(G) < 2(|G|2) is the same as optL(G) ≤ 2(|G|2) − 1. Likewise for H. Thus,

optL(F) ≤ (optL(G) + 1) · (optL(H) + 1)

≤ ((2(|G|2) − 1) + 1) · ((2(|H|2) − 1) + 1)

= 2(|G|2) · 2(|H|2)

= 2(|G|2)+(|H|2)

< 2((|G|+|H|)2)

= 2(|F |2).

The above upper bound for the optionality of a formula is likely not a tight bound, but
it is enough to show the ∆2P-membership of L-PrefModelSat. Because we will also
show that there is a choice logic for which L-PrefModelSat is ∆2P-hard, finding a
tighter bound would not reduce the complexity of L-PrefModelSat in general.

Proposition 41. Let L be a tractable choice logic. Then L-PrefModelSat is in ∆2P.

Proof. Let (F, x) be an arbitrary instance of L-PrefModelSat. We provide a decision
procedure which runs in polynomial time with respect to |F |, makes O(|F |2) calls to an
NP-oracle, and determines whether (F, x) is a yes-instance of L-PrefModelSat:

1. Construct the formula F ′ by replacing every occurrence of x in F by the tautology
(x ∨ ¬x). This means that for any I with x ∈ I, we have that degL(I, F) =
degL(I \{x}, F ′). In fact, F can be satisfied to a degree of k by some interpretation
containing x if and only if F ′ can be satisfied to the degree of k by any interpretation.
Also note that |F ′| ≤ 2 · |F |, and that optL(F ′) = optL(F).

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Computational Complexity

2. Conduct a binary search over (1, . . . , optL(F),∞). In each step of the binary search,
we call an NP-oracle that decides L-Sat to check whether there is an interpretation
I such that degL(I, F) ≤ k, where k is the mid-point of the current step in the
binary search. In the end, we will find the minimum k such that degL(J , F) = k for
some J . Since binary search runs in logarithmic time, we require O(log(optL(F)))
calls to our NP-oracle. By Lemma 40 we know that optL(F) < 2(|F |2), and
therefore we need at most O(log(2(|F |2))) = O(|F |2) oracle calls.

3. Conduct a binary search over (1, . . . , optL(F ′),∞) to find the minimum k′ such
that degL(J , F ′) = k′ for some J . As before, this requires O(|F ′|2) = O(|F |2)
NP-oracle calls.

4. If k < k′, then F ′ can not be satisfied to a degree of k. This means that F can
not be satisfied to a degree of k by an interpretation containing x. But F can
be satisfied to a degree of k in general. Thus, there is no preferred model of F
containing x, and we can return "no". If k = k′, then F ′ can be satisfied to a
degree of k, and therefore F can be satisfied to a degree of k by an interpretation
containing x. Thus, we can return "yes". Note that it can not be that k > k′.

Regarding hardness, we can prove that L-PrefModelSat is NP-hard for all tractable
choice logics. This is to be expected, since classical propositional logic is contained as a
fragment in every choice logic.

Proposition 42. Let L be a tractable choice logic. Then L-PrefModelSat is NP-hard.

Proof. We prove this by providing a reduction from Sat to L-PrefModelSat. Let F be
an arbitrary instance of Sat. We then construct an instance (F ′, x) of L-PrefModelSat,
where x does not occur in F , and

F ′ = F ∧ x.

Since F is a classical formula, and since x does not occur in F , we have that

F is a yes-instance of Sat ⇐⇒ there is an interpretation I such that I |= F

⇐⇒ there is an interpretation I such that I ∪ {x} |= F ′

⇐⇒ there is an interpretation I such that I ∪ {x} |=L
1 F ′

⇐⇒ I ∪ {x} ∈ModL(F ′)

⇐⇒ (F ′, x) is a yes-instance of L-PrefModelSat.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Preferred Model Satisfiability

The ∆2P-membership gives us an upper bound for the complexity of L-PrefModelSat,
while the NP-hardness constitutes a lower bound. But, as already mentioned, we can
also show ∆2P-hardness of L-PrefModelSat for a specific choice logic, namely LCL
(see Definition 36). We choose LCL for this purpose because it enables us to represent a
lexicographic ordering over variables as an LCL-formula, and it will therefore make a
reduction from LexMaxSat quite straightforward.

Proposition 43. LCL-PrefModelSat is ∆2P-hard.

Proof. We prove this by providing a reduction from LexMaxSat. Let (F, (x1, . . . , xn))
be an arbitrary instance of LexMaxSat. We then construct an instance (F ′, xn) of
LCL-PrefModelSat, where

F ′ = F ∧ (x1 ◦ (x2 ◦ (· · · (xn−1 ◦ xn)))).

It remains to show that (F, (x1, . . . , xn)) is a yes-instance of LexMaxSat if and only if
(F ′, xn) is a yes-instance of LCL-PrefModelSat.

" =⇒ ": Let (F, (x1, . . . , xn)) be a yes-instance of LexMaxSat. Then there exists an
interpretation I such that I |= F , xn ∈ I, and I is the lexicographically largest model of
F with respect to the ordering x1 > · · · > xn. Let J be any interpretation other than I.
If J 6|= F , then degLCL(J , F ′) = ∞, and J is not a preferred model of F ′. If J |= F ,
then J must be lexicographically smaller than I. By Lemma 13, we can directly infer
that degLCL(I, x1 ◦ (x2 ◦ (· · · (xn−1 ◦xn)))) < degLCL(J , x1 ◦ (x2 ◦ (· · · (xn−1 ◦xn)))), and
therefore degLCL(I, F ′) < degLCL(J , F ′). This means that I ∈ModLCL(F ′). Since also
xn ∈ I, we have that (F ′, xn) is a yes-instance of LCL-PrefModelSat.

" ⇐= ": Let (F ′, xn) be a yes-instance of LCL-PrefModelSat. Then there is an
interpretation I such that xn ∈ I and I ∈ModLCL(F ′). Towards a contradiction, assume
that there is an interpretation J such that J |= F , and such that J is lexicographically
larger than I with respect to x1 > · · · > xn. But, by Lemma 13, this means that
degLCL(J , F ′) < degLCL(I, F ′), which means that I 6∈ ModLCL(F ′). Contradiction.
Thus, I is the lexicographically largest model of F . Since xn ∈ I, we have that
(F, (x1, . . . , xn)) is a yes-instance of LexMaxSat.

In summary, LCL-PrefModelSat is ∆2P-complete. But still, L-PrefModelSat could
be easier for some other L. The complexity of LCL-PrefModelSat is owed in part to
the fact that the optionality of a formula F in LCL can be exponential in the size of F ,
and that we therefore require a polynomial number of NP oracle calls when conducting
the binary search. But for choice logics where the optionality of a formula F is only
polynomial in the size of F , we only need a logarithmic number of oracle calls.

Proposition 44. Let L be a tractable choice logic such that optL(F) ∈ O(|F |c) holds for
all L-formulas F , where c is a constant. Then L-PrefModelSat is in Θ2P.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Computational Complexity

Proof. The proof is analogous to the proof of Proposition 41, except for the crucial
difference that, since optL(F) ∈ O(|F |c), the binary search can be executed in O(log(|F |))
time, which means that we only need O(log(|F |)) oracle calls.

Note that QCL, CCL, XCL, and SCCL all fulfill the condition necessary for Proposition 44.
Thus, L-PrefModelSat is in Θ2P for L ∈ {QCL, CCL, XCL, SCCL}. We will now
show Θ2P-hardness for QCL and CCL.

Proposition 45. QCL-PrefModelSat is Θ2P-hard.

Proof. We provide a reduction from LogLexMaxSat to QCL-PrefModelSat. Let
(F, (x1, . . . , xn)) be an arbitrary instance of LogLexMaxSat. We then construct an
instance (F ′, xn) of QCL-PrefModelSat as follows: Let Ji be the lexicographically
i-th largest interpretation over x1 > · · · > xn. For example, J1 = {x1, . . . , xn}, J2 =
{x1, . . . , xn−1}, and J(2n) = ∅. We characterize each of those interpretations by a formula,
namely

Ai =
(

∧

x∈Ji

x
)

∧
(

∧

x∈{x1,...,xn}\Ji

¬x
)

.

Then, for any interpretation I, we have that I |= Ai ⇐⇒ I ∩ {x1, . . . , xn} = Ji. Now
let

F ′ = F ∧ (A1
#»

×A2
#»

× · · ·
#»

×A(2n)).

Observe that this construction is polynomial in |F |, as n ≤ log(|F |), and therefore
2n ≤ |F |. It remains to show that (F, (x1, . . . , xn)) is a yes-instance of LogLexMaxSat

if and only if (F ′, xn) is a yes-instance of QCL-PrefModelSat.

" =⇒ ": Let (F, (x1, . . . , xn)) be a yes-instance of LogLexMaxSat. Then there exists
an interpretation I such that xn ∈ I, I |= F , and such that Jk = I ∩ {x1, . . . , xn} is
the lexicographically largest interpretation over x1 > · · · > xn that can be extended to a
model of F . Observe that I |= Ak, but I 6|= Ar for any r 6= k. Therefore, by the semantics
of ordered disjunction in QCL, degQCL(I, F ′) = k. Let I ′ be any interpretation. If I ′ 6|= F ,
then degQCL(I ′, F ′) =∞. If I ′ |= F , then it can not be that Jk′ = I ′ ∩ {x1, . . . , xn} is
lexicographically larger than Jk with respect to x1 > · · · > xn. Thus, k ≤ k′. But by the
same reasoning as above, we have that degQCL(I ′, F ′) = k′. This means that there is no
interpretation that satisfies F ′ to a smaller degree than I, i.e. I ∈ModQCL(F ′). Since
also xn ∈ I, we can conclude that (F ′, xn) is a yes-instance of QCL-PrefModelSat.

" ⇐= ": Let (F ′, xn) be a yes-instance of QCL-PrefModelSat. Then there is an
interpretation I such that xn ∈ I and I ∈ ModQCL(F ′). By the construction of F ′,
we have that I |= F . Towards a contradiction, assume there is an interpretation I ′

such that I ′ |= F , and such that Jk′ = I ′ ∩ {x1, . . . , xn} is lexicographically larger
than Jk = I ∩ {x1, . . . , xn} with respect to x1 > · · · > xn. Then k′ < k. But by the
same argument as in the only-if-direction, we can conclude that degQCL(I, F ′) = k

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Preferred Model Satisfiability

and degQCL(I ′, F ′) = k′, i.e. degQCL(I, F ′) < degQCL(I ′, F ′). But then I is not a
preferred model of F ′. Contradiction. This means that Jk is the lexicographically
largest interpretation with respect to (x1, . . . , xn) that can be extended to a model of F .
Therefore, (F, (x1, . . . , xn)) is a yes-instance of LogLexMaxSat.

Proposition 46. CCL-PrefModelSat is Θ2P-hard.

Proof. This proof is similar to the proof of Proposition 45. Again, we provide a reduction
from LogLexMaxSat. Let (F, (x1, . . . , xn)) be an arbitrary instance of LogLex-

MaxSat. We then construct an instance (F ′, xn) of CCL-PrefModelSat. Analogously
to the proof of Proposition 45, we characterize the lexicographically i-th largest interpre-
tation Ji over x1 > · · · > xn by a formula Ai, i.e.

Ai =
(

∧

x∈Ji

x
)

∧
(

∧

x∈{x1,...,xn}\Ji

¬x
)

.

We now further construct

Ci =
2n−(i−1)

∨

j=1

Aj .

for every 1 ≤ i ≤ 2n. Then Ji |= Cj for 1 ≤ j ≤ 2n − (i − 1), and Ji 6|= Cj for
j > 2n − (i− 1). For example, J1 satisfies C1,. . . ,C(2n), J2 satisfies C1,. . . ,C(2n−1) but
not C(2n), and J(2n) satisfies only C1. Let

F ′ = F ∧ (C1
#»

×C2
#»

× · · ·
#»

×C(2n)).

This construction is still polynomial in |F |: Recall that n ≤ log(|F |), and therefore
2n ≤ |F |. For every 1 ≤ i ≤ 2n we have that |Ai| ≤ log(|F |), and thus |Ci| ≤ log(|F |) · |F |.
This means that |F ′| ≤ |F |+ log(|F |) · |F |2. Also note that, by the semantics of ordered
conjunction in CCL, we have that degL(Ji, C1

#»

×C2
#»

× · · ·
#»

×C(2n)) = i for all 1 ≤ i ≤ 2n.
Thus, by the same argument as in the proof of Proposition 45, we can conclude that
(F, (x1, . . . , xn)) is a yes-instance of LogLexMaxSat if and only if (F ′, xn) is a yes-
instance of CCL-PrefModelSat.

In summary, QCL-PrefModelSat and CCL-PrefModelSat are Θ2P-complete. Since
LCL-PrefModelSat is ∆2P-complete, we know that L-PrefModelSat is not equally
hard for all L, unless of course ∆2P = Θ2P. In fact, we can show NP-completeness for
L = PL.

Proposition 47. PL-PrefModelSat is in NP.

Proof. We prove this by providing a polynomially balanced and polynomially decidable
certificate relation for PL-PrefModelSat. Let

R = {((F, x), I) | I |= F and x ∈ I}.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Computational Complexity

Clearly, (F, x) is a yes-instance of PL-PrefModelSat iff there is an interpretation I
such that I ∈ ModPL(F) and x ∈ I iff there is an interpretation I such that I |= F
and x ∈ I iff ((F, x), I) ∈ R. R is polynomially balanced, since we can assume that
I ⊆ var(F). Furthermore, R is polynomially decidable, since PL-ModelChecking is
in P, and because we can verify whether x ∈ I in linear time.

By the above result, and by Proposition 42, PL-PrefModelSat is NP-complete.

6.6 Summary of Complexity Results

The results of our complexity analysis are summarized in Table 6.1. As we can see,
L-ModelChecking is in P for all tractable choice logics. Similarly, we showed the
NP-completeness of L-Sat for every tractable L.

Regarding L-PrefModelChecking, we proved coNP-membership for all tractable
choice logics, and coNP-completeness for tractable, non-binary choice logics. Limiting
ourselves to non-binary choice logics here is not as restrictive as it may seem, since the
purpose of choice logics is to rank interpretations based on more than just truth and
falsity.

For L-PrefModelSat, we showed ∆2P-membership and NP-hardness for all tractable
choice logics. These results can be seen as upper and lower bounds for the complexity
of L-PrefModelSat. For tractable choice logics where the optionality of a formula F
is polynomially bounded by |F |, L-PrefModelSat is contained in Θ2P. In fact, we
obtained different completeness results for PL (NP-complete), QCL/CCL (Θ2P-complete),
and LCL (∆2P-complete).

L = PL L ∈ {QCL, CCL} L = LCL tractable L
L-ModelChecking in P in P in P in P

L-Sat NP-c NP-c NP-c NP-c
L-PrefModelChecking in P coNP-c coNP-c in coNP

L-PrefModelSat NP-c Θ2P-c ∆2P-c in ∆2P/NP-h

Table 6.1: Summary of complexity results

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion

In this chapter, a summary of the results of this thesis will be given, followed by a
discussion on work related to choice logics. Finally, several possible directions for future
work on the choice logic framework will be proposed.

7.1 Summary

The main contribution of this thesis is the generalization of Qualitative Choice Logic
(QCL) and Conjunctive Choice Logic (CCL), realized by the introduction of a formal
framework. A logic of this framework, i.e. a choice logic, is an extension of classical
propositional (PL) logic by so-called choice connectives, with which preferences can be
expressed. The semantics of a choice logic is given by two functions:

1. The satisfaction degree of a formula given an interpretation indicates how preferable
this interpretation is: The lower this satisfaction degree, the more preferable the
interpretation.

2. The optionality of a formula represents the number of possible satisfaction degrees
that this formula can be ascribed. In this sense, optionality is an upper bound for
satisfaction degrees.

It was shown that the original definitions of QCL and CCL, but also PL and the two
alternative satisfaction relations for QCL proposed by Benferhat and Sedki [BS08b], can
be expressed within our framework. Additionally, we provided an alternative satisfaction
relation for CCL (see Definition 33), which captures the intended meaning of ordered
conjunction. The logic defined by this alternative semantics is what we refer to as CCL
in the rest of this chapter. We also introduced completely new choice logics, among which
the following are featured prominently in this thesis:

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

• Exclusive Disjunctive Choice Logic (XCL). Based on exclusive disjunction similarly
to how QCL is based on regular disjunction.

• Simple Conjunctive Choice Logic (SCCL). A choice logic in which optionality has
no impact on the satisfaction degree of a formula.

• Lexicographic Choice Logic (LCL). Features a choice connective with more than two
levels of satisfaction. Capable of encoding a lexicographic ordering over variables.

Note that any two choice logics can be combined into a new choice logic, simply by
extending propositional logic by both of their choice connectives. For example, QCCL is
the choice logic that has ordered disjunction from QCL and ordered conjunction from
CCL as choice connectives.

Since our framework is not very restrictive, and a lot of different choice logics can be
defined within it, we introduced several classes of choice logics and examined their
properties. Table 7.1 shows which classes some of the main choice logics belong to.

• Exhaustive choice logics: Every possible combination of satisfaction degree and
optionality can be obtained. In such a logic, the problem of formula synthesis
can be solved, i.e. it is possible to construct a formula that satisfies any given
interpretation to a desired degree.

• Basic exhaustive choice logics: A basic choice formula is a formula in which classical
connectives are applied only to classical formulas. In basic exhaustive choice logics,
for every formula there is a fully equivalent basic choice formula.

• Optionality-ignoring choice logics: The satisfaction degree of a formula does not
depend on optionality.

• Optionality-differentiating choice logics: Replacing a subformula by any other
formula with a different optionality value can have an impact on the satisfaction
degree.

• Reasonable choice logics: Choice connectives are related to classical binary connec-
tives in a natural way.

PL QCL CCL XCL SCCL LCL
exhaustive × × × ×
basic-exhaustive × × × ×
optionality-ignoring × ×
optionality-differentiating × × × × ×
reasonable × × × × × ×

Table 7.1: Classes of choice logics

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Related Work

The concept of strong equivalence (two formulas can be replaced without affecting
preferred models) was compared with the notions of degree equivalence (two formulas
have the same satisfaction degrees under all interpretations) and full equivalence (two
formulas are degree equivalent and have the same optionality). For arbitrary choice
logics, we showed that full equivalence implies strong equivalence, which in turn implies
degree equivalence. Furthermore, strong equivalence was found to be interchangeable
with degree equivalence for optionality-ignoring choice logics, and with full equivalence
for optionality-differentiating choice logics, which includes QCL and CCL.

Finally, we investigated the computational complexity of so-called tractable choice logics,
in which the satisfaction degree and optionality of a formula must be computable in
polynomial time. Note that PL, QCL, CCL, XCL, SCCL, and LCL are all tractable in
this sense. Four new decision problems were defined and analyzed:

• L-ModelChecking. Asks whether a given formula is satisfied to a certain degree
by a given interpretation. This problem is in P for tractable choice logics.

• L-Sat. Asks whether a given formula can be satisfied to a certain degree or lower.
This problem is NP-complete for tractable choice logics.

• L-PrefModelChecking. Asks whether a given interpretation is a preferred
model of a given formula. This problem is in P for PL, but it is coNP-complete for
tractable choice logics in which more than two satisfaction degrees can be expressed,
which includes QCL, CCL, XCL, SCCL, and LCL.

• L-PrefModelSat. Asks whether a given formula has a preferred model in which
a given variable is contained. This problem captures the complexity of finding
a preferred model, and we showed that it is contained in ∆2P and NP-hard for
all tractable choice logics. Furthermore, we proved that L-PrefModelSat is
NP-complete for PL, Θ2P-complete for QCL and CCL, and ∆2P-complete for LCL.

7.2 Related Work

Choice logics are a tool to express preferences, but there are also other systems that are
concerned with preference handling. Surveys on this topic include [BLW10], [DHKP11],
and the more recent [PTV16]. Some formalisms represent preferences quite differently
than choice logics. For example, CP-nets [BBD+11] and lexicographic preference trees
[BCL+10] do so in a graphical manner.

Closely related to our work are of course systems that specify preferences via logic. This
includes nonmonotonic logics, which are inherently related to preferences [Sho87, BNT08].
An example for such a logic is propositional circumscription, which can be expressed by
QCL and vice versa [BBB04, p. 220]. Logics that are more focused on reasoning about
preferences rather than expressing them include a formalism introduced by von Wright
[vW63, Liu10], and a modal logic described by van Benthem, Girard, and Roy [vBGR09].

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

Some other logic formalisms are also related to our work, even if they were not de-
signed with preferences in mind. Many-valued logics, for example, are similar to choice
logics in the sense that they deal with more than two truth values [Got01]. Another
relevant formalism is possibilistic logic, whose connection to QCL has been studied by
Brewka et al. [BBB04, p. 221].

There are also some systems that are directly inspired by the concept of QCL’s ordered
disjunction. For example, Jiang et al. [JZPZ15] introduced a modal logic that contains
a binary connective with a similar meaning to ordering disjunction, while Zhang and
Thielscher [ZT15] stated that they took inspiration from QCL for their prioritized
disjunction, which is used to reason about game strategies. It has also been demonstrated
that Answer Set Programming (ASP) can be extended by ordered disjunction [BNS04,
Bre05]. This extension is called Logic Programming with Ordered Disjunction (LPOD).

In this thesis, the notion of strong equivalence was defined in the sense of replaceability
with respect to preferred models. This notion is based on the concept of strong equivalence
for preference systems outlined by Faber et al. [FTW13a], which in turn builds on the
notion of strong equivalence between logic programs described by Lifschitz, Pearce, and
Valverde [LPV01]. Strong equivalence was also investigated for LPOD [FTW08], and
other ASP formalisms concerned with preferences [FK05, FTW13b]. For a discussion on
strong equivalence in knowledge representation formalisms, refer for example to [BS16].

7.3 Future Work

Regarding future work, choice logics other than those defined in this thesis could be
defined and examined. One possibility is to introduce a choice logic based on material
implication, which might be useful for expressing conditional preferences.

Another open issue is that of associativity. Although we know that ordered disjunction in
QCL and ordered conjunction in CCL are associative, it is not clear which conditions are
necessary in general for a choice connective to be associative. This, and the properties of
choice logics with associative choice connectives, could be investigated.

We have shown that for every formula in a basic exhaustive choice logic, there is a
fully equivalent basic choice formula. But we have only shown this via a semantic
transformation, i.e. the structure of the original formula is not preserved in any shape
or form. From the original QCL and CCL papers [BBB04, BB16] we know that there
are syntactic transformations to basic choice formulas in QCL and CCL, in which the
structure of the original formula is preserved to a certain degree. Thus, one might want to
investigate for which choice logics such syntactic transformations to basic choice formulas
are possible.

Furthermore, one could examine in detail how certain choice logics relate to other logics,
such as circumscription logic or multi-valued logics. Of course it is also possible to
investigate how choice logics are related to each other, similarly to how we have shown
that XCL can be expressed in QCL.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Future Work

Lastly, regarding computational complexity, other decision problems than those defined
in this thesis may be considered. For example, an interesting problem would be the
complexity of testing for full equivalence (or another notion of equivalence) between
two formulas. One could also investigate choice logics with respect to Fixed-Parameter
Tractability [CFK+15] by using, e.g., the optionality of a formula as a parameter.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Aar17] Scott Aaronson. P=?NP. Electronic Colloquium on Computational Complexity
(ECCC), 24:4, 2017.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[BB16] Abdelhamid Boudjelida and Salem Benferhat. Conjunctive choice logic. In
International Symposium on Artificial Intelligence and Mathematics, ISAIM
2016, Fort Lauderdale, Florida, USA, January 4-6, 2016, 2016.

[BBB04] Gerhard Brewka, Salem Benferhat, and Daniel Le Berre. Qualitative choice
logic. Artif. Intell., 157(1-2):203–237, 2004.

[BBD+11] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and
David Poole. Cp-nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements. CoRR, abs/1107.0023, 2011.

[BCL+10] Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Mengin, and Chat-
trakul Sombattheera. Learning conditionally lexicographic preference relations.
In Helder Coelho, Rudi Studer, and Michael J. Wooldridge, editors, ECAI
2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portu-
gal, August 16-20, 2010, Proceedings, volume 215 of Frontiers in Artificial
Intelligence and Applications, pages 269–274. IOS Press, 2010.

[BLW10] Meghyn Bienvenu, Jérôme Lang, and Nic Wilson. From preference logics to
preference languages, and back. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Twelfth International Conference, KR
2010, Toronto, Ontario, Canada, May 9-13, 2010, pages 414–424. AAAI
Press, 2010.

[BMW20] Michael Bernreiter, Jan Maly, and Stefan Woltran. Encoding choice logics in
ASP. In Proceedings of the 13th Workshop on Answer Set Programming and
Other Computing Paradigms, affiliated with the 36th International Conference
on Logic Programming, University of Calabria, Rende, Italy September 18-24,
2020, 2020.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[BNS04] Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic programs with
ordered disjunction. Comput. Intell., 20(2):335–357, 2004.

[BNT08] Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Preferences and
nonmonotonic reasoning. AI Magazine, 29(4):69–78, 2008.

[Bre05] Gerhard Brewka. Answer sets and qualitative decision making. Synthese,
146(1-2):171–187, 2005.

[BS08a] Salem Benferhat and Karima Sedki. Alert correlation based on a logical
handling of administrator preferences and knowledge. In Eduardo Fernández-
Medina, Manu Malek, and Javier Hernando, editors, SECRYPT 2008, Pro-
ceedings of the International Conference on Security and Cryptography, Porto,
Portugal, July 26-29, 2008, pages 50–56. INSTICC Press, 2008.

[BS08b] Salem Benferhat and Karima Sedki. Two alternatives for handling preferences
in qualitative choice logic. Fuzzy Sets Syst., 159(15):1889–1912, 2008.

[BS16] Ringo Baumann and Hannes Strass. An abstract logical approach to character-
izing strong equivalence in logic-based knowledge representation formalisms.
In Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Fifteenth
International Conference, KR 2016, Cape Town, South Africa, April 25-29,
2016, pages 525–528. AAAI Press, 2016.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[CPW18] Nadia Creignou, Reinhard Pichler, and Stefan Woltran. Do hard sat-related
reasoning tasks become easier in the krom fragment? Log. Methods Comput.
Sci., 14(4), 2018.

[DHKP11] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Prefer-
ences in AI: an overview. Artif. Intell., 175(7-8):1037–1052, 2011.

[FK05] Wolfgang Faber and Kathrin Konczak. Strong equivalence for logic programs
with preferences. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005,
pages 430–435. Professional Book Center, 2005.

[FTW08] Wolfgang Faber, Hans Tompits, and Stefan Woltran. Notions of strong equiv-
alence for logic programs with ordered disjunction. In Gerhard Brewka and
Jérôme Lang, editors, Principles of Knowledge Representation and Reason-
ing: Proceedings of the Eleventh International Conference, KR 2008, Sydney,
Australia, September 16-19, 2008, pages 433–443. AAAI Press, 2008.

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[FTW13a] Wolfgang Faber, Miroslaw Truszczynski, and Stefan Woltran. Abstract
preference frameworks - a unifying perspective on separability and strong
equivalence. In Marie desJardins and Michael L. Littman, editors, Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18,
2013, Bellevue, Washington, USA, pages 297–303. AAAI Press, 2013.

[FTW13b] Wolfgang Faber, Miroslaw Truszczynski, and Stefan Woltran. Strong equiva-
lence of qualitative optimization problems. J. Artif. Intell. Res., 47:351–391,
2013.

[Gen12] Harry J Gensler. Introduction to Logic. Routledge, 2012.

[Got01] Siegfried Gottwald. A Treatise on Many-Valued Logics, volume 3. Baldock:
research studies press, 2001.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation, 3rd Edition. Pearson
international edition. Addison-Wesley, 2007.

[Hod13] Richard E Hodel. An Introduction to Mathematical Logic. Courier Corporation,
2013.

[JZPZ15] Guifei Jiang, Dongmo Zhang, Laurent Perrussel, and Heng Zhang. A logic
for collective choice. In Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and
Edith Elkind, editors, Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
May 4-8, 2015, pages 979–987. ACM, 2015.

[Kre88] Mark W. Krentel. The complexity of optimization problems. J. Comput.
Syst. Sci., 36(3):490–509, 1988.

[Lan04] Jérôme Lang. Logical preference representation and combinatorial vote. Ann.
Math. Artif. Intell., 42(1-3):37–71, 2004.

[LHR14] Ludovic Lietard, Allel Hadjali, and Daniel Rocacher. Towards a gradual QCL
model for database querying. In Anne Laurent, Olivier Strauss, Bernadette
Bouchon-Meunier, and Ronald R. Yager, editors, Information Processing and
Management of Uncertainty in Knowledge-Based Systems - 15th International
Conference, IPMU 2014, Montpellier, France, July 15-19, 2014, Proceed-
ings, Part III, volume 444 of Communications in Computer and Information
Science, pages 130–139. Springer, 2014.

[Liu10] Fenrong Liu. Von Wright’s "The Logic of Preference" revisited. Synth.,
175(1):69–88, 2010.

[LPV01] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent
logic programs. ACM Trans. Comput. Log., 2(4):526–541, 2001.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[PTV16] Gabriella Pigozzi, Alexis Tsoukiàs, and Paolo Viappiani. Preferences in
artificial intelligence. Ann. Math. Artif. Intell., 77(3-4):361–401, 2016.

[Sho87] Yoav Shoham. Nonmonotonic logics: Meaning and utility. In John P. Mc-
Dermott, editor, Proceedings of the 10th International Joint Conference
on Artificial Intelligence. Milan, Italy, August 23-28, 1987, pages 388–393.
Morgan Kaufmann, 1987.

[Sip12] Michael Sipser. Introduction to the Theory of Computation. Cengage learning,
2012.

[Smu14] Raymond M Smullyan. A Beginner’s Guide to Mathematical Logic. Courier
Corporation, 2014.

[vBGR09] Johan van Benthem, Patrick Girard, and Olivier Roy. Everything else being
equal: A modal logic for Ceteris Paribus preferences. J. Philos. Log., 38(1):83–
125, 2009.

[vW63] Georg Henrik von Wright. The Logic of Preference. Edinburgh University
Press, 1963.

[Wer42] William Wernick. Complete sets of logical functions. Transactions of the
American Mathematical Society, 51(1):117–132, 1942.

[ZT15] Dongmo Zhang and Michael Thielscher. Representing and reasoning about
game strategies. J. Philos. Log., 44(2):203–236, 2015.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	A Brief History of Choice Logics
	Problem Definition and Main Contributions
	Structure
	Published Work

	Preliminaries
	Propositional Logic
	Qualitative Choice Logic
	Conjunctive Choice Logic
	Complexity Theory

	Choice Logic Framework
	Basic Concepts
	Properties
	Examples

	Classes of Choice Logics
	Exhaustive Choice Logics
	Basic Exhaustive Choice Logics
	Optionality Ignoring Choice Logics
	Optionality Differentiating Choice Logics
	Reasonable Choice Logics

	Strong Equivalence
	Qualitative Choice Logic
	Conjunctive Choice Logic
	Choice Logics in General

	Computational Complexity
	Tractable Choice Logics
	Model Checking for Choice Logics
	Satisfiability for Choice Logics
	Preferred Model Checking
	Preferred Model Satisfiability
	Summary of Complexity Results

	Conclusion
	Summary
	Related Work
	Future Work

	Bibliography

