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Kurzfassung

Softwaresysteme, die für die Automobilindustrie entwickelt werden, erleben derzeit einen
enormen Anstieg der Komplexität, der mit einer Erhöhung der Sicherheitsanforderungen
einhergeht. Die Sicherstellung ihrer Korrektheit ist eine herausfordernde und kostspielige
Aufgabe, welcher die Forschung nach neuen technologischen Lösungen motiviert. Software-
Verifikationswerkzeuge, die auf C-Code abzielen, sind zwar in der Industrie noch nicht
weit verbreitet, zeigen aber jedes Jahr beeindruckende Leistungsverbesserungen, was sie
zu guten Kandidaten für die Gewährleistung der Sicherheit eingebetteter Systeme macht.

Das Ziel dieser Studie ist es, die Fähigkeit modernster Verifikationswerkzeuge zu bewerten,
welche die Abwesenheit von Laufzeitfehlern bei vier Softwarekomponenten unterschiedli-
cher Komplexität nachzuweisen. Diese Komponenten aus der realen Welt werden von
TTTech entwickelt, einer Firma, die auf sicherheitsbezogene Lösungen für die Automobil-
industrie spezialisiert ist.

Zunächst erstellen wir ein generisches Umgebungsmodell, das auf dem AUTOSAR-
Standard basiert, der in der Automobilindustrie weit verbreitet ist. Dieses Modell zielt
darauf ab, eine Komponente von der übrigen Software-Plattform für die Verifikation zu
isolieren, und verwendet bereits existierende, durch den Standard definierte Spezifika-
tionen. Anschließend prüfen wir den Code mit Ultimate Automizer, CPAChecker und
CBMC, ergänzt durch Ideen wie z.B. k-Induktion oder Analyse des variablen Bereichs.

Unsere Ergebnisse zeigen, dass Verifikationswerkzeuge in der Lage sind, die Fehlerfreiheit
von drei von vier Komponenten erfolgreich nachzuweisen, jedoch für die komplexeste
Komponente keine definitive Antwort geben können. Die leistungsfähigste Verifikations-
methode ergibt sich aus der Kombination der Ergebnisse verschiedener Code-Analysen,
wobei CBMC das endgültige Urteil mittels k-Induktion feststellt. Für den problemati-
schen Fall geben wir Einblicke in die Ursachen der Schwierigkeiten und die nächsten
Schritte, die zu deren Überwindung erforderlich sind. Wir kommen zu dem Schluss,
dass die Einführung von Verifikationswerkzeugen in den Entwicklungsprozess positive
Veränderungen der allgemeinen Codequalität mit sich bringen kann.
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Abstract

Software systems developed for the automobile industry are currently witnessing a
tremendous increase in complexity, happening in concert with an escalation of safety
requirements. Ensuring their correctness is a challenging and costly task, which moti-
vates the research for new technological solutions. While not yet broadly adopted in
industry, software verification tools targeting C code demonstrate impressive performance
improvements every year, which makes them good candidates for ensuring the safety of
embedded systems.

This study aims at evaluating the capacity of state-of-the-art verification tools for proving
the absence of run-time errors on four software components of various complexity. These
real-world components are developed by TTTech, a firm specialized in safety-related
automotive solutions.

Firstly, we establish a generic environment model based on the AUTOSAR standard,
which is broadly adopted in the automobile industry. This model aims at isolating a
component from the rest of the software platform for verification, and uses already-
existing specifications defined by the standard. We then check the code using Ultimate
Automizer, CPAChecker and CBMC extended with several ideas, such as k-induction or
variable range analysis.

Our results show that verification tools are able to successfully prove the absence of
errors in three out of four components, and cannot give a definite answer for the most
complex one. The most capable verification method is obtained by combining the results
of different code analyzes, with CBMC establishing the final verdict using k-induction.
For the problematic case, we give insights into the causes of difficulties, and next steps
required to overcome them. We conclude that introducing verification tools in the
development process can bring positive changes to the general code quality.
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CHAPTER 1
Introduction

The automobile software industry is currently witnessing an unprecedented growth. While
electronic equipment has been a common sight in vehicles for multiple decades, there
has recently been a plethora of new use cases for information technology equipements in
cars, firstly for infotainment functionalities but most importantly, for performing driver
assistance tasks of ever-increasing complexity. Indeed, highly automated driving solutions
are expected to arrive on the market in the 2020s, and car manufacturers already propose
Advanced Driver Assistance Systems (ADAS), performing tasks like automatic parking,
collision avoidance, lane centering or pedestrian protection.

The general increase in complexity is happening simultaneously with an increase of safety
requirements for the underlying cyber-physical systems. Engineers have to come up
with new ways to certify the reliability of hardware and software components, operating
systems and intra-vehicle communication protocols. In this light, the ISO 26262 functional
safety standard for road vehicles was established to classify the risks linked to system
malfunctions, and provide development guidelines to match the required safety guarantees.
The integrity levels range from ASIL-A to ASIL-D. For the strictest integrity levels
(ASIL-C and D), the norm highly recommends the use of formal verification tools in
the development process to detect potential defects, or ideally to prove the system’s
correctness. However, the technical details concerning the integration of such tools in
development process remains up to the interpretation of industry actors.

1.1 Problem statement

TTTech Auto is currently developing a software platform tailored toward these safety
needs. Its aims is to facilitate the integration of heterogeneous automotive software
components to run together on one or multiple hardware hosts, and to coordinate their
execution in a safe manner. The platform guarantees isolation of components, provides
deterministic execution schedules and a deterministic communication system, and can

1
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1. Introduction

host services with safety integrity levels up to ASIL-D. As often in the automobile
industry, the implementation comprise of hand-written as well as auto-generated C code,
and there is a strong motivation to increase the software verification efforts targeting
some critical components of the platform, and give stronger safety guarantees.

Verification of embedded C programs is a well know and studied research topic, and
many (commercial and free) tools exist to handle this task. However, formal verification
is far from being broadly adopted in the world of automotive software, as hard-to-tackle
technical challenges emerge rapidly: especially, the state-space-explosion problem is often
dissuasive, as verification tools run-time and memory usage increase exponentially with
the complexity of the verification task. Thus, model checking is often limited to rather
small programs and impractical in the case of a whole automobile software stack.

One of the most severe class of bugs that can be found in C code is Run-Time errors. They
occur upon execution of C statements that are invalid with regards to the C standard,
such as array accesses out of bounds or invalid pointer dereferences. Eleminating run-
time errors is an absolute priority for ensuring software safety, that is why we will focus
primarly on this task within this study.

The overall goal of this thesis will be to provide an answer to the following question:

Can modern verification tools targeting C code be used to prove the absence
of bugs in safety critical components of the Automobile Industry? What are
their limits, and how can we use them to their greatest potential?

1.2 Approach

In the first part, components to verify and safety targets are identified through discussion
with relevant interlocutors at TTTech. Besides, the architecture and the code is thoroughly
explored to gain knowledge about the software.

In parallel, a literature review allows us to get familiar with different verification tools,
their capacities and limitation. The objective is to identify which tools have been applied
successfully on automobile software, or more generally on embedded systems with strong
safety requirements. Furthermore, reviewing the techniques implemented in modern
tools of the SV-COMP should allow to identify ways to tackle verification challenges
encountered along the project.

Then, an iterative approach is adopted for getting started with verification and modeliza-
tion tasks. Initially, we focus on simple verification tasks using only one tool (CBMC).
The first verification trials are conducted on dummy software components, to acquire
relevant know-how about interfacing the tool with industrial code. Then, a real-world
component is inspected, which introduces proper modeling and interface abstraction
challenges. More complex verification and modeling tasks are progressively introduced.

An automotive software component typically communicates with the rest of the platform
using so called interfaces. These interfaces have to be abstracted. To do so, we must

2
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1.3. Outline

become familiar with the AUTOSAR norm which describe the specification format of
these interfaces. Using AUTOSAR specification allows us to improve the precision of
abstracted interfaces and conduct a better analysis.

For quantifying the success of verification approaches and comparing tools, some eval-
uation criteria need to be defined. Commonly used metrics include: the number of
program properties successfully proved, disproved, or unproved (inconclusive analysis),
the verification running time, the memory usage or the general code coverage.

After successful verification results have been demonstrated, work on the industrialization
of the tool will begin. The objective is to demonstrate that the verification can be
performed continuously on the platform, as opposed to only being one-time proof of
concept. Eventually, the aim is to follow a continuous development process of the
verification framework, by iteratively increasing the code coverage, giving stronger
verification results, or offering new functionalities.

1.3 Outline

This thesis is structured as follows: in Chapter 2, we introduce some elements of context
which are of high relevance to our work: we give an overview of norms that define the
architecture of modern automobile software, and describe the architecture of the platform
under investigation.

In Chapter 3, we present the different software verification tools that we have considered
in our study. We also describe the common format defined by the Competition on
Software Verification (SV-COMP) organizers that we used to interface tools with the
targeted code.

In Chapter 4, we describe the environment model that was deployed: we list the hypotheses
that we made about the verified software, as well as the methodology that we followed
for isolating a component to verify from the rest of the platform. Finally, we describe the
different pre-processing and code augmentation steps that are performed to transform
the company code-base into a verification-ready form.

Chapter 5 contains the description of three software components on which we run our
experiments, that are presented in Chapter 6 and characterize the success of our approach.

Finally, we discuss the results in Chapter 7, where we try to identify causes of successes
and blocking points, summarize our finding and describe further works.

1.4 Related work

Software verification is a very important and active research topic, and many approaches
have been developed and successfully applied to industrial problems. We will not aim
for a detailed survey, but rather mention some of existing tools with the techniques that
they implement, with their respective strength or weaknesses. Then we will quickly

3
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1. Introduction

present how similar verification challenges have been dealt within the world of automotive
software.

The first method to be mentioned is static analysis with abstraction. Static analysis aims
at approximating the program behavior without executing it, to prove safety properties
on that program. The analysis is generally a sound over-approximation, which means
that no bugs will be missed. However, it might produce a high number of spurious bug
reports (bugs that are reported but do not appear in the program). Besides, as safety
violations are detected in the abstract domain, it cannot produce proper counter example
of violated safety properties, and can only point to the program location where a bug
may occur.

One well-known tool for abstract static analysis is the Astrée static analyzer [CCF+05],
which was successfully applied in aeronautics software checking [DS07]. Another successful
static analyzer worth mentioning is Facebook’s INFER [CD11]. It targets mainly memory
safety, and is able to synthesise pre and post-conditions guaranteeing safety on isolated
pieces of code. It is therefore well adapted to an incremental development process (see
[CDD+15]), as new additions into the code can efficiently be checked against previously
known results regarding the rest of the codebase.

Another main subcategory of tools is model checkers, which aim at converting a program
into a state-transition graph, and later verifying whether this model satisfies certain
safety properties. Often, this satisfiability solving is implemented with an external SAT
or SMT solver, and therefore benefits from their frequent performance improvement. The
main advantage of these tools is that they provide detailed counter-examples when a
safety violation is found. The developer can thus examine the execution trace leading to
the bug reported.

The main drawback of model checkers is their sensibility to state space explosion: the
number of reachable states to inspect can increase exponentially with the number of
program variables, or the presence of (unbounded) loops, which greatly impacts the
running time of these tools, or render the analysis unfeasible. Several techniques exists
to mitigate this effect, notably bounded model checking. Here, the size of the inspected
graph is bounded by some constant. The analysis is thus incomplete, but in some context
(for example, real time embedded systems), this partial model is enough to prove safety
in a program.

One model checker of particular interest for this project is CBMC [KT14], a bounded
model checker for C programs. The main motivations for using CBMC is that the tool is
freely available, mature and allows for fast prototyping.

The competition on software verification (SV-COMP) [Bey16] is an international com-
petition of software verification tools. Every year, many competitors are evaluated on
an significant amount of verification tasks on C and Java programs. This master thesis
will benefit from two byproducts of the SV-COMP: First, all competitive tools are freely
available and open source, which allow us to experiment with them. Secondly, SV-COMP

4
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1.4. Related work

defines a standard verification API that all competing tools must support in order to
take place in the competition. Therefore, it defines a good basis to experiment with
multiple state-of-the-art verification tools.

The research for automotive software verification contains several examples of application
of such tools. However, the tools are often used to verify some very specific piece of
software, such as small critical software component, OS cores, etc, and is not widely used.
Therefore, automatic verification in this field seems to still be in its infancy.

Fang et al. [FKDO12] successfully used the SPIN model checker to test a multi-core real
time OS based on AUTOSAR specifications. It should be noted that they do not check
the OS directly but rather a model written in PROMELA, the modeling language used
by SPIN. Moreover, they list the model creation as “one of the most difficult parts of the
whole development process”, and cannot be automatized, therefore a similar approach
cannot be considered on our side.

More recently, Berger et al. [BKÁ+18] applied the model checking tool BTC embedded
tester to verify two R&D prototypes from Ford. The BTC tool relies heavily on CBMC
that is used along with some extensions; CBMC and BTC developers collaborate closely
[SKB+17]. They verify auto-generated C code from Simulink against functional require-
ments translated into temporal logic (LTL). They note that formalizing requirements
from text into LTL is one of the most tedious part of their development. This work has
since been extended in a master thesis [Wes19] where the same verification task is tested
using SV-COMP competitors’ tools. The result is that CBMC and BTC are still superior
to other tools for this particular use case. Another master thesis, completed in 2018 by
Roland Mittag, focusses on the application of Static Analysis on AUTOSAR components,
and give insights about commonly used testing methods for automobile software [Mit18].

CBMC has also been used for verifying correct API call sequence in automotive software
by Kim and Choi [KC16]. Interestingly, they develop a method to use the tool to check
general program properties (similar to those expressed in temporal logic). The tool does
not allow for directly checking such properties, thus they proposed to check them by
automatically insert assertions in relevant parts of the program. Another way of using
bounded model checker to verify LTL properties has been described by Morse et al. in
[MCNF15], using ESBMC extended with several ideas, like monitor threads, providing
more formal guarantees.
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CHAPTER 2
Project context

The aim of this part is to introduce all major concepts to help motivate and contextualize
the work done for Software Verification at TTTech. In particular, we want to illustrate
the challenges of this project and why verification is needed.

2.1 AUTOSAR Standard

In order to contextualize this work, we first need to introduce AUTOSAR and its most
important concepts. The AUTomotive Open System ARchitecture is standardization
organization created in 2002, and results from a collaboration between multiple major
actors of the automobile industry (BMW, Ford, Toyota, or Volkswagen, to name a few).
The main objective of AUTOSAR is to produce a series of standardized specifications
for automobile software running on Electronic Control Units (ECUs), which control the
car’s logic and electronic subsystems. A modern car typically uses a high number of
ECUs: AUTOSAR defines a common software architecture which prevent constructors
from having to re-develop their software from scratch whenever the underlying hardware
is changing. In this thesis, we will use the term “AUTOSAR ” to designate both the
AUTOSAR standard and the AUTOSAR organization.

These specifications describe the modular configuration of the software, and define
interfaces between these modules. By complying to this standard, automobile constructors
and equipment manufacturers experience a simplified development process, collaborate
more easily with other AUTOSAR partners and benefit from an improved re-usability of
developed software.

The motto of AUTOSAR is “Cooperate on standards, compete on implementation.”
[Bun11]: Indeed, the AUTOSAR consortium itself does not deliver any code. Soft-
ware vendors and Original Equipement Manufacturers (OEMs) each propose their own
implementation of the standard, with various degree of performance and different targets.
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2. Project context

An overview of the AUTOSAR classic architecture can be seen Figure 2.1. The most
distinctive aspect of this architecture is its layered structure: each layer introduces a new
level of abstraction and interfaces. The principal layers are:

• The Basic Software (BSW) is a set of standardized software modules, managing
the base functionalities of the AUTOSAR platform. Its role is to abstract the
hardware implementation and provide standard services for the higher layers, for
example regarding memory management or diagnostic functionalities.

• The Application Layer is composed of several Application Software Com-
ponents (SW-Cs), which carry out the vehicle applications (e.g. door locking
systems, cruise control systems, etc). SW-Cs interact only with the RTE, and as
such, they are meant to be completely platform-independent and reusable on any
AUTOSAR -compliant ECU architecture.

• The Runtime Environment (RTE) [R4.15c] is a standardized API which makes
the junction between the platform-specific Basic Software and the portable Applica-
tion Layer. The RTE defines interfaces that allows different Software Components
to communicate with one another, and give them access to Basic Software services.

Figure 2.1: AUTOSAR classic platform architecture [Bun11] [R4.15a]

AUTOSAR supports the development of safety related systems [R4.15b], by specifying
several mechanism regarding safe memory access, execution, timing or information
exchange. However, AUTOSAR is not a complete safe solution by itself, as it is still
possible to develop unsafe systems that use AUTOSAR safety mechanisms. The norm of
reference regarding functional safety of automobile software is the ISO 26262.
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2.2. ISO 26262 and future norms

2.2 ISO 26262 and future norms

ISO 26262 [ISO18b] is a norm introduced in 2011 that is concerned with the safety of
electronic and electrical systems within road vehicles. It gives guidelines that are to be
adopted all along the development process of a system in order to ensure its functional
safety. These include requirements to be followed during the requirements specification,
design, implementation, integration, verification, validation and configuration phases of
system development.

The norm defines four different levels of safety, designated Automotive Safety Integrity
Levels (ASILs), ranging from ASIL-A (the least stringent) to ASIL-D (the most stringent).
The ASIL levels is used to classify risks and depends on three criterions: Severity, Exposure
(i.e. Probability of failure) and Controllability.

In the frame of AUTOSAR , it is typical to give an ASIL rating to a given SW-C (see
[R4.15b]). A component rated ASIL-D would indicate that its failure would cause a
direct risk of life-threatening injuries.

In terms of software safety, the norm gives clear guidelines toward which verification
and/or testing techniques to put in place during development [ISO18a]. Recommendations
for each ASIL are contained in Table 2.2. The practices are either:

• “++” highly recommended,

• “+” recommended, or

• “o” the norm does not give recommendations for or against its usage.

Method ASIL
A B C D

1d Semi-formal verification + + ++ ++
1e Formal verification o o + +
1f Control flow analysis + + ++ ++
1g Data flow analysis + + ++ ++
1h Static code analysis ++ ++ ++ ++
1i Static analyses based on abstract interpretation + + + +

Figure 2.2: ISO 26262 - methods for software unit verification - excerpt from [ISO18a]

Rows 1d to 1i clearly indicates that the usage of different software verification tools
based on formal methods are recommended or highly recommended during the validation
phase. For this reason, TTTech and other actors of the industry have strong incentives
to introduce such tools in their processes.

In addition to the ISO 26262, a new norm, the ISO/SAE 21434 - road vehicle: Cybersecu-
rity Engineering - is currently in the works and is expected to be published in late 2020
[BMGS20]. As automobiles are becoming increasingly connected with their environment,
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2. Project context

a serious increase in potential cyber-attacks vectors is observed. Like the previously
mentioned norm, the ISO/SAE 21434 proposes a method based on risk evaluation and
management, and gives guidelines to be observed during the development of systems (an
overview of the content can be found in [SGM18]).

While the definitive content of the document is not yet published, one can imagine that
the norm would hardly be complete without considering cyber-security risks associated
with software logic bugs. One classic example of such exploits are stack and buffer
overflows, that can allow an attacker to take full control of the targeted machine. Cai et.
al. have demonstrated last year the possible execution of arbitrary code on a BMW ECU
using a stack overflow vulnerability in the Navigation Update Service [CWZ+19]. Tools
based on formal methods could surely have detected this attack point, and have already
proved their effectiveness for eliminating similar attack vectors [FLR17] [CGD+16].

2.3 System under investigation

Our target is an automotive software platform focused on safety that is being developed
by TTTech. The key technology of this product its safe scheduling solution: it allows
different software tasks to be coordinated in a time-triggered, deterministic fashion,
guaranteeing that critical tasks are always executed in time. This technology is based on
several innovations in the domain of real time software with Time-Triggered architecture
that were developed by TU Wien and TTTech in the past thirty years [KB03]. It also
implements various safety features such as error management, task supervision and
has fail-operational capabilities. These ensure that various software components are
encapsulated and guarantee freedom from interference, so that a failing component would
not cause the failure of the whole system.

In terms of architecture, the platform is designed to be generic, and can be deployed
on various operating systems or hardware. In particular, its architecture allows it to be
deployed on multiple ECUs, namely (one or more) Performance Hosts and a Safety
Host. The Performance Host(s) typically operate on a high performance CPU with
hardware accelerators (GPUs, TPUs), which do not comply with highest ASIL ratings.
The Safety Host is subject to higher ASIL requirements (typically ASIL-D), is in charge
of safety critical and system supervion tasks running on ASIL-D compliant hardware.

The platform provides an implementation of the most central element of the AUTOSAR
standard: it comes with its own inter-host communication system, allowing components
running on different systems to interact seamlessly through the AUTOSAR RTE. Other
services of the AUTOSAR BSW, are also implemented by TTTech, while some lower
levels of the BSW are implemented by the underlying OS.

2.3.1 From System Definition to generated C code

The developement of a new AUTOSAR compliant system is a well defined process
referred-to as AUTOSAR Methodology. It is a thorough design and architecture task,
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2.3. System under investigation

during which detailed description of 1. software component (data types, interfaces),
2. ECU resources (harware, peripheral requirements) and 3. various system constraints
(e.g. network topologies) are defined. The result of this work is the System Definition,
which in practice is a set of AUTOSAR XML (ARXML) files containing information
needed to deploy the system on the platform and defining the software architecture.1

One of the roles of a configurable automotive software solution is to process ARXML
files of the System Definition, and generate executable files (or source code ready to
be compiled) satisfying the specifications, that will serve as a basis for the application-
oriented software developed by OEMs. As we have denoted earlier, one of the crucial
aspect ensuring the safety of the system is the determinism of the execution: this
hints that most elements relative to the system configuration will end up being encoded
statically in the code. For example, the execution schedule, or the memory areas that
each component uses are predetermined and realized with C constants. In this view, an
important part of the knowledge and complexity is located in the code generators. As
proving their correctness is challenging, the verification and validation effort is rather
conducted on the generated code, and must therefore be automated.

Porting of the software to a new platform involves many different verification and
validation steps, at different modeling and integration stages2. The system also provides
a self-test procedure [McC85], under which it will test its own functionalities against
expected values.

However, such test methods are only as good as the number and the extent of the
tests cases that are operated. Verification techniques based on formal methods have the
potential to provide stronger correctness proof and safety guarantees, by exploring a
wider state space.

2.3.2 Continuous Verification

Finally, one of the emphases that was put on this study is to adopt a verification approach
suited to continuous integration and fast development cycles.

While the development of an ECU specific software (i.e. targeting one particular car model)
is done with long term Software Development Lifecycle Models, such as the V-Model
[Rup10], automotive companies still highly benefit from modern software development
practices, such as Continuous Integration. Continuous Integration allows developers to
detect bugs or design flaws early in development, and thus reduce development costs and
testing efforts down the line.

1This is a simplified view, as the design of the platform and of subsequent software specification has
several intermediate steps. Am interesting overview of the AUTOSAR design process and the bridge
between system architecture and software architecture can be found in [MAK14].

2This is in fact one major advantage of this platform: being able to perform precise tests early in
the developement process (with so-called Software-In-the-Loop methods), thus avoiding the discovery of
flaws late in the development process, which generally induce high cost to correct them.
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2. Project context

One of the key ingredients of a successful Continuous Integration is the automatic testing
system, which is in charge of performing daily tests on the newly introduced code. The
code is typically tested against known results (regression tests), and different code quality
standards, such as MISRA-C, a set of C development guidelines broadly adopted in the
Automobile Industry.

Static Analyzers also commonly appear in Continuous Integration pipelines [NŠST18]
[ZSO+17]. Together with code linters, these tools also contribute to improving the code
quality by signaling bugs or potential bugs, as well as lines of code with ambiguous
semantics. They can also be used to forbid certain code constructs that, while correct,
might be dangerous or have compiler-dependent behaviors.

While these various code analyzers have their merits, they generally do not provide formal
guarantees about the tested code, in contrast with tools that we are targeting in this
thesis.

As we want to investigate formal verification tools usability within the context of contin-
uous integration, we have to consider the following constraints:

• Low developer interaction: as the software verification is thought to happen
daily or weekly, it must not become a burden for developers and lead to an increase
of development costs. Therefore, it must be as automated as possible, that is why
we will focus on approaches that do not require developers to write new specifications
in the code.

• Reliable results: Developers will accept the introduction of a new tool in their
development environment only if they are convinced that it is adding value to their
work. For this reason, the tool must provide reliable results. Every reported error
will require investigation from a developer: their time should not be wasted, so we
should ensure that all reported errors are genuine.

• Reasonable running time: Finally, as verification should be conducted daily or
weekly, it must provide its results within a reasonable number of hours.
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CHAPTER 3
Software Verification tools

3.1 Basic concepts

We want to introduce here some elementary concepts related to software verification that
will be referred to in the following. The three following definitions are derived from Jhala
and Majumdar “Software Model Checking” [JM09].

• Definition: Software verification problem: Given a program P and an error
location ε, a program is said to be “safe” if ε is unreachable and “unsafe” if ε is
reachable.

• Definition: Sound Analysis: An algorithm for the software verification problem
is sound if, for every program P and every error location ε, if the program returns
“safe”, then ε is unreachable.
A sound verifier will always find and report all errors in a given program, but might
report additional, spurious errors. Therefore, manual inspection is required for
filtering the results.

• Definition: Complete Analysis: An algorithm for the software verification
problem is complete if, for every program P and every error location ε, if the
algorithm return “unsafe”, then the error location ε is reachable.
A complete analyzer will only report genuine errors, but it might not detect all
errors present in the program under analysis1.

Naturally, the ultimate goal of every software verification tool is to accomplish soundness
and completeness, which would require the inspection of exactly all possible program

1The concept of a complete formal system in logic slightly differs from the common interpretation
of “completeness”. A proof system said to be is complete if all true properties can be proven to be true

using this system, but a complete logical proof system is not necessarily able to identify false properties.
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3. Software Verification tools

states. While this might be possible for some small category of programs, it is in general
undecidable. In practice, verifiers have to cope with the State Space Explosion Problem
[CKNZ11]: the number of program states increases exponentially with the number of
program variables, inspecting all of them in reasonable time is largely unfeasible.

In order to circumvent the state explosion problem, analyses resort to approximating the
set of reachable program states or execution traces that can appear in the program. Two
cases emerge:

• Over-approximations consider a superset of program states and traces when run-
ning the analysis. This can be achieved by the mean of abstract representations, such
as using superposition of states instead of real program states. Over-approximations
generally produce Sound analyses.

• Under-approximations only analyze a subset of possible program states, which is
commonly done by introducing bounds in the program. The bounds can artificially
limit the number of iterations of loops, limit the size of manipulated memory objects
(e.g. maximum array sizes, maximum lists length), or limit the total number of
instructions. Under-approximations typically produce Complete Analyses.

Finally, software analysis methods often make use of non-deterministic values, which
could also be designated as unspecified values. When a variable is modeled with non-
determinitism, it means that any value that the variable could take is considered. The
program may consequently follow any computation path resulting from the different
possible values of the said variable. Non-determinism is useful to over-approximate the
behavior of a function, as it helps modeling all possible results that this function could
return.

3.1.1 Verification tools selection criteria

The offer for software verification tools is broad and diverse. Given the scope of our
project, we consider tools matching the following criteria:

• Targeting standard, plain C code: We consider only software verification tool which
take plain C code as an input. In particular, we refrain from using tools that require
additional handwritten specifications to be added in the code.

• Freely available: The software verification tool has to be freely available, which
favors academic tools.

• Active: We only consider tools that are still under active development.

• Simple of usage: Tools that are unable to analyse the code as-is will not be
considered, as we cannot maintain different versions of the code for compliance
against each and every tool.
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3.2. Selected verification tools

• Covering all constructs of the C language We will aim for tools that can model the
C language completely. Some tools cannot prove properties depending on floating
points, bit vectors, or memory allocations and will therefore not be considered.

Because of the prior mentioned reasons, a natural fit for our requirements is the tools
taking part in the SV-COMP [Bey20a]. The SV-COMP is a competition that is held
every year at the Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) [BP20] conference, and that aims at evaluating the state of the art verification
tools on an important database of C programs, for which various properties must be
proven. Except from the bug coverage criterion, the tools participating in the competition
match all the above-mentioned rules, it was thus highly interesting for us to evaluate the
most promising tools of the SV-COMP on our case study. Apart from the results, the
SV-COMP defines an Application Programming Interface (API) for program verification
tools that standardizes the tools behavior; we describe it in Section 3.3.

3.2 Selected verification tools

3.2.1 CBMC

C Bounded Model Checker (CBMC) has been selected very early on in the project as it
is a very mature tool for model checking of C program that has already been the object
of numerous industrial applications2. Initially presented in 2004 [CKL04], CBMC has
acquired some maturity and multiple performance improvements over time, even if the
core principle of its analysis remains unchanged.

CBMC implements bounded model checking [BCCZ99], an under approximation technique
under which all program loops are unwound up to k times. For instance, while loops in
the program are replaced by k duplication of the loop body, nested in k if statements
using the loop condition.

The program obtained is subsequently translated into a boolean formula, using an
encoding of C statements into equivalent boolean logic expressions. The encoding is
built in such a way that the program is correct if and only if the formula is unsatisfiable,
that is, if no assignment of boolean variables making the formula true exist. If such an
assignment can be found, it indicates the existence of a property violation in the program,
and can later be used to build a real execution trace leading to the error location.

The formula is then given to a SAT solver such as MiniSAT [SE05] which is in charge
of giving the final diagnostic. In case of violation, a counter-example is built from the
satisfiability witness, and provides the erroneous execution trace to the user.

CBMC can therefore prove the correctness of a program for which all loops are bounded,
and is efficient for finding shallow bugs. Moreover, CBMC comes with an entire framework

2See the list of applications of CBMC available at http://www.cprover.org/cbmc/

applications/ (accessed on 26th July, 2020)
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3. Software Verification tools

(goto-cc, goto-instrument), which is able to compile a program with standard C
compiler workflows, and perform useful code transformation on the code. This framework
is very practical and quickly became indispensable for performing our experiments. We
have been using mainly the latest release of CBMC (5.12), on which we performed several
bug fixes and adapted some functionalities.

3.2.2 CBMC augmented with k-induction

While bounded model checking is efficient, it does not constitute a complete proof system
for programs containing unbounded loops. To alleviate this problem, bounded model
checker can be augmented with k-induction [DMRS03] which provide them with a way
to achieve soundness. k-induction is an extension of mathematical induction, in which
we are able to prove the validity of a property for all n, by proving that it holds for a
base case (typically, for n = 0), and proving that, if it holds for an arbitrary n, it then
necessarily holds for the next value (n + 1), the inductive case.

The same principle can be applied to unbounded loops in programs, using the same upper
limit k as bounded model checkers. The proof is also performed in two steps:

• Base case: Check that the program is correct for the first k iterations of the loop
(this is analoguous to plain bounded model checking).

• k-Inductive case: Enter the loop at an arbitrary loop iteration i (this can be
done by assigning non-deterministic values to all loop variables). Suppose that
the program is correct for the next k iterations; check that it is then correct for
the k + i + 1-th iteration. If this holds, the program is proven correct for all loop
iterations.

We found that this principle was easily applicable in our case study by doing a few code
transformations, that are described more in details in Section 4.3.33 Since its introduction,
k-induction has been extended further than these basic principles, for instance by using
synthesized loop invariants to strengthen the assumptions [RICB17] [BDW15]. However,
implementing them ourselves was out of the scope of this thesis, hence we have only been
applying tools based on these techniques, such as CPAChecker .

3.2.3 CPAChecker

CPAChecker [BK11], (Configurable Program Analysis - Checker) would be better defined
as a verification framework than a verification tool. It was presented in 2009 as a platform
containing one basic algorithm that can easily be extended to implement new verification
techniques and ideas. The central data-structure manipulated by the algorithm is a

3Credits should also be given to Lucas Westhofen, that has demonstrated in his thesis the viability of
the method in a comparable case study [Wes19]. Nevertheless, our application of k-induction differs in
terms of implementation, and in terms of targeted properties.
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3.2. Selected verification tools

control flow automaton, a graph where nodes represent program location and edges
represent operations. The CPA algorithm [BHT07] acts on this data-structure with the
use of three different operations: the transfer, merge and stop routines, and uses an
abstract domain D as a representation for abstract program states.

Using these four elements, the CPA algorithm can compute a set of reachable abstract
states from the initial program state, and the final set of reachable states is used to give
conclusion about program properties. For example, if the final set of reachable states
contains a state where a variable i ∈ [1, 10] is used for dereferencing an array of size 5,
an array out of bound error can be reported.

Without diving into further implementation details, this means that any verification
technique can be implemented in this tool, simply by providing an implementation for
the three routines transfer, merge and stop mentioned above. Furthermore, multiple
analyses can be performed at the same time and combine their results dynamically,
which can dramatically strenghten conclusions. Nowadays CPAChecker contains im-
plementations of almost all state-of-the art verification techniques, such as k-induction
[BDW15], Counter-Example Guided Abstraction Refinement (CEGAR) [Löw13], Predicate
Abstraction [LW12], or Symbolic Execution [BL18].

Using all these techniques sequentially, CPAChecker systematically reached the top of
the leaderboard in the lastest editions of the SV-COMP. However, it is thought primarily
as a platform for experimenting and comparing new software verification ideas, and does
not pretend to be a robust tool ready for industrial applications.

In our experiments, we have been using CPAChecker release 1.9.1 with the default
SV-COMP 2020 configuration, except for memory-leak detection features that we have
disabled.

3.2.4 Ultimate Automizer

Ultimate Automizer [HCD+13] has been chosen as a third contender as it has achieved
the second place in the last SV-COMP after CPAChecker, while also competing in all
categories, and has generally achieved good results in competitions over the last years.
It is developed after a new approach to model checking based on automata that was
introduced together with the tool in 2013.

At its core, Ultimate Automizer performs a CEGAR algorithm, which functions in the
following fashion: suspected erroneous execution paths are identified an examined. If
the erroneous path can actually occur in the program, it is returned and constitutes a
counter-example to the program validity. Otherwise, a sequence of predicates proving
the path’s infeasibility in the original program is computed, and used to improve the
precision of the current model. The algorithm continues until either a counterexample is
found, or no more suspected error traces can be found [HCD+18].

The efficiency of CEGAR depends heavily on the selection of inspected execution traces,
and how much can be learned from spurious counter-examples. Ultimate Automizer uses
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3. Software Verification tools

many diverse and different techniques to find these traces and benefits from frequent
improvements. In our experiments, we have been using Ultimate Automizer release 0.1.25,
that has been released for the SV-COMP 2020.

3.3 SV-COMP API

The SV-COMP defines a standard format for verification tasks [Bey20b], that will simplify
the interfacing of our case study with the verification tools. Firstly, it defines a list of
functions with verification-relevant semantics:

• __VERIFIER_error(): Indicates a forbidden location that a correct program
should not reach. A standard C assertion – assert( condition ) – can be
subsequently defined as:
if(!condition) { __VERIFIER_error(); }.

• __VERIFIER_assume( condition ): Indicates that a condition necessarily
hold on this location. Its semantics are equivalent to the following implementation:
if(!condition) { while(1); }, which essentially prevents the program to

go any further if the condition is not matched.

• __VERIFIER_nondet_type(): Returns a non-deterministic value of a given
type.

• __VERIFIER_atomic_begin() (or _end()): Designates the beginning or the
end of an atomic section in a multi-threaded environment.

In addition to these functions, each C program that is part of the SV-COMP benchmark
is shipped with a specification file, containing one or more Linear Temporal Logic (LTL)
formulas stipulating additional checks to be done in the program. These formulas utilise
the following elements of the LTL syntax: G condition indicates that condition
should always be true, and F condition indicates that the program must eventually
reach a state where condition is true. The list of possible specifications are available
in Table 3.1

The use of this API in our particular use case will be described in Chapter 4: Environment
Model and Code Preparation.

3.4 Other code analyzers

3.4.1 Frama-C

Additionally to the previously mentioned tools, we have been using Frama-C [CKK+12]
to perform several analyses on the code that we would characterize as pre-processing
steps. Frama-C is a software analysis platform with different plugins performing various
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3.4. Other code analyzers

LTL formula Semantics Relevant
G valid-free All memory deallocation are valid No
G valid-deref All dereferenced pointers refer to

valid memory areas
Yes

G valid-memtrack All allocated memory is tracked No
G valid-memcleanup Every allocated memory is eventu-

ally deallocated
No

G !overflow The result of an integer operation is
outside of the range of values that
can be represented by the resulting
type

Yes

F end The end of the program is eventually
reached.

No

Table 3.1: List of possible LTL formulas listed in the SV-COMP standard specification
file. The last column indicate the relevance of the specification for our case study (more
details are given in Section 4.1).

tasks, such as analyses based on abstract interpretation, deductive verification, concolic
test generations or code slicing. It is designed for being applied on large scale industrial
projects and constitutes a formidable toolbox for software analysis.

For this project, we have mostly been using the Value Analysis plugin which is able to
compute an over-approximation of variable values for all program locations, and also
report alarms when potential bugs in the code are detected. Frama-C , however, uses its
own specification language, ACSL [BFM+08], and is not natively compatible with the
SV-COMP API described in Section 3.3. We have created a restricted implementation of
the SV-COMP API specific to Frama-C , to ensure that it would give us results coherent
with our verification tasks. This implementation was however very limited, and we have
not been using Frama-C for computing proofs. Our usage of Frama-C will be described
in Section 4.3.2.
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CHAPTER 4
Environment Model and Code

Preparation

One of the most important tasks of this work in terms of workload was to construct a
proper environment model and code transformation that make the verification feasible,
correct, and suited to analyses by verifiers.

The environment model has two objectives:

• Limit the scope of the verification: with unlimited time and memory resources,
we could directly feed the whole source code of the program to the software
verification tool. Since this is infeasible in practice, our objective is to only verify a
limited part of the code at once, while providing an acceptable simulation of the
abstracted code's behavior.

• Provide a sound but tight over-approximation: while we abstract away part
of the code, we still want to ensure that we detect all possible bugs that could
appear in the code that we are actually checking. We can guarantee this only if
we exhaustively explore all reachable states that could occur during the program
execution (potentially exploring states that cannot actually occur in the program).

The following part is organized as follows: we first introduce our environment hypotheses,
we then present our code abstraction methodology, and finally we describe the steps for
generating a test harness - the final input for software verifiers.
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4. Environment Model and Code Preparation

4.1 Environment hypotheses

Verification tasks that we have considered during our case studies all follow the basic
SW-C structure. Essentially, our test target is entirely represented by two Runnable
functions:

• The Runnable_Init() function is called at the beginning at the execution. Its
role is to initialize all global variables to bring the SW-C in a valid initial state.
The system gives us a guarantee that the Runnable_Init function will be called
before anything else happens.

• The Runnable_Step() function is called at regular intervals (typically, every
10 milliseconds), until the end of the execution. Its goal is to maintain the state
of the system and to perform application-related tasks. Additionally, we have
the guarantee that all loops embedded in the Step() function are bounded: this
derives from the fact that all runnables of the system exhibit a bounded Worst
Case Execution Time (WCET).

The execution of SW-C can be simulated with the code template Figure 4.1.

1 // Global variables declaration and initialization

2

3 int main()

4 {

5 Runnable_Init(); // Further initialize globals

6

7 while(1)

8 {

9 Runnable_Step();

10

11 wait(delay);

12 }

13 }

14

Figure 4.1: Software Components basic code structure

An additional property respected by the programs under investigation, is the absence
of dynamically allocated memory in the code. This is indeed one of the restrictions
imposed by the MISRA-C standard, that is to be respected in the whole most automotive
codebases.

4.1.1 Model limitations

Our model of the SW-C execution carries several intrinsic hypotheses:
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4.2. Interface Abstraction

• Single-threaded program / no-interference hypothesis: we suppose that
global variables cannot be arbitrarily modified between two executions of the
Step() function.

• Complete initialization hypothesis: the only initial state of the system that we
consider is the state obtained after the call to Runnable_Init(). However, some
global variables, that could be labelled “configuration variables”, may have other
possible values. Consider a global variable const int DEBUG=0, that could be
used to statically enable or disable some part of the code for debugging. In this
study, we decided to not change initial values of global variables, as determining
valid initial ranges for all variables was not feasible automatically, and changing
them to arbitrary ranges would simply introduce too many errors.

Finally, our approach tests the code as it is given to the compiler. This means that we
only test each function as it is currently used in the software; and not all their possible
use cases. For example, one could imagine that a function misbehaves for some particular
input that cannot appear in the current version of the software, but that may occur in a
future version. Despite this, we can guarantee, in case of successful verification, that the
software will not crash in its current configuration.

4.2 Interface Abstraction

There are two kind of interfaces to non-targeted code that we had to abstract: the RTE
API and the Portable Operating System Interface (POSIX) API. Components which
strictly adhere to the AUTOSAR SW-C definition can only access the RTE API. However,
some other components (Complex Device Driver) have additional accesses to some BSW
and Operating System (OS)-specific interfaces.

In our case, it was not necessary to stub BSW interfaces, but we encountered some
POSIX API calls for which abstraction was necessary.

Concretely, abstracting an API is done by implementing non-deterministic stubs for all
functions of the API that are used in our target code.

A non-deterministic stub is a function definition that simulates the behavior of a real
function. The stub gives non-deterministic values to all output value of the function,
and try to respect valid value ranges if they are known. An example of such a stub is
presented Figure 4.2. In this example, wheel_id is not modified as it is an input value,
and by the semantics of the C language, altering its value would not change anything
from the perspective of the caller.

As a general rule for stubs, output values are defined as:

• return value of functions, and,

• all parameters given as non constant pointers (pointers without the keyword const)
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4. Environment Model and Code Preparation

1 #define OK 0

2 #define NOK 1

3

4 /*** read_wheel_torque specifications *********************************/

5 /* \param[in] wheel_id ID of the wheel. */

6 /* \param[out] torque_val torque sensor value. Range: [−50.0f,50.0f] */

7 /* \return Read status. Range: {OK, NOK} */

8 /**********************************************************************/

9 int read_wheel_torque(int wheel_id, float *torque_val);

10

11 // non−deterministic stub

12 int read_wheel_torque(int wheel_id, float *torque_val)

13 {

14 *torque_val = __VERIFIER_nondet_float();

15 __VERIFIER_assume(*torque_val > −50.0f && *torque_val < 50.0f);

16

17 int ret_val = __VERIFIER_nondet_int();

18 __VERIFIER_assume(ret_val == OK || ret_val == NOK);

19 return ret_val;

20 }

21

Figure 4.2: Example of a function declaration and the corresponding non-deterministic
stub

4.2.1 AUTOSAR RTE Abstraction

Exploiting AUTOSAR specifications

In the standard AUTOSAR workflow, the RTE implementation is automatically generated
from specifications given in the form of ARXMLs files. In the particular case of software
components, a SW-C-specific specification file enumerates all RTE interfaces that this
component can access: in AUTOSAR jargon, this is called the list of Port Prototypes.
These prototypes refer to Port Interfaces, which define the DataTypes of objects being
exchanged, and are located in another ARXML file (the system-wide “system definition”
file). The complete SW-C generation methodology can be seen Figure 4.3.

For creating our stubs, information relative to the communication paradigms of each
port of the RTE was not crucial. Rather, we only needed to retrieve the signature of API
function, alongs with DataTypes specifications, that are required to increase the precision
of our stubs.

Each AUTOSAR DataType has specific characteristics that can be extracted from
ARXML files. Rather than giving a complete list of possible DataTypes-related infor-
mation found in ARXMLs, we want to quickly mention here the most relevant parts:

• Composition: Each DataType can be a composition of one multiple subtypes
(the type definition in C will be resp. typedef or struct). The reference to the
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4.2. Interface Abstraction

underlying type(s) is given in the <IMPLEMENTATION-DATA-TYPE-REF> node(s)
of the ARXML. The type composition is recursive, and ends when a base type (e.g.
uint8, uint32...) is reached.

• Constraints: For every DataType, maximal and/or minimal values can be defined.
These values can appear either in the <DATA-CONSTRAINT> node, or as can be
defined as part of a computation method (COMPU-METHOD) of type SCALE-LINEAR
or LINEAR.

• Possible Values: Instead of a valid range, a discrete set of possible values of a
type can be defined. These are given by the TEXTTABLE category of computation
methods. The values appearing in text tables will be represented as #define’d
constants in the C implementation.

• Size: Finally, the size of the DataType’s representation in memory is specified for
base types and for array types.

ARXML

SW-Component
Internal	Behavior	Description

[API	Generation]

Input	for	stubs	generation

Component
API	Generator

Generate
Component

API

Implement
Component

Header
(.h)

Compile
Component

Source
(.c)

Developer

SW-Component
Implementation

ARXML

Object
(.o)

SW-Component
Compiled

Implementation

SW-Component
Implementation

Description

Compiler

Component
API

Input	for	stubs	generation

Verification	Target

ARXML

System	Configuration

refers to

Figure 4.3: Software Component generation process (derived from [R4.15c] section 3.1)

Stubs generation

We used all aforementioned pieces of information to generate, for each AUTOSAR
DataType, a non-deterministic modifier, and a non-deterministic generator. Using
those, we can automatically generate non-deterministic stubs for all RTE API functions.
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4. Environment Model and Code Preparation

513 // ...

514 // a non−deterministic modifier for the AUTOSAR type ‘Dt_GPS_Position ‘

515 void modif_nondet__Dt_GPS_Position(Dt_GPS_Position *gps_position)

516 {

517 modif_nondet__Dt_lat(&gps_position−>latitude);

518 modif_nondet__Dt_lon(&gps_position−>longitude);

519 modif_nondet__Dt_alt(&gps_position−>altitude);

520 }

521

522 // a non−deterministic modifier for the AUTOSAR type ‘Std_ReturnType ‘

523 Std_ReturnType modif_nondet__Std_ReturnType(Std_ReturnType *tmp)

524 {

525 *tmp = __VERIFIER_nondet_uint8();

526 __VERIFIER_assume( *tmp == E_OK || *tmp == E_NOT_OK );

527 return ret_val;

528 }

529

530 // a non−deterministic generator for the AUTOSAR type ‘Std_ReturnType ‘

531 Std_ReturnType generate_nondet__Std_ReturnType(void)

532 {

533 Std_ReturnType ret_val;

534 modif_nondet__Std_ReturnType(ret_val);

535 return ret_val;

536 }

537

538 // a non−deterministic rte api stub

539 Std_ReturnType Rte_Read__Dt_GPS_Position(Dt_GPS_Position *gps_position)

540 {

541 modif_nondet__Dt_GPS_Position(gps_position);

542 return generate_nondet__Std_ReturnType();

543 }

544

Figure 4.4: Example of a generated non-deterministic RTE API stub

An example of generated stub is given Figure 4.4. The stub provide a non-deterministic
implementation of the RTE function Rte_Read__Dt_GPS_Position1: in this case,
both the input parameter and the return value are non-deterministically modified.

The RTE API Abstraction was automatized using a number of Python scripts taking as
input one C header file (.h) per software component and ARXMLs. The different steps
involved in the process and used tools are shown in Table 4.1.

4.2.2 POSIX API Abstraction

The need to abstract some interfaces of the POSIX API revealed itself during the testing
phase. During the first verification experiments on a Complex Device Driver , CBMC
reported a high number of function with missing definitions. In this case, the tool replaces

1function and type names have been simplified and do not respect AUTOSAR naming conventions.
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4.2. Interface Abstraction

Processing step Tooling

Retrieving API signatures from C headers PyCParser [Ben12]
Parsing ARXML specification files Custom parser based on LXML [BFB+05]
Creating the Stubs (generating C code) Python + Jinja2 [Ron]

Table 4.1: Tools used for the RTE API stubs generation

missing definitions by non-deterministic stubs, but it became quickly evident that those
were too imprecise, as CBMC reported a high number of spurious bug that could be
traced back directly to these stubs.

Writing stubs for POSIX function is common practice for verifying POSIX-compliant
software (see for example pthread API stubs written by Inverso et. al. in [ITF+14]).
CBMC and most verification tools are generally shipped with their own abstraction of
some POSIX and standard C library functions), but they rarely cover the whole standards
as this requires many work-hours. The list of missing functions that we had to implement
is available in Table 4.2.

Since the amount of functions to stub was reasonably small, we implemented them
manually and had the opportunity to embed in the stubs some safety-checks that we
were able to derive from POSIX specification.

These safety-checks take the form of assumptions and assertions that we insert inside the
function definitions, to ensure that the calls to the API from the verified software are
valid: for example that a socket used for communication is created before being used, or
that data-buffers used for networking refer to valid memory areas.

Function name Short description

socket create an endpoint for communication
bind bind a name to a socket
setsockopt get and set options on sockets
sendto send a message on a socket
recvfrom receive a message from a socket
shmopen open POSIX shared memory objects
mmap map files or devices into memory
ftruncate truncate a file to a specified length
open open and possibly create a file
ioctl control device (non-POSIX)
clockgettime retrieve and set the time of the specified clock

Table 4.2: List of stubbed POSIX functions

To illustrate our statement, we give an example of a stub safety-check used for network
communication with socket. For communication to take place, the program must first
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4. Environment Model and Code Preparation

1 int _no_socket_fd = nondet_int();

2 int socket(...)

3 {

4 // check correctness of input parameters

5

6 file_descriptor = __VERIFIER_nondet_int();

7 if(file_descriptor > −1)

8 {

9 __VERIFIER_assume(_no_socket_fd != file_descriptor);

10 return file_descriptor

11 }

12 else return −1;

13 }

14

15 size_t recvfrom(int sock_fd, void* buffer, size_t buff_len, ...)

16 {

17 __VERIFIER_assert(sock_fd >= −1, "sock_fd is a valid file descriptor");

18 __VERIFIER_assert(sock_fd != _no_socket_fd , "sock_fd is a valid socket");

19

20 // ...

21 // non−deterministically modify the receive buffer

22 }

23

Figure 4.5: Snippet of the POSIX API verification stubs

create an endpoint using socket(), which returns -1 in case of failure, or a valid file
descriptor (positive integer) upon success. Later, to receive data from this socket, the
program shall call recvfrom() using the file descriptor that was returned by socket().

The stubs displayed Figure 4.5 implements this safety-check using the verification tools’
abilities: we use a global variable _no_socket_fd to memorize which integer values are
valid socket file descriptors. When a file descriptor get assigned to a socket, we inform
the verifier that _no_socket_fd shall not be equal to this file descriptor. When we
later try to use the socket, we check that _no_socket_fd is not equal to the given
file descriptor. The verifier should be able to infer that this is indeed the case. The
advantage of this safety-check is that it can check the validity of arbitrarly many sockets,
without using any datastructure: we rely solely on the capabilities of verification tools.

For some functions like ioctl, it was more difficult to implement precise safety-checks:
the function behavior is not well standardized, depends on the underlying device drivers,
and cover numerous and diverse use-cases. We therefore did our best to implement the
few ioctl use cases that appeared in the targeted code, but did not cover all possibilities
of usage of this function.
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4.3. Code Transformation and Harness generation

4.3 Code Transformation and Harness generation

One important challenge that we encountered along the way was to transform the code
from its industrial form, to a form suitable for Software Verifiers. Moreover, as we
have mentioned in Section 2.3.2 we are aiming for an approach adapted for Continuous
Integration. This implies that all code transformation steps must be performed without
human intervention, to permit the automatic verification of new code introduced daily or
weekly.

4.3.1 Compiling and re-generating C code

The compilation of an industrial-scale C software project is quite an elaborate process.
Usually, the complete software is an assembly of numerous C libraries, that are compiled
independently and later linked together to form the final program. Furthermore, each
source file is usually compiled with specific definitions (#define) and a specific set of
include directories.

This highly contrasts with the acceptable input of most verification tools: CPAChecker ,
for instance, can only deal with pre-processed C files. A file merging feature exists, but
is experimental2 and did not fit our needs. Ultimate Automizer has similar limitations,
and Frama-C proposes a different building paradigm that we did not evaluate.

Thanksfully, CBMC features goto-cc, a “compiler” which is able to perform all steps
described above, with the difference that it outputs goto-models (a representation of
C programs as control flow graph) instead of object files (.o). When the final model is
obtained (after linking together all goto-models), goto-instrument allows to convert
back the goto-model to C as a single source file (option -dump-c). The model, at this
point, carries enough information to reconstruct a single C file very close syntactically to
the original program, while remaining semantically equivalent. Unfortunately, the source
file we obtained through this process had multiple problems rendering it un-compilable
(none of the releases tested - 5.6, 5.8, 5.11, 5.12 - were able to output fully correct code).

We have also tried other approaches for generating a single C file, such as using the C
Intermediate Language (CIL) [NMRW02]-tools for merging C files, but we found that
the development of the CIL project halted four years ago3, and is not compatible with
modern GCC versions. We also tried to use Frama-C to merge files, as it is built on CIL
and still actively developed. We found that Frama-C rejected some parts of the codebase,
and that the resulting program after merging files was too different from the original for
exploitation, and was also uncompilable.

The only solution we found was to fork the most recent release of CBMC and correct its
implementation to solve all of the issues found in the exported C code. Problems included:

2as mentioned on their github page https://github.com/sosy-lab/cpachecker/blob/

trunk/README.md (accessed on 6th July, 2020).
3as seen on the homepage of the project https://github.com/cil-project/cil (accessed on

6th July, 2020).
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4. Environment Model and Code Preparation

1. wrongly ordered, missing or superfluous type definitions, 2. invalid type casts (for
example, casts between array types) 3. poor handling of variadic arguments, 4. occasional
suppression of loops, 5. missing variable declarations after code instrumentation, and
various minor syntactic problems. Solving these problems was quite a lengthy task but
proved to be very useful in the long run, as CBMC was absolutely necessary for making
multiple code transformations that makes the code acceptable for other verifiers.

4.3.2 Code augmentation

Having a single C file opened up the opportunity to use Frama-C for performing valuable
pre-processing operations, namely:

• Code Slicing: Frama-C ’s slicing plugin is able to determine which program
instructions are relevant with regard to a set of chosen criterions. In our case, we
have been using the most basic option, in which Frama-C removes all uncalled
functions and unused global variables. While this, in theory, should not improve
the verifiers performance, it greatly improved the readability of the final source
code and also cleans up the verifiers input, as verifiers do not include irrelevant
parts of the code in their output, giving us more realistic coverage report indicators.

• Function Pointer Analysis: We encountered some difficulties during the ver-
ification with CBMC that were caused by badly resolved function pointers. As
CBMC starts the analysis by unrolling the transition relation, it needs a complete
representation of the program call graph before running the model checking algo-
rithm. Function pointers are therefore removed by a case-distinction over function
pointer values, however, the pointer analysis performed by CBMC is very coarse.
This tends to add infinite recursions in the call graph (see Figure 4.6), rendering
the analysis infeasible with bounded model checking tools.

f1 f	*

f2

f3

(a) True values taken by the function pointer f*

f1 f	*

f2

f3

(b) Erroneous values for f* induce a recursion

Figure 4.6: Control flow graphs demonstrating the consequences of imprecise function
pointer analysis

Frama-C ’s value analysis plugin is able to infer value-ranges for all global program
variables, including function pointers, and is more accurate that the analysis
performed by CBMC . Using a newly added feature of CBMC that we slightly
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4.3. Code Transformation and Harness generation

improved4, we were able to use the results of Frama-C pointer analysis to restrict
the set of targets of each function pointers, solving the recursion problem.

During the verification, we check if the function pointer values computed with this
method are actually correct (the apparition of an unexpected function pointer value
triggers an assertion violation).

The flowchart describing the entire process to model the environment and prepare sources
for verification can be seen Figure 4.7. Once the program has reached the right side of
the diagram, the verification task is fully compatible with all tools participating in the
SV-COMP, as long as they support all C constructs present in the program.

CBMC
(goto-cc)

Model
Compilation

Sources
(.h,	.c)

Target SW-C 
+ Libraries Sources

Component
RTE	API

Header
(.h)

SW-C	and	System 
Definitions 

ARXML

RTE	API
Abstraction

Custom	
Python	tool

RTE	API
stubs

Source
(.c)

Source	code
generationRich AST

(goto-binary)

CBMC
(goto-instrument)

Source
(.c)

C source containing
the entire program Verification

CBMC,
CPA-checker,

UAutomatizer...

Code	Analysis
and

Augmentation

Frama-C,
goto-instrument

Slicing,
Value analysis,
funct. pointer.

...

Source
(.c)

Augmented C 
source

POST-PROCESSING	(optional)

Source
(.c)

POSIX stubs

Figure 4.7: Environment Modelization and Code Setup Process

4.3.3 Setting up the code for k-induction

As mentioned in Section 3.2.2, we have been using a series of code transformations to
perform k-induction proof on software components. Since the base-case of the proof is
essentially identical to plain bounded model checking, we only need to implement the
inductive case.

k-induction aims at proving that a particular property P hold for all loop iterations.
In our case, the property P can be formulated as: “none of the assertions present in
the code have been violated”. In order to track assertion violations, we use a global
variable assertion_was_violated in conjunction with a custom implementation of

4the -restrict-function-pointer option of goto-instrument was added to CBMC in March
2020. We improved the function pointer type-checking method to make it more permissive (less strict
with compatible function pointer types), and created function pointer variables for all function calls to
ensure that Frama-C would compute their value-domain.
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4. Environment Model and Code Preparation

213 int assertion_was_violated = 0;

214

215 void delayed_assert(int condition , int line_number)

216 {

217 if(!condition)

218 {

219 // we must record that the property is violated

220 if(assertion_was_violated == 0)

221 assertion_was_violated = line_number;

222

223 // we nondetermistically record this property’s line number

224 else if(nondet())

225 assertion_was_violated = line_number;

226

227 }

228 }

229

Figure 4.8: k-induction with CBMC : custom assertion function

the assert function called delayed_assert, which records the exact line number
where an assertion violation occurred. Later on, we check with a standard assertion if the
global variable evaluate to zero (no violations), or to a line number (where the assertion
would be violated). The implementation of this transformation, along with an example,
is given Figure 4.8 and Figure 4.9.

Storing the line number in the global variables allows the model checker to report precisely
which assertion has failed, and to generate counter-examples on demand for a given
assertion violation with the model checker (CBMC option -property). However, it
should be noted that only the assertion assertion_was_violated == 0 is strictly
necessary for the correctness proof.

The simulation of an arbitrary loop iteration is based on the non-deterministic modification
of all loop variables (as seen Figure 4.9, line 252). To do so, it is essential to detect all
global variables5 that can get modified in the call to Runnable_Step(). In practice,
we use Frama-C ’s value analysis plugin which returns the values of all global variables at
the end of the function Runnable_Step(). Having them identified, we modify them
non-determistically using the SV-COMP API, which constitutes an over-approximation
of an arbitrary loop iteration.

It should be noted that CBMC propose its own implementation of k-induction, but we
observed that it was very rudimentary or disfunctional. In our experience, it was not
capable of finding all variables that could be modified in loop body, and was sometime
causing verifier crashs. Consequently, we went with our own implementation.

5in theory, we would also need to consider static function variables. However, the code transformation
presented in the previous section automatically promotes all static function variables to global variables,
so we do not have to consider them.
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4.3. Code Transformation and Harness generation

Improving k-induction with value analysis

For improving the precision of the induction hypothesis, we have exploited the results of
the value analysis performed by Frama-C . In particular, we extract the ranges of global
variables in the end of the Runnable_Step() function, and integrated the property
R := “global variables are in range′′ to the program correctness property P that must
be proven. For doing so, we add corresponding assertions (base case) and assumptions
(inductive case) in the generated code, as illustrated Figure 4.9 (lines 241, 262 and 271).

While this increases the workload on the verifier (more properties need to be proven),
this also greatly reduces the possible state space and adds to the analysis a degree of
precision that is sometimes necessary for obtaining successful correctness proofs.
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4. Environment Model and Code Preparation

230 void base_case_entry_point()

231 {

232 Runnable_Init();

233 int i=0;

234 while(i < k)

235 {

236 Runnable_step();

237 // check correctness of i−th iteration

238 __VERIFIER_assert( assertion_was_violated == 0);

239

240 // check validity of global variable(s) domain(s)

241 __VERIFIER_assert( 0 <= global_var && global_var <= 10);

242 i++;

243 }

244

245 // observe which assertion has failed

246 __VERIFIER_assert( assertion_was_violated != 39 );

247 __VERIFIER_assert( assertion_was_violated != 123 );

248 }

249

250 void inductive_case_entry_point()

251 {

252 Runnable_Init()

253

254 // modify loop variable non−deterministically

255 some_global_loop_variable = __VERIFIER_nondet();

256

257 int i=0;

258 while(i < k)

259 {

260 // induction hypothesis

261 __VERIFIER_assume( assertion_was_violated == 0);

262 __VERIFIER_assume( 0 <= global_var && global_var <= 10);

263 Runnable_step();

264 i++;

265 }

266

267 // check program correctness

268 __VERIFIER_assert(assertion_was_violated == 0);

269

270 // check validity of global variable(s) domain(s)

271 __VERIFIER_assert( 0 <= global_var && global_var <= 10);

272

273 // observe which assertion has failed

274 __VERIFIER_assert( assertion_was_violated != 39 );

275 __VERIFIER_assert( assertion_was_violated != 123 );

276 }

277

Figure 4.9: k-induction with CBMC : base case and induction hypothesis
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CHAPTER 5
Case Study

5.1 Targeted components

In order to study the feasibility of software verification applied to TTTech’s code base,
we have focused our study on three SW-C: The Life Cycle Service (LCS), the
Middleware and the Vehicle Communication Service (ApCom). These three
components have been chosen as targets because their implementation is representative
of the code that is found on the platform: managing successful verification of these
components would constitute a valuable proof of concept.

Addressing these components as SW-Cs is somewhat imprecise: indeed, AUTOSAR SW-
Cs in theory have access to the RTE interface only, but the components we are examining
actually have access to lower-level interfaces, as they implement platform-related services
(e.g. vehicle communication management) rather than application-related services (e.g.
managing the car’s dashboard display). This access to lower-level code increases the
verification complexity, however, we argue that it makes the challenge more interesting,
and furthermore, it is in conformance with TTTech’s need for verification of safety-critical
code.

Nevertheless, all of these components still conform to the paradigm that was defined in
Section 4.1, having initialization and step functions, and an RTE interface means that
modeling them as SW-Cs makes sense from the verification point of view.

In the following, we give a brief description of each component:

5.1.1 LCS

The Life Cycle Service is responsible for managing the life-cycle states of the ECU and
hosts, and can be queried by other components to get the current state or request state
transitions. Examples of system states include the Startup phase, the Running phase or
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5. Case Study

the Shutdown phase. The life cycle service is divided in two separate components, the
master (LCS-M) and slave (LCS-S), running on the safety host or the performance hosts
respectively.

5.1.2 Middleware

The Middleware provides an implementation of the AUTOSAR RTE that abstracts all
communications for the higher level application SW-C. It coordinates inter and intra-host
communication and performs for this purpose tasks such as packet handling or routing,
and makes heavy use of lower-level communication APIs.

5.1.3 ApCom

The Vehicle Communication service (ApCom) is yet another component abstracting a
communication interface. It performs the junction between SW-C hosted on the machine
and automobile-specific communication buses (e.g. CAN, FlexRay or Ethernet), and
performs the necessary conversions between the internal and physical representation of
application DataTypes.

5.2 Code metrics

In order to give more insights about the difficulty levels of these verification tasks, we
have compiled in this sections several code metrics. The final C source file that we
obtained for each component contains more than the code that we are targeting, as
several sizeable libraries are linked with the component-specific code, while not being
used entirely. In order to exclude these chunks of code from the metric calculation, we
perform slicing of unreachable functions, and then compute the metrics.

This is achieved with Frama-C using the following command,

frama-c <source-file> -main entry_point -eva -slevel 0

-no-val-alloc-returns-null -slice-calls entry_point

-slicing-level 0 -then-on ’Slicing export’

-print -ocode <sliced-file>

followed by:

frama-c -metrics <sliced-file> &&

frama-c -metrics -metrics-ast cabs <sliced-file>

The slicing is performed on an over-approximative value range analysis on all program
variables, based on Frama-C ’s eva plugin. The sliced code is then exported to a C file,
on which we compute the metrics that are presented in Table 5.1.
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5.2. Code metrics

Categories LCS-S LCS-M ApCom Middleware

Operations

Pointer dereferences 50 115 2222 2170
Additions & Substractions 31 129 330 3662
Multiplication & Divisions 36 76 898 471
Bitwise operations 10 14 11 304

Control flow

If 119 243 1276 948
Loops 4 17 77 76
Function calls 129 309 1347 1328
Function Returns 66 136 365 329

Complexity and Difficulty

Lines of C code 1469 4923 15973 16536
Program Locations 529 1182 5935 7061
Global Variables 34 94 427 584

MacCabe Cyclomatic Complexity1 187 410 1681 1895
Halstead Length 4716 12656 51610 126484
Halstead Volume 43646.71 132721.38 589193.68 1635554.75
Halstead Difficulty 209.86 875.99 1526.54 6282.49

Table 5.1: Code metrics for verification targets

In addition to counting metrics, we give the values of McCabe’s Cyclomatic complexity
[McC76]. Roughly speaking, it gives a measure of the control-flow-graph’s complexity
and denotes the minimal number of different paths that exist in the code. Additionally,
we provide Halstead Length, Volume and Difficulty [H+77], three measure derived
from the number of operators/operands and the number of distinct operators/operands
appearing in the program’s expressions. They are generally used to express the difficulty
of programming or understanding a given program from the perpective of a human
operator. It is worth mentioning that these metrics are commonly used to measure the
complexity of hand-written code, while important parts of the code-base inspected here
are produced by code generators.

These metrics precisely illustrate the difference of complexity between the software
components of our case study. The Life Cycle Service slave and master are the most
simple programs, as the maintenance of a state machine does not require computa-

1It should be noted that MacCabe’s cyclomatic complexity is generally used to measure the complexity
of a function, and should have in this context values inferior to 30. In our case, we compute a program-wide
cyclomatic complexity, which is not comparable in terms of scale, but should be useful to illustrate the
differences in complexity between our targets.
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5. Case Study

tional complexity. As the master component performs supervision and some platform
initialization-related tasks, it displays a slightly higher complexity than the slave compo-
nent, which merely maintain the state machines according to the received instructions.

The last two components, ApCom and Middleware, are primarly constituted of
auto-generated code displaying a repetitive structure, which is the main reason
explaining the relatively high complexity metrics.

The Vehicle Communication component represents an increase in complexity, which can
be explained by the vast amount of distinct DataTypes that must be handled, as they are
translated between the internal representation and their representation on the vehicle
buses. Data elements are passed around as pointers, and also provide function pointers
to their peculiar conversion, reading and writing functions, which implies an important
amount of pointer arithmetic and dereferences that is confirmed by the metrics.

Finally, the Middleware is certainly the most complex component, as it is charged with
coordinating the communication between all SW-Cs on the platform. The intensive
manipulation of communication buffers is characterized by the high number of pointer
dereferences and additions. Additionnally, we see in this component a fair amount of bit-
wise operations, throwing light on the interaction with lower level POSIX communication
interfaces making heavy uses of flags, as well as the manipulation of data frames.

5.3 Instrumentation of program properties

The main goal of the verification tasks that we run is to prove the absence of Run-Time
errors in the program. The most severe sources of Run-Time errors in C code are
instructions depicting Undefined Behaviors. Undefined behavior appears when an
instruction’s semantics are not specified by the C standard, and yields unpredictable
results. This means that the compiler designer can himself chose the result of the operation,
which might very well be an early program termination (crash), unwanted modifications
in arbitrary memory areas, unexpected values appearing in program variables, or security
vulnerabilities to attackers.

The C standard documents 199 undefined behaviors (see Annex J.2 of [ISO99]), many
of which can be detected during the compilation phase and signaled with a warning.
However, in many cases, undefined behaviors can only be detected during the execution
of the program. Depending on the compiler implementation, the undefined behavior
can result in a crash, or fail silently, which can make them difficult to detect through
standard testing methods.

Our verification procedure allows us to detect a broad range of undefined behaviors,
as well as behaviors that are defined but generally not wanted (labelled “Dangerous”).
The list is available in Table 5.2. This list of detectable bugs is derived from the list of
vulnerabilities that can be instrumented natively by CBMC .
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5.3. Instrumentation of program properties

Erroneous operation Category Implementation

(Static) Array access out of bound Undefined Assertion
(Pointer) Array access out of bound Undefined Tool-specific
Invalid pointer comparison Undefined Tool-specific
Invalid pointer dereference Undefined Tool-specific
Division by zero Undefined Assertion
Signed Integer overflow Undefined Assertion
Unsigned Integer overflow (“wrap”) Dangerous Assertion
Lossy type conversion Dangerous Assertion
Pointer Arithmetic overflow Undefined Tool-specific
Undefined shift Undefined Assertion
Float overflow Undefined Assertion
Apparition of NaNs Dangerous Assertion

Table 5.2: Targeted undefined and dangerous behaviors

Instrumenting vulnerabilities in the code

Using the code generation functionality (see Section 4.3.1), CBMC is capable of inserting
assertions in all code locations that present a potential vulnerability with regard to
operations listed in Table 5.2. Yet, while some safety-checks are easily implemented as
assertions (e.g. division by zero: assert(denominator != 0)), most of the memory-
related checks cannot be encoded as such: indeed, the C language does not provide ways
to detect if a memory area is valid, or to retrieve the size of an object pointed-to by an
arbitrary pointer. For these reasons, memory-related checks were not instrumented in
the code as assertions, and their implementation were left to the verification tools.

Besides, the assertions generated by CBMC for signed, unsigned, pointer integer overflow,
as well as undefined shift were not expressed with valid C code. The assertions for
checking the absence of overflows were originally inserted in the following form, for a
given type my_custom_type:

1 typedef unsigned int uint32;

2 assert( !overflow(’+’, uint32, operand_A , operand_B) );

This code has several issues: 1. the function overflow is not defined, 2. it is not a valid C
function as it takes a type as a parameter, 3. it is also not possible (to our knowledge) to
implement it as a macro. We have therefore slightly modified CBMC ’s implementation
to replace this assertion by the following,

1 assert( !overflow_signed_int(’+’, operand_A , operand_B) );

and implemented the corresponding function for all basic C integer types. This function
returns 1 if adding operands A and B would result in an overflow, and 0 otherwise. The
code for detecting signed integer overflows and unsigned integer wrap-arounds before
they occur was inspired from the definitions of rules INT30-C and INT32-C of the SEI
CERT C Coding Standard [Sea14].
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5. Case Study

For undefined shifts, we discovered that CBMC sometimes generates an array-like notation
to extract the value of one or multiple bits (e.g. bits = 9849[3,5] to extract the
third, fourth and fifth bits of 9849), which is not a valid C operator. This has been
replaced by a valid C expression implementing the desired semantics (i.e. using the same
example, bits=(9849»3)&∼(∼0U«(5-3))).

Finally, we have found while running experiments that CBMC ’s assertions for pointer
arithmetic overflow were not properly covering undefined behavior related to pointer
arithmetic. In particular, the C standard forbids the incrementation of a pointer to an
array past the memory area that it is accessing (see §6.5.6 Additive operators, para. 8 of
[ISO99]), as demonstrated in the following code snippet:

1 int* pointer_to_array = &array[0] + sizeof(array) + 1; // undefined behavior

In contrast, the analysis performed by CBMC on pointer arithmetic only verifies if the
underlying integer representation of the pointer overflows, which is an incomplete test
and does not cover this undefined behavior. This issue was reported to the tool’s authors,
who acknowledged the uncompleteness of the current analysis, that would need to be
extended in a future version2. Since this safety-check appeared to be unreliable at the
time of writing3, we decided to exclude it from our case-study.

Safety checks locations for each target

We list in Table 5.3 the number and type of assertion that were added at potential bug
locations in the code for each verification target.

It should be noted array accesses out of bounds and invalid pointer dereferences are
grouped together, since they have precisely the same semantics (an array access on a
pointer is the combination of a pointer incrementation and a pointer dereference).

2See corresponding issue on GitHub: https://github.com/diffblue/cbmc/issues/5426 (Ac-
cessed 20th July, 2020)

3Another bug can be seen at https://github.com/diffblue/cbmc/issues/5284 (Accessed
20th July, 2020)
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5.3. Instrumentation of program properties

Vulnerability type
Number of assertions per component

LCS-S LCS-M ApCom Middleware

(Static) Array access out of bound 3 32 7 997
(Pointer) Array access out of bound

328 1612 15080 6456
Invalid pointer dereference
Invalid pointer comparison 0 0 0 3
Division by zero 0 1 8 2
Signed Integer overflow 3 5 29 569
Unsigned Integer overflow (“wrap”) 5 70 73 1140
Lossy type conversion 13 66 250 482
Undefined shift 8 5 1 16
Float overflow 0 0 50 5
Apparition of NaNs 0 0 42 5
(Correct function pointer analysis) 6 15 22 5

Total 366 1806 15562 9680

Table 5.3: Code metrics for verification targets
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CHAPTER 6
Experiments and results

All experiments were conducted on a Intel Core i7-6700 CPU @3.40GHz (4 cores / 8
threads) with 24GB of memory, running x86_64-linux (Ubuntu 18.04.4). The benchmarks
were performed with the help of BenchExec, a tool for facilitating benchmarks that allows
to track different metrics such as memory or CPU usage, and was developed specifically
for measuring verification tools’ performances [BLW19].

6.1 Proving the absence of Run-Time errors:

The experiments have been performed with a method comparable with a real-world
development, testing and validation process. In a first phase, we have been examinating
all errors reported by verification tools to determine if 1. they corresponded to genuine
bugs, 2. were due to approximations of the environment model, or 3. were spurious
bug-reports from the verifiers. We then manually corrected all potential errors that were
found in the program, and evaluated the capacity of verifier to provide a correctness
proof on these supposedly bug-free programs.

For doing so, each verifier was given a maximum running time of one hour (3600 seconds
of CPU Time) per SW-C, and a maximum memory usage of 21GB.

The results are regrouped in Tables 6.1, 6.2, 6.3 and 6.4. The result “Success” appears
if the verifier implements a sound proof system, terminates, and reports that no bug
was found in the code. The result is “Unknown” if the verifier does not give a definitive
answer, which could stem from an exhaustion of memory resources (OOM), time resources
(Timeout), or a bug withing the verification causing an early termination (Exception).
Finally, we report the result “Failure” if the verifier’s result is known to be invalid
(typically, if the verifier reports a spurious counter-example).

Note that only verification methods marked with a “�” are able to provide a sound
correctness proof of the program (guaranteeing the absence of run-time errors).
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6. Experiments and results

Verification method Mem.
(MB)

Time (s) # of proven
properties

Result Reason

CBMC 354.7 550.4 370 (all) Unknown Bound

CBMC + k-Ind. B 1967.0 391.7 370 (all) Success -
CBMC + k-Ind. I 2423.3 423.1 370 (all) Success -

� CBMC + k-Ind. ∀ 2423.3 814.8 370 (all) Success -

CBMC + k-Ind. B + values 1967.2 387.2 370 (all) Success -
CBMC + k-Ind. I + values 2423.6 424.0 370 (all) Success -

� CBMC + k-Ind. ∀ + values 2423.6 811.2 370 (all) Success -

CPAChecker reach safety 5869.2 MAX ? Unknown Timeout
CPAChecker deref. safety 3035.0 87.6 ? Unknown Exception

� CPAChecker (total) 5869.2 MAX ? Unknown Timeout

U-Automizer reach safety 4667.1 MAX ? Unknown Timeout
U-Automizer deref. safety 4801.5 MAX ? Unknown Timeout

� U-Automizer (total) 4801.5 MAX ? Unknown Timeout

� Overall Success

Table 6.1: Correctness proof results on the LCS-S

Verification method Mem.
(MB)

Time (s) # of proven
properties

Result Reason

CBMC 1358.1 1044.0 1824 (all) Unknown Bound

CBMC + k-Ind. B 2486.0 1134.4 1824 (all) Success -
CBMC + k-Ind. I 4808.0 2412.0 1823 Unknown Ind. fail.

� CBMC + k-Ind. ∀ 4808.0 3546.4 1823 Unknown Ind. fail.

CBMC + k-Ind. B + values 2488.5 1146.7 1824 (all) Success -
CBMC + k-Ind. I + values 4617.8 2420.0 1824 (all) Success -

� CBMC + k-Ind. ∀ + values 4617.8 3566.7 1824 (all) Success -

CPAChecker reach safety MAX 1829.0 ? Unknown OOM
CPAChecker deref. safety 6304.8 138.1 ? Unknown Exception

� CPAChecker (total) MAX 1967.1 ? Unknown OOM/Exc

U-Automizer reach safety 865.6 149.7 ? Unknown Exception
U-Automizer deref. safety 866.9 144.2 ? Unknown Exception

� U-Automizer (total) 866.9 293.9 ? Unknown Exception

� Overall Success

Table 6.2: Correctness proof results on the LCS-M
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6.1. Proving the absence of Run-Time errors:

Verification method Mem.
(MB)

Time (s) # of proven
properties

Result Reason

CBMC 527.4 187.3 15597 (all) Unknown Bound

CBMC + k-Ind. B 3967.8 1533.5 15597 (all) Success -
CBMC + k-Ind. I 3754.6 1566.6 15597 (all) Success -

� CBMC + k-Ind. ∀ 3967.8 3100.1 15597 (all) Success -

CBMC + k-Ind. B + values 3968.6 1528.5 15597 (all) Success -
CBMC + k-Ind. I + values 3756.2 1582.8 15597 (all) Success -

� CBMC + k-Ind. ∀ + values 3968.6 3111.3 15597 (all) Success -

CPAChecker reach safety 11964.9 MAX ? Unknown Timeout
CPAChecker deref. safety 12066.7 243.5 ? Failure Spurious bug

� CPAChecker (total) 11964.9 MAX ? Unknown Timeout

U-Automizer reach safety 1100.5 175.2 ? Unknown Exception
U-Automizer deref. safety 1094.4 169.7 ? Unknown Exception

� U-Automizer (total) 1100.5 344.9 ? Unknown Exception

� Overall Success

Table 6.3: Correctness proof results on the ApCom

Verification method Mem.
(MB)

Time
(s)

# of proven
properties

Result Reason

CBMC 7039.6 MAX ? Unknown Timeout
CBMC -unwind 4 MAX 547.87 ? Unknown OOM

CBMC + k-Ind. B 5177.4 MAX ? Unknown Timeout
CBMC + k-Ind. I 5175.1 MAX ? Unknown Timeout

� CBMC + k-Ind. ∀ 5177.4 MAX ? Unknown Timeout

CBMC + k-Ind. B + values 5215.1 MAX ? Unknown Timeout
CBMC + k-Ind. I + values 4908.0 MAX ? Unknown Timeout

� CBMC + k-Ind. ∀ + values 5215.1 MAX ? Unknown Timeout

CPAChecker reach safety 3216.1 MAX ? Unknown Timeout
CPAChecker deref. safety 7440.9 347.5 ? Failure Spurious bug

� CPAChecker (total) 7440.9 MAX ? Unknown Timeout

U-Automizer reach safety 736.9 66.4 ? Unknown Exception
U-Automizer deref. safety 766.5 66.1 ? Unknown Exception

� U-Automizer (total) 766.5 132.5 ? Unknown Exception

� Overall Unknown

Table 6.4: Correctness proof results on the Middleware
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6. Experiments and results

6.2 Result analysis and interpretation

Of all verification tasks, the investigated verification methods have been able to prove the
correctness for three of them. For the last one, it appears that none of the verifiers had
the capacity to finish the proof with the given resources. In the following, we interpret
the results and give some insights about the causes of failed verifications.

6.2.1 CPAChecker

The full correctness proof conducted with CPAChecker is divided in two step: The
reach-safety step verifies that none of the assertions in the program are being violated,
and the dereference stafety proof ensures that all pointer dereferences and array accesses
are correct. Our experiments with CPAChecker shows that the tool is not yet mature
enough for handling our code base.

Reach Safety All reachability safety analysis by CPAChecker ran out of resources
before a verdict could be given. According to the logging files, the algorithm seems
to spend almost all of its time searching for loop invariants. In comparison, the time
invested by CPAChecker for value analysis, CEGAR or k-induction is very limited, which
might explain the poor results.

Dereference Safety We have been unable to perform pointer dereference safety checks
using CPAChecker in the presence of string literals. The following snippet displays two
lines of valid C code (triggering no errors or warning when compiled with usual compilers)
that CPAChecker has been unable to process.

1 const char* first_configuration = "Hello world";

2 const char* second_configuration = &"Hello world"[0];

In the first configuration, CPAChecker would immediatly stop the analysis and report
the string assignment as an invalid pointer dereference, which constitutes a spurious
counter-example.

In the second configuration, CPAChecker would perform the analysis for a couple of
minutes, but eventually terminate and throw an exception, reporting an issue with
the conversion of (&"Hello world"[0]) to a char pointer in the internal program
representation.

For this reason, we found ourselves unable to check the code for both the LCS-M and the
LCS-S component. For the middleware, CPAChecker checker reported an invalid pointer
dereference that we have identified to be a spurious bug report, after careful inspection
of the reported trace. Indeed, the error was signaled on a dereference which was clearly
guarded and occured just a few instructions after the variable allocation. A spurious
report was also signaled on the ApCom component, where a dereference to a constant
global pointer was reported. This pointer was initialized in the beginning of the program
with the address of a global integer constant and was never later modified. Therefore, it
could not possibly point to an invalid memory location.
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6.2. Result analysis and interpretation

6.2.2 Ultimate Automizer

While successfully running on some toy examples that we experimented with, we were
unable to have Ultimate Automizer run on the complete code-base for most SW-C. Despite
substantial efforts for removing C constructs that the tool was not about to process
(such as gcc __attribute__ and _Noreturn extensions, along with all functions using
variadic arguments), we hit a severe blocking point as the tool systematically terminated
raising an exception during the verification. Due to the absence of meaningful information
about the root of the problem in the log files (only a backtrace was given), we were
unable to identify which line of code in the input program was the source of the error.

During the middleware verification, Ultimate Automizer additionally reported a syntax
error at a location displaying well-written C code. We have tried to reformulate the
problematic statement with several variants, but none of them led to a successful parsing
from the tool. The error occured in the module CACSL2BoogieTranslator, and we
suspect that the line number mentioned in the error report does not correspond to the
line number which really caused the issue.

Only for the LCS-S, the tool was about to complete its verification run until the end of
the allowed time frame, although it was not able to prove the program’s correctness.

6.2.3 CBMC

CBMC has been tested in three different configuration:

• CBMC : the plain bounded model checking configuration, tested with a bound of 5
on the main loop, and other loops left unbounded.

• CBMC + k-Ind.: CBMC augmented with k-induction, with one run for the base
case (B) and one for the inductive case (I), the combination of which provides a
sound proof for all loop iterations (∀). A value of five was used for k, as it was the
highest we could go while keeping manageable running times, and proved to be
sufficient.

• CBMC + k-Ind. + values: CBMC using value ranges calculated by Frama-C for
strengthening the k-induction hypothesis. We again have one run for the base case
(B) and one for the inductive case (I), with k also set to a value of five.

CBMC CBMC alone does not constitute a sound proof system: therefore all of its
results are marked as Unknown, even when the algorithm finished reporting no errors1.
Only for the Middleware, CBMC was not able to finish in time. In this case, we observed
that CBMC was not able to unroll the full transition relation and build the SAT formula

1Technically, the unwinding assertion on the main loop cannot ever hold. More details about the un-
winind assertions can be found at http://www.cprover.org/cprover-manual/cbmc/unwinding/
(Accessed 13th August, 2020)
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6. Experiments and results

within a one hour time range, which is due to the high number of nested loops that
greatly increase the complexity of the unrolled program expression, despite the fact that
all loops had finite bounds.

Upon observing this, we have been trying to force a fixed bound of four for all loops in
the program (using the command line option -unwind 4), which greatly simplifies the
program expression (sacrificing soundness). However, a second blocking point emerged,
as CBMC ran out of memory during the post-processing of the boolean formula. We
tracked down the cause of this issue to be large arrays of shared memory, that tend to be
represented explicitely in the internal program representation of CBMC, which greatly
complicates the verification task. As we have learned from other users’ experience, it
seems unlikely that providing more memory to CBMC will solve the issue2. Unfortunately,
this limitation means that CBMC cannot even be used for bug-hunting on the Middleware,
as the verification can not proceed without completion of the pre-processing step.

One way to fix this issue would be to use a smarter abstraction for arrays. For example,
CBMC using the Z3 SMT solver [DMB08] as a backend can avoid representing arrays
explicitely, and instead rely on an SMT encoding that makes use of a theory of arrays.
Unfortunately, all of the CBMC releases that we have tried suffered from run-time errors
when using Z3 as a backend. We have tested CBMC release 5.6, 5.8, 5.10, 5.11 and 5.12,
and all of them raised different kind of exceptions during the encoding of C statements
to their SMT representations. Investigating these problems and fixing them would be
one of the task with highest priority in the continuation of this verification project.

CBMC with k induction (and value analysis) CBMC augmented with k induction
ended up being the most capable method explored in this thesis. Even with low values
for k, the verification tool is capable to gather enough information about the feasible
state space to perform the proof. We interepretate it as a sign that loop counters in
our program do not have an important variability, and that loop invariants required to
compute the proof must be rather simple. On the other hand, we observed in the case
of the LCS-M that k-induction alone was unable to prove the program, and that global
variable value ranges computed by Frama-C are necessary for completing the proof.

We were able to identify precisely an assertion that caused problem to plain k-induction:
One array access appeared in a code section which execution depends on a non-determinitic
value return by the RTE API stubs. During the first k iteration of the inductive proof,
the verifier can “chose to avoid” the problematic section, consequently not learning
anything about valid ranges for the array access. On the last iteration (k + 1), the verifier
will finally discover this section and report an array out of bound error, as it does not
know the values of the array index. A minimal code snippet illustrating this behavior
is available Figure 6.1. In this example, k-induction alone cannot find valid ranges
for array_index and tmp, which are necessary to prove the program’s correctness.

2A JBMC user experienced the same problem as us, where would CBMC consumes up to 128GB of
RAM in the presence of large arrays https://github.com/diffblue/cbmc/issues/211
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6.2. Result analysis and interpretation

1 // global variable initialization

2 int array_index = 0;

3 int array[5];

4 int tmp;

5

6 int main()

7 {

8 // inductive case: non−determinitic modification of loop variables

9 array_index = __VERIFIER_nondet_int();

10 tmp = __VERIFIER_nondet_int();

11

12 for( /* k steps */ )

13 {

14 // induction hypothesis

15 __VERIFIER_assume( /* no assertion was violated */ );

16

17 // loop body

18 tmp = array_index;

19 array_index++;

20

21 if( array_index == 5 )

22 array_index = tmp;

23

24 if(__VERIFIER_nondet()) // this section can be skipped at will

25 {

26 assert(0 <= array_index && array_index <= 4);

27 array[array_index];

28 }

29 }

30 __VERIFIER_assert( /* no assertion was violated */ ); // k−induction cannot

prove this

31 }

32

Figure 6.1: Example of k-induction failure solved with value analysis

Frama-C can easily find that both variables are in the range [0..4], which is sufficient for
completing the proof.

k-induction with value analysis proved to be a powerful enough proof system for our use
cases, proving the correctness of the LCS-S, LCS-M and ApCom. Unfortunately, the
method did not scale in the case of the Middleware, due to excessive running times, but
most importantly due to the poor management of large arrays by CBMC mentioned in
the previous section.

6.2.4 Verifiers performance and task complexity

It can be observed that the verifiers running time and memory consumption is only
weakly correlated to the complexity of verification tasks. Indeed, while the LCS-M shows
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6. Experiments and results

complexity and difficulty metrics clearly lower than the ApCom, proving the correctness
of the latter required fewer resources. Similarly, proving the correctness of the Middleware
has been out of reach for all tested software verifier, while the component is not drastically
more complex than the ApCom, according to code metrics.

One of the most decisive factors that we have identified to be of high impact on CBMC
’s running time is the number of nested loops with high bounds. An example of this
observation has been made with the attempt to verify a critical function containing
two nested loop with fixed bounds equal to 256. While the function merely spanned a
hundred lines of code, verifying it took more time that all verification tasks that we have
documented here (in total, a dozen of hours was needed for the proof). In practice, such
functions need to be abstracted.

One final observation that we would like to point out is the important difference in
performance between CBMC in its standard bounded model checking configuration,
and CBMC used for proving the base case of k-induction. As we have pointed out
in Section 3.2.2, the verification performed in the two cases are equivalent, yet, we
observe significant performance gaps between them. The suspected reason behind this
is the different encoding we used for error detection. For k-induction, all assertions
were expressed with the __VERIFIER_delayed_assert function in the C code, while
plain-CBMC parsed C code without assertions, and added them later in its internal
representation, which apparently turns out to be more efficient.

This suggests that the performance of our k-induction implementation could be signif-
icantly improved by encoding it directly within CBMC ’s internal representation (or
by resolving the issues with the already-existing implementation of k-induction within
goto-instrument).
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CHAPTER 7
Discussion and Conclusion

7.1 Summary of results

Our experiments have demonstrated that the verification of AUTOSAR SW-Cs for
proving the absence of Run-Time errors is definitely achievable for verification tasks of
reasonable size. Unfortunately, none of the approaches that we adopted so far has been
able to cope with the most ambitious verification task that was part of this case study.
However, the most important source of this limitation being a bug in CBMC, we have
hopes that solving it would allow us to go further with experiments, and increase the
amount of code covered by our verification procedure.

Benefits for software quality

We have observed along the project that verification tools can bring a real benefit to the
development process and the general quality of the software. Firstly, the tools guarantees
to find bug locations that could possibly be missed through standard testing methods,
in particular bugs associated with array-out-of-bounds errors. These errors are hard to
detect as an out-of-bound writes do not necessarily cause any directly observable errors,
but can nevertheless have unexpected consequences. As we have seen in Section 5.3,
these also generated the highest number of safety checks (assertions) inserted in the code.

Secondly, we have observed that using non-deterministic stubs for the RTE API, per-
mitted to observe the behavior of the program against the whole feasible range of each
AUTOSAR DataType. This allows not-only to detect Run-Time errors, but also to
verify the compliance of the software with the ARXML specifications, performing a broad
exploration that could not be achieved through standard testing, or even fuzzing.
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7. Discussion and Conclusion

7.2 Limitations of the current approach and envisioned

improvements

Currently, several improvements over the current approach can be identified:

• Improve code coverage: While we achieved some success, one of the current
indicator that we would like to increase is the code coverage achieved by the
verification. Several factors are preventing us from verifying big parts of the code:
Firstly, some of the code cannot be processed by the tool in its current form,
as it contain some non-standard, platform-specific C extensions that CBMC and
Frama-C cannot process. Secondly, verifying new parts of the code-base will likely
come with obstacles that are unknown to us today. Experience has taught us that
targeting new chuncks of code for verification always brings unexpected challenges.

• Strenghten the experimentation around k-induction: as the most successful
approach, continuing the development around k-induction is a natural progression
to improve the proof system and allow a broader variety of use cases. Currently, we
benefit from the single-loop hypothesis, however we have encountered occasional un-
bounded loops in AUTOSAR SW-C, in particular when the loop condition depends
on some non-deterministic value coming from the AUTOSAR stubs. Therefore
our approach would benefit from being extended to program with multiple, nested
unbounded loops. Moreover, stronger proof methods based on k-induction exist
and are implemented in other experimental tools, such as DepthK [RRI+17], which
could be evaluated.

• Harvest more information from the ARXML files: Currently we have mainly
been using DataType information extracted from AUTOSAR specifications, and
we still rely on SW-C headers provided by the user for generating our stubs.
The abstraction of AUTOSAR interfaces could be streamlined by relying only on
specifications for generating stubs. The stubs themselves could also be refined to
provide a tighter over-approximation, by modeling the RTE API semantics more
precisely.

7.2.1 Difficult interfaces between the code and verification tools

Reflecting on Section 4.3.1, one of most time consuming aspect that was encountered
during this project has been the difficulty of preparing the industrial codebase for
verification with the software verification tools evaluated in this study. Some critical
aspects were the:

• Incompatibilities with build frameworks: with the availability of goto-cc,
a tool mimicking GCC, CBMC has proven to be the tool the most adapted to C
build frameworks. Still, goto-cc has some drawbacks, like the inability to resolve
conflicts when linking the same library twice, or various problems with linking
system libraries.
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7.3. Further works

• Incompatibilities with non-Linux platforms Of course, compiling code that
is not meant to be build with GCC (e.g. windows code, or code deployed on more
exotic platforms that are common in embedded system) causes even more problems
that we did not solve entirely to this day. We encounter here the same issues that
rises when maintaining code for different architectures, but they are exacerbated
by the fact that verification tools are not as well-maintained as compilers.

• Different C subsets accepted by tools Obtaining code that would be suitable
for both Frama-C , CPAChecker and CBMC has proven to be a real challenge, as
all these tools accept a slightly different subset of the C language, either because of
implementation choices, because of non supported constructs, or because of bugs.
We would have appreciated to test a wider range of tools in this study, but the
introduction of new tools systematically comes with high time costs.

While this is not a scientific challenge, we argue that these issues are of high importance
for the software verification field, as they are a hurdle for the broad adoption of verification
tools in industry. Consequently, the number of companies ready to invest enough man-
hours for evaluating verification tools is lessened.

7.3 Further works

7.3.1 Industrialization of results

This project would demonstrate its full usefulness only when deployed as a standard tool
within the industrial build, test and validation process. Accomplishing this deployment
is still a long way to go, as the whole verification framework, and in particular the
verification results would benefit from a more streamligned interface, and several steps
requiring human intervention would need to be eliminated. However, there is to our
knowledge no major technical challenge to be expected, hence the number of work-hours
required for performing this task should be easy to quantify.

7.3.2 Proving more advanced program properties

This study focused on detecting undesired behavior in C code, to demonstrate the
feasibility of software verification on TTTech’s code. While the results obtained are
certainly valuable, more advanced program properties could certainly be targeted, as
proving the absence of undefined behaviors comes short of proving the correctness of a
software platform.

One of the following working topic where verification based on formal method could gain
traction is the verification of non-interference properties between AUTOSAR SW-Cs.
Indeed, a correctness proof of a given SW-C could easily be negated by the presence on the
same platform of another faulty component which might inadvertently write in memory
areas reserved to others. For guaranteeing that this cannot happen and ensure component
isolation, strong non-interference proofs are needed. It remains to be determined whether
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7. Discussion and Conclusion

the current approach could be adapted for proposing a non-interference proof system
(CBMC has been used for such purposes [MTD16]), or if a different tooling environment
would be more appropriate.

7.4 Conclusion

In this thesis, we have demonstrated that modern verification tools targeting C code are
capable of proving the absence of Run-Time errors for an important subset of automotive
software components. For the problematic cases, we tried to point out precisely the
causes of failure of model-checking.

We have shown that the widely-adopted automotive standard AUTOSAR provided a
great advantage for verification, as standardized interfaces and specifications is crucial
to devise a environment model precise-enough to achieve successful verification of said
components.

The focus has been put on building a fully-automated solution, that is able to give its
conclusions about the software without requiring human intervention at any step.

We experienced that the efforts of standardization of verifiers interfaces made possible
by the SV-COMP are extremely useful for using various tools on the input code. On
another hand, the results observed in our case study vastly differed from the results of
the international competition, as best ranking tools struggled to verify our software. This
suggests that the verification tasks evaluated in the SV-COMP do not compare well to
our real-world problems.

We have observed that none of the verification tool was able to provide the desired results
out-of-the-box. Conversely, a combination of different analyses proved to be the only way
to achieve full correctness proofs. Therefore, we conclude that verification techniques
should not be evaluated on an individual basis, but their results should be reused.

k-induction turned out to be the most capable technique for dealing with programs
contain exactly one unbounded loop. Therefore we strongly advise researchers to focus
on this method and its derivative for further work on verification of embedded software
components displaying a similar structure.
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Glossary

Complex Device Driver Software entity which is only sparsely standardized by AU-
TOSAR, in comparison to Software Components or Basic Software Modules. It
typically has access to other BSW module as well as the RTE and may have access
to harware specific interfaces.[AUT15]. 23, 26

Software Development Lifecycle Model Methodology used for developing, testing
and maintaining a software. Common models include the Waterfall Model, the
V-Model, the Spiral-model or the AGILE methodology [Rup10]. 11

System Definition Set of formalized specifications describing the architecture of an
AUTOSAR compliant platform. It contains definitions of Software Component
interfaces, a description of the underlying harware (ECU), communication networks,
etc. In practice, the System Definition is given in the form of ARXML files.. 11

C Bounded Model Checker (CBMC) CBMC is a Bounded Model Checker for C
and C++ programs. It supports C89, C99, most of C11 and most compiler
extensions provided by gcc and Visual Studio. see: http://www.cprover.org/
cbmc/ [KT14]. 15, 16, 26, 27, 29–32, 34, 38–40, 44, 45, 47–55

Not a Number (NaN) result of an invalid floating point operation, such as the square
root of -1. 39

Portable Operating System Interface (POSIX) “[POSIX] defines a standard op-
erating system interface and environment, including a command interpreter (or
“shell”), and common utility programs to support applications portability at the
source code level.”[IEE17]. Among other, the POSIX API proposes functionnalities
for Process creation and control, file and directory operations, I/O operations,
Real-Time software, Mutli-Threaded software, etc. [Wal95]. 23, 26–28, 55, 57

Continuous Integration “Continuous integration (CI) is the practice of automating
the integration of code changes from multiple contributors into a single software
project. The CI process is comprised of automatic tools that assert the new code’s
correctness before integration. A source code version control system is the crux
of the CI process. The version control system is also supplemented with other
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checks like automated code quality tests, syntax style review tools, and more.” Defi-
nition retrived on https://www.atlassian.com/continuous-delivery/

continuous-integration: Accessed 72020. Atlassian is a major developer
of CI-related technology.. 11, 12
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Acronyms

ADAS Advanced Driver Assistance Systems. 1

ApCom Vehicle Communication Service. 35, 36

API Application Programming Interface. 15, 18, 19, 23–28, 32, 36, 48, 51, 52, 55, 57, 59

ARXML AUTOSAR XML. 11, 24–27, 51, 52, 59

ASIL Automotive Safety Integrity Level. 9, 10

BSW Basic Software. 8, 10, 23, 59

CIL C Intermediate Language. 29

ECU Electronic Control Unit. 7, 8, 10, 11, 35

LCS Life Cycle Service. 35

LTL Linear Temporal Logic. 18, 19, 57

OEM Original Equipement Manufacturer. 7, 11

OS Operating System. 23

RTE Runtime Environment. 8, 10, 23–27, 35, 36, 48, 51, 52, 55, 57, 59

SV-COMP Competition on Software Verification. 3, 15, 17–19, 32, 54, 57

SW-C Application Software Component. 8, 9, 22–24, 35, 36, 38, 43, 47, 51–53

TACAS Tools and Algorithms for the Construction and Analysis of Systems. 15

WCET Worst Case Execution Time. 22

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography

[AUT15] Complex Driver design and integration guideline, r4.2.2 edition, 2015.
Accessed on 2nd July, 2020 at: https://www.autosar.org/

fileadmin/user_upload/standards/classic/4-2/AUTOSAR_

EXP_CDDDesignAndIntegrationGuideline.pdf.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In International conference on tools
and algorithms for the construction and analysis of systems, pages 193–207.
Springer, 1999.

[BDW15] Dirk Beyer, Matthias Dangl, and Philipp Wendler. Boosting k-induction with
continuously-refined invariants. In International Conference on Computer
Aided Verification, pages 622–640. Springer, 2015.

[Ben12] E Bendersky. PyCParser–C parser and AST generator written in python,
2012.

[Bey16] Dirk Beyer. Reliable and reproducible competition results with benchexec
and witnesses (report on sv-comp 2016). In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages
887–904. Springer, 2016.

[Bey20a] Dirk Beyer. Advances in automatic software verification: SV-COMP 2020.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 347–367. Springer, 2020.

[Bey20b] Dirk Beyer. SV-COMP rules, 2020. Accessed on 20th June, 2020 at https:
//sv-comp.sosy-lab.org/2020/rules.php.

[BFB+05] S Behnel, M Faassen, I Bicking, H Joukl, S Sapin, MA Parent, O Grisel,
K Buchcik, F Wagner, E Kroymann, et al. lxml: XML and HTML with
Python, 2005. Accessed on 1st July, 2020 at https://lxml.de/.

[BFM+08] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto. Acsl: Ansi c specification language,
2008.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_CDDDesignAndIntegrationGuideline.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_CDDDesignAndIntegrationGuideline.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_CDDDesignAndIntegrationGuideline.pdf
https://sv-comp.sosy-lab.org/2020/rules.php
https://sv-comp.sosy-lab.org/2020/rules.php
https://lxml.de/


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[BHT07] Dirk Beyer, Thomas A Henzinger, and Grégory Théoduloz. Configurable
software verification: Concretizing the convergence of model checking and
program analysis. In International Conference on Computer Aided Verifica-
tion, pages 504–518. Springer, 2007.

[BK11] Dirk Beyer and M Erkan Keremoglu. Cpachecker: A tool for configurable
software verification. In International Conference on Computer Aided Verifi-
cation, pages 184–190. Springer, 2011.

[BKÁ+18] Philipp Berger, Joost-Pieter Katoen, Erika Ábrahám, Md Tawhid Bin Waez,
and Thomas Rambow. Verifying auto-generated c code from simulink. In
International Symposium on Formal Methods, pages 312–328. Springer, 2018.

[BL18] Dirk Beyer and Thomas Lemberger. Cpa-symexec: efficient symbolic exe-
cution in cpachecker. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pages 900–903, 2018.

[BLW19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking:
Requirements and solutions. International Journal on Software Tools for
Technology Transfer, 21(1):1–29, 2019.

[BMGS20] Robert Bramberger, Helmut Martin, Barbara Gallina, and Christoph Schmit-
tner. Co-engineering of safety and security life cycles for engineering of
automotive systems. ACM SIGAda Ada Letters, 39(2):41–48, 2020.

[BP20] Armin Biere and David Parker. Tools and Algorithms for the Construction
and Analysis of Systems: 26th International Conference, TACAS 2020,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings,
Part I. Springer Nature, 2020.

[Bun11] Stefan Bunzel. Autosar–the standardized software architecture.
Informatik-Spektrum, 34(1):79–83, 2011. Accessed on 25th June,
2020 at: https://link.springer.com/content/pdf/10.1007/

s00287-010-0506-7.pdf.

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. The astrée analyzer. In European
Symposium on Programming, pages 21–30. Springer, 2005.

[CD11] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier
for memory safety of c programs. In NASA Formal Methods Symposium,
pages 459–465. Springer, 2011.

[CDD+15] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim
Purbrick, and Dulma Rodriguez. Moving fast with software verification. In
NASA Formal Methods Symposium, pages 3–11. Springer, 2015.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://link.springer.com/content/pdf/10.1007/s00287-010-0506-7.pdf
https://link.springer.com/content/pdf/10.1007/s00287-010-0506-7.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[CGD+16] Stephen Chong, Joshua Guttman, Anupam Datta, Andrew Myers, Benjamin
Pierce, Patrick Schaumont, Tim Sherwood, and Nickolai Zeldovich. Re-
port on the nsf workshop on formal methods for security. arXiv preprint
arXiv:1608.00678, 2016.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-c. In International conference on
software engineering and formal methods, pages 233–247. Springer, 2012.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,
2004.

[CKNZ11] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani.
Model checking and the state explosion problem. In LASER Summer School
on Software Engineering, pages 1–30. Springer, 2011.

[CWZ+19] Zhiqiang Cai, Aohui Wang, Wenkai Zhang, M Gruffke, and H Schweppe.
0-days & mitigations: Roadways to exploit and secure connected bmw cars.
Black Hat USA, 2019:39, 2019.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[DMRS03] Leonardo De Moura, Harald Rueß, and Maria Sorea. Bounded model checking
and induction: From refutation to verification. In International Conference
on Computer Aided Verification, pages 14–26. Springer, 2003.

[DS07] David Delmas and Jean Souyris. Astrée: from research to industry. In
International Static Analysis Symposium, pages 437–451. Springer, 2007.

[FKDO12] Ling Fang, Takashi Kitamura, Thi Bich Ngoc Do, and Hitoshi Ohsaki.
Formal model-based test for autosar multicore rtos. In 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation,
pages 251–259. IEEE, 2012.

[FLR17] Kathleen Fisher, John Launchbury, and Raymond Richards. The hacms
program: using formal methods to eliminate exploitable bugs. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 375(2104):20150401, 2017.

[H+77] Maurice Howard Halstead et al. Elements of software science, volume 7.
Elsevier New York, 1977.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[HCD+13] Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen
Hoenicke, Markus Lindenmann, Alexander Nutz, Christian Schilling, and
Andreas Podelski. Ultimate automizer with smtinterpol. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 641–643. Springer, 2013.

[HCD+18] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus,
Jochen Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling,
Tanja Schindler, et al. Ultimate automizer and the search for perfect in-
terpolants. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 447–451. Springer, 2018.

[IEE17] IEEE, Institute of Electrical and Electronics Engineers, Inc. Staff, COR-
PORATE. IEEE Standard for Information Technology–Portable Operating
System Interface (POSIX(R)) Base Specifications, Issue 7, IEEE Std 1003.1-
2017, 2017.

[ISO99] ISO/IEC 9899: 1999 Programming Languages-C. Standard, International
Organization for Standardization, Geneva, CH, March 1999.

[ISO18a] ISO 26262-6: Road vehicles – Functional safety. Part 6 - Product devel-
opment at the software level. Standard, International Organization for
Standardization, Geneva, CH, March 2018.

[ISO18b] ISO 26262: Road vehicles – Functional safety. Standard, International
Organization for Standardization, Geneva, CH, March 2018.

[ITF+14] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and
Gennaro Parlato. Bounded model checking of multi-threaded C programs
via lazy sequentialization. In International Conference on Computer Aided
Verification, pages 585–602. Springer, 2014.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
puting Surveys (CSUR), 41(4):1–54, 2009.

[KB03] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[KC16] Dongwoo Kim and Yunja Choi. Light-weight api-call safety checking for
automotive control software using constraint patterns. In 2016 6th Inter-
national Conference on IT Convergence and Security (ICITCS), pages 1–5.
IEEE, 2016.

[KT14] Daniel Kroening and Michael Tautschnig. CBMC–C bounded model checker.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 389–391. Springer, 2014.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[Löw13] Stefan Löwe. Cpachecker with explicit-value analysis based on cegar and
interpolation. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 610–612. Springer, 2013.

[LW12] Stefan Löwe and Philipp Wendler. Cpachecker with adjustable predicate
analysis. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 528–530. Springer, 2012.

[MAK14] Georg Macher, Eric Armengaud, and Christian Kreiner. Automated genera-
tion of AUTOSAR description file for safety-critical software architectures.
Informatik 2014, 2014.

[McC76] Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[McC85] Edward J McCluskey. Built-in self-test techniques. IEEE Design & Test of
Computers, 2(2):21–28, 1985.

[MCNF15] Jeremy Morse, Lucas Cordeiro, Denis Nicole, and Bernd Fischer. Model
checking ltl properties over ansi-c programs with bounded traces. Software
& Systems Modeling, 14(1):65–81, 2015.

[Mit18] Roland Mittag. Entwicklung Statischer Analysen für AUTOSAR Steuerg-
erätesoftware. Master’s thesis, Technische Universität Chemnitz, 2018.

[MTD16] Pasquale Malacaria, Michael Tautchning, and Dino DiStefano. Information
leakage analysis of complex c code and its application to openssl. In Inter-
national Symposium on Leveraging Applications of Formal Methods, pages
909–925. Springer, 2016.

[NMRW02] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C
programs. In International Conference on Compiler Construction, pages
213–228. Springer, 2002.

[NŠST18] Stefan Niæetin, Robert Šandor, Goran Stupar, and Nikola Tesliæ. Maxi-
mizing the efficiency of automotive software development environment using
open source technologies. In 2018 IEEE 8th International Conference on
Consumer Electronics-Berlin (ICCE-Berlin), pages 1–3. IEEE, 2018.

[R4.15a] Layered software architecture. Standard, AUTOSAR, 2015. Ac-
cessed on 1st July, 2020 at: https://www.autosar.org/

fileadmin/user_upload/standards/classic/4-2/AUTOSAR_

EXP_LayeredSoftwareArchitecture.pdf.

[R4.15b] Overview of functional safety measures in AUTOSAR. Stan-
dard, AUTOSAR, 2015. Accessed on 1st July, 2020 at: https:

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

//www.autosar.org/fileadmin/user_upload/standards/

classic/4-2/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf.

[R4.15c] Specification of RTE. Standard, AUTOSAR, 2015. Accessed on
1st July, 2020 at: https://www.autosar.org/fileadmin/user_

upload/standards/classic/4-2/AUTOSAR_SWS_RTE.pdf.

[RICB17] Herbert Rocha, Hussama Ismail, Lucas Cordeiro, and Raimundo Barreto.
Model checking embedded c software using k-induction and invariants. In
Embedded Software Verification and Debugging, pages 159–182. Springer,
2017.

[Ron] Armin Ronacher. Jinja2 documentation. Welcome to Jinja2—Jinja2 Doc-
umentation (2.8-dev). Accessed on 1st July, 2020 at http://mitsuhiko.
pocoo.org/jinja2docs/Jinja2.pdf.

[RRI+17] Williame Rocha, Herbert Rocha, Hussama Ismail, Lucas Cordeiro, and Bernd
Fischer. Depthk: A k-induction verifier based on invariant inference for
c programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 360–364. Springer, 2017.

[Rup10] Nayan B Ruparelia. Software development lifecycle models. ACM SIGSOFT
Software Engineering Notes, 35(3):8–13, 2010.

[SE05] Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-
clause minimization. SAT, 2005(53):1–2, 2005.

[Sea14] Robert C Seacord. The CERT C coding standard: 98 rules for developing
safe, reliable, and secure systems. Pearson Education, 2014.

[SGM18] Christoph Schmittner, Gerhard Griessnig, and Zhendong Ma. Status of the
development of iso/sae 21434. In European Conference on Software Process
Improvement, pages 504–513. Springer, 2018.

[SKB+17] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino Teige,
and Tom Bienmüller. Incremental bounded model checking for embedded
software. Formal Aspects of Computing, 29(5):911–931, 2017.

[Wal95] Stephen R Walli. The POSIX family of standards. StandardView, 3(1):11–17,
1995.

[Wes19] Lukas Westhofen. Verifying automotive c code using modern software model
checkers. Master’s thesis, Rheinische-Westfälische Technische Hochschule
Aachen, 2019.

[ZSO+17] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora,
and Massimiliano Di Penta. How open source projects use static code

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_SWS_RTE.pdf
http://mitsuhiko.pocoo.org/jinja2docs/Jinja2.pdf
http://mitsuhiko.pocoo.org/jinja2docs/Jinja2.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

analysis tools in continuous integration pipelines. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), pages
334–344. IEEE, 2017.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

