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Kurzfassung

Mit der zunehmenden Anzahl von Geräten, die über das Internet verbunden sind, wird
das Internet der Dinge (IoT) Realität. Diese Geräte müssen miteinander ohne menschli-
che Interaktion kommunizieren können. Interoperabilität, Verfügbarkeit, Zuverlässigkeit,
Mobilität, Leistung, Management, Skalierbarkeit und Sicherheit sind die Hauptherausfor-
derungen in einem IoT-Ökosystem. Als Middleware für Cyber-Physical Spaces / Internet
der Dinge wurde das Arrowhead Framework entwickelt, um diese Herausforderungen zu
bewältigen. Wenn die Anzahl der über das Framework verbundenen Geräte zunimmt,
können Leistungsprobleme wie Fehler und / oder Abstürze auftreten. Um die Zuver-
lässigkeit, Verfügbarkeit, Leistung und Skalierbarkeit des Arrowhead Frameworks zu
bewerten, haben wir Last- und Stresstests am Framework durchgeführt, um die Grenzen
verschiedener Komponenten zu untersuchen. Da das Internet der Dinge verschiedene
Hardwarekomponenten abdecken wird, haben wir unsere Tests an zwei verschiedenen
Hardwarekonfigurationen wiederholt. Unser Ziel ist es, potenzielle Engpässe, Fehler und
optimale Konfigurationen in verschiedenen Anwendungsfällen zu erkennen. Das Arrowhead
Framework wurde in der Programmiersprache Java entwickelt und läuft auf der Java
Virtual Machine (JVM). Es gibt mehrere JVMs auf dem Markt, die weniger Ressourcen-
verbrauch und bessere Startzeiten versprechen. Die AOT-Kompilierung (Ahead-of-Time)
wird zunehmend zusammen mit den JIT-Kompilierungsmethoden (Just-in-Time) für die
JVMs verwendet. OpenJ9 hat die AOT-Kompilierung in die JIT-Kompilierung und den
Cache für gemeinsam genutzte Klassen integriert, um die Startzeiten zu verbessern und
den Ressourcenverbrauch zu senken. Nachdem wir unsere Tests auf der HotSpot JVM
ausgeführt hatten, wiederholten wir unsere Leistungstests auf OpenJ9 mit der Standard-
konfiguration sowie auf OpenJ9 mit dem Cache für gemeinsam genutzte Klassen. Wir
haben festgestellt, dass die Grenzwerte für gleichzeitige Requests an eine Komponente nur
zehn Requests pro Sekunde betragen können. Diese Anzahl hängt jedoch stark von der
Hardwarekonfiguration ab. Für Anwendungsfälle, in denen hoher Datenverkehr erwartet
wird, wird eine erweiterte Hardwarekonfiguration empfohlen. Wir haben auch festgestellt,
dass OpenJ9 mit Cache für gemeinsam genutzte Klassen zwar den Speicherverbrauch
und die Startzeiten reduzierte, jedoch zu höheren Antwortzeiten führte als die HotSpot
JVM. Dennoch kann es eine interessante Option für Geräte mit begrenzten Ressourcen
und geringem Datenverkehr sein. Unsere Tests helfen Entwicklern und Benutzern des Ar-
rowhead Framework bei der Entscheidung für die richtige Hardware- und Softwarelösung
bei der Verwendung des Frameworks.
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Abstract

The Internet of Things (IoT) is becoming a reality, as the number of devices connected
to the Internet increases rapidly. These devices need to communicate with each other
without human interaction. Interoperability, availability, reliability, mobility, performance,
management, scalability, and security are the main challenges in an IoT ecosystem. As a
middleware for Cyber-Physical Spaces/Internet of Things, the Arrowhead Framework has
been developed to tackle these challenges. As the number of devices connected through the
framework grows higher, the framework may experience performance problems, such as
errors and/or crashes. To evaluate the reliability, availability, performance, and scalability
of the Arrowhead Framework, we have conducted load and stress tests on the framework
to explore the limits of different components. Since the Internet of Things will cover
various hardware, we have repeated our tests on two different hardware configurations.
Our goal is to detect potential bottlenecks, errors, and optimal configurations in different
use cases. The Arrowhead Framework is developed in Java programming language and
runs on the Java Virtual Machine (JVM). There are multiple JVMs available on the
market that promise less resource consumption and better startup times. Ahead-of-
Time (AOT) compilation is also increasingly being used along with Just-in-Time (JIT)
compilation methods for the JVMs. OpenJ9 has integrated the AOT compilation with
the JIT compilation and shared classes cache to improve the startup times and reduce
resource consumption. After executing our tests on the HotSpot JVM, we repeated
our performance tests on OpenJ9 with the default configuration, as well as on OpenJ9
with shared classes cache. We have found that the limits for simultaneous requests on a
component may be as low as ten requests per second. However, this number is highly
dependent on the hardware configuration. For use cases where high traffic is expected,
an enhanced hardware configuration is recommended. We have also discovered that even
though OpenJ9 with shared classes cache reduced the memory consumption and startup
times, it led to higher response times than the HotSpot JVM. Nevertheless, it can be
an interesting option for devices with limited resources and low traffic. Our tests help
developers and users of the Arrowhead Framework with deciding on the correct hardware
and software solution when using the framework.
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CHAPTER 1
Introduction

Until a few years ago, most of the communication over the Internet was established
between devices that were directly used by humans. This has started to change with the
introduction of "smart devices". Machines can now exchange information by themselves,
and the number of devices connected to the Internet is increasing rapidly. The number
of devices connected to the Internet of Things (IoT) will reach 75.44 billion worldwide by
2025, which is a five-fold increase in ten years [19]. Most of the information exchange
on the Internet will be between devices instead of humans. IoT can be defined as: "a
dynamic global network infrastructure with self-configuring capabilities based on standard
and interoperable communication protocols where physical and virtual ‘Things’ have
identities, physical attributes, and virtual personalities and use intelligent interfaces, and
are seamlessly integrated into the information network" [53].

By integrating different devices, sensors, and communication technologies, as is the
foundation of IoT, we can allow them to cooperate and communicate to fulfill common
goals [56]. We can already see the initial impacts of IoT in the consumer electronics
market. Approximately 225 million smart meters for electricity and 51 million for gas
will have been installed within the European Union by 2024, which is when almost
77% of European households will be equipped with a smart meter for electricity [52].
Currently, consumers can already purchase a variety of smart products from refrigerators
to robot vacuum cleaners. Along with the concept of Industry 4.0, IoT also becomes
more important in the Industry. Industry 4.0 focuses on the digitization of the physical
world and the emergence of new computing concepts such as Wireless Sensor Networks
(WSN), Cyber-Physical Systems (CPS), or the Internet of Things (IoT) [45].

The interest in IoT technologies is on the rise in a wide range of industries. Several
industrial IoT projects have been carried out in fields such as surveillance, agriculture,
environmental monitoring, food processing, security, and so on [56]. However, connecting
so many devices brought on to new challenges in their management since the majority
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1. Introduction

Figure 1.1: Some of the technologies associated with IoT. (copied from [56])

of these devices must communicate and be synchronized with each other. The most
significant challenges are as follows:

• Interoperability: Interoperability can be defined as the capability of multiple
systems or components for information exchange and the use of the exchanged
information. Especially in the context of the Industrial Internet of Things (IIoT),
the connection between sensors and actuators with the local process and the Internet
must be enabled. The connectivity to other industrial networks that independently
can generate added value must be provided. Moreover, we should ensure the quality
of service in terms of performance and secure data transmission [45].

• Availability: In the software context, availability indicates that the IoT appli-
cations must be able to provide services simultaneously for everyone at different
places [39].

• Reliability: Reliability can be described as the proper working of the system
based on its specification [47]. Reliability has a close relationship with availability
because it is through reliability, that the availability of information and services is
guaranteed in the long term [39].

• Mobility: Mobile devices are a prominent portion of the Internet of Things.
Especially interruptions in the connectivity of mobile devices should be taken into
consideration [39].

• Performance: The performance of IoT services is one of the greatest challenges
because it also depends on the performance of the underlying protocols and tech-
nologies, as well [39].
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• Management: The connection of billions or even trillions of devices to the Internet,
makes the management of these devices a substantial challenge [39].

• Scalability: By scalability we refer to the ability to add new services, devices,
and functions without negatively impacting the quality of existing services. In IoT,
different hardware platforms and communication protocols will be present, which
makes the scalability a challenging task [39].

• Security and Privacy: Heterogeneous networks and the lack of universal standard
and architecture for the IoT security makes it difficult to guarantee the security
and privacy of users [39].

To overcome these challenges, numerous commercial and non-commercial software frame-
works have been developed. We will go into detail for some of the most common ones:

• FIWARE: FIWARE is an open, cloud-based infrastructure for Cyber-Physical
Systems (CPS) [13]. It defines a set of standards for context data management.
This allows developing smart solutions for different domains such as Smart Cities,
Smart Industry, Smart Agrifood, and Smart Energy. The FIWARE Context Broker
component is the core component that makes updates possible and gives access
to the current state of context. The FIWARE Catalogue contains open-source
platform components, which are called Generic Enablers. They can be assembled
in order to create Smart Solutions [43].

• SiteWhere: SiteWhere is an industrial-strength, open-source IoT Application
Enablement Platform. The platform works with a distributed, microservices
architecture that runs on Kubernetes and is delivered with databases and MQTT
brokers [29].

• Samsung SmartThings: SmartThings is an open smart home platform and is
not supported for industrial use cases. Through the SmartThings cloud IoT devices
and services can be built and integrated. Since it is primarily meant for Smart
Home applications, it cannot be directly compared with most other IoT platforms
[30].

• Amazon Web Services IoT: Amazon Web Services IoT (AWS IoT) is an IoT
Platform for industries and end users, who want to build a smart home. It brings
data management and analytics together. To improve the intelligence of devices, it
also integrates Artificial Intelligence technologies of AWS with the IoT Platform
[7].

• Microsoft Azure IoT Hub: Azure IoT Hub is a cloud-hosted solution backend to
connect any device. It is responsible for establishing bi-directional communication
between devices. It can also be integrated with other Azure products like Azure
Maps, Azure IoT Edge [20].
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1. Introduction

• IBM Watson IoT Platform: IBM Watson IoT Platform is yet another cloud-
based solution. Similar to the solutions offered by AWS and Microsoft, IBM Watson
IoT Platform can also be integrated with other services of IBM Cloud like analytics
and AI-based services [37].

• Siemens MindSphere: Siemens Mindsphere is designed for industrial applications.
Siemens defines MindSphere as an "open, cloud-based IoT operating system". It
has also integrated services for analytics and can run on Cloud Services like AWS
and can be integrated into the services of this cloud provider [28].

There is a great number of other IoT platforms. Even though many developers use
different vocabulary to describe their software frameworks, most of these frameworks are
developed for similar use cases. There are countless IoT frameworks available on the
market, however none of those platforms has led to successful and efficient digitization
of all parts of the manufacturing industry as of yet. [45]. The Arrowhead Framework
has been developed to tackle this problem and enable collaborative automation and
industrial IoT. It aims to facilitate the creation of local automation clouds. That is to
say, it provides "local real-time performance, and security, paired with simple and cheap
engineering, while simultaneously enabling scalability through multi-cloud interaction"
[41]. The objective is to enable interoperability between IoT components and build a
System of Systems from individual IoT components. For achieving interoperability, the
Arrowhead Framework abstracts IoT components and their functionalities into services [6].
The Service-Oriented Architecture (SOA) paradigm is a key component of the Arrowhead
Framework. In other words, loose coupling, late binding, and lookup as central aspects of
the SOA are also essential points in the Arrowhead Framework [41]. In order to ensure a
high quality for an IoT Framework like the Arrowhead Framework, the following tests
must be conducted in addition to functional tests: [49]:

• Performance Testing: Performance tests will assess the communication speed
between the components and the computational power of the underlying software
system and allow us to draw conclusions about the capabilities of the software
framework.

• Security Testing: The privacy of users and autonomy need to be tested.

• Compatibility Testing: It is required to ascertain if the framework functions as
expected with different devices, protocols, and software versions.

• Exploratory Testing: Tests from a user’s perspective should be conducted
without resorting to predefined testing scenarios.

An increasing number of devices that are connected through the framework may lead to
performance issues in the system, which may then result in high costs or even the failure
of bigger production sites. In this thesis, we have thoroughly tested the Arrowhead
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Framework, from a performance perspective, to determine the potential bottlenecks,
possible issues, and optimal configurations in a real-world application. An IoT Framework
should be able to handle requests from different devices in an acceptable unit of time. To
find out the limits of the Arrowhead Framework, we have conducted load and stress tests,
where we sent multiple requests to different components of the Arrowhead Framework
simultaneously. To execute those tests, we used a generic test automation tool specializing
in performance testing through REST APIs. The Arrowhead Framework should also
yield acceptable performance on devices with limited resources. We have repeated the
same tests on different devices to determine how the Arrowhead Framework performs
under heavy load with limited resources. These tests aim to tackle the challenges that we
have defined earlier, especially the challenges of availability, reliability, performance, and
scalability. A high number of simultaneous requests may render our framework unstable
and even lead to crashes, which would make our framework unreliable. Through our
stress tests, we can also determine the limits of the scalability of our framework.

A Java Virtual Machine (JVM) is a virtual machine that enables a computer to run
Java programs and programs written in other languages that are also compiled to Java
bytecode. A JVM is the core component that makes Java and other programming
languages hardware and operating system independent. A JVM is like a real computing
machine with its own instruction set and memory manipulations at runtime [46]. HotSpot
is the standard JVM, that is released by Oracle and is used by most applications [22].
On the other hand, the Eclipse Foundation develops an alternative JVM, that is called
OpenJ9 [25]. Eclipse Foundation argues that OpenJ9 provides a better performance
in many aspects like startup time and RAM consumption [26]. Since the Arrowhead
Framework can also run on devices with limited resources, CPU and RAM consumption
may play a significant role in the framework’s performance. The Arrowhead Framework
is developed in Java programming language, therefore we repeated the performance tests
on OpenJ9 to see whether using OpenJ9 as the JVM instead of HotSpot brings along
a performance boost and/or a decrease in resource consumption in the context of the
Arrowhead Framework.

This thesis has the following structure: In Chapter 2, we discuss the related work in the
field of IoT and the testing of IoT Frameworks. Chapter 3 contains the background for
our research, including information about the Arrowhead Framework and the Java Virtual
Machine. Chapter 4 describes the methodologies employed in our testing environment.
Chapter 5 presents the implementation of our testing environment, including the test
scenarios. In Chapter 6, the results of our tests are presented and discussed in detail.
Finally, in Chapter 7 and Chapter 8 we close by presenting our plans for future work
and with the conclusions.
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CHAPTER 2
Related Work

The testing of IoT-related technologies has been a topic of research in the recent years.
Many aspects should be taken into account when testing IoT-related technologies. The
purpose of the research is to create a testing environment to accelerate the development of
IoT-related technologies by exploring the potential errors as early as possible and overcome
the difficulties that arise from the heterogeneous nature of the IoT domain. In France, a
testbed was constructed with 2728 devices. They installed over 2700 wireless sensor nodes,
including 117 mobile robot nodes across six sites in France. The testbed is deployed in six
sites in France, but they are interconnected and available through the same web portal.
Developers can test their technologies with those devices on the platform, which provides
them with a testing environment close to reality [38]. Most of the applications on an
IoT Platform run on containers like Docker. The Arrowhead Framework also supports
containerization. Even though containers have the advantage that they can be easily
started, stopped, and moved, they may also impact the performance of the services, which
was evaluated in a study by Morabito, Farris, Iera, and Taleb [48]. Despite the fact that
Docker containers deteriorated the performance of the applications, the deterioration was
negligible. Researchers at the São Paulo University have conducted simple performance
tests on their IoT Platform, where they sent multiple requests simultaneously to the
platform. They have also executed the same tests on different hardware platforms to
observe the performance effect of different hardware [42]. Researchers from Ericsson
Research have evaluated the performance of their IoT Framework, which they developed
with the Swedish Institute of Computer Science (SICS) and Uppsala University. For the
evaluation, they have sent 100,000 HTTP POST requests by 10, 100, 200, 500, 800, 1000
users and have recorded the throughput, CPU, and memory consumption with different
hardware configurations. They have concluded, that the IoT Framework stays stable
under heavy load but that a large number of consumers leads to a significant drop in
throughput and high memory consumption, which may raise concern in a real-world
application [54]. In a Master’s thesis at the Luleå University of Technology, FiWare was
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2. Related Work

tested from a performance perspective. First, they benchmarked the baseline performance
of the framework by sending up to 1500 requests to the IoT agents, then they have tested
the vertical and horizontal scalability of the framework. They found out that FiWare’s
IoT agents become unstable and crash when the request/sec. reaches 1000. They have
also benchmarked the resource consumption and noted that FIWARE’s IoT Agents are
written in Node.js. Node.js uses a single-threaded model and cannot take advantage of
the multicore capabilities of modern CPUs. Even though vertical and horizontal scaling
has increased the performance of the framework, it could not prevent the crashing of
FiWare IoT Agents. They also noted that the horizontal scaling proved to be more
effective than scaling vertically. They additionally suggested that the IoT agents of
FiWare need to be improved for future large-scale smart city scenarios [51].

Another issue when testing IoT Frameworks is the question of the comparability of results.
Many researchers carry out the performance tests by applying their own scenarios with
their own metrics. This makes it difficult to compare the results from a study with
a framework with the results from another study. Some qualitative and quantitative
metrics were defined in a study by Cruz, Rodrigues, Sangaiah, Al-Muhtadi, Korotaev [40].
They have proposed the following qualitative and quantitative metrics for comparison
and performance evaluation of IoT Frameworks:

Qualitative metrics:

• Per device authentication: Every device should have its own credentials.

• Different credentials to publish and consult data from the middleware:
This would allow organizations to publish device interfaces without worrying about
data manipulations.

• Devices should access other device data using their own credentials: This
allows the administrators to determine the compromised device in case of a security
breach.

• Middleware should know the device properties such as IP and MAC
address: This helps the administrators to determine the compromised device in
case of a security breach.

• Number of Standard Development Kits (SDKs): This makes it easier for
developers to use the framework and deploy code into devices.

• Supported application protocols: This is important for the interoperability of
different devices.

• Number of updates: The framework should be provided with regular updates.

• Popularity

• Support tiers: Developers should offer sufficient support for the framework.
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• Mobile app: For some scenarios, mobile apps are beneficiary or even mandatory.

Quantitative metrics:

• Packet size: Packet size in communication is a key factor for performance and
energy consumption.

• Error percentage: An IoT framework should be able to deal with high load
without errors.

• Response times: The response time of a framework is an important metric,
especially in high load scenarios.

• Price: Price is always an important decision factor for stakeholders.

• Timeliness performance: Performance should not be affected by the passage of
time.

• DoS and DDoS prevention: For users’ privacy and high security, it is an
important aspect.

Then they made evaluations of some IoT Frameworks using these metrics to compare them.
They have also conducted load tests to determine the error percentages and response
times of the following IoT Frameworks: FIWARE, InatelPlat, SiteWhere, Linksmart,
and Konker.

There is no academic research, that compares the performances of HotSpot and OpenJ9.
Nevertheless, the Eclipse Foundation has published multiple performance tests on its blog.
In one test, they compared the startup time and memory footprint of Jenkins running
on HotSpot and OpenJ9 [34]. In another test, they revealed that the Java framework
Quarkus retains its performance advantages while also running on an OpenJ9 JVM
against the Spring Boot Framework by comparing the memory footprint and startup
time [36]. The Eclipse Foundation claims that through the Shared Classes feature, we
can reduce the startup time and memory footprint of applications that run on JVM [11].
To prove this, they compared the startup time of the Apache Tomcat Server [5], which
runs on an OpenJ9 JVM with default settings with a Tomcat Server that runs on an
OpenJ9 JVM with enabled shared classes. Both servers were running in Docker images.
They concluded that the startup time was reduced by about 30 % with enabled shared
classes.

There is still a great need for research in the IoT domain. There is no academic research
on the Arrowhead Framework, that concentrates on the performance of the framework.
This master’s thesis investigates if the Arrowhead Framework is eligible for a real-world
application, especially under extraordinary conditions. Even though OpenJ9 has also been
on the market for a few years, there has been no academic research on the performance
of OpenJ9. In this master’s thesis, we evaluate the differences between HotSpot and
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2. Related Work

OpenJ9 from a performance perspective. We study the potential performance issues of
an IoT Framework so as to see if an alternative JVM improves the performance.
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CHAPTER 3
Background

3.1 The Arrowhead Framework

The information in this chapter is cited from [41] and [35] and is only valid for Arrowhead
Framework 4.1.3. Other versions may come with other features and components.

The Arrowhead Framework aims to enable collaborative automation and industrial IoT
with the creation of local automation clouds. The Local automation cloud concept
was introduced by the Arrowhead project, and it foresees that specific geographically
local automation tasks should be encapsulated and protected. A local cloud has all the
systems that are necessary to execute the automation tasks without interference from
outside activities e.g. from the open Internet. A local cloud should possess the following
properties:

• Self-contained: The administration, orchestration, authentication, and authoriza-
tion of services are located in the local cloud.

• Automation support: A local cloud enables information exchange based on
events, information exchange audit, and supports the automation system design.

• Security: A local cloud should be secure against interference from external net-
works and support secure bootstrapping and software updates.

• Metadata: A local cloud should support devices, systems, and service metadata.

• Transparency: A local cloud should support protocol, and semantics transparency.

• Administration and data exchange: Secure administration and data exchange
with external networks should be supported.
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3. Background

The Arrowhead Framework combines the local cloud concept with the Service-Oriented
Architecture (SOA) paradigm, which enables the services to be exchanged between
systems. In order to achieve all these goals of the local cloud concept, the Arrowhead
Framework defines three types of services:

• Mandatory core services: The mandatory core systems and their services
provide the fundamental services, that facilitate the exchange of services between a
service provider and a service consumer, with the corresponding level of security
and autonomy. Following mandatory core services are defined:

– ServiceRegistry

– Authorization

– Orchestration

• Automation support core services: These services aim to facilitate the au-
tomation application design, engineering, and operation. They implement the
housekeeping within the local cloud, security, inter-cloud service exchange and
interoperability of systems and services. Following automation support core systems
were implemented by the Arrowhead Framework 4.1.3:

– EventHandler

– Gatekeeper

– Gateway

• Application services: The application services within a local cloud implement
application functionalities. They may also consume and/or produce other services
from the local or external clouds.

We will go into details for some of these services.

3.1.1 Service Registry

ServiceRegistry system provides storage of all registered services within a local cloud and
enables the discovery of them. The ServiceRegistry is an independent system that does
not consume any other services. We can differentiate between three types of endpoints
that are offered by the Service Registry:

• Client endpoints: These endpoints are used by the client applications that register
and unregister their services that they offer, and they can query the applications of
the core services.

• Private endpoints: These endpoints are only accessible by other core services.
Other core services can query desired services from other providers with parameters
through these endpoints.
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3.1. The Arrowhead Framework

Figure 3.1: Mandatory core services with interactions enabling the service exchange
between two application systems. (copied from [41])

• Management endpoints: These endpoints are used by management tools and
cloud administrators to manage the local cloud. Administrators can get a list of
registered services and details, as well as edit or delete these services.

In the ServiceRegistry component, the endpoint to register services is one of the most
susceptible to performance issues. Multiple providers may try to register their services
simultaneously. ServiceRegistry should check if this service is already registered and if
the service provider already exists. This means that it requires a high computing power
on the side of the ServiceRegistry and the database behind it.

3.1.2 Authorization

The Authorization core service manages the authorization rules with a database. It
differentiates between provider and consumer applications, and stores in which consumer
applications can access which provider applications. There are two types of authorization
rules defined in the Authorization service. The first type is intra-cloud access rules.
These set the access rules within the local cloud. The second type of rule is inter-cloud
access rules. These define the access rules between different local clouds. As in Service
Registry, we can differentiate between three types of endpoints, that are offered by the
Authorization service:

• Client endpoints: These endpoints are used by the client applications. The only
functionality is accessing the public key of the Authorization service.

• Private endpoints: These endpoints are only accessible by other core services.
They can use these services to check intra-cloud, and inter-cloud access rules, and
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3. Background

generate an access token for a consumer system so that it can access a provider
system.

• Management endpoints: These endpoints are used by management tools and
cloud administrators to manage the local cloud. Administrators can get a list of all
the access rules, filter them by ID, or delete them.

The authorization service is mostly used by the Orchestrator service to determine the
applications that have access to a specific service. In the case of an enabled token
generation for security, the authorization service requires high computing power, to check
the access rules and generate a token. This may cause performance problems in the event
of a high demand from the Orchestrator.

3.1.3 Orchestrator

Orchestrator is a key component of the Arrowhead Framework. It allows service reusability,
service discoverability, and service composability by finding and pairing service consumers
and providers. It provides the consumers with the necessary information to establish a
connection with the provider, including the accessibility information such as the network
address, port, and a security token, if tokens are enabled. The orchestration process may
unfold in two ways. In the first option, the orchestration rules are stored in the database
to spot the appropriate providers for the consumer. This is called "Store Orchestration".
The second option is "Dynamic Orchestration", where the Orchestrator searches the local
cloud and neighboring clouds for the requested service. In the Orchestrator service, we
have two types of endpoints:

• Client endpoints: These endpoints are used by the client applications. Applica-
tion services may use these endpoints to initiate an orchestration process.

• Management endpoints: These endpoints are used by management tools and
cloud administrators to manage the local cloud. Administrators can add orchestra-
tion rules for store orchestration, edit, delete, and prioritize them.

The dynamic orchestration process is especially resource-intensive because it needs to
establish multiple connections with the service registry and authorization services to find
the requested service.

3.1.4 Gatekeeper

Gatekeeper provides inter-cloud servicing capabilities. Local clouds can search other
local clouds through Gatekeeper for services. If an eligible service is found in another
cloud, Gatekeeper may also initialize the negotiation with the Gatekeeper from the
other cloud for consuming the service by obtaining the necessary information like tokens.
For communication with other local clouds, Gatekeeper uses a Relay system, such as
ActiveMQ [2]. In the Gatekeeper service, we have two types of endpoints:
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3.1. The Arrowhead Framework

Figure 3.2: Arrowhead Framework Core services deployed

Figure 3.3: Inter-cloud communication over Gatekeeper (copied from [35])

• Private endpoints: These endpoints are only accessible by other core services.
Through these endpoints, The Orchestrator service can initiate the search for
specific services, and in case of success, it can obtain the necessary information for
the connection from the other cloud.

• Management endpoints: These endpoints are used by management tools and
cloud administrators to manage the local cloud. Administrators can add neighboring
clouds to the database, add the relays, and edit and delete this data over these
endpoints.

The Gatekeeper service is also resource-intensive. The communication with the relay and
other core services and the orchestration process require a high computing ability in the
local cloud and may cause performance issues.

3.1.5 Security

Security is an essential quality in the development of the Arrowhead Framework. The
first aspect of security is the authorization in the local cloud. In order to ensure the
authorization, all services in the local cloud must have an Arrowhead compliant X.509
identity certificate. These certificates make sure that the service is correctly bootstrapped
into the Local Cloud, that they belong to the Cloud, and that they can register their
services in the Service Registry. On the other side, the Authorization service ensures that
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3. Background

only the consumers that have access rights can consume the provider services and generate
access tokens if enabled. Another essential security feature of the Arrowhead Framework
is the encrypted communication between all the components. For the encryption, the
HTTPS protocol is used. Even though these security features are essential, they may
reduce the local cloud’s performance and/or increase the resource consumption.

3.2 Java Virtual Machine

A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java
programs as well as programs written in other languages that are also compiled to Java
bytecode. JVM is the core component that makes Java and other programming languages
hardware and operating system independent. JVM is like a real computing machine with
its own instruction set and memory manipulations at runtime [46].

When programming, developers write their code in Java programming language or others
that can run on a JVM. This code is then compiled to a class file, that contains the
Java bytecode. This bytecode is a binary format that is independent of hardware and
operating system. All programming languages that can be compiled to Java bytecode
can run on a JVM. In order to run the bytecode on a JVM efficiently, it needs to be
recompiled to native/machine code. The binary code can also be interpreted by the JVM
directly, but it is inherently slow. For the compilation process to native code, there are
two main different approaches. Code compilation can occur at load-time or runtime.
Load-time compilation is called ahead-of-time (AOT) compilation, and execution time
compilation is called just-in-time (JIT) compilation. Both models have their advantages
and disadvantages. In AOT compilation, the compilation happens only once, that is
before the execution, and not on each execution of the program. This may increase the
startup times. The JIT compilation happens at runtime and can increase the overall
program performance by collecting profiling data and utilize this data for profile-guided
code optimizations (PGO) to customize the native code for each input [55]. The JVM
may also apply aggressive and potentially unsafe code optimizations speculatively, which
then can be taken back if the speculation is invalidated later on. Depending on the
implementation, a JVM can also combine these compilation methods.

The HotSpot JVM released by Oracle has introduced a so-called Tiered Compilation
with Java Development Kit 7 (JDK 7). This type of compilation is also based on JIT
compilation. However, with the introduction of different levels, it aims to improve the
application’s performance by using the profiling data. They have also released an AOT
based compilation method, but Tiered Compilation is the default compilation method.
The AOT compiler of HotSpot is still in an experimental phase [21].

The OpenJ9 JVM released by the Eclipse Foundation also uses a JIT based compilation
method as default. They have introduced different optimization levels for compilation.
Depending on the consumed time of a method, the compilation of the methods is
increasingly optimized. This optimization process means a higher memory and CPU
consumption during optimization, but the overall improved performance of the application
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3.2. Java Virtual Machine

Figure 3.4: Compilation process of a Java class file

may make the tradeoff worthwhile [23]. The AOT compilation is also supported in OpenJ9,
but needs to be enabled and is used mostly with class data sharing.

Class data sharing is a feature that may improve the startup times of applications and
reduce the memory footprint. The class data that should be loaded into a JVM is loaded
first to a cache. During subsequent JVM invocations, the shared cache is memory-mapped
to allow sharing of class data for these classes among multiple JVM processes. Otherwise,
the class data would need to be replicated in each JVM instance, which would increase
the startup time of the application. This is especially useful if multiple JVM instances
have to run on a single machine. Oracle has integrated this feature into HotSpot JVM
in JDK 5 already. But until the release of JDK 10, the class data sharing was only
limited to Java Runtime Environment (JRE) classes. With JDK 10, Oracle has introduced
Application Class-Data Sharing (ApsCDS) to include selected classes from the application
classpath [18]. OpenJ9 has implemented the class data sharing feature, as well. They also
implemented the class data sharing for application classes before HotSpot, which has led
to a more mature implementation [8]. OpenJ9 combines the class data sharing with AOT
compiling to increase startup times. When class data sharing, which is also known as
shared classes cache, is enabled, the AOT compiler is automatically activated. The AOT
compiler compiles Java classes into native code for subsequent executions of the program.
When an application runs in shared classes mode, the AOT compiler generates native
code dynamically and saves this native code in the shared classes cache. Subsequent
JVMs can load and use the AOT-compiled native code from the shared cache. This leads
to a faster startup than running a JIT-compiled application [33]. When a cached AOT
method is executed, it may also be optimized further by the JIT compiler [3]. Shared
class cache is enabled by default for bootstrap classes. For application classes, it needs
to be enabled explicitly.

The Arrowhead Framework is programmed in Java and runs on a JVM. The Arrowhead
Framework’s different components are based on the Spring Boot Framework [31], which
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3. Background

runs on an Apache Tomcat server. This means multiple instances of Spring Boot classes
and other common libraries run on the same host machine. In this case, class data sharing
may lead to better startup time and a decrease in memory footprint because of the high
number of common libraries between different Arrowhead Framework components.

3.3 Testing Tools

For the execution of performance tests, we need a tool that can send multiple requests to
different Arrowhead Framework components. The following specifics need to be supported
by a testing tool to be eligible for our performance tests:

• Count of maximum requests: The testing tool should be able to send up to
10,000 requests to a component simultaneously.

• REST interface: The testing should support REST interfaces, since the Arrow-
head Framework components communicate through REST interfaces.

• Detailed analysis of results: The testing tool should record the results in detail
and ideally present the results with graphics.

• HTTPS Support: The Arrowhead Framework supports secured connection over
HTTPS, which should be tested.

• High Configurability: Different parameters like a key store for HTTPS connec-
tion or timeout limits, should be easily configurable.

• Costs: The necessary features should be available free of charge.

• Resource Consumption: The testing should have an acceptable resource con-
sumption.

There are numerous tools available on the market for performance tests. Apache JMeter
[4] and Gatling [15] are currently the most common tools on the market, that are freely
available. Both of them support the features that are listed above. The main difference is
that the performance tests on JMeter are configured through a Graphical User Interface
(GUI), and the performance tests on Gatling are programmed with Scala programming
language. There are also some benchmarks on the Internet demonstrating that both
testing tools have a comparable performance. However, Gatling requires less memory
consumption [16]. All in all, we decided on Gatling as our testing tool, since it comes
with all the necessary features in its free version, and consumes less memory.
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CHAPTER 4
Methodologies

Before implementing the testing environment, we defined some objectives that our testing
environment should achieve:

• Repeatability of tests: All performance tests should be repeatable. This is
necessary so that other researchers can also repeat the tests to comprehend and
retrace the results. It is also important to have an identical testing environment
for every test for the repeatability of tests. That is to say, all tests should be
automated.

• Performance and resource observability: In testing scenarios, multiple com-
ponents of the Arrowhead Framework may interact with each other. For a better
understanding of results, performance, and resource consumption of the components
should be observable.

• Load generation: In order to understand the limitations of the framework, a
remarkably high number of requests should be generated and sent to different
components.

• Adherence to specifications: The testing environment should be implemented
according to the Arrowhead Framework’s specifications and standards.

For the repeatability of tests, it is essential that the Arrowhead Framework, as our test
object, runs in a stable environment where software updates or other software running on
the machine do not affect the Arrowhead Framework. Software updates or other software
may have unexpected impacts on the results of our performance tests. We decided to
utilize a Virtual Machine to protect our test object from abrupt alterations. A virtual
machine allows us to execute the tests in an identical state of the machine for every test.
Performance and resource observability can be ensured through our testing tool and
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4. Methodologies

Figure 4.1: Testing Environment

tools that observe the resource consumption of Java applications. The load generation
is provided by our testing tool. Our testing tool uses our test data generated earlier to
send multiple requests to the components simultaneously.

One of the goals of the tests, besides finding potential errors, is to find out the count of
simultaneous requests, where we have an acceptable response time. For response times,
we can differentiate between 3 limits. If the response time is less than 0.1 second, the
user feels that the system has reacted instantaneously, which requires special feedback
for the user in addition to showing the result. If the response time is less than 1 second,
the user’s flow of thought remains uninterrupted, but the user feels the delay. If the
response exceeds 10 seconds, the user loses their focus on the application. In this case,
special feedback about the process should be given to the user about the progress of the
task [50]. For this reason, our goal was to find out the limit, where we can guarantee a
response time under 10 seconds.

The following components of the Arrowhead Framework were tested.

4.1 Service Registry

As discussed in the Background chapter, Service Registry does not have any dependency on
other services. It is mainly responsible for the registration and management of the systems
and their services. Multiple systems may try to register their services simultaneously
at the Service Registry. With our performance tests, we want to determine the upper
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4.2. Authorization

limit of simultaneous registration requests. The upper limit may change depending on
the hardware configurations and the Java Virtual Machine (JVM) that is being used. In
order to understand the upper limits and potential problems, we send multiple service
registration requests simultaneously. The only unit tests on the Service Registry are
conducted for the registration service. Other core services also use Service Registry for
different reasons, e.g. finding eligible services by the Orchestrator. These functionalities
of Service Registry are also tested when testing the other components and are detailed in
their respective sections.

4.2 Authorization

The Authorization service is responsible for the management of the access rights in inter-
cloud and intra-cloud communication. First, these access rights need to be entered by an
administrator. In order to understand the upper limits and potential problems, we simul-
taneously send multiple requests to the Authorization service to save the authorization
rules. When a new authorization rule is added, the Authorization service contacts Service
Registry to get the corresponding services. Therefore, this test is also an integration test,
since it requires the communication of two elementary components. The Authorization
service is also used by other core services, mainly by the Orchestrator. When searching
for a service, the Orchestrator checks the authorization rules and generates the necessary
authorization information for the consumer. Thus, other functionalities of Authorization
are also tested as part of the tests of other components.

4.3 Orchestrator

Consumers contact the Orchestrator when they need a service. The Orchestrator searches
the intra-cloud and inter-cloud for available services. The search process in intra-cloud
and inter-cloud is different. When the Orchestrator receives a request for intra-cloud
service discovery, it contacts the Service Registry to spot the eligible services for the
requestor. If it finds any eligible service, it contacts the Authorization service to check if
the requestor has access rights for this service. If access rights are given, and token-based
security is enabled, a token is generated and returned to the requestor. For our first test
on the Orchestrator, we sent multiple requests to the Orchestrator simultaneously for an
intra-cloud dynamic discovery process so as to determine the upper limits and potential
problems. It is important to keep in mind that all tests on the Orchestrator are also
integration tests since the Orchestrator is dependent on other services.

The second type of service discovery takes place in inter-cloud. In the inter-cloud service
discovery, the Orchestrator searches for the requested service in the neighboring clouds,
which are also based on the Arrowhead Framework. Through an MQTT Broker, different
local clouds may communicate with each other. In order to test an inter-cloud service
discovery process, we need a realistic testing environment, including a second local cloud.
The Arrowhead Framework local cloud that is deployed in the Virtual Machine is our test

21

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


4. Methodologies

object. The other local cloud is a modified version of the Arrowhead Framework with
limited functionalities. These modifications reduce resource consumption by the second
Arrowhead Framework so that our tests’ results are not affected. Since both instances
of the Arrowhead Framework run on the same physical machine (see Figure 4.1 ), it is
important to limit the resource consumption of the second "dummy" instance.

Our test object, the Arrowhead Framework in the VM, is tested in two aspects for the
inter-cloud search process. First, the performance is tested when an inter-cloud search
request is sent to the local cloud in the VM. When the Orchestrator receives a request, it
begins a search in the neighboring cloud, in our case the "dummy" Arrowhead Framework
on our local machine. As in other tests, multiple requests are sent simultaneously to
determine the upper limits and potential problems. In this use case, the most noteworthy
part of the computation occurs in the "dummy" Arrowhead Framework. It needs to
search the requested service in its local cloud and return the results with access rules and
authorization information. As mentioned earlier, this search process is simplified and
modified in the "dummy" Arrowhead Framework to reduce the resource consumption,
so that our test results are not affected. The second aspect of the inter-cloud search is
when the request is received by the "dummy" local cloud and the "dummy" local cloud
searches in its neighboring clouds for the requested service (see Figure 4.2 ). In this case,
the "dummy" cloud searches for the service in the local cloud, the Arrowhead Framework
in the VM. In this case, most of the computation occurs in the VM.

We tested the dynamic orchestration process, since it requires a higher computational
power and may lead to problems.

4.4 Gatekeeper

The Gatekeeper is responsible for the inter-cloud communication. It communicates with
the MQTT Broker to initialize the service discovery with other local clouds, and acquire
the information of the requested service in the event of success. The Gatekeeper cannot
be used directly by application services. The functionalities of the Gatekeeper are tested
as a part of the Orchestrator tests for inter-cloud communication.

4.5 Security

Security functions like encryption and token generation require a high computational
power. In order to understand the impacts of the security functions on the performance,
tests for service registration, and storing authorization rules are also repeated in an
insecure mode. In the insecure mode, HTTPS and token-based security are disabled.

4.6 Java Virtual Machine

For the comparison of HotSpot and OpenJ9, we compared the performance of both JVMs
according to their response times and memory consumption. In order to better evaluate
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4.7. Tests on different hardware

Figure 4.2: Testing Environment for the second version of Orchestrator tests

the performance of the JVMs, the tests were also repeated on OpenJ9, which ran on both
JVMs without errors. Performance tests with an extremely high number of simultaneous
requests, which led to timeouts and/or errors on HotSpot, were not repeated on OpenJ9.

The tests on OpenJ9 were repeated in two different modes. First, we used the default
mode of OpenJ9, where we did not change any configurations. We repeated the same tests
with shared classes cache to observe if this mode has any impact on resource consumption
or performance.

4.7 Tests on different hardware

We executed the performance tests on two different hardware configurations. x86 based
CPUs, and ARM-based CPUs are widely used in the industry. Especially in recent years,
ARM-based devices have gained popularity in the IoT field because of their lower energy
consumption [44]. These devices have limited resources. In order to understand the
limitations of the Arrowhead Framework, especially on a device with limited resources,
performance tests have been repeated on two devices with those architectures.
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CHAPTER 5
Implementation

5.1 Used Software and Hardware

For the implementation of our performance tests on the x86 based computer, we used a
Virtual Machine (VM) with the following software:

Function Used Software

Hypervisor for virtualization Oracle VM Virtualbox 6.1.6
Virtual Machine Operating System Ubuntu 18.04 64-Bit

Java Development Kit, JVM 1 OpenJDK 11.0.7 64-Bit, HotSpot JVM
Java Development Kit, JVM 2 OpenJDK 11.0.7 64-Bit, OpenJ9 0.20.0

Database MySQL 5.7.29

The Virtual Machine had the following virtual hardware properties:

CPU: 6 Core CPU
RAM: 4096 MB

Hard Disk: 20 GB

The host machine, on which the Virtual Machine was running, had the following hardware
and software properties:

CPU Intel Core i7-10710U 6x 1.10GHz
RAM 16 GB

Hard Disk 512 GB SSD
Operating System Ubuntu 20.04 64-Bit

For our performance tests on an ARM-based machine, we used a Raspberry Pi 4 with 4
GB RAM. Tests were directly performed on the host machine. On the Raspberry Pi the
following software was running:
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5. Implementation

Function Used Software

Operating System Raspberry Pi OS 10
Java Development Kit, JVM OpenJDK 11.0.6, HotSpot JVM

Database MariaDB 10.3.22

On both platforms, the Arrowhead Framework 4.1.3 was running for our tests. On the
official software repositories of Raspberry Pi OS, there is no MySQL. Instead, MariaDB
is recommended as a replacement. MariaDB is based on MySQL and MariaDB 10.3 is
almost fully compatible with MySQL 5.7 [24].

We installed the Arrowhead Framework natively from .deb files on both platforms. We
chose Gatling 3.3.1 as our testing tool, and as the MQTT Broker, we used Apache
ActiveMQ 5.15.12.

The resource consumption of the applications was monitored with JConsole.

5.2 Testing Environment Configurations

For better comparability of performance, response times are essential. For the com-
parison of the response times, we have raised the timeout limits of connectTimeout,
handshakeTimeout, and requestTimeout of Gatling to 300,000 ms.

Furthermore, in all the Operating Systems the open-files limit was raised to 65,536.

The shared classes cache for OpenJ9 in VM was enabled with groupAccess, persistent,

cacheDir="/var/tmp/javasharedresources" options, which enables all applica-
tions of a group in Ubuntu to access the same cache and that cache does not get deleted
on system restart (See the specifications on [1]). All other options were left as default.
See [1] for default values.

5.3 Generating Test Data

In order to execute our performance tests, as realistically as possible, we first generated
test data, where every entry was unique. We fed our test data to Gatling through the
CSV files. In the first step, we generated test data with service information. The following
variables of a service were randomly generated: serviceDefinition, systemName, port,
authenticationInfo (only in secure mode), serviceUri, version, interfaces. The detailed
explanations of the respective fields can be found in the Service Registry section of this
chapter. This data was created for 10,000 services.

This data was used for our Service Registry tests. The next step was to create data for
authorization rules. To generate the intra-cloud and inter-cloud authorization rules, we
inserted the 10,000 services into the database through the Arrowhead Framework. The
Arrowhead Framework assigned IDs to each system and service. The services with their
generated IDs were then exported to a CSV file and a backup file for MySQL.
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5.4. Service Registry

For our Authorization tests, we need test data on the following parameters: consumerId
(only for intra-cloud), cloudId (only for inter-cloud), providerId, interfaceId, serviceDefi-
nitionId. These fields determine the authorization rules. The detailed explanations of
the respective fields can be found in the Authorization section of this chapter. This data
was also generated randomly, where we mapped producers with consumers, to generate
10,000 authorization rules. After inserting these rules into the database through the
Arrowhead Framework, we once again exported this data to a CSV file and a backup file
for MySQL.

For the Orchestrator tests, we need the following parameters in a single CSV file:
consumerName, port, and serviceDefinition (of the requested service). The detailed
explanations of the respective fields can be found in the Orchestrator section of this
chapter. For the service discovery tests to succeed in the Orchestrator, sent requests
should contain consumers with authorization rights for the requested service definition.
In order to achieve this, we mapped the created authorization rules with the service
information and exported this data also as a CSV file.

We generated 10,000 Arrowhead compliant X.509 identity certificates as authentication
information to be used as part of the services in secure mode.

All test data was generated with our Java program, that was developed for test data
generation for this project.

5.4 Service Registry

As mentioned in earlier chapters, the Service Registry does not have any dependency on
other services and is responsible for the management of services. In Background, we have
determined the service registration process as particularly resource-intensive. In order to
test the service registration process, the following JSON file was sent simultaneously to
the /serviceregistry/register interface of the Service Registry service:

{ "serviceDefinition": "${serviceDefinition}",

"providerSystem": {

"systemName": "${systemName}",

"address": "localhost",

"port": ${port},

"authenticationInfo": "${AuthInfo}" // existent only in secure mode

},

"serviceUri": "${serviceUri}",

"secure": // in tests with secure mode "TOKEN" ,

//in tests with insecure mode "NOT_SECURE"

"metadata": {

},

"version": "${version}",

"interfaces": [

27

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


5. Implementation

"${interfaces}"

]

}

The variables starting with "$" are taken from the CSV data. The variables have the
following meaning:

• serviceDefinition: The name of the service definition. A random alphanumeric
string was generated for this variable.

• systemName: The name of the provider system. A random alphanumeric string
was generated for this variable.

• port: The port for the connection to this service. A random number between 0
and 65,536 was generated for this variable.

• AuthInfo: This authentication information is only provided if the service runs
in secure mode. It is the public key of the system. For every service, there was a
unique public key.

• serviceUri: This represents the URI for the connection to the service. A random
alphanumeric string was generated for this variable.

• version: The version of the registered service. An integer between 0 and 30 was
generated for this variable.

• interfaces: The interface that is provided by this service. Following options were
used for our tests in insecure mode: "HTTP-INSECURE-JSON", "HTTP-INSECURE-XML",

"HTTP-INSECURE-CSV", "HTTP-INSECURE-TEXT" and "HTTP-SECURE-JSON",
"HTTP-SECURE-XML", "HTTP-SECURE-CSV", "HTTP-SECURE-TEXT" in se-
cure mode.

First, we performed our tests on the Virtual Machine with HotSpot JVM. We have sent
100, 500, 1000, 5000, and 10,000 requests simultaneously in the secure mode. In the
insecure mode, we have 10,000 requests only. For every test, the virtual machine was
reset to its initial state, with the Arrowhead Framework freshly installed and empty
tables in the database.

Our primary goal is, to determine the limit, where we can achieve an acceptable response
time in different hardware platforms. Building on our results from the Virtual Machine
with HotSpot JVM, we carried out the performance tests with the following configurations:

• Virtual Machine, OpenJ9 default mode: 1000, 5000, and 10,000 simultaneous
requests on secure mode.
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5.4. Service Registry

Figure 5.1: Service Registration Activity Diagram (copied from [35])
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5. Implementation

• Virtual Machine, OpenJ9 with enabled shared classes cache: 1000, 5000,
and 10,000 simultaneous requests on secure mode.

• Raspberry Pi: 100 and 500 simultaneous requests on secure mode.

Other functionalities of Service Registry are tested as part of the integration tests in the
Authorization and Orchestrator tests because they are dependent on the Service Registry.

In order to execute our tests, we deactivated the security mechanism of the Service
Registry, which checks if the provider name in a registration request matches the common
name of the security certificate. This was performed by commenting out some lines in
SRAccessControlFilter.java.

5.5 Authorization

The Authorization service is dependent on the Service Registry service. For our perfor-
mance tests on the Authorization service, we inserted intra-cloud rules to the database
through the Authorization service. For our intra-cloud Authorization rules, we have sent
the following JSON files through /authorization/mgmt/intracloud interface:

{

"consumerId": ${consumerId},

"interfaceIds": [

${interfaceId}

],

"providerIds": [

${providerId}

],

"serviceDefinitionIds": [

${serviceDefinitionId}

]

}

For generating test data, the inter-cloud rules we sent the following JSON files through
/authorization/mgmt/intercloud interface:

{

"cloudId": 2,

"interfaceIdList": [

${interfaceId}

],

"providerIdList": [

${providerId}
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5.5. Authorization

],

"serviceDefinitionIdList": [

${serviceDefinitionId}

]

}

The variables starting with "$" are taken from the CSV data. The variables have the
following meaning:

• consumerId: The ID of the consumer service in the local cloud that has access to
the service. This is existent only in intra-cloud authorization rules.

• cloudId: The ID of the cloud, that has access to this resource. This is existent
only in inter-cloud authorization rules.

• providerId: The ID of the provider of this service. In our tests, we had only one
provider ID in this field.

• interfaceId: The ID of the service interface.

• serviceDefinitionId: The ID of the service definition. We have only one ID in
this field in our tests.

All our tests were done with valid IDs. It means that all tests should be successful. In
these tests, Authorization service queries the Service Registry to check if the IDs of the
service are valid and returns the information about the consumer and provider systems.

First, we performed our tests on the Virtual Machine with HotSpot JVM. We have sent
1000, 5000, and 10,000 requests simultaneously in the secure mode. In the insecure
mode, we sent 10,000 requests only. For every test, the virtual machine was reset to its
initial state, with the Arrowhead Framework freshly installed, only containing services
in the database. Our primary goal is, to determine the limits, where we can achieve an
acceptable response time in different hardware platforms. Building on our results from
the Virtual Machine with HotSpot JVM, we conducted the performance tests with the
following configurations:

• Virtual Machine, OpenJ9 default mode: 1000 simultaneous requests on secure
mode.

• Virtual Machine, OpenJ9 with enabled shared classes cache: 1000 simul-
taneous requests on secure mode.

• Raspberry Pi: 100, and 1000 simultaneous requests on secure mode.

Other functionalities of the Authorization are tested as part of the integration tests in
the Orchestrator tests since the Orchestrator is dependent on the Authorization.
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5. Implementation

5.6 Orchestrator

The Orchestrator is responsible for inter-cloud and intra-cloud service discovery. Their
tests are essentially different.

5.6.1 Intra-cloud service discovery

Consumers may send requests to the Orchestrator to initiate intra-cloud service dis-
covery. For our performance tests, we have sent the following JSON data to the
/orchestrator/orchestration interface of the Orchestrator:

{

"requesterSystem": {

"systemName": "${consumerName}",

"address": "localhost",

"port": ${port},

"authenticationInfo": ""

},

"requestedService": {

"serviceDefinitionRequirement": "${serviceDefinition}",

"securityRequirements": [

"NOT_SECURE", "CERTIFICATE", "TOKEN"

],

"metadataRequirements": {

}

},

"orchestrationFlags": {

"overrideStore": true

}

}

The variables starting with "$" are taken from the CSV data. The variables have the
following meaning:

• consumerName: The name of the consumer system.

• port: The port of the consumer system

• serviceDefinition: The name of the requested service definition.

The orchestration flag overrideStore signifies that a dynamic service discovery should be
performed instead of a store-based service discovery.
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5.6. Orchestrator

All our tests were done using valid data. That is to say, all tests should be successful. In
these tests, when a request arrives, the Orchestrator contacts the Service Registry to find
the requested service. If the requested service is found, it checks with the Authorization
service to view if this consumer has access rights for this service. If the access rights are
given, a token is generated, and a response is sent back to the consumer, in our case to
Gatling (see Figure 5.2) .

First, we have performed our tests on the Virtual Machine with HotSpot JVM. We sent
100, 500, 1000, and 10,000 requests simultaneously in the secure mode. For every test,
the virtual machine was reset to its initial state, with the Arrowhead Framework freshly
installed and services and intra-cloud authorization rules present in the database.

Our primary goal is to determine the limits, where we can achieve an acceptable response
time in different hardware platforms. Building on our results from the Virtual Machine
with HotSpot JVM, we conducted the performance tests with the following configurations:

• Virtual Machine, OpenJ9 default mode: 100, 1000, and 10,000 simultaneous
requests on secure mode.

• Virtual Machine, OpenJ9 with enabled shared classes cache: 100, 1000,
and 10,000 simultaneous requests on secure mode.

• Raspberry Pi: 50, 70, and 100 simultaneous requests on secure mode.

5.6.2 Inter-cloud service discovery - Gatekeeper

Consumers may send requests to the Orchestrator to initiate the inter-cloud service
discovery. As mentioned in Methodologies, in order to have a testing environment that is
as realistic as possible, we deployed a second Arrowhead Framework instance (see Figures
4.1 and 4.2). The second instance of the Arrowhead Framework running in the local
computer was modified to limit the resource consumption. We modified the doGSDPoll
and doICN methods in the GatekeeperService.java file in the Gatekeeper. These methods
are responsible for contacting the local Orchestrator for obtaining service information
and authorization information. We commented out these functionalities and hardcoded a
service and authorization information. This modified Gatekeeper sends the same response
at all times, which massively reduces the computation that is required on this local cloud.

In order to test the inter-cloud service discovery, we considered two cases. In the first
case, we sent our inter-cloud service discovery requests to the Orchestrator in the VM,
and in the second case, we sent our requests to the Orchestrator in our localhost.

Orchestrator inter-cloud 1 - Requests sent to VM

In our first testing scenario, we sent the inter-cloud service discovery requests to the
Orchestrator running on our VM. In this case, the Arrowhead Framework in the VM

33

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


5. Implementation

Figure 5.2: Orchestrator tests Activity Diagram [35]

searches for the services in our "dummy" Arrowhead Framework. The main computation
and search process would take place in the "dummy" Arrowhead Framework. The
following JSON request was sent to the Orchestrator:

{

"requesterSystem": {

"systemName": "${consumerName}",

"address": "localhost",

"port": ${port},

"authenticationInfo": ""

},

"requestedService": {

"serviceDefinitionRequirement": "${serviceDefinition}",

"securityRequirements": [

"NOT_SECURE", "CERTIFICATE", "TOKEN"
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5.6. Orchestrator

],

"metadataRequirements": {

}

},

"orchestrationFlags": {

"overrideStore": true,

"triggerInterCloud" : true

}

}

The variables starting with "$" are taken from the CSV data. The variables have the
following meaning:

• consumerName: The name of the consumer system.

• port: The port of the consumer system

• serviceDefinition: The name of the requested service definition.

The orchestration flags overrideStore and triggerInterCloud, meaning that a dynamic
service discovery in the inter-cloud should be established instead of a store-based service
discovery. In this case, service discovery in the intra-cloud is skipped.

First, we performed our tests on the Virtual Machine with HotSpot JVM. We sent 40,
100, and 1000 requests simultaneously in the secure mode. For every test, the virtual
machine was reset to its initial state, with the Arrowhead Framework freshly installed
and services with inter-cloud authorization rules present in the database.

Our primary goal is to determine the limits, where we can achieve an acceptable re-
sponse time in different hardware platforms. Building on our results from the Virtual
Machine with HotSpot JVM, we have conducted the performance tests with the following
configurations:

• Virtual Machine, OpenJ9 default mode: 40 simultaneous requests on secure
mode.

• Virtual Machine, OpenJ9 with enabled shared classes cache: 40 simulta-
neous requests on secure mode.

• Raspberry Pi: 20, 30, and 40 simultaneous requests on secure mode.
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5. Implementation

Orchestrator inter-cloud 2 - Requests sent to "dummy" Arrowhead
Framework

In our second test scenario for the Orchestrator, we sent the inter-cloud service discovery
requests to the "dummy" Orchestrator running on the local computer. In this case, the
"dummy" Arrowhead Framework searches for the services in our Arrowhead Framework on
the VM. The main computation and search process occurs in the Arrowhead Framework
on the VM. The JSON request is identical to our first inter-cloud test.

First, we performed our tests on the Virtual Machine with HotSpot JVM. We sent 50,
100, and 1000 requests simultaneously in the secure mode. For every test, the virtual
machine was reset to its initial state, with Arrowhead Framework freshly installed and
services and inter-cloud authorization rules present in the database.

Our primary goal is to determine the limits, where we can achieve an acceptable re-
sponse time in different hardware platforms. Building on our results from the Virtual
Machine with HotSpot JVM, we have conducted the performance tests with the following
configurations:

• Virtual Machine, OpenJ9 default mode: 50 simultaneous requests on secure
mode.

• Virtual Machine, OpenJ9 with enabled shared classes cache: 50 simulta-
neous requests on secure mode.

• Raspberry Pi: 10, 20, and 30 simultaneous requests on secure mode.

5.7 Gatling Configuration

As we have noted earlier, we used Gatling as our testing tool. We have raised the timeout
limits connectTimeout, handshakeTimeout, requestTimeout of Gatling to 300,000 ms. In
tests in secure mode, we configured the key store, as well. All other configuration values
were left as default (See specification [10] for default values). Following code snippet is
an example of a test in Gatling:

val feeder = csv("Name_of_the_csv_file.csv").queue

val stringBody =

"""JSON data to be sent"""

val httpProtocol = http

.baseUrl("Base_URL_of_testing_object")

.acceptHeader("text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8")

.doNotTrackHeader("1")
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5.8. Limitations

.acceptLanguageHeader("en-US,en;q=0.5")

.acceptEncodingHeader("gzip, deflate")

.userAgentHeader("Mozilla/5.0 (Windows NT 5.1; rv:31.0)

Gecko/20100101 Firefox/31.0")

val scn = scenario("SimulationName").feed(feeder).exec(http("request_1").

post("URL_of_object").body(StringBody(stringBody)).asJson)

setUp(

scn.inject(atOnceUsers(Count_of_simultaneous_requests))

).protocols(httpProtocol)

In the code snippet, first we feed the test data through a CSV file in our test and define
the JSON data that need to be filled with the test data. Then the HTTP protocol with
the base URL and headers are defined. Gatling sends the requests simultaneously to our
defined URL for our test scenario. The method atOnceUsers defines, that the number of
requests should be sent simultaneously.

5.8 Limitations

The CPUs that we utilized use, as most CPUs today, the technique of dynamic frequency
scaling. That is to say, the clock speed of the CPU is adjusted automatically depending
on the demand, the power mode and environment temperature, and other variables. The
users are offered very limited options to alter this behavior. We cannot guarantee that
all tests were conducted at the same clock speed in our performance tests. However, it
is our expectation that these differences were not major since the laptop’s environment
temperature and power mode remained almost identical. This behavior is displayed on
our Intel CPU and ARM CPU of Raspberry Pi [14] [27].
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CHAPTER 6
Results and Discussion

In this chapter, we present the results of our tests. The results of the Arrowhead
Framework components are based on our tests on secure mode. We also have a separate
section, where we compared the performance in secure and insecure mode. For memory
consumption, we present the peak heap memory usage. If the error count is not shown
in the charts, there were no errors found.

6.1 Service Registry

In this section, we present our results from our performance tests for Service Registry. In
Figure 6.1, we present the results of our experiment on Service Registry with the HotSpot
JVM on the VM, where we sent 10,000, 5000, 1000, 500, and 100 requests simultaneously.
We observe that even with 10,000 simultaneous requests, the Service Registry component
can handle the requests with a mean response time of 41.14 seconds with only six errors.
In tests with less simultaneous requests, the mean response time decreases rapidly. On
5000 simultaneous requests, we have a mean response time of 22.8 seconds and seven
errors, on 1000 simultaneous requests a mean response time of 6.93 seconds and three
errors, on 500 simultaneous requests a mean response time of 5.39 seconds and five errors.
On 100 simultaneous requests, we have a mean response time of 1.28 seconds and four
errors. Even with simultaneous requests as low as 100 requests, the reason for errors lies
in a bug with concurrent database entries. See Section 6.6 for details on this bug. Our
results reveal that on the VM, we can guarantee an acceptable response time under 10
seconds with <1000 simultaneous requests (see Figure 6.1). However, this number is
highly dependent on the hardware configuration. In Figure 6.2, we present the results of
our experiment on Raspberry Pi 4, where we sent 500 and 100 simultaneous requests.
On the Raspberry Pi 4, on 500 simultaneous requests, we have a mean response time of
45.93 seconds and five errors, and on 100 simultaneous requests, a mean response time of
7.34 seconds and seven errors. On the Raspberry Pi 4, we achieve an acceptable response
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6. Results and Discussion

time only with <100 simultaneous requests. The ARM-based processors like the one
found on Raspberry Pi cannot reach the performance of x86 based processors, like on
our VM.

Figure 6.1: Service Registry Mean Response Times with error count on the x86 HotSpot
JVM

Figure 6.2: Service Registry tests - Response Time on Raspberry Pi with the HotSpot
JVM

We also compared the performance and memory consumption of different JVM con-
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6.2. Authorization

figurations. In Figure 6.3 and 6.4, we present the memory consumption and mean
response times of the Service Registry on the HotSpot JVM, on OpenJ9 with default
configurations, and on OpenJ9 with shared classes cache with 10,000, 5000, and 1000
simultaneous requests. On 10,000 requests, the HotSpot JVM had a mean response time
of 41.14 seconds with 980 MB memory consumption, OpenJ9 with default configurations
52.14 seconds with 980 MB memory consumption, and OpenJ9 with enabled shared
classes cache a mean response time of 50.36 with 980 MB memory consumption. On 5000
simultaneous requests, the HotSpot JVM had a mean response time of 22.80 seconds with
680 MB memory consumption, OpenJ9 with default configurations a mean response time
of 26.74 seconds 772 MB memory consumption, and OpenJ9 with enabled shared classes
cache a mean response time of 26.41 seconds with 651 MB memory consumption. On
1000 simultaneous requests, the HotSpot JVM had a mean response time of 6.93 seconds
with 266 MB memory consumption, OpenJ9 with default configurations a mean response
time of 10.86 seconds with 286 MB memory consumption, and OpenJ9 with shared classes
cache a mean response time of 8.22 seconds with 250 MB memory consumption. In all of
our tests, the HotSpot JVM with default configurations yielded the best performance
with the lowest mean response time. Even though OpenJ9 with default configurations
incurred the highest memory consumption in all the tests, it also displayed the worst
performance with the highest response times. OpenJ9 with shared classes cache (SCC)
delivered the lowest memory consumption, but it also showed higher response times than
the HotSpot JVM (see Figures 6.3 6.4). In this test, we discuss that the HotSpot JVM
is suitable for use cases where we expect high traffic and high performance on Service
Registry. OpenJ9 SCC is suitable when we are dealing with devices with limited resources
that do not expect a high Service Registry traffic. OpenJ9 with default configurations
increased memory consumption and reduced the performance, rendering it unsuitable for
any use case.

6.2 Authorization

In this section, we present our results from our performance tests for Authorization. In
Figure 6.5, we present the results of our experiment on Authorization with the HotSpot
JVM on the VM, where we sent 10,000, 5000, 1000 requests simultaneously. On the same
Figure, we also present the results of the tests performed with OpenJ9 using default
configurations and OpenJ9 with shared classes cache (SCC), where we sent 1000 requests.
In our tests with the HotSpot JVM on the VM with 10,000 simultaneous requests, the
Authorization component has a mean response time of 44.3 seconds, on 5000 simultaneous
requests a mean response time of 24.4 seconds, and on 1000 requests a mean response
time of 7.89 seconds. Our results reveal that on the VM, we can guarantee an acceptable
response time under 10 seconds with <1000 simultaneous requests (see Figure 6.5).
However, this number is highly dependent on the hardware configuration. In Figure 6.6,
we present the results of our experiment on Raspberry Pi 4, where we have sent 1000 and
100 requests simultaneously. On the Raspberry Pi 4, on 1000 simultaneous requests, we
have a mean response time of 76.17 seconds, and on 100 simultaneous requests a mean
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6. Results and Discussion

Figure 6.3: Service Registry tests - Memory Consumption on different JVM configurations

Figure 6.4: Service Registry tests - Response Time on different JVM configurations

response time of 9.21 seconds. On Raspberry Pi 4, we have a mean acceptable response
time only with <100 simultaneous requests.

We have repeated the tests with 1000 simultaneous requests on OpenJ9 and recorded
the response times and memory consumption of the Authorization and Service Registry
components. In Figure 6.5 the response times and in Figure 6.7 the memory consumptions
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6.2. Authorization

Figure 6.5: Authorization tests - Mean Response Times - OpenJ9 tests were only done
with 1000 requests

Figure 6.6: Authorization tests - Mean Response Times with error count on Raspberry Pi

are presented. On OpenJ9 with default configuration, we have a mean response time
of 8.62 seconds, and on OpenJ9 with shared classes cache a mean response time of 9.19
seconds. The memory consumption of the Service Registry component on the HotSpot
was 190 MB, on OpenJ9 with default configurations 113 MB, and on OpenJ9 with shared
classes cache 97 MB. The memory consumption of the Authorization component was 260
MB on the HotSpot JVM, 306 MB on OpenJ9 with default configurations, and 245 MB
on OpenJ9 with shared classes cache.

In our test, the HotSpot JVM with default configurations, achieved the best performance
with the lowest mean response time. Considering the sum of the memory consumption
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6. Results and Discussion

Figure 6.7: Authorization tests - Memory Consumption on different JVM configurations

of the Service Registry and Authorization services, we observe that the HotSpot also
incurred the highest memory consumption with 450 MB. OpenJ9 with SCC delivered the
lowest memory consumption with 343 MB, but it also displayed the worst performance
with the highest mean response time (see Figure 6.5 and 6.7). As in Service Registry
tests, we discuss that the HotSpot JVM is suitable for use cases where we expect a high
traffic on the Authorization service and a high performance. The difference between the
sum of memory consumption of the HotSpot JVM and OpenJ9 SCC is 107 MB, which
may play a significant role in devices that are equipped with limited resources. OpenJ9
with SCC is particularly suitable for devices with limited resources and expected low
traffic. OpenJ9 with default configurations delivered a total memory consumption of 421
MB, which is less than that of HotSpot, and higher response times than the HotSpot
JVM. We cannot recommend OpenJ9 running with default configurations for most use
cases, since the advantage of a smaller memory consumption is negligible.

6.3 Orchestrator

In this section, we present our results from our performance tests for the Orchestrator.

6.3.1 Orchestrator - Intra-cloud service discovery

In Figure 6.8, we present the results of our experiment on the Orchestrator intra-cloud
search with the HotSpot JVM on the VM, where we sent 10,000, 1000, 500, and 100
requests simultaneously. On the same Figure, we also present the results of the tests
with OpenJ9 with default configurations, and with OpenJ9 with shared classes cache
(SCC), where we sent 10,000, 1000 and 100 requests. In our tests with the HotSpot JVM
on the VM sending 10,000 simultaneous requests, we have a mean response time of 89.66
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6.3. Orchestrator

seconds, on 1000 simultaneous requests a mean response time of 16.16 seconds, on 500
simultaneous requests a mean response time of 5.6 seconds, and on 100 simultaneous
requests a mean response time of 3.79 seconds. Our results reveal that on the VM, we can
guarantee an acceptable response time that is under 10 seconds with <500 simultaneous
requests. However, this number is highly dependent on the hardware configuration. In
Figure 6.9, we present the results of our experiment on Raspberry Pi 4, where we have
sent 100, 70, and 50 simultaneous requests. On the Raspberry Pi 4, on 100 simultaneous
requests, we have a mean response time of 14.57 seconds. On 70 simultaneous requests, a
mean response time of 13.28 seconds, and on 50 simultaneous requests, we have a mean
response time of 10.47 seconds. On Raspberry Pi 4, we have an acceptable response time
with only <50 simultaneous requests.

Figure 6.8: Orchestrator intra-cloud - Mean Response Time on different JVMs

We also compared the performance and memory consumption of different JVM configura-
tions. In Figure 6.8 the response times, in Figure 6.10 the memory consumptions and in
6.11 the error counts are presented, where we sent 10,000, 1000, and 100 simultaneous re-
quests. On 10,000 simultaneous requests, on the HotSpot JVM, we have a mean response
time of 89.66 with 213 errors, on OpenJ9 with default configurations a mean response
time of 134.87 seconds with 945 errors, and on OpenJ9 with enabled shared classes cache
100.17 seconds with 749 errors. On 1000 simultaneous requests, on the HotSpot JVM, we
have a mean response time of 16.16 with 93 errors, on OpenJ9 with default configurations
a mean response time of 23.66 seconds with 237 errors, and on OpenJ9 with enabled
shared classes cache 20.47 seconds with 161 errors. On 100 simultaneous requests, on the
HotSpot JVM, we have a mean response time of 3.79 seconds with no errors, on OpenJ9
with default configurations a mean response time of 5.03 seconds with no errors and on
OpenJ9 with enabled shared classes cache 6.06 seconds with no errors. In our tests with
the HotSpot JVM with 10,000 simultaneous requests, Service Registry had a memory
consumption of 250 MB, Authorization component 230 MB, and Orchestrator 1000 MB.
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6. Results and Discussion

Figure 6.9: Orchestrator intra-cloud test results on Raspberry Pi

In tests with the HotSpot JVM with 1000 simultaneous requests, Service Registry had
270 MB memory consumption, Authorization 180 MB, and Orchestrator 260 MB. When
we sent 100 simultaneous requests on the HotSpot JVM, Service Registry had 126 MB
memory consumption, Authorization 219 MB, and Orchestrator 130 MB. In our tests
with OpenJ9 JVM default with 10,000 simultaneous requests, Service Registry had a
memory consumption of 160 MB, Authorization component 142 MB, and Orchestrator
1000 MB. In tests with OpenJ9 JVM default with 1000 simultaneous requests, Service
Registry had 130 MB memory consumption, Authorization 150 MB, and Orchestrator 280
MB. When we sent 100 simultaneous requests on OpenJ9 JVM default, Service Registry
had 140 MB memory consumption, Authorization 135 MB, and Orchestrator 137 MB.
In our tests with OpenJ9 with enabled SCC with 10,000 simultaneous requests, Service
Registry had a memory consumption of 160 MB, Authorization component 142 MB, and
Orchestrator 1000 MB. In tests with OpenJ9 with enabled SCC with 1000 simultaneous
requests, Service Registry had 130 MB memory consumption, Authorization 150 MB,
and Orchestrator 280 MB. When we sent 100 simultaneous requests on OpenJ9 with
enabled SCC, Service Registry had 140 MB memory consumption, Authorization 135
MB, and Orchestrator 137 MB.

In our test, the HotSpot JVM with default configurations yielded the best performance
with the lowest mean response time and lowest error count. However, we observe that the
HotSpot also incurred the highest memory consumption in all of our tests (see Figure 6.10).
Even though OpenJ9 with default configurations had a higher memory consumption
than OpenJ9 with SCC, it delivered a higher response time in most tests and a higher
error count overall. OpenJ9 with SCC had the lowest memory consumption of all, and
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6.3. Orchestrator

its performance was better or comparable with OpenJ9 with default configuration (see
Figures 6.10 and 6.8). As in previous tests, we discuss that the HotSpot JVM is suitable
for use cases where we expect a high traffic on the Orchestrator intra-cloud service
discovery and a high performance. The difference of the sum of memory consumption
between the HotSpot JVM and OpenJ9 SCC goes up to 250 MB, which may play a
significant role on devices with limited resources. OpenJ9 with SCC is particularly
suitable for devices that are equipped with limited resources and expected low traffic.
OpenJ9 with default configurations displayed the worst performance in most of the tests
and had a higher memory consumption than OpenJ9 with SCC. We cannot recommend
it for any use case.

Figure 6.10: Orchestrator intra-cloud - Memory Consumption of different components on
different JVMs

6.3.2 Orchestrator - Inter-cloud service discovery

As explained in Methodologies and Implementation, we have two types of inter-cloud
tests.

Orchestrator - Inter-cloud 1 - Requests sent to VM

In Figure 6.12, we present the results of our experiment on the Orchestrator inter-
cloud search with the HotSpot JVM on the VM, where we sent 1000, 100, and 40
requests simultaneously. In our tests with the HotSpot JVM on the VM with 1000
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6. Results and Discussion

Figure 6.11: Orchestrator intra-cloud - Error count in tests

simultaneous requests we have a mean response time of 26.9 seconds with 591 errors, on
100 simultaneous requests a mean response time of 12.26 seconds with 50 errors, and
on 40 simultaneous requests a mean response time of 7.08 seconds with no errors. Our
results reveal that on the VM, we can guarantee an acceptable response time under 10
seconds with <40 simultaneous requests. However, this number is highly dependent on
the hardware configuration. In Figure 6.13, we present the results of our experiment on
Raspberry Pi 4, where we sent 40, 30, and 20 requests simultaneously. On the Raspberry
Pi 4, on 40 simultaneous requests, we have a mean response time of 11.19 seconds with
three errors, on 30 simultaneous requests a mean response time of 12.74 seconds with no
errors. On 20 simultaneous requests, we have a mean response time of 9.05 seconds with
no errors. On the Raspberry Pi 4, we have an acceptable response time with only <20
simultaneous requests (see Figure 6.13).

We have also compared the performance and memory consumption of different JVM
configurations. In Figure 6.14 the response times and in Figure 6.15 the memory
consumptions are presented, where we have sent 40 simultaneous requests. On 40
simultaneous requests, on the HotSpot JVM, we have a mean response time of 7.08,
on OpenJ9 with default configurations a mean response time of 6.94 seconds, and on
OpenJ9 with enabled shared classes cache 8.37 seconds. In our tests with the HotSpot
JVM with 40 simultaneous requests, Service Registry had a memory consumption of
170 MB, Authorization component 138 MB, Orchestrator 190 MB, and Gatekeeper 160
MB. In our tests with OpenJ9 JVM default with 40 simultaneous requests, Service
Registry had a memory consumption of 102 MB, Authorization component 72 MB,
Orchestrator 121 MB, and Gatekeeper 122 MB. In our tests with OpenJ9 with enabled
SCC with 40 simultaneous requests, Service Registry had a memory consumption of
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6.3. Orchestrator

Figure 6.12: Orchestrator inter-cloud 1 - mean response times and error counts on x86
HotSpot

Figure 6.13: Orchestrator inter-cloud 1 - mean response times and error counts on
Raspberry Pi

112 MB, Authorization component 99 MB, Orchestrator 100 MB, and Gatekeeper 96
MB. In our test, the HotSpot JVM with default configurations and OpenJ9 with default
configurations yielded the best performance with the lowest mean response time and
lowest error count (see Figure 6.14). But we observe that HotSpot also incurred the
highest memory consumption on all our tests (see Figure 6.15). When we compare
the sum of all the components’ memory consumption, we observe that OpenJ9 default
consumed about 417 MB memory, and OpenJ9 with SCC consumed about 407 MB
memory. The difference is minimal, but once again we observe that OpenJ9 with SCC
delivered the lowest memory consumption of all, and its performance was also the worst
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6. Results and Discussion

with the highest mean response times. As in previous tests, we discuss that the HotSpot
JVM is suitable for use cases where we expect a high traffic on the Orchestrator inter-
cloud service discovery and a high performance. The difference of the sum of memory
consumption between the HotSpot JVM and OpenJ9 SCC goes up to 251 MB, which may
play a significant role on devices with limited resources. OpenJ9 with SCC is particularly
suitable for devices with limited resources and expected low traffic. OpenJ9 with default
configurations yielded a better performance than that of OpenJ9 SCC and a similar
memory consumption with OpenJ9 SCC, making it also an option for devices with limited
resources in this use case.

Figure 6.14: Orchestrator inter-cloud 1 - mean response time on different JVMs

Orchestrator - Inter-cloud 2 - Requests sent to "dummy" Arrowhead
Framework

In Figure 6.16, we present the results of our experiment on the Orchestrator inter-
cloud search with the HotSpot JVM on the VM, where we sent 1000, 100, and 50
requests simultaneously. In our tests with the HotSpot JVM on the VM with 1000
simultaneous requests we have a mean response time of 37.26 seconds with 638 errors, on
100 simultaneous requests a mean response time of 11.17 seconds with 29 errors, and on
50 simultaneous requests a mean response time of 7.85 seconds with no errors. Our results
reveal that on the VM, we can guarantee an acceptable response time that is under 10
seconds with <50 simultaneous requests (see Figure 6.16). However, this number is highly
dependent on the hardware configuration. In Figure 6.17, we present the results of our
experiment on the Raspberry Pi 4, where we sent 30, 20, and 10 requests simultaneously.
On the Raspberry Pi 4, on 30 simultaneous requests we have a mean response time of
16.82 seconds with 3 errors, on 20 simultaneous requests a mean response time of 12.5
seconds with no error, and on 10 simultaneous requests we have a mean response time of
7.98 seconds with no error. On the Raspberry Pi 4, we have an acceptable response time
with only <10 simultaneous requests.
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6.3. Orchestrator

Figure 6.15: Orchestrator inter-cloud 1 - memory consumptions of different components
on different JVMs

We also compared the performance and memory consumption of different JVM configu-
rations. In Figure 6.18 the response times and in Figure 6.19 the memory consumptions
are presented, where we sent 50 simultaneous requests. On 50 simultaneous requests,
on the HotSpot JVM we have a mean response time of 7.85, on OpenJ9 with default
configurations a mean response time of 8.72 seconds and on OpenJ9 with enabled shared
classes cache 8.7 seconds. In our tests with the HotSpot JVM with 50 simultaneous
requests, the Service Registry had a memory consumption of 203 MB, Authorization
component 151 MB, Orchestrator 179 MB, and Gatekeeper 155 MB.. In our tests with
OpenJ9 JVM default with 50 simultaneous requests, Service Registry had a memory
consumption of 145 MB, Authorization component 130 MB, Orchestrator 130 MB, and
Gatekeeper 105 MB. In our tests with OpenJ9 with enabled SCC with 50 simultane-
ous requests, Service Registry had a memory consumption of 93 MB, Authorization
component 105 MB, Orchestrator 74 MB and Gatekeeper 93 MB. the HotSpot JVM
with default configurations yielded the best performance with the lowest mean response
time (see Figure 6.18). But we also observe that the HotSpot also incurred the highest
memory consumption on all of our tests (see Figure 6.19). We see that OpenJ9 with SCC
had the lowest memory consumption but also the worst performance. In our tests, it
also produced three errors on 40 simultaneous requests where other JVM configurations
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6. Results and Discussion

Figure 6.16: Orchestrator inter-cloud 2 - mean response times and error counts on x86
HotSpot

Figure 6.17: Orchestrator inter-cloud 2 - mean response times and error counts on
Raspberry Pi

were able to handle the requests without problems. As in previous tests, we discuss
that the HotSpot JVM is suitable for use cases where we expect a high traffic on the
Orchestrator inter-cloud service discovery and a high performance. The difference of the
sum of memory consumption between the HotSpot JVM and OpenJ9 SCC goes up to
323 MB, which may play a big role on devices that are equipped with limited resources.
OpenJ9 with SCC is particularly suitable for devices with limited resources and expected
low traffic. OpenJ9 with default configurations displayed a better performance than
OpenJ9 SCC and a higher memory consumption than OpenJ9 SCC, which makes it an
alternative for devices where the HotSpot JVM cannot be used due to limited resources
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6.3. Orchestrator

but also high performance is needed and OpenJ9 with SCC is not an option.

Figure 6.18: Orchestrator inter-cloud 2 - mean response time on different JVMs

Figure 6.19: Orchestrator inter-cloud 2 - memory consumptions of different components
on different JVMs
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6. Results and Discussion

6.4 Secure mode vs. Insecure mode

We also compared the performance of some components in insecure mode. In Figure
6.20 the response times of Service Registry and Authorization are presented in secure
and insecure mode, where we have sent 10,000 simultaneous requests. In our tests with
10,000 simultaneous requests, Service Registry had a mean response time of 41.14 seconds
in secure mode and 19.57 seconds in insecure mode. The Authorization service had a
mean response time of 44.3 seconds in secure mode and 23.11 seconds in insecure mode.
As expected, the security mechanisms of the Arrowhead Framework have reduced the
performance of the components massively (see Figure 6.20). The difference was partially
more than 100% comparing the response times. Depending on the use case, users of
the framework may consider running the framework in insecure mode to improve the
performance.

Figure 6.20: Service Registry and Authorization mean response times in secure and
insecure mode

6.5 Startup Times

We compared the startup times of different components on different JVM configurations,
as well. In Figure 6.21 the startup times of Service Registry, Authorization, Orchestrator
and Gatekeeper are presented in different JVM configurations. Service Registry’s startup
time was 23.21 seconds on HotSpot, 24.8 seconds on OpenJ9 with default configurations,
and 9.89 seconds on OpenJ9 with SCC. Authorization’s startup time was 25.65 seconds
on HotSpot, 25.36 seconds on OpenJ9 with default configuration and 10.63 seconds on
OpenJ9 with SCC. Orchestrator’s startup time was 24.76 seconds on HotSpot, 24.88
seconds on OpenJ9 with default configuration and 10.39 seconds on OpenJ9 with SCC.
Gatekeeper’s startup time was 25.11 seconds on HotSpot, 25.95 seconds on OpenJ9 with
default configuration and 10.51 seconds on OpenJ9 with SCC. OpenJ9 with default
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6.6. Found Errors

configurations and the HotSpot yielded very similar results. OpenJ9 with enabled SCC
brought a significant decrease in startup times as expected (see Figure 6.21). Lower
startup times are particularly beneficial in use cases where new instances of applications
need to be started quickly when the demand increases. OpenJ9 with SCC increases the
scalability of the framework by reducing the startup times.

Figure 6.21: Startup Times of different components on different JVM configurations

6.6 Found Errors

We encountered some errors in our tests. In Service Registry, we found a concurrency
issue that we spotted when we tried to simultaneously register two services with the
same service interface. We reported the issue in the Github Repository of the Arrowhead
Framework. The issue was fixed by the developers and integrated into the next release of
Arrowhead Framework 4.2.0 [9].

We encountered some further problems when testing the startup times of the components
with OpenJ9 with shared classes cache. The startup times were extremely longer every
time we restarted the operating system. After discussing this issue with the developers
on Github Repository of OpenJ9, we found out that OpenJ9 with SCC and enabled
groupAccess, the cache is saved in the tmp folder of Ubuntu. Since Ubuntu deletes the
contents of the /tmp folder on each restart, OpenJ9 would need to recreate the cache
on every restart. Developers of OpenJ9 decided to update the documentation after our
remark to address this possible issue when using groupAccess on Ubuntu [32].
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6. Results and Discussion

We encountered other errors the majority of which were timeout issues, where some
components did not respond on time.

6.7 Discussion

In our tests, we have seen that the Arrowhead Framework could cope with a high number
of requests without crashing. The exception handling in the event of extreme high
request count functioned properly. However, we have also observed that the number of
simultaneous requests that a component can successfully handle, depends largely on the
use case and the hardware configuration. The lower limit of requests may be as high as
1000 requests or as low as ten requests. As we expected, the intra-cloud and inter-cloud
service discovery process is very resource-intensive and has the lowest lower limits in
all our tested use cases. Developers using the Arrowhead Framework should consider
the expected traffic when deciding on the hardware configuration. For expected high
traffic with a high performance requirement, a modern x86 based processor with at least
8 GB of RAM is recommended. When only low traffic on the Framework is expected,
ARM-based computers like the Raspberry Pi 4 may be eligible. Even in this case, a 4
GB RAM is recommended.

As a result of our comparison of JVMs, we can conclude that the HotSpot JVM yielded
the best performance with the lowest mean response times in our tests. However, this
high performance also resulted in the highest memory consumption among the test
subjects.. OpenJ9 with default configurations mostly delivered y the worst performance
with the highest mean response times, showing similar or less memory consumption
than HotSpot. OpenJ9 SCC had the lowest memory consumption but also displayed
higher mean response times than HotSpot. Developers using the Arrowhead Framework
should deliberate the different performances and memory consumptions of different
JVM configurations. For devices with expected low traffic without specific performance
requirements, OpenJ9 SCC and hardware with limited resources may be used, which
results in lower energy and hardware costs. For devices with high traffic, high performance
requirements and better availability, HotSpot is the optimal solution.

We have seen that Open J9 SCC has a significant advantage regarding the start-up
times of the applications. The lower start-up times with OpenJ9 SCC allow us to better
scale up applications e.g., in the event of higher demand. This increases the scalability
and availability of the applications. By better scalability, energy and hardware costs
can also be better managed. However, this solution may only be eligible for use cases
where the best performance is not required since OpenJ9 reduces the performance of the
applications.
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CHAPTER 7
Future Work

The Arrowhead Framework is still evolving. With their latest release 4.2.0, multiple
components have been added to the framework. In future work, the performance of the
new components should be evaluated. What is more, we did not test all the interfaces
of the components that we have tested. In future work new testing scenarios should be
defined in order to discover other possible bottlenecks and errors.

OpenJ9 has started developing a version of their JVM for 64-bit Linux on ARM and
released an early access version with OpenJ9 0.20.0 [12]. In our tests, we have observed
that OpenJ9 with shared classes cache is particularly interesting for devices that are
equipped with limited resources thanks to the lower memory consumption. In future work
it should be tested whether OpenJ9 can maintain its advantage on memory consumption
also on architectures with AArch64, as well. OpenJ9 SCC also has many configuration
options, such as the size of the cache. In future work, it should be tested whether
other possible configurations such as a bigger cache size, have any impact on memory
consumption and/or performance. There are other JVMs available on the market, such
as GraalVM [17]. In future work, this product should also be tested and compared with
HotSpot and OpenJ9.

HotSpot has also introduced a shared classes cache for application classes with JDK 10.
We wish to test in future work whether the implementation of Oracle has any impact on
the performance and/or memory consumption as with OpenJ9.
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CHAPTER 8
Conclusion

In this thesis, we have evaluated the performance of Service Registry, Authorization,
Orchestrator, and Gatekeeper components of the Arrowhead Framework. We have studied
and considered the mean response times, error counts, and peak memory consumptions of
the components for the evaluation. We have also tested to find out if using an alternative
JVM such as OpenJ9 has any impact on performance and memory consumption.

Our work is the first academic research that evaluates the Arrowhead Framework from a
performance perspective. Our tests enabled us to determine the limits of the components
by sending multiple simultaneous requests to them. We also detected a bug in Service
Registry, which was consequently corrected and included in the following release.

With our results, we can offer recommendations for the users of the Arrowhead Framework.
We have observed that in a device that is equipped with limited resources such as the
Raspberry Pi 4, the limits for an acceptable performance can go as low as ten requests/sec..
Users of the framework should take this matter into account when using the Arrowhead
Framework, and if high traffic is expected, they should consider installing hardware with
a stronger performance. Another remarkable result was that we were able to reduce the
memory consumption and startup times of the components without changing anything
in the codebase by just using OpenJ9 with shared classes cache. However, this option is
best for use cases, where we do not expect a high load on the device, since OpenJ9 with
shared classes cache delivers a lower performance outcome than HotSpot.

We created a testing environment that can be made use of in future tests, which we have
mentioned in Future Work chapter. Our results help users of the Arrowhead Framework
decide on and choose the best hardware and software solutions in different use cases.
This may save money and effort for stakeholders and improve the performance of the
Framework. It also helps the developers of the Arrowhead Framework to further enhance
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the performance of the framework in future releases.

List of Figures

1.1 Some of the technologies associated with IoT. (copied from [56]) . . . . . 2

3.1 Mandatory core services with interactions enabling the service exchange
between two application systems. (copied from [41]) . . . . . . . . . . . . 13

3.2 Arrowhead Framework Core services deployed . . . . . . . . . . . . . . . . 15
3.3 Inter-cloud communication over Gatekeeper (copied from [35]) . . . . . . 15
3.4 Compilation process of a Java class file . . . . . . . . . . . . . . . . . . . . 17

4.1 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Testing Environment for the second version of Orchestrator tests . . . . . 23

5.1 Service Registration Activity Diagram (copied from [35]) . . . . . . . . . 29
5.2 Orchestrator tests Activity Diagram [35] . . . . . . . . . . . . . . . . . . 34

6.1 Service Registry Mean Response Times with error count on the x86 HotSpot
JVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Service Registry tests - Response Time on Raspberry Pi with the HotSpot
JVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Service Registry tests - Memory Consumption on different JVM configurations 42
6.4 Service Registry tests - Response Time on different JVM configurations . 42
6.5 Authorization tests - Mean Response Times - OpenJ9 tests were only done

with 1000 requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6 Authorization tests - Mean Response Times with error count on Raspberry Pi 43
6.7 Authorization tests - Memory Consumption on different JVM configurations 44
6.8 Orchestrator intra-cloud - Mean Response Time on different JVMs . . . . 45
6.9 Orchestrator intra-cloud test results on Raspberry Pi . . . . . . . . . . . . 46
6.10 Orchestrator intra-cloud - Memory Consumption of different components on

different JVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.11 Orchestrator intra-cloud - Error count in tests . . . . . . . . . . . . . . . . 48
6.12 Orchestrator inter-cloud 1 - mean response times and error counts on x86

HotSpot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.13 Orchestrator inter-cloud 1 - mean response times and error counts on Rasp-

berry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.14 Orchestrator inter-cloud 1 - mean response time on different JVMs . . . . 50

60

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


List of Figures

6.15 Orchestrator inter-cloud 1 - memory consumptions of different components
on different JVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.16 Orchestrator inter-cloud 2 - mean response times and error counts on x86
HotSpot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.17 Orchestrator inter-cloud 2 - mean response times and error counts on Rasp-
berry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.18 Orchestrator inter-cloud 2 - mean response time on different JVMs . . . . 53
6.19 Orchestrator inter-cloud 2 - memory consumptions of different components

on different JVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.20 Service Registry and Authorization mean response times in secure and insecure

mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.21 Startup Times of different components on different JVM configurations . 55

61

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Bibliography

[1] -Xshareclasses - Eclipse OpenJ9. https://www.eclipse.org/openj9/docs/xshareclasses/.

[2] ActiveMQ. https://activemq.apache.org/.

[3] AOT Compiler - OpenJ9. https://www.eclipse.org/openj9/docs/aot/.

[4] Apache JMeter - Apache JMeter™. https://jmeter.apache.org/.

[5] Apache Tomcat. https://tomcat.apache.org/.

[6] The Arrowhead Framework vision and objective.
https://arrowhead.eu/arrowheadframework/why-how.

[7] AWS IoT - Amazon Web Services. https://aws.amazon.com/iot/.

[8] Cl4cds. https://simonis.github.io/cl4cds/.

[9] Concurrency issue when registering services · Issue #221 · arrowhead-f/core-java-
spring. https://github.com/arrowhead-f/core-java-spring/issues/221.

[10] Configuration – Gatling Open-Source Load Testing Documentation.
https://gatling.io/docs/current/general/configuration.

[11] Eclipse OpenJ9 - Class data sharing. https://www.eclipse.org/openj9/docs/shrc/.

[12] Eclipse OpenJ9 0.20.0 Release Notes. https://www.eclipse.org/openj9/docs/version0.20/#limited-
support-for-64-bit-linux-on-arm.

[13] FIWARE. www.fiware.org.

[14] Frequently Asked Questions about Enhanced Intel SpeedStep® Technology...
https://www.intel.com/content/www/us/en/support/articles/000007073/processors.html.

[15] Gatling Open-Source Load Testing – For DevOps and CI/CD. https://gatling.io/.

[16] Gatling vs. JMeter - DZone Performance. In Dzone.Com.

[17] GraalVM. https://www.graalvm.org/.

63

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Bibliography

[18] Hotspot - Class Data Sharing. https://docs.oracle.com/en/java/javase/11/vm/class-
data-sharing.html#GUID-7EAA3411-8CF0-4D19-BD05-DF5E1780AA91.

[19] Internet of Things (IoT) connected devices installed base worldwide from 2015 to
2025. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/.

[20] IoT Hub | Microsoft Azure. https://azure.microsoft.com/en-us/services/iot-hub/.

[21] Java HotSpot Virtual Machine Performance Enhancements.
https://docs.oracle.com/en/java/javase/14/vm/java-hotspot-virtual-machine-
performance-enhancements.html#GUID-85BA7DE7-4AF9-47D9-BFCF-
379230C66412.

[22] Java SE Core Technologies. https://www.oracle.com/java/technologies/javase/javase-
core-technologies-apis.html.

[23] JIT Compiler - OpenJ9. https://www.eclipse.org/openj9/docs/jit/.

[24] MariaDB versus MySQL - Compatibility. https://mariadb.com/kb/en/mariadb-vs-
mysql-compatibility/.

[25] OpenJ9. https://www.eclipse.org/openj9/.

[26] OpenJ9 - Performance. https://www.eclipse.org/openj9/oj9_performance.html.

[27] Raspberry Pi Documentation. https://www.raspberrypi.org/documentation/hardware/raspberrypi/fre
management.md.

[28] Siemens | MindSphere. https://siemens.mindsphere.io/en.

[29] SiteWhere. https://github.com/sitewhere/sitewhere.

[30] SmartThings. https://www.smartthings.com/.

[31] Spring Boot. https://spring.io/projects/spring-boot.

[32] Startup Times are significanlty worse on OS startup with SCC · Issue #10087 ·

eclipse/openj9. https://github.com/eclipse/openj9/issues/10087.

[33] Class sharing in Eclipse OpenJ9, June 2018.

[34] Comparing Jenkins startup in Docker. https://blog.openj9.org/2019/09/17/comparing-
jenkins-startup-in-docker/, September 2019.

[35] Arrowhead Framework 4.1.3 Github. Arrowhead Consortia, July 2020.

[36] Quarkus and Eclipse OpenJ9: Exceptional Performance across Platforms.
https://blog.openj9.org/2020/01/16/quarkus-and-eclipse-openj9-exceptional-
performance-across-platforms/, January 2020.

64

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Bibliography

[37] Watson IoT Platform. https://www.ibm.com/internet-of-things/solutions/iot-
platform/watson-iot-platform, June 2020.

[38] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. FIT IoT-LAB: A large scale open ex-
perimental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), pages 459–464, December 2015.

[39] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of Things: A Survey on Enabling Technologies, Protocols,
and Applications. IEEE Communications Surveys & Tutorials, 17(4):2347–2376, 24.

[40] Mauro A.A. da Cruz, Joel J.P.C. Rodrigues, Arun Kumar Sangaiah, Jalal Al-
Muhtadi, and Valery Korotaev. Performance evaluation of IoT middleware. Journal
of Network and Computer Applications, 109:53–65, May 2018.

[41] Jerker Delsing. IoT Automation: Arrowhead Framework. CRC Press, February 2017.

[42] John Esquiagola, Laisa Costa, Pablo Calcina, Geovane Fedrecheski, and Marcelo
Zuffo. Performance Testing of an Internet of Things Platform:. In Proceedings of
the 2nd International Conference on Internet of Things, Big Data and Security,
pages 309–314, Porto, Portugal, 2017. SCITEPRESS - Science and Technology
Publications.

[43] Jasmin Alexandra Guth. Architectural Design of an Abstraction Layer for the
Integration of Heterogeneous Cyber-Physical Systems. PhD thesis, University of
Stuttgart.

[44] Eclipse Foundation Inc. Eclipse IoT Developer Survey Results.
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-
survey-2019.pdf.

[45] Felix Larrinaga Barrenechea, Iñigo Aldalur Ceberio, Miren Illarramendi Reza-
bal, Mikel Iturbe Urretxa, Txema Perez Lazare, Gorka Unamuno Eguren, Jon
Salvidea Campuzano, and Inaxio Lazkanoiturburu. ANALYSIS OF TECHNOLOG-
ICAL ARCHITECTURES FOR THE NEW PARADIGM OF THE INDUSTRY 4.0.
DYNA INGENIERIA E INDUSTRIA, 94(1):267–271, 2019.

[46] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 8 Edition. Addison-Wesley Professional, May 2014.

[47] Daniel Macedo, Luiz Affonso Guedes, and Ivanovitch Silva. A dependability evalu-
ation for Internet of Things incorporating redundancy aspects. In Proceedings of
the 11th IEEE International Conference on Networking, Sensing and Control, pages
417–422, Miami, FL, USA, April 2014. IEEE.

65

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek


Bibliography

[48] Roberto Morabito, Ivan Farris, Antonio Iera, and Tarik Taleb. Evaluating Perfor-
mance of Containerized IoT Services for Clustered Devices at the Network Edge.
IEEE Internet of Things Journal, 4(4):1019–1030, August 2017.

[49] Subbiah Muthiah, Ramakrishnan Venkatasubramanian, and Cognizant Technology
Solutions. The Internet of Things: QA Unleashed. page 6.

[50] Jakob Nielsen. Usability Engineering. Interactive Technologies. AP Professional,
Cambridge, Mass., 1993.

[51] Victor Estuardo Araujo Soto. PERFORMANCE EVALUATION OF SCALABLE
AND DISTRIBUTED IOT PLATFORMS FOR SMART REGIONS. PhD thesis,
Luleå University of Technology.

[52] Frédéric Tounquet and Clément Alaton. Benchmarking smart metering deployment
in the EU-28. Technical report.

[53] Rob van Kranenburg. The Internet of Things: A Critique of Ambient Technology
and the All-Seeing Network of RFID. Institute of Network Cultures, Amsterdam,
2008.

[54] Konstantinos Vandikas and Vlasios Tsiatsis. Performance Evaluation of an IoT
Platform. In 2014 Eighth International Conference on Next Generation Mobile Apps,
Services and Technologies, pages 141–146, September 2014.

[55] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. AOT vs. JIT: Impact of
profile data on code quality. In Proceedings of the 18th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems - LCTES
2017, pages 1–10, Barcelona, Spain, 2017. ACM Press.

[56] Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey.
IEEE Transactions on Industrial Informatics, 10(4):2233–2243, November 2014.

66

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Background
	The Arrowhead Framework
	Java Virtual Machine
	Testing Tools

	Methodologies
	Service Registry
	Authorization
	Orchestrator
	Gatekeeper
	Security
	Java Virtual Machine
	Tests on different hardware

	Implementation
	Used Software and Hardware
	Testing Environment Configurations
	Generating Test Data
	Service Registry
	Authorization
	Orchestrator
	Gatling Configuration
	Limitations

	Results and Discussion
	Service Registry
	Authorization
	Orchestrator
	Secure mode vs. Insecure mode
	Startup Times
	Found Errors
	Discussion

	Future Work
	Conclusion
	List of Figures
	Bibliography

