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Abstract

In most optic microcopy systems, images are captured using a CCD/CMOS sensor, where the
phases of the converted photons are inevitably lost. Fourier ptychographic microscopy (FPM)
circumvents this issue by capturing microscopy images illuminated from different angles, and
Fourier transforming them computationally (hence the name). Reconstructing the complex
object not only yields amplitude but also phase information, enhanced up to super-resolution.

Yet one disadvantage remains unsolved: FPM is a very ill-posed problem, the algorithm is
not guaranteed to converge to the correct solution, if it converges at all. In practice this means
that there is reasonable doubt if the recovered image actually represents the object under the
microscope.

This work inquires the quality of FPM reconstruction under variation of important system
parameters in simulation and experiment. It shows that the alignment of the illumination
source is quite critical: Even 0.2 degrees off renders reconstruction useless.

This thesis further shows that brightness variations of the individual LEDs are not that
important, even assuming unrealistically high deviations, the impact on reconstruction is still
negligible. This paper thus furthers the cost-benefit analysis of which amount of computation
time should be spent on digital post-correction.

The preceding construction of a FPM prototype, on both hardware and software level is
extensively covered in my Projektarbeit / Student Project at the TU Wien [Siegel, 2021b]. A
digital version of all the source code is available in my git repository [Siegel, 2021a].

Keywords
fourier ptychographic imaging,
super-resolution microscopy,
phase retrieval,
coherent imaging,
numerical robustness,
synthetic aperture
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Kurzfassung

Die meisten Optischen Mikroskope verwenden CCD/CMOS Sensoren für die Aufnahmen,
dabei geht allerdings die Information über die Phase der einzelnen Photonen unwiederbringlich
verloren. Fourier Ptychographie (Fourier ptychographic microscopy, FPM) umgeht dieses
Problem indem Aufnahmen unter verschiedenen Beleuchtungswinkeln im Fourier-Raum
kombiniert werden. Diese digitale Rekonstruktion beinhaltet nun nicht nur die Information
über die Amplituden, sondern auch die der Phasen, und beides mit einer höheren Auflösung
als eine einzelne Aufnahme ermöglicht (super-resolution).

Ein gravierender Nachteil bleibt jedoch: Numerisch betrachtet ist FPM ein sehr schlecht
gestelltes Problem, der Algorithmus konvergiert nicht zwingend zur korrekten Lösung, falls er
überhaupt konvergiert. In der Praxis wirft das Zweifel auf, inwiefern die Rekonstruktionen
tatsächlich das untersuchten Objekt darstellen.

Diese Diplomarbeit untersucht die qualitative Einschätzbarkeit der FPM Rekonstruktionen
unter Variation verschiedener Systemparameter, sowohl in Simulationen als auch experimentell.
Der Ausrichtung der Beleuchtung kommt hier eine tragende Rolle zu, es zeigt ich, dass schon
eine Abweichung um 0.2 Grad die Rekonstruktion vollkommen verfälscht.

Im Gegenteil dazu ist die Lichtstärke der einzelnen LEDs nicht von überragender Bedeutung,
sogar unter für die Praxis unplausibel großen Schwankungen. Diese Arbeit vertieft so das
Verständnis, welche Korrekturen in welchem Umfang im Rahmen der Nachbearbeitung Sinn
machen.

Die vorangegangene Konzeption und Konstruktion eines FPM Prototyps inklusive Software
ist im Detail in meiner Projektarbeit an der TU Wien [Siegel, 2021b] beschrieben. Eine digitale
Sammlung allen verwendeten Quellcodes ist öffentlich zugänglich in meinem Git Repository
unter [Siegel, 2021a].
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Chapter 1

Introduction

Fourier ptychographic microscopy (FPM) is
a computational imaging technique trading
multiple images coherently illuminated from
different angles and computation time for a
high resolution complex image. measuring the
phase of a light-field is non-trivial and usu-
ally quite complicated; comprising of lasers
for coherent light creating diffraction patterns,
which need special detectors with large dy-
namical range. FPM circumvents this prob-
lem by capturing generic microscopic images
(in real space), and transforming them compu-
tationally into Fourier space—hence the name
[Ou et al., 2013]. now one can utilise stan-
dard phase retrieval techniques dating back
to the eighties [Fienup, 1982], to combine the
images to a synthetic aperture. which yields
a recovered image, not only of a resolution
orders of magnitude higher than the images
on their own; it even overcomes the reso-
lution limit of the optical system, obtain-
ing super-resolution [Ou et al., 2013]. Addi-
tionally, the final image is a complex ob-
ject, it not only contains amplitude-, but
phase information as well. This enables FPM
to work on translucent objects, like biolog-
ical samples, without the need of staining.
Various work has been done on using FPM
on translucent objects (e.g. cells), multi-
colour-reconstruction [Ou et al., 2013], digital
refocusing [Ou et al., 2013], high-speed high-
throughput video [Sun et al., 2018]. Yet one

disadvantage remains: The Gerchberg-Saxton
(GS) algorithm [Gerchberg and Saxton, 1972],
which is a type of gradient descent (the formu-
lation is often non-convex), is not guaranteed
to converge to the correct solution (the global
minimum) [Yeh et al., 2015]. Relying solely
on low resolution amplitude images as ground
truth—the phase generally being unknown—
assigning reconstruction quality is non-trivial.
In practice this means that there is reasonable
doubt if the recovered image actually repre-
sents the object under the microscope.

Figure 1.1: Schematic concept of the micro-
scope for FPM, 3D illumination source position
r and 2D Fourier space locations k, adapted
from [22sm22, 2018] under CC-BY-SA license.

A schematic illustration of a typical FPM
setup is shown in Figure 1.1; n angle-varied il-
lumination source (left) illuminates a target,
which results in a diffraction pattern at the
aperture. The detector is at focus, and so cap-
tures generic images.
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1.1 Fourier Optics
1.1.1 Fourier Transform
In many fields of optics—like astronomy, elec-
tron microscopy or crystallography—one is in-
terested in the phase, yet only able to measure
intensity TAT1 of an object A; which consisting
of both amplitude , and phase π,

A 7 , eip

A > C/ ψ , > N/ ψ π > %)ψ 0..
(1.1)

is related to its Fourier transform (FT) :A
by:

:A 7 €%A. 7

∑
,

-,

A ]-i1ηkr[r

A 7 €-0% :A. 7

∑
,

-,

:A ]i1ηkr[k
(1.2)

Where r is an * -dimensional spatial coordi-
nate, and the hat (:) indicates spectral nature;
the variable in question (in this case :A) be-
longs to the Fourier space. This nomenclature
is continued throughout this thesis.

1.1.2 Discrete Fourier Transform
In practice one deals with discretely sampled
data, so r and k are discrete arrays, hence
the FT is replaced with the multidimensional
discrete Fourier transform (DFT), where r 7
%e0ψ e1ψ x x x ψ e/ . and k 7 %P0ψ P1ψ x x x ψ P/ . are
* -dimensional vectors of indices from ) to
--+, which we define as N-1 7 %-0-+ψ -1-
+ψ x x x ψ -/ - +.:

:A 7 €%A. 7
N-1I
r60

A e-i1ηk(r.N (1.3)

A 7 €-0% :A. 7
+I/

F60 -F

N-1I
k60

:A ei1ηr(k.N 

where the elements r/N 7
%e0w-0ψ e1w-1ψ x x x ψ e/w-/ ., respective,

k/N 7 %P0w-0ψ P1w-1ψ x x x ψ P/w-/ ., are to be
performed element-wise. The sum denotes a
set of * nested sums.

Similar to the one-dimensional DFT assert-
ing the input as a superposition of sinusoids,
the multidimensional DFT expresses the input
A as a superposition of plane waves. The
direction of oscillation in space is k/N, their
amplitudes are :A.

For objects A consisting of real numbers—
as images obtained from CCD/CMOS sensors
do—their FTs have a conjugate even symme-
try:

:A 7 :A 1ψ 2ψΦΦΦψ σ 7 :A*

-k ψ A > N/ (1.4)

where the star exponent (*) again denotes
complex conjugation and -k is interpreted pe-
riodically (modulo, mod):

-k 7 %-P0 ce[ -0ψ x x x ψ-P/ ce[ -/ . (1.5)

depending on the fact that oA 7 e-i 2e
 is a

primitive root of unity:

oA 7 e-i 2e
 < oA

A 7 + (1.6)

Throughout this work—as in the majority
of cases—one is dealing with images, so the
dimension * 7 0. For simplicity we define
r 7 %gψ h. and k 7 %Pnψ Po., both consisting of
%-nψ -o. values, leading to:

:A eψ g 7 €%A. 7 (1.7)

7

Ae-0I
n6+

e-i1η en.Ae
Ag-0I
o6+

]-i1η go.Ag Anψo

Anψo 7 €-0% :A. 7

7
+

-n-o

Ae-0I
n6+

ei1ηn e.Ae
Ag-0I
o6+

]i1ηo g.Ag :A eψ g

Of course those are calculated compu-
tationally using the fast Fourier transform
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(FFT), which explaining in detail would
exert this thesis. The interested reader is
referred to scientific documentation from
[Cooley and Tukey, 1965] onward.

1.1.3 Shift Theorem
Multiplying a complex object A by a linear
phase ]mg %i1ηA nr. corresponds to a circular
shift of its spectrum :A 6 :Ak-n and vica versa:

€%A ei 2e
 

rn. 7 :Ak-n

€-0% :Ar-n. 7 :A e-i 2e
 

kn (1.8)

where the subscript is again interpreted
modulo - , as elaborated in Equation 1.5.

1.1.4 Convolution Theorem
The FT translates between convolution (x) and
multiplication (.) of functions. The convolu-
tion theorem states that a convolution of two
sequences :ψ N;

O%g. 7 :%g. x N%g.
7

∑
,

-,

:%h.N%g- h.dh (1.9)

can be obtained as the inverse transform of
the product of the individual transforms:

:O%P. 7 ::%P. . :N%P. (1.10)

1.1.5 Cross-correlation Theorem
Similar to the convolution in section 1.1.4,
it can be shown that if O%g. is the cross-
correlation (.) of :%g. and N%g.;

O%g. 7 :%g. . N%g.

7

∑
,

-,

:*%g>.N%g. g>.dg> (1.11)

then its FT :O%P. is:

:O%P. 7 ::*%P. . :N%P. (1.12)

where ::* denotes the complex conjugate, not
to be confused with the convolution operator
(x).

1.1.6 Autocorrelation
As the name autocorrelation suggests, this pro-
cess cross-correlates (.) a signal with a delayed
copy of itself as a function of delay:

O%g. 7 :%g. . :%g. (1.13)

The autocorrelation is thus a special case of
the cross-correlation, for which the FT is given
by equation 1.12, and simplifies to:

:O%P. 7 ::*%P. . ::%P. 7 T ::%P.T1 (1.14)

1.2 Gerchberg-Saxton
The Gerchberg-Saxton (GS) was originally
constructed to allow the reconstruction
of the phase from two intensity mea-
surements; One in the spatial domain
TεT1, and one in the Fourier domain T:pT1
[Gerchberg and Saxton, 1972].

The algorithm consists of only four steps (re-
spective equations): +st, FT an estimate of the
object AF (1.15); 0nd, replace the modulus of
the estimation :A>

F whit the measured modulus
T:pT to get an estimation of the FT (1.16); 1rd,
inverse FT this estimate to A>

F (1.17);  th, re-
place the modulus of the recovered image A>

F

whit the the measured modulus TεT to get an
estimation of the image AF)0 (1.18). For the
l-th iteration:

:AF 7 T :AFT ei6pM 7 €%AF. (1.15)
:A>

F 7 T:pT ei6pM (1.16)
A>

F 7 TA>

FTeip→M 7 €-0% :A>

F. (1.17)
AF)0 7 TεT eip→M (1.18)

where πF denotes the phase of AF, T T
denotes the modulus of the complex value  

11



(see Equation 2.8).

This algorithm converges to a solution that
satisfies the constraints both in spatial and in
Fourier domain; where the change to each of
the objects in the (: . +)-th iteration would
be negligible. This change is commonly mon-
itored using the squared error, either of the
object in spatial domain <1

Fψj or in the Fourier
domain <1

Fψ :

<1
Fψj 7

I
r
%TAFT - TεT.1 (1.19)

<1
Fψ 7

+

ζ1

I
k
%T :AFT - T:pT.1 (1.20)

where ζ denotes the number of elements
(pixels). <1

F can be shown to decrease with
each iteration; hence the common name error
reduction algorithm [Fienup, 1982]:

<1
F)0ψ + <1

Fψj + :<1
Fψ (1.21)

A generalized Gerchberg-Saxton algorithm
can be used for a plethora of problems, where
partial constraints (measured data or informa-
tion known a priori) are known in each of two
domains, usually spatial and Fourier domain
[Fienup, 1982].
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Chapter 2

Methods

2.1 Fourier Ptychography

The experimental setup of the Fourier ptycho-
graphic microscope constructed for this the-
sis, first proposed by [Zheng et al., 2013], is
intriguingly simple. A two-dimensional sam-
ple is placed on the focal plane of a generic
4f-microscope. Using a low-NA objective lens
allows a wide field of view, with the downside
of lower magnification, thus lower resolution.
Instead of generic illumination (usually colli-
mated), a 10 10 light emitting diode (LED)s
RGB panel is mounted below the objective, ca-
pable of illuminating the sample with plane co-
herent light waves from - 7 +)0 different
directions. A schematic of a Fourier ptycho-
graphic microscope prototype is shown in Fig-
ure 1.1.

Some exemplary documentation of the entire
Fourier ptychographic microscope prototype is
shown in Figure 2.1 (right), including the lap-
top running the Python script for acquisition
(left). The microscope is shown in Figure 2.2,
and consists of the following parts: A) micro-
scope objective (4f-tube), B) x-axis adjustment
screw, C) focus slider, D) sample holder (with-
out sample), E) uEye camera, F) RGB LED
panel, G) Arduino driving the panel.

On the contrary to ptychography, only
intensity images are acquired, using a
monochrome industrial camera (uEye). To op-
erate in the frequency domain, these images nh

Figure 2.1: Fourier ptychographic microscope
prototype version 1 (right), laptop running the
Python script for acquisition (left).

are Fourier transformed to :nh (described in de-
tail in section 1.1.1). Throughout this thesis,
all variables wearing a hat are the FTs of their
counterparts.

These low-resolution images nh, are then
used to reconstruct a high-resolution complex
object A 7 , eip, consisting of amplitude , 7
TAT, and the corresponding phase Λ (Equa-
tion 1.1). Throughout this section, the up-
percase letters (e.g. :Aψ,ψΛ) represent high-
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Figure 2.2: Fourier ptychographic microscope
prototype version 1: A) microscope objective
(4f-tube), B) x-axis adjustment screw, C) focus
slider, D) sample holder (without sample), E)
uEye camera, F) RGB LED panel, G) Arduino
driving the panel.

resolution elements, whereas the lower-case el-
ements (e.g. :aψ Hhψ π) denote their counter-
parts, cropped to the size of the low-resolution
images nh.

Based on the Gerchberg-Saxton GS algo-
rithm (section 1.2), the recovery alternates be-
tween spatial domain with the corresponding
spatial coordinates r 7 %gψ h.; and the Fourier
domain with the spatial frequency coordinates
k 7 %Pnψ Po..

For the entire computation the language
(and development ecosystem of) GNU Octave,
the popular and free MATLAB sister is used,
see the Appendix B for abbreviated code list-
ings of the programs; the full code is online
available [Siegel, 2021a]).

The complex light field of the object A, illu-
minated by a plane wave eiklr from the direc-
tion kh, arriving at the detector as the images

nh 7 TahT1, can be modelled as a coherent imag-
ing process:

ah 7 / x %A eiklr. (2.1)

where (x) denotes the two-dimensional con-
volution, r are spatial coordinates, and k de-
note spatial frequency coordinates. / denotes
the point spread function (PSF) of the lens-
system. Transforming this equation to the spa-
tial frequency domain using Equation 1.2, and
particularly the convolution theorem in Equa-
tion 1.10, one obtains the multiplication:

:a 7 :/ :Ak-kl (2.2)

where :Ak-kl corresponds to the spectrum of
the object :Ah, shifted about kh in the Fourier
domain (see the shift theorem, Equation 1.8).
:/ denotes the optical transfer function (OTF),
which is itself both the FT of the point spread
function (/), and the autocorrelation (.) of
the pupil function :a—which according to the
cross-correlation theorem (Equation 1.14) is:

:/ 7 €%/. 7 :a . :a
dlaMf
7 :a (2.3)

where the ideal pupil function :a, assuming a
perfect lens and coherent light, is defined as:

:a 7

(
+ψ if TkhT w PNi

)ψ otherwise
(2.4)

where PNi denotes the spatial cutoff fre-
quency of this optical system:

PNi 7 NA P+ 7 NA 0.

0+
(2.5)

and P+ respective 0+ denote the wave
number, respective wavelength, of the incident
coherent light.

Through the ocular, the complex light field
is focused on the detector, the resulting (still
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complex) object a>h essentially is the inverse FT
of the complex light field :ah:

a>h 7 €-0%:a. 7 €-0%:a :Ak-kl. (2.6)

The l-th image captured by the camera nh
now is a discretely sampled (<) intensity of the
(magnified) complex object a>h, who’s relation
with its amplitude is:

Hh 7
P
nh < Ta>hT (2.7)

where T T denotes the modulus (absolute
value) of the complex object  , which counts
for both domains r and k alike, and is defined
as:

T T 7 P  * 7
∫
-% . . α% . ψ- > C (2.8)

where this modulus T T always is a real
value—as elaborated in Figure 2.3:

T T > N (2.9)

Figure 2.3: About complex conjugates
[Randall, 2011a], obtained under CC-BY-SA
license.

As for the GS algorithm, the proposed al-
gorithm [Zheng et al., 2013] relies on a sup-
port constraint in two domains (compare to
section 1.2). the constraint in spatial domain
is the accordance of the low-resolution image
with the corresponding part of the object. In

Fourier domain, the coherent transfer function
serves as a well-defined constraint. In a nut-
shell, the proposed algorithm is converged if
the following two conditions are met for all l
images:

TahT < Hhψ -l (2.10)
:ah x :a < :Hhψ -l (2.11)

which can be both expressed as the squared
error M1h of the respective image l in the fol-
lowing way:

M1hψj 7
I

r
%TahT - Hh.T1 (2.12)

M1hψ 7
+

ζ1

I
k
T:ah x :a- :HhT1 (2.13)

where the lowercase M indicates that the er-
ror is in the dimension of the low-resolution
images nh of the size ζ pixels. Since both er-
rors are somewhat equivalent (see section 1.2),
we choose Mhψj because of it saves one FT of the
low-resolution image. It makes sense to define
a squared error <1

Fψj, either based on Mhψj or Mhψ 
per pixel, as the FPM algorithm loops over all
- images once:

<Fψj 7

√
+

-

I
h

+

ζ1

I
r
TahT - HhT1 (2.14)

This sheds light on the quality of the recon-
struction, more specifically: how good is the
accordance of the complex object with all the
measured images. As the algorithm converges,
the quality of the reconstruction increases up
to a point limited by measurement accuracy,
reaching zero only in theory:

<Fψj
F°< <gdhψj (2.15)

Naturally we are quite interested in the con-
vergence of the algorithm, thus how much ac-
tually changed during the last iteration :, on
the basis of the complex object A. This holds
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for the counterpart :A, which is preferred here,
because of it saves one—somewhat costly—FT
of the high-resolution object. For sake of com-
putational convenience, we define a root mean
square (RMS) error <Fψ per pixel, expressing
the change of the whole high-resolution image
:A as the FPM algorithm loops over all l im-
ages successively : times:

<Fψ 7

√
+

ε1

I
k
T :AF - :AF-0T1 (2.16)

where ε denotes the size of the high-
resolution object A. Based on Equations 1.19
for the convergence of the GS algorithm, we as-
sume this holds equally well for FPM, so this
root mean square error (RMSE) diminishes, as
we converge towards the solution:

<Fψh
F°< ) (2.17)

Approaching convergence, the change of the
estimation A through further iteration become
negligible, which can be expressed an exit cri-
terion for the FPM algorithm:

:Nih. 7 : 6 <Fψ w Φ -Φ > N (2.18)

2.2 Recovery Procedure
Now we have all the ingredients to deduct
the procedure for a Fourier ptychograph-
ic microscope prototype as first built by
[Zheng et al., 2013], and shown in Algo-
rithm 1. In the detailed description below,
we will refer to the lines of the code shown
in Algorithm 1 in brackets. An abbreviated
version of the code is shown in Section B.1.5
of Appendix B; the full code is online available
[Siegel, 2021a]).

Algorithm 1 Fourier Ptychography Core
1: function Rekover( a )
2: while <F ε Φ do
3: :< :. +
4: for all kh do
5: :ah < %  c .

1 :Ak-kl :a

6: ah < €-0%:ah.
7: πh < ah
8: ah < Hh Mdpl

9: :Ak-kl < %c .
1€%ah. :a

10: :AF < :A

11: <F <
.

w T :AF - :AF-0T1 ε

12: A < €-0% :A.
13: ,< TAT
14: > < TAT1
15: Λ< A
16: return ( :Aψ<ψAψ,ψ >ψΛ.

As a brief example for the stack of am-
plitudes a, the FPM algorithm operates on,
both the amplitude TahT and the magnitude
of its spectrum T:ahT of three low-resolution
images for arbitrary illumination angles nh
are shown In Figure 2.4. The two examples
on the top two rows lie within the bright-field
(BF) region, the bottom row outside. One can
clearly see the autocorrelation circles in the
BF spectra, described in detail in section 2.6.

First, the captured images nh are transferred
to amplitude Hh 7

P
nh according to Equa-

tion 2.7—since the GS algorithm is based on
amplitude information—which is then fed to
the FPM algorithm as one stack of images a,
thus stated in vector notation.

The core of FPM is an iterative outer loop,
in which an inner loop is covering the images nh
from all l different incident illumination wave-
vectors kh (angle nh) sequentially (Lines 2–11);
until the FPM algorithm can be considered
converged after : outer loops.
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Figure 2.4: Comparison of both the amplitude
of the object TnhT and the magnitude of the spec-
trum T:nhT1 for three arbitrary illumination an-
gles nh; the top two examples within the BF re-
gion, the bottom one outside. One can clearly
see the autocorrelation circles in the BF spec-
tra.

Convergence is estimated by the pixel-wise
RMSE <F, the deviation of the current high-
resolution spectrum :AF to the last iteration’s
:AF-0 (Line 11, Equation 2.16).

For all l low resolution amplitudes Hh 7P
nh, in each of these : loops; the part of

the high-resolution (indicated by upper case
letters) complex object’s spectrum :A, cor-
responding to the incident illumination kh

(Equation 2.2), is rescaled to low-resolution
(lower case letters) :ah with the factor %ζwε.1

Figure 2.5: Magnitude of the spectrum of low-
resolution complex object :a during the first loop
of FPM recovery. The size of the disc corre-
sponds with the cutoff frequency *kNi.

and convolved with the pupil function :a of the
optical system (Line 5, Equation 2.3).

A snapshot of the complex object’s spectrum
:a during the first loop is shown in Figure 2.5,
note that the circle is not full, because the
high-resolution spectrum only covers the parts
accessed by previous locations kh.

The resulting low-resolution spectrum :ah is
now inverse Fourier transformed to ah (Line 6),
and its phase πh is computed (Line 7). A snap-
shot of πh during the first loop is shown in
Figure 2.6.

The estimation : . + is now given by the
combination of the amplitude of the measured
image Hh and the phase of the corresponding
recovered object ah (Line 8).

In the next step, the high-resolution spec-
trum :A gets updated with the FT of that new
estimation :ah (Line 9).

Reaching convergence, the resulting :A is in-
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Figure 2.6: Snapshot of the estimated local
phase πh during the first loop of FPM recov-
ery. Clearly visible are vague structures of the
Target, and sinusoidal patterns due to the shift
kh (see shift theorem Equation 1.8).

verse Fourier transformed, yielding the high-
resolution complex object A; And thus ampli-
tude , and phase Λ (Line 12–15, according to
Equation 1.1).

2.3 Resolution & Sampling

2.3.1 Spatial Domain Sampling

Abbe showed 1873 that light with wavelength
0, traversing a medium with refractive index
l and converging to a spot with half-angle n
leads to the resolvable distance I of:

I 7
0

0l iad n
7

0

0 NA (2.19)

where the numerical aperture (NA) is a di-
mensionless number characterising the range of
angles over which the optical system is capable

Figure 2.7: Magnitude of Spectrum of the
high-resolution object :A during the first loop
of FPM recovery, with synthetic NA (white
line). Clearly visible are the l updates (disks)
to the spectrum. Note the size of the disks
corresponds with the cutoff frequency *kNi,
also compare their relative size to the spectrum
shown in Figure 2.5.

of accepting light:

NA 7 l iad n (2.20)

Considering the refractive index l < + in air,
the objective NA of our system being 0.055,
and using the red LED (best coherence) with
wavelength of about 0jal < 310 dc, we obtain
a resolution limit of:

IiMe 7
0jal

0 NAiMe
< 2x4µc (2.21)

According to the Nyquist-Shannon sampling
theorem this is twice the upper limit on the
pixel-size of the imaging detector:

RNNlψgMn 7
IiMe
0
< 0x µc (2.22)
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2.3.2 Illumination & FPM NA
The total synthetic aperture NAa g of the
FPM setup is shown by [Zheng et al., 2013] to
be the sum of objective NA and illumination
NA:

NAa g 7 NAiMe . NAfmg (2.23)

The illumination NA is easily calculated:
The RGB panel features 15 LEDs in g and h
direction, each 3cc apart, giving a range of
Δg 7 Δh 7  )cc. The relation of the illumi-
nation angle n with panel dimensions ΔgψΔh,
and height of the objective lens Δ is according
to the law of tangents:

l d n 7
Δg

Δ 
(2.24)

Resolving Equation 2.24 for n, with Equa-
tion 2.20, and refractive index l < + for air
yields:

NAfmg 7 iad ngMn 7 iad % .=l d
Δg

Δ 
. (2.25)

Given that in our setup the objective lens
is located  7 104cc above the panel, the
illumination NA is:

NAfmg 7 iad % .=l d
 )

104
. < )x04 (2.26)

The total synthetic aperture NAa g of our
FPM setup is according to Equation 2.23, the
sum of objective NA (0.055) and illumination
NA from Equation 2.26:

NAa g 7 NAiMe . NAfmg < )x10 (2.27)

Taking this into account, Equation 2.21 sug-
gests a lower limit for the resolution of the re-
constructed image:

Ia g 7
0jal

0 NAa g
<   ) dc (2.28)

which is well below the theoretical resolu-
tion limit of the objective, see Equation 2.21,
defining the term super-resolution microscopy.

2.3.3 Resolution Test Target
The resolution of the USAF1951 test target,
see Table A.1, is evaluated the following way:

ImkMa 7 0(h )(hN-0 .4 bgwcc (2.29)

where lb denotes the Group (-0 to 7), and
la the Element (1 to 6) within that group, line
pair (lp) means a black and a white line. One
of the shown black lines then has a diameter
of:

Ifdha 7 0-(h )(hN-0 .4)0 cc (2.30)

2.3.4 Fourier Domain Sampling
As elaborated in Section 2.1 the second conver-
gence criterion the GS algorithm demands, is
cast as a compulsory redundancy of the spectra
stitched together in Fourier space. According
to [Zheng et al., 2013] the optimum overlap is
about 30%, which over satisfies the redundancy
demand, as the Fourier space is successively
overlapped; so most pixels are addressed sig-
nificantly more than once.

2.3.5 Spatial Coherence
Fourier Ptychography generally operates in
far-field, indicating that the detector is lo-
cated at a distance I, far away from the emit-
ting light source. Fraunhofer diffraction occurs
when:

f1

I0
~ + (2.31)

where f denotes the aperture, in our case re-
sembled by the largest dimension of the source
emitting light of the wavelength 0, viewed from
distance I (the position of the object).

In our case the emitting area of the red LEDs
is a square about +)) µc, estimated roughly
by measuring the surface-mount-device (SMD)
LED size, shown in Figure 2.8a; and compar-
ing it with the emitting area of a single LED
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captured by the microscope prototype, Fig-
ure 2.8b. As largest dimension we take the
diagonal of the LED, which amounts to about
+ ) µc. So the object has to be set up at a
distance I:

I. f1

0
< 1+cc (2.32)

In all the experiments throughout this thesis
the light source is positioned at far-field dis-
tance. A thorough discussion on spatial co-
herence in Fourier Ptychography is shown in
[Dong et al., 2014].

Coherence Length

Assuming a circular aperture f (resembling a
circular emitting area, in our case again ap-
proximated by the diagonal of the square emit-
ting area of about + ) µc), the Van Cittert-
Zernike theorem is often approximated to the
following metric of a coherence length:

RN 7 +x00
0 

f
< +x5cc (2.33)

where  is the distance of the object from
the source, in our case this is 104cc. At this
object plane ( ), one may assume an area with
largest dimension of RN as illuminated by a co-
herent plane wave.

2.3.6 Temporal Coherence

Furthermore a LED emits somewhat (tempo-
ral) coherent light of a given wavelength, de-
pending on the semiconductors used. The
spectra for the red, green and blue LEDs of
a typical SMD chip are schematically shown in
Figure 2.9. The spatial coherence, full width
half maximum (FWHM), is typically around:

Δ0fal < 1) dc (2.34)

(a) Photograph of the LED matrix, estimate of the
individual RGB SMD LEDs size.

(b) Microscope image of one individual RGB SMD
LED, estimate of the emitting area (red LED, top).

Figure 2.8: Images of the LED matrix respec-
tive of one individual RGB SMD LED, used
for estimating the emitting area.

2.3.7 Field of View

In theory the FPM algorithm is able to op-
erate on images of any size, as long as spa-
tial coherence on the object-level is given
[Zheng et al., 2013]; the field of view (FOV) of
object needs to be smaller than the spatial co-
herence length of the illumination. Typically
a LED panel is used for FPM, which has good
spatial coherence, as derived in Section 2.3.5,
so the analysed images can be quite large.

In practice though all these images need to
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Figure 2.9: Schematics of a RGB SMD LED
spectrum.

be kept in memory—otherwise one would need
to repeatedly load all of them during every it-
eration of the recovery. Thus the captured im-
ages are usually not processed as whole, but
are segmented and processed in patches, being
stitched together subsequently [Zheng, 2016].

For the sake of simplification, throughout
this thesis only the central part of the captured
images is processed. Unless noted otherwise,
this area of interest (AOI) is set to 023 023 px.

2.3.8 Directivity
In general a LED emits spatially and tempo-
ral coherent light to some degree; and so shows
in both domains sharply peaked spectra. Spa-
tially peaked means that—opposed to a point
source emitting omnidirectional with the same
intensity—the intensity of a LED source is de-
pending on the view angle n.

>fal%n. 7 >fal Δ%n. (2.35)

where the attenuation Δ can be approxi-
mated roughly by a cosine function (Lambert’s

cosine law), depending on the illumination an-
gle n and the directivity γ:

Δ%n. > =ei %
n

γ
. (2.36)

In first approximation we may consider the
SMD LED an isotropic point source, which re-
sults in a directivity γ of about 120 degrees
FWHM (Lambert’s cosine law), as shown in a
polar chart in Figure 2.10: Full intensity at the
centre, declining to 50% at 60 degrees off, to
very little light outside of 60 degrees, thus con-
stituting the directivity γ shown as dark green
area.
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Figure 2.10: Schematics of the directivity of a
single SMD LED

2.4 Convergence & Quality
The heart of FP is the iteration of the recursive
Gerchberg–Saxton (GS) algorithm, which con-
verges well on convex problems in infinite time
[Fienup, 1982]. On first approximation our
problem is convex enough [Zheng et al., 2013],
but we still only have finite time to wait.
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Figure 2.11: Convergences of FPM simulation
reconstruction vs iterations (lower is better).

As with all iterative algorithms it is crucial
to define exit criteria. One first exit criterion
will be the loops variable, that limits the num-
ber of overall iterations, and considers the re-
sult converged anyway. But how good actually
is this result?

2.4.1 Convergence
Since recovering the unknown phase of a com-
plex object leaves us no ground truth to com-
pare the result with, we have to find other mea-
sures.

The first guess would be to compare the
per-step changes to the complex object, as
per Equation 2.16, described in detail in Sec-
tion 2.1. The obtained convergence can and
will be used two ways: Firstly, it serves as
a second exit criterion for the recursive al-
gorithm, to stop when the improvements ob-
tained by further iteration get negligible (re-
gardless if the maximum number of iterations
has been reached or not).

Secondly, plotting convergence over itera-
tions after the algorithm stopped (due reach-
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Figure 2.12: Discordances between FPM simu-
lation reconstruction and low-resolution images
vs iterations (lower is better).

ing the limits of either loops or eps), allows us
to estimate if the algorithm already converged
or might have been stopped to early.

The convergence of an exemplary simula-
tion is shown in Figure 2.11, where it follows
Equation 1.21; it decreases continuously. But
since this is always true, this fact alone makes
a very bad marker for general recovery quality.

Consulting the speed of convergence (its
derivation) is not overly helpful either, as our
simulations show that both initial and finite
convergence, as well as its speed, differ vastly
between samples.

Additionally, [Fienup, 1982] showed, that
plateaus are quite common in the convergence
of the GS algorithm, so it would not be wise
to abort the recovery, on the grounds of only
small changes to the complex object alone.

We thus use a very conservative convergence
exit criterion ceps 7 +e) / px.
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Figure 2.13: Quality of FPM simulation re-
constructed amplitude vs iterations (lower is
better).

2.4.2 Discordance

Similarly one might compare the amplitude of
the low-resolution estimate TahT of the l-th iter-
ation with the amplitude of its respective low-
resolution image Hh, summing the RMS error
as per Equation 2.14, described in detail in Sec-
tion 2.1. The so constructed and for the sake
of simplicity termed discordance, has been
shown by [Fienup, 1982] to closely fallow the
convergence.

One exemplary case is shown in Figure 2.12;
where the discordance is continuously de-
creasing with iterations, as anticipated by
Equation 1.21.

Note that the discordance only measures
the changes of the estimated amplitudes, ig-
noring the respective phases, so it is not the
best marker for the quality of the whole re-
construction. Nevertheless we define a third
exit criterion aeps, halting the iteration upon
reaching. This limit is quite conservatively set
to aeps 7 +e) / px.
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Figure 2.14: Quality of FPM simulation recon-
structed phase vs iterations (lower is better).

2.4.3 Amplitude Quality

In simulations it might seem as if we were
able to readily denote the quality of the re-
constructed object: Every step during recov-
ery, we can compare the complex object with
the ground truth, summing over the root mean
square (rms) of the differences. For the ampli-
tude this aquality is easily interpreted, as it is
real-valued: The lower the better. An example
of a simulated recovery is shown in Figure 2.13.

Since the amplitude is only one side of the
medal (the other being the phase), aquality
alone does not tell a lot about the actual qual-
ity of recovery. So just because aquality is
decreasing with iterations, as it is in this ex-
ample, the phase might actually be improving
at the same time; thus the overall quality might
still be rising!

2.4.4 Phase Quality

Even worse, we found the RMS error of the
phase to be not particularly useful at all. This
seems puzzling first, but might actually be very
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simple.
The phase space spans 0., and it is cyclic,

this means there is no north or south in phase
space; its orientation is arbitrary. If one were
to shift the whole phase image by adding a
scalar, let’s say .; qualitatively nothing hap-
pens. Quite on the contrary, if we are com-
paring the phase image with its ground truth,
and then shift the whole phase image, the RMS
error changes even if there is no qualitative
change in physical properties!

In Figure 2.11 we can see the RMS error
pquality of the phase of an exemplary
simulated recovery increasing with iterations.
This might, but does not have to be, a sign of
divergence.

In conclusion, we will only use RMS error
convergence over iterations as an estimator
of overall quality of both experiment and sim-
ulation.

2.5 Confidence

Since FP recovers an unknown phase on a so-
phisticated use of amplitude information, we
run into trouble where the object is black (near
zero transmittance). Regardless of the origin
of the light the amplitude at the detector is
now equally zero. Starting with an arbitrary
phase, but unable to improve due to lacking
information, the GS algorithm thus returns an
arbitrary phase.

Similarly for under- and overexposed pixels,
including hot pixels of the sensor. In these
cases the information is lost at the sensor, with
identical consequences for the recovery.

Considering the fact that these hot/cold pix-
els do not contribute to the recovery, one might
consider not using their information during
the recovery at all! This is done through-
out all the operations we describe in this the-
sis via a logical mask for each of the low-

resolution images separately. One can option-
ally disable this by setting sparsing to false.
The parameters for hot pixels are empirically
set to, hot = 245 uint8, respective, cold =
10 uint8, where a unsigned integer (uint) l is
defined as:

) + l + 022ψ l > N (2.37)

2.5.1 Sparsely Sampling
This exact process is also proposed by
[Zheng, 2016], terming it sparsely sampling, if
only on very different grounds. There, the goal
is to improve the quality of the recovery. This
can evidently be done by combining each of the
low-resolution-images by multiple ones, taken
at different exposures, to one high-dynamic-
range (HDR) image. Obviously this means a
manifold of the picture taking process. Al-
ternatively [Zheng, 2016] showed sparsely sam-
pling to achieve similar effects, without raising
the number of pictures to be taken, and with a
negligible numerical cost of one matrix multi-
plication, generally even with a sparse matrix.

But considering sparsely sampling works on
a low-resolution-image level, we would propose
that the combination of HDR with sparsely
sampling would still be a significant—if some-
what costly— improvement.

2.5.2 Amplitude Confidence
It becomes obvious, that the GS algorithm fails
at recovering the amplitude at positions where
the phase has sharp edges. In order to show
this, we simulate using the most extreme cases;
binary (black and white) images resembling a
chess board and chess pieces, as shown in Fig-
ure 2.15. The amplitude is well reconstructed
overall (chess board); except it shows fine lines
where there should be none, at places where
there is a sharp edge in the phase image (right).

This is shown for the amplitude in the bot-
tom row (left), where white denotes a high con-
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fidence in the reconstruction and black indi-
cates low confidence.

Here we used the edge filter edge from
Octave Forge’s package image, with the
method Canny, to generate the amplitude
confidence map.

In all the simulations and recoveries
throughout this thesis, this confidence map is
used to evaluate the quality of the reconstruc-
tion, and are discussed where necessary.

2.5.3 Phase Confidence

Whatever the reasons why one ends up with
a reconstructed phase image which is in parts
arbitrary, it would be the least to know where
the recovery most certainly did not work. The
most convenient way to achieve this is a phase
confidence map created at the end of the re-
covery, highlighting near black areas of the re-
covered amplitude.

Throughout all the simulations and recover-
ies we use a lower threshold of 3 uint8 to mark
dark areas, in order to get an idea of the confi-
dence of the recovered phase, as shown in Fig-
ure 2.15. The phase image is well reconstructed
only at the white tiles of the chess board, and
it fails completely in the black tiles; leading to
patches of arbitrary phase.

This is shown for the phase in the bottom
row (right), where white denotes a high
confidence in the reconstruction and black
indicates low confidence.

In all the simulations and recoveries
throughout this thesis, this confidence map is
used to evaluate the quality of the reconstruc-
tion, and are discussed where necessary.

Amplitude \.\ Phase .

G
ro

un
d

Tr
ut

h
Re

co
ns

tr
uc

te
d

O
bj

ec
t

C
on

fid
en

ce
s

Figure 2.15: Comparison of the ground truth
(top row), with the reconstructed object (middle
row), and the confidence maps (bottom row); in
all cases amplitude left, phase right. Both the
amplitude and phase of the ground truth are
binary (0 uint8 and 255 uint8, respective 0 rad
and . rad), as are the confidence maps (bottom
row).

2.6 Alignment
The scope of this work is to illuminate the ro-
bustness of FPM to variation of the critical sys-
tem parameters. Based on the GS algorithm,
FPM uses multiple images taken from differ-
ent illumination angles, so recovery obviously
relies on the knowledge of the illumination po-
sitions, but to what degree? One objective of
this thesis is to investigate the six degrees of
freedom (DOF) of the illumination setup for

25



its respective impact on the subsequent FP re-
covery.

Euler Angles

Lets first define the used nomenclature of the
axes and the Euler angles. A visualisation of
this shown in Figure 2.16, for the rotation op-
eration:

:%vψ oψ ß. 6 %xψyψ z.< %x>ψy>ψ z>. (2.38)

where a rotation around the z-axis is de-
noted as ß, and will be called yaw throughout
this thesis. Likewise vψ o denote rotations
about the x-axis respective the y-axis; and
will be called roll, respective pitch.

The corresponding translation operation,
called shift, is not shown graphically, due to
its simplicity of just shifting along the respec-
tive axis:

:%ΔgψΔhψΔ . 6 %xψyψ z.< %x>ψy>ψ z>. (2.39)

2.6.1 Alignment Simulation
Simulating FPM recovery is quite a straight
forward task, as the concept is basically em-
bedded in the FPM algorithm itself. The pro-
cedure of this simulation is shown in Algo-
rithm 2, which closely follows the nomencla-
ture from Algorithm 1. An abbreviated ver-
sion of the code is shown in Section B.2.2 of
Appendix B; the full code is online available
[Siegel, 2021a]).

Multiple images are rendered as if from var-
ious illumination angles kh, and so comprise
different regimes in spatial frequency space
of the complex object. So if one happened
to know the complex object (amplitude and
phase) beforehand (Line 2), its Fourier trans-
form could be decomposed into a stack of simu-
lated low-resolution amplitudes Hh (Lines 7–8)!

oß
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n x>

n
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v n z

y>

z>

x>

Figure 2.16: Schematics of the used nomen-
clature of the Euler angles for rotations roll v,
pitch o and yaw ß around the respective axes
of the orthonormal base (x,y,z).

These stacks are generated step wise (Line 4)
with respect to the system parameter of inter-
est, e.g. lateral shift along the x-axis (Line 5),
each time recovered using the standard FPM
algorithm (Line 9).

Quite on the contrary to actual experiments,
in simulations like this, we are able to readily
denote the quality of the reconstruction: Ev-
ery step during recovery, we can compare the
complex object with the ground truth, sum-
ming over the root mean square error (RMSE)
of the differences.

For the simulation of misaligned FPM recov-
ery, the amplitudes Hh of a stack of simulated
low-resolution images nh are first induced with
noise of magnitude αg in the following way:

The k-space positions kh corresponding to
the locations rh of the physical LEDs in real
space are defined according to Algorithm 3. An
abbreviated version of the code is shown in Sec-
tion B.1.3 of Appendix B; the full code is online
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Algorithm 2 Alignment Simulation
1: procedure Aligning( ,ψΛψR )
2: A < , eiΦ

3: :A < €%A.
4: for all m misalignments αg do
5: kh < Krid( ΔgψΔhψΔ ψ vψ oψ ß )
6: for all kh do
7: :ah < %  c .

1 :Ak-kl :D

8: Hh < €-0%:ah.

9: Ag < Rekover( H )

available [Siegel, 2021a]).
To simulate misalignment of all six degrees

of freedom, the LED’s positions rh are first ro-
tated about the x-,y-, and z-axis (respective
rotation matrices Eπψ E ψ Eγ in Line 2). The
rotated grid r is then shifted in x-,y-, and z-axis
(Line 3) and mapped to the two-dimensional
sensor plane (Line 4) in Fourier space, where
P+ 7 0.w0 denotes the spatial frequency of the
incident light.

Algorithm 3 K-space Grid Variation
1: function Krid( ΔgψΔhψΔ ψ vψ oψ ß )
2: r < EγE Eπr
3: r < r .Δg.Δh .Δ 
4: k < -P+ iad % .=l d %rnxwrp..

2.6.2 Alignment Calibration

A structural downside of FPM is that the il-
lumination source is off-focus, so its alignment
is—though crucial—not directly measurable.

The current state of the art is based on sim-
ulated annealing [Zhou et al., 2018], nested in-
side the FP routine. This poses two key prob-
lems: Simulated annealing crucially depends
on a quite accurate initial guess of several pa-
rameters, furthermore this method is quite ex-
pensive (it takes a long computation time).

To circumvent these, [Eckert et al., 2018]

proposed a surprisingly simple yet beautiful
calibration algorithm using autocorrelation to
correct for the positions—at least for the im-
ages taken under bright field conditions.

As icing on the cake, during the process
this method necessarily calibrates the magni-
fication of the optical system, which is usu-
ally known only to some degree. Based on
[Eckert et al., 2018], the proposed method is
a standalone calibration: Introducing a single
step running prior to, and completely detached
of, the standard FPM routine!

Bright-Field Calibration

In the experimental FPM setup, the camera
records intensity images nh, where l indicates
the illumination direction nh of a coherent
plane wave which corresponds to the spatial
frequency kh in the high-resolution spectrum
:A. Its two-dimensional FT :nh, which accord-
ing to Equation 1.1 is:

:nh 7 €,nhR 7 €,THhT1R (2.40)

where Hh denotes the amplitude of the ob-
ject. Using the cross-correlation theorem
(Equation 1.12), this spectrum amounts to:

:nh 7 :Hh . :Hh (2.41)

where (.) denotes autocorrelation as a spe-
cial case of cross-correlation shown in sec-
tion 1.1.6. the FT :nh of l-th discretely sampled
intensity image captured by the camera can be
modelled according to Equation 2.1, and de-
rived in detail in section 2.1 to:

:nh .7% :D x :Ak-kl. . % :D x :Ak-kl. (2.42)

The term :D x :Ak-kl corresponds to the spec-
tral object, shifted about kh, and convolved
with the spectral pupil function. This creates
a disk of radius PNi at the position kh, consist-
ing of the spectral values of the object where
k w PNi, and zero outside. Typically a Fourier
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spectrum decays sharply from the zero-order
term of Fourier spectrum (DC) term—the av-
erage (arithmetic mean) of the entire image,
located at frequency zero, thus at the centre—
toward higher frequencies, usually about a few
orders of magnitude.

Figure 2.17: magnitude T:HhT of the spectrum of
one exemplary low-resolution image, assumed
(dashed circle) and corrected position (circle).

The autocorrelation operation (.) now cor-
relates mentioned disk with a conjugate copy of
itself; effectively scanning the DC term of one
disk over the pupil :D of its conjugate. Coher-
ently summing at each pixel to form :nh, leads
to high values where the pupil overlaps the DC
term, and negligible outside.

Only when the image nh is illuminated un-
der BF conditions, the DC term of the object
spectrum :A%k-kh. is located within its pupil’s
pass band :D ; leading to high values where the
pupil overlaps the DC term, and negligible out-
side.

The amplitude :Hh of the spectral image :nh
now shows two distinct disks located at kh and
-kh, exemplary shown in Figure 2.17, along

with the assumed position (dashed circle), and
its correction (circle).

Circle Detection

The position correction problem now shifted to
a much simpler image recognition problem! As
[Eckert et al., 2018] show, one simply needs to
fit two circles to the autocorrelation disks of
each of the spectra :nh, to find the illumination
positions kh and -kh.

Figure 2.18: magnitude T:HhT of the spectrum of
one exemplary low-resolution image just out-
side the BF area, with the assumed position
(dashed circle) and flawed corrected position
(circle). Note that there are no autocorrelation
disks visible.

Note that outside the BF region, as shown
exemplary in Figure 2.18 the autocorrelation
does not overlap the DC term; there are no
distinct circles, thus no position correction!

Yet the proposed algorithm suggests the ex-
istence of a disk, which has to be evaluated
manually, and in this case quite obviously un-
reliable.
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Algorithm 4 Alignment Calibration
1: :nh < €,nhR
2: :nh < T:nhTwmeanh%T:nhT.
3: :nh < be.0+%:nh.
4: :nh < gauss%:nh.ψ ε.
5: for all m > n images do
6: eg < imfindcircles%e *Δeψ δ.

7: e < mediang%eg.
8: for all n images do
9: c0ψ c1 < imfindcircles%e.

10: ch < argmin0ψ1%Tc0ψ1 - khT.

The procedure is shown in Algorithm 4, the
corresponding lines are shown in brackets. An
abbreviated version of the code is shown in Sec-
tion B.2.1 of Appendix B; the full code is online
available [Siegel, 2021a]).

For a set of l low-resolution images nh, the
two-dimensional FT is computed via Equa-
tion 1.7, using FFT routines (Line 1).

The magnitude of these spectra is divided by
their mean, to filter out the information about
the sample, which we are not interested right
now (Line 2).

The magnitude of the Fourier spectra usu-
ally span some orders of magnitude, even after
the DC term is lost, so we take the logarithm
(Line 3).

Since the following function for the circle de-
tection, imfindcircles is part of the image
package in Octave Forge. Being based on a
Hough transform—alas on edge detection—it
wants the background as smooth as possible.
So we blur the image (Gaussian blur), where
ε 7 0 px was found empirically to work well
(Line 4).

Since the Hough transform tests all possible
circles, its speed heavily relies on the knowl-
edge of the radii, which are in the case of FPM
all the same (pupil function in Equation 2.3).

So we first run imfindcircles on a subset
R > l with our initial guess for the radius (the

cutoff frequency in Equation 2.4) and some rea-
sonable deviation, subsequently taking the me-
dian of the l best radii (Line 7).

Using this estimated radius to initialize the
Hough transform, we search for the two best
circles in all l images (Line 9), since all the low-
resolution images contain two autocorrelation
discs (at kh and -kh), due to the symmetry of
the problem.

Based on our initial positions kh, we take
the one nearest of the two c0ψ1, in order to
get all the different positions once (Line 10),
leaving us with l corrected positions ch.

This calibration has to be performed only
once for a given microscope setup, subsequent
FPM recovery operations can all use the cor-
rected BF positions ch, as shown exemplary for
one experimental setup and three simulations
in Figure 3.11.

Magnification Calibration

The shown alignment calibration method
relies on a somewhat accurate initial guess
of the radius e of the autocorrelation disc
in Fourier space. For the circle detection
to work out, we need to establish a relation
for the radius e, based on our knowledge
about the optical system. As a side-effect
the alignment calibration process necessarily
calibrates the magnification of the optical
system [Eckert et al., 2018].

The magnification RHN of an optical system,
where an object with size Rai. is captured by
a camera with sensor pixel-size RNNl, may be
described as:

RHN 7
Rai.
RNNl

(2.43)

Essentially the lowest possible frequency
λgdh the optical setup is able to catch, is one
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mode across the whole image space; which re-
lates to the highest possible spatial frequency
PgMn:

PgMn 7 .Rai. 7 .
RHN

RNNl
(2.44)

alas the Fourier space is scaled inverse pro-
portionally to real space, and spans:

€ 6 ,-PgMnψ-PgMn . γPψ x x x ψ PgMn - γPψ PgMnR
(2.45)

where γP is the discreet step-width in Fourier
space, defined by the resolution (amount of
pixels) of the sensor lNNl:

γP 7
0PgMn

lNNl
(2.46)

Now the radius e of the autocorrelation disc
in Fourier space in pixels corresponds to the
spatial cutoff frequency PNi of the pupil func-
tion (see Equation 2.5):

e 7
PNi
γP

7
NA P+

γP
7

0.NA
0+γP

(2.47)

Combining these three equations, one is able
to obtain a relation for the magnification RHN,
that depends only on directly measurable vari-
ables, and so represents a possibility for cali-
bration:

RHN < NAlNNlRNNl
0+e

(2.48)

where lNNl denotes the size of the low-
resolution image n in pixels; RNNl the pixel-size
of the sensor in meters; and the radius of auto-
correlation disc in Fourier space, also in pixels.

2.6.3 Extrapolation to Dark-Field
We would advise against fully automatising
alignment correction via extrapolation to the
dark-field (DF) based on BF correction of
section 2.6.2. The FPM spectra pose a
hard problem for edge detection based Hough
transforms—due to high speckle noise of the
spectra etc—which led [Eckert et al., 2018] to
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Figure 2.19: LED positions (nodes) of a
slightly misaligned panel in 3D real space.

a random sample consensus (RANSAC) based
automated outlier detection. For correcting
fine displacements of the individual LEDs of a
well positioned LED panel, this might be use-
ful, but would classify a bad aligned panel en
gros as outliers!

Additionally, if one takes into account at
least yaw (if not tilt and roll) of the panel, the
mentioned RANSAC method completely fails.
Such an slightly misaligned LED panel is ex-
emplary shown in Figure 2.19. In this case the
LED panel with 3cc spaced LEDs is posi-
tioned at a height of -5)cc (under the tar-
get), with a shift of +cc in x-, y-, z-axis, and
+* tilt, roll, and yaw, in respect to the centre.

The corresponding k-space grid is shown in
Figure 2.20. Fitting the corrections ch to this
grid in particular, and to an even slightly mis-
aligned panel in general, projected to a strict
2D grid in k-space, might just be a task too
complex.

Manual inspection of the correction posi-
tions on the contrary, might reveal some sys-
tematic misalignment, for example a displace-

30



−200 0 200 400

−400

−200

0

200

400

ky
/

px

kx / px

Figure 2.20: Comparison of the k-space pro-
jections kh (nodes) of the LED positions of a
slightly misaligned panel (violet) shown in Fig-
ure 2.19; versus the initial panel (orange).

ment (shift) of the whole LED panel. In such
a case it is convenient to correct the whole ar-
ray, based on the mean, median and standard
derivation of the BF corrections.

2.7 Illumination
The most convenient and frequently used setup
for the illumination is a shift-register con-
trolled RGB LED matrix, made for displays
in urban spaces. This makes it a cheap and
easy to implement solution proven to work
[Ou et al., 2013], in spite of not all the LEDs
being equidistant to the target, and orienta-
tion of the individual LEDs. This work now
inquires the impact of the resulting brightness
variation on the FPM reconstruction.

2.7.1 Luminosity Simulation
The simulation of inconsistently illuminated
FPM recovery is based on the general FPM

simulation, as detailed in Section 2.6 for mis-
alignment. Instead of the position, now
the overall brightness of the resulting low-
resolution images are altered: The amplitudes
Hh of this stack of simulated low-resolution im-
ages nh are first induced with noise of magni-
tude λ (shown in Figure 2.22) in the following
way:

H>h 7 Hh . λe (2.49)
where e denotes a pseudo-random variable,

e > , %ι 7 )ψ ε1 7 +. (2.50)

where , %ιψ ε1. is the normal distribution
with mean ι and variance ε1, who’s prob-
ability density function :%μ. (shown in Fig-
ure 2.21) is given by:

:%μ. 7
+

ε
P
0.

e-
1

2
( e-μ
π

 2 (2.51)
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Figure 2.21: Probability density function :%μ.
normal distribution of Equation 2.50.

Optionally the amplitudes Hh are then atten-
uated in respect to their illumination angle nh
according to a given directivity γh from Equa-
tion 2.36:

H>>h 7 H>hΔ%nh. (2.52)
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Figure 2.22: Average brightness ι of the noisy
amplitudes H>h, simulating inconsistent illumi-
nation from the LED positions xh,yh (nodes);
featuring noise λe.

The procedure of this simulation is shown in
Algorithm 5, the corresponding lines are shown
in brackets. An abbreviated version of the code
is shown in Section B.4.1 of Appendix B; the
full code is online available [Siegel, 2021a]).

A set of arbitrary test-amplitudes is gener-
ated assuming perfect alignment (Lines 2–4).
For each of the noise magnitudes λg (Line 5),
this stack of low-resolution amplitudes Hh is
now altered—either attenuating only (Line 9),
or additionally accounting for directivity γ
(Line 11)— each time recovered using the
standard FPM algorithm (Line 14).

The attenuation factor Δ%nh. for directivity
γ 7  )* is shown for all l illumination positions
in Figure 2.23.

Combining noise and attenuation due to
directivity according to Equation 2.52, one
obtains a simulation of inconsistent illumina-
tion, shown exemplary in Figure 2.24.

Similarly to simulating misalignment we are

Algorithm 5 Luminosity Simulation
1: procedure Alight(,ψΛψ λg)
2: A < , eiΦ

3: :A < €%A.
4: kh < Krid( )
5: for all m noise magnitudes λg do
6: for all kh do
7: :ah < %  c .

1 :Ak-kl :D

8: Hh < €-0%:ah.
9: Hh < Hh . λg randn%.

10: if directivity then
11: Hh < Hh =ei %n

01+
δ .

12: ιh < mean%Hh.
13: εh < std%Hh.
14: :A < Rekover(H)
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Figure 2.23: Attenuation factor Δ%n. due to
directivity γ 7  )*.

able to readily denote the quality of the recon-
struction: Every step during recovery, we can
compare the complex object with the ground
truth, summing over the root mean square er-
ror (RMSE) of the differences.
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Figure 2.24: Average brightness ι of the ampli-
tudes Hh simulating inconsistent illumination
from the LED positions xh,yh (nodes); atten-
uation Δ%n. due to directivity γ and noise λe.

2.7.2 Luminosity Calibration

Assuming the LEDs are all equally bright (we
can only hope so), we still do not end up with
equal intensity at the sample. This is because
the LEDs are assembled to the flat surface
of the panel shining upwards. Due to the di-
rectivity described above, the intensity of the
individual LEDs vary with the view angle; less
and less light arrives at the sample, the farther
the LEDs are located from the central position.

This issue has been investigated before
[Zhang et al., 2019], where it is solved using
simulated annealing embedded in the recovery
process, with the downside, that it significantly
prolongs the recovery time.

In order to compensate for the inconsistent
illumination of the LED panel, we therefore
propose a very simple, yet effective calibra-
tion step using a diffuser target. This calibra-
tion has to be done only once for the physi-
cal setup, and can be used for all subsequent

measurements. In the following description we
will refer to the lines of code in Algorithm 6 in
brackets. An abbreviated version of the code
is shown in Section B.4 of Appendix B; the full
code is online available [Siegel, 2021a]).

First, all images i (this time the raw inten-
sity images are used!) are loaded and analysed
(Lines 2–4), where the bold notation indicates
the vectorial property of this stack of images.
Subsequently, the mean intensity value ιh of
each image (mean over the pixel values) is com-
pared to the mean intensity of all images u;
confounding the luminosity correction coeffi-
cients Δh for each image (Line 5). This co-
efficients are exported as a vector Λ (Line 6),
which can be used to normalise all further mea-
surements captured with this physical setup.

The arithmetic mean is preferred here over
the median, because the LED brightness vari-
ations are only very subtle (few %), and no far
outliers are to be expected.

Algorithm 6 Luminosity Calibration
1: function Kalibright( i )
2: for all n images nh do
3: ιh < mean%nh.
4: εh < std%nh.
5: Δh < meanh%u.wιh
6: return ( Λ )

Targetless

For the BF region, the calibration of the LED
luminosity is straight forward: The FP micro-
scope is equipped with no target at all; which
yields pure white images in the BF area, and
dark images outside.

Mind that the resulting ΛM are only to be
used to normalise BF images; for a full set in-
cluding dark field images, follow the approach
in the following paragraph.
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Diffused

The generalisation of this calibration process
for all images, BF and DF alike, requires a
slight modification of the procedure described
above. Since when not using any target, the
resulting DF images are pitch black; we need
some sort of semi-transparent and diffuse tar-
get, to scatter some light into the microscope.

Fortunately we accidentally came up with
a dedicated diffuser plate—which was initially
sandwiched in the backlights of a comercial
smartphone LCD.
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Chapter 3

Results & Discussion

To investigate the robustness of Fourier pty-
chographic imaging to various system param-
eters, we performed simulations, for a vari-
ety of circumstances: Different simulated am-
plitude and phase samples, misalignment of
all six degrees of freedom (Section 2.6), var-
ious levels of misalignment, jointly recover-
ing the pupil function, based on the initial
scheme [Zheng et al., 2013], sparse sampling
(Section 2.5.1), noise, brightness variations
(Section 2.7), different image dimensions (Sec-
tion 2.3.7).

Discussing all these findings in detail would
go beyond the scope of this thesis, so aside from
the basics (Section 3.1) we focus on the most
imported (Alignment Section 3.2) and the nov-
elties (Illumination Section 3.3).

Parts of this Chapter (Section 3.2) were
presented at the Electronic Imaging Confer-
ence 2021 (EI21), held by the Society for
Imaging Science & Technology (IS&T); lead-
ing to publication in the conference proceed-
ings [Siegel et al., 2021].

3.1 Proof of Concept
Before we dive into the various aspects in de-
tail, let us analyse FPM in general. In this sec-
tion we discuss the proof of concept, the oper-
ation and behaviour of our prototype Fourier
ptychographic microscope, built as described
in detail in Section 2.1.
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Figure 3.1: Comparison of both the amplitude
(left column) and the phase (right column) of
the recovered object at ,+ψ +)ψ +))R iterations.
One can clearly see the amplitude improving.
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Figure 3.2: The best of the low-resolution im-
ages, around 12) 12) µc.

We discuss the obtained resolution, recovered
phase and the constructed synthetic aperture.

As an example for the step-wise conver-
gence of the FPM algorithm, detailed in Sec-
tion 2.1; snapshots of the recovered ampli-
tude and phase are shown in Figure 3.1 at the
three arbitrary iterations {1,10,100}. The ini-
tial guess is zero (blank images) both for am-
plitude and phase, and thus not shown.

3.1.1 Microscope Resolution
Based on a stack of 931 intensity images,
some exemplary ones are shown in Figure 2.4,
a FPM recovery of the complex object—a
USAF1952 resolution target—was obtained;
throughout this thesis called Experiment 1.
The best of the low-resolution images, the one
illuminated by one central LED, is shown in
Figure 3.2.

The elements 2 and three (top left) of the
Group 6 in Figure 3.2 are quite clearly to dis-
tingish, wheras the lines of Element 4 start to
blur, at least Element 5 is unreadable.

Figure 3.3: FPM recovered amplitude after 100
iterations, around 12) 12) µc.

According to Equation 2.29, this sets the res-
olution eMean of the microscope to:

eMean <  )x2 bgwcc (3.1)

where the line pair means a black and a
white line, and where the width of the respec-
tive black line amounts to:

Ian < 2x20 µc (3.2)

which is in good accordance to the theoret-
ical resolution of the microscope (illuminated
with light of the wavelength of 0jal 7 310 nm)
as given by Equation 2.21:

Ilcai < 2x42 µc (3.3)

3.1.2 Super Resolution
A basic FPM recovery on this stack of im-
ages reveals the amplitude shown in Figure 3.3,
where all the elements up to Group 7, Ele-
ment 6 are perfectly clear!
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This sets the resolution eMea g of the Fourier
ptychographic microscope to at least:

eMea g < 005x+ bgwcc (3.4)

where the line pair means a black and a
white line, and where the width of the respec-
tive black line amounts to:

Ia g < 0x+ µc (3.5)

which is below the experimental and
theoretical resolution limit of the physical mi-
croscope, shown in Equation 3.2 and 3.3, thus
FPM effectively obtained super-resolution.

It is quite reasonable, that the actual resolu-
tion of this FPM setup is even higher—yet the
resolution target in question did not cover the
range beyond Group 7.

In that sense we would see this resolution as
an upper limit:

Ia g w 0x0 µc (3.6)

3.1.3 Synthetic Aperture
The spectrum of the reconstructed complex
object, being stitched together from the low-
resolution-image discs now forms a disc itself
(depends on the k-space stitching, in this case
almost a square); with spectral information
within, and zero outside. The magnitude of
the spectrum of the recovered complex object
is shown in Figure 3.4.

The radius of said disk constitutes the cut-
off frequency—and thus the synthetic aper-
ture—of the reconstructed complex object,
quite analogous to the coherent transfer func-
tion in Equation 2.5:

NAa g 7
Pa g
P+

< )x1) (3.7)

which is in good accordance to the theoret-
ical synthetic aperture from Equation 2.27,

Figure 3.4: Magnitude of the FPM recovered
spectrum, with cutoff frequency (circle).

and so our microscope effectively obtained
super aperture.

The effective resolution limit of the FPM
setup can be estimated using Equation 2.28:

Ia g 7
0jal

0 NAa g
< +)2) dc (3.8)

which is somewhat higher than the   ) dc
we calculated as our theoretical FPM resolu-
tion from Equation 2.28, acting as a lower limit
for the experimental resolution.

This confirms our expectation that our ex-
perimentally obtained resolution is actually
higher than the 0x0 µc derived from the USAF
target as shown in Equation 3.6.

Concluding we estimate the experimental
FPM resolution to be:

0x0µc ε Ia g ε +)2) dc (3.9)
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3.1.4 Field of View

Unless noted the processed low-resolution im-
ages are a 023 023 px central part of the cap-
tured raw images. This corresponds to a field
of view (FOV) of around 12) 12) µc, which
amounts to a captured area of interest (AOI)
,124 of:

,124 < )x+0cc1 (3.10)

On our machine, equipped with physical
8 GB RAM, we were able to process at
best 441 low-resolution images of the size
+)0  +)0 px. Each of these images weighs
only 100 kB on disk, but is stored in memory
as cell array with one million entries, each
occupying 4 byte (single precision), which
amounts to about 1.8 GB in memory. Due
to Octave’s (and equally Matlab’s) memory
management, this nevertheless seems to be
the upper limit, lest swapping heavily.

This +)0  +)0 px images correspond to a
FOV of +x04  +x04 cc, which amounts to a
captured AOI ,0 of:

,0 < +x3cc1 (3.11)

3.1.5 Coherence

The largest dimensions of both the AOI ,124

as well as the AOI ,0 are well below the
theoretical coherence length, described in Sec-
tion 2.3.5, a prerequisite for applying the GS
algorithm embedded in Fourier Ptychography:

I,124 w I,0 w RNic (3.12)

3.1.6 Phase Retrieval

A basic FPM recovery on the given stack of im-
ages recoveres the previously unknown phase of
the sample, shown in Figure 3.5, where all the
elemts up to Group 7, Element 6 are perfectly
clear!

Figure 3.5: FPM recovered phase after 100 it-
erations.

The phase is shown in a cyclic colormap
ranging 8-.ψ .9, where white corresponds to ),
red to the upper half-axis 8)ψ .9 and blue the
lower half-axis 8.ψ )9. So the darkness effec-
tively denotes the magnitude of the phase shift
with reference to 0 (the darker, the higher the
phase shift), whereas the color depicts the di-
rection of the shift.

This phase image is in good accordance to
the sample, a USAF1951 glass slide resolu-
tion target, who’s parameters are listed in Ta-
ble A.1.

The background of the target is of uniform
thickness and transparent, so the phase shift
should be equal everywhere; it is around zero
in the experiment (white to light blue/red).

The structures consist of a thin chrome layer
with high optical density. Theoretically there
is no light whatsoever passing this sections,
which means no phase shift in reference to the
transparent sections either! As described in de-
tail in section 2.5, this has to lead to arbitrary
recovered phase; in this case the phase shift is
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dark, which amounts to around *. with refer-
ence to the transparent sections.

The wavy patterns of the phase image hint
to some sort of misalignment, or another form
of disturbance.

3.2 Alignment

Considering the geometry of FPM, it is hardly
surprising to see a strong correlation between
alignment perfection, and the quality of the
obtained result.

To investigate the effect that alignment of
the illumination source has on the FPM recov-
ery, we performed simulations, for a variety of
circumstances: Different simulated amplitude
and phase samples, various levels of misalign-
ment.

We always jointly recover the pupil, based on
the initial scheme [Zheng et al., 2013]. A pro-
found inspection of the recovered pupil func-
tion (like aberrations of the microscope setup)
are beyond the scope of this thesis. We sim-
ply check if the recovered pupil is in agreement
with the theoretical circular shaped pupil func-
tion. For example effects like aliasing would
appear as regular grid of dots in the pupil.

For the sake of better comparability of
different amplitude and phase samples, we
do not use sparse sampling (Section 2.5.1)
[Zheng, 2016], although it does improve the
FPM recovery in our tests.

We analyse brightness variations in Sec-
tion 3.3, so for the following alignment we con-
sider the illumination source to be a perfect
plane wave.

Although we can in principle perform FPM
on larger images, our setup is somewhat hard-
ware limited (see also different image dimen-
sions in Section 2.3.7). The simulations even
exceed the standard FPM recovery in terms
of memory requirements, so we opt to smaller
images of 023 023 px.
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Figure 3.6: Demonstrating the impact of mis-
alignment of the whole LED panel on recon-
struction amplitude (left) and phase (right) in
respect to ground truth (top). Even a misalign-
ment of mere )x12* (0cc shift) renders the
recovered phase quite useless.
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Even narrowed down to just a few param-
eters, it still is impossible to discuss all these
findings in detail within the framework of this
thesis. We give an overview based on a appro-
priate example, and conclude providing broad
overall limits.

These limits are to be considered as a rule
of thumb on how each type of misalignment is
effecting the overall FPM operation.

This work shows on the basis of simulations,
that even a misalignment of the illuminating
LED matrix of only a 0.2 degrees (equivalent
to a shift of +cc for the used LED matrix’
optimal setup) poses a serious threat to FPM
recovery!

This result is exemplary shown for three dif-
ferent misalignment of the LED panel (shift in
x-axis) in Figure 3.6, using arbitrary images as
a basis for amplitude and phase. Interestingly
FPM is able to recover the amplitude even un-
der bad conditions, as one can see all of the
racoons quite clearly.

Unfortunately the recovered phase is heav-
ily distorted even at tiny misalignment of )x12*
(0cc shift)! This explains the need for care-
ful calibration and correction algorithms used
widely [Eckert et al., 2018].

3.2.1 Simulated Misalignment

For a more thorough simulation of misaligned
FPM recovery, the amplitudes Hh of a stack of
simulated low-resolution images nh are altered
as decribed in Section 2.6.1. The alignment
simulation is performed numerous times with
logarithmically spaced misalignment magni-
tudes αg, in this case Δg. For each of these,
a full FPM recovery with 100 loops is done.
For each alignments in consideration (shift,
yaw, pitch & roll) in the following sections,
convergence, amplitude and quality are closely
monitored. Yet for the sake of simplicity we
present a detailed explanation on these top-
ics on one exemplary misalignment only: shift,

so every subsequent notion of αg in this sec-
tion refers to misalignment magnitudes of lat-
eral shift Δg.

Convergence

The convergence of the algorithm is shown in
Figure 3.7 for all αg, where for the sake of dis-
tinguishing the individual lines, the plot fea-
tures a double-logarithmic scale.
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Figure 3.7: Exemplary convergences of FPM
simulation reconstruction under various mis-
alignment magnitudes αg in this case of Δg
(lines), versus loop in double-logarithmic scale
(lower is better). Clearly perfect alignment
(Δg=)cc) leads to fast convergence—which
is obviously not linear in misalignment.

Starting at approximately the same point,
the convergence is almost oblivious to mis-
alignment for the first 10 iterations. Clearly,
the better the alignment (lower αg), the better
the convergence (lower resulting changes) gets
in the following iterations. The convergence is
not at all linear in misalignment though.

the convergence speed—that is the rate in
which the converges changes over iterations—is
pretty similar for all the misalignment; rapidly
decaying over iterations! Mind that this is a
double logarithmic plot.
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Discordance

On the grounds of convergence alone, this sim-
ulations would suggest (quite wrongly) that
the recovery is working good, no matter the
uniformity of illumination, so we take a look
at the discordance: Shown in Figure 3.8, again
for all αg, again on a double-logarithmic axis.
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Figure 3.8: Discordances between FPM simula-
tion reconstruction and low-resolution images
under various misalignment magnitudes αg in
this case of Δg (lines) versus loop in double-
logarithmic scale (lower is better). The better
the alignment (low Δg), the better the start,
but discordance is obviously not linear in mis-
alignment either.

Obviously the evolution of discordance—
the RMSE deviations of the absolute value
of the reconstruction versus the low-resolution
images—differs substantially in respect to the
misalignment αg.

Quite clearly the discordance is highly non-
linear, but dependent of the alignment of
the illumination source: The better aligned,
the lower the resulting discordance—which is
good. Overall they perform impressively simi-
lar considering the double-logarithmic scale.

Amplitude Quality

Fortunately in the case of simulations, we hold
the opportunity to compare the recovery to
the ground truth at any time. The amplitude
quality—RMSE deviation in amplitudes—is
shown in Figure 3.9 for all αg on a double
logarithmic scale.
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Figure 3.9: Quality of FPM simulation recon-
structed amplitude under various misalignment
magnitudes αg in this case of Δg (lines): Am-
plitude RMSE versus loop in semi-logarithmic
scale (lower is better). The better the alignment
(low Δg), the better the start (low Amplitude
RMSE), but Amplitude RMSE is clearly not
linear in misalignment either.

Surprisingly, the perfect aligned as well as
the reasonably well aligned simulations (α +
1), show a increase in amplitude RMSE during
the first iterations; so their recovered ampli-
tudes are actually decreasingly representing the
captured (simulated) low-resolution images!

We repeatedly encountered this behaviour,
which we attribute to the fact that the FPM
algorithm is in this stage building the phase
image from nothing, so there is a lot happening
and improving behind the curtain.

Even considering the fact, that the nois-
ier simulations show a decline in amplitude
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RMSE—which is good—over the whole course,
they stay on a quite high level. This indicates
that the recovery probably got stuck in some
local minimum not resembling the real object
at all.

Only the perfect aligned as well as the
reasonably well aligned simulations reach a
plateau at the end, indicating convergence,
which is not unusual for FPM [Fienup, 1982].

On the basis of amplitude quality, it essen-
tially depends on the threshold of RMS devi-
ation one sets to accept. At least for simu-
lations featuring lateral shift of (α : 3), the
recovered object is clearly distorted; here the
RMS deviaiton is already around 40 uint8/px
or +3Φmdhl5.

Phase Quality

Last but not least, the quality of the recovered
phase is estimated as RMS deviation to the
ground truth, shown in Figure 3.10 for all αg

on a double logarithmic scale.
Obviously the quality of the recovered phase

is highly depending on the alignment perfec-
tion: The perfect aligned as well as the next
best aligned simulations (α 7 +) decline rel-
atively similar, whereas all the worst simula-
tions (α : 0) even rise from the beginning!

Again there is no linear correlation between
quality of phase and the uniformity of illumina-
tion, but overall the better the alignment (low
αg), the higher the quality (low phase RMSE).

3.2.2 Bright-Field Calibration

The susceptibility of FPM to the alignment of
the illumination source, as well as the compli-
cated nature of aligning the LED panel due to
being off-focus, explains the need of calibra-
tion [Zhang et al., 2019] or even digital post-
correction [Zhou et al., 2018].

In order to test the proposed BF cal-
ibration method (Section 2.6.2) based
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Figure 3.10: Quality of FPM simulation re-
constructed phase under various misalignment
magnitudes αg in this case of Δg (lines):
Phase RMSE versus loop in semi-logarithmic
scale (lower is better). There is no linear cor-
relation between quality of phase and misalign-
ment, but overall the lesser the misalignment
(low Δg), the higher the quality (low phase
RMSE).

on[Eckert et al., 2018]; a set of pictures simu-
lating a misaligned experimental setup were
generated, as described in Section 2.7.

The main goal here is to find misalignment
of the whole LED panel, even though it is con-
ceivable that some individual LEDs are mispo-
sitioned on panel assembly level too.

As an example the spectra of both experi-
ment (3.11a) and simulation (3.11b–3.11d), for
the same arbitrary illumination angle nh 7
+x2*, the latter at increasing misalignment (lat-
eral shift) are shown in Figure 3.11. The corre-
sponding illumination positions and pupil radii
are shown for assumed (x, dashed line) and
found (o, line) disks.

3.2.3 Shift

Since the most common experimental setup
for FPM is a LED panel, the most impor-
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(a) Experiment
Δo unknown

(b) Simulation
Δo 7 %88

(c) Simulation
Δo 7 188

(d) Simulation
Δo 7 0%88

Figure 3.11: Alignment Correction: Compar-
ison of exemplary spectra T:nhT (Algorithm 4
Line 4) of both experiment (3.11a) and simu-
lation (3.11b–3.11d), for the same arbitrary il-
lumination angle nh 7 +x2* at increasing shift;
One can clearly see the autocorrelation circles,
the corresponding illumination positions and
pupil radii are shown for assumed (x, dashed
line) and found (o, line) disks.

tant alignment calibration probably is lateral
shift along the x-axis, respective the y-axis
[Eckert et al., 2018]. The height (shift in z)
is comparatively easy to adjust by direct mea-
surement, whereas the shift in x, y, is extremely
tedious to measure. This is due to the fact,
that the LED panel is off focus, so there is no
easy way of answering the question where the
central LED is, in respect to the optical path.

In this simulation the whole grid was shifted
in x-axis, respective y-axis given the parame-

ters Δgg, respective Δhg shown in Table 3.1
together with results of the BF calibrations.
Both the mean with sample standard devia-
tion (STD) and median with median absolute
deviation (MAD) is shown for comparison.

Table 3.1: Calibration of shifted simulations
for three examples.

Parameter Δg / cc Δh / cc

Simulation 1
real 0 0
mean * STD -)x+* )x1 )x)* )x1

median * MAD )x)* )x1 )x)* )x0

Simulation 2
real -5 8
mean * STD )* 0) )* 0)

median * MAD - x * )x3 5x1* )x5

Simulation 3
real 3 -1
mean * STD 1* 0 -+* 5

median * MAD 1x0* )x1 -+x+* )x1

Experiment 1
real unknown unknown
mean * STD )x4* )x3 )x3* )x2

median * MAD )x3* )x2 )x3* )x1

For all three simulations (Simulation 1, not
shifted; and Simulation 2 and 3, both shifted
ones), their median with MAD is in good ac-
cordance with the real values. Their mean with
STD on the other hand is heavily distorted,
rendering the mean with STD results insignif-
icant.

On the contrary we may conclude from the
Δg and Δh values of Experiment 1, that the
experimental setup was slightly shifted:

Δgan 7 )x3* )x2cc (3.13)
Δhan 7 )x3* )x1cc (3.14)
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where we used the median values, which we
consider the median more significant than the
arithmetic mean, as it is conceivable that some
of the LEDs are mispositioned on the level of
production—which does not represent a shift
of the whole panel.

Descriptive Statistics

The reason is that the mean with STD is
weighting the outsiders higher; so if a few out-
siders (that are far off) are not to be taken se-
riously, the median with MAD allows a better
description of the sample.

In Figure 3.12 the order of magnitude
of the calibrated misalignment, ,%Δgh. 7
be.0+ %Δgh. w be.0+ %m., for each LED is shown
for Simulation 2.
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Figure 3.12: Order of magnitude of the position
misalignment for the BF region of the LED
panel.

One can clearly see, that the majority of
the values are quite in the same range, except
those in the bottom row, where they are far off
(roughly one order of magnitude). Though the
explanation for this is not obvious, but may be
neared with a cautious look at the spectra in
question. It turns out, that due to the mis-
alignment of Δg 7 -2ccψΔh 7 5cc, the
bottom row LEDs are shifted just outside the

cutoff frequency, thus into the DF!
It is a hard prerequisite for the proposed cal-

ibration though, that the images are taken un-
der BF conditions, so these values are not to
be considered. But how to find out if the given
image was indeed a BF image, thus the cali-
bration result could be considered significant?

A first estimation of the corrections signifi-
cance conveniently comes included in the pro-
cedure imfindcircles: the strength of the
found circles; sort of the probability, that the
found circle is indeed a circle. To visualise this,
the order of magnitude of the strength is ex-
emplary shown for Simulation 2 in Figure 3.13.
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Figure 3.13: Strengths (significance) of the
found radii enψo of simulation vs LED positions
ghψ hh for Simulation 2.

It appears, that the results with a strength
below the order ,%-0. are probably not signif-
icant, and may be rendered outliers. To visu-
alise this, the initial and actual (shifted) grid of
Simulation 2 is shown in Figure 3.14, together
with the corrected positions (circles), colour-
coded in order of magnitude of their strength.

The relation between the strengths and the
validity of the corrections are quite evident, yet
the precise border between in- and outliers is
made empirically, and unfortunately have to
be expected to vary with respect to the sample
in question!

44



−50 0 50

−50

0

50

100

ky
/

px

kx / px

−2.2

−2

−1.8

−1.6

Si
gn

ifi
ca

nc
e
lo
g
1
0

(s
tr

en
gt

h)
Figure 3.14: Correcting shift: Comparison of
the k-space projections kh (nodes) of the BF
LED positions of the slightly shifted panel (vi-
olet); versus the initially assumed grid (or-
ange); versus the corrected positions (circles),
colour-coded in the order of magnitude of their
strengths (colour, higher is better).

As an example of further analysis—that in
this case confirms prior judgement—an exem-
plary spectrum of low strength is shown with
the estimated and the corrected position in
Figure 3.15 (middle row left). Quite obviously
there is no autocorrelation disk present, thus
no BF calibration possible for this image.

3.2.4 Yaw

A considerably harder problem is the case,
where the LED panel is turned around the z-
axis: Yaw. Like shift it is not that easy to
align in a physical calibration step, as one has
to lower the focus down to the LED panel. Ad-
ditionally, yaw results in a misalignment that is
proportional to the distance of the LED to the
centre of the panel, rendering previously used
descriptive statistics of the whole panel as one
ensemble, including state of the art correction
methods [Eckert et al., 2018], useless.
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Figure 3.15: Alignment Correction: Compari-
son of the spectra T:nhT of both simulation (left
column) and experiment (right column), for
three arbitrary illumination angles nh; One
can clearly see the autocorrelation circles, the
corresponding illumination positions and pupil
radii are shown for assumed (x, dashed line)
and corrected (o, line). Note the malfunction-
ing circle detection, middle row left

Inclination & Fit

The solution proposed here is to fit the set of
corrected positions to a grid, and subsequently
to evaluate the angle ß between this and the
initial grid for each row and each column sep-
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Table 3.2: Calibration of yawed simulations for
three exemplary samples.

Parameter ßn / deg ßo / deg
Simulation 1
real 0 0
mean * STD )x2* )x5 -)x+* )x 

median*MAD )x2* )x4 )x)* )x3

Simulation 4
real 3 3
mean * STD 1x0* )x5 1x+* )x 

median*MAD 0x * )x3 0x 1* )x)5

Simulation 5
real 11 11
mean * STD ++* 0 ++x * )x2

median*MAD ++x3* )x0 ++x2* )x+

Experiment 1
real unknown unknown
mean * STD -)x2* )x1 -)x4* )x4

median*MAD -)x30* )x)0 -)x3)* )x)3

arately:
ß <  .=l d %ß. (3.15)

where ß refers to the slope of the horizontal
and vertical lines of the grid in respect to the
initial grid. In the horizontal case, ζ denotes
the vector kn, and u denotes the ko. In the ver-
tical case vica versa. Since the data points of
these lines have to be considered noisy, we as-
sume a linear progression, via solving the least
squares fit:

ζ 7 ß u. γ (3.16)

Depending on the size of the BF area of
lM lM LEDs, we end up with lM horizontal in-
clinations ßn and lM vertical ones ßo, which can
be considered one statistical ensemble each.
Again, careful observation of the deviations re-
veals if the panel is yawed (low deviations) or
otherwise skewed (high deviations); And thus

if we can deduce a meaningful mean and me-
dian.

In this simulation the whole LED panel was
turned around the z-axis, which results in a
k-space grid inclined in respect to the k-axis
about the angle ßh. Three different simulations
featuring various inclinations are stated to-
gether with the results of the BF calibrations—
both the mean with STD and median with
MAD—in Table 3.2.
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Figure 3.16: Correcting yaw: Comparison of
the k-space projections kh (nodes) of the cor-
rected bf LED positions of the highly misaligned
panel of Simulation 5 (circles), colour-coded in
the order of magnitude of their strengths (fill,
higher is better); versus the actual grid with
yaw ß 7 ++* (violet); versus initially assumed
grid (orange).

For all three examples (Simulation 1, not
yawed; and Simulation 2 and 3, both yawed
ones), both their mean with STD, as well as
their median with MAD is in good accordance
with the real values.

Finally this allows the following conclusion:
if—and only if—the both inclinations ßn and
ßo are almost equal, we may deduce that this
grid was only yawed. All other inclinations
(e.g. pitch or roll) would have tilted the grid
in a way, such that ßn ←7 ßo.

Likewise we may conclude from the ß values
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of Experiment 1, that the experimental setup
was not tilted (ßn < ßo), but slightly yawed:

ßan 7 -)x3+* )x) * (3.17)

As an example, the BF area of the k-space
grid of a slightly misaligned panel (ß 7 ++*)
is shown in comparison with the actual and
initial grids in Figure 3.16.

The proposed fits provide a method more
resilient than fitting to a periodic rectangu-
lar grid—especially for nonlinear skewed grids
(like pitch or roll).

3.2.5 Pitch & Roll
The methods described so far provide a direct
measure of the shift, respective yaw in the k-
space grid of the LED panel, both of which are
translation invariant in z-direction. Unfortu-
nately these are the special cases of a bijection;
where the misaligned LED panel is still strictly
parallel to the object (and sensor), so it has a
direct relation to the 2D grid in k-space.

Considering pitch and roll (rotations around
the x-, respective the y-axis), the LED panel
is not parallel to the sensor anymore. This
results in a much harder problem: The
mapping between the 3D real space and the
measured 2D k-space is not bijective anymore.
Thus it does not have an inverse function; it
is not possible to infer to the 3D real space
misalignment by measurement of the 2D
k-space grid!

As a general example of this problem, two
simulations featuring profoundly tilted LED
panels are compared with the experiment in
Table 3.3.

An example for such a heavily tilted LED
panel, Simulation 6, is shown in Figure 3.17:
roll v 7 1)*, no pitch.

The grid is still rectangular, but unlike pre-
vious examples the kx-, and ky-axes are not
spaced equidistantly anymore! On the one

Table 3.3: Calibration of tilted simulations for
three examples.

Parameter ßn / deg ßo / deg
Simulation 6
mean * STD )x * )x5 )* 0

median*MAD -0x +* )x)1 )* 0

Simulation 7
mean * STD )x2* )x +)x+* )x4

median*MAD )x+* )x0  x31* )x) 

Experiment 1
mean * STD -)x2* )x1 -)x4* )x4

median*MAD -)x30* )x)0 -)x3)* )x)3
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Figure 3.17: Correcting roll & pitch: Compar-
ison of the k-space projections kh (nodes) of
the corrected bf LED positions of the highly
misaligned panel of Simulation 6 (circles),
colour-coded in the order of magnitude of their
strengths (colour, higher is better); versus the
actual grid with roll v 7 1)* (violet); versus
initially assumed grid (orange);

hand the grid is compressed in ky-axis; one
the other hand it forms a trapezoid. This is
only very slightly visible in both shown exam-
ples, due to the panel being much farther away
(104cc in z-direction) as opposed to the dif-
ference in height caused by the tilt (* 2cc
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in z-direction).
Unsurprisingly the resulting mean ßn and ßo

values are both around zero, but with huge
standard deviations. The mean is proffered
here, because we do not have to consider ex-
treme outliers shifted into DF. Either way, the
spread of the values due to the compression
& trapezoid effects is quite high—which is a
strong indicator that the setup exceeds cor-
rectability.

This results in the median being off -0x +,
although the precision seems to be quite high
(0.03)—which is dangerous caveat!

Simulation 6 gives an example of such a pro-
foundly tilted LED panel—roll v 7 0+* and
pitch o 7 1)*— shown in Figure 3.18.
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Figure 3.18: Correcting roll & pitch: Compar-
ison of the k-space projections kh (nodes) of
the corrected bf LED positions of the highly
misaligned panel of Simulation 6 (circles),
colour-coded in the order of magnitude of their
strengths (colour, higher is better); versus the
actual grid with roll v 7 0+* and pitch a 7 1)*

(violet); versus initially assumed grid (orange).

Evidently, the grid is not rectangular any-
more. Analysis correctly depicts this: ßn and
ßo values are both around zero for the kx-axis,
yet around +)* for the ky-axis. Both median
and mean deviations support this claim, which
inherently points to tilt of the panel in x- and

or y-axis.

Quite on the contrary for Experiment 1,
where all the ß values are sound at -)x3*;
which leads to the conclusion of no roll and
no pitch in this particular setup:

van < )* (3.18)
oan < )* (3.19)

3.2.6 Automatic Self-Calibration
Based on these analysis on the nonlinear con-
sequences of three dimensionally misaligned
setup, we would strongly advice against any
form of automatic self-correction procedure,
if roll & pitch cannot be assumed negligi-
ble without doubt. In which case, for au-
tomatising the remaining much simpler prob-
lem of lateral shift, the interested reader
may refer to [Zhou et al., 2018] for an ap-
proach using simulated annealing alone, or to
[Eckert et al., 2018] for an improvement based
on autocorrelation, RANSAC outlier detection
and finally also simulated annealing.

Aware of the dangers of silently automa-
tising intricate processes, as highlighted by
[Randall, 2011b] in Figure 3.19, we would
rather abstain from fully automating this cali-
bration processes anyway.

Our approach nevertheless provides well ar-
ticulated information to correct the physical
alignment.

3.3 Illumination
Considering the requirements of FPM for
the illumination source—equidistant coherent
point source generated plane waves—it is
hardly surprising to see a strong correlation be-
tween uniformity of the illumination, and the
quality of the obtained result.

To investigate the effect that brightness vari-
ations of the individual LEDs have on the FPM
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Figure 3.19: About Machine Learning
[Randall, 2011a], obtained under CC-BY-SA
license.

recovery, we performed simulations, for a va-
riety of circumstances:Different simulated am-
plitude and phase samples, various levels of
brightness deviation.

Similar to Section 3.2 we always jointly re-
cover the pupil function, yet we do not use
sparse sampling.

We analyse alignment in Section 2.6.1, so for
the following luminosity we consider the illumi-
nation source perfectly aligned.

To illustrate the effect of inconsitent illumi-
nation, three FPM recoveries of simulated, pro-
gressively inconsistent illuminated arbitrary
objects (right: amplitude, left: phase) are com-
pared to ground truth (top) in Figure 3.20.
Even a non-uniformity of the average bright-
ness of the images in the order of a few % uint8
devastates the recovery, as for the last row with
8Φuint8 (λg 7 00 uint8).

Although we can in principle perform FPM
on larger images, our setup is somewhat hard-
ware limited (see also different image dimen-
sions in Section 2.3.7). The simulations even
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Figure 3.20: Demonstrating the impact of in-
consistent illumination on reconstruction am-
plitude (left) and phase (right) in respect to
ground truth (top). Even a non-uniformity
of the average brightness in the order of mere
8Φuint8 (λg 7 00 uint8) renders the recovered
amplitude and phase quite useless.
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exceed the standard FPM recovery in terms
of memory requirements, so we opt to smaller
images of 023 023 px.

Even narrowed down to just a few param-
eters, it still is impossible to discuss all these
findings in detail, within the framework of this
thesis. We give an overview based on examples,
and conclude providing broad limits. These are
to be considered as a rule of thumb on how each
type of misalignment is effecting FPM.

3.3.1 Simulated Inconsistency

For the simulation of inconsistently illumi-
nated FPM recovery, the amplitudes Hh of a
stack of simulated low-resolution images nh are
altered as decribed in Section 2.7.1. To best fit
our data sets, we model a directivity of γ 7  )*.
The luminosity simulation is performed nu-
merous times with logarithmically spaced noise
magnitudes λg, listed in Table 3.4.

Table 3.4: Noise magnitudes λg simulating in-
consistent illumination

Simulation R λg / uint8 λg / Φmdhl5

1 0 0
2 0.1 0.04
3 0.2 0.08
4 0.5 0.2
5 1 0.4
6 2.2 0.9
7 4.6 1.8
8 10 3.9
9 22 8.6
10 46 18
11 100 39

For each of these noise magnitudes λg, a full
FPM recovery with 100 loops is done.

Convergence

The convergence of the algorithm is shown in
Figure 3.21 for all λg, where for the sake of
distinguishing the individual lines, the plot fea-
tures a double-logarithmic scale.
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Figure 3.21: Convergences of FPM simulation
reconstruction under various luminosity noise
λg (lines) versus loop in double-logarithmic
scale (lower is better).

Clearly, the more uniform the luminosity
(lower λ), the better the convergence (lower
resulting changes). Though the convergence
is not at all linear in noise, the convergence
speed—that is the rate in which the converges
changes over iterations—is still pretty much
dependent of noise magnitude: Less noise
means lower initial (and resulting) changes
to the complex object—and even better—less
noise means faster convergence! Mind that this
is a double logarithmic plot, so what appears
to be a line is actually not.

Also note, that the convergence for the most
noisy simulations with λ 7 ,+5ψ 1 R Φ ex-
hibits some fluctuations starting with around
10 loops, which might be an early sign of trou-
ble.
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Discordance

On the grounds of convergence alone, this sim-
ulations would suggest (quite wrongly) that
the recovery is working good, no matter the
uniformity of illumination, so we take a look at
the discordance: Shown in Figure 3.22, again
for all λg, again on a double-logarithmic scale.
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Figure 3.22: Discordances between FPM sim-
ulation reconstruction and low-resolution im-
ages under various luminosity noise λg (lines)
versus loop in semi-logarithmic scale (lower is
better).

Obviously the evolution of discordance—
the RMSE deviations of the absolute value
of the reconstruction versus the low-resolution
images—differs substantially in respect to the
illumination uniformity λg.

Notably, the less noisy simulations show a
decrease at the beginning, stagnating slowly.
Overall they perform impressively similar con-
sidering the double logarithmic scale! This
hints to some invariance to illumination inco-
sistence with a standard deviation below one
percent.

Quite clearly, the resulting discordance is
highly nonlinear, but dependent of the unifor-
mity of illumination: The lesser noise, the very
better (lower) the resulting discordance.

From the discordance alone, one might be
tempted to conclude, that the degree of noise
from 2 to 40 % does not matter, since the fi-
nal discordances are almost equal. This is cer-
tainly not the case! Sadly for experimentation,
this is about it in terms of prediction.

Amplitude Quality

Fortunately in the case of simulations, we hold
the opportunity to compare the recovery to the
ground truth at any time. The amplitude qual-
ity—RMSE deviation in amplitudes—is shown
in Figure 3.23 for all λg on a double logarith-
mic scale.
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Figure 3.23: Quality of FPM simulation re-
constructed amplitude under various luminos-
ity noise λg (lines): Amplitude RMSE versus
loop in semi-logarithmic scale (lower is better).

Even considering the fact, that the noisier
simulations show a fast decline in amplitude
RMSE—which is good—during the first itera-
tion, they stay more or less constant from the
second iteration onward; on a quite high level.
This indicates that the recovery probably got
stuck in some local minimum not resembling
the real object at all.

The simulations featuring low noise (under
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1%) start with significantly lower deviation,
slowly converging further.

On the basis of amplitude quality, it essen-
tially depends on the threshold of RMS devia-
tion one sets to accept. At least for simulations
featuring noise above 4%, the recovered object
clearly does not resemble the target; here the
RMS deviaiton is already around 50 uint8 or
20%!

Phase Quality

Last but not least, the quality of the recovered
phase is estimated as RMS deviation to the
ground truth, shown in Figure 3.24 for all λg
on a double logarithmic scale.
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Figure 3.24: Quality of FPM simulation recon-
structed phase under various luminosity noise
λg (lines): Phase RMSE versus loop in semi-
logarithmic scale (lower is better).

Obviously the quality of the recovered phase
is highly depending on the uniformity of illumi-
nation: The less noisy simulations (λg w +Φ)
decline relatively similar, whereas the worst
simulations (λg of 18% and 39%) even rise
from the beginning! In between this two ex-
tremes, the RMS deviations decrease for some
iterations, sometimes rising again later.

There is no linear correlation between qual-
ity of phase and the uniformity of illumination,
but overall the lesser the noise (low λ), the
higher the quality (low phase RMSE).

3.3.2 Luminosity Calibration

Targetless

To illustrate the variation in brightness of the
RGB panels SMD LEDs, a patchwork of seg-
ments of BF images is shown in Figure 3.25.
Undeniably these images feature variations in
average brightness about a few percent, except
for the farthest out images, which are consid-
erably darker (up to 2.5 times).

Figure 3.25: A patchwork of segments of the
BF area (bright images) of targetless images,
obviousely of varying brightness.

These captured BF images are then anal-
ysed using Algorithm 6; the resulting calibra-
tion factor matrix ΔMψh for our experimental
setup is shown in Figure 3.26. A brief compar-
ison with the patchwork in Figure 3.25 reveals:
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The darker images feature a ΔMψh ε ), so they
get amplified, whereas the brighter images get
attenuated with ΔMψh w ).
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Figure 3.26: BF luminosity calibration factor
ΔMψh for each of the l images, and NA (circle)
seperating BF from DF; versus the LED posi-
tions xhψ yh.

In order to visualise this calibration, the
same patch as in Figure 3.25, now created out
of calibrated images is shown in Figure 3.27.

Note that we only calibrate the BF region
here. So if parts of the detector are already
in the DF regime (as happened to be the case
for some images close to the NA), the aver-
age of the image is considerably lower than it
should be, which renders the luminosity cali-
bration useless.

To stay on the safe side, images close to the
NA should be treated with caution.

Diffused

Using a diffuser as described in Section 2.7.2,
one may even calibrate the DF images, as light
gets scattered into the lens by the diffuser. The
average brightness ιh of the amplitudes Hh of
the diffused images nh captured by the camera
are shown in Figure 3.28 for all 931 LED posi-
tions xh,yh. The SMD LEDs of our LED panel

Figure 3.27: A patchwork of segments of the
BF area (bright images) of luminosity cali-
brated targetless images.

indeed feature variations in average brightness
of a few percent, as can be seen quite clearly
in Figure 3.28 Also the brightness declines with
distance to the centre: The attenuation due to
directivity.

The calibration utilising Algorithm 6 with
the set of captured diffused intensity images
yields a normalisation Δ for all l images—in
our experimental setup 931 LEDs—as shown in
Figure 3.26 together with the NA of the optical
system indicating the BF area. Note for the
comparison that the calibration factor Δ is the
inverse proportional to the average brightness
ι: A measured brightness ιh of an image Hh
that is lower than the average of all the images
ιh w u, means this whole image has to be
raised; so the corresponding Δh ε +, and vica
versa.

To visualise the result of our proposed lu-
minosity normalisation, the average brightness
ι>h of the calibrated amplitudes H>h of diffused
images nh, is shown in Figure 3.30 for all il-
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Figure 3.28: Average brightness ιh (color) of
the amplitudes Hh of diffused images nh, incon-
sistently illuminated from the LED positions
xh,yh (nodes), and NA (circle) seperating BF
from DF.
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Figure 3.29: Attenuation factor Δ%nh. (z,
color) for the amplitudes Hh of diffused images
nh, inconsistently illuminated from the LED
positions xh,yh (x,y nodes), and NA (circle)
seperating BF from DF.

lumination positions xh,yh, at the same scal-
ing as Figure 3.28. The surface appears to be
completely flat, so all the l images now share
roughly the same average brightness ιh.
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Figure 3.30: Average brightness ιh (z, color) of
the calibrated amplitudes H>h of diffused images
nh, inconsistently illuminated from the LED
xh,yh (x,y nodes). Mind that this is in fact
a 3D plot: for better comparability the z-axis
scaling is the same as for Figure 3.28 (0 to 2);
yet appears completely flat, showing the unifor-
mity.

Directivity

The measured brightness that LED to the lu-
minosity calibration factor Δh further allows
for an estimation of the directivity of the indi-
vidual LEDs. To achieve that, the pixel-wise
arithmetic mean ιh%n. of the analysed images
is normalised and plotted against the illumina-
tion angle nh of the respective LED, as shown
in Figure 3.31.

Interestingly, the shown brightness does not
decline with inclination quite as anticipated,
estimated by; ιh%n. > =ei %n., Equation 2.36.

Instead we find a much faster decline in
brightness >an %n., which hints on the actual
directivity γan being far higher:

>an %n. > =ei %1n. (3.20)
γan <  )* (3.21)

For comparison, the brightness curve for γ 7
 )* is shown in Figure 3.31, together with the
assumed directivity γ 7 +0)*, as described in
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Figure 3.31: Directivity of the LEDs of the
whole panel, normalised average brightness ver-
sus angle (dots); directivity of +0)* (green); di-
rectivity of  )* (violet). Note that close to )*,
the spread is very high, probably due to sensor
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Section 2.3.8. Note that close to )*, the spread
is very high, probably due to sensor saturation.

3.3.3 Empirical Illumination Limit
Combining the insights of convergence, dis-
cordance, amplitude and phase quality; we
can confirm the initial thesis: Illumination
uniformity is important for FPM.

We might further estimate normal devia-
tions in the luminosity above 1% (*0x2 uint8)
to be fatal for FPM recovery:

λgMn 7 +Φ (3.22)

Careful analysis of the histogram, spectrum,
amplitude and phase as well as mean and stan-
dard deviation support this claim. Yet this
threshold is arbitrary: The less uniform the il-
lumination, the worse the recovery in general.
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Chapter 4

Conclusion & Outlook

4.1 Fourier Ptychography
A Fourier ptychographic microscope success-
fully obtains super-resolution, as shown in de-
tail in Section 3.1. A qualitative Phase Image
of the sample is recovered, albeit non-trivial
interpretation as elaborated in Section 2.5.

An exemplary FPM recovery is shown in
Figure 4.1; spectrum (4.1b), amplitude (4.1c)
and phase (4.1d), where one can clearly see the
improved resolution compared to the best sin-
gle low-resolution image (4.1a).

4.2 Alignment
The proposed methods, described in detail in
Section 2.6 enable the direct study of the im-
pact, misalignment of the illumination source
has on FPM recovery, shining light on which
system parameters are more critical than
others. Our calibration procedures permit
precise correction of the experimental setup,
where possible, as shown in Section 3.2. Addi-
tionally the stated analysis allows assessment
of present misalignment, even if uncorrectable
by known methods.

Since FPM is a very ill-posed problem, the
reconstruction of the phase heavily depends
on the object itself, so it is not possible to
give a strict limit where misalignment breaks
the algorithm. Nevertheless we might name

(a) Low-resolution Am-
plitude

(b) Recovered Spectrum

(c) Recovered Amplitude (d) Recovered Phase

Figure 4.1: Examples from the FPM process;
The central (best) low resolution image (4.1a),
recovered high-resolution spectrum (4.1b), am-
plitude (4.1c) and phase (4.1d).

empirical limits based upon our simulations,
up to which degree of misalignment the
recovery still works.

Empirical limits of misalignment for conven-
tional FPM, indicators of the respective mis-
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alignment, and the feasibility of quantitative
correction are shown in Table 4.1 for all six
degrees of freedom. Even if quantitative cor-
rection of the whole panel is not possible (roll
and/or pitch), our method at least provides a
warning, based on a qualitative analysis.

Table 4.1: Robustness of FPM to misalignment
for all six degrees of freedom; empirical limits,
indication and correction feasibility.

Parameter Lim Indication Correction
Shift Δnn )x0* low spread Δnn yes
Shift Δno )x0* low spread Δno yes
Shift Δ 0Φ high spread ΔnnψΔno no
Roll v 1* ßn ←7 ßo no
Pitch o 1* ßn ←7 ßo no
Yaw ß 0* ßn < ßo yes

To our knowledge, such an analysis was
never demonstrated before.

4.3 Illumination
Our proposed methods, described in detail in
Section 2.7 shed light on the impact, unifor-
mity of the illumination source has on FPM
recovery. Our one-step calibration procedures
permit fast (computationally cheap) yet
precise correction of the experimental setup,
as shown in Section 3.3.

The complex, nonlinear nature of FPM
again forbids to give a strict limit where illu-
mination non-uniformity breaks the algorithm.
Nevertheless we might name empirical limits
based upon our simulations, up to which de-
gree of misalignment the recovery still works.
Based on the result shown in Section 3.3, we
conclude that FPM demands a high illumina-
tion uniformity, we estimate deviations in the
luminosity above 1% (*0x2 uint8) to be fatal

for FPM recovery:

λgMn 7 +Φ (4.1)

Considering, one might want to correct those
tangible aspects about the illumination; cover-
ing directivity, individual LED’s assembly on
the panel as well as luminosity.

Those have in common, that they do not
change over measurements, so one may correct
all takes from the same physical setup using
our one-step calibration method, described
in Section 2.7. This enables the automatic
correction of all the subsequent measurements
with the same physical setup.

To our knowledge, such a tool was never
developed before.

In addition we still face various other sources
of error: Current fluctuations during the ex-
posure window, dynamic range and its ex-
posure dependence, to name only a few
[Zhang et al., 2019]. Since these arise during
each individual measurement in a unique man-
ner, our proposed method does not account for
them.

We suggest further research in those areas,
based on our findings that luminosity devia-
tions do matter.

4.4 Calibration Comparison

So far we approacched the effect several sys-
tem parameters have on FPM recovery. To
conclude, we present a brief comparison of our
experimental data featuring generic recovery,
alignment calibration, luminosity calibration,
and both in conjunction.

A juxtaposition featuring the recovered am-
plitude and phase is shown in Figure 4.3. As
these are experimental data, we don’t know the
ground truth.
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Surprisingly, at the point of convergence
after 100 interations, all of these recoveries
are quite similar. Barely visibly, the phase
interferes with the amplitude, as described in
much detail in Section 2.5 (dark stairs in the
amplitude’s white background).

The confidence and discordance of all four
recoveries are shown together in Figure 4.2, re-
spective Figure 4.4.
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Figure 4.2: Comparison of the convergences
of FPM reconstruction versus loop in double-
logarithmic scale of generic data, alignment
corrected (shift), luminosity corrected, and both
(lower is better).

All four examples exhibit a quite similar na-
ture, compared to our alignment & luminos-
ity simulations in Sections 3.2, respective 3.3;
which show vastly different characteristics de-
pending on the luminosity uniformity.

Taking into account the calibrated mislign-
ment of our experimental setup in Section 3.2,
we have credible evidence that our experimen-
tal setup is already quite accurate aligned; alas,
we should not anticipate drastic increases in re-
construction quality due to further alignment
calibration.
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Figure 4.3: Demonstrating the results of
FPM recovery of our experimental setup us-
ing the proposed methods for correction align-
ment and/or inconsistent illumination. Recon-
structed amplitude (left) and phase (right) in
respect to generic recovery (top).
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Figure 4.4: Comparison of the discordances be-
tween FPM reconstruction and low-resolution
images versus loop in semi-logarithmic scale of
generic data, alignment corrected (shift), lumi-
nosity corrected, and both (lower is better).

From convergence & discordance alone one
might even conclude, that the alignment & lu-
minosity calibrated recoveries perform slightly
worse than the generic recovery—which we be-
lieve not to be the case; our physical setup is
simply aligned reasonably well already.

Concluding we suggest, that our experi-
mental setups misalignment is close to or even
below our alignment calibration’s measure-
ment uncertainty; so the calibration becomes
negligible.

Analogous for luminosity: From Figure 4.3
we find that luminosity-calibrating our exper-
imental setup obviously does not enhance the
results dramatically. This is a direct contradic-
tion of our findings in Section 3.3, based on ex-
tensive simulations that even a non-uniformity
of about 1% downgrades the recovery notably.
Yet we suspect the true non-uniformity of the
illumination to be much higher than 1%, based
on the luminosity analysis in Section 3.3, even
if we do not take directivity into account! Nev-
ertheless, the effect of calibrating luminosity in
Figure 4.3 seems negligible.

It is conceivable, that the improvement due
to calibration on less well aligned, and less con-
sistently lit experimental data would exceeds
the performance gain shown here.

In conclusion we suggest further research on
the effects of luminosity fluctuations on FPM.

4.5 Microscope Setup
To summarise, we promote the following proce-
dure of calibration and digital post-correction
for a FPM setup. For a very detailed man-
ual calibration procedure similar to the Part 1
listed below, the interested reader is referred
to [Zhang et al., 2019].

1. Mechanical Alignment of the illumination
source:

(a) Focus on the central LED: centralise
camera.

(b) Focus on the whole panel: align tilt,
roll, pitch; get the LED rows and
columns straight.

(c) Focus on the object plane: align ob-
ject normal to the optical path.

2. Background measurement whiteout illu-
mination, shutter noise should be negli-
gible.

3. BF luminosity calibration without object.

4. Luminosity calibration without object us-
ing diffuser; should be similar to (3).

5. Broad Alignment calibration:

(a) Large search space (e.g *20 px), big
steps.

(b) Adjust microscope setup mechani-
cally if necessary.

(c) Estimate magnification (from NA).

6. Fine alignment calibration:

59



(a) Import broad alignment corrections
& corrected NA.

(b) Small search space (e.g. *1 px).
(c) Calibrate magnification.

7. Recover Pupil; check for aliasing or other
anomalies.

8. Fast, Full FPM recovery using luminosity
& alignment calibration matrices:

(a) Sample 1.
(b) Sample 2.
(c) x x x

(d) Sample l.
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Appendix A

Equipment

Table A.1: Equipment used for the construction and classification of the Fourier ptychographic
microscope prototype.

Part Description
Controller Arduino Due
Illumination RGB LED Matrix panel 10 10

Camera Imaging Development Systems (IDS) UI-1220SE-M-GL Rev.2 CMOS Mono
Tube lens Mitutoyo Plan APO 2x Na 0.055 Microscope Objective
Laptop Dell E6420 Laptop running Windows 7
Oscilloscope Agilent Technologies InfiniiVision DSO-X 2024A Digital Storage Oscilloscope
Photodiode
Diffuser Generic smartphone display diffuser
Test target 1951 USAF Resolution Target
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Appendix B

Code

All the algorithms and programs described in this thesis are shown here. Most of them
are written for GNU Octave [Eaton et al., 2020], a well documented free software similar to
(and mostly compatible with) MATLAB; indicated by the file name ending with .m (e.g.
program.m). Some programs are written in Python, indicated by the file name ending with .py
(e.g. program.py).

For the sake of demonstration, all the code listed here shows abbreviated versions of the
respective programs; a slightly polished excerpt, lacking e.g. log, plot or save commands.

A digital unabridged version of all the source code shown here is available in my git
repository (unless noted otherwise) [Siegel, 2021a]:

https://github.com/imrahilias/fourierptychography

The preceding construction of our FPM prototype, including the programs for illumination
and camera side are written in C, respective in Python. For the sake of readability, this part of
the code is omitted in this thesis, since it is extensively covered in my Projektarbeit / Student
Project at the TU Wien [Siegel, 2021b]. A digital version of all the source code is available in
my git repository [Siegel, 2021a].
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B.1 Fourier Ptychography
B.1.1 Main Program: kockpit.m
This is sort of the cockpit where FPM recovery is controlled, hence the name kockpit.m. All
system parameters in the part have to be set correctly, in order to function! For the sake of
demonstration, the code listed here is an excerpt from the program, slightly polished. All the
necessary functions and routines are called from this program, and will be described in the
following sections in order of appearance.

1 #!/bin/octave
2 ## does fourier ptychography. loads a deck of lores images under
3 ## different illumination angles, assuming spatially cohenrence (coherent
4 ## transfer function). enters the matrix and retrieves phase information
5 ## that the gods stored somewhere deep inside quantum mechanics.
6 ## iteratively reconstructs a hires complex image. estimates the
7 ## confidence of the reconstructed amplitude & phase.
8 ## @ moritz siegel
9

10 ## \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11 ## soft settings \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
12 global hd = "~/fourierptychographie" # parent directory, needs trailing

slash!σ 

13 global wd = "sets/2020_01_21_183706/256"
14 global nn = ""; # additional name suffix (default: "")
15 global lxn = 170; # /px, dimensions of square lores images
16 global pic = 15; # 0<n<16, number lores input images considered in every

direction.σ 

17 global step = 1; # skip every step image? (default: 1)
18 densebrightfield = false; ## /bool, if step>1, still use step=1 in

brightfield area? (default: true)σ 

19 global ceps = 0.1; # convergence reached when mean difference per px of
succesive iterations is less than eps ... (default: 1)σ 

20 global deps = 0.1; # convergence reached when discordance with lores images
is less than eps ... (default: 1)σ 

21 global loop = 100; # ... otherwise: loop maximum (default: 10)
22 dx = 0; # /m, assumed dx misalignment (default: 0)
23 dy = 0; # /m, assumed dy misalignment (default: 0)
24 dz = 0; # /m, known real dz misalignment for plotting (default: 0)
25 roll = 0; # /deg, assumed roll misalignment (default: 0)
26 pitch = 0; # /deg, assumed pitch misalignment (default: 0)
27 yaw = 0; # /deg, assumed yaw misalignment (default: 0)
28 global sparsing = false; # /bool, use sparsly sampling = ignore hot & cold

pixels? (default: false)σ 
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29 global hot = 255; # /uint8, hot pixel (if sparsly sampling) (default: 245)
30 global cold = 0; # /uint8, cold pixel (if sparsly sampling) (default: 10)
31 global illuminate = false; # /bool, correct brightness via calibration using

imported normalisation matrix? (default: false)σ 

32 global pupilla = false; # /bool, correct pupil function interatively
(embedded) beware of grid aliasing due to mislignement! (default: false)σ 

33 global shifting = false; # /bool, correct misaligment by importing
correction matrix? (default: false)σ 

34 global live = false; # /bool, create zeitraffer from recovery? expensive!
(default: false)σ 

35 global confidence = false; # plot confidence map? (very expensive!) (default:
false)σ 

36 ## hard settings |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
37 global r = 1; # /bool, led color
38 global g = 0;
39 global b = 0;
40 global ledgap = 6e-3; # /m, between leds on panel (default: 6e-3)
41 global ledheight = 327e-3; #327e-3; # 135e-3 /m, dist panel-object (default:

327e-3)σ 

42 global wavelength = r*632e-9 + g*532e-9 + b*472e-9; # /m, wavelength of the
led, 20nm bandwisth, for now! (default: r*632e-9 + g*532e-9 + b*472e-9)σ 

43 global ccdpix = 2.2e-6; # /m, pixel size of the ccd, assuming quadratic pixel
(default: 2.2e-6)σ 

44 global na = 0.055; # numerical apertur of lens system (default: 0.055)
45 global mag = 1.678; # /px, overall magnification of the optical (default:

1.678)σ 

46 global xpb = 0.9; #/s, brightfield exposure, go measure (default: 0.9)
47 global xpd = 3; #/s, darkfield exposure, as hi as it gets (default: 3)
48 global led = 31; # size of led panel, wants to be odd, symmetric around

ursprung (default: 31)σ 

49 ## end of settings: hands off ////////////////////////////////////////////
50 ## //////////////////////////////////////////////////////////////////////
51

52 ## onwards, through the looking glass, into the dreamworld
53 global k0 = 2*pi/wavelength; # 1/m
54 global cutoff = na * k0;
55 global kmax = pi / ccdpix * mag; # 1/m
56 [kxc kyc] = meshgrid( -kmax:kmax/( (lxn-1)/2 ):kmax );
57 ctf = ( ( kxc .** 2 + kyc .** 2 ) < cutoff**2 ); # pupil function circ(kmax);

no aberrationσ 

58

59 ## geodesics
60 [xs ys] = skuiral( (2*pic + 1)**2, step );
61
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62 ## kgeodesics
63 global dkx = 2*kmax / lxn;
64 [ kx, ky, x, y, z ] = krid( roll, pitch, yaw, dx, dy, dz );
65 [~, ix] = max( sqrt( kx(:).**2 + ky(:).**2 ) ); # find the farthest insert

positionσ 

66 global hxn = ceil( max( [ abs(kx(ix)) abs(ky(ix)) ] ) + lxn/2 ) * 2; #
optimal high-res image sizeσ 

67

68 ## in the shade
69 global pum = ( (kx.**2 + ky.**2) < (cutoff/dkx)**2 ); # brightfield (1) or

darkfield (0)?σ 

70 global exposure = pum + ~pum * xpb/xpd; # exposure correction matrix
71

72 ## load images
73 [ xs, ys, ims, ice, lava, am, sigma, spars ] = stakk( xs, ys );
74

75 ## rekover
76 [ orec, skorec, pupil, convergence, discordance, quality ] = rekover( ims,

ctf, xs, ys, kx, ky, spars, ref=[] );σ 

77

78 ## plot
79 pikture( orec, skorec, pupil, convergence, discordance, quality, xs, ys, ims,

am, sigma, ice, lava, intersection, roll, pitch, yaw, dx, dy, dz );σ 

B.1.2 Create Spiral Pattern: skuiral.m

1 #!/bin/octave
2 ## @ moritz siegel
3 function [stop, go] = skuiral( len, step=1, stop=16, go=16, pos=0, side=1,

pm=1, llim=1, ulim=32, corner=0 )σ 

4 ## usage: [stop, go] = skuiral( len, opt )
5 ##
6 ## this recursive function creates a len-by-len square spiral pattern as
7 ## a load-order for led panel positions used for fourier ptychography.
8 ##
9 ## optional parameters:

10 ##
11 ## step stepsize (default=1)
12 ## stop, go start positions (default=16,16)
13 ## pos position to start if stop,go are vectors (default=0)
14 ## side length of the side of the squiral square (default=1)
15 ## pm math pos (+1) or math neg (-1) rotation (default=+1)
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16 ## llim, ulim lower, and upper limits of the squiral (default=0,31)
17 ##
18 ## example: [x, y] = squiral( 10 ); figure; plot( x, y, '-o');
19 ##
20 len = round( len );
21 for p = 1 : side
22 pos = pos + 1;
23 next = go( pos ) - pm * step;
24 if ( pos == len || next < llim || next > ulim )
25 return
26 endif
27 stop( pos + 1 ) = stop( pos );
28 go( pos + 1 ) = next;
29 endfor
30 if ( corner == 0 )
31 [stop, go] = skuiral( len, step, go, stop, pos, side=side, pm=-pm,

llim, ulim, corner=1 );σ 

32 else
33 [stop, go] = skuiral( len, step, go, stop, pos, side=side+1, pm=pm,

llim, ulim, corner=0 );σ 

34 endif
35 endfunction

B.1.3 Define Kspace Grid: krid.m

1 #!/bin/octave
2 ## @ moritz siegel
3 function [ kx, ky, x, y, z ] = krid( roll=0,pitch=0,yaw=0,dx=0,dy=0,dz=0 )
4 ## usage: [ kx, ky, x, y, z ] = krid( opt )
5 ##
6 ## this function creates a (led-by-led) grid in 3d real space and
7 ## projects it to k-space. (x,y,z) are postition and orientation of
8 ## the leds in respect to the object at (0,0,0), typically at
9 ## position (0,0,-ledheight). optionally it tilts succesively in all

10 ## 6 dof, in the order: roll,pitch,yaw,dx,dy,dz. where
11 ## (roll,pitch,yaw) are rotations of the whole panel, whereas
12 ## (dx,dy,dz) allow shifts of the individual leds, if matrices are
13 ## given. (kx,ky) is the output plane in px. where km2kp is the
14 ## conversion factor, that translates angular frequency /m to px of
15 ## the given sensor.
16 ##
17 ## optional parameters:
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18 ##
19 ## roll,pitch,yaw /deg, rotation around x,y,z axis ( default = 0 )
20 ## dx,dy,dz /m, shift in x,y,z axis ( default = 0 )
21 ##
22 ## example: [x, y, z] = krid( ); figure; mesh( x, y, z );
23

24 global led
25 global ledgap
26 global ledheight
27 global k0
28 global dkx
29

30 ## position of one row of leds
31 xv = linspace( -floor( led / 2 ), floor( led / 2 ), led ) * ledgap; # /m
32

33 ## position of all leds as grid
34 [x y] = meshgrid( xv ); # /px
35 z = zeros( led,led );
36

37 ## spaghettise matrices
38 v = [ x( : ), y( : ), z( : ) ]';
39

40 ## define angles
41 cx = cosd( roll );
42 sx = sind( roll );
43 cy = cosd( pitch );
44 sy = sind( pitch );
45 cz = cosd( yaw );
46 sz = sind( yaw );
47

48 ## rotation matrices
49 rox = [ 1, 0, 0; 0, cx, -sx; 0, sx, cx ];
50 roy = [ cy, 0, -sy; 0, 1, 0; sy, 0, cy ];
51 roz = [ cz, -sz, 0; sz, cz, 0; 0, 0, 1 ];
52

53 ## rotate succesively
54 v = rox * v; # roll
55 v = roy * v; # pitch
56 v = roz * v; # yaw
57

58 ## reshape to matrix
59 x = reshape( v( 1, : ), size( x ) );
60 y = reshape( v( 2, : ), size( x ) );
61 z = reshape( v( 3, : ), size( x ) );
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62

63 ## shift
64 x = x + dx;
65 y = y + dy;
66 z = z - ledheight + dz;
67

68 # k-space
69 kx = - k0 / dkx * sin( atan( x ./ z ) );
70 ky = - k0 / dkx * sin( atan( y ./ z ) );
71

72 endfunction

B.1.4 Load & Stack Images: stakk.m

1 #!/bin/octave
2 ## @ moritz siegel
3 function [ xs, ys, ims, ice, lava, am, sigma, spars ] = stakk( xs, ys )
4 ## usage:
5 ##
6 ## creates a deck of lores images under different illuminosityination

angles,σ 

7 ## from lores images, and analyses mean, standard derivation, hot & cold
pixels.σ 

8 ##
9 ## optional parameters:

10 ##
11 ## sparse create bool matrices indicating pixel != hot/cold
12 ##
13 ## example:
14 ##
15 ## init array & import lores images & corrluminosity & save to stack
16

17 global illuminate
18 global hd wd
19 global r g b led
20 global exposure
21 global hot cold
22 global sparsing
23

24 ## import brightness normalisation matrix
25 if ( illuminate == true )
26 try
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27 load luminosity.mat luminosity
28 catch
29 disp( "warning: luminosity matrix not found! skipping!" );
30 luminosity = ones( led, led );
31 end_try_catch
32 else
33 luminosity = ones( led, led );
34 endif
35

36 ims = cell( led, led );
37 spars = cell( led, led );
38 lava = ice = am = sigma = nan( led, led );
39 l = 1;
40 empty = 0;
41 while ( l <= numel( xs ) )
42 disp( sprintf( " importing lores images: %d of %d or %d%%", l,

numel( xs ), l/(numel( xs ))*100 ) );σ 

43 x = xs( l );
44 y = ys( l );
45

46 try
47 im = single( imread( sprintf( "%s/%s/%02d%02d%1d%1d%1d.png", hd,

wd, x-1, y-1, r, g, b ) ) );σ 

48 l = l + 1;
49 catch
50 empty = empty + 1;
51 xs( l ) = []; # remove this position if the image doesnt exist
52 ys( l ) = [];
53 continue
54 end_try_catch
55

56 ## correct amplitude accordingly to respective exposure
57 im = im .* exposure( x, y );
58

59 ## normalize using imported normalisation matrix
60 im = im .* luminosity( x, y );
61

62 im = sqrt( im ); # assuming that the measured images are intensities,
need to become amplitudesσ 

63 ims{ x, y } = single( im ); # cut image & save to stack as single
precisionσ 

64

65 ## detect hot & cold pixels
66 warm = im < sqrt( hot );
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67 cool = im > sqrt( cold );
68 ice( x, y ) = 1 - mean( cool(:) ); # abundance of cold pixels
69 lava( x, y ) = 1 - mean( warm(:) ); # abundance of hot pixels
70 if ( sparsing == true )
71 spars{ x, y } = logical( warm & cool );
72 else
73 spars{ x, y } = logical( ones( size( im ) ) );
74 endif
75 clear warm cool
76

77 try
78 am( x, y ) = mean( im( spars{ x, y } == true ) );
79 sigma( x, y ) = std( im( spars{ x, y } == true ) );
80 catch
81 am( x, y ) = nan;
82 sigma( x, y ) = nan;
83 end_try_catch
84 clear im
85

86 endwhile
87

88 if ( empty > 0 )
89 disp( sprintf("warning: %d images missing! skipped.", empty ) );
90 endif
91

92 endfunction

B.1.5 The Core of FPM: rekover.m
1 #!/bin/octave
2 ## @ moritz siegel
3

4 function [ orec, skorec, pupil, convergence, discordance, quality ] =
rekover( ims, ctf, xs, ys, kx, ky, spars, ref=[] )σ 

5 ## usage:
6 ##
7 ## does fourier ptychography: enters the matrix and retrieves phase

information,σ 

8 ## that the gods stored somewhere deep inside quantum mechanics.
9 ## iteratively reconstructs a hires complex image,

10 ## given a deck of lores images under different illumination angles,
11 ## and assuming spatially cohenrence (coherent transfer function).

70



12 ## estimates the confidence of the reconstructed amplitude & phase.
13 ##
14 ## optional parameters:
15 ##
16 ## example:
17 ##
18 global lxn hxn led loop ceps deps cmts mt mts live pupilla rf
19

20 orec = ones( hxn );
21 skorec = fftshift( fft2( orec ) );
22 skorecold = skorec;
23 skref = fftshift( fft2( ref ) );
24 discordance = nan( loop,1 );
25 convergence = nan( loop,1 );
26 if ( size( ref ) != [0 0] )
27 quality = nan( loop,1 );
28 else
29 quality = nan;
30 endif
31 rmse = nan( led, led );
32 pupil = 1;
33

34 for l = 1 : loop
35 for t = 1 : numel( xs )
36 x = xs(t);
37 y = ys(t);
38 if ( live == true );
39 tit = sprintf( "loop %d\nloop %d%%\nimage %d\nimage %d%%\nx =

%d\ny = %d", l, round(l/loop*100), t,
round(t/numel(xs)*100), x, y );

σ 

σ 

40 zeitraffer( skorec, rmse, tit );
41 endif
42 im = (hxn/lxn)**2 * double( ims{ x, y } );
43 kxc = (hxn+1)/2 + kx( x, y );
44 kyc = (hxn+1)/2 + ky( x, y );
45 kxl = round( kxc - (lxn-1)/2 );
46 kxh = round( kxc + (lxn-1)/2 );
47 kyl = round( kyc - (lxn-1)/2 );
48 kyh = round( kyc + (lxn-1)/2 );
49 if ( pupilla == true )
50 sklores1 = skorec( kxl:kxh,kyl:kyh ) .* ctf .* pupil; #

(lxn/hxn)**2 * ... ?σ 

51 lores = ifft2( ifftshift( sklores1 ) );
52 rmse( x, y ) = sqrt( mean(mean( ( abs(lores) - im ).**2 )) );
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53 lores = im .* exp( 1i.*angle( lores ) ) .* spars{ x, y } +
lores .* ~spars{ x, y };σ 

54 sklores2 = fftshift( fft2( lores ) ) .* ctf ;
55 skorec( kxl:kxh,kyl:kyh ) = skorec( kxl:kxh,kyl:kyh ) + conj(

ctf .* pupil) ./max(max(abs(ctf.*pupil).**2)) .* (
sklores2 - sklores1 );

σ 

σ 

56 pupil = pupil + conj( skorec( kxl:kxh,kyl:kyh ) ) ./
max(max(abs(skorec( kxl:kxh,kyl:kyh )).**2)) .* (
sklores2 - sklores1 );

σ 

σ 

57 else
58 sklores = (lxn/hxn)**2 * skorec( kxl:kxh,kyl:kyh ) .* ctf;
59 lores = ifft2( ifftshift( sklores ) );
60 rmse( x, y ) = sqrt( mean(mean( ( abs(lores) - im ).**2 )) );
61 lores = im .* exp( 1i.*angle( lores ) ) .* spars{ x, y } +

lores .* ~spars{ x, y };σ 

62 sklores = fftshift( fft2( lores ) ) .* ctf ;
63 skorec( kxl:kxh,kyl:kyh ) = skorec( kxl:kxh,kyl:kyh ) .* ~ctf

+ sklores;σ 

64 endif
65 endfor
66

67 ## reconstructed complex object vs lores images
68 discordance( l ) = sum( rmse( ~isnan( rmse ) ) ) / numel( xs );
69

70 ## per loop changes in the reconstructed complex object
71 convergence( l ) = sqrt( mean(mean( abs( skorec - skorecold ).**2 ))

);σ 

72 skorecold = skorec;
73

74 ## compare with ground truth if present
75 if ( size( ref ) != [0 0] )
76 quality( l,1 ) = sqrt( mean(mean( abs( skorec - skref ).**2 )) );
77 orec = ifft2( ifftshift( skorec ) );
78

79 ## estimate phase shift between ref & orec, and correct (shift)
ref & compareσ 

80 phasespace = linspace( -pi, pi, 1000 );
81 hi = hist( angle( ref(:) ), phasespace ); # histogram of phase
82 [him himx] = max( hi ); # value & index of maximum in phase hist
83 phi = phasespace( himx );
84 ho = hist( angle( orec(:) ), phasespace ); # histogram of phase
85 [hom homx] = max( ho ); # value & index of maximum in phase hist
86 pho = phasespace( homx );
87 dph = phi - pho; # phase shift between ref & orec
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88 sref = ref .* exp( -1i .* dph ); # correct phase shift: shift ref
to orecσ 

89

90 ## delta & rms errata
91 dsref = abs(orec) - abs(sref); # /uint8 delta amplitude map
92 dsrefp = angle(sref) - angle(orec); # /pi rad delta phase map
93 mdsrefp = mod( dsrefp, 2*pi); # /rad delta phase is also periodic

in 2piσ 

94 mmdsrefp = min( abs(mdsrefp), abs(2*pi-mdsrefp) ); # periodic
part 2σ 

95

96 quality( l,2 ) = sqrt( mean( dsref(:).**2 ) ); # should be the
same as 1σ 

97 quality( l,3 ) = sqrt( mean( abs( dsrefp(:) ).**2 ) );
98 quality( l,4 ) = sqrt( mean( abs( mmdsrefp(:) ).**2 ) );
99 quality( l,5 ) = dph;

100 endif
101

102 #3 second quit criterium: convergence reached
103 if convergence( l ) < ceps || discordance( l ) < deps;
104 break
105 endif
106

107 disp( sprintf( " loop %d of max %d : min %d%% , discordance = %e ,
convergence = %e", l, loop, round((l/loop)*100), discordance(l),
convergence( l ) ) );

σ 

σ 

108

109 endfor
110

111 orec = ifft2( ifftshift( skorec ) );
112

113 disp( sprintf( "converged with final discordance = %e , convergence = %e
", discordance(l), convergence( l ) ) );σ 

114

115 endfunction

Minimal Working Example

For the sake of simplicity, a minimal working example of the Fourier ptychographic core program
rekover.m, as proposed by [Zheng et al., 2013] is shown here. A full version of the source code
shown here in excerpts is available in my git repository [Siegel, 2021a]:
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1 ## init.
2 orec = ones( hyn,hxn ); # out of the blue.
3 skorec = fftshift(fft2( orec ));
4 skorecold = skorec;
5

6 while
7 for tt = 1:arraysize
8 x = xs(tt); # get current x & y.
9 y = ys(tt);

10 im = double( ims{ x, y } ); # retrieve image from stack.
11 kxc = (hxn+1)/2 + kxm( y, x );
12 kyc = (hyn+1)/2 + kym( y, x );
13 kxl = round( kxc - (lxn-1)/2 ); # crop window in pixel dims.
14 kxh = round( kxc + (lxn-1)/2 );
15 kyl = round( kyc - (lyn-1)/2 );
16 kyh = round( kyc + (lyn-1)/2 );
17

18 sklores = (lxn/hxn)**2 * skorec(kyl:kyh,kxl:kxh) .* ctf;
19 lores = ifft2( ifftshift( sklores ) );
20 lores = (hxn/lxn)**2 * im .* exp( 1i.*angle( lores ) );
21 sklores = fftshift( fft2( lores ) ) .* ctf ;
22 skorec(kyl:kyh,kxl:kxh) = skorec(kyl:kyh,kxl:kxh) .* ~ctf + sklores;
23 endfor
24

25 ## estimate per loop changes /px in the reconstructed complex object
26 ## rms deviation to last loops skorec.
27 dskorec = sqrt( sum(sum( abs( skorec - skorecold ).**2 )) /hxn/hyn );
28 skorecold = skorec;
29

30 ## second quit criterium: convergence reached.
31 if dskorec < eps;
32 break
33 endif
34

35 endwhile
36

37 ## finally drag kspace monster back to reality.
38 orec = ifft2( ifftshift( skorec ) );
39 sorec = abs(orec) / max( abs( orec(:) ) ) * 255; # scale orec to uint8.
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Integrated Pupil Recovery

For the sake of completeness, a minimal working example an excerpt of the Fourier pty-
chographic main program rekover.m, featuring integrated pupil recovery, as proposed by
[Zheng et al., 2013]. A full version of the source code shown here in excerpts is available in
my git repository [Siegel, 2021a]:

1 ## recover hires image & unknown pupil
2 orec = ones( hyn,hxn ); # out of the blue
3 skorec = fftshift(fft2( orec ));
4 skorecold = skorec;
5 pupil = 1; # unknown pupil function
6

7 for ll = 1:loop
8 for tt = 1:arraysize
9

10 x = xs(tt); # get current x & y
11 y = ys(tt);
12 im = double( ims{ x, y } ); # retrieve image from stack
13 kxc = (hxn+1)/2 + kxm( y, x ); # geometric center (between pixels!)
14 kyc = (hyn+1)/2 + kym( y, x );
15 kxl = round( kxc - (lxn-1)/2 ); # crop window, pixel dims
16 kxh = round( kxc + (lxn-1)/2 );
17 kyl = round( kyc - (lyn-1)/2 );
18 kyh = round( kyc + (lyn-1)/2 );
19

20 sklores1 = skorec(kyl:kyh,kxl:kxh) .* ctf .* pupil;
21 lores = ifft2( ifftshift( sklores1 ) );
22 lores = (hxn/lxn)**2 * im .* exp( 1i.*angle( lores ) )
23 .* spars{ x, y } + lores .* ~spars{ x, y };
24 sklores2 = fftshift( fft2( lores ) ) .* ctf ;
25 skorec(kyl:kyh,kxl:kxh) = skorec(kyl:kyh,kxl:kxh)
26 + conj( ctf .* pupil) ./max(max(abs(ctf.*pupil).**2))
27 .* ( sklores2 - sklores1 );
28 pupil = pupil + conj( skorec(kyl:kyh,kxl:kxh) )
29 ./ max(max(abs(skorec(kyl:kyh,kxl:kxh)).**2))
30 .* ( sklores2 - sklores1 );
31

32 endfor
33

34 ## estimate per loop changes in the reconstructed complex object
35 ## /px rms deviation to last loops skorec
36 dskorec(ll,:) = sqrt( sum(sum( abs( skorec - skorecold ).**2 )) /hxn/hyn

);σ 
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37 skorecold = skorec;
38

39 ## second quit criterium: convergence reached
40 if dskorec(ll) < eps;
41 break
42 endif
43

44 endfor
45

46 ## finally drag kspace monster back to reality
47 orec = ifft2( ifftshift( skorec ) );
48 sorec = abs(orec) ./ max( abs( orec(:) ) ) * 255; # scale orec to uint8
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B.2 Alignment
B.2.1 Alignment Calibration: cirkles.m
The following program cirkles.m performs the alignment calibration explained in Section 2.6,
based on [Eckert et al., 2018].

1 #!/bin/octave
2 ## loads a deck of lores images under different illumination angles
3 ## (fourier ptychography), assuming spatially cohenrence (coherent
4 ## transfer function). autocorrelates the lores images to correct the
5 ## assumed illumination positions.
6 ## @ moritz siegel
7 ## \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8 ## soft settings \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
9 global hd = "~/fourierptychographie" # parent directory, needs trailing

slash!σ 

10 global wd = "sets/2021_03_09_132545_sim_wasch_512_palme_512_sc3p15na0.055ld0.
327x0.003y0.007h0r0p0y0dir0rain0lum0"σ 

11 global nn = ""; # additional name suffix (default: "")
12 global lxn = 170; # /px, dimensions of lores images
13 dx = 0e-3; # /m, assumed dx misalignment (default: 0)
14 dy = 0e-3; # /m, assumed dy misalignment (default: 0)
15 dz = 0e-3; # /m, known real dz misalignment for plotting (default: 0)
16 roll = 0; # /deg, assumed roll misalignment (default: 0)
17 pitch = 0; # /deg, assumed pitch misalignment (default: 0)
18 yaw = 0; # /deg, assumed yaw misalignment (default: 0)
19 blur = 2; # /px, sigma of gaussian smoothing (default: 2)
20 global sparsing = false; # /bool, use sparsly sampling = ignore hot & cold

pixels? (default: true)σ 

21 global hot = 245; # /uint8, hot pixel (if sparsly sampling) (default: 245)
22 global cold = 10; # /uint8, cold pixel (if sparsly sampling) (default: 10)
23 global illuminate = false; # /bool, correct brightness via calibration using

imported normalisation matrix? (default: false)σ 

24 shiftit = false; # /bool, correct misaligment by importing correction
matrix? (default: false)σ 

25 plotex = false; # /bool, plot png & pdf+tex (expensive)? (default: false)
26 plotac = false; # /bool, plot autocorrelations? (default: false)
27 dxr = 0; # /px, known real dx misalignment for plotting (eg from simulation)

(default: 0)σ 

28 dyr = 0; # /px, known real dy misalignment for plotting (eg from simulation)
(default: 0)σ 

29 ## hard settings |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
30 global r = 1; # /bool, led color
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31 global g = 0;
32 global b = 0;
33 global ledgap = 6e-3; # /m, between leds on panel (default: 6e-3)
34 global ledheight = 327e-3; #327e-3; # 135e-3 /m, dist panel-object (default:

327e-3)σ 

35 global wavelength = r*632e-9 + g*532e-9 + b*472e-9; # /m, wavelength of the
led, 20nm bandwisth, for now! (default: r*632e-9 + g*532e-9 + b*472e-9)σ 

36 global ccdpix = 2.2e-6; # /m, pixel size of the ccd, assuming quadratic pixel
(default: 2.2e-6)σ 

37 global na = 0.055; # numerical apertur of lens system (default: 0.055)
38 global mag = 1.678; # overall magnification of the optical (default: 1.678)
39 global xpb = 0.9; #/s, brightfield exposure, go measure (default: 0.9)
40 global xpd = 3; #/s, darkfield exposure, as hi as it gets (default: 3)
41 global led = 31; # size of led panel, wants to be odd, symmetric around

ursprung (default: 31)σ 

42 ## end of settings: hands off ////////////////////////////////////////////
43 ## //////////////////////////////////////////////////////////////////////
44

45 ## onwards, through the looking glass, into the dreamworld
46 global k0 = 2*pi/wavelength; # 1/m
47 global cutoff = na * k0;
48 global kmax = pi / ccdpix * mag; # 1/m
49 [kyc kxc] = meshgrid( -kmax : kmax/( (lxn-1)/2 ) : kmax );
50 ctf = ( ( kxc .** 2 + kyc .** 2 ) < cutoff**2 ); # pupil function circ(kmax);

no aberrationσ 

51

52 ## kgeodesics
53 global dkx = 2*kmax / lxn;
54 [ kx0, ky0, x0, y0, z0 ] = krid( );
55 [ kx, ky, xm, ym, zm ] = krid( roll, pitch, yaw, dx, dy, dz );
56

57 ## in the shade
58 global pum = ( (kx.**2 + ky.**2) < (cutoff/dkx)**2 ); # brightfield (1) or

darkfield (0)?σ 

59 global exposure = pum + ~pum * xpb/xpd; # exposure correction matrix
60 global shade = sin( tan( na ) * ledheight );
61 [xs ys] = skuiral( round(shade/ledgap+2)**2 );
62

63 ## pixel vs mm
64 global pixgap = abs( kx( xs(1) , ys(1) ) - kx( xs(2) , ys(2) ) ); # how many

pix between two adjacent kx?σ 

65 global mm2px = k0 / dkx * sin( atan( 1e-3 ./ ledheight ) );
66

67 ## load
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68 [ pux, puy, ims, ice, lava, am, sigma, spars ] = stakk( pux, puy );
69

70 akims = cell( led, led );
71 for l = 1 : numel( pux )
72 x = pux(l); # get current x & y
73 y = puy(l);
74 kims{ x, y } = fftshift( fft2( ims{ x, y } )); # stack ordered as cell
75 amkim( :, :, l ) = abs( kims{ x, y } ); # stack as matrix for mean
76 endfor
77 makim = mean( amkim, 3 ); # global mean for normalisation
78 clear amkim;
79

80 ## analyse
81 raxe = nan( led, led ); # store the estimated radii
82 dx = nan( led, led ); # store the local shifts accaounting to cost 1
83 dy = nan( led, led );
84 strengths = nan( led, led );
85 siz = sprintf( "-S%d,%d", lxn, lxn );
86 for ll = 1:length( pux )
87 x = pux( ll ); # get current x & y
88 y = puy( ll );
89 iname = sprintf( "%02d%02d%1d%1d%1d", x-1, y-1, r, g, b ); # python

starts naming with 0σ 

90 akim = abs( kims{ x, y } ); # load image
91 eclipse = log10( akim ./ makim );
92 eclipse = imsmooth( eclipse, "Gaussian", 1 );
93

94 ## find all circles
95 radiusse = [ cutoff/dkx - cutoff/dkx/10, cutoff/dkx + cutoff/dkx/10 ];
96 [ centers, radii, lstrengths ] = imfindcircles( eclipse, radiusse,

"Sensitivity", 1 );σ 

97

98 ## keep the best one
99 raxe( x, y ) = radii( 1 );

100 strengths( x, y ) = lstrengths( 1 );
101

102 ## reference that dx to either (kx,ky) or (-kx,-ky)
103 dx1 = centers( 1, 2 ) - (lxn+1)/2 - kx( x, y );
104 dx2 = - centers( 1, 2 ) + (lxn+1)/2 - kx( x, y ) + 1;
105 dy1 = centers( 1, 1 ) - (lxn+1)/2 - ky( x, y );
106 dy2 = - centers( 1, 1 ) + (lxn+1)/2 - ky( x, y ) + 1;
107 dst1 = sqrt( dx1.**2 + dy1.**2 );
108 dst2 = sqrt( dx2.**2 + dy2.**2 );
109 if ( dst1 < dst2 )
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110 dx( x, y ) = dx1;
111 dy( x, y ) = dy1;
112 else
113 dx( x, y ) = dx2;
114 dy( x, y ) = dy2;
115 endif
116

117 endfor
118 kx2 = kx0 + dx;
119 ky2 = ky0 + dy;
120 x2 = tan( asin( kx2 * dkx / k0 ) ) * ledheight;
121 y2 = tan( asin( ky2 * dkx / k0 ) ) * ledheight;
122 dx2 = x2 - x0;
123 dy2 = y2 - y0;
124

125 dx3 = dx2( ~isnan( dx2 ));
126 dy3 = dy2( ~isnan( dy2 ));
127 disp( sprintf( "mean dx2 +- std dx2 = %d +- %d", mean( dx3 ), std( dx3 )

));σ 

128 disp( sprintf( "mean dy2 +- std dy2 = %d +- %d", mean( dy3 ), std( dy3 )
));σ 

129 disp( sprintf( "median dx2 +- mad dx2 = %d +- %d", median( dx3 ), median(
abs( dx3 - median( dx3 ) ) ) ));σ 

130 disp( sprintf( "median dy2 +- mad dy2 = %d +- %d", median( dy3 ), median(
abs( dy3 - median( dy3 ) ) ) ));σ 

131

132 ra3 = raxe( ~isnan( raxe ));
133 disp( sprintf( "mean radius = %d +- %d", mean( ra3 ), std( ra3 ) ));
134 disp( sprintf( "median radius = %d +- %d", median( ra3 ), median( abs( ra3 -

median( ra3 ) ) ) ));σ 

135

136 magnew = na*lxn*ccdpix/wavelength/median( ra3 );
137 disp( sprintf( "magnification (from median radius) = %d", magnew ));
138

139 ## inclination xaxis vs x0axis
140 for m = 1:size(kx,1)
141 xline = kx2(m,:);
142 if ~any( xline ); continue; endif
143 xline = xline( ~isnan( xline ));
144 yline = ky2(m,:);
145 if ~any( yline ); continue; endif
146 yline = yline( ~isnan( yline ));
147 xline2 = [ xline', ones( length(xline) , 1 ) ]; # non zero intercept

(offset?)σ 
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148 b = xline2 \ yline'; # linfit
149 plot3( xline', xline2 * b, ones(size(xline')) );
150 patchwork = [ patchwork', [xline', (xline2 * b)]' ]';
151 gamma( m ) = atand( b(1) ); # fitted
152 #alpha( m ) = 90 + atand(( xline(1) - xline(end) )/( yline(end) -

yline(1) )); # rawσ 

153 endfor
154 gammax = gamma( gamma != 0 );
155 disp( sprintf( "mean gammax +- std gammax = %d +- %d", mean( gammax ), std(

gammax ) ));σ 

156 disp( sprintf( "median gammax +- mad gammax = %d +- %d", median( gammax ),
median( abs( gammax - median( gammax ) ) ) ));σ 

157

158 ## inclination yaxis vs y0axis
159 for m = 1:size(kx,1)
160 xline = ky2(:,m)';
161 if ~any( xline ); continue; endif
162 xline = xline( ~isnan( xline ));
163 yline = kx2(:,m)';
164 if ~any( yline ); continue; endif
165 yline = yline( ~isnan( yline ));
166 xline2 = [ xline', ones( length(xline), 1 ) ]; # non zero intercept

(offset?)σ 

167 b = xline2 \ yline'; # linfit
168 plot3( xline2 * b, xline', ones(size(xline')) )
169 patchwork = [ patchwork', [(xline2 * b), xline']' ]';
170 gamma( m ) = -atand( b(1) ); # fitted
171 #alpha( m ) = 90 + atand(( xline(1) - xline(end) )/( yline(end) -

yline(1) )); # rawσ 

172 endfor
173 gammay = gamma( gamma != 0 );
174 disp( sprintf( "mean gammay +- std gammay = %d +- %d", mean( gammay ), std(

gammay ) ));σ 

175 disp( sprintf( "median gammay +- mad gammay = %d +- %d", median( gammay ),
median( abs( gammay - median( gammay ) ) ) ));σ 

B.2.2 Alignment Simulation: simalign.m

The following program simalign.m performs the alignment simulation explained in Sec-
tion 2.6.1, based on B.2.1.
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1 #!/bin/octave
2 ## simulates the forward imaging process of Fourier ptychography. create
3 ## a deck of lores images via a coherent transfer function, simulating
4 ## different illumination angles. enters the matrix and retrieves phase
5 ## information that god stored somewhere deep inside quantum mechanics.
6 ## iteratively reconstructs a hires complex image. estimates the impact
7 ## of various misalignments on the reconstruction by respective deviation
8 ## to reference image. checks and balances are optimised for only one
9 ## varying dof, though one could so test up to all six dof

10 ## simultainously.
11 ## @ moritz siegel
12 ## \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
13 ## soft settings \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
14 hd = "~/fourierptychographie" # parent directory
15 wd = "sims/alignment"
16 aa = "dschungel_512"; # amplitude image name
17 pp = "wasch_512"; # phase image name
18 nn = ""; # additional name of simulation
19 scale = 3; # resolution scaling (per dimension)
20 global pic = 15; # 0<n<16, number lores input images considered in every

direction.σ 

21 global step = 1; # skip every step image? (default: 1)
22 densebrightfield = false; ## /bool, if step>1, still use step=1 in

brightfield area? (default: true)σ 

23 global ceps = 1e-1; # convergence reached when mean difference per px of
succesive iterations is less than eps ... (default: 1)σ 

24 global aeps = 1e-1; # convergence reached when discordance with lores images
is less than eps ... (default: 1)σ 

25 global loop = 10; # ... otherwise: loop maximum (default: 10)
26 dings = round( [ 0 logspace(0,1,5) ] ); # variation magnitude vector
27 dx = 0e-3 # /m, assumed dx misalignment (default: 0)
28 dy = 0e-3 # /m, assumed dy misalignment (default: 0)
29 dz = 0e-3 # /m, known real dz misalignment for plotting (default: 0)
30 roll = 0 # /deg, assumed roll misalignment (default: 0)
31 pitch = 0 # /deg, assumed pitch misalignment (default: 0)
32 yaw = 0 # /deg, assumed yaw misalignment (default: 0)
33 global sparsing = false; # /bool, use sparsly sampling = ignore hot & cold

pixels? (default: true)σ 

34 global hot = 245; # /uint8, hot pixel (if sparsly sampling) (default: 245)
35 global cold = 10; # /uint8, cold pixel (if sparsly sampling) (default: 10)
36 global pupilla = true; # /bool, correct pupil function interatively

(embedded) beware of grid aliasing due to mislignement! (default: false)σ 
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37 global shifting = false; # /bool, correct misaligment by importing
correction matrix? (default: false)σ 

38 global live = false; # /bool, create zeitraffer from recovery? expensive!
(default: false)σ 

39 global confidence = false; # plot confidence map? (very expensive!) (default:
false)σ 

40 phaseshift = true; # shift phase image for better comparison with imref?
41 ## hard settings |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
42 global r = 1; # /bool, led color
43 global g = 0;
44 global b = 0;
45 global ledgap = 6e-3; # /m, between leds on panel (default: 6e-3)
46 global ledheight = 327e-3; #327e-3; # 135e-3 /m, dist panel-object (default:

327e-3)σ 

47 global wavelength = r*632e-9 + g*532e-9 + b*472e-9; # /m, wavelength of the
led, 20nm bandwisth, for now! (default: r*632e-9 + g*532e-9 + b*472e-9)σ 

48 global ccdpix = 2.2e-6; # /m, pixel size of the ccd, assuming quadratic pixel
(default: 2.2e-6)σ 

49 global na = 0.055; # numerical apertur of lens system (default: 0.055)
50 global mag = 1.678; # /px, overall magnification of the optical (default:

1.678)σ 

51 global xpb = 0.9; #/s, brightfield exposure, go measure (default: 0.9)
52 global xpd = 3; #/s, darkfield exposure, as hi as it gets (default: 3)
53 global led = 31; # size of led panel, wants to be odd, symmetric around

ursprung (default: 31)σ 

54 ## end of settings: hands off ////////////////////////////////////////////
55 ## //////////////////////////////////////////////////////////////////////
56

57 ## simulate the high resoluiton complex image
58 IMAGE_PATH( strcat( hd, "/kulissen" ))
59 imrefa = double(imread( aa, "png" )); # pics better be pngs!
60 imrefp = double(imread( pp, "png" ));
61 imrefp = 2*pi*imrefp./max(max(imrefp)) - pi; # phase ranges -pi to pi
62 imref = imrefa .* exp( 1i .* imrefp );
63 global hxn = size( imref, 2 );
64 skimref = fftshift( fft2( imref ) );
65

66 ## onwards, through the looking glass, into the dreamworld
67 global k0 = 2*pi/wavelength; # 1/m
68 global cutoff = na * k0;
69 global kmax = pi / ccdpix * mag; # 1/m
70 global lxn = floor( hxn/scale );
71 global dkx = 2*kmax / lxn;
72 [kxc kyc] = meshgrid( -kmax:kmax/( (lxn-1)/2 ):kmax );
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73 ctf = ( ( kxc .** 2 + kyc .** 2 ) < cutoff**2 ); # pupil function circ(kmax);
no aberrationσ 

74

75 ## geodesics
76 global shade = sin( tan( na ) * ledheight );
77 [xs ys] = skuiral( (2*pic + 1)**2, step );
78 [ kx0, ky0, x0, y0, z0 ] = krid( );
79

80 ##variate: recover high resolution image under varying misalignment
81 for dd = 1 : length( dings );
82 close all # close figures to be able to redraw
83 ding = dings( dd ); # generate wrong assumtion of led positions
84 [ kx, ky, xm, ym, zm ] = krid( roll*ding, pitch*ding, yaw*ding, dx*ding,

dy*ding, dz*ding );σ 

85

86 ## in the shade
87 global pum = ( (kx.**2 + ky.**2) < (cutoff/dkx)**2 ); # brightfield (1) or

darkfield (0)?σ 

88 global exposure = pum + ~pum * xpb/xpd; # exposure correction matrix
89

90 ## create: lores ipsus
91 skorec = fftshift(fft2( imref ));
92 lava = zeros( size( kx ));
93 ice = zeros( size( kx ));
94 for ll = 1 : numel( xs ) # generate lores images
95 x = xs(ll); # get current x & y
96 y = ys(ll);
97 skxc = (hxn+1)/2 + kx( y, x ); # geometric center (between pixels!)
98 skyc = (hxn+1)/2 + ky( y, x );
99 skyl = floor( skyc - (lxn-1)/2 ); # crop window, pixel dims

100 skyh = floor( skyc + (lxn-1)/2 );
101 skxl = floor( skxc - (lxn-1)/2 );
102 skxh = floor( skxc + (lxn-1)/2 );
103 kim = (lxn/hxn)^2 * skorec(skyl:skyh,skxl:skxh) .* ctf;
104 im = ifft2( ifftshift( kim ) );
105 im = uint8( abs( im ) ); # write lores image to stack resembling sensor

data in uint8σ 

106 ims{ x, y } = im;
107 warm = im < hot;
108 cool = im > cold;
109 ice( x, y ) = 1 - mean( cool(:) ); # abundance of cold pixels
110 lava( x, y ) = 1 - mean( warm(:) ); # abundance of hot pixels
111 if ( sparsing == true )
112 spars{ x, y } = warm || cool;
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113 else
114 spars{ x, y } = ones( size( im ) );
115 endif
116 am( x, y ) = mean( im( spars{ x, y } != 0 ) );
117 sigma( x, y ) = std( im( spars{ x, y } != 0 ) );
118 endfor
119

120 ## recover
121 [ kx, ky, xm, ym, zm ] = krid();
122 [ orec, skorec, pupil, convergence, discordance, quality ] = rekover( ims,

ctf, xs, ys, kx, ky, spars, ref=imref );σ 

123

124 ## combine to complex object again
125 soreca = abs(orec) ./ max(max( abs( orec )) ) * 255; # scale orec to uint8
126 sorec = soreca .* exp( 1i .* angle(orec) );
127

128 endfor
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B.3 Luminosity

B.4 Luminosity Calibration: kalibright.m

The following program kalibright.m performs our proposed brightness calibration, explained
in Section 2.7.

1 #!/bin/octave
2 ## calibrates the individual led's brightness of the led panel used for
3 ## fourier ptychography. loads all lores images and corrects for
4 ## respective exposure. calculates mean & sigma, and constructs a
5 ## brightness normalisation matrix; either for brightfield when using
6 ## notarget calibration only, or full led panel when using a diffuser
7 ## target.
8 ## @ moritz siegel
9 ## \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

10 ## soft settings \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
11 global hd = "~/fourierptychographie" # parent directory
12 #global wd = "sets/2020_05_20_014735_brightness_r/512"
13 global wd = "sets/2020_06_02_113704_diffused_r/512"
14 global nn = ""; # additional luminosity suffix (default: "")
15 dx = 0e-3; # /m, assumed dx misalignment (default: 0)
16 dy = 0e-3; # /m, assumed dy misalignment (default: 0)
17 dz = 0e-3; # /m, known real dz misalignment for plotting (default: 0)
18 roll = 0; # /deg, assumed roll misalignment (default: 0)
19 pitch = 0; # /deg, assumed pitch misalignment (default: 0)
20 yaw = 0; # /deg, assumed yaw misalignment (default: 0)
21 global diffused = false; # /bool, diffuser target: full led panel (true) / no

target: bf only (false) (default: false)σ 

22 global sparsing = false; # /bool, use sparsly sampling = ignore hot & cold
pixels? (default: true)σ 

23 global hot = 250; # /uint8, hot pixel (default: 255)
24 global cold = 5; # /uint8, cold pixel (default: 0)
25 ## hard settings |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
26 global r = 1; # /bool, led color
27 global g = 0;
28 global b = 0;
29 global ledgap = 6e-3; # /m, between leds on panel (default: 6e-3)
30 global ledheight = 327e-3; #327e-3; # 135e-3 /m, dist panel-object (default:

327e-3)σ 

31 global wavelength = r*632e-9 + g*532e-9 + b*472e-9; # /m, wavelength of the
led, 20nm bandwisth, for now! (default: r*632e-9 + g*532e-9 + b*472e-9)σ 
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32 global ccdpix = 2.2e-6; # /m, pixel size of the ccd, assuming quadratic pixel
(default: 2.2e-6)σ 

33 global na = 0.055; # numerical apertur of lens system (default: 0.055)
34 global mag = 1.678; # /px, overall magnification of the optical (default:

1.678)σ 

35 global xpb = 0.9; #/s, brightfield exposure, go measure (default: 0.9)
36 global xpd = 3; #/s, darkfield exposure, as hi as it gets (default: 3)
37 global led = 31; # size of led panel, wants to be odd, symmetric around

ursprung (default: 31)σ 

38 ## end of settings: hands off ////////////////////////////////////////////
39 ## //////////////////////////////////////////////////////////////////////
40

41 ## onwards, through the looking glass, into the dreamworld
42 global k0 = 2*pi/wavelength; # 1/m
43 global cutoff = na * k0;
44 global kmax = pi / ccdpix * mag; # 1/m
45

46 ## in the shade
47 [xs ys] = skuiral( led**2 ); # spiralizing vector, centered at (16,16)
48 xv = linspace(-floor(led/2), floor(led/2), led ) * ledgap; # /m distance to

centerσ 

49 global shade = sin( tan( na ) * ledheight );
50 [xm ym] = meshgrid( xv );
51 global brightfield = ( (xm.**2 + ym.**2) < shade.**2 ); # brightfield (1) or

darkfield (0)?σ 

52 global exposure = brightfield + ~brightfield * xpb/xpd; # exposure correction
matrixσ 

53

54 ## load
55 global illuminate = false; # has to be, cause we do it now!
56 [ xs, ys, ims, ice, lava, am, sigma, spars ] = stakk( xs, ys );
57

58 ## kgeodesics
59 lxn = size( ims{ xs(1), ys(1) }, 1 )
60 global dkx = 2*kmax / lxn;
61 [ kx0, ky0, x0, y0, z0 ] = krid( );
62 [ kx, ky, xm, ym, zm ] = krid( roll, pitch, yaw, dx, dy, dz );
63

64 ## compile brightness normalisation matrix
65 if ( diffused == true ) # normalise full panel to full panel amplitude mean
66 luminosity = mean( am( isfinite( am ) ) ) ./ am;
67 luminosity( luminosity > 10 ) = 10; # upper bound on how much brighter is

plausibleσ 

68 else # normalise bf val to bf amplitude mean
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69 luminosity = mean( am( isfinite( am ) & brightfield ) ) ./ am .*
brightfield + ~brightfield;σ 

70 endif
71

72 ## calibrate: patchwork & normalise
73 bright = round( shade/ledgap );
74 nice = nlava = nam = nsigma = nan( size( am ));
75 for tt = 1:length(xs)
76 x = xs(tt); # get current x & y
77 y = ys(tt);
78 im = ims{ x, y };
79 nim = im * luminosity( x, y ); # normalise brightness
80

81 if ( abs(x-16) < bright+1 ) && ( abs(y-16) < bright+1 ) # only patch bf
+1, the rest is black anywayσ 

82 xnp = floor( lxn/(2*bright+1) );
83 xp = max(1, (x-16+bright)*xnp); # position in patchwork, bf only
84 yp = max(1, (y-16+bright)*xnp);
85 patch( yp:yp+xnp, xp:xp+xnp ) = im( yp:yp+xnp, xp:xp+xnp );
86 npatch( yp:yp+xnp, xp:xp+xnp ) = nim( yp:yp+xnp, xp:xp+xnp );
87 endif
88

89 cool = im > cold;
90 warm = im < hot;
91 nice( x, y ) = 1 - mean( cool(:) ); # abundance of cold pixels
92 nlava( x, y ) = 1 - mean( warm(:) ); # abundance of hot pixels
93 nam( x, y ) = mean( nim( spars{ x, y } == 1 ) );
94 nsigma( x, y ) = std( nim( spars{ x, y } == 1 ) );
95

96 clear im nim
97 endfor

B.4.1 Luminosity Simulation: simlum.m
The following program simlum.m performs the alignment simulation explained in Section 2.7.1,
based on B.4.

1 #!/bin/octave
2 ## simulates the forward imaging process of Fourier ptychography. create
3 ## a deck of lores images via a coherent transfer function, simulating
4 ## different illumination angles. enters the matrix and retrieves phase
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5 ## information that god stored somewhere deep inside quantum mechanics.
6 ## iteratively reconstructs a hires complex image. estimates the impact
7 ## of various misalignments on the reconstruction by respective deviation
8 ## to reference image. checks and balances are optimised for only one
9 ## varying dof, though one could so test up to all six dof

10 ## simultainously.
11 @ moritz siegel
12 ## \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
13 ## soft settings \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
14 hd = "~/fourierptychographie" # parent directory
15 wd = "sims/alight"
16 aa = "wasch_512"; # amplitude image name
17 pp = "palme_512"; # phase image name
18 nn = ""; # additional name of simulation
19 scale = 3; # resolution scaling (per dimension)
20 global pic = 15; # 0<n<16, number lores input images considered in every

direction.σ 

21 global step = 1; # skip every step image? (default: 1)
22 densebrightfield = false; ## /bool, if step>1, still use step=1 in

brightfield area? (default: true)σ 

23 global ceps = 1e-3; # convergence reached when mean difference per px of
succesive iterations is less than eps ... (default: 1)σ 

24 global aeps = 1e-3; # convergence reached when discordance with lores images
is less than eps ... (default: 1)σ 

25 global loop = 1; # ... otherwise: loop maximum (default: 10)
26 dings = [ 0 logspace(-1,2,10) ]; # variation magnitude vector
27 dx = 0 # /m, assumed dx misalignment (default: 0)
28 dy = 0 # /m, assumed dy misalignment (default: 0)
29 dz = 0 # /m, known real dz misalignment for plotting (default: 0)
30 roll = 0 # /deg, assumed roll misalignment (default: 0)
31 pitch = 0 # /deg, assumed pitch misalignment (default: 0)
32 yaw = 0 # /deg, assumed yaw misalignment (default: 0)
33 global directional = true;# /bool, simulate directivity of 40 deg? (default:

true)σ 

34 global export = false; # /bool, export low-resolution images?
35 global sparsing = false; # /bool, use sparsly sampling = ignore hot & cold

pixels? (default: true)σ 

36 global hot = 245; # /uint8, hot pixel (if sparsly sampling) (default: 245)
37 global cold = 10; # /uint8, cold pixel (if sparsly sampling) (default: 10)
38 global pupilla = true; # /bool, correct pupil function interatively

(embedded) beware of grid aliasing due to mislignement! (default: false)σ 

39 global shifting = false; # /bool, correct misaligment by importing
correction matrix? (default: false)σ 

89



40 global live = false; # /bool, create zeitraffer from recovery? expensive!
(default: false)σ 

41 global confidence = false; # plot confidence map? (very expensive!) (default:
false)σ 

42 phaseshift = true; # shift phase image for better comparison with imref?
43 ## hard settings |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
44 global r = 1; # /bool, led color
45 global g = 0;
46 global b = 0;
47 global ledgap = 6e-3; # /m, between leds on panel (default: 6e-3)
48 global ledheight = 327e-3; #327e-3; # 135e-3 /m, dist panel-object (default:

327e-3)σ 

49 global wavelength = r*632e-9 + g*532e-9 + b*472e-9; # /m, wavelength of the
led, 20nm bandwisth, for now! (default: r*632e-9 + g*532e-9 + b*472e-9)σ 

50 global ccdpix = 2.2e-6; # /m, pixel size of the ccd, assuming quadratic pixel
(default: 2.2e-6)σ 

51 global na = 0.055; # numerical apertur of lens system (default: 0.055)
52 global mag = 1.678; # /px, overall magnification of the optical (default:

1.678)σ 

53 global xpb = 0.9; #/s, brightfield exposure, go measure (default: 0.9)
54 global xpd = 3; #/s, darkfield exposure, as hi as it gets (default: 3)
55 global led = 31; # size of led panel, wants to be odd, symmetric around

ursprung (default: 31)σ 

56 ## end of settings: hands off ////////////////////////////////////////////
57 ## //////////////////////////////////////////////////////////////////////
58

59 ## simulate the high resoluiton complex image
60 IMAGE_PATH( strcat( hd, "/kulissen" ))
61 imrefa = double(imread( aa, "png" )); # pics better be png's!
62 imrefp = double(imread( pp, "png" ));
63 imrefp = 2*pi*imrefp./max(max(imrefp)) - pi; # phase ranges -pi to pi
64 imref = imrefa .* exp( 1i .* imrefp );
65 global hxn = size( imref, 2 );
66 skimref = fftshift( fft2( imref ) );
67

68 ## onwards, through the looking glass, into the dreamworld
69 global k0 = 2*pi/wavelength; # 1/m
70 global cutoff = na * k0;
71 global kmax = pi / ccdpix * mag; # 1/m
72 global lxn = floor( hxn/scale );
73 global dkx = 2*kmax / lxn;
74 [kxc kyc] = meshgrid( -kmax:kmax/( (lxn-1)/2 ):kmax );
75 ctf = ( ( kxc .** 2 + kyc .** 2 ) < cutoff**2 ); # pupil function circ(kmax);

no aberrationσ 
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76

77 ## geodesics
78 [xs ys] = skuiral( (2*pic + 1)**2, step );
79 [ kx0, ky0, x0, y0, z0 ] = krid( );
80 [ kx, ky, xm, ym, zm ] = krid( roll, pitch, yaw, dx, dy, dz );
81

82 ## in the shade
83 global pum = ( (kx.**2 + ky.**2) < (cutoff/dkx)**2 ); # brightfield (1) or

darkfield (0)?σ 

84 global exposure = pum + ~pum * xpb/xpd; # exposure correction matrix
85

86 ## create: lores ipsus
87 skorec = fftshift(fft2( imref ));
88 lava = zeros( size( kx ));
89 ice = zeros( size( kx ));
90 for ll = 1 : numel( xs ) # generate lores images
91 x = xs(ll); # get current x & y
92 y = ys(ll);
93 skxc = (hxn+1)/2 + kx( y, x ); # geometric center (between pixels!)
94 skyc = (hxn+1)/2 + ky( y, x );
95 skyl = floor( skyc - (lxn-1)/2 ); # crop window, pixel dims
96 skyh = floor( skyc + (lxn-1)/2 );
97 skxl = floor( skxc - (lxn-1)/2 );
98 skxh = floor( skxc + (lxn-1)/2 );
99 kim = (lxn/hxn)^2 * skorec(skyl:skyh,skxl:skxh) .* ctf;

100 im = ifft2(ifftshift( kim ));
101 im = uint8( abs( im ) ); # write lores image to stack resembling sensor

data in uint8σ 

102 ims{ x, y } = im;
103 endfor
104

105 ## directivity 40 deg
106 if ( directional == true )
107 [mx my] = meshgrid( linspace( -15*ledgap, 15*ledgap, led ) );
108 dis = sqrt( mx.**2 + my.**2 );
109 alpha = atand( dis / ledheight );
110 directivity = cosd( alpha*3 ); # empirical led directivity of 40 deg
111 else
112 directivity = ones( size ( kx ) );
113 endif
114

115 ## variate & recover high resolution image under varying misalignment
116 for dd = 1 : numel( dings );
117 close all # close figures to be able to redraw

91



118 ding = dings( dd ); # generate wrong assumtion of led positions
119

120 ## add uint8 rain
121 rain = ding * randn( size ( kx ) );
122

123 ## variate
124 am = nan( size( kx ) );
125 sigma = nan( size( kx ) );
126 for ll = 1 : numel( xs ) # generate lores images
127 x = xs(ll); # get current x & y
128 y = ys(ll);
129 im = ims{ x, y };
130 im = im + rain( x, y );
131 im = im .* directivity( x, y );
132 im = uint8( im );
133 ims{ x, y } = im;
134 warm = im < hot;
135 cool = im > cold;
136 ice( x, y ) = 1 - mean( cool(:) ); # abundance of cold pixels
137 lava( x, y ) = 1 - mean( warm(:) ); # abundance of hot pixels
138 if ( sparsing == true )
139 spars{ x, y } = warm || cool;
140 else
141 spars{ x, y } = ones( size( im ) );
142 endif
143 am( x, y ) = mean( im( spars{ x, y } != 0 ) );
144 sigma( x, y ) = std( im( spars{ x, y } != 0 ) );
145 endfor
146

147 ## recover
148 [ orec, skorec, pupil, convergence, discordance, quality ] = rekover(

ims, ctf, xs, ys, kx, ky, spars, ref=imref );σ 

149 ## combine to complex object again
150 soreca = abs(orec) ./ max(max( abs( orec )) ) * 255; # scale orec to

uint8σ 

151 sorec = soreca .* exp( 1i .* angle(orec) );
152 endfor
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Acronyms

AOI area of interest. 21, 38

BF bright-field. 16

CCD charge-coupled device. 10,

CMOS complementary metal-oxide-
semiconductor. 10,

DC zero-order term of Fourier spectrum. 28

DF dark-field. 30

DFT discrete Fourier transform. 10

DOF degrees of freedom. 25

FFT fast Fourier transform. 10, 29

FOV field of view. 20, 38

FP Fourier ptychography.

FPM Fourier ptychographic microscopy. 9

FT Fourier transform. 10

FWHM full width half maximum. 20, 21

GS Gerchberg-Saxton. 9, 11, 14

HDR high-dynamic-range. 24

LED light emitting diode. 13

MAD median absolute deviation. 43, 46

NA numerical aperture. 18

OTF optical transfer function. 14

PSF point spread function. 14

RANSAC random sample consensus. 30

RGB red green blue.

RMS root mean square. 16

RMSE root mean square error. 16, 17

SBP space–bandwidth product.

SMD surface-mount-device. 19, 21

STD sample standard deviation. 43, 46
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Symbols

, amplitude of the high resolution image in
real space N.

< largest dimension of the light source.

<1 squared error.

> Intensity of the high resolution image in real
space N.

>fal intensity of a light source.

* dimension of the space N/ ψC/ .

- number of elements (images in image
stack).

A complex object of the high resolution image
in real space N.

Eγ yaw rotation matrix, rotations about the
z-axis.

E pitch rotation matrix, rotations about the
y-axis.

Eπ roll rotation matrix, rotations about the x-
axis.

Δ0 spatial coherence (FWHM).

Δn shift/rotation expressed as change in illu-
mination angle.

Δe allowed radius deviation of the pupil func-
tion in low resolution Fourier space.

Δg lateral shift of the illumination source in
x-axis.

Δh lateral shift of the illumination source in
y-axis.

Δ lateral shift of the illumination source in
z-axis.

Δ attenuation of a light source.

Λ phase of the high resolution image in real
space N.

α arbitrary misalignments for simulation.

c0ψ c1ψ ch position of the found circles in low
resolution Fourier space.

k * -dimensional spatial frequency coordi-
nate.

r * -dimensional spatial coordinate.

ß slope of the horizontal and vertical lines of
the estimated grid.

Λb bright-field luminosity correction coeffi-
cients vector; Δh of all l bright-field im-
ages.

Λ luminosity correction coefficients vector; Δh

of all l images.

i image vector; all images nh.

u mean intensity vector; ιh of all l images.

γ directivity of a light source.

: iteration counter.

ζ number of elements (pixels) of the low reso-
lution object.
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ß yaw, angle of rotations about the z-axis.

:, amplitude of the high resolution image in
Fourier space C.

:> Intensity of the high resolution image in
Fourier space C.

:A complex object of the high resolution image
in Fourier space C.

:D pupil function in high resolution Fourier
space C.

:Λ phase of the high resolution image in Fourier
space C.

:n Intensity of the low resolution image in
Fourier space C.

:π phase of the low resolution image in Fourier
space C.

:H amplitude of the low resolution image in
Fourier space C.

:a complex object of the low resolution image
in Fourier space C.

:a pupil function in low resolution Fourier
space C.

n Intensity of the low resolution image in real
space N.

0 wavelength.

0+ wavelength, of the incident light.

€-, inverse Fourier transform.

€ Fourier transform.

, normal distribution.

, order of magnitude.

ι arithmetic mean of a distribution.

A area of interest (AOI).

i imaginary unit.

λ magnitude of noise for luminosity simula-
tions.

λgdh lowest possible frequency.

oA primitive root of unity.

π phase of the high resolution image in real
space N.

o pitch, angle of rotations about the y-axis.

v roll, angle of rotations about the x-axis.

ε dimensions of a gaussian blur kernel.

ε1 variance of a distribution.

nψ nnψ nn illumination angle, respective projec-
tions on x-,y-axes.

Φ, eps smallest possible number, convergence
criterion.

μ arbitrary variable.

ε number of elements (pixels) of the high res-
olution object.

εψ p arbitrary complex objects.

H amplitude of the high resolution image in
real space N.

I minimum resolvable distance.

I/ Fraunhofer distance.

:ψ Nψ O arbitrary functions.

P+ wave number of the incident light.

Pnψ Poψ Pgψ Phψ kxψ ky two-dimensional spatial
frequency coordinates.

PNi spatial cutoff frequency of the optical sys-
tem.

R length, e.g. RNNl, pixel-size of the imaging de-
tector.
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R arbitrary index.

RHN magnification of an optical system.

l image stack index.

lM size of the bright-field area of lM lM LEDs.

a complex object of the high resolution image
in real space N.

e estimated radius of the pupil function in low
resolution Fourier space.

eMe resolution of the microscope.

e pseudo-random normal distributed variable.

f diameter of the circular aperture (resem-
bling a circular emitting area).

gψ h two-dimensional spatial coordinates.

 spatial coordinate, distance of the object
from the source.

NA numerical aperture.
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Operators

x convolution.

€ Fourier transform.

€-0 inverse Fourier transform.

. autocorrelation, cross-correlation.
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Index

Abbe, 18
accordance, 15
aliasing, 39
amplitude, 10
amplitude confidence, 25
amplitude quality, 23, 51
angle-varied, 9
aperture, 9
area of interest, 21, 38
attenuation, 32, 53
attenuation factor, 32
autocorrelation, 11, 27
autocorrelation disks, 28

bijection, 47
blur, 29
bright-field, 16
brightness deviation, 49
brightness variation, 31
brightness variations, 33, 48

calibration, 27, 56, 57
coherence length, 20, 38
coherent imaging process, 14
coherent transfer function, 37
complex conjugate, 11
complex conjugation, 10
complex light field, 14
confidence, 24
constraints, 12
convergence, 15, 22, 50
convex problems, 21
convolution, 11, 14
cross-correlation, 11
cutoff frequency, 14

dark-field, 30
DC term, 28
degrees of freedom, 25, 27
Descriptive Statistics, 44
diffuser, 33, 34, 53
directivity, 21, 54
discordance, 23, 51
discrete Fourier transform, 10
discretely sampled, 15

edge detection, 29
edge filter, 25
empirical limits, 56, 57
error reduction algorithm, 12
Euler angles, 26
exit criterion, 16, 22
extrapolation, 30

far-field, 19
fast Fourier transform, 11
field of view, 20, 38
fit, 45
Fourier ptychographic microscope, 13
Fourier Transform, 10
Fraunhofer diffraction, 19
full width half maximum, 21

Gaussian blur, 29
Gerchberg-Saxton algorithm, 11
Gerchberg–Saxton algorithm, 9
glass slide resolution target, 38

high-dynamic-range, 24
Hough transform, 29

illumination angle, 19
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illumination NA, 19
illumination uniformity, 57
imfindcircles, 29
inclination, 46
inconsistent illumination, 32
intensity, 10
isotropic, 21

k-space positions, 26

Lambert’s cosine law, 21
lateral shift, 26
least squares fit, 46
LED, 13
line pair, 36, 37
linear progression, 46
Luminosity Calibration, 33
luminosity calibration, 54
luminosity correction coefficients, 33
luminosity normalisation, 53

magnification, 27, 29
MATLAB, 14
mean, 31, 43
median, 43
median absolute derivation, 43
misalignment, 40, 56
modulo, 10, 11
modulus, 11, 15
monochrome industrial camera, 13

noise, 26
non-uniformity, 57
normal distribution, 31
normalisation, 53
normalise, 33
numerical aperture, 18
Nyquist-Shannon, 18

object plane, 20
objective NA, 18
Octave, 14
Octave Forge, 25, 29
ocular, 14
off-focus, 27

optical transfer function, 14
outlier detection, 30

phase, 10
phase confidence, 25
phase quality, 24, 52
pitch, 26
plane wave, 14, 20
point spread function, 14
probability density function, 31
ptychography, 13
pupil function, 14

quality, 15

RANSAC, 30
refractive index, 18
resolution, 19, 36
resolution limit, 18, 19, 37
resolution target, 36
resolvable distance, 18
RMS, 16
RMSE, 16
robustness, 25, 35
roll, 26
rotation, 26

sampling theorem, 18
shift, 26
shift-register, 31
simulated annealing, 27, 33
SMD, 19
smooth, 29
sparsely sampling, 24
spatial coherence, 20
speckle, 30
squared error, 12
standalone calibration, 27
standard derivation, 43
step-width, 30
super aperture, 37
super-resolution, 19, 37
superposition, 10
support constraint, 15
synthetic aperture, 19, 37
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target, 19
temporal coherence, 20
translation, 26
translation invariant, 47
transmittance, 24

uniformity, 48, 57
unsigned integer, 24
USAF1951, 19

Van Cittert-Zernike theorem, 20
variance, 31

wave number, 14
wavelength, 14, 18

x-axis, 26

y-axis, 26
yaw, 26

z-axis, 26
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