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Abstract

This thesis investigates modeling methods for the kinetics of gas-solid reactions in the
context of thermochemical energy storage (TCES). Established modeling methods require
either strong assumptions about the reaction under consideration, which can introduce
modeling bias, or are limited to only two independent variables, which does not reflect
the complexity of gas-solid reactions. In this thesis, a data-driven modeling method
is developed: the TensorNPK (non-parametric kinetics) method. It does require no
assumption besides the General Kinetic Equation and it can derive models in any number
of variables from experimental data.

Through a literature study, a gap in the theory of gas-solid reaction kinetics is identified:
the lack of validated models for the behavior in close proximity to the reaction equilibrium.
The near-equilibrium kinetics are highly relevant for TCES because these processes need
to operate as close to the equilibrium as possible to maximize efficiency. With the
TensorNPK method, insights in the relevant kinetics can be gained without explicit
models for near-equilibrium effects.

In collaboration with colleagues, the TensorNPK method was applied in kinetic studies
of various materials relevant for thermochemical energy storage. The performance of the
TensorNPK method in these studies is evaluated and implications for kinetic modeling
are highlighted.

Kurzfassung

Diese Doktorarbeit befasst sich mit der Untersuchung von Modellierungsmethoden für
die Kinetik von Gas-Feststoffreaktionen im Kontext von thermochemischer Energiespei-
cherung. Etablierte Modellierungsmethoden beruhen entweder auf starken Annahmen
über die untersuchte Reaktion, was das Ergebnis verzerren kann, oder sie sind auf zwei
unabhängige Variablen beschränkt, was die Komplexität von Gas-Feststoffreaktionen
nicht abbilden kann. In dieser Arbeit wird eine datengetriebene Modellierungsmethode
entwickelt: die TensorNPK (non-parametric kinetics) Methode. Sie benötigt keine An-
nahme abgesehen von der General Kinetic Equation und sie kann Modelle mit beliebig
vielen unabhängigen Variablen aus experimentellen Daten generieren.

Mit einer Literaturstudie wird ein blinder Fleck in der Theorie zu Gas-Feststoffreaktion-
en identifiziert: Das Fehlen validierter Modelle, die das Verhalten der Reaktionen in der
Nähe des Reaktionsgleichgewichtes beschreiben. Dieses Verhalten ist von großer Relevanz
für thermochemische Speicherprozesse, weil sie so nahe am Gleichgewicht wie möglich
arbeiten müssen um höchstmögliche Effizenz zu erreichen. Mit der TensorNPK Methode
können Erkenntnisse über die Kinetik gewonnen werden, auch wenn keine expliziten
Modelle für Effekte in der Nähe des Reaktionsgleichgewichts verfügbar sind.

In Zusammenarbeit mit Kollegen wurde die TensorNPK Methode in kinetischen Studien
von mehreren Materialien, die für thermochemische Energiespeicherung relevant sind,
eingesetzt. Die Performance der TensorNPK Methode in diesen Studien wird evaluiert
und Implikationen für kinetische Studien werden hervorgehoben.
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We need them but they are just wrong

too often to really rely on them.
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Nomenclature

Acronyms

CFD computational fluid dynamics

DSC differential scanning calorimetry

GC gas chromatography

GKE General Kinetic Equation

ICTAC International Confederation for Thermal Analysis and Calorimetry

IEA International Energy Agency

IPCC Intergovernmental Panel on Climate Change

NPK non-parametric kinetics

TCES thermochemical energy storage

TES thermal energy storage

TGA thermo-gravimetric analysis

REDOX reduction-oxidation

TRL technology readiness level

XRD X-ray diffraction

Greek symbols

α conversion

γk,i interpolation vector

γk,i,ji
element of γk,i

dα/dt conversion rate 1/s

Subscripts

i index for dimensions
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j index for elements

ji index of an element in dimension i

j‡
i index of the first interpolation element in dimension i

j∗
i index of the reference element in dimension i

k index for data points

Roman symbols

Cov covariance

D number of dimensions

f(α) effect of conversion, reaction model

fi effect vector containing the values of fi(vi)

fi,ji
element of fi

fi,j∗
i

reference element of dimension i

fi(vi) effect of vi

f̂k,i conversion rate of data point k projected in dimension i

h(. . .) effect of driving force

J Jacobian

K scaling factor of reduced model

k(T ) effect of temperature 1/s

MSE mean square error

p partial pressure of gas Pa

peq equilibrium partial pressure of gas Pa

r vector of residuals

Rk conversion rate of data point k

R̂k conversion rate estimate for data point k

R̂
\i

k conversion rate estimate for data point k excluding the effect of dimension i

rk residual of data point k

T temperature K

x
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t time s

T model tensor

Var variance

vi variable vector containing the values of vi

vi independent variable

vi,ji
element of vi

xi
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Research summary

This chapter provides the backdrop for the publications that are at the heart of this thesis
by publications. It starts out with the big picture, pointing out the global challenges
that we are facing, and then narrows in on the more specific context of this thesis. Key
concepts, like thermochemical energy storage and reaction kinetics, are introduced and
the state of the art is discussed. Based on this discussion, the motivation for this thesis
is presented, and the problem statement is formulated.

In Section 4, I describe the research that ultimately led to the publications that
constitute the main part of this thesis. The links between the papers are discussed and
the most important findings are highlighted.

Finally, the findings of my research are synthesized in Section 5. Conclusions are drawn
and areas where further research is needed are identified.

1 Introduction

We are living in the beginning of a new geological epoch: the Anthropocene. It is the
epoch, where human activity started having a profound impact on our planet. The
anterior epoch, the Holocene, has been a relatively stable epoch of about 11 700 years.
In this epoch humanity developed, and as such it is the only state of earth that we know
for certain can support human society as we know it. Now human activity is threatening
to destabilize the earth system and the consequences are unforeseeable (Steffen et al.
2015). While this might sound devastating, there is no need for defeatism. Even though
it seems we are currently threatening our own basis of life, we also do have the power to
turn things around by taking the necessary actions.

The intensity with which we are pushing at earths boundaries is maybe best illustrated
by the World Overshoot Day. It marks the day at which we consumed earth’s biocapacity
for a year. For the EU it has been calculated to be May 10th in 2019 (WWF 2019). This
means that we are depleting the ecosystem at a much faster rate than it can be renewed.
With our current mode of production, we are consuming an equivalent of 2.8 earths each
year.

Another significant marker for human activity is energy consumption, which is rising
exponentially since the industrial revolution. Western countries are responsible for most of
this increase, and emerging countries seem to be determined to follow a similar trajectory.
Today, our main energy sources are non-renewable sources, specifically coal, crude oil
and natural gas, which amount to over 80 % of total energy supply (IEA 2019). This
puts massive strain on earth’s resources and has been causing irreparable environmental
destruction for decades (Meadows 1974). Not only are we depleting resources on a never
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Research summary

before scale — the emission of CO2 and other greenhouse gases is also driving global
warming, which will have disastrous consequences (IPCC 2018). Some consequences are
already manifesting, like increased frequency and intensity of droughts and floodings
(IPCC 2012); many more are expected to manifest during the next decades. Ironically,
developing countries that consume comparably little energy, are the ones most affected
by global warming.

The only way to mitigate more disastrous consequences of climate change is to reduce
the consumption of non-renewable energy drastically. The Intergovernmental Panel on
Climate Change (IPCC) projected that only by keeping global warming below 1.5 ◦C, dan-
gerous tipping points can be avoided (IPCC 2018). Reaching the 1.5 ◦C-goal would imply
to approach net-zero greenhouse-gas emissions by 2040, according to the International
Energy Agency (IEA 2016b). Yet, the IEA’s prediction of future energy consumption
(IEA 2016b) shows deeply distressing trends: even if all planned climate protection
policies were adopted (new policies scenario), the CO2 emissions would continue to rise.
Given these predictions, reaching net-zero emissions ever seems to be utopian.

It is evident that to curb global warming and prevent disastrous consequences of
climate change, we need to abandon our current reckless energy system that is rooted in
unsustainable exploitation of earths resources. In its stead, we need to implement an
energy system that is not only sustainable, but also more democratic and just — both
globally and regarding future generations (Greenpeace 2015).

This radical change of our energy system will require a joint effort on all levels, including
governments, industry and the people. Science will have to analyze the situation critically
and provide solutions to the technological challenges ahead.

From the point of view of technology, there are three main levers to change our energy
system:

Reducing the overall energy consumption. Especially in industrialized countries, which
have the highest per-capita energy consumption today, this will without doubt
be necessary, even if it means to restructure our economic system and maybe
do without some conveniences that we got used to. In countries with very low
per-capita consumption and low standard of living the energy consumption will
have to continue rising, until they catch up in standard of living with the developed
nations. For these countries the goal must be to transition to renewables directly,
without repeating the mistakes of today’s industrialized nations. This is often
referred to as “leap frogging” (Watson et al. 2011). To manage this transition in
industrialized, emerging and developing countries alike, effective regulations will
be required (Abdmouleh et al. 2015). For example, certain unsustainable energy
sources and technologies could be prohibited or an adequate price could be put on
externalities such as pollution and resource consumption so that it reflects the true
cost (IEA 2016a).

Increasing the share of renewable sources. The capacity of renewable sources must be
increased rapidly, as their fossil counterparts are decommissioned. The Interna-
tional Renewable Energy Agency (IRENA 2019b) estimates that the total share

2
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1 Introduction

of renewable energy would need to increase from 14 % today to 65 % by 2050 to
keep global warming well below 2 ◦C. The main challenge with most renewable
sources is their volatility. Unlike fossil energy carriers like coal, oil and natural
gas, the precursors for renewable sources, such as sunlight and wind, cannot be
buffered to provide energy on demand. To match volatile supply with demand,
energy storage solutions are required. Also, the availability of renewable energy
sources varies widely by region, so that tailored, decentralized solutions need to be
employed (IRENA 2019a).

Increasing the efficiency of energy use/conversion. Or in other words: minimizing
waste energy. This does not necessarily imply increasing the efficiency of one
specific process, but can also mean taking a holistic approach to energy systems.
By coupling energy flows to reuse the excess energy of one process as input to
another process, the use of primary energy input can be reduced significantly. Just
as with renewable energy sources, one of the main challenges is that waste energy
sources and suitable energy sinks are often separated in time and/or space. To
reuse excess energy, tailored energy storage and/or transfer solutions need to be
implemented.

We need to act on all three of these levers quickly, in order to achieve the CO2 reduction
goal and to curb global warming. On the one hand, we need to change our unsustainable
economic practices, and on the other hand, a wide range of new technologies will be
required that supersede the fossil-fuel heavy technologies of today. For some applications,
sustainable solutions are already available and can be deployed immediately. For many
other applications new technologies still have to be developed, and innovative solutions
to the technological challenges ahead have to be found.

3
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Research summary

2 Context

In the transition to a sustainable energy system, energy storage technologies will play a
key role to enable both large-scale renewable power generation and to increase energy
efficiency. Technically, energy can be stored in any form — be it electricity, mechanical
work or heat. The best suited type of energy storage is determined by the excess energy
source and the target energy sink. The goal is to provide the required storage capacity
while minimizing conversion and storage losses.

The type of energy storage that we are most familiar with are electric batteries, as
they are integrated in many devices that we use on a daily basis. Until recently, electric
batteries could only be used for small devices like mobile phones and watches because
battery capacity and power was limited. Recent advances in battery technology have
enabled it for applications that require considerably larger storage capacity and power,
such as electric vehicles or domestic photo voltaic installations. Ongoing research will
allow battery storage to be applied on an even larger scale, for example the electricity
grid. The IEA (2018) projects that battery storage will account for almost as much
capacity as pumped hydro by 2040. In this way, batteries will contribute to grid stability
and integration of renewables.

Another type of energy storage is thermal energy storage (TES). These devices are
often referred to as heat batteries, in analogy to electric batteries. TES has a special
role due to the limited convertibility of heat to other types of energy. The maximum
conversion efficiency is determined by the temperature levels of the conversion process
and is known as the Carnot efficiency. Due to this limitation, it is often more efficient to
store heat directly instead of converting it to a more “pure” form of energy. Especially
for applications that require a heat input, TES is often more efficient than other energy
storage technologies.

An illustrative example for an application that requires TES is a concentrated solar
power (CSP) plant (Liu et al. 2016; Pelay et al. 2017). Similarly to most other caloric
power plants, CSP plants use a steam cycle to convert heat into mechanical work and then
to electricity. Provided that there is sufficient irradiation (i.e. a lot of sunshine) to operate
a CSP plant, it is a renewable alternative to coal, gas and nuclear power plants. The main
implementation barrier is that its electricity production is coupled to the irradiation, i.e.
electricity production peaks at noon and drops to zero at sunset. To decouple electricity
production from sunshine, energy has to be buffered during the day. In principle, this
can be done in two ways: either by using batteries to store electricity or by employing a
TES system to store heat and drive the steam cycle during the night. One of the main
challenges with electric batteries is the use of rare earths such as lithium. If no substitute
for these rare resources can be found or highly efficient recycling strategies are developed,
it might inhibit the deployment of electric batteries for large-scale applications such as
power plants. TES on the other hand uses abundant materials to store heat and it scales
very well for large-scale applications. For this reason, TES is already employed in CSP
plants today. It is a key technology that enabled large-scale CSP plants as alternative to
non-renewable power plants.
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2 Context

latent heat

stored heat

te
m

p
er

at
u

re

sensible
latent
thermochemical

partial pressure

reaction equilibrium

Figure 1: Illustration of the thermal characteristic of sensible, latent and thermochemcial
energy storage (left) and the effect of partial pressure on the reaction temperature
for gas-solid reactions (right).

Another example are industrial processes, where excess heat from a high temperature
process is used to power a lower temperature process. By cascading processes that work
on different temperature levels, a lot of primary energy input can be saved (Miró et al.
2016; Forman et al. 2016). If the two processes do not operate simultaneously, the excess
heat has to be buffered in a TES system to match heat supply with demand. This
TES application is especially relevant in energy intensive industries that employ batch
processes like iron and steel.

Typical requirements for TES are high capacity/scalability, high energy density/
compact design, small storage losses, suitable operating temperature for the application
at hand, high gradients to enable dynamic operation, no hazardous substances as well as
economics of the device and the whole process (Sterner et al. 2018).

Three main types of TES are distinguished, based on the thermal characteristic of
the storage material: sensible, latent and thermochemical energy storage. Their typical
characteristics are illustrated in Figure 1.

Sensible energy storage utilizes the heat capacity of an inert substance to store heat.
Commonly used materials are water, concrete, rock and sand. The stored heat is
proportional to the temperature difference between the low and the high temperature
level (red line in Figure 1). To minimize storage losses, good insulation is
required, since temperature differences between the storage and its surrounding are
typically large. Widely used storage devices of this TES type are stratified storage
tanks and concrete storage.

Latent energy storage exploits the phase change effect, typically solid-liquid or solid-
solid, of certain materials. During the phase change, the material absorbs heat
equal to its phase change enthalpy without changing its temperature (horizontal
part of the blue line in Figure 1). In this way, a large quantity of heat can be
stored in a very narrow temperature interval. The phase change temperature is a
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Research summary

property of the material and usually fairly constant. With latent energy storage,
heat can be absorbed and supplied at approximately constant temperature, which
has many advantages for process design. A limiting factor is heat transfer in the
solid phase, and dilatation is often a problem.

Thermochemical energy storage refers to all types of TES systems, where two sub-
stances interact with each other. The mechanisms range from physical adsorption
to reversible chemical reactions. During the sorption process latent heat is re-
leased, equal to the enthalpy of the underlying process (horizontal part of the green

line in Figure 1). This allows to store a large quantity of heat in a narrow
temperature interval, similarly to latent heat storage. In contrast to latent heat
storage, the reaction temperature is not a material property, but depends on the
reaction conditions. In the right-hand diagram in Figure 1 this is illustrated for a
thermochemical process based on gas-solid reactions, where the temperature of heat
release/uptake depends on the pressure of the reactant gas. Controlling the reaction
conditions allows for more flexibility of the process and opens up the possibility of
using different temperature levels for charging, storing and discharging. The specific
characteristics vary greatly between different substances. Thus, individual processes
have to be developed for each application and reaction system. Typical issues are
low cycle stability and complex process design. Its main advantages are the high
storage density and nearly loss-less long-term storage at ambient conditions.

It is evident that each TES type has its advantages and disadvantages. While sensi-
ble energy storage is the most straight forward TES solution, the added flexibility of
thermochemical energy storage could make TES viable for more complex applications.

In our effort to make our energy system more sustainable, energy storage demand will
rise significantly in the next couple of years. Even though the IEA (2018) projects that
most of this storage demand will be covered by electric batteries, there are a multitude
of applications where TES would be the better match. The main advantages of TES are
that it requires mostly abundant materials, that it can be built at large scale and that
conversion losses can be kept at a minimum if heat is required as input. Doubtlessly,
TES will play an important role in our future energy system — even more so, if the
implementation barriers of thermochemical energy storage can be overcome and its
potential is realized.

2.1 Thermochemical energy storage

The term thermochemical energy storage (TCES) encompasses storages based on all
types of sorption processes, from physisorption (e.g. zeolites) to chemisorption with
various kinds of reversible reaction systems. In this work reversible gas-solid reactions
are covered. They are in the focus of most research efforts because they enable high
storage densities and because the two reactants can be separated easily.

Thermochemical storage reactions typically follow a reaction equation of the type

A(solid) + B(gas) −−→←−− AB(solid) + heat . (1)
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2 Context

charging
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chemical heat pump

Figure 2: Operating modes of a thermochemical energy storage.

When the solid and the gas are brought into contact the reaction starts. The substances
form a compound and heat equal to the reaction enthalpy, a property of each reaction
system, is released. Since these enthalpies are typically quite large, the storage density of
TCES is high. To revert the reaction, i.e. to separate the gas from the solid, the same
amount of heat has to be supplied. By storing the two substances separately, the reaction
can be inhibited and theoretically loss-less storage for unlimited time can be realized.

In reversible reactions both the forward and the reverse reaction take place at the
same time. When the forward and the reverse reaction proceed at the same speed, the
net conversion of molecules is zero and the system is said to be in equilibrium. The
reaction equilibrium is a characteristic property of a reaction system. It determines
the temperature range, in which the system can be used for TCES applications. By
controlling the partial pressure in a TCES reactor, the temperature of heat uptake and
release can be influenced. This is illustrated in the right-hand diagram in Figure 1. The
higher the partial pressure, the higher the equilibrium temperature.

If the reaction conditions are such that the system is not in equilibrium, one reaction
will proceed faster than the other. Conversion will occur and the reaction will proceed
until all reactants are converted to products. At low temperatures and high partial
pressures, the formation (discharging) reaction is favored and heat is released. At high
temperatures and low partial pressures, the decomposition (charging) reaction is favored
and heat is consumed.

In TCES, heat is released by mixing the two substances at a temperature below the
equilibrium temperature. To charge the storage, the temperature has to be raised above
the equilibrium temperature. Since the reaction rate is zero at the equilibrium, charging
and discharging processes need to operate at a certain distance from the equilibrium to
achieve sufficiently fast reaction rates (purple markers in Figure 2). For this reason,
the discharging temperature is generally lower than the charging temperature at constant
pressure, which leads to a loss of “heat quality” in a storage cycle.

The temperature difference between the charging and the discharging process can
be reduced by operating the discharging process at higher partial pressures than the

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Research summary

charging process. If the pressure difference is sufficiently large, even positive temperature
differences can be realized (orange markers in Figure 2). This concept is referred to as
chemical heat pump.

Changing the partial pressure allows to operate the storage process in a way that would
not be possible with sensible or latent thermal energy storage. On the other hand, the
performance of TCES can deteriorate significantly if the partial pressure is not controlled.
If reactant gas is not supplied fast enough during discharging, the partial pressure in the
reactor might drop and the discharge temperature might decrease. During charging, if
the gas is not removed efficiently from the reactor, the decomposition reaction might be
very slow or even inhibited.

Even though the effect of temperature and partial pressure on the reaction is qualita-
tively the same for all gas-solid reaction systems, there are considerable differences among
different reaction systems. Additionally, temperature and partial pressure in the reactor
are also affected by mass and heat transport. For this reason, reactors and processes
have to be designed specifically for each reaction system and the application at hand.

The basic working principle of TCES has been known at least since the 9th century.
In one of his books, the alchemist Rasis (also Rhazes, al-Razi) describes an experiment,
where an egg is cooked by pouring water over quicklime (Thorndike 1923, p. 784). When
the water gets into contact with quicklime, an exothermic reaction is triggered that
heats the water and boils the egg. The first modern application of TCES dates back
to the 1880s, when some vehicles that generated steam by dissolving NaOH (sodium
hydroxide) were operated in Germany: a river boat on the Spree, a street car in Berlin
and Charlottenburg as well as a railway locomotive on the track between Jülich and
Aachen (Beckmann et al. 1984, p. 17). Though, the technology did not catch on and
TCES with NaOH fell out of use.

Today, TCES technology is considered to be on a fairly low technology readiness
level (TRL) compared to sensible and latent TES. No thermochemical heat storages are
currently in operation. Most research efforts are being made on TRL 3 (experimental
proof of concept) and TRL 4 (validation in lab). At the time of writing of this thesis, there
are two projects that are trying to push their TCES systems to TRL 6: the CREATE
project1, which aims to develop and demonstrate a heat battery based on salt hydrates
for seasonal storage in buildings, and the SCORES project2, which focuses on a Power-
to-Heat concept based on a REDOX (reduction-oxidation) system; also for domestic
applications.

Some research projects are currently testing components in the lab, such as solar
kilns with Cu2O/CuO (cuprous oxide/cupric oxide) for application in concentrated solar
power plants (Neises et al. 2012), a fixed bed reactor with SrBr2/SrBr2 ·H2O (strontium
bromide/strontium bromide mono hydrate) for industrial waste heat management (Sten-
gler et al. 2020) and a fluidized bed reactor with CaO/Ca(OH)2 (calcium oxide/calcium
hydroxide) also for industrial waste heat management (Angerer et al. 2018).

CaO/Ca(OH)2 is probably to most extensively studied reaction system today. Starting

1EU Horizon 2020 grant No. 680450, www.createproject.eu
2EU Horizon 2020 grant No. 766464, www.scores-project.eu
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2 Context

from detailed kinetic identification (Schaube et al. 2012), over concepts for improving
the thermal conductivity and mass transport in packed beds through honey comb
support structures (Funayama et al. 2020) and semi-permeable encapsulation of particles
(Afflerbach et al. 2017), to system level simulations (Risthaus et al. 2020).

Most research efforts in TCES still focus on the detailed identification of prospective
substances, such as the cycle stability of CaC2O4/CaC2O4 ·H2O (calcium oxalate/calcium
oxalate mono hydrate) at a milligram scale (Knoll et al. 2017), near-equilibrium effects
of various salt hydrates (Söğütoğlu et al. 2019) and high pressure carbonation of metal
oxides (Gravogl et al. 2019) — to name just a few. Important characteristics include the
heat of reaction, viable temperature intervals, cycle stability and the kinetics at process
conditions. An overview over experimental characterization methods for thermochemical
materials can be found in (Kato et al. 2019).

A considerable amount of research effort has also been dedicated to identifying potential
applications for TCES. Typical low-temperature applications (< 100 ◦C) include tap
water and room heating (Scapino et al. 2017), industrial waste heat recovery applications
are situated across the whole temperature range (Miró et al. 2016) and high-temperature
applications (> 800 ◦C) include concentrated solar power (Prieto et al. 2016). Even
tough the temperature levels and other requirements of these applications vary widely,
there is a plethora of potential reaction systems that could meet the demands of almost
any application (Deutsch et al. 2016). The most relevant groups include salt hydrates
with a typical temperature range between 40 and 300 ◦C (Donkers et al. 2017), metal
hydroxides between 150 and 900 ◦C, carbonates between 600 and 1200 ◦C and REDOX
systems between 800 and 1500 ◦C (Bulfin et al. 2017).

Bottom line, TCES systems are available for virtually any temperature level and
application. The main advantages are high energy densities, almost loss-less long-term
storage and that the reaction temperature can be controlled by changing the partial
pressure of the gas. Challenges include the low TRL, i.e. the lack of off-the-shelf
components and mature reactor and process concepts as well as our crude understandig of
the effects on the material scale. If the existing implementation barriers can be overcome,
TCES could be a key technology to facilitate large-scale use of renewable energy and to
reduce the primary energy demand in domestic heating and industry.

2.2 Reaction kinetics of gas-solid reactions

Chemical kinetics is the study of the reaction rate and how it is influenced by reaction
conditions. Generally, chemical kinetics are divided into micro- and macro-kinetics. The
latter include heat and mass transport, while the former do not. The micro-kinetics
are considered to be more universal, because they do not depend on the macroscopic
configuration of the reaction system. The goal of a kinetic study of a specific reaction
is to identify and understand its micro-kinetics, but unfortunately they are notoriously
elusive. For reactions involving solids, they might even be non-existent because the
chemical kinetics can not be fully separated from the physical effects at the gas-solid
interface.

In gas-solid reactions, the reactants cannot mix indefinitely. The reaction takes place
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Research summary

on a reaction interface in the solid, and the advancement of the reaction front as well
as mass transfer between the phases has to be considered. Additionally, the particle
morphology and the lattice configuration of the solid will also affect the reaction rate.
Because of the multitude of processes that take place during a gas-solid reaction, kinetic
studies of gas-solid reactions are very empirical with little first-principle theory to rely
on.

Interest in chemical kinetics is twofold: First, the kinetics provide insight into the
reaction mechanism and, thus, further our fundamental understanding of the reaction.
Second, the kinetics have to be known for reactor and process design to estimate reaction
rate under process conditions. The viability of a reaction system for a given application
with a given temperature range is not only determined by the reaction equilibrium as
discussed in the previous section. Even if the reaction is thermodynamically favored, i.e.
if the thermodynamic conditions are such that the reaction can proceed, the reaction rate
might be so slow that no noticable conversion can be achieved in a reasonable amount
of time. In that case the reaction is said to be kinetically inhibited. To evaluate the
potential of a reaction system, detailed knowledge of the kinetics under process conditions
is required.

As a frame to describe and interpret chemical kinetics, kinetic models are employed.
They define how we see the processes of chemical conversion. Without kinetic models,
the kinetics could not be grasped because of the multitude of processes taking place
simultaneously. By casting experimental data into models, we can check for systematic
relationships between variables and identify underlying mechanisms or just represent the
kinetic information in a systematic manner.

Some kinetic models describe the most relevant processes that determine the reaction
kinetics separately. Typically, the reaction is assumed to consist of three consecutive
steps: mass transfer through the boundary layer, diffusion through the particle and the
chemical reaction itself. The overall rate is then the reciprocal sum of the individual
rates of each process (Yagi et al. 1955). This class of models is frequently used in coal
combustion. A characteristic feature of these models is that they seek to relate the rate to
structural parameters of the reactants, like particle size, porosity and diffusion constants.
Prominent models of this class include the Grain Model (Szekely et al. 1970) and the
Random Pore Model (Bhatia et al. 1981). A review of solid-state phase transformation
kinetics models and modeling recipes has been published by Liu et al. (2013).

Often it is not feasible, if even possible, to model the specific processes taking place
during the reaction. Issues range from identifying the rate limiting processes and selecting
appropriate models for each process to collecting sufficient data to calibrate these models.
Then, a more simplistic approach should be employed. The most common simplification
is the single-step approximation. It is based on the assumption that one of the processes
is significantly slower than all the other ones. If the assumption holds, this process
determines the overall rate of the reaction and is referred to as the rate limiting step.

The single-step approximation has its roots in homogeneous reaction kinetics. If only
one elemental step is rate limiting, the analytically derived formulas for elementary
reactions can be used to calculate the reaction rate of complex reactions. The single-step
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2 Context

approximation formula for gas-solid reactions was designed in analogy to kinetic models
of homogeneous reactions and extended by a term to take effects in the solid phase
into account. The conversion rate dα/dt is typically modeled as the product of three
independent effects:

dα

dt
= f(α) k(T ) h(p, peq) . (2)

Here, f(α) is the effect of the conversion α, k(T ) the effect of temperature T and h(p, peq)
the effect of the driving force, usually expressed as a function of the partial pressure
p and the equilibrium pressure peq. This formula is referred to as the General Kinetic
Equation (GKE). It is by far the most commonly applied formula in kinetic modeling
(Vyazovkin et al. 2011). Essentially, it is a synthesis of solid-state and homogeneous
reaction rate models.

The effect of the advancement of the reaction front has been extensively studied
in solid-state kinetics. Based on simplified geometric considerations, the effect of the
advancement of the reaction front f can been derived as a function of the reaction
progress α (Brown et al. 1980, p. 6). These models can be divided into nucleation,
interface and diffusion models (Khawam et al. 2006). Sometimes “reaction order” models
are employed, which imply that the concentration of the solid affects the reaction rate.
This has no physical foundation and reaction order models are thus purely empirical.
The main assumption behind f(α) models is that the reaction path does not depend on
either reaction conditions or time. Some researchers argue that this is too much of a
simplification and have developed more sophisticated reaction models for use with the
GKE (Pijolat et al. 2011; Pijolat et al. 2018).

The functional form of k(T ) is usually assumed to be of Arrhenius type, even though
it has been shown, that the assumptions that the Arrhenius equation is based on do
not hold for reactions involving solids (Galwey et al. 2002; Galwey 2003a). Regardless,
the Arrhenius equation tends to describe gas-solid reactions very well. For this reason
it is widely used despite the lack of theoretical justification (Brown 1997). It has been
suggested that, since the Arrhenius equation has to be regarded empirical, one might
as well resort to completely empirical equations for k(T ), which are easier to handle
mathematically (Flynn 1997). Also, an alternative theory to the Arrhenius approach,
the “Congruent Dissociative Evaporaton”, has been proposed (L’vov et al. 2013), but
neither of these two suggestions did catch on.3 At the moment, the Arrhenius equation
seems to be firmly established in the field.

Very little literature is dedicated to the driving force term, and as a consequence it is
used very inconsistently. The most common form is h(p, peq) = 1− p/peq, which seems
to have been developed in analogy to the concentration term in homogeneous reaction
models and was introduced to modern day kinetics via the work of Šesták (2005). It

3There is a strange dispute going on between L’vov and the mainstream kinetic community represented
by the ICTAC (International Confederation for Thermal Analysis and Calorimetry). While the ICTAC
encourages the use of the Arrhenius equation despite its lack of theoretical justification, L’vov published
his Congruent Dissociative Evaporation theory in the late 80s and continues to publish frequently on the
topic. The ICTAC seems to neither approve nor reject his theory. They simply ignore it — very much to
the frustration of L’vov (L’vov 2017).
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Research summary

functions as an accommodation term to incorporate the effect of the reverse reaction
into the kinetic model. In most kinetic studies the driving force term is simply omitted
(Vyazovkin et al. 2011). The underlying assumption is that the reaction takes place
“sufficiently far” from the equilibrium. For TCES accurate driving force terms are highly
relevant since TCES processes usually operate in close proximity to the equilibrium for
maximum efficiency.

If not the chemical reaction but one of the physical processes taking place during the
reaction is rate limiting, the GKE could still be employed, but the terms would assume
completely different forms (Goodell et al. 1983). Only little research has been dedicated
to this topic in kinetic analysis. Though, kinetic models of gas-solid reactions could
benefit from this broadening of the scope, since the chemical micro-kinetics cannot be
fully separated from the physical processes taking place during the reaction.

When using models based on the GKE, one has to be aware of the underlying as-
sumptions and its limitations, because there are a lot of them. These shortcomings have
been discussed thoroughly (Šimon 2007; Brown 2005; Galwey 2004; Maciejewski et al.
1987). In the end, the GKE is not a law of nature, but an empirical formula. Even if
its not completely accurate, it is a rather useful lens for looking at gas solid reactions.
It is simple enough to make kinetic data interpretable while also allowing for enough
complexity to capture manifold processes that take place and interact in a gas-solid
reaction.

2.3 Modeling methods for gas-solid reaction kinetics

The task of kinetic modeling methods is to calibrate kinetic models with experimental
data. However, kinetic modeling includes some additional preliminary steps: deciding on
the model purpose, selecting a model, collecting experimental data and preparing the
data for processing with the modeling method.

The very first step in modeling is to decide on the purpose of the model. Two main
purposes can be distinguished in kinetic modeling: kinetic analysis and kinetic predictions.
In kinetic analysis, the goal is to get fundamental insight into the reaction mechanism.
For kinetic predictions, the prediction accuracy in the relevant parameter range is most
important. Depending on the purpose, a suitable model has to be chosen. For kinetic
analysis, models with a strong theoretical foundation are needed, so that they can be
interpreted mechanistically. For kinetic predictions, the requirements on the model are
less stringent. Empirical formulas, accommodation factors and other heuristic approaches
can be used freely.

In the previous section various types of kinetic models were discussed. Here, I will cover
only modeling methods that are based on the General Kinetic Equation (GKE), which
has been described in detail in the previous section. The GKE strikes a good balance
between a strong theoretical foundation and sufficient leeway for heuristic approaches.
For this reason the GKE is well suited for both kinetic analysis and kinetic predictions.
For kinetic analysis, the assumptions that the GKE is based on need to be kept in mind.
Only then, the GKE can be interpreted mechanistically.4

The basis for all kinetic models is reliable kinetic data. The most relevant group of
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2 Context

experimental methods for collecting kinetic data of thermally induced reactions is called
thermal analysis. Data is obtained by monitoring the reaction of a substance sample
under controlled conditions (Vyazovkin et al. 2014). Unfortunately the chemical reaction
rate cannot be measured directly. Information on the reaction has to be distilled from
quantities that are indicators for the reaction progress such as mass-change (thermo-
gravimetric analysis, TGA), heat flow (differential scanning calorimetry, DSC) or product
gases (gas-chromatography, GC). Another approach for some reactions is to monitor the
lattice configuration of the solid (X-ray diffractometry, XRD).

Extensive pre-processing is necessary to extract kinetic information from the measured
signal. An illustrative example is the measured heat flow during heating of a sample
in a DSC instrument. The signal is a superposition of the heat of reaction and the
sensible heat uptake of the sample and crucible. Consider XRD as another example: To
determine the share of reacted solid from the XRD pattern, the measured pattern has
to be compared to the patterns of pure substances in a database. An algorithm then
determines the composition of the sample. In both cases, we rely on a set of assumptions
and extensive computations to obtain the kinetic information. These computations are a
critical step in the kinetic modeling process because they determine the accuracy of the
kinetic data.

To standardize the treatment of kinetic data irrespective of the measurement method,
the measured values are usually converted to conversion values by considering the
stoichiometry of the reaction. The conversion is a measure for the reaction progress from
0 (all solid substance in initial configuration) to 1 (solid substance converted completely).
For multi-step reactions the definition of conversion is challenging since the progress of
each reaction step has to be taken into account.

Generally, the more detailed a kinetic model is, i.e. the more effects are included, the
more experiments at different reaction conditions are required. Today, the consensus is
that at least three experimental runs should be used and that kinetic studies based on
only one experiment are unreliable (Vyazovkin et al. 2011; Burnham 2017).

A comprehensive review of modeling methods for single-step reactions has been compiled
by the ICTAC (International Confederation for Thermal Analysis and Calorimetry) and
published by Vyazovkin et al. (2011). Most methods for modeling gas-solid reactions
according to the GKE have two things in common: they neglect the pressure/driving
force term and they presuppose the validity of the Arrhenius equation (Vyazovkin et al.
2011). Then, the kinetic identification of the reactions boils down to the identification
of the kinetic triplet: the reaction model, the pre-exponential factor and the apparent
activation energy.

Historically, one of the first methods for modeling the kinetics of gas-solid reactions
with the GKE was the Kissinger method (Kissinger 1956). Kissinger showed that the
activation energy can be determined from a series of constant-heating-rate experiments
by identifying the temperature where the conversion rate peaks. The main advantage of
the method is that the activation energy can be determined without having to assume

4Some scientists have not been very rigorous in that respect, which is why there have been heated
debates on that topic (Galwey 2004; Brown 2005; Šesták 2017).
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Research summary

a reaction model and that very few calculations are required. Today, the method has
fallen out of use because it is very sensitive to shifts in the conversion rate peaks and
consequently to experimental error. Also, the scope of the Kissinger method is limited
because of the assumptions that it is based on (Vyazovkin et al. 2011).

Around the same time, “model-fitting” methods were developed. By assuming a
reaction model, the Arrhenius plot can be constructed and the Arrhenius parameters
can be determined by fitting a straight line. Whichever reaction model leads to the most
linear Arrhenius plot, i.e. to the smallest error when fitting the regression line, is deemed
to be the correct one. These model-fitting methods exist in differential and integral
variants. Today, these methods have fallen out of use, due to their poor performance of
discriminating different reaction models and the wide range of activation energy values
they produce (Vyazovkin et al. 1999; Maciejewski 2000).

The largest group of modeling methods are the isoconversional methods. A recent
review of isoconversional methods has been published by Vyazovkin (2018). The best
known isoconversional methods are the Friedmann and Ozawa-Flynn-Wall methods. With
isoconversional methods, the activation energy can be determined without interference of
a reaction model choice. For this reason these methods are often labeled “model-free”.
However, this label is quite misleading because isoconversional methods are of course not
free of models — they are based on the GKE and the Arrhenius equation.

The central idea behind isoconversional methods is to fit the Arrhenius equation at
constant conversion to obtain the activation energy as a function of conversion. If the
activation energy is constant over the whole conversion range, the single-step assumption
holds. Then, the activation energy can be used to construct a master plot for determining
the most likely reaction model (Vyazovkin et al. 2011). Using a masterplot for identifying
the reaction model is deemed more reliable than the model-fitting approaches described in
the previous paragraph, because the activation energy is determined independently from
the conversion model. Another advantage of isoconversional methods is that deviations
from the single step assumption can be detected easily by looking for a variation of
activation energy with conversion.

The identification of the reaction model from a master plot is usually done by fitting
candidate models from literature and selecting the one with the smallest error. Another
way to interpret the masterplot is to fit the Šesták-Berggren equation (Šesták et al. 1971).
It combines features of interface, nucleation and power laws with weight factors. After
fitting the Šesták-Berggren equation, the resulting weight factors can be compared to
theoretical ones. If they match accurately, conclusions on the reaction pathway can be
drawn (Šimon 2011). If they do not, the Šesták-Berggren equation is only useful for
kinetic predictions.

If the isoconversional method shows that activation energy is not constant over con-
version, it is most likely a complex or multi-step reaction. Then, the isoconversional
method produces a “variable activation energy” plot, which — according to advocates of
isoconversional methods — can be used to infer something about the reaction (Vyazovkin
2016; Criado et al. 2008). This approach has been criticized harshly, because a variable ac-
tivation energy is in contradiction with kinetic theory and cannot be interpreted seriously
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2 Context

(Galwey 2003b; Galwey 2003a). Also, it has been shown that the “variable activation
energy” plot can only be interpreted for certain multi-step reactions (Opfermann et al.
2002; Moukhina 2012). Nevertheless, isoconversional methods can be useful for getting
first insights into complex reactions. Some scientist take a quite pragmatic approach to
isoconversional methods and use them to get starting values for non-linear model fitting
(Šimon 2004; Opfermann et al. 2002).

Non-linear model fitting methods are probably the best established alternative to
isoconversional methods. They are included in most commercial kinetic software packages
because they can be used for single-step and complex multi-step reactions alike (Opfer-
mann 2000). A complete kinetic model is selected and fitted to the data with non-linear
fitting algorithms. The main challenge of course is to select an appropriate model, when
very little information about the reaction is available. Deviations between data and
model can easily go unnoticed because of the complexity of the modeling process. For
this reason, non-linear model fitting depends heavily on a-priori knowledge about the
reaction and the researcher’s experience.

In an attempt to reduce the burden of a-priori model selection, flexible model equations,
such as the Šesták-Berggren equation (Šesták et al. 1971) are often used. By employing
equations that can fit a wide range of different reaction types, interference of model
choices by the researcher is reduced at the expense of a more complex fitting problem
(Pérez-Maqueda et al. 2006). The burden then lies on the fitting algorithm to choose the
correct parameters that define the shape of these flexible models. This approach is best
suited to generate kinetic prediction models, because the resulting models can generally
not be interpreted mechanistically.

The main advantage of non-linear model fitting is that these methods can also be
used to model multi-step reactions. The only limitation is the increasing complexity
of the model and consequently the effort for fitting the model. An approach to reduce
the complexity of a multi-step data set is to decompose the multi-step data into single
reaction steps by performing peak fitting on the differential data (Perejón et al. 2011).
Then, each reaction step can be analyzed with single step methods. Even though this
approach is very convenient because established single-step models can be used, this
approach has been shown to produce unreliable results for strongly overlapping reaction
steps (Muravyev et al. 2019). Since multi-step reactions are out of the scope of this
thesis, I will not go into more detail and conclude this topic with a reference to a recent
review article on multi-step modeling methods: Vyazovkin 2020.

A completely different approach to modeling single-step kinetics according to the GKE
is the non-parametric kinetics (NPK) method (Serra et al. 1998). By exploiting the
mathematical structure of the GKE, the effects of conversion and temperature can be
identified without having to assume a reaction model or relying on the Arrhenius equation.
As input, the method needs a data set that covers the conversion and temperature range
of interest and a conversion-temperature grid for the computation. The output are vectors
that correspond to the effects of conversion and temperature on the selected grid without
any restriction to their shape. The vectors can be interpreted in terms of the rate limiting
step or used directly to predict the conversion rate. These vectors can also be used to
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Research summary

identify the most likely reaction model and the apparent activation energy. Similarly
to reaction model identification with isoconversional methods this yields reliable results
because the identification of conversion and temperature effects is done independently.
In contrast to isoconversional methods, the NPK method is not based on the Arrhenius
equation. It only requires the GKE to identify the effects of temperature and conversion.

The available kinetic models and kinetic modeling methods have come a long way since
the days when Peter Waage and Cato Guldberg introduced the law of mass action and
Jacobus van’t Hoff and Svante Arrhenius analyzed the effect of temperature on reaction
rates in the late 19th century. With computers complicated calculations are not a problem,
and the methods have matured to a point, where leading scientists argue that the main
bottleneck of kinetic modeling is collecting sufficient and above all reliable kinetic data.
Specifically, Brown (2005) argues that existing modeling methods are sufficient, and
improving the calculation procedures has little to no effect if no advancement in the
experimental techniques and the interpretation of kinetic models is achieved. Brown
touches on a critical point: The reliability of kinetic studies depends on the accuracy of
all involved steps: underlying theory, experiments, data processing, modeling methods
and interpretation. The more sophisticated modeling methods get, the more correct the
results are often perceived. Regardless, if either one of the steps is inaccurate, it cannot
be compensated by any of the other steps, and improvements to modeling methods would
be for naught. While there is certainly a lot of truth to Brown’s observation, there is
still plenty of room for improvement of the available modeling methods.

In the context of thermochemical energy storage (TCES) all of the above mentioned
methods have one significant shortcoming: There is no straight forward way to incorporate
the effect of the pressure/driving force in the kinetic analysis of gas-solid reactions.
Kinetic models for reactions in TCES must include the effect of driving force, because
TCES processes typically operate in close vicinity to the equilibrium, where these effects
cannot be neglected. Even though an extra term could easily be included in non-linear
model fitting methods, the scarcity of theory on near-equilibrium effects complicates the
extension of kinetic models. Clearly there is a need for a method that can be used in an
explorative fashion, where knowledge about the reaction is discovered step by step from
the kinetic data.
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3 Motivation and problem statement

3 Motivation and problem statement

Thermochemical energy storage (TCES) has the potential to cover large parts of the future
thermal energy storage demand for a multitude of applications. Its main advantages are
the wide range of available materials that enable TCES for any temperature level and
the high storage density in combination with virtually lossless storage for unlimited time.
Yet, before TCES can be employed on a large scale, some implementation barriers have
to be overcome.

Today, TCES is usually situated at the Technology Readiness Level (TRL) 4 “validation
in lab”. To increase the TRL, prototypes for relevant environments such as households
or industry need to be developed and tested in the relevant environment. For many
applications, suitable gas-solid reaction systems have been identified. Even though the
potential of these reaction systems has been proven and they could readily be applied in
prototypes, there is still a number of unanswered questions on the material level that are
impeding the progress of TCES technology. One of the aspects that is not yet sufficiently
well understood are the kinetics of gas-solid reactions, as is evident from the multitude
of effects in experimental data that can not be readily explained or modeled accurately
and the numerous disputes in the kinetic community.

As model for the kinetics of gas-solid reactions, the General Kinetic Equation (GKE) is
firmly established, even though it clearly is an empirical formula and the possibility that
the GKE could fall short of accurately describing the complexity of gas-solid reactions
has to be kept in mind. Nevertheless, the GKE is a powerful tool to model kinetic
data, because it is simple enough to make kinetic data interpretable while also allowing
for enough complexity to capture manifold processes that take place and interact in a
gas-solid reaction.

In the context of TCES the main shortcoming of kinetic theory around the GKE is
that the effect of pressure/driving force is neglected more often than not. The reason
might be the lack of suitable modeling methods that can deal with more than two terms
in the GKE. The effects of conversion and temperature are generally considered more
relevant and the driving force term is neglected based on the argument that the reaction
takes place “sufficiently far from the equilibrium”. For TCES this simplification is not
viable, because processes typically operate in close proximity to the equilibrium, where
the effect of the driving force cannot be neglected. To investigate the effect of the driving
force, modeling methods are needed that are capable of analyzing the effect of conversion,
temperature and driving force simultaneously.

At the moment, only non-linear model fitting methods are capable of deriving models
in more than two variables. These methods require an a-priori choice for the terms in the
GKE, which means that an assumption about the shape of the effect of pressure/driving
force has to be made. Choosing an appropriate model is a difficult task, considering
that just like many other aspects in kinetic analysis the near-equilibrium effects not yet
well understood and there is very little reliable literature on the topic. Also it is often
hard to judge the viability of a model from just the goodness of fit and an independent
verification of the model is usually not possible.
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Research summary

What would be useful is a kinetic modeling method, that can model the kinetics with
very little a-priori assumptions, so that modeling can be done in an exploratory fashion
and the data can “speak for itself”. Here, the data-driven NPK (non-parametric kinetics)
method shows a way forward because it is only based on the GKE and does require no
other a-priori assumptions about the reaction under consideration. Consequently, no
reaction, temperature or driving force model has to be selected beforehand. Yet, just
like most established modeling methods, the NPK method can only derive models in
two variables. The effect of the driving force cannot be taken into account while also
considering the effect of conversion and temperature. Also, the NPK method is not viable
for most research teams, because it is quite complicated algorithmically.

To make progress in kinetic modeling of single-step reactions, a data-driven method is
required that

• can derive models in any number of variables,
• requires only few a-priori assumptions about the reaction under consideration,
• can process large, arbitrarily distributed data sets,
• includes tools to assess the model quality and
• is robust, flexible and easy to use.

With such a method it would be possible to gain new insights into the reaction kinetics of
gas-solid reactions and compute more accurate kinetic predictions for reactor and process
design. Ultimately, better understanding of the processes that control the heat release
of chemical reactions could enable TCES as a competitive alternative to other thermal
storage methods.
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4 Research approach

4 Research approach

The starting point for this thesis was in large parts the thesis of my predecessor Markus
Deutsch (Deutsch 2017) and our joint paper on the orthogonal extension of the NPK
(non-parametric kinetics) method that was published under the title “An extension
of the NPK method to include the pressure dependency of solid state reactions” in
Thermochimica Acta (Paper 4). As the title suggests, the goal was to use the NPK
method to derive a model that did not only incorporate conversion and temperature
effects but also the effect of pressure. The central idea was to apply the NPK method
twice: once on a temperature-conversion plane, once on a pressure-conversion plane. At
the intersection of these two planes, the two sub-models had to be equal. With this
condition, the two sub-models could be combined into one model, that included the effect
of all three variables.

This approach allows for an analysis of the combined temperature and pressure
dependency of gas-solid reactions, without the need to make assumptions about the shape
of the temperature and pressure terms in the General Kinetic Equation (GKE). Yet, the
restriction to two planes limits the type of experimental data, that can be used for the
analysis and as a consequence the scope of the analysis. For example, with this method
it would not be possible to use constant-heating-rate data at two different pressure levels
or to use a 1− p/peq term with data from a p -T grid. This limitation is not acceptable,
since the goal is to develop a method that can process arbitrarily distributed data.

The first approach to overcome the limitation of the orthogonal NPK method was to
develop a full higher-order extension of the original NPK algorithm. For this, all steps of
the algorithm had to be extended from two to an arbitrary number of dimensions. The
extended NPK method was published under the title “A higher-order generalization of the
NPK-method” in Thermochimica Acta (Paper 1). It can process arbitrarily distributed
data points in any number of dimensions — albeit with one severe shortcoming: it is
algorithmically even more complicated than the original NPK method.

The cause of the complexity of the algorithm is the underlying mathematical method,
the Singular Value Decomposition (SVD). Because this method cannot deal with missing
values, which occur in almost all kinetic data sets, an intricate calculation sequence is
required to select regions where enough data is available, apply the SVD to each region
and then combine the SVD outputs to get the final result. Because of its algorithmic
complexity, the extended NPK method is complicated to use, and it is not possible
to assess the model quality reliably. Even though the method presented a significant
advancement compared to established modeling methods, it was unlikely that it would
ever be used for actual kinetic studies.

It quickly became clear that, to overcome these shortcomings, a more general math-
ematical approach had to be found that can be solved with more efficient algorithms.
After an intensive and cumbersome search I found the solution: tensor decomposition
methods. These methods are closely related to the Singular Value Decomposition, albeit
much more flexible. Most importantly, these methods can deal with missing values and
extend seamlessly to a higher number of dimensions.
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Research summary

At this point, the NPK method was completely overhauled: “NPK 2.0: Introducing
tensor decompositions to the kinetic analysis of gas-solid reactions” in the International
Journal of Chemical Kinetics (Paper 2). The only thing that the TensorNPK method
still shared with the original NPK method was the underlying mathematical insight that
a discretization of the GKE always has a rank-1 structure. In contrast to the original
NPK method, the TensorNPK method is based on a very straight-forward and efficient
algorithm and it fulfills all our requirements: It can derive models in any number of
variables, process arbitrarily distributed data points and it is robust and fairly easy to
use. Additionally it can track the error from the data points to the solution values and
compute uncertainty estimates for the solution values. These error estimates can be used
to assess the model quality and to improve the accuracy of post-processing.

After about two years, we finally had developed a method that was not just theoretically
capable of deriving complex models with many variables but also ready to be used in
actual kinetic analysis. The TensorNPK method allowed us to analyze simultaneously
the dependency of gas-solid reactions on conversion, temperature and partial pressure
without any assumption about the form of these dependencies.

The first application was to analyze the kinetics of the oxidation of Cu2O (cuprous
oxide). The investigation was done by my colleague Saman Setoodeh Jahromy, I con-
tributed the kinetic modeling part. The result was published under the title “Impact of
Partial Pressure, Conversion, and Temperature on the Oxidation Reaction Kinetics of
Cu2O to CuO in Thermochemical Energy Storage” in Energies (Paper 5). For the kinetic
modeling a data set of isothermal-isobaric experiments on a p-T grid was available, which
had to be transformed to a (1− p/peq)-T grid to take the effect of the driving force into
account. With the new TensorNPK method we were able to derive a kinetic model with
three variables from this unequally distributed data set, which would not have been
possible with any other method. With this kinetic model, we gained useful insights into
the kinetics of this oxidation reaction. An interesting discovery in this study was that
the reaction rate of the oxidation of Cu2O decreases much faster towards the equilibrium
than theory would predict.

This study of the oxidation of Cu2O was not only about understanding the reaction
but also an opportunity to test the TensorNPK method and to gain more experience
with non-parametric modeling. Overall the TensorNPK method performed very well:
The kinetic model approximated the data accurately and the effects could be interpreted
in terms of the oxidation reaction. Though, data points halfway in-between two grid
points were approximated not as well as data points that were close to the grid points.
This undesired behavior was caused by a data pre-processing step, the projection of the
data onto the tensor. To improve the accuracy of the algorithm, this pre-processing step
had to be eliminated and the following step had to be adapted to be able to process
the data directly. This change turned out to be a considerable improvement and was
promptly implemented and published with the next paper (Paper 3).

To model the kinetics of Cu2O oxidation, we employed the standard modeling term
for the pressure dependency 1− p/peq. While working on the kinetic modeling, I noticed
an inconsistency with the values of the pressure term: It assumed large negative values,
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4 Research approach

when a value between 0 and 1 would have been expected. It turned out that many other
researchers were struggling with the same issue. After an in-depth literature study it
became clear that the 1− p/peq term is only applicable for decomposition reactions — a
fact that has been overlooked by many researchers. The finding was presented at the
EuroTherm seminar and later published in the Journal of Renewable Energy under the
title “The effect of the reaction equilibrium on the kinetics of gas-solid reactions — A
non-parametric modeling study” (Papers 3 and 8).

In Paper 3, we also systematically tested different driving force term formulations to
determine which one was the best match for non-parametric modeling. As test case for
the different driving force terms, the hydration of CaC2O4 (calcium oxalate) was used.
For this reaction, we found the same behavior that we had also noticed in the oxidation of
Cu2O: The rate decreases much faster towards the equilibrium than kinetic theory would
predict. During my presentation at the EuroTherm conference, I raised the question
whether anyone else had encountered similar effects. There was: A team from the TU
Eindhoven led by Henk Huinink had observed the same effect in the hydration of salts
and they were determined to find an explanation for it. They had collected a lot of high
quality kinetic data but still needed a method to interpret it. We decided to team up to
investigate this effect.

The team from the TU Eindhoven had identified nucleation limitation as the cause
for the unexpectedly slow kinetics in the vicinity of the equilibrium. Yet, this could not
explain the acceleration of kinetics at larger distances from the equilibrium. To get more
insight into this effect, Leyla Söğütoğlu had collected large data sets of both isothermal
and constant-cooling experiments at various partial pressures of water vapor. With this
large amount of data, the TensorNPK method could demonstrate its strengths: We used
the method to derive models with different driving forces, split the data sets and derived
models for different reaction conditions. This explorative approach proved successful: we
were able to show that the rate controlling step changed from nucleation to diffusion
towards the reacting layer at a certain distance from the equilibrium. This finding was
published in a joint paper in Thermochimica Acta under the title “Hydration of salts as
a two-step process: Water adsorption and hydrate precipitation” (Paper 7).

During the salt hydration study, I noticed that the models were sensitive to the
placement of the grid points that the TensorNPK method uses for the computations. On
some data sets, shifting certain grid points could distort the result. This problem could be
avoided by simply placing more grid points but this can deteriorate the model quality as it
can lead to overfitting. When working with the TensorNPK method, scientists should not
have to worry about the placement of grid points. As a remedy, ridge regression with a
curvature penalty was implemented to counteract overfitting. With this modification, grid
points can be placed generously and a cross-validation algorithm automatically selects
appropriate penalty values to counteract overfitting when necessary. This modification
solved the issue with grid point positioning and was applied in the study of salt hydration
where it led to good results.

In the salt hydration study the TensorNPK method was used as a tool to dig into large
datasets, test hypothesis on the data and reveal systematic effects in complex data sets.
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Research summary

This is one way, in which the data-driven modeling capabilities of the TensorNPK method
can be exploited. The other very promising application is the data-driven modeling of
reactions for kinetic predictions with little knowledge about the reaction. In Paper 3
we showed that NPK models can be used to predict the reaction rate despite obvious
deviations from theoretical models in literature. Predicting the reaction kinetics without
doing an in-depth kinetic study could be very useful for simulations of TCES systems or
for reactor and process design. Unfortunately, I did not yet get around to investigate
this in greater detail.

To give other scientists easy access to the TensorNPK method, a Matlab implementation
of the algorithm has been made available in the supplementary material of Paper 3.
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5 Conclusions and outlook

5 Conclusions and outlook

In the course of this thesis, the TensorNPK (non-parametric kinetics) method was
developed. It is a data-driven method to derive kinetic models of gas-solid reactions from
experimental reaction rate data. The method is based on the General Kinetic Equation
(GKE), which implies that the reaction can be approximated by one single step and
that the effects of all variables on the conversion rate are independent. The TensorNPK
method identifies the effect of each variable by exploiting the mathematical structure of
the GKE. The output are vectors that correspond to the unknown terms in the GKE.
These vectors can either be used to predict the conversion rate or they can be interpreted
in terms of the rate limiting step to get more insight into the reaction mechanism.

Applying the TensorNPK method to study the kinetics of materials relevant for
thermochemical energy storage (TCES) allowed us to assess the method’s performance
and gave insights into the requirements of researchers and certain analyses. Based on
these insights, two notable improvements were made after the method’s publication. One,
the way that the residuals are calculated was changed to improve the accuracy on sparse,
unevenly distributed data sets. Two, penalized regression was introduced to counteract
over-fitting and to make choosing the model grid easier.

Like the original NPK method, the TensorNPK method does not require models for
the individual terms in the GKE beforehand. In contrast to the original NPK method,
the TensorNPK method can derive models in any number of variables, it puts less
restrictions on the data set and it is easier to use because the underlying algorithm is
more straightforward. Additionally, it can produce error estimates of the solution values,
which can be used to assess the model quality and to improve the accuracy of post
processing.

Because the TensorNPK method derives the effect of each variable from the experimental
data, model selection is much less an issue as it is with other kinetic modeling methods,
and the likelihood that the scientist’s expectations are affecting the modeling outcome
is reduced. The TensorNPK method can even be used, when no information about the
effect of a certain variable on the reaction rate is available. This flexibility comes at a
price, of course: the TensorNPK method requires more data to derive a kinetic model.
The more effects are included in the model, the more data is required. The cost and effort
of collecting high quality kinetic data usually put a cap on the maximum complexity of
NPK models.

Because of the data-driven approach in the TensorNPK method, there are some
differences to other kinetic modeling methods. Instead of explicit models for the terms in
the GKE, variables have to be chosen for the TensorNPK method. Using conversion and
temperature is standard procedure, but selecting a meaningful variable for the driving
force is not always straightforward. The choice of the driving force implies an assumption
about which step is rate limiting. Often the assumption is that the chemical reaction
itself is rate limiting, but for some reaction system it has been shown that the chemical
reaction proceeds so fast that a physical process becomes rate limiting. In that case,
completely different driving force formulations are required.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Research summary

For each variable that is selected for the NPK model, a grid has to be defined that the
TensorNPK method uses for its computation. In the first version of the algorithm, the
number and position of grid points had to be chosen carefully because they could affect
the model quality. This issue was eliminated fairly well through the implementation of
penalized regression. Though, there are still some issues on very sparse data sets, and
strategies for the automated selection of optimal penalty parameters could be improved
to make the application of the TensorNPK method easier.

An obvious limitation of the TensorNPK method is that it can only be applied to
reactions with one single rate-limiting step. Presented with any kinetic data set, the
TensorNPK method will always produce the best single-step approximation — regardless
of the actual number of reaction steps involved. If more than one reaction step is rate
limiting, the result will become unreliable. The single-step assumption should be verified
carefully beforehand, because it might be hard to judge from just the output of the
TensorNPK method whether the single-step assumption has been violated or not. The
TensorNPK method also inherited other limitations from the GKE, such as that the
effects of all variables are independent and that particle effects are a function of conversion
alone. These limitations need to be kept in mind when applying the TensorNPK method.

Compared to kinetic modeling approaches that seek to model all effects in great detail,
the GKE might seem like a crude simplification. Indeed it might not be applicable to all
reactions, but for a wide range of reactions it has been shown to perform very well. For
these reactions the best justification for the GKE is maybe Occam’s razor5: For models
that are calibrated with experimental data, there is no need for the model to be more
complex than the quality and quantity of available data permits. Having in mind that
kinetic models are usually derived from thermogravimetric or calorimetric data, where
the kinetic information is a superposition of various simultaneous processes that can only
be separated by making many assumptions about these processes, the superiority of very
detailed models is debatable.

In light of these considerations, models based on the GKE seem to be a good choice in
the trade-off simplification vs. speculation. The GKE is a viable approximation for many
reactions, as long as its limitations are kept in mind. Even though it might fall short of
giving a perfectly accurate description of the underlying processes, it provides a useful
frame to interpret the behavior of many reaction systems.

Compared to isoconversional methods the TensorNPK method does not even rely on
the Arrhenius equation. More importantly, the TensorNPK method can model the effect
of pressure directly and does not require the effect to be interpreted as an “apparent
variation of activation energy with pressure”. Interpreting the effect of pressure/driving
force directly instead of taking the detour over the activation energy is not only more
convenient, but also more meaningful from a theoretical perspective. For this reason, the
TensorNPK method is better suited to obtain kinetic models that include more than the
effects of just conversion and temperature.

5Occam’s razor is a philosophical concept that says that when presented with competing hypotheses
that make the same predictions, one should select the solution with the fewest assumptions. It is
sometimes paraphrased by a statement like “the simplest solution is most likely the right one”.
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5 Conclusions and outlook

The main advantage of the TensorNPK method over non-linear model fitting methods
is that it does require much less a-priori model assumptions. For mechanistic analyses, the
problem of model selection is, so to say, postponed until after the effect of each variable
has been identified. With the TensorNPK method, model fitting is done independently
for each variable and when more information about the effect of each considered variable
is available. In this way, model bias through the incorrect choice of models is reduced.
On the other hand, non-linear model fitting can be used with any kind of model, while
the TensorNPK method is limited to models based on the GKE.

In conclusion, what sets the TensorNPK method apart from established kinetic modeling
methods is that it can derive models with more than two terms in the GKE without
additional modeling assumptions. In the context of TCES this means that a driving
force (and consequently the position of the equilibrium) can be included in the kinetic
model without knowing exactly the shape of the effect of the driving force. As discussed
in Paper 3, the inability of other modeling methods to take the driving force correctly
into account led to the identification of negative apparent activation energies in some
cases. For this reason the TensorNPK method is highly relevant for TCES research.

The TensorNPK method allows for various interesting analyses that were not yet possi-
ble in this way. Two main branches of analysis can be distinguished: kinetic predictions,
where the goal is to derive an empirical model with high prediction accuracy, and kinetic
analysis, where the goal is to get additional insight into the reaction mechanism.

For kinetic predictions only the accuracy of the prediction is relevant. Physical accuracy
is not a priority, even though physically correct models can be expected to perform
better when extrapolated. In Paper 3, it was demonstrated, that NPK models can be
used as a generic prediction method for the kinetics of gas-solid reactions. While other
kinetic modeling methods require explicit models for each relevant effect, the TensorNPK
method requires only the variables that the effects are correlated with. The algorithm
then identifies the effects from the experimental data. This allows to compute accurate
kinetic predictions for a wide range of reaction systems with little modeling effort and
without the need for an in-depth kinetic study. Possible applications for these models
include computational fluid dynamics simulations as well as reactor and process design.

Even though such empirical models are convenient because of the comparably low effort
of setting them up, they have to be used with care. Especially effects in the solid such as
fractioning/agglomeration of particles, change of active surface or passivation due to side
reactions are not included in these models, but they might become an issue during scale-up
and long-term operation of a TCES reactor. For this reason, such empirical models have
to be treated as contingent on the reaction conditions and the solid configuration in the
experiments. To get accurate kinetic predictions, the experiments have to be conducted
under conditions as close to the target ones as possible. If these requirements are met,
the resulting models should be capable of giving a detailed description of the effect of
reaction conditions on reaction rate and providing an accurate estimate of the operating
behavior of a TCES reactor with that reaction system.

In kinetic analysis the goal is to get additional insight into the reaction mechanism.
Even though the TensorNPK method is based on the GKE, which is a strong simplification,
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Research summary

it can be used to analyze the effect of the most relevant variables. In that sense, NPK
models can be used as a lens to interpret complex kinetic data. For this type of analysis,
the main advantage of the TensorNPK method is that is does not require an assumption
about the shape of each effect. This is especially relevant if no theoretical models are
available and even if they are, such an assumption might introduce a significant bias into
the modeling. The TensorNPK method avoids this bias and allows to explore complex
data sets with very few a-priori assumptions. The data can, so to say, speak for itself.

In collaboration with colleagues, the TensorNPK method was used to study reaction
systems relevant for TCES. Specifically, the oxidation of Cu2O (cuprous oxide), the
dehydration of H3BO3 (boric acid) and the hydration of K2CO3 (potassium carbonate),
LiCl (lithium chloride), MgCl2 (magnesium chloride) and CuCl2 (copper chloride) were
analyzed with the TensorNPK method. Especially in the copper oxidation and the
salt hydration study, the new capabilities of the TensorNPK method came in handy.
To model the kinetics of these reactions, at least three variables had to be considered:
conversion, temperature and a driving force. The main challenge was the scarcity of
agreed upon theory on the shape of the effect of driving force. Here, the fact that the
TensorNPK does not require models for the terms in the GKE allowed us to model the
reaction rate accurately, even when the effect of the driving force did not match any
of the models in literature. After the algorithm had extracted the shape of the effect
of the driving force, we could make hypotheses about the rate limiting process. For
salt hydrates, we were able to show that the rate limiting step changes from nucleation
limitation to diffusion limitation at a certain distance to the equilibrium. Also the
identification of the Arrhenius parameters was only done after it was confirmed that the
effect of temperature matched the Arrhenius equation. Thus avoiding the identification
of meaningless activation energies.

In our studies, the TensorNPK method proved a versatile tool to derive kinetic models
and get additional insight into the reaction mechanism. Yet, there are four main areas,
where the TensorNPK method could still be improved and/or extended:

• A standardized strategy for diagnosing NPK models would help scientists to asses
the model quality and to identify errors in models. For this, additional meaningful
statistical markers and new visualization methods will need to be developed.

• The procedures for the automated selection of meta parameters (such as grid
point positioning and penalty parameters) should be improved. Even though the
current procedures produce good results with most data sets, the meta parameters
sometimes need to be adjusted by hand when results are unsatisfactory.

• Weighting of data points could improve the accuracy of NPK models. Because
kinetic data is usually recorded with a constant sampling rate, there are usually
fewer data points in regions where the reaction proceeds the fastest. If data points
are weighted equally, the algorithm puts more emphasis on regions with slow
reaction rates. An approach to resolve this issue would be using Generalized Least
Squares, which can take the correlation of data points (i.e. their density) into
account.

• If the limitation to single step reactions can be overcome, it would greatly increase
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5 Conclusions and outlook

the scope of the TensorNPK method. The most obvious approach would be
to separate reaction steps with peak fitting and analyze each step separately.
Another approach, that would be less of a workaround, is to consider rank-N
tensor decompositions. For parallel reactions, it can be shown fairly easily that
the discretization of the kinetic equation results in a tensor with rank equal to the
number of parallel reactions. If this statement can be generalized to consecutive
or even more complex reactions, rank-N decompositions could be used to extract
information on the reaction steps from experimental data. Though, information of
the reaction steps will be convoluted in the sub-tensors and a special deconvolution
procedure will have to be developed to separate the models for each reaction step.

Kinetic models for gas-solid reactions would profit greatly from a standardized way to
take the configuration of the solid reactants into account that goes beyond one single
conversion term. Today, kinetic models are usually derived from experimental data,
where the solid underwent a specific pre-treatment to ensure that the crystal structure of
the solid is in a specific configuration. These models would not be capable of predicting
the performance of a TCES reactor where the material is used for multiple cycles, even
less if partial cycles are used. What would be needed are measures for describing the
state of the solid, measurement methods for determining this state and models to predict
the change of state. Modeling the solid with more detail would not just be interesting
from a theoretical perspective, but also highly relevant for practical TCES applications
as they could enable reliable kinetic predictions in later stages of the life cycle of the
termochemical material. A lot more research needs to be dedicated to elucidating the
effects in the solid in kinetic analysis. The TensorNPK method might prove useful for
deriving models that include more detailed effects in the solid because additional terms
can be added easily, provided that enough experimental data is available.

Even though there are countless unanswered questions on a material level and our
understanding of the processes taking place during a gas-solid reaction is still rather
rudimentary, TCES research would also profit greatly from more applied research that
simply sets aside these blind spots for now. Some viable thermochemical materials have
been identified for specific applications and the potential of these materials has been
proven in the lab. Testing on a component level is already underway and the first tests
in relevant environments have started recently. Successful demonstrations would prove
the viability of TCES and could spur more fundamental research in the long run.

In the big picture, much is on the line. Global warming will have disastrous conse-
quences, if we do not act quickly and adopt a more sustainable mode of production. Even
though TCES will not solve the problem of global warming on its own, it could be an
important building stone towards a more sustainable energy system.
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Publications

In this chapter all publications that are relevant for this thesis are presented. This
includes the publications where I was the first author as well as publications that I
wrote in collaboration with colleagues. A short summary that puts each publication into
context for this thesis, my own contribution and the reference are provided.
For the core publications of this thesis, the full-length papers are included. For all other
publications, the abstract is provided.

Papers included in this thesis
1 A higher-order generalization of the NPK-method . . . . . . . . . . . . . 38
2 NPK 2.0: Introducing tensor decompositions to the kinetic analysis of

gas-solid reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 The effect of the reaction equilibrium on the kinetics of gas-solid reac-

tions — A non-parametric modeling study . . . . . . . . . . . . . . . . . 58

Relevant publications as co-author . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 An extension of the NPK method to include the pressure dependency of

solid state reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 Impact of Partial Pressure, Conversion, and Temperature on the Oxi-

dation Reaction Kinetics of Cu2O to CuO in Thermochemical Energy
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 The multistep decomposition of Boric Acid . . . . . . . . . . . . . . . . 69
7 Hydration of salts as a two-step process: Water adsorption and hydrate

precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Contributions to international conferences . . . . . . . . . . . . . . . . . . . . . 71
8 The effect of the reaction equilibrium on the kinetics of gas-solid reac-

tions — A non-parametric modeling study . . . . . . . . . . . . . . . . . 71
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Publications

Paper 1
A higher-order generalization of the NPK-method
published in Thermochimica Acta in collaboration with Markus Deutsch, Stylianos
Flegkas, Franz Winter and Andreas Werner.

This paper covers the first approach to develop an algorithm that can model the kinetics
of gas-solid reactions in more than two variables based on arbitrarily distributed data.
The starting point for the new algorithm was the original NPK algorithm, which could
only model kinetic data in two dimensions.

To derive models in more than two variables, all parts of the original NPK algorithm
had to be extended to an arbitrary number of dimensions. Just as with the original
NPK method this lead to a complex sequence of processing steps because the underlying
mathematical method, the Singular Value Decomposition (SVD), cannot deal with missing
values directly. To avoid missing values, the data set had to be split into regions without
missing data, which could be processed with the SVD. Then, the results had to be
combined to obtain the full model. All steps are presented in this paper.

With this method, model-free analysis of kinetic data in more than two variables
was possible for the first time. This allowed to analyze the effect of the driving force
on kinetics in a whole new way. The main shortcoming of this approach is that it is
algorithmically very complex. As a consequence, it is hard to assess the model quality
and using the method is quite complicated.

My contribution: Development of the algorithm, implementing it in Matlab and testing
it. Evaluation of the higher-order NPK method. Drawing up and writing the paper.

F. Birkelbach, M. Deutsch, S. Flegkas, W. Franz, and A. Werner (2018). “A higher-order
generalization of the NPK-method”. In: Thermochimica Acta 661, pp. 27–33. issn:
00406031.
doi: 10. 1016/ j. tca. 2018. 01. 005
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A R T I C L E I N F O

Keywords:

Solid state reactions
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Model identification

Pressure dependency

NPK

A B S T R A C T

A novel algorithm to identify the full kinetic model of solid state reactions according to the General Kinetic

Equation is presented. It is a higher-order generalization of the Non-Parametric Kinetics method (NPK-method)

and allows for the simultaneous identification of the conversion, temperature and pressure dependency from any

combination of measurements. As a model-free identification method, it does not rely on a-priori assumptions

about the kinetic model. The result vectors can be used to identify the kinetic parameters by means of model

fitting for each variable independently.

The steps of the algorithm are described and its effectiveness is demonstrated by applying it to simulated

datasets. The kinetic parameters could be recovered very accurately from the test data, also in the presence of

noise.

Overall the higher order NPK-method is a very promising approach to derive kinetic models from experi-

mental data with a minimum of a-priori assumptions about the reaction.

1. Introduction

For many technological applications the feasibility of solid state

reactions is determined by the reaction kinetics. They directly influence

important reaction parameters like the residence time and yield.

Therefore, reliable kinetic models covering a wide range of process

parameters are indispensable to determine the optimal reaction con-

ditions for a given application.

The kinetics of simple solid state reactions that follow the equation

⇌ +A s B s C g( ) ( ) ( ) (1)

are often modelled based on the reaction rate dα/dt as a product of the

contributions of three independent variables:

=α

t
f α k T h p

d

d
( ) ( ) ( ).

(2)

Here f(α) is the contribution of the conversion α, k(T) is the contribution

of the temperature T and h(p) is the contribution of the partial pressure

of the gaseous component p. This equation is commonly referred to as

the General Kinetic Equation. It is based on the single-step approx-

imation, which has been subject to some dispute [1,2]. Nevertheless it

is a reasonable approximation for many solid state reactions and is

widely used in the field of kinetic analysis.

Most publications on kinetic modelling only consider the first two

terms of Eq. (2) and omit the pressure term [3]. These models are

sufficient for applications with isobaric conditions, but for some reactor

types, e.g. fluidized bed reactors, that feature high partial pressure

gradients of the gaseous components [4] information about the pressure

dependency is indispensable for reactor design. Also the modelling of

batch processes, like the drying of goods, where concentration changes

over time, requires the full kinetic model.

The first pressure dependency model was derived on theoretical

grounds in 1968 by Barret [5] and later confirmed with different as-

sumptions by Reading et al. [6] and Searcy et al. [7]. Most studies that

have been dedicated to the systematic identification of the pressure

dependency of solid state reactions, e.g. [8,9] or [10], employed a

model fitting approach. The first model-free method was published by

Deutsch et al. [11] as an extension of the Non-Parametric Kinetics

method (NPK-method). The main advantage of this method is, that it

requires no a-priori assumption about the kinetic model and that it

utilizes all available data points for the identification.

The NPK-method was developed by Serra et al. [12,13]. The core

insight that lead to the development of the NPK-method was that the

General Kinetic Equation can be represented as a rank-1 matrix when

the pressure term is neglected. The authors discretized the equation on

an (α× T)-grid, used the Singular Value Decomposition (SVD) to

compute the best rank-1 approximation of the data, which was then

used to derive the kinetic model. Later, Deutsch et al. [11] introduced

https://doi.org/10.1016/j.tca.2018.01.005
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an extension to the original method to also include the pressure de-

pendency. They evaluated the function on an (α× T)-grid and on an

(α× p)-grid. Then they used an intersection vector to combine the two

results and obtain the full kinetic model.

Even though this method is capable of deriving the full kinetic

model it has one considerable shortcoming: it can only process data on

isobaric or isothermal planes, requiring a specific set of isobaric and

isothermal measurements. This does not only limit the flexibility of the

method, but can also lead to complications when data on more than two

planes has to be taken into account. Then additional assumptions and

deviations from the General Kinetic Equation can be necessary to in-

corporate the additional information into the model [11].

In this paper a general higher order, i.e. more than two variables,

extension of the NPK-method is presented. It is capable of identifying

the full kinetic model according to the General Kinetic Equation from

any combination of measurements. With this method, it is possible to

utilize a set of constant-heating-rate measurements at different partial

pressures for the model identification to compute the kinetic model.

This reduces the number of experiments needed to cover a wide tem-

perature range at each pressure level.

2. Higher order rank-1 approximations

The mathematical method, which is used to compute the rank de-

composition of the data matrix, in the NPK-method is the Singular

Value Decomposition (SVD). If the assumption of the single step ap-

proximation holds, i.e. if the reaction follows Eq. (2), all but the first

term of the SVD will be negligible and the decomposition can be

truncated. The result is the best rank-1 approximation of the data ma-

trix, consisting of two singular vectors and a singular value, that can be

interpreted in terms of the general kinetic equation.

The main reason, why the NPK-method has not yet been extended to

more than two variables, is that the SVD is only defined for matrices. In

three (and more) variables the discretization of the general kinetic

equation results in a tensor, which cannot readily be decomposed with

the SVD.

In mathematics a tensor is a multidimensional array. This concept

must not be confused with tensors in physics, such as stress tensors. An

N-way or Nth-order tensor has N dimensions or modes. These terms are

used interchangeably. An N-way tensor T is rank-1 if it can be written as

the outer product of N vectors t [14]:

= ⊗ ⋯⊗T t t .N(1) ( ) (3)

For tensors no straight forward equivalent to the SVD to compute a

low-rank approximation exists. Nevertheless, the SVD can be applied

repeatedly to obtain the rank-1 approximations of a tensor, which can

be interpreted as a simplification of the method published by

Lathauwer et al. [15] for the special case of rank-1 approximations.

Given an N-way tensor ∈ ×⋯×T ℝI IN1 with Ii elements in each mode.

In the first step the tensor T
(1)= T is unfolded into a matrix

∈ × ⋯M ℝI I I(1) ( )N1 2 by rearranging the slices of the tensor side by side.

Then the rows of the matrix correspond to the first mode of the tensor

and the columns correspond to the remaining N− 1 modes. Fig. 1

shows the matrix unfolding of a three-way tensor.

The unfolded matrix M
(1) can then be decomposed with the SVD

such that

∑= ≈
=

M u v u vs s .
j

I

j j j
T T(1)

1

(1) (1) (1)
1
(1)

1
(1)

1
(1)

1

(4)

If the assumption of the single step approximation holds, the first

singular value s1
(1) will be significantly larger than the following ones

and the remaining terms can be neglected. Then the left singular vector

u1
(1) corresponds to the first mode of the tensor T and the right singular

vector v1
(1) to the remaining N− 1 modes. Its values are then rearranged

in a (N− 1)-way tensor ∈ ×⋯×T ℝI I(2) N2 . This procedure is illustrated in

Fig. 2.

This process is repeated N− 1 times. Each time the order of the

tensor is reduced by one. At the last step the initial tensor T
(1) is re-

duced to a matrix = ∈− − ×−T M ℝN N I I( 1) ( 1) N N1 and the procedure is the

same as for the original NPK-method. The left singular vector −u N
1
( 1) of

this matrix corresponds to the N− 1th mode of the tensor T and the

right singular vector =−v uN T N
1
( 1)

1
( ) to the Nth mode.

The rank-1 approximation of the N-way tensor T is comprised of the

singular vectors u1
(1) through u N

1
( ) and the overall singular value s so

Nomenclature

i index for modes and dimensions

j index for elements of a vector

k index for sub-tensors

A pre-exponential factor, 1/s

c scaling factor

Ea activation energy, J/mol

f(α) conversion dependency, 1

h(p) pressure dependency, 1

Ii number of elements in dimension i

k(T) temperature dependency, 1/s

M matrix unfolding of a tensor

N number of dimensions/modes

p partial pressure, bar

s singular value

T temperature, K

T tensor corresponding to the General Kinetic Equation, 1/s

t generic vector

t time, s

u left singular vector

v right singular vector

α conversion, 1

ϵ error parameter of the rank-1 approximation

Fig. 1. Unfolding of a 3-way tensor into a matrix.

F. Birkelbach et al. Thermochimica Acta 661 (2018) 27–33
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that

∏≈ ⊗ ⋯⊗ =
=

T u us s s· with .N

i

N
i

1
(1)

1
( )

1

1
( )

(5)

Each singular vector corresponds to one term in the General Kinetic

Equation and can be interpreted in terms of the kinetic model.

To assess the quality of the rank-1 approximation the singular value

can be used. A property of the SVD is that the singular vectors are

normalized. Thus, the the singular value is equal to the norm of the

associated tensor/matrix. By comparing the overall singular value s to

the norm of the initial tensor T a characteristic value can be computed:

= −
T

ε
s

1 .
(6)

It is a measure for the amount of neglected information due to the rank-

1 approximation compared to the available information. The closer this

value to 0 the better the approximation.

3. Adapting the NPK-algorithm

Similarly to the SVD, the higher order rank-1 approximation can

only be applied to fully occupied matrices and tensors. Since it is

generally not feasible to collect enough experimental data to generate

fully occupied matrices/tensors over a wide range of input variables,

Serra et al. [12] developed a method to partition the data space into

rectangular subspaces. These subspaces are placed in-between mea-

sured values, so that the corresponding matrices can be filled with data

by interpolating between the measured values. The results of the rank-1

approximation of these matrices can then be combined to obtain the

kinetic model over the full range of the input variables. The same can be

done in three and more variables, but the complexity of the algorithm

increases considerably.

In this section an outline of the required steps is presented to im-

plement an automated higher order NPK analysis. The structure of the

section is similar to [12] where the original NPK-method was pub-

lished. There will be multiple references to this paper to avoid the re-

petition of concepts introduced there.

In practice, the starting point for the algorithm would be the reac-

tion rate data at different values of α, T and p from experiments. Here a

decomposition reaction following Eq. (2) was assumed to demonstrate

the effectiveness of this method and to visualize the steps of the algo-

rithm. Simulated datasets are well suited for the validation of the

method, since the recovered kinetic parameters can be compared to the

“true” values used in the simulation. The reaction kinetics are given by

Eq. (7)–(9) and the dependency functions are shown in Fig. 3. In total

15 experiments were simulated at p=0.1, 0.15, 0.2, 0.3, 0.4,bar with

three heating rates each: 2, 10, 20,K/min. The data is visualized in

Fig. 4 in the (α× T× p)-space. The algorithm will extract the de-

pendency functions and the corresponding kinetic parameters from the

simulated data. To confirm the effectiveness of the algorithm the ex-

tracted parameters will be compared with the input parameters from

Eq. (7)–(9).

= − − −f α α α( ) 4(1 )[ ln(1 )]3/4 (7)

⎜ ⎟= ⎛
⎝
− × ⎞

⎠
k T

T
( ) 10 exp

6 10

8.314
9

4

(8)

= −h p p( ) (1 )4 (9)

The algorithm is divided in four main steps: Projection onto the

grid, partitioning into sub-tensors, rank-1 approximation and combi-

nation of result vectors.

In the first step the experimental data (Fig. 4) has to be projected

onto a grid. This is done by interpolating between the data points under

the assumption of local linearity.

First the Delaunay triangulation of the data points is computed to

obtain the convex hull of the data points. The Delaunay triangulation

was chosen because it has been extensively studied in Finite Elements

and because it is included in most scientific computing softwares. If the

Fig. 2. SVD of the unfolded tensor and subsequent rearrangement of the right singular vector.

Fig. 3. The kinetic model used for the simulations.
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data set is comprised of constant heating rate experiments (like in the

example used here) the convex hull also covers grid points in the

concave parts on the outside of the data space. Here interpolation is,

even if it would be possible mathematically, not admissible, because

these points lie outside of the data space (see [12]). These parts of the

hull have to be excluded manually. Fig. 5 shows the triangulated con-

cave hull of the data points in Fig. 4.

The triangulation is then used to project the reaction rate data onto

the grid points inside the hull (see Fig. 6). Grid points, for which re-

action rate data is available, will be referred to as applicable grid

points.

In the second step the grid is partitioned into sub-tensors for the

rank-1 approximation. These tensors have to

• contain only applicable grid points, so that they are fully occupied,

• contain as many grid points as possible to minimize the error of the

rank-1 approximation and

• overlap partially so that the results of the rank-1 approximations can

be combined afterwards.

Also, the union of all tensors should cover as many of the applicable

grid points as possible to utilize the available information.

This step has been automated with a two-part greedy algorithm. In

the first greedy part each candidate tensor is grown until it covers as

many applicable grid points as possible, with the restriction that each

tensor must overlap with its parent tensor. In the second part the

candidate tensor covering the most not-yet-covered grid points is se-

lected.

The algorithm is initialized with one candidate tensor in center of

the applicable grid points. Then the greedy growing and selection al-

gorithm is applied repeatedly until a sufficiently large portion of the

applicable grid points is covered. Each time a tensor candidate is se-

lected, additional candidate tensors are created on each side of the

selected tensor. By establishing a hierarchical relationship between the

tensors, where the selected tensor is the parent to the candidate tensors

that are created on its sides, it can be ensured that the results of the the

rank-1 approximations can be combined afterwards.

Even though it cannot be guaranteed that a greedy algorithm con-

verges to an optimal solution, our tests have shown that this greedy

algorithm performs very well in partitioning the applicable grid points

into tensors that can be used in the following steps of the algorithm.

Fig. 6 shows the first two tensors, that have been selected by the al-

gorithm. To cover 90% of the grid in the example the decomposition

algorithm created 174 tensors in total.

In the third step the higher-order rank-1 approximation described in

the previous section is computed for all sub-tensors and the singular

vectors and values are stored. In the final step these vectors have to be

combined by computing scaling factors to arrive at the global model.

For the comparably simple two-dimensional case Serra et al. [12]

proposed an sequential alignment algorithm that utilizes the order of

the sub-matrices. In the present multi-dimensional case no sequential

algorithm can be applied, since there is no apparent order to the sub-

tensors. The scaling factors have to be found for all tensors at once.

In principle this is a constrained non-linear optimization problem,

but due to the large number of unknowns (number of sub-tensors times

number of variables; 522 in this example) it would not be feasible to

solve it directly. In the remainder of this section we will show, that the

problem can be transformed to a constrained linear optimization pro-

blem, which can be solved efficiently for a large number of unknowns.

In the general case the global tensor T corresponding to the kinetic

model can be expressed as

= ⊗ ⋯⊗T t t N(1) ( ) (10)

where each t
(i) corresponds to the unknown contribution of one vari-

able. The rank-1 approximation of a sub-tensor Tk, that has been

computed in the previous step, can be expressed as

= ⊗ ⋯⊗ = ⊗ ⋯⊗T u u u us c c·k k k k
N

k k k
N

k
N(1) ( ) (1) (1) ( ) ( )

(11)

The values of each uk
i( ) correspond to the range of the global t(i)

where the tensor Tk is placed. The singular value sk is divided into the

scaling factors ck
i( ).

All indices i refer to the modes of the tensors. The indices j refer to

the elements of a vector. The indices k refer to sub-tensors.

Consequently the elements of the global vectors t(i) are referred to as t j
i( )

and the elements of the singular vectors uk
i( ) are referred to as uk j

i
,
( ).

The goal is to choose the scaling factors ck
i( ) so that the deviation of

each individual uk j
i
,
( ) to the corresponding t j

i( ) would ideally be zero

= ∀c u t i j k, ,k
i

k j
i

j
i( )

,
( ) ( )

(12)

under the constraint that

∏= ∀
=

s c kk

i

N

k
i

1

( )

(13)

Because the tensors are overlapping there are multiple uk j
i
,
( ) for each

unknown t j
i( ). Let us define t j

i( ) as the geometric mean of all corre-

sponding uk j
i
,
( ):

∏= ⎛
⎝
⎜

⎞
⎠
⎟ ∀

=
t c u i j,j
i

k

n

k
i

k j
i

n
( )

1

( )
,
( )

1

(14)

where n is the number of tensors containing t j
i( ).

Inserting Eq. (14) into Eq. (12) yields an overdetermined system of

equations for the unknown scaling factors with the corresponding

constraints from Eq. (13). Because of the choice of the geometric mean

this equation system can be linearized by applying the logarithm. Then,

Fig. 4. Data from constant-heating-rate measurements.

Fig. 5. Triangulation of the data points.
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the standard method for constrained linear least squares can be applied

to find the scaling factors. Fig. 7 shows the aligned singular vectors of

the sub-tensors.

Once the scaling factors have been computed, the global result

vectors t
(i) can be calculated according to (14). Each of these vectors

corresponds to one term of the General Kinetic Equation. Now the de-

pendency of the reaction rate on the input variables can be analyzed for

each variable independently.

4. Validation

In this section we will assess the effectiveness of the proposed

method and take a closer look on the effect of noise on its capability to

recover the model parameters.

For the noiseless case, the scaled singular vectors of the sub-tensors

are displayed in Fig. 7. Since there is little deviation between the vec-

tors, it can be concluded, that the algorithm performed as intended in

partitioning the data space, decomposing the sub-tensors and aligning

the partial vectors. The dashed lines in Fig. 7 represent the kinetic

model from Eq. (7)–(9) that was used to simulate the data. It can be

seen, that the result coincides with the input model. The recovered

model parameters can therefore be expected to match the original va-

lues.

To recover the model parameters the fitting method described in

[11] was used. Fitting of f(α) resulted in an R-value of 0.9998. The

recovered Arrhenius parameters were A=9.99×108 1/s and

Ea=6.015×104 J/mol with R=0.9881. The confidence interval of

these parameters was very large due to the kinetic compensation effect,

though. The exponent of the pressure dependency h(p) was identified as

3.937 with R=0.9998. All recovered values match the input values

from Eq. (7)–(9). It can therefore be concluded that the algorithm works

as intended.

To assess the effect of noise on the algorithm different levels of

random noise have been added to the simulated data. Then the higher

order NPK method has been applied and the model parameters were

recovered with the same fitting method as above. Normally distributed

noise with a percentage of the peak reaction rate as standard deviation

has been used. At each noise level 50 data sets were generated and

processed. Fig. 8 shows the model identification diagrams of a dataset

with 12% noise. The blue dots are the elements of the result vectors of

the higher order NPK-method. In the conversion plot the two statisti-

cally significant reaction models are shown. In the temperature and the

pressure plot the dashed black lines are the input functions for the si-

mulation and the red lines are the fitted functions.

The identification of the reaction model was successful for all data

sets. The correct model A1 from Eq. (7) was always among the statis-

tically significant. At higher noise levels this identification was not al-

ways unambiguous and other models, specifically A3 and B1, were not

rejected at a confidence level of α=0.05. With 8% noise 14% of the

identifications were ambiguous; with 12% noise this number rose to

48%.

Fig. 9 shows the Activation Energy derived from the Arrhenius fit at

different noise levels. In the noiseless case the value of the Activation

Energy is extremely accurate. Yet, with increasing noise the calculated

value of the Activation Energy decreases to about 95% of the true Ac-

tivation Energy. At 12% noise the Arrhenius fit becomes rather un-

reliable, as can be seen by the big increase of the standard deviation.

The exponent of the pressure dependency model could be recovered

very accurately across all noise levels with a deviation from the input

value of less than 2%. This can be attributed to the large number of data

points available at each pressure level.

Overall the algorithm performs well on the set of experiments used

in this example, even in the presence of noise. The Arrhenius fit turned

out to be the most sensitive to noise, which is not surprising considering

numerical difficulties due to the strong correlation of the Activation

Energy and the Arrhenius Parameter. For the Activation Energy the

error remained within reasonable bounds up to a noise level of 2%. It

should be kept in mind though, that these 2% are not the error of the

measurements, but the residual error of the data points used as input for

this algorithm (see Fig. 4). These data points are usually derived from

experimental data with smoothing and regularization methods. De-

pending on the employed smoothing method the acceptable error of the

measurements is considerably higher.

Fig. 6. Reaction rate data projected onto the grid with the first two sub-tensors.

Fig. 7. The aligned partial vectors of the higher order NPK.
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5. Discussion

In essence, the application of the higher order NPK-method

achieved a complexity reduction for the model fitting step.

Conventional model-fitting methods require the simultaneous fitting of

the temperature, conversion and pressure model. Generally it is hard to

select an appropriate combination of models for the fitting since there

are many unforeseeable interaction effects. The higher order NPK-

method decomposes the experimental data into dependency vectors

according to the General Kinetic Equation. Then the model fitting can

be performed for each variable independently, which is easier and

generally less prone to error.

A downside of this algorithm is that the interpolation, partitioning

and subsequent recombination of the data makes it impossible to pro-

vide a statistically sound error estimate of the calculated values. With

this algorithm the quality of the decomposition can be assessed by

considering either the overall lack-of-fit or the ε-values of each sub-

tensor approximation. None of which can be interpreted quantitatively

in terms of each individual t j
i( ). Knowing the variance of each t j

i( ) would

be desirable to quantify the error introduced by the decomposition and

to calculate weights for the model fitting steps.

A commonly voiced criticism of the NPK-method is that it involves a

large amount of complex computations [16]. This also applies to the

higher-order NPK-method. Especially the exclusion of invalid parts of

the triangulation is complex in more than two dimensions. This is

currently done manually, since attempts to automate this step yielded

unreliable results. Further development is required to automate this

step and make the algorithm widely applicable.

6. Conclusion

An algorithm extending the NPK-method to more than two dimen-

sions has been presented. It can process data from experiments with

arbitrary temperature and pressure profiles to derive the full kinetic

model. The algorithm was applied to a set of simulated measurements

with different levels of noise to verify the method. The performed tests

show that the algorithm is capable of recovering the parameters of the

full kinetic model accurately, also in the presence of noise.

As an extension of the NPK-method, it inherits all of its advantages

and disadvantages. One major upside is that the application of the

(higher order) NPK-method does not require any a-priori assumption

about the reaction model, the temperature or the pressure dependency

of the analyzed reaction. The only assumption is that the reaction can

be approximated by a single step reaction. On the other hand, the

higher order NPK-method involves a lot of complex calculations that

require considerable programming and computational effort.

The main improvement of this higher order extension over the one

published by Deutsch et al. is that any combination of measurements

can be used for the derivation of the kinetic model, instead of a set of

specific isothermal and isobaric measurements. For example it is pos-

sible to utilize a set of constant-heating-rate measurements at different

partial pressures to compute the model, which reduces the number of

experiments to cover a wide temperature range at each pressure level.

The flexibility of this method allows to process many different sets of

experiments. Extensive testing will be required to determine the most

suitable combinations to derive reliable kinetic models.

The higher order NPK-method also opens up the possibility to in-

clude additional parameters in the kinetic model. The effect of any

combination of variables can be investigated, since the algorithm can

process arbitrarily distributed data points and does not require any a-

priori assumptions about the model, besides the multiplicativity of each

variable's contribution. Including different or additional parameters in

the kinetic equation could be interesting for deriving more detailed

kinetic models.

Overall the higher order NPK-method is a very promising approach

to derive kinetic models from experimental data with a minimum of a-

priori assumptions about the reaction. Research is on the way to im-

prove the usability of the algorithm.

Fig. 8. Model identification of a dataset with 12% noise.

Fig. 9. Activation energy over added noise.
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Publications

Paper 2
NPK 2.0: Introducing tensor decompositions to the kinetic analysis of
gas-solid reactions
published in the International Journal of Chemical Kinetics in collaboration with Markus
Deutsch, Stylianos Flegkas, Franz Winter and Andreas Werner.

In this paper the TensorNPK method is presented and two algorithms for computing
models are assessed.

Even though the higher-order generalization of the NPK method, which was presented
in Paper 1, could technically model kinetic data the way we wanted it to, its stability
and usability was unsatisfactory. To overcome the limitations of the higher-order gener-
alization of the NPK method, the mathematical basis of the NPK method was revised.
Tensor decomposition methods emerged as a powerful alternative to the Singular Value
Decomposition, since they can deal with missing data points directly. Two algorithms
to compute the tensor decomposition are presented and evaluated: Alternating Least
Squares and Non-linear Least Squares. Even though both algorithms were able to recover
the kinetic model from simulated data very accurately, the latter converged much faster.

The TensorNPK method fulfilled all our requirements: It can derive models in any
number of variables, process arbitrarily distributed data sets and is robust. We had
developed a modeling method that was fit to be applied in kinetic studies.

My contribution: Development of the tensor NPK method, implementing the algorithm
in Matlab and testing it. Evaluation of the algorithm and the tensor NPK method.
Drawing up and writing of the paper.
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Introducing tensor decompositions to the kinetic analysis of gas-solid reactions”. In:
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Abstract

A method for deriving kinetic models of gas–solid reactions for reactor and process

design is presented. It is based on the nonparametric kinetics (NPK) method and

resolves many of its shortcomings by applying tensor rank-1 approximation methods.

With this method, it is possible to derive kinetic models based on the general kinetic

equation from any combination of experiments without additional a priori assump-

tions. The most notable improvements over the original method are that it is compu-

tationally much simpler and that it is not limited to two variables. Two algorithms

for computing the rank-1 approximation as well as a tailored initialization method are

presented, and their performance is assessed. Formulae for the variance estimation of

the solution values are derived to improve the accuracy of the model identification

and to provide a tool for diagnosing the quality of the kinetic model. The methods

effectiveness and performance are assessed by applying it to a simulated data set. A

Matlab implementation is available as Supporting Information.

K E Y W O R D S

gas–solid reactions, heterogeneous kinetics, model identification, nonparametric kinetics, pressure depen-

dency, tensor decomposition

Abbreviation: NPK, nonparametric kinetics; SVD, singular value decomposition
Nomenclature: Cov, covariance; 𝑑𝑗1 ,…,𝑗𝐷

, element of the data tensor; 𝐷, number of dimensions; 𝑑𝛼∕𝑑𝑡, reaction rate, 1/s; 𝐸, error function; 𝑓 (𝛼), conversion
dependency, 1; 𝑓𝑖(𝑣𝑖), contribution of 𝑣𝑖; 𝑓𝑖,𝑗𝑖 , element of 𝒇 𝑖; 𝒇 , vector of unknowns of the full problem; 𝒇 𝑖, vector of values of 𝑓𝑖(𝑣𝑖); 𝒇

′, vector of unknowns
of the reduced problem; 𝑯 , Hessian matrix; ℎ(𝑝), pressure dependency, 1; 𝑖, index for dimensions; 𝑱 , Jacobian matrix; 𝑗, index for elements; 𝑗𝑖, index of an
element in dimension 𝑖; 𝑗1,… , 𝑗𝐷, index of an element of a 𝐷-dimensional tensor; 𝐾 , scaling factor of the reduced problem; 𝑘(𝑇 ), temperature dependency,
1/s; 𝑀𝑆𝐸, mean square error; 𝑁𝑒, number of tensor elements; 𝑁𝑚, number of missing elements; 𝑁𝑝, number of unknown parameters; 𝑝, partial pressure, bar;

𝒓, vector of residuals; 𝑟𝑗1 ,…,𝑗𝐷
, element of the residual vector; 𝑆𝐸𝐸, standard error of estimate; 𝑇 , temperature, K; 𝑡, time, s; ̃ , model tensor; 𝑡̃𝑗1 ,…,𝑗𝐷

,
element of the model tensor;  , data tensor; 𝑣𝑖, independent variable; 𝒗𝑖, vector of values of 𝑣𝑖; 𝑣𝑖,𝑗𝑖 , element of 𝒗𝑖; Var, variance; 𝑾 , weight matrix;  ,
weight tensor; 𝑤𝑗1 ,…,𝑗𝐷

, element of the weight tensor; 𝛼, conversion, 1; Δ, small difference; ∇, nabla operator

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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1 INTRODUCTION

Gas–solid reactions are relevant to many technological appli-
cations such as thermochemical energy storage.1,2 Kinetic
models of these reactions are indispensable for process and
reactor design, as the reaction rate influences important
parameters like the residence time and yield. To determine
optimal reaction conditions for a given application, reliable
kinetic models over a wide range of relevant process parame-
ters are required.

This paper will focus on reactions that follow the equation

A(s) + Δ𝐻 ⇌ B(s) + C(g), (1)

where A and B are solid species and C is a gas.
Gas–solid reactions of this type are inherently complex,

because the reactants cannot mix indefinitely. The reaction
takes place at the reaction interface in the solid, and the
advancement of the reaction front in the solid has to be con-
sidered. Gas–solid reactions feature an entangled interplay of
various physical and chemical processes, such as mass trans-
fer from the gas bulk to the solid surface, adsorption of the gas
at the surface, nucleation, diffusion through the product layer,
and the chemical reaction itself, which generally involves a
series of elementary reactions. Often it is not practical, if even
possible, to model all these processes in detail. An extensive
discussion of the processes involved in a gas–solid reaction,
as well as a critical assessment of the modeling assumptions
commonly made, has been published by Brown et al.3 Espe-
cially when computation time is an issue for simulations on a
macro scale, such as of reactors, simple models that can pre-
dict the reaction with sufficient accuracy are required.

The most common simplification, the “single rate limiting
step” assumption, is applicable if one process proceeds much
slower than all the other ones. Then, the effect of the advance-
ment of the reaction front on the reaction rate can be derived
as a function of conversion, based on certain mechanistic
assumptions about the reaction. These functions are usually
referred to as reaction models. A comprehensive review has
been published by Khawam and Flanagan.4 To describe the
effect of temperature5,6 and the concentration of the gaseous
reactant7–9 on the reaction rate, two more terms are included
in analogy to the theory of homogeneous reactions.

This leads to the general kinetic equation, which describes
the reaction rate 𝑑𝛼∕𝑑𝑡 as the product of the contributions of
the conversion 𝛼, the temperature 𝑇 and the partial pressure
of the gaseous component 𝑝:

𝑑𝛼

𝑑𝑡
= 𝑓 (𝛼) 𝑘(𝑇 )ℎ(𝑝). (2)

where 𝑓 (𝛼) is often referred to as conversion dependency
or reaction model, 𝑘(𝑇 ) as temperature dependency or rate
constant and ℎ(𝑝) as pressure dependency. A key feature of
this equation is that the contributions of all variables are inde-

pendent of each other. The underlying assumption is that the
overall reaction can be modeled as a single, rate-determining
reaction step. Accordingly, applying this equation to
model gas–solid reactions is referred to as the single-step
approximation.

The numerous assumptions and simplifications involved
in deriving the general kinetic equation have been criticized,
and it has been questioned, whether the model parameters
can be interpreted mechanistically.10–12 Also, due to the
many different processes involved in a gas–solid reaction,
the rate-limiting step can change, depending on the reaction
conditions. Then, the single-step approximation is only valid
in the temperature and pressure interval, where one step
is dominant. Since these intervals can generally only be
determined by experiments, extrapolation of kinetic models
has to be done with care. Nevertheless, the general kinetic
equation is the most commonly applied formula to describe
the reaction rate of gas–solid reactions.

A multitude of methods have been developed to derive
kinetic models from experimental data according to the gen-
eral kinetic equation. A summary of the most relevant meth-
ods has been published by Vyazovkin et al.13 One of the more
recent methods for the derivation of kinetic models is the non-
parametric kinetics (NPK) method by Serra et al.14 Its main
advantage is that is does not require any modeling assump-
tions besides the general kinetic equation, but it has some
shortcomings that limit its applicability.

In this paper, we first discuss the advantages and short-
comings of the original NPK method. Then, after introduc-
ing the mathematics of tensor rank-1 approximation methods
with missing values, we present two implementations of the
new NPK method. The first, alternating least squares (ALS),
exploits the blockwise linearity of the problem. In the second,
nonlinear least squares (NLS), established optimization meth-
ods in combination with analytically computed Jacobians are
used to compute the approximation. Then, we describe a tai-
lored initialization method and assess the performance of the
algorithms. In the last section, we discuss the interpretation
of the output of the new NPK method in the context of kinetic
modeling and outline new possibilities opening up through the
application of the proposed algorithm.

2 THE NPK METHOD

The NPK method by Serra et al.14 is a data-driven method,
which is based on the observation that the discretization of
the general kinetic equation on a (𝛼 × 𝑇 ) grid results, by def-
inition, in a rank-1 matrix. When experimental reaction rates
are arranged in a matrix, the singular value decomposition
(SVD) can be applied to compute the rank-1 approximation.
Then the singular vectors will correspond to the contributions
𝑘(𝑇 ) and 𝑓 (𝛼).
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The main advantage of the NPK method is that it allows the
separation of the contributions 𝑓 (𝛼) and 𝑘(𝑇 ) without a pri-
ori assumptions about the reaction model or the temperature
dependency. Models are selected and parameterized after the
separation, independently for each variable, by fitting the con-
tribution vectors. This is generally much easier and less prone
to error, compared to direct model-fitting methods, where a
combination of models is fitted directly to the experimen-
tal data.

However, there are three drawbacks that limit the applica-
bility of the NPK method. The first drawback, its algorithmic
complexity, has already been criticized as the most limiting
factor of the NPK method.15 It can be attributed to the fact
that the SVD is restricted to fully occupied matrices. Yet,
if constant heating rate experiments are used, it is usually
infeasible to collect enough data to obtain fully occupied
matrices. As a remedy, Serra et al.14 devised a method
to partition the data space into smaller subspaces, where
matrices can be filled by linear interpolation. The solution
can then be assembled from the singular vectors of the
submatrices. However, as a result of this procedure, the
algorithmic complexity of the NPK method is quite high. An
efficient method for the model identification should therefore
be able to deal with missing data directly.

Second, the NPK method is restricted to two indepen-
dent variables, which is a shortcoming that it shares with
many other established methods.13 As a consequence, the
pressure term in Equation 2 has to be omitted. The result-
ing models are adequate for processes, where the partial pres-
sure of the gaseous component can be regarded constant.
For applications, where the concentration changes over time
(e.g., batch processes) or over the reactor height (e.g., in flu-
idized bed reactors2) the full kinetic model, including the
pressure term, is required. Most studies that include a sys-
tematic identification of the pressure dependency of gas–solid
reactions employed a model-fitting approach.16–18 Recently
model free approaches based on the NPK method have been
proposed,19,20 but their algorithmic complexity is even higher
than of the original NPK method.

The third shortcoming is related to the model-fitting step:
It is not possible to estimate the variance of the solution val-
ues. The implicit assumption is that all elements of the solu-
tion vectors have the same variance, even though there may
be structural causes for unequal variance, like the distribution
of data points or correlation of variables. If the variance is not
taken into account in the model-fitting step by weighting the
values accordingly, the result can be inaccurate.

In this paper, a reworked NPK method is presented that
resolves the shortcomings described in the preceding para-
graphs. It can derive the kinetic model in any number of vari-
ables from experimental data. Like the original NPK method,
it is a model-free method that does not require any a pri-
ori assumptions about the model, but unlike its predeces-

sors it can process missing values directly. This is achieved
by switching from the SVD to tensor decomposition meth-
ods, which greatly reduces the algorithmic complexity and
improves the methods' efficiency and robustness. Since the
result vectors of the NPK method are often used to param-
eterize models by means of least squares fitting, formulae for
estimating the variance of the solution values are derived, to
calculate weights for the model-fitting step.

3 TENSOR RANK-1
APPROXIMATION

In mathematics, a tensor is a multidimensional array, i.e. a
higher dimensional generalization of matrices (matrices can
be considered two-dimensional tensors). To compute the low-
rank approximation of matrices the SVD can be used, but
no single equivalent for tensors exists. Instead, a multitude
of decompositions for different purposes have been devel-
oped. Many of these methods originated in psychometrics21

and have become widely used in the field of chemometrics22

among others. An extensive review has been published by
Kolda and Bader,23 a review with focus on applications of
tensor decompositions in chemistry by Bro.24

The most relevant type of tensor decomposition for this
paper is usually referred to as CANDECOMP (canonical
decomposition) or PARAFAC (parallel factors). Methods
based on this decomposition have not been applied for the
kinetic analysis of gas–solid reactions to date, even though
they do have many advantages over the SVD in the original
NPK method by Serra et al.14 and the higher order gener-
alization by Birkelbach et al.20 Most notably, some of these
methods can deal with missing values and are therefore not
limited to fully occupied matrices. This eliminates the need
for the subspace decomposition and subsequent realignment
of the result vectors, which in turn does not only decrease the
computational cost and improve the robustness of the algo-
rithm, but also allows to compute statistically sound variance
estimates of the output values.

Throughout this paper, the following formalism is used:
Vectors are written in bold lower-case letters 𝒗, tensors in
calligraphic letters  . Throughout this paper, the index 𝑖 is
used to refer to dimensions and 𝑗 is used to refer to elements
of vectors or tensors. Consequently, 𝑗𝑖 is the element index
in dimension 𝑖 and the index 𝑗1,… , 𝑗𝐷 points to one specific
element of a 𝐷-dimensional tensor.

The underlying assumption for this method regarding the
chemistry is that the reaction rate of gas–solid reactions can
be modeled as the multiplication of the contributions of 𝐷

independent variables 𝑣𝑖:

𝑑𝛼

𝑑𝑡
(𝑣1,… , 𝑣𝐷) =

𝐷∏
𝑖=1

𝑓𝑖(𝑣𝑖). (3)
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Here, 𝑓𝑖(𝑣𝑖) are the unknown contributions of the variables
𝑣𝑖. Typically, these would be 𝑓 (𝛼), 𝑘(𝑇 ) and ℎ(𝑝) from Equa-
tion 2. In other words: Equation 3 is a generalization of the
general kinetic equation for an arbitrary number of contribu-
tions. The goal of the algorithm is to derive these contribu-
tions from experimental data.

First the interval of each variable 𝑣𝑖 is discretized into 𝑁𝑖

elements. The resulting vectors 𝒗𝑖 = [𝑣𝑖,𝑗𝑖]
𝑇 with 𝑗𝑖 ∈ [1, 𝑁𝑖]

span the data space (𝒗1 ×⋯ × 𝒗𝐷). Evaluating Equation 3 on
the data space and arranging the values in the model tensor ̃
yields

̃ =
𝑑𝛼

𝑑𝑡

||||𝒗1×⋯ ×𝒗𝐷

= 𝒇 1 ⊗⋯⊗ 𝒇𝐷 (4)

where each tensor element can be expressed as

𝑡̃𝑗1,…,𝑗𝐷
=

𝐷∏
𝑖=1

𝑓 (𝑣𝑖,𝑗𝑖) =

𝐷∏
𝑖=1

𝑓𝑖,𝑗𝑖 . (5)

Here, 𝒇 𝑖 = [𝑓𝑖(𝑣𝑖,𝑗𝑖)]
𝑇 = [𝑓𝑖,𝑗𝑖]

𝑇 are the vectors correspond-
ing to the unknown contributions of the variable 𝑣𝑖 and ⊗

denotes the outer vector product.
A 𝐷-dimensional tensor is rank-1 if it can be written as

the outer product of 𝐷 vectors.25 Thus, Equation 4 shows that
the tensor ̃ is of rank 1, as a consequence of the multiplica-
tion of the contributions in Equation 3. This tensor has 𝑁𝑒 =∏𝐷

𝑖=1𝑁𝑖 elements, and the contribution vectors have 𝑁𝑝 =∑𝐷
𝑖=1𝑁𝑖 elements. These 𝑁𝑝 elements are the unknowns of

the rank-1 approximation problem.
To compute the contributions 𝑓𝑖(𝑣𝑖), the experimental data

are arranged in the data tensor  = [𝑑𝑗1,…,𝑗𝐷
]. This tensor also

has 𝑁𝑒 elements, of which some (𝑁𝑚) may be missing. The
goal of the rank-1 approximation is to find the rank-1 tensor ̃
that best resembles the data tensor  . Then each of the vectors
𝒇 𝑖 can be interpreted in terms of the kinetic model.

In mathematical terms, the goal is to minimize the distance
‖ ⋅ ‖ between the two tensors.

minimize ‖̃ −  ‖ s. t. ̃ = 𝒇 1 ⊗⋯ ⊗ 𝒇𝐷. (6)

The distance is calculated with the Frobenius, i.e. , the ele-
mentwise square, norm. To take missing values into account,
this formalism is extended by a weight tensor  that contains
the weights associated with each tensor element. The squared
distance is then given by

‖̃ −  ‖2


=
∑

∀[𝑗1,…,𝑗𝐷]

𝑤𝑗1,…,𝑗𝐷

(
𝑡̃𝑗1,…,𝑗𝐷

− 𝑑𝑗1,…,𝑗𝐷

)2

.

(7)

The weights may be any positive number, determining the
impact of the associated tensor element on the approximation.
The weights of missing values must be zero, so that they do not

affect the approximation. The weights of available tensor ele-
ments should reflect their uncertainty. Only if the weights are
equal to the inverse of the variance, the result of the approx-
imation will be optimal in the sense of minimum variance. If
the variance is unknown, it is common to set the weights to 1,
which amounts to the assumption of equal variance.

4 ALTERNATING LEAST SQUARES

This algorithm was developed by Carroll and Chang26 and
Harshman.27 Because of its simplicity, it is the most com-
monly applied algorithm, even though it generally takes many
iterations to converge.

In the ALS algorithm, at each step all but one result vec-
tor 𝒇 𝑖 are held constant. Using this approach, the problem of
finding the optimal values 𝑓𝑖,𝑗𝑖 is reduced to a series of linear
least squares problems that can be solved with conventional
methods:

argmin
𝑓𝑖,𝑗𝑖

‖𝑖,𝑗𝑖 − 𝑓𝑖,𝑗𝑖
∗
𝑖 ‖𝑖,𝑗𝑖

∀𝑓𝑖,𝑗𝑖 (8)

Here 𝑖,𝑗𝑖
denotes the 𝑗𝑖th slice of  in dimension 𝑖, i.e. the

slice that corresponds to the unknown 𝑓𝑖,𝑗𝑖 and  ∗
𝑖

is the tensor
product of all constant 𝒇 , i.e., all but 𝒇 𝑖.

To use standard linear least squares formulae, the tensor
values have to be arranged in column vectors. This is denoted
with an arrow. Values corresponding to zero weights are omit-
ted, to avoid matrix singularity.

𝑓𝑖,𝑗𝑖 =

[
⃖⃖⃖⃖⃗ ∗
𝑖

𝑇
diag

(
⃖⃖⃖⃗ 𝑖,𝑗𝑖

)
⃖⃖⃖⃖⃗ ∗
𝑖

]−1
⃖⃖⃖⃖⃗ ∗
𝑖

𝑇
diag

(
⃖⃖⃖⃗ 𝑖,𝑗𝑖

)
⃖⃖⃗ 𝑖,𝑗𝑖

(9)

Optimal values are computed in a circular fashion until a
convergence criterion is met. No sophisticated optimization
methods are required, but some have been suggested Ref. [30].

Once the rank-1 approximation has been computed, the
mean square error (MSE) is given by

𝑀𝑆𝐸 =
‖̃ −  ‖2



𝑁𝑒 −𝑁𝑚 −𝑁𝑝

(10)

and the variance of the parameters can be estimated with

Var(𝑓𝑖,𝑗𝑖) = 𝑀𝑆𝐸

[
⃖⃖⃖⃖⃗ ∗
𝑖

𝑇
diag

(
⃖⃖⃖⃗ 𝑖,𝑗𝑖

)
⃖⃖⃖⃖⃗ ∗
𝑖

]−1
. (11)

5 NONLINEAR LEAST SQUARES

The rank-1 approximation problem can also be interpreted
as a general NLS optimization problem, where all unknown
parameters are optimized simultaneously. This approach has
been proposed by Paatero28 and Tomasi and Bro.29 Even
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though it is generally more memory and calculation expen-
sive than the ALS algorithm, it tends to converge much faster.
Depending on the optimization algorithm, even quadratic con-
vergence rates can be achieved.

The goal is to minimize the error given by the objective
function

𝐸(𝒇 ) =
1

2
‖̃ −  ‖2


=

1

2
𝒓(𝒇 )𝑇𝑾 𝒓(𝒇 ). (12)

Here 𝒇 is the column vectors of all unknown 𝑓𝑖,𝑗𝑖 with 𝑁𝑝

elements, 𝒓 is the vector of residuals

𝑟𝑗1,…,𝑗𝐷
(𝒇 ) =

𝐷∏
𝑖=1

𝑓𝑖,𝑗𝑖 − 𝑑𝑗1,…,𝑗𝐷
∀𝑑𝑗1,…,𝑗𝐷

(13)

with one element per element in the data tensor  , i.e., 𝑁𝑒 −

𝑁𝑚, elements and 𝑾 is the diagonal matrix of the weights of
all available tensor elements.

Most optimization methods are based on a truncated tai-
lor expansion of the objective function to find the optimum.
They require the Jacobian of the problem to calculate the nor-
mal equations. For Equation 12, the problem is ill-posed: The
scaling indeterminacy of the rank-1 approximation results in
an infinite number of equivalent solutions, which causes the
Hessian to be singular. Some authors, e.g., Paatero,28 pro-
posed to deal with this issue by introducing a regularization
parameter. In the case of rank-1 approximations, the singular-
ity can also easily be avoided by reformulating the objective
function. Using this approach, the adapted NLS problem can
be solved directly. No update strategy for the regularization
terms has to be devised, and no distortion of the solution due
to the regularization terms has to be accepted.

A 𝐷-dimensional rank-1 tensor approximation has (𝐷 − 1)

surplus degrees of freedom, which need to be eliminated to
avoid singularity of the normal equations. By choosing a ref-
erence point (𝑗∗

1
,… , 𝑗∗

𝐷
) and defining a global scaling factor

𝐾 =
∏𝐷

𝑖=1 𝑓𝑖,𝑗∗𝑖
, the residuals can be calculated with

𝑟𝑗1,…,𝑗𝐷
(𝒇 ′) = 𝐾

𝐷∏
𝑖=1

𝑓 ′
𝑖,𝑗𝑖

− 𝑑𝑗1,…,𝑗𝐷
with 𝑓 ′

𝑖,𝑗𝑖
=

𝑓𝑖,𝑗𝑖

𝑓𝑖,𝑗∗
𝑖

.

(14)

This will be referred to as the “reduced” problem 𝐸(𝒇 ′),
since it only contains 𝑁𝑝 −𝐷 + 1 unknown parameters 𝒇 ′ =

[𝑓 ′
𝑖,𝑗𝑖
, 𝐾] with 𝑗𝑖 ≠ 𝑗∗

𝑖
.

Using the nabla operator as a shorthand for the partial
derivatives with respect to the unknown parameters, the Jaco-
bian is then given by 𝑱 (𝒇 ′) = ∇𝒓(𝒇 ′)𝑇 with

𝜕𝑟𝑗1,…,𝑗𝐷
(𝒇 ′)

𝜕𝑓 ′
𝑑,𝑛

=

⎧
⎪⎨⎪⎩

0 for 𝑗𝑑 ≠ 𝑛

𝐾
𝐷∏
𝑖=1
𝑖≠𝑑

𝑓 ′
𝑖,𝑗𝑖

for 𝑗𝑑 = 𝑛 (15)

𝜕𝑟𝑗1,…,𝑗𝐷
(𝒇 ′)

𝜕𝐾
=

𝐷∏
𝑖=1

𝑓 ′
𝑖,𝑗𝑖
. (16)

Two things can be noticed here: First, there will be many
structural zero elements in the Jacobian (first line in Equa-
tion 15). Each line contains 𝑁𝑝 −𝐷 + 1 elements but only
𝐷 + 1 nonzero elements. Second, there are many repeated
elements in the Jacobian (second line in Equation 15). Both
properties can be exploited to compute the Jacobian more effi-
ciently: Since there are so many repeated elements, it suf-
fices to calculate a vector of unique Jacobian values that is
then used to assemble the Jacobian. Also, the high number
of structural zero values indicates sparse matrix storage. The
positions of nonzero elements in the Jacobian does not change
during the iteration, because they are determined by the avail-
ability of measured data. Therefore, the positions as well as
the references to the associated unique Jacobian values can
be computed beforehand. During the iteration, each unique
value needs only be computed once and the Jacobian can
be assembled from this vector of unique values with mini-
mum computational effort. Since the Jacobian needs to be
computed at every step of the optimization algorithm, this
reduces the computational cost considerably. For more details
about the implementation, we refer the interested reader to
the code, that is included in the Supporting Information,
specifically the functions getJacobianSparseArgs and
lsqnonlinFun.

After computing the solution with any optimization algo-
rithm, the variance-covariance matrix 𝑫 of the parameters 𝒇 ′

at the solution can be estimated with

MSE =
‖̃ −  ‖2



𝑁𝑒 −𝑁𝑚 −𝑁𝑝 −𝐷 + 1
(17)

and

𝑫(𝒇 ′) = MSE𝑯(𝒇 ′)−1 ≈ MSE
[
𝑱 (𝒇 ′)𝑇𝑾 𝑱 (𝒇 ′)

]−1
.

(18)

Here, the Hessian 𝑯 has been replaced with its first-order
approximation. This approximation is reasonable if the resid-
uals are small, since

𝑯 = 𝑱 𝑇𝑾 𝑱 +
∑

∀[𝑗1,…,𝑗𝐷]

𝑤𝑗1,…,𝑗𝐷
𝑟𝑗1,…,𝑗𝐷

∇2𝑟𝑗1,…,𝑗𝐷
. (19)

This means that, if the model fits the data, the estimated vari-
ance will be accurate.

The main diagonal of 𝑫 contains the variances of the
parameters Var(𝑓 ′

𝑖,𝑗𝑖
) and Var(𝐾). The last column/row con-

tains the covariances Cov(𝑓 ′
𝑖,𝑗𝑖
, 𝐾). These values can be used
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to estimate the variance of the parameters of the full model by
assuming linear error propagation:

Var(𝑓𝑖,𝑗𝑖
)

𝑓 2
𝑖,𝑗𝑖

=

⎧
⎪⎪⎨⎪⎪⎩

Var(𝐾)

𝐾2
for 𝑗𝑖 = 𝑗∗

𝑖

Var(𝐾)

𝐾2
+

Var(𝑓 ′
𝑖,𝑗𝑖
)

𝑓 ′2
𝑖,𝑗𝑖

+ 2
Cov(𝑓 ′

𝑖,𝑗𝑖
, 𝐾)

𝑓 ′
𝑖,𝑗𝑖
𝐾

for 𝑗𝑖 ≠ 𝑗∗
𝑖

(20)

6 INITIAL ESTIMATE

Both proposed algorithms require a starting value for the solu-
tion vectors 𝒇 𝑖. The closer the starting value is to the solution,
the faster the algorithm will converge. If the starting value
is far away from the solution, the algorithm might not con-
verge at all. Therefore, it is paramount to provide an initial
estimate of the rank-1 decomposition that is as close as pos-
sible to the solution.

The most common way to initialize the algorithm is to
simply use random starting values. Of course, there is no
guarantee that these values are anywhere near the solution.
A method tailored to the specific problem at hand would be
preferable. Kinetic models according to the general kinetic
equation have an important property that can be exploited
to calculate good starting values: Since always only one
reaction direction is considered, the reaction rate 𝑑𝛼∕𝑑𝑡, and
as a consequence, the values of the contribution functions,
are always greater or equal to zero.

The requirement that the model fit the experimental data
can be formulated as an overdetermined system of nonlinear
equations:

𝐷∏
𝑖=1

𝑓𝑖,𝑗𝑖
!
= 𝑑𝑗1,…,𝑗𝐷

∀ [𝑗1,… , 𝑗𝐷]. (21)

Since all values are greater than zero, the logarithm can be
applied to convert Equation 21 into an overdetermined system
of 𝑁𝑒 −𝑁𝑚 linear equations with 𝑁𝑝 unknowns. Similarly to
the NLS algorithm, the scaling indeterminacy results in 𝐷 −

1 surplus degrees of freedom that will cause the system of
equations to be singular. This can be avoided by fixing one
element of all but the last solution vector 𝒇 𝑖. Then the solution
can be computed with ordinary least squares.

This method allows to calculate an initial estimate to the
rank-1 approximation problem very quickly and easily. The
result may be distorted, though, because the logarithm causes
values close to zero to be weighted more heavily than larger
ones. This also results in an overproportional error amplifi-
cation at values close to zero, since Δ log(𝑑) ≈ Δ𝑑∕𝑑. There-
fore, values close to zero need to be excluded when calculating
the initial estimate with this method.

F I G U R E 1 Test data set consisting of 15 constant heating rate
measurements19 [Color figure can be viewed at wileyonlinelibrary.com]

7 PERFORMANCE OF
ALGORITHMS

To compare the two algorithms and initialization methods,
they were applied to a simulated data set19 of five con-
stant heating rate measurements at different partial pressures
(Figure 1). Random noise in the range of 0–15% of the max-
imum reaction rate was added to simulate the effect of fluc-
tuations in the mass signal or any other source of signal
noise. Then the data were projected on a (𝛼 × 𝑇 × 𝑝) grid with
(25 × 50 × 5) elements, and the rank-1 approximation of the
resulting tensor was computed. The tensor had 6250 elements,
of which 91.8% were missing. The goal of the algorithm is to
reconstruct the kinetic model used for the simulation from the
available data.

At each noise level, 50 data sets were generated and pro-
cessed. The algorithms were initialized with random starting
values as well as with the initial estimate of the log-method,
described in the previous section. The results show that both
algorithms were able to compute the correct rank-1 approxi-
mation up to numerical uncertainty, regardless of the initial-
ization method. There is no difference regarding the accuracy
of the two algorithms or initialization methods, but the per-
formance differed considerably.

Figure 2 shows the mean elapsed time and the mean num-
ber of iterations over the noise level. Blue and red lines show
the results of the two algorithms and initialization methods,
whereas the yellow line shows the time it took to calculate the
initial estimate with the log method. Error bars represent the
standard deviation.

It can be seen that the noise level had very little to no impact
on the computation time. Even though an iteration of the NLS
algorithm is more than twice as expensive as an iteration of the
ALS algorithm (≈ 3.3𝑚𝑠 vs. ≈ 1.4𝑚𝑠), the improved conver-
gence speed of the NLS algorithm far outweighs this disad-
vantage: Instead of around 90 iterations, the NLS algorithm
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286 BIRKELBACH ET AL.

F I G U R E 2 Performance of the two algorithms [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 3 Nonzero pattern of the Hessian matrix [Color figure
can be viewed at wileyonlinelibrary.com]

only requires five iterations in the case of random starting
values.

The superior convergence properties of the NLS algorithm
can be explained by viewing the ALS algorithm as a sim-
plification of the NLS algorithm. The Hessian matrix of the
least squares problem illustrates this nicely. Figure 3 shows
the nonzero pattern of the Hessian associated with the rank-1
approximation of the test data set. Its block diagonal struc-
ture that is exploited by the ALS algorithm is clearly visi-
ble. The ALS algorithm omits the off diagonal elements to
arrive at a series of linear problems. Algorithmic simplicity
is traded at the cost of convergence speed. The NLS algo-
rithm, on the other hand, takes the off diagonal elements into
account, allowing the algorithm to take larger steps toward the

solution and resulting in quadratic convergence speed close to
the solution.

Tomasi and Bro29 also compared an ALS-type algorithm
with a derivative based one and found that the latter outper-
formed the former in the presence of a large amount of miss-
ing values. The ALS algorithm can be improved by including
a Line Search,30 which has been shown to increase the con-
vergence speed considerably.

Using the result of the log-method instead of random start-
ing values has a dramatic impact on the performance of the
ALS algorithm: The number of iterations as well as the com-
putation time decreased by about 50%. With the NLS algo-
rithm, the number of iterations also decreased, but the impact
on the computation time was negligible: The time saving due
to the reduced number of iterations was offset by the time it
took to compute the initial estimate.

In conclusion, from the two considered algorithms, the
NLS algorithm seems to be more suitable than the ALS
algorithm for the calculation of rank-1 approximations in
kinetic analysis. Even though the quality of the solution is
the same, the performance of the NLS algorithm is far supe-
rior. Even when starting values are calculated with the log-
method, the NLS algorithm is about three times faster than the
ALS algorithm.

8 INTERPRETATION OF RESULT
VECTORS

Up front, a quick reminder that the basis for a reliable model is
reliable data. The NPK method requires that the experimental
data have been collected and processed in a way that ensures
that the input values to the NPK method are representative
of the chemical process under consideration. For an extensive
discussion of this topic, we refer to the ICTAC Kinetics Com-
mittee recommendations31 and a critical assessment of them
by Šesták.32
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F I G U R E 4 Output of the NLS algorithm alongside the input model used for the simulation and the fit result [Color figure can be viewed at
wileyonlinelibrary.com]

Before interpreting the result vectors in detail, it must be
confirmed that the goodness of fit is reasonable and that the
single-step approximation is viable. Only then, the result vec-
tors can be interpreted in terms of the general kinetic equation.
For the simulated data set, this is straight forward: The result
vectors can be compared to the input model. Figure 4 shows
the result of the NLS algorithm applied to the test data set
with 15%, noise. The blue bars represent the elements of the
solution vectors with their standard deviation. It can be seen
that the values are in good agreement with the input model
(red dotted lines) and that the error bars are reasonably small.
Thus, the algorithm managed to recover the kinetic model
very well, even if 91.8% of the data tensor elements were miss-
ing.

If the input to the algorithm is experimental data, the
assessment of the result is more complex and often ambigu-
ous. There is no reliable method to legitimize the single-step
approximation independently, based solely on chemical con-
siderations. Usually it is assumed that the single-step approx-
imation is viable if the model fits the data well. However, this
does not present conclusive proof that the reaction is indeed
limited by one single step. Thus, a lot of consideration and
expert judgment is required when interpreting the result vec-
tors.

One important metric for the goodness of fit is the standard
error of the estimate (SEE), which can be calculated with

SEE =

√√√√‖̃ −  ‖2


𝑁𝑒 −𝑁𝑚

. (22)

It has the same unit as the reaction rate and can be interpreted
as the average distance of the experimental values to the val-
ues predicted by the model. It is an overall measure of how
well the model fits the experimental data and should be small
compared to the reaction rate of the process. A related metric
are the variances of the elements of the result vectors (blue

bars in Figure 4), which can be calculated with Equations 11
and 20. The standard deviations should be small compared to
the effect of the associated variable. If they are not, the asso-
ciated value is unreliable. If all elements of a solution vector
are unreliable, the corresponding variable does not have a sig-
nificant effect or it may be superimposed by another effect.

In Figure 4, the variance of the elements of the conver-
sion dependency and the pressure dependency are fairly con-
stant, while the variance of the temperature dependency is
much bigger at high- and low-temperature values. There are
two reasons for this: First, there are fewer data points avail-
able at the beginning and the end of the temperature range
than at the center, since the data set is made up of con-
stant heating rate measurements. Second, since the conversion
dependency approaches zero at both low and high conversion
values (Figure 4, left) and low-/high-temperature values are
correlated with low/high conversion values, the temperature
dependency can not be estimated properly in these regions.
Larger error bars reflect the uncertainty of the associated val-
ues. The information about the uncertainty of the dependency
values is used later in the model-fitting step to weight the
values accordingly.

With the help of the error bars, it should be possible to iden-
tify not only increased uncertainty of the result due to small
data spread or correlation, but also deviations from the single-
step approximation. Changes in the size of the error bars could
indicate a change of the reaction mechanism or an interaction
of the Arrhenius function with the reaction equilibrium. If this
was the case, the data tensor could simply be split and mod-
els for the different regions could be derived, similar to what
Schaube et al.18 did with a direct model-fitting method.

In kinetic analysis, when the reaction is modeled according
to the general kinetic equation, the aim is usually to find a
reaction model and to determine the Arrhenius parameters,
i.e. the aim is to identify the kinetic triplet. If the pressure is
considered, a suitable pressure dependency model has to be
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found. Most established methods for kinetic analysis require
an a priori assumptions about the models for each variable.
Model fitting is either done for all variables at the same time
or sequentially, so that the model choices influence each
other. Finding the right combination of models is generally
quite difficult, since there are many possible combinations
and unforeseeable interactions between the models. The
main advantage of the NPK method is that it can separate
the contributions of the considered variables without any
assumption about the models. Model identification is per-
formed after the separation, independently for each variable,
by fitting the solution vectors. In fact, from a modeling
point of view, the result vectors could be used without any
additional processing to predict the reaction rate, by simply
interpolating each vector and multiplying the contributions.

However, there is one issue that needs to be addressed for
the model identification with the NPK method: Some val-
ues of the result vectors will be more accurate than others
due to structural reasons like the distribution of experimental
data or correlation of variables. The accuracy of each value
is reflected by its variance. Least squares fitting yields opti-
mal results (in the sense of minimum variance) if all data
points are weighted with the inverse of their variances. Omit-
ting weights in the model-fitting step amounts to the assump-
tion of homoscedasticity, which is generally not applicable
and may cause the result to be inaccurate. Therefore, the vari-
ances of the solution values need to be taken into account in
the model-fitting step to produce accurate results. This was not
possible with the original NPK method, but with the method
proposed in this paper it is possible to track the error propaga-
tion from the experimental values all the way to the estimated
model parameters.

For the identification of the reaction model of the simulated
data set, 43 reaction models from the literature were fitted to
the conversion dependency vector (Figure 4, left) and a pair-
wise F-test was used to determine the most likely model (see
Ref. [19] for more details on the models and the testing pro-
cedure). The correct model was identified unequivocally from
all data sets at a confidence level of 𝛼 = 0.95.

To determine the activation energy, the Arrhenius function
was fitted to the temperature dependency vector. The activa-
tion energy and the standard deviation at each noise level are
shown in Figure 5. It can be seen that the estimated values
from the weighted fit are very close to the value used for the
simulation: 60 kJ/mol. The deviation was less than 3% across
all noise levels and can be attributed to the collinearity of
the activation energy and the Arrhenius parameter. Here the
importance of accounting for unequal variances in the model-
fitting step becomes especially apparent. Values at high and
low temperatures, where outliers are common (Figure 4, mid-
dle), are weighted much less than values in the medium tem-
perature range. Otherwise, they would have distorted the fit
considerably (red dash–dotted line in Figure 5).

F I G U R E 5 Estimated activation energy over added noise [Color
figure can be viewed at wileyonlinelibrary.com]

9 CONCLUSION

The NPK method has been reworked, and two algorithms
for computing the solution have been presented. The new
NPK method shares the advantages of the original one, while
resolving many of its shortcomings. Like the original NPK
method, it is model free and can process data from any com-
bination of experiments, but in contrast to the original method
it is algorithmically much simpler due to its ability to deal
with missing values directly. Also, it can derive kinetic mod-
els in any number of variables. This was made possible by
switching from the SVD to tensor low-rank decomposition
methods. Additionally, formulae for estimating the variance
of the output vectors have been derived to weight values in
the model-fitting step correctly, else the fitting results might
be distorted considerably.

From the two proposed algorithms, ALS and NLS, the lat-
ter is better suited for the computation of rank-1 approxima-
tions of kinetic data. Even though the two algorithms did not
differ with respect to the quality of the solution, the perfor-
mance of NLS was far superior.

Tests on a simulated data set show that the new NPK
method is capable of recovering the full kinetic model, includ-
ing the pressure dependency, very accurately, even in the pres-
ence of noise and missing values. A distortion of the model
identification results, due to structural heteroescedasticity typ-
ical for data sets with constant heating rate measurements, is
prevented by using variance estimates to calculate weights for
the model-fitting step. The variance estimates also allow the
detection of deviations from rank-1 structure of the data, i.e. a
violation of the single-step assumption. Then models for dif-
ferent regions, e.g., at low and at high temperature, can be
derived by simply splitting the data tensor.

Generally, the new NPK method opens up many possibil-
ities for the identification of kinetic models. The improved
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usability, robustness, and diagnostic capabilities of the new
NPK method have the potential to make it widely applicable.

The resulting models should be well suited to compute
kinetic predictions, if the statistical errors are small and the
results are consistent. A mechanistic interpretation of the
kinetic triplet, on the other hand, should only be done with
care, since the adequateness of the single-step approximation
goes far beyond the goodness of fit. Gas–solid reactions are
very complex processes, and the general kinetic equation has
been derived based on a number of assumptions and simpli-
fications that need to be considered when the goal is to draw
conclusions about the reaction.

Since the new NPK method can process any number of
variables, additional parameters besides conversion, temper-
ature, and pressure could be included to derive more detailed
kinetic models as suggested by Koga.33 The main challenge
will be collecting sufficient data for the parameterization of
such a model.

Another promising topic for future investigations would be
the application of rank > 1 approximations for the deriva-
tion of multistep models. Algorithms for computing low-rank
approximations of tensors are available and well documented.
Their application to kinetic analysis would greatly increase
the scope of the NPK method by overcoming the limitation to
single-step reactions.

ACKNOWLEDGMENTS

The authors would like to thank the Austrian Research
Promotion Agency (FFG) for their financial support of
the projects SolidHeat Kinetics (#848876) and SolidHeat
Pressure (#853593).

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

ORCID

Felix Birkelbach https://orcid.org/0000-0003-4928-6209

R E F E R E N C E S

1. Deutsch M, Müller D, Aumeyer C, et al. Systematic search algo-
rithm for potential thermochemical energy storage systems. Appl

Energy. 2016;183:113–120.

2. Flegkas S, Birkelbach F, Winter F, Freiberger N, Werner A.
Fluidized bed reactors for solid-gas thermochemical energy
storage concepts—Modelling and process limitations. Energy.
2018;143:615–623.

3. Brown ME, Dollimore, D, Galwey, AK, Bamford, CH, Tipper,
CFH, eds. Reactions in the Solid State, vol. 22 of Comprehensive
Chemical Kinetics. Amsterdam, the Netherlands: Elsevier Scientific
Publishing Company; 1980.

4. Khawam A, Flanagan DR. Solid-state kinetic models: basics and
mathematical fundamentals. J Phys Chem B. 2006;110(35):17315–
17328.

5. Flynn JH. The ‘Temperature Integral'—its use and abuse. Ther-

mochim Acta. 1997;300(1-2):83–92.

6. Galwey A, Brown M. Application of the Arrhenius equation to solid
state kinetics: can this be justified? Thermochim Acta. 2002;386:
91–98.

7. Barret PM. Expression théorique en fonction de la pression de la loi
de vitesse de croissance d'une solide. C R Hebd Séances Acad Sci,

Sér C. 1968;266:856–859.

8. Reading M, Dollimore D, Whitehead R. The measurement of mean-
ingful kinetic parameters for solid state decomposition reactions. J

Therm Anal. 1991;37(9):2165–2188.

9. Searcy AW, Beruto D. Kinetics of endothermic decomposition reac-
tions: 2. Effects of the solid and gaseous products. J Phys Chem.
1978;82(2):163–167.

10. Galwey AK. Is the science of thermal analysis kinetics based on
solid foundations? Thermochim Acta. 2004;413(1-2):139–183.

11. Pijolat M, Favergeon L, Soustelle M. From the drawbacks of the
Arrhenius-f(a) rate equation towards a more general formalism and
new models for the kinetic analysis of solid–gas reactions. Ther-

mochim Acta. 2011;525(1-2):93–102.

12. Šimon P. Considerations on the single-step kinetics approximation.
J Therm Anal Calorim. 2005;82(3):651–657.

13. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA,
Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommen-
dations for performing kinetic computations on thermal analysis
data. Thermochim Acta. 2011;520:1–19.

14. Serra R, Sempere J, Nomen R. A new method for the kinetic study
of thermoanalytical data. Thermochim Acta. 1998;316(1):37–45.

15. Sewry JD, Brown ME. “Model-free” kinetic analysis? Thermochim

Acta. 2002;390(1-2):217–225.

16. Criado JM, González M, Málek J, Ortega A. The effect of the CO2

pressure on the thermal decomposition kinetics of calcium carbon-
ate. Thermochim Acta. 1995;254:121–127.

17. Criado YA, Alonso M, Abanades JC. Kinetics of the CaO/Ca(OH)2
hydration/dehydration reaction for thermochemical energy storage
applications. Ind Eng Chem Res. 2014;53(32):12594–12601.

18. Schaube F, Koch L, Wörner A, Müller-Steinhagen H. A thermody-
namic and kinetic study of the de- and rehydration of Ca(OH)2 at
high H2O partial pressures for thermo-chemical heat storage. Ther-

mochim Acta. 2012;538:9–20.

19. Deutsch M, Birkelbach F, Knoll C, Harasek M, Werner A, Winter
F. An extension of the NPK method to include the pressure depen-
dency of solid state reactions. Thermochim Acta. 2017;654:168–
178.

20. Birkelbach F, Deutsch M, Flegkas S, Franz W, Werner A. A
higher-order generalization of the NPK-method. Thermochim Acta.
2018;661:27–33.

21. Tucker LR. Some mathematical notes on three-mode factor analy-
sis. Psychometrika. 1966;31(3):279–311.

22. Andersen CM, Bro R. Practical aspects of PARAFAC modeling of
fluorescence excitation-emission data. J Chemom. 2003;17(4):200–
215.

Publications

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

290 BIRKELBACH ET AL.

23. Kolda TG, Bader BW. Tensor decompositions and applications.
SIAM Rev. 2009;51(3):455–500.

24. Bro R. Review on multiway analysis in chemistry—2000–2005.
Crit Rev Anal Chem. 2006;36(3–4):279–293.

25. Hitchcock FL. The expression of a tensor or a polyadic as a sum of
products. J Math Phys. 1927;6(1-4):164–189.

26. Carroll JD, Chang JJ. Analysis of individual differences
in multidimensional scaling via an n-way generalization of
“Eckart-Young” decomposition. Psychometrika. 1970;35(3):283–
319.

27. Harshman RA. Foundations of the PARAFAC procedure: models
and conditions for an “explanatory” multimodal factor analysis.
UCLA Work Pap Phonetics. 1970;16:1–84.

28. Paatero P. A weighted non-negative least squares algorithm for
three-way “PARAFAC” factor analysis. Chemom Intell Lab Syst.
1997;38(2):223–242.

29. Tomasi G, Bro R. PARAFAC and missing values. Chemom Intell

Lab Syst. 2005;75(2):163–180.

30. Rajih M, Comon P, Harshman RA. Enhanced line search: a
novel method to accelerate PARAFAC. SIAM J Matrix Anal Appl.
2008;30(3):1128–1147.

31. Vyazovkin S, Chrissafis K, Di Lorenzo ML, et al. ICTAC Kinet-
ics Committee recommendations for collecting experimental ther-
mal analysis data for kinetic computations. Thermochimi Acta.
2014;590:1–23.

32. Šesták J. The quandary aspects of non-isothermal kinetics beyond
the ICTAC kinetic committee recommendations. Thermochim Acta.
2015;611:26–35.

33. Koga N. Ozawa's kinetic method for analyzing thermoanalytical
curves. J Ther Anal Calorim. 2013;113(3):1527–1541.

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

How to cite this article: Birkelbach F, Deutsch M,
Flegkas S, Winter F, Werner A. NPK 2.0: Introducing
tensor decompositions to the kinetic analysis of gas–
solid reactions. Int J Chem Kinet. 2019;51:280–290.
https://doi.org/10.1002/kin.21251

Paper 2

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Publications

Paper 3
The effect of the reaction equilibrium on the kinetics of gas-solid
reactions — A non-parametric modeling study
published in Renewable Energy in collaboration with Markus Deutsch and Andreas
Werner, based on Paper 8.

This paper presents a literature review on models for the effect of the equilibrium/driving
force on the kinetics of reversible gas-solid reactions and implications for non-parametric
modeling. These near-equilibrium effects are especially relevant to thermochemical energy
storage, since these processes need to be operated in close vicinity of the equilibrium to
maximize their efficiency.

What we found is that literature on the effect of the equilibrium on gas-solid reactions is
scarce and that models are used very inconsistently. The only model that also pretended
to be applicable to formation reactions was based on Transition State Theory. To
evaluate this model and other more empirical models found in literature, the hydration
of CaC2O4 (calcium oxalate) was modeled with our tensor NPK algorithm. The effect
of the equilibrium could be identified, but it did not match theoretic predictions. It
seems that all theories available today are falling short of describing the effect of the
equilibrium/driving force on gas-solid reactions.

While this lack of accurate theory is disappointing, we were able to show that NPK
models can be used to predict kinetics accurately regardless of the shortcoming of theory.
To model the effect of the equilibrium/driving force, the TensorNPK method only requires
a measure for the equilibrium distance. The reduced partial Gibbs enthalpy was identified
as the most viable distance measure, and kinetic predictions were found to be in very
good agreement with experimental data. In this way, the non-parametric modeling can
be used as a generic kinetic prediction method.

My contribution: Literature review on pressure and equilibrium models. Kinetic modeling
of the hydration of CaC2O4 and the reduction of CuO. Interpretation of results. Drawing
up and writing of the paper.

F. Birkelbach, M. Deutsch, and A. Werner (2020). “The effect of the reaction equilibrium
on the kinetics of gas-solid reactions — A non-parametric modeling study”. In: Renewable
Energy 152, pp. 300–307. issn: 09601481.
doi: 10. 1016/ j. renene. 2020. 01. 033
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a b s t r a c t

The viability of thermochemical energy storage for a given application is often determined by the re-

action kinetics under process conditions. For high exergetic efficiency the process needs to operate in

close proximity to the reaction equilibrium. Thus, accurate kinetic models that include the effect of the

reaction equilibrium are required.

In the present work, different parametrization methods for the equilibrium term in the General Kinetic

Equation are evaluated by modeling the kinetics of two reaction systems relevant for thermochemical

energy storage (CaC2O4 and CuO) from experimental data. A non-parametric modeling method based on

tensor decompositions is used that allows for a purely data driven assessment of different parametri-

zation methods.

Our analysis shows that including a suitable equilibrium term is crucial. Omitting the equilibrium term

when modeling formation reactions can lead to seemingly negative activation energies. Our tests also

show that for formation reactions, the reaction rate decreases much faster towards the equilibrium than

theory predicts. We present an empirical modeling approach that can predict the reaction rate of gas-

solid reactions, regardless of the shortcomings of theory. In this way, non-parametric modeling offers

a powerful tool for applied research and may contribute to the advancement of the thermochemical

energy storage technology.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Thermochemical energy storage (TCES) is one of the prospective

technologies that could contribute to covering the future thermal

energy storage (TES) demand. Compared to other TES technologies,

TCES has the advantage of very high gravimetric and volumetric

storage densities, nearly lossless storage at ambient conditions as

well as a wide range of operating temperatures, depending on the

storage material. In most TCES applications the storage material is a

solid that reacts reversibly with a gaseous substance. Redox re-

actions, where a metal reacts with oxygen, have been proposed for

TCES in concentrated solar power plants, because of their high

operating temperature at around 1000 +C (see Ref. [1] for a recent

review). For lower operating temperatures, such as for district

heating or building applications, (de)hydration reactions have been

proposed (see Refs. [2,3] for recent reviews).

The process conditions of a TCES reactor must be chosen in a

way that the reactor operates energy efficiently, while ensuring

sufficiently fast reaction rates. A measure for the exergetic effi-

ciency of thermal storage devices is the temperature spread be-

tween the charging and the discharging process. The larger the

spread, the lower the exergetic efficiency. In TCES, the spread is

caused by the reaction equilibrium, a characteristic feature of

reversible gas-solid reactions. Below the equilibrium temperature

the formation (discharging) reaction dominates; above, the

decomposition (charging) reaction dominates. At the equilibrium

temperature, the rates are equal and the net-reaction rate is, thus,

zero. Consequently, both the charging and the discharging process

need to operate at a certain distance from the equilibrium.

In the charging process heat is consumed by the decomposition

reaction. The temperature should be as low as possible to utilize the

heat source efficiently, but it must be sufficiently high above the

equilibrium temperature to yield acceptable reaction rates. In the

discharging process, heat is released by the formation reaction. From

the point of view of energy efficiency, the temperature should be as

high as possible to maximize the exergy in the heat flow. However,
* Corresponding author.

E-mail address: felix.birkelbach@tuwien.ac.at (F. Birkelbach).
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starting from a certain temperature, the reaction rate decreases, as

the temperature approaches the equilibrium temperature.

The equilibrium temperature of a gas-solid reaction is deter-

mined by the partial pressure of the gaseous reactant. By influ-

encing the partial pressure, e. g. by efficiently removing the product

gas from the reaction zone during charging or by increasing the

partial pressure during discharging, the temperature spread can be

reduced. It has even been shown that thermochemical cycles can be

used as heat pumps, if the partial pressure during charging is suf-

ficiently higher than the partial pressure during discharging [4].

Detailed knowledge about the equilibrium position of the reaction

and of the kinetics in the vicinity of the equilibrium are required to

choose optimal process conditions for maximum efficiency.

The dependency of the reaction rate on temperature, partial

pressure and the equilibrium can be determined experimentally

with thermal analysis methods. The effect of each variable is

generally non-linear and the effects are convoluted in the experi-

mental data. Because of this, advanced modeling methods are

required to separate the effect of each variable. The most common

formula to describe the conversion rate da=dt is the General Kinetic

Equation

da

dt
¼ f ðaÞ kðTÞ hðp; p�Þ (1)

Here, a is the conversion, f ðaÞ is the conversion dependency, T is the

absolute temperature, kðTÞ the effect of the temperature, usually

expressed by the Arrhenius equation, p is the partial pressure of the

gas, p� the equilibrium pressure and hðp; p�Þ the pressure or equi-

librium term. Modeling a reaction with this formula is often

referred to as the single step approximation, since the main

assumption is that the reaction is only limited by the slowest re-

action step.

In our recent study of the reaction system Cu2O/CuO [5] we

noticed some inconsistencies in the establishedmodeling approach

with the equilibrium term hðp;p�Þ ¼ 1� p=p�. Specifically, that the

equilibrium term assumed large negative values when it is applied

to formation reactions. Because TCES processes usually operate in

the vicinity of the equilibrium, understanding the effect of the

reverse reaction is key to obtain a reliable model. Even though our

focus lies on empirical data driven modeling, the model should be

physically plausible to get more reliable results, instead of just “the

best fit”.

We found that other scientists were also struggling with the

modeling of the effect of the reverse reaction on formation re-

actions. Deutsch et al. [6] did not consider the effect of the equi-

librium for the oxidation of CuO and obtained negative activation

energies. Clayton et al. [7] investigated the kinetics of CuO/Cu2O. To

model the pressure dependency, they somewhat arbitrarily defined

a thermodynamic driving force as p� � p. Schaube et al. [8] found

that 1� p=p� does describe the dehydration of CaðOHÞ2 well, but

does not yield satisfactory results for the hydration reaction, where

they identified a negative activation energy in the vicinity of the

equilibrium. In hydrogen literature a plethora of models has been

employed. Ron [9] published a summary of pressure models in

hydrogen literature and proposed a normalized pressure de-

pendency method for the dissociation of hydrogen jp� � pj=p�. He

interpreted the term as an accommodation function for the effect of

the reverse reaction in close proximity to the equilibrium for

hydrogen desorption, because the term assumes values between

0 and 1. However, he noted that this interpretation is inconsistent

for sorption reactions, where the term is unbounded and can as-

sume arbitrarily large values.

In light of these inconsistent and sometimes somewhat arbi-

trary modeling approaches, we decided to look more closely into

modeling approaches for the effect of the equilibrium on the re-

action rate of gas-solid reactions. First, we present a short literature

review and introduce the most relevant thermodynamic concepts.

Then, we evaluate four different parametrization methods for the

equilibrium term by applying them to model the hydration of

CaC2O4, whose viability for thermochemical energy storage has

recently been highlighted [10]. Non-parametric modeling with the

tensor NPKmethod [11] is used to analyze the kinetic data, because

it does not rely on modeling assumptions besides the General Ki-

netic Equation. In this way, no additional modeling bias is intro-

duced through the choice of models for the dependencies. Finally,

we test the ability of non-parametric models to predict the reaction

rate of two very different reactions (hydration of CaC2O4 and

reduction of CuO) in the vicinity of the equilibrium.

Nomenclature

Acronyms

TCES thermochemical energy storage

TES thermal energy storage

TGA thermogravimetric analysis

Greek Symbols

a conversion

g
vi

vector of interpolation coefficients for position vi

DRG reaction Gibbs enthalpy in kJ/mol

DRH reaction enthalpy in kJ/mol

mi chemical potential of species i in kJ/mol

nG stoichiometric coefficient of gas phase

ni stoichiometric coefficient of species i

Roman Symbols

da=dt conversion rate in 1/s

dk value of datapoint k

f ðaÞ conversion dependency, reaction model

fiðviÞ dependency function i

f i dependency function vector i

bf iðviÞ estimate of dependency function i at vi

fi;j element j of dependency function vector i

G Gibbs enthalpy of mixture in kJ/mol

Gz partial molar Gibbs enthalpy of reaction in kJ/mol

hð…Þ pressure/equilibrium dependency

kðTÞ temperature dependency in 1/s

p partial pressure of gas in Pa

p� equilibrium partial pressure of gas in Pa

p0 standard pressure in Pa

T temperature in K

t time in s

vi independent variable i

vi;j grid point j in independent variable i

bvi;k position of datapoint k in dimension i

z reaction coordinate
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2. Theoretical background

Generally, gas-solid reactions are extremely complex involving a

series of different physical and chemical processes. Many widely

used modeling concepts, not least the single step approximation in

Equation (1), are well known for falling short of accurately

describing real chemical reactions. For this reason many applied

researchers focus on empirical modeling of gas-solid reactions.

Nonetheless, theoretical models are useful, because they provide us

with a frame to interpret the behavior of the chemical reaction

under consideration and because physically motivated models are

often more reliable.

A characteristic feature of reversible reactions is the reaction

equilibrium, where the reaction rate of the forward reaction is

equal to the rate of the reverse reaction and the net-reaction rate is

thus zero. From a thermodynamic perspective the characteristic

value to describe a chemical reaction is the partial Gibbs enthalpy of

the reaction Gz, i. e. the partial derivative of the Gibbs enthalpy of

the mixture G with respect to the reaction coordinate z:

Gzðp; TÞ¼
vG

vz

����
p;T

¼
X

i

nimiðp; TÞ (2)

Here, p is the partial pressure of the gaseous component, T is the

temperature, ni are the stoichiometric coefficients and mi are the

chemical potentials of the substances. At the equilibrium, the Gibbs

energy of the mixture assumes a minimum and the partial Gibbs

enthalpy of the reaction, thus, becomes zero.

For a simple reversible gas-solid reaction of the type

nAAðsÞ þ nGGðgÞ%nBBðsÞ (3)

the partial molar Gibbs enthalpy of the reaction can be

expressed as

GzðT ;pÞ¼DRGðT ; p0Þþ nGRT ln
p

p0
¼ nGRT ln

p

p�ðTÞ
: (4)

With the reaction Gibbs enthalpy at standard pressure DRGðT ;

p0Þ, the standard pressure p0 and the equilibrium pressure at a

given temperature p�ðTÞ.

The first studies of the effect of the equilibrium on the reaction

rate on heterogeneous reactions date back to the 1950s. In 1952,

Burke et al. [12] derived a formula based on the transition state

theory to describe the reaction rate of solid state transitions. In

1956, Bradley [13] introduced the vapor gap theory for solid state

transitions, which resulted in the same equilibrium term. Bradley’s

theory found its way into modern kinetic analysis through the

works of �Sestak [14]. Almost four decades after Burke et al., Reading

et al. [15] derived the same expression as them for gas-solid re-

actions, apparently without knowledge of the 1952 paper.

da

dt
¼ f ðaÞ kðTÞ

�
1� exp

�
GzðT ; pÞ

RT

��
(5)

This formula relates the partial molar Gibbs energy of the re-

action Gz at process conditions with the reaction rate. At the

equilibrium, Gz is zero and consequently also is the net reaction

rate.

Replacing the Gibbs enthalpy in the equilibrium term with the

pressure ratio from Eq. (4), results in the well-known formula

where the stoichiometric coefficient is usually omitted, since most

studies to date dealt with decomposition reactions, where nG is 1.

hðp; p�Þ¼1� exp

�
GzðT; pÞ

RT

�
¼1�

�
p

p�

�nG

(6)

The latter form of the equilibrium term has also been derived

based on sorption considerations by Barret [16] and Searcy [17] for

decomposition reactions. The stoichiometric coefficient is not

included in these derivations and they do not discuss the effect of

the equilibrium on formation reactions.

Currently there is no consensus on the validity of the transition

state theory for reactions involving solids, as the ongoing academic

dispute around the Arrhenius equation shows [18,19]. Notwith-

standing, the Arrhenius equation is the most commonly applied

formula to describe the temperature dependency of gas-solid re-

actions and there seems to be no other theory that can interpret the

effect of the reaction equilibrium for both formation and decom-

position reactions.

The most important implication of the above formula in Equa-

tion (6) is that the form of the equilibrium term changes to

1� ðp�=pÞjnGj for formation reactions, because the sign of the stoi-

chiometric coefficient of the gas phase changes. Despite our

extensive literature search, we did not encounter a paper that

accounted for the stoichiometric coefficient. In someworks the sign

of the pressure term was changed for the reverse reaction, so that

the value of the pressure term was positive [8,20]. The reciprocal

also resolves Ron’s [9] issue with the interpretation of his

normalized pressure function for sorption reactions: If the stoi-

chiometric coefficient is considered, the value of the accommoda-

tion function is between 0 and 1 again.

3. Experimental setup

Simultaneous thermal analysis measurements were performed

on a Netzsch STA 449 C Jupiter equipped with a combined TGA-DSC

sample holder using open aluminum oxide crucibles containing

sample masses around 10 mg. The oven is operable between 25 +C

and 1250 +C, regulated by an S-type thermocouple. The gas flow

was controlled using red-y smart series mass-flow controller by

Voegtlin with an operable range between 2 and 100 ml/min. All

reported experiments were conducted at ambient pressure.

Calcium oxalate monohydrate (CAS 5794-28-5) was ordered

from Sigma-Aldrich and used as supplied. The anhydrous formwas

obtained by in-situ dehydration at 300 +C. For the hydration ex-

periments, the system was equipped with a water vapor furnace.

The steam was produced in an Adrop water vapor generator and

transferred into the furnace via a heated transfer line. To prevent

condensation of the water, a carrier gas flow of 50 ml(N2)/min was

used. Setting the steam flow to 2.5 and 5 g/h resulted in partial

pressures of 0.66 and 0.79 bar respectively. The protective gas

stream was set to 5 ml(N2)/min.

Copper oxide (CAS 1317-38-0) by Merkur Emsure was grinded

using a Retsch planetary ball mill PM 100 and sieved to obtain

samples with grain diameters in the range of 1 to 100 mm. Before

each experiment, the reactor was purged with nitrogen (99.999 vol

%) for a minimum of 30 min to remove oxygen from the reactor.

During the experiment the N2 and O2 flow rates were set to obtain

the target partial pressure in the reactor at a total flow of 100 ml/

min.

4. Method

For the kinetic modeling of the experimental data, the tensor

NPK method [11], is used. It is based on the observation that the

discretization of the General Kinetic Equation in Equation (1) re-

sults in a rank-1 tensor. By arranging experimental data in a tensor

and applying a suitable algorithm to compute its rank-1 approxi-

mation, the effect of each variable can be extracted without any

assumption about themodel besides the single step approximation.

This data driven approach is often labeled “model-free”, in the
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sense that no sub-models for the effect of each variable have to be

chosen. In this way, it allows for the unbiased testing of different

parametrization methods, without interference of sub-model

choices. To extract information about an effect from experimental

data, all the algorithm needs is a variable that the effect is corre-

lated with. Usually, these are the conversion, to find a suitable re-

action model, and the temperature, to identify the Arrhenius

parameters. To extract information about the effect of the equilib-

rium on the kinetics, a suitable measure for the distance to the

equilibrium is required.

In this paper four different parametrization methods for the

equilibrium term are compared. The partial pressure p is used as a

reference to check whether meaningful models can be computed, if

the equilibrium is not considered. jp� � pj is used as the most

simple way to take the equilibrium into account and 1� ðp=p�ÞnG is

used based on the literature study. Additionally we propose to use

Gz

RT
¼ nG ln

p

p�
(7)

as a generic measure for the distance to the equilibrium. This

value can be interpreted as the normalized thermodynamic driving

force of the reaction. Like 1� ðp=p�ÞnG it has no unit, becomes zero

at the equilibrium and increases monotonically as the distance to

the equilibrium increases. In contrast to 1� ðp=p�ÞnG it does not

converge to a fixed value at a certain distance to the equilibrium.

Because of this, it can capture the effect of the equilibrium at larger

distances from the equilibrium than the transition state theory

would predict.

In order for the algorithm to recognize the effect of the equi-

librium, data points that are at the same distance to the equilibrium

must feature the same value of the equilibrium measure. Fig. 1 il-

lustrates the difference between the considered parametrization

methods based on the reaction system CaC2O4/CaC2O4,H2O. The

left most diagram shows the equilibrium diagram of the reaction

and the contour lines of the equilibrium terms for the dominant

reaction step. I. e. the lines above the equilibrium correspond to the

formation reaction, while the lines below correspond to the

decomposition. Data points on one contour line are recognized as

being at the same distance to the equilibrium. It can be seen that

jp� � pj is no consistent measure for the distance to the equilibrium,

even though it includes the equilibrium pressure.

Both 1� ðp=p�ÞnG and Gz=RT result in contour lines, that are

“parallel” to the equilibrium. Thus it can be expected that they are

capable of modeling the equilibrium effect well. The two diagrams

on the right in Fig. 1 show a cross-section of the distance measures

in the main diagram at a fixed temperature. At a certain distance,

1� ðp=p�ÞnG converges to 1, while Gz=RT covers thewhole p-T range.

Because of this, the latter can model the effect of the equilibrium

over the whole p-T range.

The tensor NPK algorithm produces the most reliable results if

the experimental data is fairly equally distributed on the grid. For

data, that has been measured on a a� T � p grid, the algorithm

works well if the model consists of a, Tand p as variables. If the data

is transformed to include the equilibrium distance, the position of

the data points in the data space is distorted and the projection on

the tensor may introduce a significant error. To remedy this, the

tensor NPK has been adapted to compute the residuals at the data

points instead of at the tensor elements (see Appendix A). In this

way the projection of the data points on the data tensor can be

omitted.

As input for the tensor NPK algorithm, conversion and reaction

rate were computed from the mass loss data of the TGA experi-

ments. The temperature and partial pressure values were used to

compute the values of the equilibrium terms. Gz and p� can be

calculated with thermodynamic constants frommaterial databases,

or, if these constants are not available for the reaction system under

consideration, p� can be determined experimentally in the relevant

temperature range and Gz can be calculated with Equation (7).

For each analysis, a grid that fits the data was selected. Then the

tensor NPK algorithm [11] was used to extract the effect of each

variable on the reaction rate. With the conversion dependency, the

best fitting reaction model was identified by fitting 41 reaction

models from the literature and a pair-wise F-Test was performed to

check whether the performance of the best fitting model was sta-

tistically significantly better than the other ones (see Ref. [21] for

more details). In the result plots all models are displayed that were

not rejected at a 95% confidence level. The Arrhenius parameters

were identified from the temperature effect with a non-linear

fitting algorithm. The activation energy Ea is displayed with its

95% confidence interval. The frequency factor A is omitted, because

it is affected by the choice of the equilibrium term and therefore

bears little to no meaning in the context of this analysis.

5. Results and discussion

For the first analysis, a dataset of 18 isothermal hydration re-

action runs of CaC2O4 is used. The experiments were conducted at

two partial pressures (0.66 and 0.79 bar) and five temperatures

Fig. 1. Contour lines of equilibrium measures in the p-T space (left) with slices at constant temperature (right).
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(126, 142, 158, 174 and 190+C). The reaction can be described by the

following formula:

CaC2O4 þH2O%CaC2O4,H2Oþ DRH: (8)

Fig. 2 shows the position of the data points in the data space for

all considered parametrization methods. The grey lines show the

grid that was chosen for the evaluation. In order for the algorithm

to identify the effect of the equilibrium, all datapoints at the same

distance from the equilibriummust be placed the same value of the

equilibrium measure. The leftmost diagram in Fig. 2 shows the

undistorted p-T grid. jp� � pj in the second diagram only introduces

a slight shift, while the transformationwith 1� ðp=p�ÞnG completely

rearranges the data points. Thus, it can be expected, that the result

will differ considerably, even if these parametrization methods

seem quite similar. In the third diagram it can be seen, that the data

points are squeezed together at values close to 1. To make sure that

this does not blur the result, the grid points have been chosen

accordingly. Gz=RT rearranges the data points in a similar manner

as 1� ðp=p�ÞnG , but it does not squeeze them. Because of this, this

variable can capture the effect of the equilibrium at larger distances

from the equilibrium. Also, a simple equally spaced grid can be used

with this method.

The output of the NPK algorithm for each of the parametrization

methods is displayed in Fig. 3. The identified conversion de-

pendency was the same, regardless of the parametrization method.

The temperature dependencies of the p and the jp�� pj model

exhibit a decreasing trend. Here, the Arrhenius effect is super-

imposed by the effect of the reverse reaction. An intent to identify

Arrhenius parameters from these curves would result in physically

nonsensical negative values for the activation energy.

The temperature dependency of 1� ðp=p�ÞnG and Gz= RT in Fig. 3

show an increasing trend that fits the Arrhenius equation. The

identified apparent activation energies are 52.9 kJ/mol ± 18 % and

64 kJ/mol ± 14 % respectively. Even thought the values differ, the

confidence intervals overlap. I. e. the difference is within the sta-

tistical uncertainty.

If the theoretical model based on transition state theory in

Equation (5) was correct, the effect of 1� ðp=p�ÞnG would be a

straight line from 0 to 1. Fig. 3 shows that, the effect approaches

zero much faster, specifically at around 0.8. This is consistent with

the effect described by Schaube et al. [8] for the hydration of CaO:

They found that the reaction rate decelerates much faster close to

the equilibrium than predicted by theory and therefore obtained a

negative apparent activation energy. By using non-parametric

modeling, which allows arbitrary forms of the equilibrium de-

pendency, the temperature dependency can be identified correctly

d thus eliminating the need for negative apparent activation

energies.

It seems that the available theoretical formulas do not capture

the complex behavior of gas-solid reactions in the vicinity of the

equilibrium. Recent research on the hydration of salts [22] has

found, that the hydration is mediated by a wetting layer and that

some salts show a meta-stable zone around the equilibrium, where

the reaction is limited by nucleation. In light of these recent find-

ings, the single step approximation, underlying the General Kinetic

Equation, has to be assessed thoroughly for these reaction systems.

Future research will have to determine the limits of its applicability

and find suitable expressions for modeling the rate limiting step.

The NPK method with the Gz=RT parametrization to incorporate

the effect of the equilibrium, offers the possibility of modeling the

reaction rate regardless of the shortcomings of theory. Neither a

theoretical model for the effect of the equilibrium nor a reaction

model nor Arrhenius parameters are required. The NPK result

vectors (blue dots in Fig. 3) can be used to predict the reaction rate

in the parameter range of the dataset. As demonstration, the traces

of the experiments have been recreated and compared to the

original data. Fig. 4 shows the predicted and measured values of

three experimental runs. They are found to be in very good

agreement.

To verify this modeling approach with another reaction system

and an other type of dataset, the reduction of CuOwas investigated.

The dataset [5] consists of 7 constant heating rate experiments with

2 K/min at 7 different oxygen partial pressures (10, 20, 50, 80, 100,

150 and 200 mbar). The reaction started, when the temperature

exceeded the equilibrium temperature. The starting points of the

reaction were found to be in good agreement with thermodynamic

predictions. The reaction can be described by the following

formula:

4 CuOþDRH%2Cu2Oþ O2 (9)

Fig. 5 shows the output of the NPK algorithm. It can be seen, that

the effect of the equilibrium decreases continuously towards 0. The

fact that the effect of the equilibrium is greater than 0 at the

equilibrium can be attributed to the slight deviation of the reaction

start temperatures from the theoretical equilibrium temperature.

Thus, the theoretical prediction seems to be applicable for this

decomposition reaction. This, again, coincides with the findings by

Schaube et al. [8], who found the rate of the decomposition reaction

could be modeled well with the 1� ðp=p�ÞnG term (even though

they considered a different reaction system). The identified acti-

vation energy is 382 kJ/mol ± 24 %, which is an unacceptably large

uncertainty. If the goal was to identify kinetic parameters, addi-

tional experimental runs with higher heating rates would be

required to increase the accuracy of the identified Arrhenius

parameters.

For the prediction of the reaction rate, no further identification

of the NPK model is required. Only the result vectors (blue dots in

Fig. 5) are used. Fig. 6 shows the simulation results for constant

Fig. 2. Distribution of data points in the dataset of the hydration of CaC2O4 with the four different parametrization methods.
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heating rate experiments at different partial pressures. The pre-

dicted trajectories are in very good agreement with the experi-

mental values. Thus, non-parametric modeling can be used as a

generic approach to predict the reaction rate of gas-solid reactions

in absence of detailed theoretical models. Only sufficient data and

variables that the main effects are correlated with are required.

6. Conclusion

A review of the literature about the effect of the reaction equi-

librium on the reaction rate of gas-solid reactions has been pre-

sented and four different parametrization methods have been

compared by non-parametric modeling of kinetic data of the hy-

dration of CaC2O4. Our results show that taking the effect of the

reverse reaction into account is essential for modeling the reaction

rate in the vicinity of the equilibrium. Of the four parametrization

methods, only 1� ðp=p�ÞnG and Gz=RT were capable of capturing the

effect of the reaction equilibrium correctly. However, Gz=RT is a

better match for non-parametric modeling, as it is an unbounded

value that allows to identify the effect of the equilibrium at any

distance from the equilibrium.

Our analysis has shown that the effect of the equilibrium,

Fig. 3. Output of the NPK algorithm for the hydration of CaC2O4 with the four different parametrization methods.

Fig. 4. Simulated reaction trajectories (solid) and experimental data (dashed) for the

hydration of CaC2O4 .

Fig. 5. NPK model of the reduction of CuO.

Fig. 6. Simulated reaction trajectories (solid) and experimental data (dashed) for the

reduction of CuO.
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derived from experimental data of the hydration of CaC2O4, does

not match the theoretical formula based on transition state theory.

Since this finding is consistent with observations of other re-

searchers, it can be expected that this formula will fall short of

describing the effect of the equilibrium for formation reactions in

general. More sophisticated theories to describe the effects in close

vicinity of the reaction equilibrium will have to be developed.

Considering the complexity of hydration reactions and gas-solid

reactions in general, the possibility of a physical process being

the rate limiting step has to be considered and also the single step

assumption has to be assessed critically.

One of the main advantages of non-parametric modeling is that

it does not require explicit models to predict the reaction rate of

gas-solid reactions. As demonstration, the hydration of CaC2O4 and

the reduction of CuO have been modeled and the reaction trajec-

tories have been simulated. The simulated trajectories have been

found to be in good agreement with experimental data. This

generic data-driven modeling approach can be used regardless of

the shortcomings of theory, for reactions as diverse as the two

considered in this paper. In this way, non-parametric modeling

offers a powerful tool for applied research in the field of thermo-

chemical energy storage to predict the kinetics of gas-solid re-

actions for reactor and process design.

Author contributions section

Felix Birkelbach: Conceptualization, Methodology, Software,

Formal analysis, Writing - Original Draft. Markus Deutsch: Meth-

odology, Writing - Review & Editing. Andreas Werner: Supervision,

Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank Christian Knoll and Saman

Setoodeh Jahromy for providing us with the raw data of their

measurements for our analysis as well as the Austrian Research

Promotion Agency (FFG) for their financial support of the project

SolidHeat Pressure (#853593).

Appendix A. Adaptation of the modeling algorithm

For this work the non-linear least squares algorithm that we

published in Ref. [11] was adapted. Now the residuals are computed

at the data points instead of at the tensor elements. In this way, the

error introduced by projecting the data points onto the data tensor

can be avoided, which improves the results on unequally distrib-

uted data sets like in this study considerably.

To compute the residuals at the datapoints, the value of the

unknown functions fiðviÞ inbetween two grid points vi;j� < vi < vi;j�þ1

needs to be estimated. Starting from Equation (4) in Ref. [11], the

value of fiðviÞ can be approximated with local linear interpolation

fiðviÞz
bf iðviÞ¼ ½1 vi �

�
1 vi;j�

1 vi;j�þ1

��1� fi;j�
fi;j�þ1

�
¼g

vi
f i: (A.1)

Here, g
vi
is a row vector containing the interpolation coefficients at

the positions corresponding to vi;j� and vi;j�þ1 and zero otherwise.

The interpolation can always be computed as a matrix

multiplication, regardless of the polynomial order, so higher order

interpolation polynomials would also be possible.

Given a data set ½dk; bv1;k; …; bvD;k�, where

dk ¼
da

dt

�
bv1;k;…;bvD;k

�
(A.2)

from experiments, the residuals can be computed with

rk ¼
YD

i¼1

gbv i;k f i � dk: (A.3)

Since neither the position of the data points nor of the grid

points changes during the optimization, all gbv i;k can be computed

beforehand.

To solve the optimization problem efficiently, the model needs

to be reduced as shown in Equation (14) and the Jacobian can be

derived analytically in analogy to Equation (15) and Equation (16)

in Ref. [11].

We provide a Matlab implementation of this algorithm as sup-

plementary material.

Appendix B. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.renene.2020.01.033.
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Relevant publications as co-author

Relevant publications as co-author

While doing the research for this thesis I got to collaborate with colleagues who were
working on similar topics. Here, I briefly present our joint papers and highlight the most
important findings in the context of this theses.

Paper 4 An extension of the NPK method to include the pressure
dependency of solid state reactions
by Markus Deutsch, Felix Birkelbach, Christian Knoll, Daniel Lager, Christian Gierl-
Mayer, Peter Weinberger und Franz Winter; published in Thermochimica Acta.

In this paper, the original NPK method was extended, so that it could also be used
to model the pressure dependency of gas-solid reactions. The algorithm was limited
to two dimensions. The pressure dependency was included by applying it twice: once
on a conversion-temperature plane, once on a conversion-pressure plane. The full
three-dimensional model was obtained by combining the two two-dimensional models
by considering the intersection of the two planes. The method was demonstrated by
applying it to a simulated dataset and to model the decomposition of CdCO3 (cadmium
carbonate).

The research in this paper showed the potential of data-driven modeling in more than
two variables. However, the limitation to two panes limited the type of data that could
be used and consequently the scope of the kinetic study.

My contribuion: Presenting the underlying mathematics. Implementation of statistical
hypothesis testing for model-fitting. Editing of the manuscript and handling the revision
process.

M. Deutsch, F. Birkelbach, C. Knoll, M. Harasek, A. Werner, and F. Winter (2017). “An
extension of the NPK method to include the pressure dependency of solid state reactions”.
In: Thermochimica Acta 654, pp. 168–178. issn: 00406031.
doi: 10. 1016/ j. tca. 2017. 05. 019

Abstract
An novel method to identify the pressure dependency for reactions of the type A(s) −−→←−−
B(s) + C(g) is proposed. It is an extension of the non-parametric kinetic analysis (NPK)
method as it identifies the pressure dependency in addition to the temperature and
conversion dependency of the reaction. This is done by analyzing kinetic data in a
three-dimensional data space (conversion, temperature, pressure) and attributing the
variation of the conversion rate to these independent variables. Thus a reduction from a
three-dimensional problem to three one-dimensional problems is achieved. The derivation
of a kinetic model can then be performed for each dependency independently, which is
easier than deriving a model directly from the data.

This work presents the basic approach of the identification and combination of the
three dependencies to build a full kinetic model. Also, the interpretation of the model to
achieve a physically motivated model is illustrated.
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Publications

Then the method is applied to identify the complex reaction kinetics of the decomposi-
tion of CdCO3 based on a set of thermogravimetric measurements. It is shown that it is
possible to identify interaction terms between the dependency terms.

Paper 5 Impact of Partial Pressure, Conversion, and Temperature on the
Oxidation Reaction Kinetics of Cu2O to CuO in Thermochemical Energy
Storage
by Saman Setoodeh Jahromy, Felix Birkelbach, Christian Jordan, Clemens Huber, Michael
Harasek, Andreas Werner and Franz Winter; published in Energies.

The REDOX (reduction-oxidation) system Cu2O/CuO (cuprous oxide/cupric oxide) is
one of the potential reaction systems for thermochemical energy storage in concentrated
solar power plants. In this paper, the material was analyzed with various methods
and the oxidation kinetics were studied. For the kinetic analysis a large dataset with
measurements at four different temperature and partial pressure levels was used. From
this dataset a kinetic model that included the effect of the equilibrium/driving force was
derived with the TensorNPK method and interpreted in terms of the chemical reaction.

This was the first application of the newly developed TensorNPK method. The method
proved very useful — especially because this type of analysis, with an equilibrium term
but without specific its shape, would not have been possible with any other method. The
analysis of the oxidation data revealed two things: First, that the effect of the equilibrium
has to be taken into account to get a consistent model. Second, that the reaction rate
decreases much faster towards the equilibrium than theory would suggest.

During the modeling I noticed an inconsistency with the standard equilibrium term
1−p/peq. It assumed large negative values, which could not be interpreted in a meaningful
way. Also, the transformation from the temperature-pressure grid, where the experimental
data was collected, to the temperature-equilibrium distance grid that was used for the
kinetic modeling, introduced an significant error. Both aspects were identified as open
questions that needed to be addressed as soon as possible (see Paper 3).

My contribuion: Processing the kinetic data with specialized algorithms. Kinetic modeling
of the oxidation data.

S. Setoodeh Jahromy, F. Birkelbach, C. Jordan, C. Huber, M. Harasek, A. Werner, and
F. Winter (2019). “Impact of Partial Pressure, Conversion, and Temperature on the
Oxidation Reaction Kinetics of Cu2O to CuO in Thermochemical Energy Storage”. In:
Energies 12.3, p. 508. issn: 1996-1073.
doi: 10. 3390/ en12030508

Abstract
Metal oxides are promising potential candidates for thermochemical energy storage in
concentrated solar power plants. In particular, the Cu2O/CuO system is suitable because
of its high energy density, applied temperature interval, and reduced cost compared to
the CoO/Co3O4 system. In heterogenous gas-solid reactions, the pressure affects the
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Relevant publications as co-author

kinetics significantly. To quantify this effect for oxidation of Cu2O to CuO, isothermal
runs between 800 ◦C and 930 ◦C at different oxygen partial pressures (0.1, 0.2, 0.5, and
1.0 bar) were conducted with thermogravimetric analysis (TGA). Defined fractions of
CuO samples (1–100 µm) were analyzed with X-ray diffraction (XRD), Brunauer-Emmett-
Teller (BET) analysis, and scanning electron microscopy (SEM) analysis. The kinetic
analyses were performed with extended non-parametric kinetics (NPK), which is applied
for the first time to consider the pressure term in the general kinetic equation in addition
to the conversion and the temperature term.

The results show how the oxygen partial pressure impacts the kinetics and how
reparameterization of the pressure term affects the kinetic analysis of the oxidation
reaction of Cu2O to CuO. The best conversion model is a two-dimensional Avrami-
Erofeev model with an activation energy of 233 kJ/mol. The kinetic models for conversion,
temperature, and pressure presented in this work provide one of the most important
requirements for reactor designs.

Paper 6 The multistep decomposition of Boric Acid
by Clemens Huber, Saman Setoodeh Jahromy, Felix Birkelbach, Jakob Weber, Christian
Jordan, Manfred Schreiner, Michael Harasek and Franz Winter; published in Energy
Science & Engineering.

The reaction system H3BO3/B2O3 (boric acid/boron oxide) has been proposed as ther-
mochemical heat storage system for low temperature applications such as household
and district heating. Compared to other systems that we analyzed, the dehydration of
H3BO3 is much more complex. Its decomposition consists of various steps — the exact
number of steps was not agreed upon. This paper seeks to clarify this open question and
to get insight into the reaction kinetics.

Due to the multi-step nature of the decomposition, kinetic modeling was quite challeng-
ing. First, the reaction steps were deconvoluted with a peak-fitting procedure to make the
tensor NPK method applicable. Then a kinetic model of each reaction step was derived.
Due to the narrow temperature ranges, where data was available for each reaction step,
and uncertainties introduced by the deconvolution procedure, it was hard to interpret
the resulting kinetic models mechanistically. Nevertheless the models provided an insight
into the reaction steps of the decomposition of H3BO3.

My contribuion: Devising a kinetic modeling strategy and assisting with kinetic modeling.

C. Huber, S. S. Jahromy, F. Birkelbach, J. Weber, C. Jordan, M. Schreiner, M. Harasek,
and F. Winter (2020). “The multistep decomposition of boric acid”. In: Energy Science
& Engineering 35, p. 143. issn: 2050-0505.
doi: 10. 1002/ ese3. 622

Abstract
Due to its high potential for thermal energy storage systems the decomposition of boric
acid is of particular interest in the field of applied research. The complexity of the reaction
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Publications

mechanism, with its multiple partially-overlapping reaction steps, hitherto prevented
a clear identification and analysis of each stoichiometric reaction step. So far, various
research teams performed different kinetic analyses of boric acid, which led to various
reaction mechanisms and stoichiometric reaction steps with yet inconclusive results for
process modeling. Thus, a deeper examination of the process was desirable, to validate
whether a proposed reaction is reasonable or not. For this purpose, experimental data
were used for a deconvolution of the reaction sequence, using the Fraser-Suzuki function,
which clearly revealed the respective single reactions. The results of the deconvolution
were compared with the proposed reaction steps in consideration of the stoichiometric
ratio and thereby illustrated that the decomposition of polycrystalline boric acid more
likely consists of three reaction steps. In contrary to the two-step mechanism, the
three-step mechanism showed a very good correlation (r > 99 %).

Based on these outcomes, kinetic analyses were performed for each reaction step, by
means of the non-parametric kinetics 2 (NPK2) method with subsequent determination
of kinetic parameters. Additionally, for a deeper insight into the reaction, analyzing
techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM) and simul-
taneous thermal analysis (STA) were applied.

Paper 7 Hydration of salts as a two-step process: Water adsorption and
hydrate precipitation
by Leyla-Cann Söğütoğlu, Felix Birkelbach, Andreas Werner and Henk Huinink; submitted
to Thermochimica Acta.

In collaboration with the TU Eindhoven an in-depth kinetic study of the hydration of
salts was conducted. The focus lay on K2CO3 (potassium carbonate) and the results were
confirmed with LiCl (lithium chloride), MgCl2 (magnesium chloride) and CuCl2 (copper
chloride). Some of these salts show a metastable zone around the reaction equilibrium,
where the reaction is kinetically inhibited and rapidly increasing kinetics outside this
zone. The TensorNPK method was used extensively to model the kinetics in various
ways to understand the rate limiting processes during hydration.

We were able to show that the reaction is inhibited by nucleation inside the metastable
zone and limited by diffusion to the wetting layer outside the metastable zone. The
TensorNPK method proved a versatile tool to test hypothesis against the data and to
separate the effects of different variables.

My contribuion: Kinetic modeling of the hydration data. Drafting the paper.

Currently submitted to Thermochimica Acta.

Abstract
K2CO3 is a promising salt for thermochemical heat storage. For a high performance, the
thermochemical reaction must take place as close as possible to the equilibrium, while
ensuring sufficient reaction rates. In this work, we studied the near-equilibrium hydration
kinetics of K2CO3 and other salts (CuCl2, MgCl2 and LiCl). We proposed a generic
two-step mechanism for the hydration of salts, consisting of (1): adsorption of water
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Contributions to international conferences

vapour and dissolution of ions from the initial phase (a wetting film) and (2): formation
of the hydrate crystal. The two steps are assumed to be in momentarious balance during
the hydration process. As a result, nucleation is rate limiting at low supersaturations of
water vapour (inside the metastable zone), and water diffusion to the wetting film is rate
limiting at high supersaturations (outside the metastable zone). We have seen that the
vapour pressure of the wetting film stabilises at the metastable zone boundary p∗. The
driving force for hydration outside the metastable zone is therefore the pressure difference
between the atmospheric vapour pressure and the vapour pressure of the wetting film,
p−p∗. As expected, the diffusion limited process at high supersaturations hardly depends
on the temperature, but mainly on the pressure difference. Experimental data were found
consistent with models of nucleation/growth inside the metastable zone. Models outside
the metastable zone suggest a reaction interface which does not contract throughout the
conversion. It is further shown that the diffusion limited process can be characterised
with an apparent activation energy. However, this apparent activation energy is in fact
the hydration enthalpy and does not refer to a real energy barrier.

Contributions to international conferences

Paper 8 The effect of the reaction equilibrium on the kinetics of gas-solid
reactions — A non-parametric modeling study
by Felix Birkelbach, Markus Deutsch and Andreas Werner; oral presentation at the
EuroTherm Seminar #122 in Lleida.

This conference paper was selected to be published in a Special Issue of the Renewable
Energy journal. The journal paper is included as Paper 3 in this thesis. A comment on
the research that is presented in this paper can be found there.

F. Birkelbach, M. Deutsch, and A. Werner (2019b). “The effect of the reaction equilibrium
on the kinetics of gas-solid reactions — A non-parametric modeling study”. In: Advances
in Thermal Energy Storage. Ed. by Universitat de Lleida. Edicions de la Universitat de
Lleida, pp. 161–171. isbn: 978-84-9144-155-7.

Abstract
Thermochemical energy storage has great potential to contribute to covering future
thermal storage demand, mostly due to its high volumetric and gravimetric energy
densities, nearly lossless storage, as well as the wide range of operating temperature
levels. Most thermochemical energy storage concepts are based on gas-solid reactions,
whose viability for a given application is often determined by the reaction kinetics under
process conditions. From a thermodynamic perspective, the two most important variables
determining the reaction rate are the temperature and the partial pressure of the reactant
gas. In kinetic modeling, the effect of the temperature is usually modeled with the
Arrhenius equation and the partial pressure is commonly used as a measure of the
distance to the reaction equilibrium.

In the present work, different parametrization methods are compared, that are available
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Publications

in the literature to quantify the distance to the equilibrium. Their viability is evaluated
by modeling the kinetics of two reaction systems, relevant for thermochemical energy
storage, from experimental (TGA) data. For the derivation of kinetic models from
experimental data, a non-parametric modeling method based on tensor decompositions is
used. The main advantage of this method is that it is model-free, i.e. that it does not rely
on an a-priori assumption about the functions in the general kinetic equation. In this way,
it allows for the unbiased, purely data driven, assessment of different parametrization
methods, without interference of the model choice. Additionally, an adaptation of the
method is presented to facilitate the utilization of experimental data from a p-T grid for
modeling with an equilibrium term.

Our tests on experimental data in the vicinity of the equilibrium show that the derived
models fit the data well, if a suitable equilibrium term is included. It is especially
important to take the distance to the equilibrium into account when modeling formation
reactions, because the effect of the equilibrium distance counteracts the Arrhenius term,
leading to seemingly negative activation energies if the equilibrium term was omitted.
Our tests also show that for formation reactions, the reaction rate decreases much faster
towards the equilibrium than theory predicts. We present an empirical modeling approach
that can predict the reaction rates of gas-solid reactions in the vicinity of the equilibrium
irrespective of the shortcomings of theory. In this way, the non-parametric modeling
framework offers a powerful tool for applied research.
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Appendices

A Practical aspects of non-parametric kinetic modeling

Non-parametric modeling is a versatile tool to interpret reaction rate data according
to the General Kinetic Equation. Compared to other kinetic modeling methods, it is
more flexible and it requires fewer a-priori assumptions about the reaction. Initially, the
main issue with non-parametric modeling was that the algorithms were too complicated
to make it a viable option for most research groups. With the new algorithm that I
developed in this thesis, the modeling process is much easier and less prone to errors.
Further, the extension to more than two variables allows to model more complex effects.
A Matlab implementation of the TensorNPK method is available in the supplementary
material of Paper 3.

I am convinced that the TensorNPK method is a good choice for various kinetic
modeling tasks and I hope that it will be used by other research groups. For this reason, I
added this chapter to discuss the practical aspects and the work-flow of generating reliable
models with the TensorNPK method. Additionally, I will present some best-practice
approaches that have proven viable in the last three years.

The starting point for this discussion is a data set with mass, heat, temperature, . . .
traces at different reaction conditions. We will assume that the experiments have been
conducted meticulously and measurement artifacts have been compensated. Also, the
decision which variables will be used for the model has already been made. Starting from
this data set, the work-flow for deriving a kinetic model is the following:

1. Screening of the data set: Consistency checks, range of variables, correlations, etc. .
2. Pre-processing of experimental data: smoothing, calculation of conversion, etc. .
3. Selecting a modeling grid and smoothing parameters.
– Decomposing the experimental data into the contributions of each variable with

the TensorNPK method.
4. Evaluation of the output: Numerical accuracy, viability of single step approximation,

consistency with theory, comparison with results from other methods,. . .
5. Post processing: Fitting of reaction models, determining Arrhenius parameters,

etc. .
In the following sections, each of these steps will be discussed in detail.

A.1 Screening of the data set

The most important requirement on the data is that it be representative of the reaction
under consideration and that interference of other processes is negligible. This is, of
course, easier said than done, considering that a multitude of processes are taking place
at the same time during a gas-solid reaction. A discussion of how to conduct experiments
is beyond the scope of this work. In Section 2.3 some references to relevant publications
on the topic are provided.

The range of each variable, where experimental data is available, determines the validity
range of the model. Consequently, experiments have to cover the variable range that is
required by the application that the model is intended for. Since gas-solid reactions show
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A Practical aspects of non-parametric kinetic modeling

Figure A.1: Kinetic dataset of the hydration of CaC2O4 with different pressure/driving
force terms.

highly non-linear behavior and even discontinuities, extrapolation of kinetic models is
generally unreliable.

One of the main advantages of the TensorNPK method is, that it can process arbitrarily
distributed data sets. Because of this, transformation of the data (e.g. by considering
different driving force terms) is not an issue. Though, in order for the algorithm to
determine the effect of each variable accurately, kinetic data must be distributed fairly
equally over the whole variable range. If data is correlated between two variables, the
algorithm does not know which variable to attribute the change of conversion rate to.
This happens for example, when data of a formation reaction was collected on, say, five
pressure levels at various temperatures (see Figure A.1). The left most diagram shows the
p -T -grid were the data has been collected. Here, the data shows no correlation. Though,
after transformation to a Gz/RT -T -grid, the data points show considerable correlation.
The higher the temperature, the smaller the distance to the equilibrium. The correlation
of the data points can affect the reliability of the model that is derived from such a data
set. This should be kept in mind when drawing up the experimental schedule.

A.2 Pre-processing of experimental data

If experimental data is noisy, it should be smoothed before doing any further computations
on it. For this task, locally estimated scatterplot smoothing (LOESS) methods, which
are closely related to Savitzky-Golay filters, have been found to perform very well —
especially, if the noisy signal has to be differentiated to obtain the conversion rate (such
as with TGA or XRD data). The main advantage is that these methods can smooth
and differentiate the signal at the same time (see Figure A.2). For this reason they yield
better results than methods where the signal is first smoothed and then differentiated.

The amount of smoothing in LOESS is determined by two parameters: the polynomial
order and the window size. If the signal is only smoothed, second order polynomials
were found to perform well. If the differentiated signal is also computed, third order
polynomials generally were the better choice. The optimal window size was determined
with a leave-one-out cross-validation algorithm.

In some cases, the numerical differentiation with LOESS does not preserve the final
value of the integral, i.e. the integral over the differentiated signal does not give the final
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Appendices

(a) Smoothed mass trace (top) and mass
change (bottom).

(b) Cross validation output to determine the
optimal window size.

Figure A.2: Output of LOESS smoothing algorithm applied to a mass trace.

value of the original signal. To prevent this, the differentiated data can be normalized so
that the integral matches the end value of the original trace. This problem may arise if
the sampling rate is low compared to the reaction duration. Because it may result in
errors that are hard to track down, the consistency of the smooth signal and the integral
over the differentiated signal should be checked routinely.

The next step in pre-processing usually is to perform the thermodynamic calculations
to obtain the equilibrium partial pressure, driving force, etc. from the temperature and
partial pressure of the sample. For these calculations, we usually rely on thermodynamic
constants from material databases. Here, the usual caveats apply: Does the behavior of
my sample match the predictions of the database constants? It might be worth confirming
this experimentally.

A.3 Selecting the grid and penalty parameters

While the previous two sections are also valid for all other kinetic modeling methods, this
section is specific to the non-parametric modeling. The TensorNPK method requires a
modeling grid, on which it performs its calculations. The grid is defined by specifying an
“axis” for each variable, i.e. a set of discrete values of this variable. Generally speaking,
the range and number of grid points for each variable should match the range and density
of data points. In regions where a lot of data is available, many grid points can be placed.
In regions where no data is available, no grid points should be placed.

If not enough grid points are used, important features of the effect of this variable
might not be identified. Using too many grid points might result in over-fitting, where
the output not only reflects the “true” effect but also random noise in the data.
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A Practical aspects of non-parametric kinetic modeling

If the experimental data has been recorded with a high sample rate, an equally spaced
grid with 30–50 grid points is usually a good choice for the conversion axis. If the
data set consists of isothermal measurements, the temperature grid should match the
temperature values, where the experiments have been conducted. For constant-heating-
rate measurements, equally spaced grids can be used.

To alleviate some of the burden of selecting the correct number of grid points and
placing them correctly, ridge regression with a smoothness penalty was implemented.
With this method, grid points can be used generously and the smoothness penalty
counteracts over-fitting if necessary. For this to work as intended the penalty parameter
has to be chosen correctly. The penalty parameter essentially controls the weighting of
numeric error vs. smoothness. I.e. the larger the penalty parameter, the smoother the
output, at the cost of larger deviations between model and data. In the extreme case of
exceedingly large penalty parameters, the effects of all variables would be straight lines
(the best fit to the data with no curvature).

Generally, the smoothing parameter should be as small as possible, but large enough
to produce a reliable model. To choose the penalty parameter automatically, k-fold cross
validation was implemented. It works well on “well behaved” data sets, but sometimes
fails on sparse data sets or if only few grid points are used. In these cases appropriate
penalty parameters have to be selected by hand.6

A.4 Evaluation of the output

When the model has been computed, the first question that arises is “Is it any good?”.
We found that goodness of fit tests are not really meaningful, because kinetic data sets
are so large that the power of the test becomes so high that even insignificant deviations
are identified as a lack of fit. Also, one single test could hardly catch the complexity of a
kinetic model.

To evaluate whether the algorithm could identify significant effects, the effect plot
can be evaluated. The error bars show the confidence interval of each value and provide
information on the uncertainty. An effect can be considered significant, if at least some
of its elements are significantly different from zero, i.e. if the error bars do not intersect
with the x-axis, and if at least some elements are significantly different from each other,
i.e. if they do have non-overlapping confidence intervals.

If the effect of a variable is found to be insignificant, the variable can usually be removed
from the model. If the variable should have a significant effect, but the algorithm does
not find it, this can have two reasons: One, another important effect is omitted in the
model, which is superimposing the effect that we are looking for. E.g. when omitting the
equilibrium distance/driving force in formation reactions, the effect of temperature can
be superimposed with the effect of the equilibrium/driving force. Second, if the variable
of the effect is correlated with another variable, it could be that the algorithm attributed
the effect to the other variable. In this case, additional experiments should be conducted

6More sophisticated algorithms for choosing optimal penalty parameters would also be an option, but
I did not find the time to develop them.
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Appendices

to alleviate the correlation of the two variables. Sometimes, imputing additional data
points that enforce consistency with theory can help the algorithm to identify the effects
correctly. An example would be adding data-points with zero conversion rate at the
reaction equilibrium, if the data set does not include experimental data at the equilibrium.

To evaluate whether the model is accurate, the residuals should be analyzed. The
residuals should be equally distributed across the range of all variables. Larger residuals in
some regions might point to inadequacies of the model, i.e. deviations from the single-step
assumption. To identify regions with exceptionally large residuals, the residuals can be
plotted over each variable. The more variables are considered in the model, the harder it
is to identify regions with larger residuals.

Another way to look at the residuals is to project the experimental conversion rate
values on the effect of each dimension by eliminating the effect of the other variables.
The formulas for this are given in Equation (B.26).

A good way to evaluate the model is to check whether the model is capable of
reproducing the experimental trajectories, which were used as input to the TensorNPK
algorithm. To get the simulated trajectories, the model and the reaction conditions of the
experiment are fed into an ODE solver. Then the experimental and simulated trajectories
are compared qualitatively. This evaluation is only meaningful, if reaction trajectories
are simulated that have not been used to derive the model. A bootstrapping procedure,
where all but one experiment are used to derive the model and the model is then used to
simulate the trajectory of the left-out experiment may help identifying experimental runs
that diverge from the others.

Generally, splitting the data-set can be used to detect deviations from the single
rate-limiting step assumption. By splitting the dataset into conversion intervals, the
single step approximation can be tested similarly to how isoconversional methods do it.
Also, the dataset can be split into different regions by reaction conditions to check if the
rate limiting step changes.

A.5 Post-processing

The only two types of post-processing that we did regularly were fitting reaction models
from literature to determine the best-fitting one and fitting the Arrhenius equation to
determine the Arrhenius parameters. For both these fitting operations, weighting the
output with the inverses of the variance increased the quality of the fit considerably.
Especially values at the lower and the upper end of the range of each variable can often
only be determined with lower accuracy than values in the center. The variance of these
values is then considerably larger and weighting with the inverse of the variances makes
sure that these values do not affect the fit adversely.

To identify the best fitting reaction model, pair-wise F-testing has proven to be useful.
For the Arrhenius parameters, the confidence intervals should be evaluated.

An issue with using the values of the effect vectors for the model fitting is that the
confidence interval of the identified parameters will depend on the number of grid points
that were used in that dimension. This is of course an unwanted property. To resolve this
issue, the data points can be projected onto the dimension (Equation (B.26)) and model
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A Practical aspects of non-parametric kinetic modeling

fitting can be done with these values as input. Whether using the values of the effect
vector or the projected values is correct from a mathematical perspective, I do not know.
Since typical data sets contain many more data points than there are grid points in a
NPK model, the confidence intervals are much more narrow with the second approach.

A.6 Concluding remarks

Regarding the “correctness” of kinetic models, some degree of uncertainty will always
remain, since an independent validation of the kinetic model is usually not possible. The
effects that the TensorNPK method identifies are first and foremost correlations of the
reaction rate data with the selected variables, and the connection between correlation
and causality should be well known.

In a gas-solid reaction a vast number of processes interact with each other. With
today’s experimental methods, only the combined effect of all these processes (e.g. heat
release or mass change) can be measured. Conclusions on reaction mechanism should
not be based on thermal analysis alone but always be backed up with data from other
complementary analysis methods. The results of the NPK analysis could for example be
compared with the results of optical and electron microscopy images or crystallographic
analyses to back up the findings.

Empirical models that are used for predicting the reaction rate should always be treated
as contingent on the reaction conditions in the experiment and the configuration of the
solid reactant.
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Appendices

B Mathematics of the TensorNPK method

Most of the math that the TensorNPK method is based on has already been presented in
Paper 2 “NPK 2.0: Introducing tensor decompositions to the kinetic analysis of gas-solid
reactions” and the change of how the residuals are calculated has been presented in
Paper 3 “The effect of the reaction equilibrium on the kinetics of gas-solid reactions —
A non-parametric modeling study”. The formulas for the penalized regression are fairly
standard formulas and have not yet been included in any of my publications. Regardless,
it might be useful to have all the equations in one place. (A Matlab implementation of
the TensorNPK method is available in the supplementary material of Paper 3.)

The starting point is the General Kinetic Equation (GKE) for gas-solid reactions that
models the conversion rate dα/dt as

dα

dt
= f(α) k(T ) h(p) . (B.1)

Here, f(α) is the effect of conversion, k(T ) the effect of temperature and h(p) the effect of
the driving force — in this case pressure. The GKE is discussed at length in Section 2.2.

More generally, the conversion rate is assumed to be the multiplication of D independent
effects:

dα

dt
=

D
∏

i=1

fi(vi) . (B.2)

Here, fi(vi) are the unknown effects of the variables vi. Typically these would be f(α),
k(T ) and h(p) from Equation (B.1). In other words: Equation (B.2) is a generalization
of the GKE for an arbitrary number of effects. The goal of the TensorNPK algorithm is
to derive these unknown effects fi(vi) from experimental data.

A dataset contains various data points k, were each data point consists of the values
of the D variables considered in the model and the corresponding value of the conversion
rate Rk. The formal definition of a dataset with Ndata elements is

[vk,1, . . . , vk,D, Rk] with k ∈ [1, Ndata] . (B.3)

So this is the starting point for the TensorNPK algorithm: The model in Equation (B.2)
and a data set as defined in Equation (B.3). The goal of the algorithm is to calibrate the
model, so that it matches the data. In mathematical terms, the goal is to minimize the
deviation between the model estimate and the measured conversion rate:

min
∑

k

[

dα

dt

∣

∣

∣

∣

vk,1, ..., vk,D

−Rk

]2

. (B.4)

In the following section, the “core” math will be covered. In Appendix B.2, I will try
to illustrate the working principle of the TensorNPK method in a way that is easier to
comprehend than plain math. The other two sections in this chapter address variance
estimation and penalized regression.
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B Mathematics of the TensorNPK method

Throughout this chapter the following formalism is used: Vectors are written in bold
lower-case letters v, tensors in calligraphic letters T . The index k is used to refer to data
points or symbols related to data points. The index i is used to refer to dimensions, j is
used to refer to elements of vectors or tensors. Consequently ji is the element index in
dimension i.

B.1 Discretization and rank-1 approximation

Let’s consider the model in Equation (B.2). First, the interval of each variable vi is
discretized into Ni elements with the index ji ∈ [1, Ni]. We define the

• variable vectors vi = [vi,1, . . . , vi,Ni
]T and the

• effect vectors fi = [fi(vi,1), . . . , fi(vi,Ni
)]T = [fi,1, . . . , fi,Ni

]T .
The first and last element of each variable vector should match the range of the variable,
where experimental data is available. The effect vectors are the values of the unknown
effects fi(vi) evaluated at the elements of the variable vector vi.

The variable vectors make up the grid (v1 × · · · × vD). Evaluating Equation (B.2) on
the grid and arranging the values in the model tensor T yields

T =
dα

dt

∣

∣

∣

∣

v1×···×vD

= f1 ⊗ · · · ⊗ fD . (B.5)

Because of the multiplication of the effects in Equation (B.2), the model tensor T can be
expressed as the outer product ⊗ of the effect vectors.

A D-dimensional tensor is rank-1 if it can be written as the outer product of D vectors.
Consequently, T is by definition rank-1. This rank-1 structure can be exploited to find the
unknown effects fi(vi). In Paper 2 we proposed to use the dataset from Equation (B.3)
to populate a data tensor. Then, the rank-1 approximation of this data tensor can
be computed with a non-linear optimization algorithm that minimizes the deviation
between the model tensor and the data tensor. The result are the effect vectors fi, which
correspond to the effects fi(vi) and can be interpreted in terms of the kinetic model.

In the first study where we applied the TensorNPK method (Paper 5) we found that
the projection of the dataset onto the data tensor introduces a significant error if data
points lie in-between the grid points (v1 × · · · × vD), which happens frequently in real
world datasets. To prevent the error introduced by the projection of the data onto the
data tensor, the projection step has to be eliminated (Paper 3). Consequently, there is no
data tensor, which means that no deviation between tensor elements can be calculated.
Instead, the deviation must be calculated at the data points. To do that, the value of
the unknown effects fi(vi) at the position of the data points vk,i must be approximated
by interpolation of the effect vectors.

For the interpolation, polynomials of any order p can be used. To compute the
interpolation coefficients p + 1 elements of the variable vector vi around vk,i need to
be selected. The indices of these grid points are denoted j‡

i , . . . , j‡
i + p. Using the
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Appendices

Vandermonde matrix V the interpolation can formally be written as

fi(vk,i) ≈
[

1 vk,i . . . vp
k,i

]

V (v
i,j

‡
i

, . . . , v
i,j

‡
i
+p

)−1









f
i,j

‡
i

...
f

i,j
‡
i
+p









=

=
[

γ
k,i,j

‡
i

. . . γ
k,i,j

‡
i
+p

]









f
i,j

‡
i

...
f

i,j
‡
i
+p









= γT
k,ifi ,

(B.6)

where γk,i is the interpolation vector that contains the interpolation coefficients γk,i,ji

at the positions corresponding to j‡
i , . . . , j‡

i + p and zero otherwise. The interpolation
operation is a linear operation regardless of the polynomial order.

Even though higher order polynomials could be used for the interpolation, I do not
think that higher order polynomials would have an advantage over linear interpolation
(p = 1). Nearest-neighbor extrapolation for data points outside the model grid might be
useful to avoid negative values in some cases.

With the interpolation set up, the value of the conversion rate at the position of a
data point can be approximated with

dα

dt

∣

∣

∣

∣

vk,1, ..., vk,D

=
D
∏

i=1

fi(vk,i) ≈
D
∏

i=1

γT
k,ifi . (B.7)

The goal of the optimization problem is to minimize the distance between the measured
conversion rate Rk and the approximation in Equation (B.7) by selecting the values of
the effect vectors fi accordingly:

arg min
f1,...,fD

∑

k

[

D
∏

i=1

γT
k,ifi −Rk

]2

. (B.8)

This optimization problem has
∑D

i=1 Ni unknown parameters. Strictly speaking, this
is not a rank-1 approximation problem because the data tensor is not formed explicitly.
Nonetheless, the goal is to find the rank-1 tensor that best approximates the data. Notice
that the γk,i only depend on the position of the grid points and the data points (see
Equation (B.6)). Because of this, they are constant throughout the optimization and can
be pre-calculated to improve the performance.

Unfortunately, the scaling indeterminacy makes the optimization problem in Equa-
tion (B.8) ill-posed. If one fi is multiplied by a factor and another fi is divided by that
factor, the deviation does not change. This optimization problem is singular with D − 1
degrees of freedom. One way to deal with this, is to use Tikhonov regularization, but
that would require devising an algorithm for choosing the penalty parameter and also
the solution might be distorted. Alternatively, a (soft) constraint could be used to link
the fi in some way. In this particular case, the surplus degrees of freedom can also
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B Mathematics of the TensorNPK method

be eliminated analytically. This is the approach that was employed in the TensorNPK
algorithm.

By choosing a reference grid point (j∗
1 , . . . , j∗

D), the approximation in Equation (B.7)
is changed to

dα

dt

∣

∣

∣

∣

vk,1, ..., vk,D

≈
D
∏

i=1

fi,j∗
i
γT

k,i

fi

fi,j∗
i

= K
D
∏

i=1

γT
k,if

′
i . (B.9)

Here, K =
∏D

i=1 fi,j∗
i

is the global scaling factor and f ′
i = fi/fi,j∗

i
are the normalized

effect vectors. Now, the parameters for the optimization are the scaling factor K and
the values of the normalized effect vectors f ′

i,ji
except for the f ′

i,j∗
i
, which are equal to

1 by definition. This optimization problem, the reduced problem, has
∑D

i=1 Ni −D + 1
unknowns and is well-posed.

The reduced optimization problem can be solved with any non-linear least squares
algorithm. Most of these algorithms need the residuals and the Jacobian matrix as input,
to solve the problem efficiently. The residuals are given by

r = [r1, . . . , rNdata
]T with

rk = K
D
∏

i=1

γT
k,if

′
i −Rk and k ∈ [1, Ndata] .

(B.10)

The Jacobian contains the partial derivatives of the residuals with respect to each
optimization parameter:

J = (∇r)T (B.11)

with

∂rk

∂f ′
i,ji

= γk,i,ji
K

D
∏

i′=1
i′ 6=i

γT
k,i′f ′

i′ ∀ji 6= j∗
i (B.12)

∂rk

∂K
=

D
∏

i′=1

γT
k,i′f ′

i′ . (B.13)

The Jacobian can typically get quite large. Specifically it has (
∑D

i=1 Ni−D +1)×Ndata

elements. Though, its very sparse and only contains (D(p + 1) + 1)Ndata non-zero
elements.

After the optimal parameters of the reduced problem are computed, the effect vectors
must be found. For this, the value of K must be attributed to the fi,j∗

i
. In absence of a

strict rule for how to divide K, it can simply be split equally fi,j∗
i

= D
√

K. The effect
vectors are then given by

fi = fi,j∗
i
f ′

i . (B.14)

If the model converged sufficiently well, the effect vectors fi on the grid vi can now be
interpreted in terms of the effects fi(vi).
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Appendices

Figure B.1: Illustration of the TensorNPK method for a 2-D model. Experimental data
(top left) is used to identify the effect of conversion α (top right) and temper-
ature T (bottom).

B.2 Illustration of working principle in two dimensions

In this section I will try to present the TensorNPK method in a way that is easier to
comprehend than the plain math in the previous section. To illustrate how the TensorNPK
method works, I will use a simple two-dimensional example where the conversion rate is
modeled with the General Kinetic Equation (GKE) as a function of conversion α and
temperature T .

For this example I will use a data set with three constant-heating-rate measurements of
a decomposition reaction. The data set consists of various data points k with conversion,
temperature and conversion rate values. Formally, the data set can be expressed as

[αk, Tk, Rk] with k ∈ [1, Ndata] . (B.15)

To wrap your head around how the algorithm works, it might help to interpret
everything geometrically. Imagine that each independent variable in the GKE is a
direction in D-dimensional space. In this example we have two dimensions: α and T .
Then [αk, Tk] are the “coordinates”, where the conversion rate values Rk have been
measured. This point cloud is illustrated in the top left diagram in Figure B.1, where
the conversion rate is plotted at the corresponding conversion and temperature values.
The data points in this data set are so close together that they appear as lines and the
reaction trajectories of each of the three measurements are clearly visible.

The model that we are going to employ is the GKE with a conversion and a temperature
term

dα

dt
= f(α) k(T ) , (B.16)
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B Mathematics of the TensorNPK method

where the effects of conversion f(α) and temperature k(T ) are unknown. We want to
find the model that best fits the data, i.e. the model with the smallest deviation between
the predicted and the measured conversion rate. This condition can be written as

min
∑

k

[ f(αk) k(Tk)−Rk]2 . (B.17)

Because f(α) and k(T ) are unknown (and we do not want to make any wild assumptions),
they need to be approximated.

The TensorNPK method needs a grid, on which the calculations are performed. So the
next step is to select an “axis” for each dimension. Formally we write

• α = [α1, α2, . . . ]T with the corresponding effect vector f = [f(α1), f(α2), . . . ]T and
• T = [T1, T2, . . . ]T with the corresponding k = [k(T1), k(T2), . . . ]T .

The grid must match the range where experimental data is available. Here, I selected
α = [0, 0.05, 0.1, . . . , 1]T and T = [60, 65, 70, . . . , 165 ◦C]T . In Figure B.1 this grid is
illustrated with grey grid lines.

On this α× T grid, we evaluate Equation (B.16)

dα

dt

∣

∣

∣

∣

α×T

=







T1 T2 ···

α1 f(α1) k(T1) f(α1) k(T2) · · ·
α2 f(α2) k(T1) f(α2) k(T2) · · ·
...

...
...

. . .






=

=







f(α1)
f(α2)

...







[

k(T1) k(T2) · · ·
]

= f ⊗ k

(B.18)

In this two-dimensional example it is easy to see that the model matrix can be expressed
as the outer product of the effect vectors, i.e. that the model matrix is rank-1 by definition.
In non-parametric modeling, this rank-1 structure is exploited to identify the effect vectors
f and k without any assumptions about the unknown effects f(α) and k(T ). Basically,
the algorithm correlates the change of conversion rate with the axes that it received as
input.

The effect vectors are shown in the right and the bottom diagram in Figure B.1. They
can be used to compute kinetic predictions without any further post-processing or they
can be interpreted in terms of the kinetic model. The most common analysis are to
identify the most likely reaction model f(α) from f over α and to fit the Arrhenius
equation to k over T . This is illustrated in the right and the bottom diagram of Figure B.1
and in the bottom right quadrant.

B.3 Residuals and variances

Once the model has been derived from the data set, i.e. once the solution of the opti-
mization problem has been computed, the output must be evaluated in some way. In
model fitting, this is usually done by evaluating the residuals and the variances of the
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Appendices

parameters. Here, some aspects of interpreting residuals in the context of the TensorNPK
method are discussed and formulas for estimating various variances are presented. These
variances are not only useful for evaluating the model, they can also be used as weights
for model fitting during post processing.

The basis for the equations presented here, are the equations in Appendix B.1. The
optimization problem outlined in that section can be solved with any non-linear opti-
mization algorithm by using the residuals r in Equation (B.10) and the Jacobian J in
Equation (B.11). In addition we consider a weight matrix W for the data points. If no
weighting is required, W can be set equal to the identity matrix.

After computing the solution of the optimization problem, the variance-covariance
matrix D of the parameters at the solution can be estimated with

MSE =
rT W r

Ndata − (
∑D

i=1 Ni −D + 1)
(B.19)

and
D = MSE

(

JT W J
)−1

. (B.20)

The main diagonal of D contains the variances of the parameters Var(f ′
i,ji

) for all
ji 6= j∗

i and Var(K).7 The column corresponding to K also contains the covariances
Cov(f ′

i,ji
, K). These values can be used to estimate the variance of the effect vector

values by assuming linear error propagation:

Var(fi,ji
)

f2
i,ji

=



















Var(K)
K2

for ji = j∗
i

Var(K)
K2

+
Var(f ′

i,ji
)

f ′2
i,ji

+ 2
Cov(f ′

i,ji
, K)

f ′
i,ji

K
for ji 6= j∗

i

. (B.21)

Since this equation is prone to division by zero, the following form that exploits Equa-
tion (B.14) should be used to perform the calculations.

Var(fi,ji
) =



















f2
i,ji

K2
Var(K) for ji = j∗

i

f2
i,ji

K2
Var(K) + fi,j∗

i

2 Var(f ′
i,ji

) + 2
fi,ji

fi,j∗
i

K
Cov(f ′

i,ji
, K) for ji 6= j∗

i

.

(B.22)

These variances convey important information about the quality of the model. An effect
is significant if the values of the corresponding effect vector are significantly different
from each other, i.e. if their confidence intervals do not overlap. Values, where the
confidence interval intersects with zero, are very unreliable and the model should not be

7The estimated variances can get quite small — probably because of the large number of data points
in a typical data set. A possible solution to these unrealistically small variances would be to consider
Effective Degrees of Freedom or to incorporate the correlation of data points by using Generalized Least
Squares. Unfortunately I did not get around to look into this.
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B Mathematics of the TensorNPK method

evaluated in this variable range. If this variable range is relevant for the application of
the model, additional experimental data is required. In case of scattering values with
small confidence intervals over-fitting or an inconsistent data set might be the issue.

Another important indicator of the model quality are the residuals, which are the
difference between the conversion rate Rk and the model estimate for this data point

R̂k =
D
∏

i=1

γT
k,ifi . (B.23)

The residuals should be normally distributed and they should scatter similarly in each
dimension. Systematic deviations in any dimension might point toward deviations of the
experimental data from the General Kinetic Equation.

The variance of the conversion rate estimate can be estimated with

Var(R̂k) =
D
∑

i=1

(

R̂
\i

k

)2
γT

k,i diag (Var(fi)) γk,i , (B.24)

where Var(fi) is the vector [Var(fi,1), · · · , Var(fi,Ni
)]T according to Equation (B.21) and

R̂
\i

k is the estimate for the data point k excluding the effect of variable i (symbolized by
the set-difference operator \)

R̂
\i

k =
D
∏

i′=1
i′ 6=i

γT
k,i′fi′ . (B.25)

When an effect vector is used in post-processing to perform model fitting — e.g. to
determine the Arrhenius parameters from the temperature effect vector — an issue that
I came across was that the confidence interval of the estimated parameters depended on
the number of grid points in that dimension. This is, of course, an undesired property.
A way to work around this issue is to project the experimental conversion rate values
into dimension i and to use these values instead of the effect vector fi. These projected
values can be calculated by using the model estimate excluding the effect of variable i

f̂k,i =
Rk

R̂
\i

k

. (B.26)

The variance of f̂k,i can be estimated with

Var(f̂k,i) =

(

1

R̂
\i

k

)2
[

Var(Rk) + (f̂k,i)
2 Var(R̂\i

k )
]

, (B.27)

where

Var(R̂\i

k ) =
D
∑

i′=1
i′ 6=i

(

R̂
\i,i′

k

)2
γT

k,i′ diag (Var(fi′)) γk,i′ . (B.28)
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Appendices

B.4 Counteracting over-fitting with penalized regression

On some sparse, unequally distributed data sets, the TensorNPK method turned out to
be sensitive to the placement of the grid points vi. Instead of deciding where exactly to
place the grid points, it would be much more convenient to just place many grid points
and let the algorithm figure out the rest. Unfortunately, placing too many grid points
leads to over-fitting and consequently poor results.

To counteract over-fitting and improve the TensorNPK method’s performance on
certain data sets, penalized regression seems to be a good solution. With penalized
regression, the minimization problem of fitting the model to the data is extended by a
penalty term that enforces certain characteristics of the solution.

min
∑

k

(

R̂k −Rk

)2
+
∑

i

λ2
i ‖Γifi‖2 . (B.29)

Here, the first sum is the deviation between the model estimate and the conversion rate
data and the second sum is the penalty. Γi is the penalty matrix. It determines, which
feature of the solution is penalized. Here, a second-order finite-difference matrix is used
to penalize the curvature of the solution. λi is a penalty parameter that determines the
relative weight of model deviation and the penalty term. The larger λi the more the
algorithm prioritizes smoothness over goodness of fit.

The main challenge is to choose the λi correctly. If they are too small, the model
performance is poor because of over-fitting. If they are too large, the model will fit the
data poorly. Also, it will lead the algorithm to underestimate the variance of the solution
values, which may cause the impression that the model is fitting the data better than it
actually does. Cross validation can be used to select optimal λi.

Penalized regression can be thought of as helping the optimization algorithm to find
the “correct” solution instead of just the numerically best fit to the data. With the right
strategy, penalized regression has a lot of potential to improve the performance of the
TensorNPK method by enforcing certain features of the solution such as smoothness.
Though, these strategies have yet to be developed.
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