
MASTER’S THESIS

Data Communication System Development and
Evaluation for Engine Control Data

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur (equals M.Sc.)

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Thilo Sauter
Sai Manoj Pudukotai Dinakarrao, PhD.

at

Institute of Computer Technology (E384)
Vienna University of Technology

by

Richard Christian Tessarek, B.Sc.
Matr.Nr. 0726765

3011 Purkersdorf, Sagbergstraße 81

31.05.2017

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Kurzfassung

Das Ziel dieser Arbeit war die Verlagerung bzw. Verteilung von Kontrollalgorithmen von Ver-
brennungskraftmaschinen in einem Netzwerk von Mess- und Rechenknoten im Rahmen eines
Forschungsprojektes in Kooperation mit einem Hersteller von Industriemotoren. Bei der Umset-
zung dieses Projektes war die deterministische Übertragung von Meß- und Steuerdaten über ein
hart echtzeitfähiges Feldbussystem ein Schlüsselfaktor.
Die Aufgabe bei dieser Diplomarbeit war das Vergleichen, Bewerten und Auswählen passender
Feldbussysteme auf Grundlage technischer und wirtschaftlicher Parameter; besonders Anforde-
rungen wie die erforderlichen hohen Datenraten in Kombination mit niedrigen Antwortzeiten
stellten dabei eine Herausforderung dar.
Auf die getroffenen Bewertungen der betrachteten Feldbussysteme aufbauend wurden verschiede-
ne Hard- und Software-Plattformen für die Implementierung der Messknoten und des Steuerungs-
rechners verglichen; basierend auf technischen Parametern wie der benötigten Rechenleistung
wurden die wirtschaftlichsten Lösungen vorgeschlagen.
Zur Bestätigung der theoretischen Evaluierung und Ausarbeitung des Motordaten-Übertragungs-
konzeptes wurden zwei Prototypen, ein EtherCAT- und ein TTEthernet-basiertes System, ent-
wickelt. Beide Prototypen erfüllten die gestellten Anforderungen und bestätigen somit prinzipiell
die Verwendbarkeit beider Systeme; die hohe Bandbreitenauslastung von ≈ 77Mbps stellt al-
lerdings bezüglich des EtherCAT-Prototypen die einfache zukünftige Erweiterbarkeit in Frage,
während beim TTEthernet-Prototypen die zukünftige Verfügbarkeit von Hardware für eine pro-
duktreife Umsetzung des Systems nicht geklärt ist.
Auf Basis der gewonnenen Erfahrungen könnte daher die Entwicklung von Alternativlösungen im
Rahmen von weiterführenden Arbeiten sinnvoll sein.

Abstract

A research project at the Institute for Computer Technology of the Vienna University of Tech-
nology commissioned by a manufacturer of industial internal combustion engines was targeted at
the redistribution of control algorithms for internal combustion engines within a network of mea-
surement and processing nodes. For this project, the deterministic transmission of measurement
and control data via a hard real-time fieldbus was a key factor.
The goal of the master thesis was to compare, evaluate, and select suitable fieldbus systems
based on technical and economical parameters; especially requirements like high data rates and
low latencies made this challenging.
Based on this evaluation, hardware platforms for the implementation of a measurement and
control node were compared and based on the computational demands, cost efficient platforms
were chosen.
To prove the theoretical concept, an EtherCAT-based and a TTEthernet-based prototype were
realized and evaluated. Both prototypes did satisfy the given requirements and thus prove in prin-
ciple the viability of both systems. However, the high bandwidth utilization of about ≈ 77Mbps
puts the future extensibility of the EtherCAT prototype into question; for the TTEthernet pro-
totype, the future availability of hardware more feasible for the implementation of a production-
ready system is not yet known.
Based upon the gained experience, the development of alternative solutions in the context of
further research projects could deliver further meaningful conclusions.

II

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Table of Contents
1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Technical Requirements . 4

1.3.1 Engine Specifications and Requirements . 4

1.3.2 Control Algorithm Requirements . 6

1.3.3 Derivative Requirements and Constraints 6

1.4 Proposed Methodology . 7

1.5 Organization of this Thesis . 8

2 State of the Art 9

2.1 General Differentiations and Definitions . 9

2.1.1 Real-Time Communication Classes . 9

2.1.2 Control- and Communication System Concepts 10

2.1.3 Media Access Control and Communication Mechanisms 11

2.2 Technological Introduction to Short-listed Protocols 15

2.2.1 EtherCAT . 15

2.2.2 Sercos-III . 21

2.2.3 TTEthernet . 27

3 Proposed Implementation Approaches 31

3.1 Basic Concepts for Proposed Fieldbus Systems . 31

3.2 Calculations and Considerations . 32

3.2.1 Multiple Cycle Times Versus Multiplexing 32

3.2.2 Data Packing . 33

3.2.3 Tuple Generation Versus Communication Cycle Time 35

3.2.4 Net Bandwidth . 35

3.2.5 Preliminarily Excluded Systems . 39

3.3 Additional Considerations for Hard Real-Time Operation 41

3.3.1 Unsuitability of TCP/IP . 41

3.3.2 Unsuitability of MAC-CSMA(/CD) . 41

3.3.3 Unsuitability of COTS Switched Ethernet 42

3.4 Discussion of Remaining Systems . 43

4 Prototype Implementations 44

4.1 EtherCAT Prototype . 45

4.1.1 Used Hard- and Software . 45

4.1.2 General Remarks about the Test Application 46

4.1.3 Network Structure . 47

4.1.4 Network Cycle Time and Multiplexing . 47

4.1.5 Master Application . 49

4.1.6 Slave Application . 52

4.1.7 Notable Caveats . 52

4.2 TTEthernet Prototype . 53

4.2.1 Used Hard- and Software . 53

4.2.2 General Remarks about the Test Application 54

III

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4.2.3 Network Structure and Schedule . 54
4.2.4 Master Application . 57
4.2.5 Slave Application . 60
4.2.6 Notable Caveats . 63

5 Results 64
5.1 Recap of the Prototype Systems Selection . 64
5.2 EtherCAT Prototype . 65

5.2.1 Logged Data and Measurements . 66
5.2.2 Encountered Problems and Solutions . 69

5.3 TTEthernet Prototype . 75
5.3.1 Logged Data and Measurements . 75
5.3.2 Encountered Problems and Solutions . 78

6 Conclusions 82
6.1 Discussion of the EtherCAT Prototype . 83
6.2 Discussion of the TTEthernet Prototype . 84
6.3 Final Conclusions with Regards to the Project Goals 85
6.4 Outlook and Future Work . 89

Appendices 90
A Bandwidth Efficiency Estimation . 90

A.1 Bandwidth Efficiency Estimation for Single-Frame Systems 90
A.2 Bandwidth Efficiency Estimation for Summation-Frame Systems 91

B Listing of Initially Reviewed Fieldbus Systems . 92
C Commonly Used Data Structures . 93

C.1 Control Data A . 93
C.2 Control Data B . 93
C.3 Process Data . 94
C.4 Slave Status Data . 94

Literature 95

IV

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Abbreviations
ABV Audio-Video Bridging
AFDX Avionics Full-Duplex Switched Ethernet
API Application Programming Interface
AT Answer/Acknowledge Telegram
CA Frame PCF Coldstart-Acknowledge Frame
CAN Control Area Network
CoE CAN application protocol over EtherCAT
COTS Commercial off-the-shelf (Hardware)
CRC Cyclic Redundancy Check
CS Frame PCF Coldstart Frame
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CSMA/CD Carrier Sense Multiple Access with Collision Detection
CT Critical Traffic
DC Distributed Clock
DCOM Distributed Component Object Model
DMA Direct Memory Access
EoE Ethernet over EtherCAT
EPSG Ethernet POWERLINK Standardization Group
FMMU Fieldbus Memory Management Unit
FoE File Access over EtherCAT
FPGA Field Programmable Gate Array
gPTP Generalized Precision Time Protocol
HMI Human Machine Interface
IEEE Institute of Electrical and Electronics Engineers
IN Frame PCF Integration Frame
IP Internet Protocol
LAN Local Area Network
LLC Logical Link Control
LLDP Link Layer Discovery Protocol
MAC Media Access Control
MAD Multiple Reservation Protocol Attribute Declaration
MDT Master Data Telegram
MMRP Multiple MAC Registration Protocol
MRP Multiple Reservation Protocol
MRPDU Multiple Reservation Protocol Data Unit
MSRP Multiple Stream Reservation Protocol
MVRP Multiple VLAN Registration Protocol
NRT Non-Real-Time
NTP Network Time Protocol
OSI Open Systems Interconnection
P2P Peer-to-Peer
PCF Protocol Control Frame
PDU Protocol Data Unit
PLC Programmable Logic Controller
PROFINET CbA . PROFINET Component-Based Automation
PROFINET IO . . PROFINET Input/Output
PROFINET IRT . . PROFINET Isochronous Real-Time

V

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

PROFINET RT . . PROFINET Real-Time
PROFINET SRT . PROFINET Soft Real-Time
PTP Precision Time Protocol
QoS Quality of Service
RPC Remote Procedure Call
RX Receiver
SAE Society of Automotive Engineers
SM Sync Manager
SR Class AVB: Stream Reservation Class
SRP Stream Reservation Protocol
TC Transparent Clock
TCP Transmission Control Protocol
TP Twisted-Pair
TTP Time-Triggered Protocol
TX Transmitter
UC Unified Communication
UDP User Datagram Protocol
VL Virtual Link
VL ID Virtual Link ID
VLAN Virtual LAN, Virtual Local Area Network
VLAN ID Virtual LAN ID
WLAN Wireless LAN

VI

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

1 Introduction

Automation and computers play an important role in improving the performance, efficiency, and
safety of combustion engines. Without regard for the size of the engine, embedded systems
measure and control different parameters of the combustion process, creating new possibilities for
optimization of process parameters as well as enhanced error detection mechanisms.

This thesis and the associated project work was commissioned by an external company specializing
in the production of highly efficient, large-scale combustion engines. This company already has
an electronic control system and data exchange mechanism implemented on their engines, but
reasons to replace the existing system with a completely re-designed solution emerged over the
years and become more pressing by the ever growing need to improve the efficiency and eco-
friendliness of the engines.

This chapter provides a short overview of the motivation to completely redesign the engines’
control systems (c.f. Section 1.1) and the functions which the new control system that must be
able to fulfill, as well as the constraints connected with those functions (c.f. Section 1.2). Finally,
the planned approach on implementing this project is discussed (c.f. Section 1.4); the research
and decision process required to discard solutions not fitting the requirements as well as to decide
on possibly viable systems is outlined before explaining both the need for and the implementation
aspects of the prototypes which have to be developed in the course of this project.

1.1 Motivation

Closely monitoring and finely tuning the combustion process parameters by embedded sensors and
actuators plays an important role in creating even more efficient and safe engines (c.f. [WHL+08],
[CKK+08], and [CAH17]). To detect process irregularities like too high peak pressure within a
cylinder or misfiring as early as possible and to be able to react to it quickly also provides enhanced
safety and the possibility to shut down the engine before serious consequences are inevitable. Mod-
ern combustion engines are already highly optimized for fuel efficiency, but by closely monitoring
and regulating fuel incineration, it is possible to reduce their emissions significantly even outside
of their normal operational speed range.

This thesis deals with the problems of re-designing a centralized control system for internal
combustion engines with up to 24 cylinders. The system shall have one centralized control system
which collects all the data generated by its slave nodes and exerts control over these nodes. Each
of the up to 12 slave nodes control the sensors and actuators of two of the engine’s cylinders.

1

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

The system should monitor a variety of process variables of the engine to be able to profit from
aforementioned opportunities for improvement, e.g., cylinder pressure data, gas valve states,
and ignition voltages. However, the process must also controlled by the central computing unit;
therefore, control data like the exact firing angle and valve open- and close times for each cylinder
have to be sent periodically from the central control system to the slave nodes as well.

In the currently used system, there is no centralized system with a system-wide view of the
cylinders’ states and complete measurement data; every slave node connected to two of the
engine’s cylinders has a limited view of some of the system’s overall state and locally executes
control algorithms controlling the combustion process and fulfilling various safety functions.

Implicitly, every control system only knows the state of the two cylinders it controls and therefore
can only consider their state; however, it would be desirable to be able to use control algorithms
which consider the overall system state. For example, when one cylinder after the other starts
knocking, it is much easier to deduce possible reasons than when the control algorithms cannot
detect any correlation of erroneous machine behavior.

The currently existing fieldbus system used for transmitting data to and from the measurement
nodes is rather limited in bandwidth and thus not able to handle all data generated (c.f. [Bos91]).
However, having the measurement data available in full resolution for the whole machine cycle
would provide possibilities for increased process optimization.

Also, a faster and truly deterministic control system considering the overall system state would
enable the engine to be shut down in less than one engine cycle. This means, that an error within
one cylinder can be detected and acted upon by preventing all cylinders from firing again before
the cylinder at which the error was detected fires again.

Additionally, the new system should also be able to handle more than just cylinder pressure data;
for example, during the course of the project, the necessity of adding temperature sensors, sensors
for knocking detection, valve states, and firing voltages became apparent.

Another reason for the move to a centralized architecture is the company’s dissatisfaction with
the limitations of the current slave nodes. Due to limited processing power, no new algorithms
can be added any more, and updating the algorithms that are running on the slave nodes over
the Control Area Network (CAN) bus is cumbersome and slow. Also, in the new system, the
slave nodes should be as simple as possible to prevent the necessity of frequent updates; since
the control algorithms shall run on a centralized system, only this system needs to be upgraded
in order to change or add control algorithms.

Besides technical reasons, the current solution is developed by an external company the commis-
sioning company depends upon for making any changes to the slave systems, which is both time
and resource-consuming; therefore a solution over which the commissioning company has full and
direct control over is wanted.

2

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

1.2 Problem Statement

The centralized cylinder pressure processing system to be designed and prototypically developed
shall collect, analyze, and react to data that have been sent to it by the measurement nodes
connected with the up to 24 cylinders of a type of large combustion engine.

The commissioning company already uses a different system with similar purpose but ran into
different problems and limitations with the current solution due to an increased demand for more
precise data with lower latency. Currently, each pair of two of the engines’ cylinders is handled by
one measurement node, so there have to be up to 12 nodes per engine. This basic configuration
of one slave node being coupled two cylinders shall be kept.

The current control system uses the CAN bus for process and control data communication;
CAN however provides only a very limited bandwidth (about 1Mbps) and no truly deterministic
message delays. Despite sampling cylinder pressure data at 0.1 ◦CA (i.e. at each 0.1 ◦ turn of
the crankshaft), only in the proximity of the peak firing pressure, i.e. in an interval of ±50 ◦CA
around the expected maximum pressure, all data points transmitted while for the remaining time
of the cycle, only a fraction of the actual data is transmitted. In contrast to this, in the system
to be developed, all collected sensor data, albeit in a preprocessed form, shall be transmitted to
the master. The master node, collecting all the data from the measurement nodes, uses this data
as input for several algorithms used to analyze and optimize process parameters and detect and
react to abnormalities like sensor failures and safety-critical events such as a cylinder misfiring.

Consequently, the actual task is the redesign and replacement of the fieldbus system and of the
monitoring nodes and the master connected to it. Despite the initial project being focused on
pressure data collection, it became apparent through the course of the project that not only
cylinder pressure values are necessary to be analyzed but other parameters at well which adds
to the required bandwidth of the transmission system as well as the processing power of the
central system. Also, those measurement nodes, despite their name, are not only used for taking
measurements from the 2 cylinders they are connected to but also control things like fuel injection,
ignition, and emergency shutdowns in case abnormalities in process data collected from all the
systems are detected.

It shall be noted that the initially submitted requirements were the basis for selecting the most
viable fieldbus systems. However, the requirements evolved substantially during the project’s
course which lead to a further increase of the required bandwidth. This increase would have
rendered even any 100Mbps Ethernet fieldbus systems unfit for this project. Optimizations in
the transferred data format enabled to save about one third of the initially assumed bandwidth.
This allowed 100Mbps Ethernet fieldbus systems to remain a still viable choice with the over
time changed requirements.

Therefore, as far as the bandwidth calculations done for the initial selection of fieldbus systems
for closer inspection are considered, the initial requirements are presented. To provide a more rel-
evant documentation of the developed prototypes however, the versions of the prototypes already
implementing the updated requirements are discussed in the chapters detailing implementation,
results, and conclusions.

In the following section, the technical requirements of the measurement nodes, the centralized
cylinder pressure processing system (i.e., the master), and the fieldbus system itself are discussed
in more detail.

3

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

1.3 Technical Requirements

In this section, some of the specifications of the engine types the control system being developed
for in the course of this project are discussed as relevant to the design of the system itself. Also,
the constraints of the algorithms to be executed on the master system are discussed.

1.3.1 Engine Specifications and Requirements

This subsection details the operational parameters of the engine pertinent to the design of the
control system.

Rotational Speed

The nominal rotational speed of the engines for which the communication and control system
has to be developed is only between 1000 rpm and 1500 rpm; however, the maximum speed is
2250 rpm, so the processing and transmission of data depending on the rotational position of the
crankshaft as reference value has to be carried out fast enough with respect to this maximum.

Pressure Data

The type of combustion engine for which the fieldbus system and measurement and processing
nodes have to be developed has 20 to 24 cylinders; each one of these comes with a pressure
measuring transducer. Two of these measuring transducers are connected to one measurement
node, so, the fieldbus system consists, besides the master system, of 10 to 12 measurement nodes.
The ADCs necessary for converting the analog data from the measuring transducers are specified
to have a resolution of 12 bit. It is not specified whether these ADCs are to be implemented
as part of the measurement node itself or as separate unit. To keep the requirements for the
prototyping system at a reasonably low level, it is assumed that the ADCs are part of the
measuring transducer, so that the measurement node only needs to have digital inputs; since the
type of digital interface is, consequently, also not specified, a simple, parallel interface is assumed.

Besides the two inputs from the ADCs, the measurement node has to be aware of the current
crankshaft angle as well. The crankshaft angle is a 13 bit integer which is derived from counting
the interrupts generated by a digital input connected to the crankshaft; for this project, it is also
assumed to be already implemented (c.f. [Zö14]).

As mentioned in the previous subsection, the requirements were changed several times. Initially it
was assumed that the up to this point mentioned data was everything that had to be transferred
from the slave nodes to the master system. It was specified, that each slave should submit data in
the form of tuples consisting of the pressure data values of each cylinder, along with the respective
crankshaft angle value as tenth of a degree.

These requirements imply that 60.0Mbps of raw data are generated by 12 slave nodes, not
considering any padding of 12 and 13 bit data to 16 bit words, which would lead to a net bandwidth
requirement of about 77.8Mbps that have to be transferred to the master. Consequently, this
value has been used as criterion for the preselection of fieldbus systems that might be relevant
for the implementation of this project.

4

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

Control Data

As during the course of the project also specified by the commissioning company, the slave systems
should not only collect data, but also control the ignition process. The master sets the crankshaft
angles at which each cylinder should fire at the slave nodes; the slave, when detecting a match
beween current and configured angle, trigger a rising edge on the output pin for the ignition
contactor for the respective cylinder within the time of a 0.1 ◦ turn of the crankshaft at the
maximum speed.

Another digital input which has to be processed is the gas valve control, since the ignition has
to be prevented from firing in case the gas inlet valve is not closed. In case the valve cannot be
closed, an emergency shutdown of the engine has to be initiated.

Ignition voltages shall also be monitored and thus sent to the master each engine cycle; they are
assumed to be represented by a 16 bit integer.

For reasons of confidentiality, not all required control data designations have been disclosed and
are further on only designated by Control Data A and Control Data B, based on their respective
update rates. These additional data transfers do not significantly change the overall bandwidth
requirements of the application due to their relative small size and lower frequency.

Knock Detection

However, when development of the prototypes was already in progress, knock detection was added
as a required feature of the slave nodes. The sensors used were specified to generate a 16 bit audio
signal at 50 kHz for each cylinder of the engine, which, in turn, translates to another 19.2Mbps
of data being transferred from the 12 slaves to the master.

Crankshaft Angle Value Transmission

Since it would not be possible to use even 100Mbps Ethernet-based fieldbus systems to transfer the
resulting overall net bandwidth of 97.0Mbps, the initial requirement of transferring the crankshaft
angle with every data point was loosened and it has been found to be sufficient to transmit the
crankshaft angle only twice per data frame, cutting the required net bandwidth for pressure data
down to about 52Mbps.

Emergency Shutdown

In case a system detects a condition requiring an emergency shutdown, it is mandatory that
within one engine cycle (i.e. 720 ◦CA) no cylinder fires anymore; effectively that means that any
failing cylinder should not fire again. If possible though, not firing the next or the next but
one cylinder would be preferable. Depending on the position of the failing cylinder, the next
or next but one cylinder fires after a further 22 ◦CA or 50 ◦CA turn of the crankshaft. The
exact time thus depends on the current rotational speed, but since the maximum of 2250 rpm for
the rotational speed and the minimum of 22 ◦CA for the firing angle has to be considered, the
emergency shutdown time is calculated to 1.6ms.

5

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

1.3.2 Control Algorithm Requirements

The master runs a multitude of algorithms to control the engine; most of them are independent
of each other for each cylinder based on which position the piston of the respective cylinder is at,
given by the current crankshaft angle; some of them, however, use data from all cylinders and
consider not only data from the current engine cycle but the last n cycles.

This primarily affects the design of the master application regarding how received pressure data is
stored and accessed by multiple, concurrently running threads. Since processing has to happen in
real-time, this also poses the problem of efficiently shifting algorithm execution times to intervals
with little CPU utilization and prevent concurrent access to data if avoidable to minimize wait
times for access locks.

The complexity of the algorithms itself was only roughly specified by the commissioning company
and no actual or dummy code was given to evaluate whether the master node’s performance would
be actually sufficient; therefore, the question of the feasibility of a purely PC-based master will
have to be examined more closely in any follow-up project.
Processing performance is also an issue for the monitoring nodes which have to process and
prepare measurement data before sending it, so also for the slave systems, both microcontroller-
and FPGA-based solutions have to be evaluated to provide sufficient performance under the
specified peak load scenarios.

From the angles specifying the required starting times of calculating the different algorithms and
from the respective data ranges they process, the maximum data delay (given in ◦CA) can be
calculated. I.e, if calculating an algorithm starts at 70 ◦CA and it processes data from −40 ◦CA
to +40 ◦CA, data may be buffered on the sending side only in such a manner, that it is received
on the processing side after each 30 ◦CA turn.

The minimum of all algorithm’s maximum data delays has to be considered the maximum allowed
data delay for the whole application; for the parameters specified by the commissioning company,
this value is 10 ◦CA. This value is critical to efficiently utilize the communication system’s
bandwidth, since in many cases efficiency rises with buffering more data before sending it.

1.3.3 Derivative Requirements and Constraints

From aforementioned functional requirements, the requirements for the communication system
which should be designed and implemented for this thesis can be deduced. Due to the safety-
critical nature of the application, deterministic (i.e. hard real-time) behavior is an obvious con-
straint when considering any fieldbus system to use for transmissions of data controlling the
operation of heavy machinery; other factors of interest are hard- and software support, and the
availability of considered systems.

The most apparent requirement is the high bandwidth required to transfer all generated data to
the main processing system. As already roughly calculated (c.f. Subsection 1.3.1), the initially
assumed bandwidth of about 77Mbps already rules out the use of all “classic” fieldbus systems
and suggests the use of those based on Ethernet instead.

The use of Ethernet-base systems comes with its own constraints and restrictions. The Ethernet
framing overhead, for example, results in the most efficient data packing to be multiples of the
maximum frame size; this, in turn, poses the question of how to buffer and structure data as
efficiently as possible while keeping the data latency requirements.

6

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

Due to the high net bandwidth requirement and the possibility of higher-level protocols having
their own (often substantial) protocol overhead, the question whether even 100Mbps Ethernet-
based solutions are feasible by default. Also, specifics of considered systems’ higher-level protocols
and synchronization routines have to be reviewed to not interfere with the project’s requirements
since, e.g., automatic re-transfers of corrupted data transmissions can severely impact determin-
istic behavior.

1.4 Proposed Methodology

For the execution of this thesis and the practical work related to it, adhering to a strictly top-
down approach is advisable; the basic sequence of tasks that has been observed in the course of
this work is described in the following listing.

1. Exact requirements are collected and specified. In order to be able to provide solutions
really meeting the requirements or even exceeding them, it is crucial to really understand
their meaning and how they came to be and, e.g., not only the numerical value of a deadline.

2. A list of available fieldbus systems along with their key performance criteria is compiled
from various sources on the Internet; while the Internet is probably not a good source of
scientific information per se, there is hardly a more up-to-date source of information about
what products are currently available on the technical sector.
Key parameters of the systems like their fields of application, maximum bandwidths of
the supported media, and their real-time capabilities and documentation sources are listed;
this should help to exclude protocols inherently not suitable for the project at hand without
wasting too much time on preliminary research.

3. For those protocols not excluded due to hard requirements like minimum bandwidth, hard
real-time capabilities, or current (un)availability, further information about their technical
properties, their functional principles, their application domains, and also the quality of
their support and documentation is compiled.

4. The remaining systems are sorted and categorized according to the additional information
described under the previous list item; systems with a functional principle not suitable to
the task at hand are also discarded; for the remaining systems, additional information about
the actually available bandwidth, actual timing properties, and tool support are examined.

5. For the remaining systems, necessary information about how to implement a prototype
demonstrating the required data transfers for this project as well as a list of available hard-
and software implementations of those systems is compiled and cost estimates are obtained.

6. Due to operating at the limits of 100Mbps Ethernet systems, a final decision about the
usability of a system for this project can only be made after at least in theory implementing
the requirements using the respective system, so, different implementation concepts are de-
vised with regards to their feasibility as proof-of-concept prototype considered for throwing
it away after the point is proven (i.e., usability of the system within the given constraints) or
as evolutionary prototype which can be further extended and refined into the final system.

7. According to the project goals, two of the drafted prototypes should actually be imple-
mented. It was planned to use prototyping hardware that allows multiple fieldbus protocols
to be tested on the same platform, but due to different requirements such as FPGA size and
peripherals, this idea turned out to be not feasible. Instead, two proof-of-concept prototypes
showcasing the two most interesting fieldbus systems were implemented.

7

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Introduction

1.5 Organization of this Thesis

The requirements and their background have been already summarized in Section 1.2 and its
subsections. The following chapter explains the relevant parameters of Ethernet-based commu-
nication systems and the implications of these parameters to their use in hard real-time envi-
ronments and then gives introductions into the three systems primarily considered for prototype
development (c.f. Chapter 2).

Chapter 3 elaborates on the bandwidth requirement calculations as well on the importance of
other criteria for discarding systems as not viable for the subject of this thesis.
In Chapter 4, the two implemented prototypes – one EtherCAT-based and one TTEthernet-based
system – are detailed; the following chapter Chapter 5 discusses the results of these implementa-
tions along with problems that were encountered and their resolutions.

The last chapter briefly summarizes the challenges of the centralized approach assumed in this
thesis, the prototype implementation results, and the from these results ensuing consequences
and suggested further development (c.f. Chapter 6).

8

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

2 State of the Art

In this chapter, there is first given a short introduction to various relevant terms and definitions
concerning mostly Ethernet-based communication systems used for real-time fieldbus applica-
tions. Different ways to categorize these systems according to parameters of interest for the
project at hand are briefly discussed.

As for this project, i.e., a hard real-time, high-bandwidth communication system, there seems to
exist a chasm between these two properties whereof usually either one or the other is required
since historically, only in data communication networks increasingly more bandwidth was required
while field-level networks, based on entirely different technologies and developed with completely
different aims, were largely comparatively slow networks [Sau10].

Even today, most high-bandwidth applications do not intrinsically have hard real-time require-
ments but provide soft real-time services in addition to a low-bandwidth hard real-time control
application, which does add an interesting aspect apart from common real-time applications to
this project. The desire to unify and cross-connect all levels of the automation pyramid and the
rise of Ethernet in popularity led to the creation of Ethernet-based real-time protocols. These
protocols, providing relatively high bandwidth and hard real-time properties, are the most viable
choices for this project.

2.1 General Differentiations and Definitions

2.1.1 Real-Time Communication Classes

Commonly, three different approaches, often referred to as Class A, B, or C, are distinguished
when categorizing real-time Ethernet systems with respect to their real-time capabilities. It is
essential to understand for which category a system qualifies due to the directly related suitability
for critical, hard real-time control applications.

Class A

Usually, Commercial off-the-shelf (Hardware) (COTS) Ethernet hardware, often with Quality of
Service (QoS)-enhancements like Virtual LAN, Virtual Local Area Network (VLAN) prioritiza-
tion, is used in conjunction with either performance-tuned or even just common Transmission
Control Protocol (TCP)/Internet Protocol (IP) or User Datagram Protocol (UDP)/IP stacks.

9

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

The control application is implemented on top of those protocol stacks, sometimes using high-
level communication protocol Application Programming Interfaces (APIs) like Remote Procedure
Call (RPC). Though this approach can provide sufficient performance and reliability for automa-
tion control tasks, especially when using dedicated Ethernet networks for critical data, QoS on
its own cannot guarantee any kind of timeliness, or minimum latencies, or constant jitter under
all circumstances. Thus, it is inherently unsuitable for (hard) real-time tasks.

Class B

With respect to hardware, this approach is similar to Class A, however a custom Ethernet stack
controlling media access is used to provide for timeliness of real-time Ethernet frames. It is
possible to implement a normal TCP/IP stack on top of this so-called timing layer in order to
enable non-real-time applications to utilize bandwidth not occupied by real-time traffic. Since
the switching hardware used in Class B solutions usually do not strictly enforce performance
parameters under all conditions, this approach may work well for some scenarios and for low
overall network usage but cannot really guarantee hard real-time behavior in general as well and
can be viewed as improved version of a Class A solution (e.g. PROFINET [PRO03, PRO11]),
since they use the standard Ethernet switches; however, there exist systems where the Class B
implementation is just a more cost effective version of a solution otherwise qualifying as Class C.
They use the same specialized switches as the respective Class C implementation (e.g. TTEther-
net [TTT08, SAE11a]) and can actually be used for hard real-time control applications; special
attention has, however, to be given to performance criteria like processing delays and jitter.

Class C

To be able to actually guarantee real-time behavior under all circumstances, special Ether-
net hardware is employed which provides high-precision clock synchronization, high-resolution
timestamping of Ethernet frames, separate send- and receive-buffers for different real-time traffic
classes, and other enhancements.
For this thesis, only systems of the Class C category are considered to be relevant.

2.1.2 Control- and Communication System Concepts

There exist several approaches to the way a communication system defines and separates the
roles of its participants and structures communication and, due to this structuring, also partially
implies the structure of the real-time application using it for its communications.

This subsection only briefly touches upon the different strategies that are in use for both control
applications and the communication systems these applications use; some of the properties are
sometimes parallel to each other due to the structure of one influencing the other; however, they
can also be orthogonal to each other, as for example the nodes in a purely distributed application
can communicate via a centralized medium or master.

Generally, a distinction between centralized and distributed approaches is noted, though the line
between one and the other arguably is blurred by having more and more intelligent nodes that do
react on certain inputs partially on their own while overall still not being completely independent
from a master system without which it in general is not able to sustain operation.

10

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Centralized Control System

Considering the relative conceptual simplicity of a centralized system and its origins as only con-
trol system directly connected to a number of sensors and actuators, many newer communication
systems build upon this legacy and provide networked access to its sensor- and actuator nodes.
Historically, every action in such a system was initiated directly by a centralized processing unit
which kept direct control over all inputs and outputs of the overall system.
Transitioning from directly connected sensors and actuators to networked nodes connected by
dedicated communication network components, these nodes gained more and more capacity to
take over some of the tasks initially only being able to be carried out on the centralized processing
system, e.g. signal conditioning and preprocessing.

Distributed Control System

As a fundamental difference to a centralized control system, the nodes of a distributed control
system do not depend on a centralized unit to sustain operation; however, nowadays also “intel-
ligent” nodes which take over some of the work are sometimes regarded decentralized systems.
Despite that, in a truly distributed control system, all nodes should operate connected to and
with consideration of the data provided by each other; yet, they should be able to operate inde-
pendently without relying on one centralized master system.

Considerations

As already mentioned, both these schemes can overlap when considering communication system
and application independently; this in turn begs the question whether a separate discussion is
useful and in which cases what combinations are reasonably the best viable option.

Distributed applications often have the advantage of a higher fault tolerance since separate units
are designed to operate safely on their own; how feasible this approach is, for example, in case of
a total loss of network connectivity, depends however on the special use case.

This highlights how communication systems and other networking equipment in many cases is
a centralized infrastructure on its own; the drawbacks of such a single point of failure can be
mitigated, e.g., by use of redundant network equipment.

Due to the network infrastructure being often regarded one single centralized entity from an overall
architecture perspective, having one central communication manager does suggest the use of a
centralized approach in application development as well (c.f. EtherCAT, Sercos-III, PowerLINK,
etc). In contrast, TTEthernet for example does only provide a networking infrastructure without
implicitly assigning any roles to its participants.

2.1.3 Media Access Control and Communication Mechanisms

This subsection, while focusing on Ethernet as base technology, briefly discusses several com-
munication and media access control mechanisms, since both are in a way interleaved with each
other. The primary factor with regards to media access control in Ethernet is whether shared
media or switched Ethernet is considered, since media access control is, from an electrical point
of view, only necessary for the former. However, in order to provide any kind of guarantees about
transmission times, for switched Ethernet also some kind of access control is required.

11

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

The Ethernet standard defined in IEEE802.3 [IEE08] specifies OSI layers (Open Systems Inter-
connection (OSI) Reference Model [ISO08, Part 1 Section 7]) 1 and 2 separately; also, OSI layer
2 is split into two separate sub-layers. The Media Access Control (MAC) (media access control)
layer provides functions to regulate sending of data via a physical link and accesses the medium
while the Logical Link Control (LLC) (logical link control) layer on top of it provides common
interfaces for higher-level applications.

Thus, both media and also the access control mechanisms safeguarding against concurrent access
to the transmission media can be swapped out transparently for the application using Ethernet
as communication protocol.

Shared Media Ethernet

When Ethernet was first standardized in 1983, it was primarily planned to use shared media as
physical layer. This means that all members of a Local Area Network (LAN) are effectively con-
nected to the same electrical medium and thus part of the same collision domain. Consequently,
only one station could transmit a frame while all others had to be quiet for the time of the trans-
mission; else, the incurred collision would invalidate the colliding data units. Therefore, different
strategies were developed and standardized to lower or preclude the probability of collisions.
As topology, shared media Ethernet can be used with a bus topology with all stations connected to
one line; to extend the network, hubs and repeaters can be used to counteract signal degeneration
and to allow for a more flexible star topology.

Switched Ethernet

In switched Ethernet, all connections are actually point-to-point connections from an electrical
point of view. The star topology is the most commonly used physical topology for switched
Ethernet, but daisy-chaining devices with internal switches into a pseudo line topology is also a
common topology when considering fieldbus systems based on switched Ethernet.

When considering switched Ethernet only as working in full duplex mode, which means that
every connection between two devices consists of two dedicated point-to-point connections from
one sender to one receiver, media access is not an issue. Though this relieves aforementioned
problems of shared media Ethernet, other problems are introduced.

Since all network stations can send without inhibition from any other station, it is possible for
multiple senders to transmit, e.g., to a common recipient; in case they transmit at the same time
or with a cumulative bandwidth beyond what the receiver or a switch on the path to the receiver
can handle, frames have to be queued and are thus delayed for an indeterministic period of time;
in the worst case, frames also can be dropped in case of any buffer on the transmission path
encounters an overflow condition.

Thus, even when media access itself is, from an electrical point of view, not an issue, some provi-
sions have to be made to prevent the aforementioned situations in which loss or indeterministic
wait times could occur. Also, the overhead of the switching operation itself, i.e., the time it takes
the switch to decide to which egress port an incoming packet should be forwarded is introduced.
To save on this time and in order to keep possible jitter arising from differing switching delays
down, PowerLINK, for example, still uses shared media Ethernet, albeit with a different MAC
protocol than Carrier Sense Multiple Access with Collision Detection (CSMA/CD).

12

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

QoS enhancements to the Ethernet standard aim to mitigate the problems arising through inde-
terministic buffering delays by network policing, i.e., enforcing set limits as to the forwarding rate
of certain frames within the switch or by prioritizing some frames based on, e.g., their VLAN tag
or destination MAC address. Though these measures improve the behavior of standard switched
Ethernet with regards to the transmission properties of certain traffic groups depending on the
used switches’ configurations and switches with QoS enhancements are used in the context of soft
real-time systems, safe partitioning between hard real-time transmissions and non-critical traffic
is not possible, since no guarantees can be made that the required performance criteria of the
hard real-time traffic are not affected by other communications handled [MAP06, CKL06].

Therefore, other methods have been developed to allow hard real-time traffic to be reliably ex-
changed via Ethernet; these methods however do not usually work with COTS Ethernet com-
ponents – at least some network components are in hard real-time capable Ethernet solutions
replaced by customized ones, though many solutions allow for the integration of standard Ether-
net components for non-critical traffic or with lowered real-time performance criteria.

Random-access Protocols

The most prevalent media access protocol used in shared media 802.3 Ethernet is the CSMA/CD
protocol. Each network participant, while transmitting data, also receives back data from the
medium, thus being able to check whether a collision did occur and if so, transmission is halted,
a so-called jam signal is sent, and transmission is retried after a randomly selected time interval.
The jam-signal serves the purpose of informing every network participant of the collision, causing
everyone to start their randomized back-off timers in order to minimize chances for another
collision. Also, the jam-signal is at least 4B long; it is thus interpreted as the Cyclic Redundancy
Check (CRC) checksum of an Ethernet frame in case any station receives and tries to interpret
the collision data as actual frame, and effectively invalidate this data.

Though multiple improvements to the CSMA/CD protocol have been suggested [GR05, OK02,
DH03], the basic mechanism already implies its inherent indeterminism, which lead to problems
with both efficiency and determinism. Beyond a certain network load, the efficient use of the
available bandwidth becomes impossible. Due to the occurring collisions and the consequent
jamming and retransmissions, the effectively usable bandwidth is lowered; this, in turn, causing
even more collisions. This phenomenon occurs above about 65% bandwidth saturation and
is called thrashing. The frame transmission delays are unpredictable and not bounded, since
jamming, back-off, and the number of retries introduce unpredictable delays.

Other random-access protocols are also, for example, used in Wireless LAN (WLAN), where
a collision avoidance scheme is introduced in place of only detecting collisions (Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA)) [IEE12]; the LON protocol uses another
form of CSMA, the p-persistent CSMA protocol which addresses the issues of network thrashing
due to retries [Ech96, MSZL02].

The CAN protocol employs another bus arbitration strategy which allows the higher-priority
sender to continue to transmit when a collision occurs, while the lower-priority sender auto-
matically stops transmitting [Bos91]. This however allows only for fixed sender priorities; also,
starvation of lower-priority senders is not precluded.

13

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Polling-based Protocols

In fieldbus protocols employing this access control scheme, one master or bus arbitrator explicitly
requests each slave to transmit its process data. These poll messages sent by the arbiter usually
request data from one slave after the other within equidistantly spaced time intervals; acyclic
polling of certain slaves is also an option, albeit cyclic polling commonly matches best with the
periodic nature of most real-time data transfer requirements.

In case slaves need to transmit more data than explicitly requested by the master, some polling-
based protocols provide a flag within the slave’s answer frame format to request additional trans-
mission slots; another possibility implemented, e.g., by Ethernet PowerLINK, is to have a portion
of the cycle dedicated to acyclic traffic in which a different bus access scheme is used.

The most prevalent hard real-time Ethernet-based fieldbus system to use this access scheme is
Ethernet PowerLINK [Eth13a]. Due to the relatively large overhead of one extra Ethernet frame
for polling each slave and the use of shared media Ethernet which prevents response data to be
sent while another poll request is being transmitted, the bandwidth utilization with regards to
the actual payload is below average in comparison with other Ethernet-based protocols employing
switched Ethernet and a different access scheme.

Token-passing Protocols

Protecting media access via tokens is realized either by a network participant having to obtain an
explicit token message that allows it to transmit data on its own and then pass on the token or by
having implicit tokens, commonly realized via access counters. In the latter case, to implement a
simple form of token-based access, all stations have an incremental numerical identifier and due
to broadcasts being used, they all receive the last sent message and see the sender’s address which
they then increment; if the incremented number matches their own identifier, they are permitted
to send one message themselves.

In most implementations, additional logic has to be in place to account for accidental duplication
or loss of a token, and though a protocol can be implemented to have bounded cycle times, the
cycle time is, in general, not constant. While token passing has been used in the Token Ring LAN
protocol [IEE98] and in some non-Ethernet-based fieldbus systems like PROFIBUS [PRO98] or
P-NET [Int96], it is not used in any of the fieldbus systems more closely reviewed within this
thesis.

Time-slot/Time-triggered Protocols

While in other access schemes systems react to certain external events like the reception of a
token or internal events like a measurement value becoming available for transmission to initiate
a media access, in time-slot-based protocols, media access is granted to each network participant
implicitly by the current time.

This requires a synchronized time base among all network participants and a predefined schedule
that specifies the times at which each participant is allowed to use the medium. Though some
overhead has to be allotted for time synchronization, all further overhead that would otherwise
be caused by collisions or explicit request or grant messages is implicitly precluded; thus, the
problems regarding indeterministic behavior induced by collisions or the possible starvation of
some network participants are precluded as well.

14

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

A possible downside of this scheme however is the possible waste of transmission resources in
case systems usually require only a part of their allotted bandwidth; in hard real-time systems
however this is less of an issue since resources have to be provided for the maximum load a system
is specified to handle anyways. This approach is implemented by hard real-time Ethernet-based
protocols like TTEthernet [TTT08] and Profinet IRT [PRO03].

2.2 Technological Introduction to Short-listed Protocols

In this section, the three protocols chosen for closer consideration are studied. First, only Ether-
CAT and Sercos-III were planned to be tested by building an exploratory prototype; then, in
a second stage, this should be transferred into a more production-ready, FPGA-based proto-
type. However, when additional requirements hinted at increasing future bandwidth require-
ments, TTEthernet was chosen as second system to be evaluated instead of Sercos-III due to it
providing Gigabit support and featuring an entirely different principle of operation. Thus, this
course of action promised a higher knowledge gain.

Other systems not regarded as unsuitable but not discussed here are SafetyNET-p RTFL [CSS14]
and PowerLINK [Eth14, Eth13a, TV14]. SafetyNET-p RTFL has properties and operation princi-
ples similar to EtherCAT while having some restrictions regarding the cyclc process data mapping
and seems not to provide any notable advantages over EtherCAT. Ethernet PowerLINK on the
other hand does use an inefficient polling mechanism for its real-time data exchanges and is for
all practical purposes currently also limited to 100Mbps and thus not considered as one of the
most viable protocols for the realization of this project.

Further discussion of systems not excluded but not more closely considered for further examina-
tion is listed in Section 3.4.

2.2.1 EtherCAT

EtherCAT [Eth12, Eth16, Bec13b, Bec13c, Bec13d, Bec13e, Bec13f, Bec13g], short for Ethernet
for Control Automation Technology, is an Ethernet-based high-speed fieldbus system. Originally
developed by Beckhoff Automation GmbH1 and released in April 2003, it is now governed by
the ETG (EtherCAT Technology Group)2, which claims to be the largest industrial fieldbus
organization with more than 4000 members.

EtherCAT is marketed as “open technology”, since organizations can apply for membership in
the ETG and then access specifications and other documents free of charge. EtherCAT is also
specified in IEC standard IEC611583. The widespread use of EtherCAT throughout different
industry sectors as well as ready availability of a lot of related products from more than one
supplier promise product longevity favorable if incorporating it into a project of one’s own.

The following sections shall provide a short compilation of EtherCAT’s functional principle and
its features.

1https://beckhoff.com/
2https://ethercat.org/
3https://webstore.iec.ch/searchform&q=61158

15

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Basic Operation Principle

The basic idea behind EtherCAT is inherited from “classic” fieldbus systems, providing synchro-
nization of a process data image kept by the master, which is partially shared with one or more
slave nodes. EtherCAT primarily focuses on doing this as efficiently as possible on Ethernet with
very short cycle times (even down to 12.5µs) and an optional, low-jitter clock synchronization
(jitter ≤ 1µs).

EtherCAT operates cyclically for the transmission of the configured real-time traffic; non-real-
time, auxiliary data transfers for, e.g., device parametrization, can be transferred acyclically via
the so-called mailbox protocol.

Cycle times can be chosen freely, but are limited by the options provided by the master software
due to hardware optimizations. Theoretically, multiple cycle times are also possible, but neither
supported by TwinCAT, Beckhoff’s official master software, nor by their Slave Stack Code Tool.

Standard Ethernet frames are used for data exchange; the payload of these frames is filled by so-
called EtherCAT datagrams as sub-units. These datagrams cannot be split onto multiple Ethernet
frames, but there can be multiple Ethernet frames within one EtherCAT communication cycle.

From a logical point of view, real-time data exchanges are not implemented as data being sent
to a specific recipient but as chunks of a global process image which is updated on any node
configured to access this part of the process image. The EtherCAT frames issued by the master
thus collect updates to the master’s process image from the slave nodes as well as distribute
updates of the master’s process image to the slaves.

Supported Topologies

EtherCAT is based on 100Mbps Ethernet, using either copper or optical cabling. The physical
topology used by EtherCAT is a so-called open ring topology; each slave node provides two
Ethernet ports which are used to daisy-chain EtherCAT after one another in one line. In this
configuration, the last slave in the line then has its output port left open; to provide optional
fail-over, it is also possible to connect this port to a second port of the master. This way, a
physical ring topology is formed which can tolerate any one cable break without interrupting
fieldbus operation.

Due to the full-duplex capabilities of Fast Ethernet, these physical topologies translate to a ring
or a double ring topology with respect to its logical function in EtherCAT. Each Ethernet frame
must be generated by the master node; it is then passed from one node to the next. At the end
of the line, it is returned to the master via the second of the two duplex lines (c.f. Figure 2.1
left). In case a physical ring topology is used, frames are sent in duplicate out both the master’s
ports, each duplex line being used as one closed loop from one port of the master to the other
and vice-versa (c.f. Figure 2.1 right).

Due to this specialty of how EtherCAT utilizes the full-duplex capabilities of 100Mbps switched
Ethernet, the actually usable bandwidth is only 100Mbps for all combined bidirectional traffic.

Slave systems basically function as cut-through Ethernet switches, reading from and writing to its
portions of the EtherCAT frame passing through. It is possible to extend the physical line/ring
topology by special switches that allow adding branches, which are then, from a logical point of
view, integrated into the ring/double ring structure seen by the EtherCAT master.

16

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Master

Slave 2Slave 1 Slave 3

Port1 Port2

Master

Slave 2Slave 1 Slave 3

Port1 Port2

Port1Port1 Port2 Port1 Port2 Port1 Port2 Port1 Port2 Port1 Port2 Port2

Figure 2.1: EtherCAT – Supported Physical Topologies: Line (left), Ring (right)

EtherCAT devices connected in this manner are called EtherCAT segments. Multiple EtherCAT
segments can be connected by standard Ethernet switches; In this case, EtherCAT frames can
be also wrapped into IP/UDP frames to cross segment boundaries.

Frame Structure

EtherCAT uses so-called summation frames, which can contain EtherCAT datagrams within one
Ethernet frame in order to conserve bandwidth; the detailed structure is shown in Figure 2.2.
The EtherType of EtherCAT frames is 0x88A4, the destination and source MAC addresses are –
at least in direct mode – not used.

EtherCAT Datagrams FCSEtherCAT HdrEthernet Hdr

14 Byte 2 Byte 44-1498 Byte 4 Byte

EtherCat Datagram 1 EtherCat Datagram nEtherCat Datagram 2 ...

Data WKCDatagram Hdr

10 Byte max. 1486 Byte 2 Byte

IRQCmd

8 Bit 16 Bit8 Bit

Idx

32 Bit

Address

11 Bit

Len

2 1 11

R RC M

Figure 2.2: EtherCAT – Frame Structure

There is one 2B EtherCAT-specific header within the Ethernet frame’s payload, specifying (i.a.)
the length of the datagram payload. Each of the following EtherCAT datagrams has its own 10B
header and a 2B working counter. The datagram header specifies, i.a., the EtherCAT command,
the length of the datagram payload in bytes, and the logical address of the respective data within
the master’s global process image. The EtherCAT command specifies basically different forms
of reading and writing data from/into the slave’s memory, which differ mainly by the addressing
schemes they use (c.f. [Bec13e, Sect. 5.4]). The working counter at the end of every datagram is
used to keep track of the number of completed commands executed on the respective datagram
and provides a means of error diagnostics for the master to detect whether a slave controller did
not actually finish processing data addressed to it.

17

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Addressing

There are different methods of addressing used in EtherCAT, depending on its current mode of
operation.

In Direct Mode (c.f. Figure 2.3), one EtherCAT segment is connected directly to the Ethernet
port of the master; in this mode, the frames’ MAC addresses are irrelevant. Devices are addressed
by a 32 bit address field consisting of a 16 bit device address and a 16 bit local address. Usually,
positional addressing is used, where devices are given a positional address on bus startup. A
special node address can also be configured for each device.

Master

device
Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

Figure 2.3: EtherCAT – Direct Mode
(c.f. EtherCATSpecification –Part 3, Fig. 4)

In Open Mode (c.f. Figure 2.4), multiple EtherCAT segments and one or multiple masters are
connected with each other by an Ethernet switch; in this case, segment addressing is used. Each
segment’s first device’s MAC address is then used to address it.

Master
device

Segment
address

slave
deviceSwitch

Slave
device

Slave
device

Slave
device

Slave
device

Slave
device

Generic
Ethernet device

Master
device

Basic
slave device

Type 12 segment = Ethernet device

Segment
address

slave
device

Slave
device

Slave
device

Slave
device

Slave
device

Slave
device

Type 12 segment = Ethernet device

Figure 2.4: EtherCAT – Open Mode
(c.f. EtherCATSpecification –Part 3, Fig. 3)

However, EtherCAT datagram addresses actually reference the global process image’s address
space; this logical address contained within each header enables the slave’s Fieldbus Memory
Management Units (FMMUs) to translate this address to the physical address of the data within
the node itself; i.e., it the slaves’ FMMUs maps the local, physical addresses into the global,
logical EtherCAT address space. When a slave controller receives an EtherCAT datagram with
a logical address, it checks whether it has an FMMU configured that matches this address; if yes,
it processes the datagram, i.e. it extracts or inserts data from/into the payload of the datagram.
The configuration of FMMU entries is done by the master during data-link startup of the network

18

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

and transferred to the slaves. Since each device can be given multiple logical and overlapping
addresses, multiple devices can also be addressed with a single datagram. This way, the master
can access arbitrary data at every point in time, since each datagram contains all data access
related information. In theory, this can be used to update different parts of the process image
with different cycle times, making the use of fixed process data structures superfluous.

Synchronization

EtherCAT supports three different modes of operation with respect to synchronization: Sync
Manager (SM) Synchronization, Distributed Clock (DC) Synchronization, and Free Run Mode.
The latter of which actually does not provide any form of synchronization between the master
application and the slave nodes; instead the slave applications run at each slave’s own discretion.

When using SM synchronization, slave devices start their local application cycle when started
by each SyncManager event configured to trigger (c.f. Figure 2.5). SyncManagers are hardware
entities within the slave nodes that ensure the consistency of the slave nodes process data image
on concurrent access; usually it is configured to provide a triple buffered interface for reading and
writing cyclic process data. These SyncManager events are usually the reading and/or writing
of input and/or output data from/to EtherCAT datagrams. By default, in case the slave has
outputs configured, the application syncs to this event (SM2); if only inputs are configured, that
event (SM3) is used for synchronization.

min. cycle time

cycle time

SM2 event (if data from and to slave is defined)

SM3 event (if only data from slave to master defined)

next SM2/3 event
 i.e., next cyclic frame received

output
mapping application loop

input
mapping

copy master→slave data from
SyncManager to application buffer

copy slave→master data from
application buffer to SyncManager

Figure 2.5: EtherCAT – SyncManager Synchronization Slave Timing
(cf. EtherCATApplicationNoteET9300, Fig. 17)

The accuracy of SM synchronization depends directly and entirely on the accuracy of the master’s
message transmission timing. Any jitter afflicting the send times leads to imprecise application
cycle timing on the slave nodes, which, in turn, can lead to unreliable real-time performance of the
slave nodes. Since usually, EtherCAT master systems are normal PCs lacking proper support for
the real-time performance required for precise application execution, the send times of EtherCAT
frames can vary significantly. Using DC synchronization decouples slave application timing from
the master’s message send times, providing a precise basis for distributed, coordinated actions
(c.f. Figure 2.6).

DC synchronization is used to establish a global time base independent of the communication
cycle among all nodes of an EtherCAT network, which then can be used to synchronize execution
of the slave node’s application functions. It fulfills three basic functions: the measurement and
calculation of propagation delay times, the compensation of clock offsets, and the compensation
of clock drifting.

19

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Figure 2.6: EtherCAT – Direct Mode
(cf. EtherCATSpecification –Part 3, Fig. 4)

Slave systems are not required to support DC synchronization; in case they do support it, they
have to support precise timestamping of message transmission times as well as a local clock
generator. As time base, 1 ns is used, with its universal zero point set to 1.1.2000 00:00 and a
global representation by a 64 bit integer and an effective step size of the local clocks by 10 ns.

Usually, the clock of the first DC-enabled slave in a segment is selected by the master as reference
clock for the EtherCAT network, since slaves, providing their own specialized hardware, tend to
offer more precise timestamping of Ethernet frames than the master, which is usually running on
normal PC hardware not equipped for this task.

Due to propagation delays and possible offset times, depending on the number of devices, cable
lengths, and dynamic configuration changes, the offsets between the reference clock and the local
clocks have to be known in order to enable coordinated actions at a specific point in time. To
measure these offset times, the EtherCAT master sends a synchronization command (actually a
write command to a special register) to all slave nodes which causes them to record the local
timestamps of reception and passing on of this datagram; this is done in both directions of the
full duplex Ethernet cabling.

Based on these recorded timestamps, the master then can assemble a precise topology map based
on the frame delays between each node and calculate the time difference of each local clock to
the reference clock. These offsets are then sent back and used by the slaves to calculate their own
view of the global time from their local clocks. This process is periodically repeated to account
for the local clocks’ possible drifting.

Standard Ethernet Integration

Standard Ethernet components can be integrated into an EtherCAT network by use of special
switchboards which implement the Ethernet-over-EtherCAT protocol; this protocol enables trans-
porting standard Ethernet traffic through an EtherCAT segment without impacting the real-time
traffic by wrapping the standard Ethernet frames into EtherCAT frames. These switchboards
act as gateways which admit the standard Ethernet traffic and appear to the standard Ethernet
components as a transparent switch. Also, EtherCAT devices can provide standard Ethernet and
TCP/IP services which use the same Ethernet-over-EtherCAT protocol; in this case, the master
acts as switch and gateway.

20

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

2.2.2 Sercos-III

Sercos-III [Ser11, Ser14, Ser13b, Ser13c] is the direct descendant of the Sercos-II fieldbus system,
implementing its basic functionality and properties on top of 100Mbps Ethernet instead of a
proprietary fiber optics network with only up to 16Mbps bandwidth. The name Sercos (or
SERCOS) is an acronym for SErial Real-time COmmunication System. The original Sercos-I
automation bus was developed by Bosch-Rexroth in 1987, Sercos-II was released in 1999, and
Sercos-III in 20034.

Its development is governed by Sercos International e.V.5 since 1990; membership in this associa-
tion is open to companies and other organizations for a yearly membership fee. The specifications
are not published but access is granted to interested individuals after filing an application with
Sercos International e.V. free of charge.

Sercos is primarily marketed by Bosch-Rexroth while Cannon Automata6 provides FPGA imple-
mentations, PCI(e) cards, and other Sercos tools and accessories. It is mainly used by Bosch and
other drive manufacturers in their industrial control applications. A clear focus of Sercos-III is
the application layer and its backwards compatibility with the mass of drive profiles it supports.

The following sections shall provide a short compilation of Sercos-III’s functional principle and
its features.

Basic Operation Principle

Just as EtherCAT, Sercos-III is based on the idea of exchanging parts of a process data image
cyclically; but raw data transfers are packaged into the more automation oriented aspect of
providing profiles already predefining application-level data access and special attention is given
to provide interoperability of drives within an automation system without actual – or very little
– programming. Sercos-III also focuses on providing very short cycle times (≥ 31.25µs) with
minimal jitter (≤ 1µs).

Sercos-III operates strictly cyclical for the real-time traffic it carries; this operational cycle is
called communication cycle. For each of these cycles, there are one to four so-called Master Data
Telegrams (MDTs) which contain data directed from the master to the slaves and one to four
so-called Answer/Acknowledge Telegrams (ATs) which are filled by the slaves they collect data
from. All cyclic frame transmissions are initiated by the master; slaves are only allowed to put
their data into their sections of the ATs.

There can be an optional Unified Communication (UC) or Non-Real-Time (NRT) channel after
the transmission of the cyclic frames is done for the current communication cycle; this NRT
channel can also be allocated in between of transmitting MDTs and ATs of a cycle (c.f. Figure 2.7).
A limited amount of acyclic data can be transmitted for each slave each cycle by use of so-called
service channels.

Cycle times can be chosen from a set of predefined values ranging from 31.25µs to 65ms. It shall
be noted that, due to the maximum of three telegrams in either direction per cycle, the cycle time
has to be chosen to allow for enough bandwidth being allocated to the real-time data transfers.

4https://www.boschrexroth.com/en/us/products/engineering/sercos/index
5http://sercos.org/
6http://cannon-automata.com/?sercos_III_en

21

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

On a logical level, cyclic real-time data transmissions in Sercos-III are defined as connections,
adhering to a producer/consumer model in which any node can be producer and any one or
more nodes consumers, respectively; both master and slaves can be producers and consumers
of multiple connections. Consequently, the summation frames Sercos uses – both MDTs and
ATs – carry, from a logical point of view, the multiplexed data of these connections within their
payloads, along with their respective meta data.

Non-SercosIII
Ethernet Frames

communication cycle

RT channel NRT channel

RT channel

Non-SercosIII
Ethernet Frames

NRT channel RT channel

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

S
3
H

D
R

MDT1 MDT2 MDT3 AT0 AT1 AT3AT2 MDT0 MDT1MDT0/MST

MDT2 MDT3 AT0 AT1 AT3AT2 MDT0 MDT1MDT1MDT0/MST

communication cycle

Figure 2.7: Sercos-III – Communication Cycle with NRT Channel after (above) and
between (below) MDT and AT Frame Transmissions

Supported Topologies

Sercos-III is based on 100Mbps Ethernet, using either copper or optical cabling with enabled
auto negotiation and auto crossover functionality.

The master system can use standard Ethernet hardware if higher jitter is acceptable and a purely
software-based Sercos master is employed, but in general, using special PCI or PCIe master cards
which take over real-time communication functions is recommended. The physical topology used
by Sercos-III is a line topology, where up to 511 two-port slave nodes are daisy-chained one after
another in one line. In this configuration, the last slave in the line then has its output port left
open; to provide optional fail-over, it is also possible to connect this port to a second port of the
master (c.f. Figure 2.8). This way, a physical ring topology is formed which can tolerate any one
cable break without interrupting fieldbus operation.

Due to the full-duplex capabilities of Fast Ethernet, these physical topologies translate to a ring
or a double ring topology with respect to its logical function in Sercos-III. Each Ethernet frame
must be generated by the master node; it is then passed from one node to the next. At the end
of the line, the frame it is returned to the master either by using the second of the two duplex
lines as return path for a single channel or by the second port of the last slave being connected
back to the second port of the master. In case a physical ring topology is used, the full-duplex
feature of Fast Ethernet provides two separate rings, serving as primary and secondary channel;
each frame is sent on both of these counter-rotating rings.

This usage of the full-duplex feature of 100Mbps switched Ethernet implies that the actually
usable bandwidth is only 100Mbps for all occurring traffic, not 100Mbps in each direction.

22

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Master

Slave n-1 Slave n

P-Channel

last slave in line

inactive ports

P-Channel

S-Channel

Master

Slave n-1 Slave n

last slave in line

Figure 2.8: Sercos-III – Supported Physical Topologies: Line (left), Ring (right)
(cf. Sercos-III Specification –Communication Protocol Fig. 42 Fig. 43)

Slave systems basically function as cut-through Ethernet switches, reading from and writing to
its portions of the Sercos-III frame passing through, hereby imposing a delay of < 600µs each.
It is possible to extend the physical line/ring topology by special topology extenders that allow
other network segments to be added, which are then, from a logical point of view, integrated into
the ring/double ring structure seen by the Sercos-III master.

Frame Structure

Sercos-III uses so-called summation frames, which can contain the data sent via multiple connec-
tions within one Ethernet frame in order to conserve bandwidth and provide a predictable timing
of all transmissions. The EtherType of all Sercos-III frames is 0x88CD; the source MAC address
is the interface address of the master which initially sends all frames while the destination MAC
address is the Ethernet broadcast address since each slave is meant to receive it.

The basic structure of each Sercos-III Ethernet frame is shown in Figure 2.9. The 6B Sercos-III
header is present in all Sercos frames. Within its first 2B, it holds the frame’s Sercos type and
communication phase, followed by a separate 4B CRC. The Sercos type field specifies whether
the frame has been transmitted on the primary or secondary channel, whether it is a MDT or
AT frame and which one of the up to four per cycle it is. The communication phase refers to the
4-stage initialization process of a Sercos-III network.

Depending on the type of a Sercos-III frame and the current communication phase, the payloads
after the header have different structure and meaning, as in detail specified in [Ser14, Sect. 7.2.4
and 7.2.5]. After the Sercos-III header, during standard, real-time operations (i.e., communication
phase 4), the payload is subdivided into one service channel for each slave, and real-time data
for each configured connection.

The first MDTs of every communication cycle also holds special configuration data for device
hotplugging (8B) and time and communication cycle synchronization (4B). Analogous to that,
the first ATs in every communication cycle also carry an 8B field for hotplug information. For
every slave device and communication cycle, MDTs can also include one 2B device control field,
and, analogous to that, ATs can include one 2B device status field. Also, there can be one 6B
service channel field within the MDTs and ATs for every slave device and communication cycle,
which allows master and slaves to exchange small amounts of non-cyclic data each communication
cycle. The remainder of the payload of MDTs and ATs is occupied by cyclic real-time connection
data, which itself comes 2B header.

23

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Service Channel (SVC) / Real-Time (Connection) Data FCSSercos-III HdrEthernet Hdr

14 Byte 6 Byte 40-1494 Byte 4 Byte

Telegram
Type

8 Bit8 Bit 32 Bit

CRC
Comm.
Phase

SVC
m

2 Byte per Slave

Device Control
Device Status

 (if MDT)
 (if AT)

multiple SVC and Conn. data fields, as configured

Conn.
Data x

SVC
n

Conn.
Data y

Application Data
(Conn. x)

2 Byte

Conn. x
Status

conn.-specific length4 Byte

SVC x
Status

SVC x
Info

2 Byte

...

Figure 2.9: Sercos-III – Frame Structure

Addressing

Sercos-III devices have normal MAC addresses for each interface like any other device with an
Ethernet interface; besides that, it has a Sercos address, which can be any integer from 1 to 511.
In case multiple devices on one network report the same Sercos address, the network initialization
fails. A slave device can support two different ways of obtaining its address: either it is set, e.g.,
via a dip-switch directly on the slave, or it is set during system startup by a service channel
command by the master.

0 is used to as “no station” address and shall not occur within an up and running Sercos network.
If a slave reports this address, its actual address is subject to be set via a service channel command
from the master; if a master sets the address of a device to this address, it is effectively deactivated.

Topological address allocation is done at the beginning of communication initialization; a sequence
number is passed from one slave to another down the line and incremented. Each node keeps
the lower of the received sequence counters as topological address; this topology address is used
during communication initialization and can also be used to address slaves without set Sercos
address (c.f. Figure 2.10, Figure 2.11).

The master can calculate the total numbers of slaves either by dividing the sequence counter it
received back from the address allocation procedure by 2 in case of line topology being used or
by subtracting 1 from the lower received sequence counter, in case ring topology is used.

Slave Slave

P-Channel

Slave

Master

Slave

SeqCnt=1

7+1

1+1 SeqCnt=2

6+1

2+1 SeqCnt=3

5+1

3+1 SeqCnt=4

4+1

SeqCnt=8

SeqCnt=1

SeqCnt=7 SeqCnt=6 SeqCnt=5

lower received sequence count used as slave address

higher received sequence count discarded

master calculates number of slaves by dividing received sequence count by 2

Figure 2.10: Sercos-III – Topological Address Allocation, Line Topology
(c.f. Sercos-III Specification –Communication Protocol, Fig. 39)

24

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Slave Slave

P-Channel

Slave

Master

Slave

SeqCnt=1

1+1 SeqCnt=2 2+1 SeqCnt=3 3+1 SeqCnt=4

SeqCnt=0x8005

SeqCnt=1

SeqCnt=0x8004 SeqCnt=0x8003 SeqCnt=0x8002

lower received sequence count used as slave address

higher received sequence count discarded

master calculates number of slaves by subtracting 1 from received sequence count

4+1

SeqCnt=0x8001

P-Channel

S-Channel

SeqCnt=5

SeqCnt=0x8001

Figure 2.11: Sercos-III – Topological Address Allocation, Ring Topology
(c.f. Sercos-III Specification –Communication Protocol, Fig. 40)

Synchronization

In Sercos-III, slaves synchronize to the reception of the first MDT of each synchronization cycle,
or, more precisely, to the end of the S-III header of this frame. Since these frames arrive at
each slave at different points in time based on their topological distance from the master and the
transmission delays of the slaves between them and the master, the respective propagation delays
have to be measured to correct these differences.

At network initialization, the master initially measures the ring time, i.e., the time it takes for
a frame to be sent from the master, pass through the ring or line, and return to the master
again. The master calculates the ring delay and broadcasts it to all slaves participating in the
synchronization (c.f. Figure 2.12).

The slaves then determine their respective slave delay for each connected channel (primary and/or
secondary, depending on the used physical topology); this is the time it takes for any frame from
being sent from the master to being received by the slave.

Master
Port 2

Master
Port 1

Slave
n

Slave
m

Slaves Slaves

counterP(slave m)

counterP(slave n)counterP(slave) started when
MST-P received on slave

counterS(slave m)

counterS(slave n)
counterS(slave) started when
MST-S received on slave

physical delay time (tRing)

ring delay (tRing + jitterIFG + extra delay = counterP + counterS)

P-channel

S-channel

Figure 2.12: Sercos-III – Ring Delay Time Measurement
(c.f. Sercos-III Specification –Communication Protocol, Fig. 110)

25

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

This parameter is then used by each slave to calculate its view of the global synchronization refer-
ence time by adding the difference of ring delay and its slave delay to the master-broadcasted time;
this way, this calculated values turn out to be the same point in time (synchronization reference
time) for each slave despite the difference in reception times (TTref(slavex)) (c.f. Figure 2.13).

ring delay

communication cycle time

communication cycle time

slaves' synchronization triggers
(MST header received)

synchronization
reference time

counterP(slave n)

TTrefP(slave n)

counterP(slave m)

TTrefP(slave m)master
reference time

slave n
port 1 (P-channel)

slave m
port 1 (P-channel)

Figure 2.13: Sercos-III – Global Synchronization Reference Time Calculation
(c.f. Sercos-III Specification –Communication Protocol, Fig. 111)

This synchronization procedure can be initiated by the master, depending on application needs
and constraints, every synchronization cycle; its accuracy depends – just like Sync Manager
(SM) synchronization for EtherCAT – on the precise timing of the send events of these frames
by the master. Therefore it is advisable to use a hardware-supported master if a low-jitter
synchronization is required.

Purely software-based solutions running on normal PC hardware on top of complex operating
systems will not be able to fulfill the standard jitter requirements of most Sercos slaves, however
they can be configured to work – albeit less precisely – with a less precise synchronization.

Sercos-III does support individual producer cycle times for each connection; each producer cycle
time has to be a multiple of the communication cycle time. In this case, not every first MDT of
a communication cycle is used for synchronization; instead, each least common multiple of the
communication cycles is used as common synchronization point in time.

Standard Ethernet Integration

The Sercos-III standard requires all compliant devices to pass all (valid) Ethernet frames through
from one port to its other port. Ethernet frames not related to Sercos real-time traffic are called
UC frames; the time between the end of transmission of real-time traffic within a communication
cycle is called UC channel. Devices are allowed to process passing UC frames and insert their
own ones into the network.

So-called IP switches can be inserted into the network to allow exchange of UC frames with
external devices or networks. Also, the open port at the end of a line as well as a broken ring
topology can be used to attach standard Ethernet devices and process/insert UC frames from/into
the Sercos network.

26

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

2.2.3 TTEthernet

Time-Triggered Ethernet provides a hard real-time, standard-Ethernet compatible data commu-
nication and time synchronization system with sub-microsecond jitter for hard real-time traffic.
Its primary goal is to provide certifiably safe unified communication solution for mixed criticality
networks, in which standard Ethernet and less critical traffic might safely coexist with critical hard
real-time transmissions without the possibility of impeding the hard real-time communications.

TTEthernet was initially developed as implementation of the serial bus protocol Time-Triggered
Protocol (TTP) [SAE11b] on top of Ethernet under the name TT-Ethernet in 2002 by a joint re-
search effort of the Vienna University of Technology and TTTech Computertechnik AG [SGAK06].
Since then it has been developed into its current form, which fits in well with standard Ethernet
and provides highly efficient distributed clock synchronization and time-triggered real-time trans-
missions; it is marketed since 2006 by TTTech; the specification has since been made available
[TTT08]. In 2011, TTEthernet has been standardized with Society of Automotive Engineers
(SAE) as SAE-AS6802 [SAE11a].

The following sections shall provide a short compilation of TTEthernet’s functional principle and
its features.

Basic Operation Principle

Different from many other real-time Ethernet systems, TTEthernet focuses solely on safe parti-
tioning of different data streams and deterministic data transmissions with minimum jitter and
is, from an application perspective, totally interchangeable with standard Ethernet.
TTEthernet uses a global, precalculated schedule of all cyclically reoccurring hard and soft real-
time transmissions within a network to coordinate sending and receiving of frames to preemptively
prevent collisions during delivery of real-time data. To allow for a coordinated schedule within
the whole network, TTEthernet provides its own, distributed clock synchronization scheme.

In order to actually enforce the planned network schedule, a custom TTEthernet switch is used
which is preloaded with the network configuration and thus can forward scheduled real-time
Ethernet frames without them being subjected to any queuing or other indeterministic delays they
would possibly encounter within normal Ethernet switches. The end systems usually also have
specialized Ethernet hardware that provides precise timestamping and message dispatching and
can handle TTEthernet synchronization directly in hardware, though it is possible to use purely
software-based end systems as well. However, due to the higher jitter of message transmission
times, a bigger acceptance window has to be configured on switch and recipient end systems.
Theoretically, TTEthernet switches can also be replaced by normal Ethernet hardware, though
in this case neither deterministic message forwarding delays nor shielding of critical data are
possible.

In TTEthernet, there are no inherently defined roles like masters and slaves, save for the devices’
roles in the synchronization process. From an application point of view, all end systems are equal
participants in the network which communicate via virtual links with each other (c.f. Figure 2.14).
Every end system can be both source and recipient of multiple virtual links; each virtual link
connects one sender with one or more recipients on a logical level. For each virtual link, the
periodicity with which frames are sent as well as the maximum payload size allowable for the
frames sent on it are independently configurable. The configured virtual links are then processed
by an offline scheduling tool which detects, whether the configured virtual links can be scheduled

27

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

within the given constraints; if so, it calculates a schedule comprising the send- and receive
times and the acceptance windows for all virtual links and the synchronization frames. From
this schedule, device configuration files for switch and end systems are generated which are then
preloaded onto the respective device.

VL from ES1 to ES2-6 VLs from ES2-6 to ES1 2 VLs from ES1 to ES2-6

ES4 ES6

ES1 ES2 ES3

ES5

Switch

ES4 ES6

ES1 ES2 ES3

ES5

Switch

ES4 ES6

ES1 ES2 ES3

ES5

Switch

Figure 2.14: TTEthernet – Virtual Link Concept

During run-time, there is no overhead save the Ethernet frames used for device synchronization.
Every end system knows at which exact points in time it is allowed to send how many bytes for
each virtual link it sends on; also, the switch knows when to accept and directly forward how
many bytes for which virtual link from which port to which port(s).

Supported Topologies

TTEthernet inherently supports all physical topologies supported by standard switched Ethernet,
however, the standard star topology is the most common. TTEthernet end system cards usually
have at least two external Ethernet ports to allow for fail-safe dual- and triple-channel configu-
rations, in which each end system is connected to two or three different switches, so that neither
one cable break or end system port failure nor one switch failure can interfere with network
operations.

Another option is the switched ring topology, where one switch is connected to a few end systems
within its direct vicinity and each of these switches is connected to two other switches (possibly
farther away from each other) in order to provide fail-over in case of any of the longer transmission
lines between the switches breaking. These topologies are presented in Figure 2.15.

Single-Channel Configuration Dual-Channel Configuration Switched Ring Configuration

Switch

ES ES

ES ES ES

ES ES ES ES

ESES ES

Switch Switch

ES

SwitchSwitch

ES ES ES

ES ES ES ES

SwitchSwitch

Figure 2.15: TTEthernet – Simple and Fail-Safe Network Configurations

28

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

A topology currently not yet commercially available from TTTech is a daisy-chained line- or ring-
topology. For this topology, every end system itself comes with two or four external Ethernet
ports connected to an internal switch; the external ports can then be used in a single- or double-
channel configuration to connect to its neighboring devices. Most TTEthernet switches and end
systems support both 100Mbps as well as 1Gbps Ethernet on both copper and optical cabling.

Addressing and Frame Structure

TTEthernet uses unmodified, standard Ethernet frames (c.f. Figure 2.16); each Ethernet port has
a standard MAC address which is used as sender address for any Ethernet frame. Frames sent
via a Virtual Link (VL) are identified by their destination MAC address, which conforms with
a standard multicast MAC address; the last four bytes of the address correlate with its Virtual
Link ID (VL ID); thus, up to 4096 VLs can be defined. The preceding bytes of the MAC address
are used as Critical Traffic (CT) marker. TTEthernet does not define which EtherType to use
for data frames; for Protocol Control Frames (PCFs), 0x891D is defined as EtherType.

Payload FCSEthernet Hdr

14 Byte 46-1500 Byte 4 Byte

Destination MAC Address Source MAC Address

2 Byte

6 Byte 6 Byte

EtherType

2 Byte

Critical Traffic Marker Virtual Link ID

4 Byte

Figure 2.16: TTEthernet MAC Frame

Synchronization

TTEthernet strongly depends on a precisely synchronized, shared time base for all participating
devices. The synchronization procedure is cyclically repeated for each integration cycle; the
integration cycle time is usually the same as the cluster cycle, which is the least common multiple
of all virtual links’ cycle times.

Since using only one master clock would be susceptible to faults in case the single master begins
exhibiting faulty behavior, a fault-tolerant clock synchronization approach is used by TTEthernet.
For clock synchronization, each synchronized device is given one of three roles: sync master, sync
client, or compression master. There have to be at least two synchronization masters and two
compression masters to provide fault tolerance; if only one synchronization master is employed,
the compression master becomes superfluous and can be omitted.

Special Ethernet frames, the PCFs are used to synchronize all devices within a TTEthernet
cluster with each other. All sync masters send PCF integration frames to all compression masters
each integration period. Each compression master takes a fault-tolerant average of the frames’
arrival times, i.e., it averages a set of values, omitting a configurable amount of outliers. Each
compression master then creates a single frame from the integration frames received within a
certain acceptance window and adjusts the send time of this compressed integration frame to
counteract clock inaccuracies; upon reception of the compressed frame, the sync clients adjust
their local clocks accordingly. This procedure is illustrated in Figure 2.17

29

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

State of the Art

Step 1

Synchronization
Master

Synchronization
Master

Compression
Master

Synchronization
Client

Synchronization
Master

ID 1 ID 2

ID 3

Synchronization
Master

Synchronization
Master

Compression
Master

Synchronization
Client

Synchronization
Master

ID 5 ID 5

ID 5ID 5

Step 2

Figure 2.17: TTEthernet – PCF Compression Scheme

To account for path delays, PCFs contain a transparent clock field, in which the transmission delay
times are accumulated. PCFs also contain a bit vector indicating which sync masters contributed
to a respective frame; end systems receiving two PCFs can thus, in case it’s necessary, decide,
which frame is more representative of the whole network status depending on how many devices
actually contributed to it.

Standard Ethernet Integration

Standard Ethernet traffic can be handled by TTEthernet switches just like any other Ethernet
switch; it is called best effort traffic in TTEthernet terms, based on how it is delivered – whenever
it is possible while not colliding with time triggered traffic; thus, standard Ethernet devices can
be plugged into any TTEthernet switch just like into any other switch.

30

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

3 Proposed Implementation Approaches

In this chapter, the functional requirements stated in Section 1.2 are used to derive basic im-
plementation requirements for the used fieldbus systems and the used hard- and software. Also,
estimates about delays, cycle times, and bandwidth utilizations for different fieldbus systems are
determined. Then, the various drafted implementation concepts for all three short-listed fieldbus
systems are described, shortly summarizing the distinctive features of each system to account for
differences in the proposed solutions.

These differences include whether the respective Ethernet fieldbus system uses summation frames
or single frames per end system; also, other protocol-specific requirements have to be taken into
account, e.g., how data has to be packed into Ethernet frames and how much bandwidth protocol-
specific functions like clock synchronization and other maintenance tasks utilize.

3.1 Basic Concepts for Proposed Fieldbus Systems

Due to the structure of the system given, there is a clear distribution of roles amongst the
participating nodes of the fieldbus network:

– one node collecting data from all other nodes and calculating the control parameters for
those nodes acts as master

– all other nodes act as slaves with their functionality depending more or less on the avail-
ability and correctness of parameters discerned by the master

Some of the considered communication systems – actually all Ethernet-based fieldbus systems
descending from “classic” fieldbus systems – clearly distinguish between these roles themselves; for
TTEthernet however, due to its concept, differences in the node’s roles are assigned purely based
on the application running on it. Another big distinction between the considered communication
systems is their topology and, related to this differentiation, how Ethernet frames are initially
created and handled by each node.

While TTEthernet does in principle provide the possibility to use a physical line topology by
each node having two Ethernet ports and acting as a 3-port switch connecting in-port, out-port,
and the device, it normally uses the standard topology for switched Ethernet – the star topology
– with all its drawbacks and advantages.
EtherCAT, Sercos-III, and SafetyNET-p RTFL are very similar to each other in this respect –
both use the same physical line topology, and though special line extenders can be used to branch

31

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

off other network sections, this is only an addition to the default mode of operation. Based on
this topology, they both use so-called summation frames; the master initiates transmission of any
frame in the network and slaves just put their data into those frames as they pass by. If only
small data units per slave are transferred, this reduces the required Ethernet framing overhead;
even in case more data has to be transferred it could be useful, since for n slaves, only 1/n data
per salve has to be buffered to reach the same level of bandwidth efficiency, thus reducing data
latency without sacrificing bandwidth efficiency.

In the following section, the required net bandwidth for this project is calculated; then, gener-
alized calculations about the efficiency of single-frame versus summation frame systems as well
as possible ways to package data as efficiently as possible in either kind of system are laid out.
The topic of the efficiency of using multiple communication cycle times versus multiplexing in the
considered systems is also discussed; however, detailed calculations for each system a prototype
is built with are to be found in the respective subsections of Chapter 4.

3.2 Calculations and Considerations

Since one pressure measurement value per cylinder should be taken for every tenth degree change
of the crankshaft angle, the data per unit time depends on the rotational speed of the crankshaft
itself. So, for all calculations, including calculating the update time requirements, the maxi-
mum possible rotational speed has to be assumed to ensure that under all circumstances suffi-
cient bandwidth and computational resources are available. At a maximum rotational speed of
2250 rpm and nominal rotation speeds of between 1000 rpm and 1500 rpm, therefore an average
over-provisioning of 1.5× to 2.25× with respect to the fieldbus system’s transfer capabilities and
the master’s computational power has to be accepted in order to provide reliable and deterministic
real-time behavior under all specified circumstances.

As already mentioned in Section 1.2, the commissioning company’s requirements changed dur-
ing the course of this project. As a consequence, the initial assumptions and calculations that
were used to limit the preselection of fieldbus systems to systems based on at least 100Mbps
Ethernet are based on different actual numbers. In the following subsection, the older calcula-
tion is presented first; then, the version updated to its current state, extended by the additional
requirements is elaborated on.

3.2.1 Multiple Cycle Times Versus Multiplexing

One way to deal with different data generation rates is to use a communication system which
supports transferring data at arbitrary times or transferring data at more than one communication
cycle time. The other way would be to use multiplexing and split the more slowly generated data
into multiple smaller chunks then added to the faster exchanged data.
Both approaches have their drawbacks and advantages; in some cases however, the choice cannot
be based on those alone but is restricted due to limitations of the used fieldbus protocol or its
specific implementation.

The biggest advantage of using multiple cycle times is that data is sent immediately after becoming
available to the master; this point is diametrical to one drawback of multiplexing, where data is
completely received at the master only after receiving n chunks which takes n× tcycle.

32

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

The advantage of multiplexing is that it potentially helps to reduce Ethernet framing overhead
that might be comparatively high when only little actual data is transmitted. However, diamet-
rical to that are the limitations concerning how the data can be actually split into multiplexed
chunks; e.g., splitting 40B of data onto 70 frames will possibly result in more overhead than the
framing overhead, since the smallest possible unit to split the 40B into are 1B and then you also
probably need a multiplexing selector which also takes 1B which leads to 2B per carrier frame,
in turn leading to 140B in total (though 3/7th of the time, no data would need to be transferred
actually). In comparison to that, if transported in one Ethernet frame, the 40B would have to
be padded to 46B and, including all framing overhead, would take 72B.

Which arguments prove more substantial and how any method can be exploited as effectively
as possible for a given situation has to be decided with respect to the constraints of the respec-
tive scenario at hand. For this project, the main reason to use multiplexing for the EtherCAT
prototype was the lacking support for them “out-of-the-box” by the system in question; this is
explained further in Subsection 4.1.4.

For the TTEthernet prototype, the other approach was chosen for state data from the slaves to
the master due to the simplicity of using multiple cycle times with this system and the afore-
mentioned overhead that would ensue from actually using multiplexing, which is further detailed
in Subsection 4.2.3. However, to reduce the overhead for the transmissions from master to the
slaves; all the control data for all 12 slaves is sent within one frame relayed to all slaves.

3.2.2 Data Packing

Further on, for the overall bandwidth calculations, due to the Ethernet overhead of 38B per
frame, the minimum payload of 46B and the maximum payload of 1500B, there are a few other
considerations with respect to the used Ethernet fieldbus. For example, EtherCAT packages
data from master and slaves into one packet, Sercos-III uses separate master data and answer
telegrams. Also, the tradeoff between fast update times, i.e. sending as few tuples as possible per
frame so that the master gets them as soon as possible, and bandwidth efficiency, i.e. sending as
much tuples as possible at once so that as little framing overhead as possible occurs, has to be
considered.

Each fieldbus system comes with its own set of protocol meta-data, synchronization routines, and
so on, which consume additional bandwidth; often, these functions also use up space within the
Ethernet frames otherwise used by application data. Thus, one cannot act on the assumption of
all 1500B nominal payload of an Ethernet frame being actually available for application data;
however, this subsections rough calculations are done to gain a first insight about the approximate
orders of magnitude in which cycle time, frame size, and framing overhead are located.

The generated data as originally specified and considered for these calculations has the form of
tuples, consisting of one crankshaft angle value of 13 bit and 2 pressure sensor values of 12 bit
length each. This in sum would give only 37 bit per data point, however due to higher-level
processing restrictions, padding of these tuples to 40 bit or using 3× 16 bit = 48 bit is suggested.

To gain an initial overview of how many data tuples could be efficiently transported with either
a summation-frame-based system or a single-frame system and how much overhead would en-
sue, exemplary combinations of additional overhead and transferred tuples per frame have been
tabulated.

33

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

Table APX.1 and Table APX.2 show the frames required per revolution of the crankshaft angle at
maximum speed, the time interval of the frames being sent, and the number of crankshaft angle
increments per frame for a given number of data tuples per frame as well as the payload per
revolution, the overall bandwidth for 1 and 12 slaves, and the Ethernet overhead. Horizontally,
the variable parameter of the calculation is the number of tuples per frame; vertically, the number
of bits for the data tuples is varied and for each of the 3 possible bit lengths, additional 3, 99,
and 147B for each set of frames (one frame from each slave, in case of single-frame systems)
or one frame (in case of summation frames) are also added to account for the aforementioned
fail-stop vector, the firing vector, and the reset-position vector; these added numbers where used
as estimates before the actual requirements presented in Table 3.2 and Table 3.3 were known.

The payload is calculated as
payload bytes = ⌈num tuples× bits per tuple/8⌉+ additional data bytes.

The overall payload for one slave is calculated as
bytes per slave = (payload bytes+ overhead bytes)× num packets/time per revolution.

The overhead percentage is calculated as
percent overhead = overhead bytes/(payload bytes+ overhead bytes).

The results for these calculations with the aforementioned parameters are listed in Appendix A.1
and Appendix A.2, respectively. The overall takeaway from these listings is that for single-
frame systems, the maximum payload of an Ethernet frame cannot be filled without violating the
application latency requirements which results in three times the minimum overhead.

For example, for a summation-frame system, when using a data tuple size of 40 bit and when
sending the fail-stop, firing angle, and the firing voltage vector, the optimum number of tuples to
be sent within one frame is 23. For the same parameters with a single-frame system, 298 tuples
must be sent to achieve a comparable level of efficiency.

However, this parameter is only scalable within the project’s requirements, and as mentioned in
Subsection 1.3.2, a maximum of 10 ◦CA may be buffered not to exceed the data latency required
by the algorithms.

As for the bandwidth efficiency, the optimum choices are similar, but as the leftmost column in
Table APX.1 shows, limiting the single-frame systems to a maximum of 100 tuples for each frame
raises Ethernet overhead about 3-5%. Conversely, sending 100 tuples at once with a summation-
frame-based system yields a payload far beyond 1500B and would thus require using more than
one Ethernet frame per communication cycle.

It should be noted however, that all these calculations provide only a rough approximation of
what might be sensible approaches to data packing and can not be used to actually schedule the
data traffic of, e.g., an EtherCAT network, due to missing out in details about protocol-specific
overhead and limitations regarding possible communication cycle times, the network stack, and
application-specific details.

These estimations were superseded by implementation-platform specific calculations after decid-
ing on the systems the prototypes should be developed with; due to the mentioned limitations,
these newer calculations yield possibly very different results both in terms of bandwidth usage
and efficiency (c.f. Subsection 4.1.4 and Subsection 4.2.3).

34

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

3.2.3 Tuple Generation Versus Communication Cycle Time

It is important to note that while the rotational speed of the crankshaft is flexible, the communi-
cation schedule of the fieldbus system is not and has to be scheduled to transmit the maximum
amount of data (generated at a rate of 135 kHz) as efficiently as possible to the master. The
minimum time per revolution is 26.6̇ ms; since it is not possible to choose periodic numbers as
cycle time for the fieldbus systems’ communication schedules, a non-periodic number below this
value will be chosen as cycle time of the fieldbus system. Therefore, there will sometimes be
an overlap and, consequently, two communication cycles starting within one revolution of the
crankshaft.

This inaccuracy implies an at least slight mismatch between the actually generated maximum
number of tuples and the transfer capabilities of the scheduled communication packets and leads
to a proportional increase of the necessary over-provisioning of resources. Measures are taken
to keep this difference between the maximum possible tuple transfer rate and the maximum
tuple generation rate (i.e., 135 kHz) at a minimum. The necessary over-provisioning necessary to
provide sufficient tuple transfer slots at maximum speed means, however, that in general a lot of
those slots are either empty or filled with duplicates of the same 0.1 ◦CA-measurement value; the
actual behavior then depends on the implementation but does not change other details.

3.2.4 Net Bandwidth

First, the bandwidth calculation is done only for the tuples of pressure management data as
specified by the initial requirements, then this calculation is revised with additional data added.

Initial Bandwidth Estimation for Pressure Data Tuples

According to the initial specification, there shall be up to 12 slave systems which generate each
1/10th ◦ turn of the crankshaft a crankshaft angle value and two pressure data values each, the
maximum rotational speed of the crankshaft being 2250 rpm.

Let rs be the (maximum) rotational speed of the crankshaft, which implies the time per rotation
tpr, and nm the number of measurements per rotation. The minimum time per value tpvmin and
the maximum required tuple rate rtplmax can then be calculated as:

rs = 2250 rpm = 37.5 r/s

=⇒ tpr = 26.6̇ms/r

nm = 3600 values/r

=⇒ tpvmin [s/value] =
1/rs

nm

[

60/rpm = 1/rps
values/r

=
1
r/s

r

value
= s/value

]

= 7.4074e-6 s/value = 0.0074ms/value = 7.4074 µs/value

=⇒ rtplmax [Hz] =
1

tpvmin [s/value]
=

(

tpr [s/r]

nm [values/s]

)

−1

=
nm [values/r]

rs−1 [s/r]

=
nm [values/r]

1/rs [s/r]
= nm · rs

[

values

r
·
r

s

]

= 3600 values/r · 37.5 r/s = 135000Hz = 135 kHz

35

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

The next important value required is how much data each measurement node actually generates
in this time interval. Considering only the plain data, each slave generates a 3-tuple of 1× 13 bit
crankshaft angle value and 2× 12 bit pressure data values, which would result in 37 bit per data
tuple.

However, to account for optional, but probably useful padding, the calculations are also done
for 40 bit in case the complete data tuple is padded to fit in a multiple of 8 bit and for 48 bit =
3×16 bit, in case standard 2-byte integers are used for the pressure- and angle data values. With
tpvmin calculated before and the size of the measurement data tuple spm generated for each
measurement data tuple, it is possible to calculate the minimum required net bandwidth for the
pressure measurement data pmdbw of each slave system:

pmdbw(spm) [bit/s] = spm [bit]/tpvmin [s] = spm [bit]
1/rs [60/rpm = 1/r/s]

nm [values/r]

spm 37 40 48 bit

pmdbw 4995000 5400000 6480000 bit/s
= 4.995 = 5.4 = 6.48 Mbit/s

×12 slaves = 59.94 = 64.8 = 77.76 Mbit/s

Table 3.1: Pressure Measurement Data Bandwidth Requirements Depending on Tuple Size

The results from Table 3.1 were the basis for the preselection of fieldbus systems. Systems
providing a raw bandwidth below 100Mbps were preliminary excluded; also, systems with a
functional principle inherently duplicating data for safety reasons or automatically trying to
resubmit presumably lost data had to be excluded, though using 100Mbps transmission media.

There have also been some calculations made about the most efficient data packing in summation
frames and standard frames with regards to Ethernet framing overhead; however, due to the addi-
tional constraint of buffering a maximum of 10 ◦CA worth of pressure data, these became obsolete
for systems using standard frames (TTEthernet) and for summation frame systems, calculating
the overhead of different packing schemes is very specific to the system in question and thus not
discussed in this more general section but specifically for EtherCAT later in Subsection 4.1.4.

Additional Status- and Control Data

Due to the added requirement of also controlling the ignition process, further status data has to
be collected from the slave systems as well as control data has to be sent to them.

1. Each end system should be able to trigger an emergency stop of the machine in case it
locally detects a situation necessitating this measure, i.e. in case a gas valve to a cylinder
does not close, this respective cylinder shall not fire and the machine as a whole should be
stopped as soon as possible. The overhead of this should be rather small in comparison to
the benefit of the reduced reaction time of the system to emergency conditions; the actual
overhead and performance of this measure largely depends on whether summation frames
or single frames per end system are used and how many tuples per end system are collected
before they are sent to the master.

2. At least once per machine cycle, the master should be able to adjust each cylinder’s ignition
point value (i.e. the crankshaft angle at which the respective cylinder fires).
It is planned for the master to dispatch a packet with this additional vector of up to 24

36

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

13 bit values (probably padded to 24×16 bit = 48B) included once per rotation at maximum
speed (i.e., twice per machine cycle) which, under normal operating conditions, provides the
opportunity to update the ignition point up to about 4 times per machine cycle, allowing
flexible optimization of the ignition process.

3. Once per machine cycle, the ignition voltage of every cylinder should be sent to the master.
For this, also a vector of 24 16 bit values, i.e. one voltage measurement value per cylinder,
is necessary.

4. At least at initialization time, but maybe cyclically, the master should be able to set the
reset position of every cylinder, i.e. the crankshaft angle difference between the assumed
0 ◦CA position to the top dead center (TDC) position of the respective cylinder.

The complete listing of additional data to be transferred as specified by the commissioning com-
pany is shown in the following tables (c.f. Table 3.2, Table 3.3). For the overall system, the
amount of data given in these tables has to be multiplied by 24 and 12, respectively, since it
represents the extra data for each cylinder or by each slave, respectively.

Value Range Data Size acceptable latency time

0-1 1B next firing cylinder
0-100 12B next engine cycle
0-2000 21B next engine cycle
0-255 2B next firing cylinder
0-1 1B next firing cylinder
0-7200 4B next firing cylinder
0-7200 4B next firing cylinder
0-7200 4B next engine cycle
0-7200 4B next engine cycle

= 12B next firing cycle
= 41B next engine cycle

Table 3.2: Additional Data from Master to Slaves (Per Cylinder)

Value Range Data Size acceptable latency time

0-10000 4B within an engine cycle
0-600 4B within an engine cycle
0-255 1B within an engine cycle
0-1 1B within an engine cycle
0-1 1B within an engine cycle
0-1 1B within an engine cycle
0-1 1B within an engine cycle
0-2250 2B within an engine cycle

= 15B within an engine cycle

Table 3.3: Additional Data from Slaves to Master (Per Slave)

As evident from these tables, there are three other rates at which data is required to be exchanged
in addition to the rate at which pressure data tuples are generated and have to be exchanged in
order to adhere to the requirement to buffer a maximum of 100 data points.

This data depends, like the pressure measurement data, on the rotational speed; thus, to provide
deterministic behavior, the maximum speed has to be assumed as well.

37

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

Since no further description is available for these data, the additional data from master to the
slaves has been dubbed Control Data A for the data requiring an update time of an engine cycle
and Control Data B for the data requiring an update time below the minimum cylinder firing
distance time. The additional data generated by the slaves is further on called Slave State Data.

The term “within an engine cycle” implies that data has to be transferred twice per engine cycle
to ensure it does not take longer than one engine cycle to actually reach and be considered by the
master, while “next engine cycle” does not place this requirement for this kind of oversampling
on the data exchange. An engine cycle equals two full revolutions of the crankshaft; this equates
720 ◦CA which in turn translates to 53.3̇ ms at full rotational speed.

Accordingly, 53.3̇ ms is assumed as maximum update time for Slave State Data and 26.6̇ ms for
Control Data A. Since the minimum distance between two cylinders firing is 22 ◦CA which equals
in terms of time at an assumed maximum rotational speed of 2250 rpm a time interval of 1.629ms,
this time is the assumed allowed maximum for the Control Data B.

The actual cycle times for these additional data transfers have to be chosen with respect to the
requirements of the specific fieldbus system and mostly in conjunction with the base cycle time
used to transfer pressure measurement data.

Specifically, for TTEthernet, all employed cycle times must be a multiple of one common base
cycle time; and since EtherCAT turned out not to support multiple cycle times for all practical
purposes, a form of multiplexing has been employed which is discussed in Subsection 4.1.4.

In the following paragraphs and tables, the minimum net bandwidth requirements are calculated
and listed; for these calculations, the following equation is used:

bandwidth [kbps] = data size [bit] ·
1

interval [ms]

Direction Data Size Max. Cycle Time Min. Bandwidth

M → S 41B = 328 bit 53.3ms 6.2 kbps
12B = 96 bit 1.6ms 60.0 kbps

for 1 slave = 66.2 kbps
for 12 slaves = 793.8 kbps

S → M 15B = 120 bit 26.6ms 4.5 kbps
for 12 slaves = 54.1 kbps

Table 3.4: Additional Control and Status Data – Bandwidth Requirements

As evident from Table 3.4, the additional data requires, in comparison to the pressure data, an
almost negligible amount of bandwidth. The interesting factor about the additional data is thus
not the overall bandwidth but its generation frequency, which is very different from the pressure
sensor data, where even 100 data points (10 ◦CA) are generated in only 740µs.

Additional Knocking Sensor Data

A further change to the specification added the requirement of transferring 16 bit audio signals
sampled at nominally 50 kHz generated for each cylinder to the master. This results in an

38

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

additional bandwidth of 16 bit · 0.02ms−1 = 800 kbps per cylinder; i.e., up to 19.2Mbps for up
to 24 cylinders. Note that this is the only measurement or control data that is sampled by time
instead of relative of the crankshaft angle; thus, in cyclically operating communication systems,
the resulting bandwidth will be constant, independent from the rotational speed of the engine.

Bandwidth Savings due to Changed Tuple Format

The addition of knocking sensor data to the transfers from slaves to the master would result in
an overall bandwidth of about 80Mbps, 85Mbps, or 98Mbps, depending on the packing of the
pressure data tuples; due to different overheads, e.g., the non-optimal fit between engine cycle
times and communication cycle times, the Ethernet framing overhead, and the cutoff when fitting
data structures into Ethernet frames, even for the smallest of the three values it is questionable
whether Ethernet-based communication systems using 100Mbps media would be able to handle
this net traffic. Therefore, the requirements for the tuple transfers were revised; it has been
agreed on that for every data frame containing pressure data, only the first and last respective
angle values sent within that frame shall be transmitted. This saves up to almost 1/3rd of the
transfer size for pressure data, with higher savings with more tuples transferred per frame.

Final Net Bandwidth

The net bandwidth depends to some extent on the way data is formatted, i.e. how values with
non-standard bit widths are packed; in this application, this pertains mainly to the pressure
data where the actual range of values requires 12 bit per value, but a representation using 16 bit
unsigned integers is simpler to implement. At least at this stage of the project, it has been decided
that optimizations like actually transmitting only 12 bit integers should not be necessary to fit
the data within the available bandwidth.

For the pressure measurement data, a cycle time of 740µs has been assumed; this is the maximum
time (i.e., 10 ◦CA at full rotational speed) pressure data can be buffered on the slave while
conforming with the maximum data latency requirements of the master. This time interval
translates to an amount of 100 data tuples, which means that for these 2 × 100 16 bit values,
only 2 16 bit values giving the first and last crankshaft angle for the respective first and last
transmitted pressure data tuples have to be sent; from this point of view it is thus the most
efficient data packing.

For the knocking sensor data, the same communication cycle time as for the pressure measure-
ment data has been assumed, resulting in 37 values being generated within this interval for each
cylinder, equating to 148B being generated per slave.

The results of the net bandwidth calculations are given in Table 3.5; it shall be noted that the
direction given can not be necessarily translated into the bandwidth used in either direction on
the wires since protocols like EtherCAT and Sercos-III send data in both directions on both wires;
this means that the actual net bandwidth is the sum of the bandwidths given for either direction.

3.2.5 Preliminarily Excluded Systems

Because of the previously calculated minimum net bandwidth – as already touched upon briefly
in the introduction and elaborated on in Subsection 3.2.4 – “classic” fieldbus systems with a

39

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

Direction Description Data Size Cycle Time Bandwidth

M → S Control Data A 82B 53.3ms 12.4 kbps
Control Data B 24B 1.6ms 120.0 kbps

for 1 slave = 132.4 kbps
for 12 slaves = 1.6Mbps

S → M Pressure Measurement Data 404B 740µs 4367.6 kbps
Knocking Sensor Data 148B 740µs 1600.0 kbps
Slave State Data 15B 26.6ms 4.5 kbps

for 1 slave = 6.0Mbps
for 12 slaves = 71.7Mbps

Table 3.5: Final Net Bandwidth Requirements

maximum bandwidth of often only up to 1Mbps can be discarded; virtually all the remaining
fieldbus systems are based on Ethernet, either as a reimplementation of a “classic” fieldbus system
on top of the Ethernet physical layer or as system completely designed from scratch, taking full
advantage of switching and other properties specific to Fast Ethernet.

The initially compiled list of considered fieldbus systems and their respective bandwidths is given
in full in Appendix B; in Table 3.6, all systems remaining after discarding those with a bandwidth
below 100Mbps are listed.

Name Bandwidth
AFDX / ARINC-664 10 / 100Mbps
CC-Link IE Control 1Gbps
CC-Link IE Field 1Gbps
EtherCAT 100Mbps
EtherNet/IP-CIP 100Mbps/1Gbps
Foundation Fieldbus HSE 100Mbps
Modbus/TCP 100Mbps
MOST < 150Mbps
PowerLink 100Mbps
PROFINET/CbA 100Mbps
PROFINET/IO 100Mbps
PROFINET/IRT 100Mbps

Name Bandwidth
RAPIEnet 100Mbps/1Gbps
SafetyNET-p RTFL 100Mbps
SafetyNET-p RTFN 100Mbps
Sercos-III 100Mbps
SynqNet 100Mbps
TCnet 100Mbps
TTEthernet 100Mbps/1Gbps
VARAN 100Mbps

Table 3.6: Considered Systems after Excluding Systems with Insufficient Bandwidth

It shall be noted that 100Mbps is just the nominal maximum bandwidth of the physical layer. In
case the protocol running on top of this physical layer uses, e.g., internal duplication of data to
increase tolerance against transmission failures, the usable bandwidth is only half of the physical
layer’s and thus it is not usable for the project at hand. Since information about the internal
workings of a protocol and its thus remaining bandwidth usable for application data is not always
easily accessible, more in-depth research is necessary in some cases.

40

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

3.3 Additional Considerations for Hard Real-Time Operation

As already briefly mentioned in the introduction, in addition to the bandwidth, other parameters
play a crucial role as well in selecting communication systems for this project. In the follow-
ing subsections, other considered factors are explained and further reductions of the considered
systems are consequently made.

The most important factor for safety-critical motor control systems is besides a correct transmis-
sion of control data the timeliness of this data since data arriving late is useless in the best and
harmful in the worst case. Thus, any considered communication system has to meet strict hard
real-time requirements; this inherently excludes systems based on components that might exhibit
non-deterministic behavior.

3.3.1 Unsuitability of TCP/IP

An important example for systems unable to really guarantee hard real-time behavior are au-
tomation protocols running on top of TCP/IP transmission channels (e.g., PROFINET-CbA,
Modbus/TCP).

While retransmissions in case of encountering errors are a practical feature for applications like
web browsers or email clients, retransmissions severely impact real-time behavior, since an error-
free transmission takes a very different amount of time in comparison to one with 3 or up to n
retries. In addition, the additional bandwidth consumed by the retried transmissions can stack
up with new transmissions, causing an avalanche effect and thus hindering correct delivery of else
problem-free transmissions.

Though the number of retries and thus the number of possible parallel retries can be limited and
TCP/IP stacks can be tuned to achieve higher and more real-time-like performance, problems
with this approach remain. For one thing, the overall available bandwidth has to be dimensioned
in a way to allow for all possible transmissions to fail and cause retried transmissions without
saturating the network and causing cascading errors due to the overload. This allows for a
maximum bandwidth usage of 50%, without considering protocol overhead.

Another problem with this approach is, that even with countermeasures taken like using cus-
tomized TCP/IP-stacks, still a lot of uncertainties remain within the used protocol stack; the
switching hardware used (MAC- or IP-layer switches) is in this cases usually COTS-hardware
with (in the best case) QoS enhancements. These switches however, even with QoS prioritiza-
tion in effect, can cause indeterministic delays due to the queuing mechanisms and/or routing
protocols being used.

3.3.2 Unsuitability of MAC-CSMA(/CD)

The standard MAC-layer media access protocol used for non-switched, cabled Ethernet is CS-
MA/CD. While cabled Ethernet today usually is switched Ethernet, where all devices basically
have point-to-point connection to each other from a physical point of view and can send whenever
they want without running the risk of their frames colliding with somebody else’s, in shared-media
Ethernet, a sender checks the carrier for activity, tries to send, and retries after a randomized
amount of time in case it detects its frame has encountered a collision. This retry-mechanism
causes an inherent infeasibility for hard real-time applications similar in nature to the problems
stated in the previous paragraph about TCP/IP.

41

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

3.3.3 Unsuitability of COTS Switched Ethernet

Standard (COTS) switched Ethernet, as mentioned in the previous paragraph, is often used
as low-cost alternative to customized hardware. However, though COTS switching hardware
provide QoS enhancements to improve latency and other performance-related criteria of certain
traffic types, they nevertheless use inherently non-deterministic queuing- and packet forwarding
algorithms which preclude them from being used in safety-critical hard real-time applications.

In Table 3.7, the fieldbus systems remaining from the last, bandwidth-based preselection are listed
along with comments on their real-time properties; rows highlighted designate systems excluded
based on their lacking real-time capabilities.

Name Bandwidth Real-Time Properties
AFDX / ARINC-664 10Mbps/100Mbps hard real-time
CC-Link IE 1Gbps hard real-time
EtherCAT 100Mbps hard real-time
EtherNet/IP-CIP 100Mbps / 1Gbps IP-based with standard switches
Foundation Fieldbus HSE 100Mbps standard Ethernet+IP, scheduled communication,

standard switches
Modbus/TCP 100Mbps TCP/IP-based on top of standard Ethernet
MOST < 150Mbps media-oriented, streams, soft real-time only
PowerLink 100Mbps hard real-time, but uses inefficient poll/request

mechanism
ProfiNet/CbA 100Mbps TCP-based
ProfiNet/IO 100Mbps standard Ethernet hardware with QoS
ProfiNet/IRT 100Mbps hard real-time, but requires higher-level non-real-

time functions
RAPIEnet 100Mbps / 1Gbps hard real-time
SafetyNET-p RTFL 100Mbps hard real-time
SafetyNET-p RTFN 100Mbps IP-based with standard Ethernet switches
Sercos III 100Mbps hard real-time
SynqNet 100Mbps hard real-time
TCnet 100Mbps higher level retransmission/control protocol,

throughput limited to ≈ 60Mbps
TTEthernet 100Mbps / 1Gbps hard real-time
VARAN 100Mbps higher level retransmission/control protocol using up

to 50% of the bandwidth

Table 3.7: Excluding Systems with Unsuitable Real-Time Properties

42

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Proposed Implementation Approaches

3.4 Discussion of Remaining Systems

After excluding systems providing less than 100Mbps and protocols, that inherently build upon
indeterministic components, there are only 9 protocols remaining. Of these, the following are not
further considered for the following reasons:

AFDX / ARINC-6641 is a protocol whose functions are all integrated into TTEthernet which,
on top of those functions, provides also strict scheduling of transmission times; therefore it
is not looked into in more detail.

CC-Link IE2 is an Ethernet-based reimplementation of CC-Link protocol by Mitsubishi. There is
very little information about it available and implementing it requires support by Mitsubishi
which is not desired by the commissioning company.

RAPIEnet seems to fit the project’s requirements, but the release- and support-state is not clear
and there is very little information available about it and most of it is in Korean.

SynqNet3 seems to be – at least in principle – suitable for this project, however its application
domain is focused towards motion control applications and there are virtually no imple-
mentations outside of its parent company, Kollmorgen4, and the company they outsourced
the implementation to, Robotic Systems Integration (RSI)5; i.e., they use the protocol for
their own products but do not really intend on others to implement it.

Ethernet POWERLINK [Eth13a] does provide deterministic, hard real-time behavior, and the-
oretically also should support Gigabit Ethernet, but it does use a rather inefficient poll-
request mechanism for master/slave communication. This, combined with using shared-
media Ethernet while, in practical terms, not actually supporting Gigabit Ethernet, leads
to a below-average possible bandwidth utilization.

Thus, there are only four remaining protocols: EtherCAT, Sercos-III, SafetyNET-p RTFL, and
TTEthernet.

From the 100Mbps Ethernet-based fieldbus systems (EtherCAT, Sercos-III, and SafetyNET-p),
EtherCAT has been chosen as primary implementation platform primarily due to its market dom-
inance and the relative ubiquity of information and third party systems; apart from this, all three
systems are based on the same functional principle and share similar properties. TTEthernet,
while from a relatively small Austrian company, is one of the very few systems with support
for Gigabit-Ethernet. It has been chosen as second system for closer examination since at the
planning stage, for all other considered systems it has not yet been clear whether they would
satisfy the application’s bandwidth requirements.

In the introduction of Chapter 4, the rationale behind choosing EtherCAT and TTEthernet for
developing two prototypes is laid out in more detail.

1http://afdx.com/
2https://cc-link.org/en/cclink/cclinkie/
3http://synqnet.com/
4http://kollmorgen.com/
5http://roboticsys.com/

43

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

4 Prototype Implementations

For this thesis, one of the tasks is to develop two different prototypes. Of course it is desired to
gain as much insight as possible from these two prototypes and both prove the viability of the
proposed solutions as well as provide a foundation for further development of a production-ready
system. However, a lot of changes occurred during the conceptional – and partly, even the first
implementation – phase of this project which led to multiple reiterations of the whole approach
taken towards planning and implementing the prototypes.

Due to their similarities, it was at first planned to build one quickly-built exploratory prototype
to test the considered systems’ actual limits and then move on to implement an FPGA-based
prototype which could be evolved into a production-ready solution; both was planned to be done
with hardware suitable for both EtherCAT and Sercos-III.

As hardware platform for the first prototype, the Texas Instruments AM3359 Sitara Industrial
Ethernet development board was chosen since it promised to allow for a straightforward intro-
duction to working with both industrial Ethernet protocols.

As second prototype, an FPGA-based solution was planned for implementation on an FPGA
development board by Cannon Automata, the “Sercos-III Eval Kit”, which also supposedly sup-
ports EtherCAT; however, it turned out that the most recent version of the EtherCAT FPGA
IP-core would not fit the FPGAs available for this boards. Due to difficulties finding FPGA pro-
totyping boards with two Ethernet PHYs suitable for EtherCAT alone and getting the IP-core
running on those, implementing Sercos-III which has slightly different requirements and hardware
recommendations was declared out of scope of the current research project.

Further on, there were two reasons to consider not only 100Mbps Ethernet-based systems: First,
the net application’s bandwidth requirement is at least near the practical limit of these 100Mbps-
systems and for all of those, the actually used bandwidth is not exactly predictable before im-
plementing a prototype. Also, the actual amount of bandwidth required by the application was
subject to change for a long time during the conceptual phase of the project due to uncertainties
about possible further expansions of the system’s functionality.

Therefore it has been decided to implementing also a prototype with TTEthernet as an alternative
supporting Gigabit Ethernet. Due to the different topology and functional principle and physical
layer, different hardware was necessary for TTEthernet. Since two different prototypes would
have to be developed because of this already, development of FPGA-based versions of these
prototypes was decided to be moved into a follow-up project.

44

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

The goal of these preliminary prototypes is to get to know the practical, implementation side of
the considered fieldbus systems as well as to ensure that the bandwidth of the 100Mbps-systems
is sufficient for the application’s requirements. Therefore, the initial prototypes should transfer
data as the real application would, but the transferred data should not be from measurements or
randomly generated but generated in a way that allows to verify its correct transmission on the
receiver’s side. Consequently, apart from the data transfers, the sending- and receive functions
should be implemented in a way that allows them to be reused in later prototypes.
Reusability was a general goal when implementing the prototypes, since it should be possible
to replace the data generation for a later version by fetching real measurement data from, e.g.,
shared memory and to swap out the verification of received data out for passing it on to further
processing.

This chapter describes the planning and implementation of the initial EtherCAT and TTEthernet
prototypes as well as the problems encountered during the implementation.

4.1 EtherCAT Prototype

EtherCAT was selected as a primary implementation option among the 100Mbps Ethernet-based
fieldbus systems because of its comparatively large spread and comparatively more implementa-
tion options due to its in principle open specification as well as its promise of simple application
development and maintenance.

At least for the first prototype, it was decided to use hard- and software by the company that ini-
tially developed EtherCAT, Beckhoff, since this promised the best “official” support and quickest
implementation. Beckhoff’s master software, TwinCAT, runs on an MS Windows-based PC with
some requirements to its hardware. For initial slave development, the Beckhoff EL9800 Slave
Evaluation Kit was used. Due to its high cost, this was no longer an economically feasible option
when 12 slaves were required to evaluate network and master system load and slave development
was continued on Infineon XMC4800 EtherCAT Kits.

The main challenge during implementation was the handling of the various options and settings
for both TwinCAT and the Slave Stack Code tool. Both are very straightforward for basic use,
but in case more special settings are required, a definitive guide to which settings needed to be
changed would be helpful.
Another challenge was the overall stability of TwinCAT, which often kept causing bluescreens
during the development. This problem was alleviated but not fully fixed by enabling Core Isola-
tion; booting the system without any USB devices plugged-in helped further. Finally, a TwinCAT
update seems to have fixed these stability issues.

4.1.1 Used Hard- and Software

There are some more or less viable options for the implementation of both master- and slave-side
available; most interestingly, there are open-source implementation usable on RTLinux. However,
for prototyping and initial proof-of-concept development, it was considered most productive to
use “official” Beckhoff products since these promised to come with the most complete feature set
and support in case of problems.

45

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

As master, a PC with 6 Core Intel i7-5930K CPU at 3.5GHz was used, running MS Windows 7
with TwinCAT v3.1.4020.28 for the final version of the prototype. Due to the in the introduc-
tion to this section mentioned stability problems encountered with TwinCAT, however, multiple
hardware configurations and multiple versions of TwinCAT were used, which all exhibited basi-
cally the same behavior. Though the EtherCAT master does not explicitly require specialized
hardware, for reliable hard real-time operation, specialized link-layer network card drivers are
necessary. TwinCAT ships with drivers for most Intel-based network cards, therefore an 82576
Gigabit ET Dual Port Server Adapter was used.

Initial slave development was carried out on an Beckhoff EL9800-6A EtherCAT Evaluation Kit.
During testing it became apparent that the microcontroller on the EL9800 board, a 16-bit
PIC24FJ256GB106-I/MR processor, was not fast enough to run the slave application at the
actually required cycle time of about 740µs. So, after the first slave application implementing
basic data transfer and multiplexing was implemented on this platform, development was contin-
ued on the at the time newly released Infineon XMC4800 EtherCAT Starter Kits which came not
only with a much more powerful CPU but were also much more cost effective than the EL9800
board. This was particularly interesting, since for evaluating whether the overall bandwidth
would actually be sufficient, the maximum number of slaves used in the final system had to be
used for further testing.

The slave application is implemented in C and compiled into one executable together with the
higher-level EtherCAT slave stack code. This slave stack code is generated depending on the used
hardware and stack configuration by the EtherCAT Slave Stack Code Tool ; during execution of
this project, version 5.11 was used. On hardware platforms supported by this tool, a hardware-
specific header file is already supplied with it that provides hardware abstraction for the higher-
level stack functions. In the case of the XMC4800 slaves, a Slave Stack Code Tool project file was
supplied along with an example project which included these required hardware abstractions.

As compiler on the EL9800 platform, the Microchip MPLAB IDE 8.60 with the XC-GCC 1.25 was
used. For the XMC4800 platform, Dave 4.2.8 was used with the GCC 4.9.3 for ARM compiler.

4.1.2 General Remarks about the Test Application

The master application code which is called cyclically once per configured cycle time for each
configured slave is implemented in VS-C++, while the slave application running on the slave’s
microcontroller is, as already mentioned, implemented in C. On both ends, Beckhoff added some
of their own data type definitions which basically match the definitions in stdint.h in function-
ality. Therefore, data definitions and basic functionality can be shared among master and slave
application. Most notably, the logic used to receive and transmit multiplexed process data could
also be used in both master- and slave-application without any adaptions except to the logging
of multiplexing errors for debugging.

Basically, both the master and slave applications generate non-random data which can be known
by the respective receiver beforehand; therefore lost or corrupted packets can be diagnosed by
the test application without requiring an alternate path.

Master and slaves both generate and exchange different kinds of real-time data with different
requirements to their respective send intervals and update times; multiplexing is employed to
accommodate for these different update/send time requirements, since multiple cycle times are
practically not supported by EtherCAT. This is discussed in-depth in the following subsection.

46

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

4.1.3 Network Structure

As already discussed in more detail in Section 2.2.1, EtherCAT uses a physical line topology
which greatly simplifies cabling in comparison to a physical star topology. By connecting the
second port of last node on the line back to the master, a physical ring can be created, providing
fail-over in case of a cable break.

The network structure of the EtherCAT prototype is shown in Figure 4.1.

Figure 4.1: Network Setup of the EtherCAT Prototype

Since the logical structure is actually a ring (or double ring, in case of a physical ring), it means
that the 100Mbps duplexed Ethernet provides in both directions is spent on transferring data
in both directions twice instead of providing 100Mbps in each direction. In cases where there
are high bandwidth requirements in both directions, this poses a problem. It also contributes
to the need for application-level multiplexing of data in case the data update/send intervals of
master and slaves differ too much to just use the faster interval for both. In this application,
due to the little amount of data transferred from the master to the slaves and the requirement
to transfer data about every other time the slaves need to send data which makes multiplexing
possible rather conveniently, this is not an issue.

4.1.4 Network Cycle Time and Multiplexing

From the slaves, pressure measurement data is constantly transmitted once for about every 100
tuples generated (i.e., 10 ◦CA) and a status data structure is transmitted often enough to be valid
within one engine cycle. The master sends two different kinds of configuration data structures to
the slaves which have to be updated at least once each engine cycle and before the next cylinder
fires, respectively.

This means, that either multiple cycle times have to be used to transmit data or that data
has to be transmitted much more often than actually necessary – or that “slower” data has
to be multiplexed onto “faster” data packets. Though the EtherCAT specification does not
explicitly preclude supporting multiple cycle times, not even Beckhoff chief engineers did attempt
to actually implement multiple cycle times, which would require internal changes to the slave
stack code. Therefore, a simple form of multiplexing has been implemented within slave- and
master-application to transfer data with slower update times as efficiently as possible.

Base Cycle Time

The base network cycle time has been chosen with respect to the “fastest” required update/send
intervals, i.e. the pressure data, where 10 ◦CA may be buffered at maximum, which translates to
an optimum cycle time of 740µs.

47

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

In principle, EtherCAT imposes no restrictions on the cycle times that can be used; however,
TwinCAT does due to using hardware timers that provide the base time intervals for all config-
urable cycle times. Since TwinCAT does not provide a base time that allows for a cycle time of
exactly 740µs, the next lower possible value, 66.6µs× 11 = 732.6µs, has been used. This impli-
cates that a lower number of data tuples needs to be transferred at most per packet; specifically
99 instead of 100. The theoretical impact on efficiency due to the 0.28% reduced utilization of
each sent frame is negligible.

Multiplexing

There are three data structures with different requirements to their respective update intervals
and payload sizes used within the application (c.f. Table 4.1). The actual implementation of these
data structures in C can be found in Appendix C.

The required cycle time gives the time in which the application requirements demand them to
be updated; the multiplexing cycle time is their actual update interval achieved within the given
conditions to be considered. It is calculated by multiplying the number of chunks the data
structure is split into by the multiplexing base time. The multiplexing base time in this case is
the underlying cycle time of the fieldbus system, 732.6µs.
The size of the chunks the data structure is split into is calculated as the size of the data structure
divided by the number of frames sent within the required update interval:

bytes per chunk =

bytes total
⌊

required update interval
base cycle time

⌋

The number of chunks a data structure is split into is then simply the size of the structure divided
by the chunk size.

Direction Name
Bytes
Total

Bytes/
Chunk

No. of
Chunks

Muxing
Cycle Time

Required
Cycle Time

S→M Slave Status Data 14 1 14 10.36ms 26.66ms

M→S Control Data A 82 2 41 30.34ms 53.33ms

M→S Control Data B 24 12 2 1.48ms 1.629ms

Table 4.1: Data Structures Updated via Multiplexed Transmissions

As can be seen from the difference between required cycle time and multiplexing cycle time, the
data is updated more often than necessary due to the dependence on the underlying base cycle
time, which can have a negative impact on bandwidth utilization. However, not having the extra
Ethernet framing overhead can help to conserve the bandwidth.

The following calculations give an overview about the different bandwidth utilizations with mul-
tiple cycle times on one hand and multiplexing on the other. There can be, however, additional
overhead ensuing from additional synchronization frames being required by using multiple cycle
times or from additional Ethernet headers being required since the cyclic payload extends to
another frame.

48

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Multiplexing Implementation

Both sender and receiver know the overall size, the bytes per chunk, and the number of chunks. An
8 bit unsigned integer is used as mux selector for each of the three data structures. This mux se-
lector, however, does not only go from 1 to number of chunks but from 1 to number of chunks×
⌊255/number of chunks⌋. Therefore, if a number of frames are lost, it is less likely that the mux se-
lector before and after the loss seamlessly fit together, providing improved application-side error
detection. The receiving side knows, which mux selector it expects next; if an unexpected value
is received instead, the data received during the current multiplexing round is regarded as invalid
and the next expected mux selector is set to the mux selector for the first chunk of the next
multiplexing round. E.g., if number of chunks = 4 and the mux selector currently received
is 15 instead of 10, the already received first chunk of the 4 making up the data structure will
be discarded, as will be the currently received chunk and all other chunks up to mux selector
17 which is the first chunk of the next version of the data structure. When the last chunk of
a structure has been received successfully, the data is copied from the reassembly buffer to the
structure representing the latest valid version of the data then used by the application.

4.1.5 Master Application

The EtherCAT master application is implemented as Cyclic IO Module in TwinCAT, written in
C++. This module is compiled as Windows driver and instantiated for every slave configured to
be connected to the master. The whole application functionality is contained in the CycleUpdate
method of the C++ class, which is called cyclically, synchronous to the EtherCAT cycle time.
This means, however, that processing in this CycleUpdate method is limited to operations that
take less time than the configured cycle time. For the final application, which should also be able
to process data from multiple slaves and from more than one cycle efficiently, additional C++
modules running in real-time context can be added whose processing functions are triggered on
demand by the processing functions instead of by the cycle time.

In the next subsections, the basic TwinCAT settings pertinent to the application’s implementation
will be listed; then, the actual implementation of the CycleUpdate function along with the
considerations towards error detection and debugging will be discussed.

4.1.5.1 TwinCAT Settings

There were several TwinCAT versions used during development; the latest was 3.1.4020.14 which
also provided a large improvement in overall stability. The different versions led to no differences
in the applied settings, the default settings were used when no configuration change is explicitly
mentioned.

Core Isolation and Base Time

With Core Isolation enabled, Windows does not use the isolated cores so they can be exclusively
used by TwinCAT. Enabling core isolation was a key element towards the master running more
stable. It is done by adjusting the number of cores assigned to Windows and TwinCAT, respec-
tively, in the settings dialog under the “System”⇒“Real-Time” node in the project tree. For this
project, only one core was used for all 12 instances of the cyclic IO module. Also configurable
there is the base time reference for tasks using this CPU core which was set to 66.6µs.

49

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Cyclic Task Setup and C++ Module Configuration

The cycle time is in TwinCAT connected to a specific task that the synchronization is coupled
with. In this project, since a C++ Cyclic IO Module is used, a TwinCAT Task was created under
the node “System”⇒“Tasks” in the project tree. This task was configured to use 11 cycle ticks,
which equates to the previously discussed cycle time of 732.6µs.

The C++ Module is created by creating a new “TwinCAT Driver Project” with the “TwinCAT
Module Class with Cyclic IO” under the node “C++” in the project tree. After creating this
module, its inputs and outputs have to be defined by editing the <modulename>.tmc file within
the driver project sub-directory. The defined inputs and outputs are available in the C++ module
class as auto-generated member variables.
Instances of the created C++ module can be added to the node “System”⇒“Tasks”⇒“TcCOM
Objects” node; the inputs and outputs of the instantiated modules can then be connected via
point-and-click with the inputs and outputs of the recognized EtherCAT devices listed under the
node “I/O”⇒“Devices”⇒“<EtherCAT Adapter Name>” in the project tree.

In the “Parameter (Init)” tab of the individual module instances preference pane, when “Show
hidden parameters” is checked, one can set the maximum log level of the module to limit output;
for debugging, it has been set to “tlAlways”.

As already mentioned, EtherCAT supports two different modes of synchronization: SM synchro-
nization and Distributed Clock (DC) synchronization; the first one is simpler and the default
in TwinCAT, not requiring any configuration; the latter provides more precise synchronization,
with the synchronicity of the real-time applications running on the slaves not being dependent
on the actual send times of the cyclic data frames issued by the master. Thus, preferably, the
application should be able to be used in DC mode.

To configure DC synchronization, in the “DC” tab of each of the slave devices’ settings panes,
“DC mode” has to be selected from the drop-down menu; at least for the first EtherCAT device
in the line, the check-box “Use as potential reference clock” has to be checked. “SYNC0” should
be enabled, with the sync unit cycle time set to “×1” and the shift time set to 0. “SYNC1”
should be left disabled. In the advanced EtherCAT settings of the master’s EtherCAT adapter,
“automatic DC mode selection” can be used; the SYNC shift time is set to 40%.

Since the first version of the EtherCAT slave stack for the XMC4800 did not support DC syn-
chronization, SM mode was also used during development. Also, DC mode did not work for more
than 6 slaves in the aforementioned configuration but required an additional offset of +1/2 of the
cycle time for the SYNC0 event for slaves number 7 to 12 in the line; this was discovered when
analyzing the errors encountered as discussed in Subsection 5.2.2.3.

4.1.5.2 Implementation of CycleUpdate

This function within the otherwise auto-generated C++ driver project implements the actual
application logic processing the data from the connected EtherCAT devices.

Instance variables have been added to the module class definition for storing the current output
buffers for the two outgoing multiplexed connections and the reassembly buffer for the one in-
coming multiplexed connection as well as related helper variables like the next expected/due mux
sequence numbers and error counters.

50

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

The function itself first services the two multiplexed outgoing connections; the code for both is
essentially the same: First, the current mux sequence number is calculated from the one saved to
the class member variable; usually, it just has to be incremented, but once incrementing it would
make it larger than the aforementioned maximum number of chunks× ⌊255/number of chunks⌋, it
is reset to 1.

The number of the current chunk to be sent is derived from the current sequence number. If the
chunk to be sent is the first one, new data is generated before actually copying data to the output.
The byte array used as sending buffer for the respective mux connection is populated byte by
byte, using the last mux sequence number of the current set as starting point and incrementing
this value for each byte of the array. This way, the recipient can easily and without any additional
information use the received mux sequence number at the end of each mux cycle to verify that
the received and reassembled byte array is consistent.
Then, the respective chunk is copied from the send buffer to the output variable.

The slave keeps track of how often it received unexpected sequence numbers as well as how often
it detected inconsistent data in the multiplexed structure after reassembly. These two counters
as well as the currently expected and received sequence numbers are sent to the master for both
multiplexed connections in a portion of the knock sensor data arrays, which are not used by this
version of the prototype. In case the counters changed or the expected and received mux selector
values do not match, the master application logs an error, since the slaves lack appropriate display
options.

After that, the multiplexed transmission from slave to master is handled. First it is checked
whether the received mux selector matches with the expected one, which is calculated from the
last one received. In case they do not match, the next mux selector marking the start of a new
mux cycle is calculated from the received one and set to be the next expected one. This way,
all further data received in between is discarded as invalid because of its not matching with the
expected one. This rules out the case of one invalid mux selector in the midst of valid ones leading
to a corrupted frame being accepted because of the sequence numbers after the invalid one being
correct again.

In case the sequence number matches the expected one, the correct place in the reassembly buffer
is derived from the sequence number and the chunk is copied there from the input variable. When
the last chunk has been inserted into the reassembly buffer, the whole byte array is verified by
iterating over the array, comparing the first byte with the received mux selector, incrementing
this comparison value for each further byte.

Separate counters exist for sequence errors and for data errors; when they are incremented, log
entries are printed onto the console.

At last, the received angle and pressure data values are checked for consistency. The last angle
received is stored within a member variable, thus the next expected angle is known; the pressure
data is generated by adding 2 and 4 to each consecutive angle increment, so this data can also
be checked for correctness easily.

As for the multiplexed data exchanges, both sequence and data errors are counted and logged.
Two other counters also keep track of the number of successfully transferred, correct packages
as well as packages containing unexpected values are logged. Once every 10000 received packets,
these stats are logged to the console whether errors occurred or not.

51

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

4.1.6 Slave Application

As already mentioned, the slave application was first developed on an EL9800 EtherCAT evalu-
ation board as only slave connected to the master. When this method hit its limitations, work
was continued on 12 XMC4800 Infineon EtherCAT Kits.

The slave application is in basic functionality equivalent to the master application. It does receive
two multiplexed data structures in a multiplexed fashion while submitting only one; also, due to
the lack of appropriate output facilities, it just sends back its error counters to the master instead
of displaying them on its own.

An additional feature of the slave application is the deliberate generation of different kinds of
errors:

– the first generated pressure data value for the first cylinder is increased by 1
– the mux selector for the multiplexed slave status data is increased by 1
– the data value for the multiplexed slave status data is increased by 1

Due to the XMC4800 board having only two input buttons, the first kind of error is generated
when Switch 1 is pressed, the second when Switch 2 is pressed, and the third, when Switch 2 is
pressed while Switch 1 is being held down. Errors are generated only once for each button press,
at the positive edge.

4.1.7 Notable Caveats

As already mentioned before, the transition from the EL9800 board as development platform was
partially warranted by the insufficient performance of the PIC24H microcontroller. This problem
surfaced by missing and corrupted packets at the master when using the planned cycle time of
732.6µs; at slower cycle times however, the application performed as intended. This is described
in more detail in Subsection 5.2.2.1.

Another problem that was first attributed to a programming error showed by consistently cor-
rupted data being received by the master: it turned out that before generating the slave stack
code, in the SSC tool, the values for MAX PD INPUT SIZE and MAX PD OUTPUT SIZE had to be
raised to sufficiently high limits.

When enabling the distributed clock synchronization for the application running on the EL9800
board, another interesting behavior showed: from time to time, the same data seemed to arrive
about 3 times, but the packet after the repeated ones matched with the expected content for the
respective nth packet after the repeated one.
So, for example, a series of packets containing only one counter value incremented with each
packet, would arrive at the master with the values 1, 2, 3, 3, 3, 3, 7, 8,. . . . With the help of
an article in the EtherCAT developers’ forum, it was discovered that this was a problem caused
by an invalid SPI access; SPI is used to connect the EtherCAT ASIC to the microcontroller on
the E9800 development board. Explicitly disabling SPI at the beginning of the interrupt service
routine for the SYNC0 interrupt fixed this problem.

52

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

4.2 TTEthernet Prototype

TTEthernet was chosen as alternative to the relatively similar 100Mbps Ethernet-based fieldbus
systems. Being able to operate in Gigabit-mode as well, TTEthernet was certain to provide
enough bandwidth for future extensions; also it is the only protocol providing deterministic
scheduling before any implementation attempt, so the actual network utilization can be deter-
mined already at the planning stage.

The first TTEthernet prototype was a purely PC-based solution which greatly facilitated debug-
ging and concentrating on the application logic. Working closely with TTTech, the company
helped instantly when one of the borrowed PCIe-cards was not working as expected; the card
turned out only to be missing its firmware.

4.2.1 Used Hard- and Software

There is not yet a wide variety of hardware available for TTEthernet; deciding on the hardware
to be used for the prototype thus was fairly straightforward.

For the master, which is supposed to be PC-based, running a real-time operating system even
for the finalized product, the TTE Dual-Port PCIe-Card was chosen. It comes with drivers for
Linux compatible with the kernels from version 2.6 to 4.0 patched with the RTLinux real-time
patch.

For the slaves, the TTE Safe Controller Board was initially planned on being used. However,
TTTech recommended using the same PCIe-Card used for the master as well for the slave pro-
totypes due to the easier setup and programming. Using the same hardware for master and
slave provided the convenience of being able to swap the roles of the PCs acting as master and
slave to easier triangulate whether failures were the result of hardware malfunctions and whether
performance-problems are tied to a specific PC or Linux-setup or a problem of the master’s or
slave’s code itself.

The FPGA-IP-core for TTEthernet is currently available in a setup where the actual network
application runs on an embedded Linux-system with the same driver interface as the PCIe-card;
therefore the slave application, though developed on a PC-based system, can be re-used later
when moving to an FPGA-based hardware solution.

Since the standard topology of TTEthernet is the switched star topology – at the time of imple-
menting the first prototype, daisy-chained devices were not yet available – a switch is required as
well. The Chronos 24-port TTEthernet switch has up to 6 ports configurable as Gigabit-ports,
the remaining 18 ports are 100Mbps-only. However, since only the connection from switch to
master might require more than 100Mbps bandwidth, this is sufficient for the task at hand.

There is no special software required to run a TTEthernet-based real-time network besides the
drivers; however, an Eclipse-based editor is used as graphical front-end for editing network de-
scription files and the network scheduler TTE-Plan which generates the network configuration
as well as for TTE-Build which creates device-specific headers and configuration files used in the
respective end systems to enforce synchronized communications.

53

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

4.2.2 General Remarks about the Test Application

The programs running on master and slave(s) are both implemented in ANSI-C and share their
data structure definitions, function library, and basic functional principle with each other. Both
are implemented as multithreaded native RTLinux x86 64 applications using the pthread library.
The Linux machines both run Debian 8 with sysV (not systemd) as init system and every service
except SSH has been disabled to minimize impact on real-time behavior of the demo application.

Basically, both the master and slave applications generate non-random data which can be known
by the respective receiver beforehand; therefore lost or corrupted packets can be diagnosed by
the test application without requiring an alternate path.

Both sides send and receive real-time data, though with different periodicity, size, and meaning.
The configuration data sent by the master at two different cycle times are rather small state
messages, while the data generated by the slaves are relatively large, event-based messages.
These distinctions are important regarding how messages are treated by the recipient and how
both sender and recipient treat the loss or corruption of messages. A new state message just
overwrites the current state, so in case one is lost, the error is limited to the time interval in
which the recipient’s data is not current and it is corrected when the next message arrives.
Event-based messages on the other hand show a specific property at a specific time; a newer
message does not replace an older one, so in case of loss or corruption they would have to be sent
again or the loss of data has to be dealt otherwise by the recipient.

The configuration data sent by the master to the slaves is a good example of state messages,
while the pressure sensor data are, though also sent at specific times, event-based messages.
Comparable to logging messages, one missed message leaves a “hole” in the recipient’s view of
what has been happening on the sender.

This test application recognizes lost messages based on the loss of continuity of the received
data; this is logged as error. Retransmissions of data are not desirable due to the indeterminism
they introduce regarding used bandwidth, data latency, and processing time. Earlier detection of
missed packets and improved handling could benefit the overall error resilience of the application.
However the way to implement this detection mechanism heavily depends on the way changes
proposed after concluding initial development are implemented; this, in turn, depends on the
hardware a more production-ready prototype would be developed on (c.f. Section 6.2).

4.2.3 Network Structure and Schedule

As described in more detail in Subsection 2.2.3, at the time of implementing the first prototype,
TTEthernet only works in a switched star topology in which a special TTEthernet switch acts
as enforcer of the scheduled hard real-time transmissions.

Therefore, all up to 12 slaves are connected to the same switch as the master; since the used
Chronos switch had only 6 Gigabit-ports, the master is connected to one of those, while the
slaves use 100Mbps ports as shown in Figure 4.2.

For clock synchronization, the switch is set up to act as compression master, while the master is
configured as synchronization master; the slaves are sync clients.

54

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Figure 4.2: Network Setup of the TTEthernet Prototype

Network Cycle Times

The TTEthernet schedule contains 3 different periods which in functionality roughly match the
cycle time(s) in classic fieldbus systems:

– P DATA – 740µs: this is the smallest, and thus the base of the system. It matches the period
of pressure data values generated at maximum rotational speed multiplied by 100 rounded
down to whole microseconds and is the period used by the virtual links from each slave to
the master (vl sln pdata) to transmit data from the pressure sensors.

– P PERFIRE – 1480µs: being twice the P DATA period, this period is used by the virtual
link from the master to every slave (vl master perfire) to transmit control data required
to arrive at the slaves before each cylinder fires, which happens roughly every 1.6ms at
maximum rotational speed.

– P PERREV – 26640µs: at 36 times the base period of 740µs, this period matches roughly
the time one rotation takes at full rotational speed. It is used by the virtual links the
slaves transmit their status data on which needs to be updated within one engine cycle
(≈ 26.6ms) to all slaves (vl sln slstate).

– P PERMCYC – 53280µs: at 72 times the base period of 740µs, this period matches roughly
the time one machine cycle, i.e. two rotations at full rotational speed. It is used by the
virtual link on which the master transmits configuration data which needs to be updated
within one engine cycle (≈ 53.3ms) to all slaves (vl master perrev).

The integration cycle duration, i.e. the re-synchronization interval, is set to twice the base pe-
riod of the system, 1480µs. The system has been tested with the integration cycle set to 740µs
as well, but since using double the interval did not have any noticeable negative effects on the
synchronization performance or accuracy, the longer synchronization interval has been chosen to
conserve bandwidth. Also, this setting allows the network to be scheduled without any warning;
for the shorter integration cycle setting, the scheduler warns that this interval is shorter than the
compression master’s integration timeout. This warning however does not have any impact on
the function of the application.
The cluster cycle coincides with the longest multiple of the base period, P PERMCYC, and is there-
fore 53280µs.

55

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Virtual Links

Virtual links are logical connections from one sender to one or multiple recipients; every virtual
link allows a specified amount of data to be transmitted with a configurable periodicity.
In this setup, there exist a total of 26 virtual links:

– vl master ctrl a at periodicity P PERMCYC [12× 82B = 984B]
Configuration data from master to all slaves which has to be updated each engine cycle is
sent via this link from the master to all slaves. The data for configuring the two cylinders
each of the up to 12 slaves is contained in an array of the previously defined structure;
every slave receives the same packet and reads only the part of the array it is concerned
with. This way of multiplexing configuration data has been chosen to save Ethernet framing
overhead. The actual data structures used are listed in Appendix C.1.

– vl master ctrl b at periodicity P PERFIRE [12× 24B = 288B]
The only difference to the virtual link described before is the actual data and its periodicity;
apart from that, it also contains an array of 12 configuration data elements each with data
for one slave with two cylinders. The actual data structures used are listed in Appendix C.2.

– vl sln pdata [n : 01 . . . 12] at periodicity P DATA [556B]
These 12 virtual links are all the same apart from their respective originator; each slave
system sends on its own virtual link. Based on the virtual link ID, the master can determine
which system each packet comes from. The sent data includes process data like pressure
management- and knocking sensor data. The actual data structures used are listed in
Appendix C.3.

– vl sln slstate [n : 01 . . . 12] at periodicity P PERREV [14B]
These 12 virtual links are in basic functionality the same as the ones described in the
previous list item. This virtual link is used to transmit status data of the slave that does
not require updates as frequently as the process data itself. Since the 14B payload has
to be padded to 46B to comply with the Ethernet standard, the inefficiency is apparent.
An alternative would be to multiplex the 14B of data for each slave to the respective
vl sln pdata virtual link packets by adding a mux data field and a mux selector of 1B
each; this would lower the bandwidth utilization from 6.4468Mbps to 6.4432Mbps in this
case. Since however the support for multiple virtual links with different cycle times was
supposed to be tested with this prototype, the approach of using multiple virtual links was
chosen in favor of multiplexing. The actual data structures used are listed in Appendix C.4.

Network Utilization

The network utilization overview is calculated by the TTEthernet tools when creating the network
schedule. It uses the configured periods and payloads per packet for each virtual link to plan
at which point in time which end system is allowed to send data, how long the switching- and
line delays are, and at what point in time switch and recipients have to accept a packet on the
respective virtual link.

The physical link between master and switch is naturally the one with the most data passing
through it; therefore it is configured as Gigabit link; the physical links from the switch to the
slave systems are only 100Mbps links, but since only the traffic to and from the specific end
system passes them, this is also more than sufficient. The configured virtual links, along with
their sending rates, payload sizes, and respective bandwidth usage are listed in Table 4.2 for each
physical link.

56

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Physical
Link

Virtual Link
Frame
Size [B]

Frame
Duration [ns]

Period
[µs]

Bandwidth
Utilization [%]

master p01

→
sw0 p03

[1000Mbps]

3× PCF 64 1072 1480 0.0346
vl master ctrl a 1002 8176 53280 0.0153
vl master ctrl b 306 2608 1480 0.1762

Σ: 0.2953

sw0 p04+n

→
sln p01

[100Mbps]

PCF 64 10720 1480 0.3459
vl master ctrl a 1002 81760 53280 0.1535
vl master ctrl b 306 26080 1480 1.7622

Σ: 2.2616

sln p01

→ sw0 p04+n

[100Mbps]

vl sln pdata 574 47520 740 6.4216
vl sln slstate 64 6720 26640 0.0252

Σ: 6.4468

sw0 p03

→
master p01

[1000Mbps]

PCF 64 1072 1480 0.0346
12× vl sln pdata 574 4752 740 0.6422
12× vl sln slstate 64 672 26640 0.0025

Σ: 7.7708

Table 4.2: TTEthernet Bandwidth Utilization

For debugging purposes, an additional device was connected to one of the switch’s Gigabit ports
which was configured to receive all 26 virtual links as well as PCFs. However, no TTE end system
was connected to this port but a standard workstation running Linux and Wireshark to capture
any packet sent by any of the connected end systems. This way, all communications could be
monitored without any impact on the real-time application running on the end systems.

4.2.4 Master Application

The master application’s functionality is distributed onto the following threads which are created,
initialized, and cleaned up after by the main function, implemented in their respective handler
functions:

– thread rxhandler – the master application receives pressure sensor data from up to 12
slaves via the respective virtual link vl sln pdata; also, slave state data from each slave
via the respective virtual link vl sln slstate is received in this thread. Usually, the
TTEthernet stack provides a separate receive buffer for each virtual link, so one could have
separate handlers listen for incoming packets on each virtual link separately. However, due
to limitations of the Linux platform driver, there is only one receive buffer for every incoming
virtual link. This thread thus handles all incoming packets and identifies the virtual link
it belongs to by checking the destination MAC address. The virtual link ID directly maps
to the slave the packet originates from and based on this mapping, the received process
data packets are forwarded to the thread processing the data for the respective slave; slave
state data packets carry only three integer values that have to be checked for this prototype
application and are thus checked directly in this thread.

57

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

– thread sldatahandler – this thread handler is initialized 12 times, once for each possibly
existing slave. In the real application, this handler should check the angles of the contained
angle-pressure-value pairs and, depending on the respective angle value, trigger starting
– and if necessary killing – algorithm calculation worker threads. For this first prototype
however, this thread handler is just a stub that checks the arriving angle- and pressure
values for consistency and logs unexpected or missing values to the console or a file.

– thread txhandler permcyc – this thread handler periodically sends data via the vl -

master perfire virtual link to all slaves. The data is generated by incrementing and
decrementing some of the structure members of every array element in a way predictable
for the receiving slave. The recipient knows how much a value must change each packet he
receives and, if the offset is different, can deduce how many packages he must have missed.

– thread txhandler perfire – this thread handler is identical in function to thread -

txhandler permcyc; only the structure members changed for each array element are dif-
ferent, along with the periodicity of transmissions.

Function main

This function only initializes signal handlers to take care of SIGINT, SIGTERM, and other signals;
the handling function just sets a global flag which is checked regularly by every running thread
and, if found set, makes the respective thread clean up its open resources and handles, e.g.,
network sockets and then return.
Apart from that, the main function initializes and configures the TTEthernet end system driver
and creates 12 slave data handler threads, waits for them to be fully initialized, and then starts,
in that order, the rxhandler, txhandler permcyc, and txhandler perfire threads.
After that it just waits for all these threads to finish, shutting down the end system driver and
returning thereafter.

Function thread rxhandler

This function implements the functionality for the aforementioned rxhandler thread; it initializes
a TTE ESDMA end system handle for receiving packages. The functions to receive data via the
end system Direct Memory Access (DMA) extensions keep checking for newly received frames
for a given amount of time with a configurable retry-interval, after that, they return. This can
be used to issue warnings when no frames have been received for an unexpectedly long interval
without extra callbacks or timers being necessary.

Note that, as previously mentioned, there exists only one receive buffer for all virtual links,
thus for actually receiving data, there has been only one MAC SAP input port configured in the
TTEthernet tools instead of multiple COM MAC input ports. The difference between the two is that
with SAP input ports, the end system driver provides access to the MAC header of the received
Ethernet frame, which, for COM ports, it does not [TTT15, Subsection 3.4.2].
To determine from which slave a message has been received, the receive function thus reads the
destination MAC address from the header structure of the received packet and deduces the virtual
link ID and thus the sender slave number from it.

At the time of implementation, there seems to be a bug in the provided helper functions for parsing
the MAC header structure which consumes 2 bytes more than it actually should, thus cutting into
the Ethernet payload. Therefore, the provided function to receive the header separately before

58

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

copying the payload data is not called, but tte esdma receive() just reads 14B more than the
actual message length which leads to the MAC header being copied along with the actual data
into the allocated receive buffer. Byte 5 and 6 is then read for the virtual link ID and the actual
data, starting from byte 15, is copied to respective slave’s part of the global sldatahandler pdata

array in case the received virtual link ID indicates a vl sln pdata frame.

Then, the global flag flag sldatahandler wakeup is set and a pthread cond t variable for
the respective slave is signaled which makes the data processing thread for the respective slave
resume its operations. In case the virtual link ID indicates a vl sln slstate frame, three of
the message struct’s members are checked to match with the expected values considering the
previously received set of values.

The global flag signaling all thread functions to clean up and return is checked right after setting
up the endpoint listener and then right at the start of the run loop.
All access to global variables is secured by mutex locks or explicit memory barriers.

Function thread sldatahandler

This thread function is used by the 12 pthread instances initialized for each slave; the slave
number each instance is handling is passed as argument to the thread.
This thread function only initializes variables it uses before entering its run loop. After entering
the run loop, it waits for its wakeup-mutex which is unlocked from the rxhandler thread every
time it has received a new process data frame for the respective slave and copied it to the global
array of pressure data values.

After being woken up, the thread resets its wake-up flag, locks its part of the global data array,
copies the latest message to a local variable, and unlocks the data array again. The data is copied
before working on it in order to shorten lock times of the shared single buffer.
The received packet contains the number of tuples sent within and the data itself; since data
values are incremented constantly and the master knows, which tuple has been received last, it
can check both the continuity of values within and beyond the limits of one packet. Errors are
counted and logged and, depending on how the program is compiled, either all erroneous data or
a summary is logged.

The global flag signaling all thread functions to clean up and return is checked right after entering
the run loop and after being woken up.

Function thread txhandler permcyc

This function periodically transmits generated test data via the vl master permcyc virtual link.
Upon being started up, this function first initializes a t m2s ctrl a data structure, initializes a
TTE end system handler and enters its run loop. At the beginning of this loop, the current time
is read and the prepared structure is sent via a MAC COM output port. After that, some of the
prepared structure’s members are altered by incrementing and decrementing some of its values
for each slave, so that upon receiving a new packet, each slave can deduce from the data alone
already whether and how many packets it has missed.

There is also the option to compile the program with the flag WITH ERROR SIMULATION; in this
case, this data generation randomly increments one of the counters more than it should and logs

59

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

this deliberately created error, so one can later compare the number of created errors with the
number of detected errors on the slaves to check whether all of them have been detected.

The next scheduled run time of the loop is calculated by adding P PERMCYC to the previous run
time; after the work for the current loop iteration is done, it is asserted that the loop time
has not been exceeded and the remaining time to the next scheduled run time is passed with
clock nanosleep().

The global flag signaling all thread functions to clean up and return is checked right before
entering the run loop and, within the run after sending the packet. Before returning, the function
closes its TTE end system handle and prints the number of sent frames.

Function thread txhandler perfire

This function differs from thread txhandler permcyc only in the transmitted data, its period-
icity, and the virtual link it sends data over; otherwise, both functions are the same.

4.2.5 Slave Application

The slave application is in both structure and basic function similar to the master application. It
receives data on the two virtual links vl master perfire and vl master perrev, while it sends
data on vl sln pdata and vl sln slstate.

The same limitation about having only one receive buffer for all virtual links applies to the slave
application as well; however, checking the received data is much simpler and thus takes much
less time than checking all the data the master receives from the slaves. Thus, all checking is
done right within the thread receiving the data instead of moving that functionality in separate
threads like it is done in the master application with the thread sldatahandler function.

As already mentioned, the data received by the slaves from the master is configuration data;
therefore, a newer packet just replaces the old information and thus it is not necessary to keep
older data for further processing.

Another difference to the master application is how the transmitted data is generated. For the
very first version of the prototype, data was generated in the sending thread itself; by request
of Klaus Zöggeler, the prototype should try to mimic the functional principle of his previously
created PowerLINK prototype which uses a double buffer that is read when the next process data
frame is to be sent. Thus, the data is generated in a separate thread and whenever it is time to
send a new packet, the data transmission thread just fetches the latest data from the shared data
array after switching the buffer the generator thread shall write data to.

However it should be noted that generating each value on its own in C probably might not
match the inner workings of the finalized product version anyways since data acquisition and
preprocessing might be handled by the FPGA part. The double buffer would then be moved to
the FPGA logic and reading from it would be done within the sending thread itself, leading back
to the simpler version.

The slave application allows the rotational speed in rpm to be specified on the launch command
line as integer from 50 to 2250; depending on this value, the data generation thread adjusts the
period in which it adds new values to the global data array.

60

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Analogous to the master application, the slave application is structured into the following thread
handler functions:

– thread rxhandler – the slave application receives configuration properties on two virtual
links, vl master permcyc and vl master perfire, with different periodicity, from the mas-
ter. Since the received data is relatively small and the received values can be checked rela-
tively quickly for matching the expected values, these checks are performed as soon as the
values are received right in this thread itself. In the production version, this thread would
only store the configuration data to the respective, globally shared structure, depending on
the virtual link it was received from.

– thread datagen – this thread, decoupled from actually doing anything with the data, just
generates values and stores them into a global array variable which is read by the sending
thread periodically.

– thread txhandler pdata – this thread periodically sends the generated pressure data val-
ues to the master, using the slave’s respective virtual link vl sln pdata.

– thread txhandler state – this thread periodically sends slave state data messages using
the slave’s respective virtual link vl sln slstate and generates new values each period.
In functionality, this thread works exactly like the threads thread txhandler permcyc and
thread txhandler perfire of the master application.

Function main

As for the master application, this function only initializes signal handlers which operate the same
way as for the master application; apart from that, the main function initializes and configures
the TTE end system driver and creates the four previously mentioned threads which actually
receive, generate, and transmit data and then waits for all these threads to finish before shutting
down the end system driver and returning.

Function thread rxhandler

This function implements the functionality for the aforementioned rxhandler thread; it initializes
a TTE end system handle for receiving packages on the two virtual links the master broadcasts
data to all slaves and enters its run loop which waits for new packets being received, checks
whether received values match its expectations and calculates the values it expects next.

The slave application does not use the ESDMA-functions the TTEthernet driver provides since
DMA is not available on all platforms the code has to work on, specifically on the Zync-Board,
on which a version of the TTEthernet IP-core has been tested. A wrapper function analogous
to the ESDMA wrapper function used in the master application is used which blocks execution
for a given time while periodically checking for reception of a new frame; when no frames are
received at all, warnings can be accordingly issued. Since the number of retries and the retry
interval is chosen to give an only slightly larger time interval than new packets are expected on
the two virtual links data is received on, it allows to easily detect omitted messages from within
the receive thread itself.

The global flag signaling all thread functions to clean up and return is checked at the beginning
of the run loop and in case of the ttex recv msg mac sap function returning without receiving
data. The second case prevents the thread – and thus the application – from hanging in case no
data is received.

61

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Function thread datagen

This thread function periodically generates new pressure data values that are added to the respec-
tive half of the double buffer used to exchange data with the txhandler thread; if the application
is compiled with the WITH ERROR SIMULATION define, errors are inserted into the sent data as well
at randomized times in order to test the error detection facilities of the recipient. The command
line argument of the slave application specifying the simulated rotational speed is passed through
to this thread; from it, the wait time necessary between generating two data values between each
iteration of the run loop is calculated.

The number of actually calculated values per one loop iteration can be varied, due to the obvious
performance impact of locking and unlocking two concurrently accessed variables every 7.4µs in
case the maximum rotational speed is simulated and only one value tuple would be generated
per loop iteration. Also, timing such short intervals is even using RTLinux not easily achiev-
able. Another problem are the very small sleep times which would be required but cannot be
efficiently and reliably kept; trying to measure time intervals would fail due to the variance in
the measurement time overhead.

However, generating multiple values might not impact the overall simulation results this prototype
gives too much, since in the final product is likely not to do data acquisition value-by-value
in a separate thread but to either copy the data in one chunk as it is sent from a memory
chunk shared with the FPGA or have data streamed in via DMA similar to a fifo; the currently
implemented approach is based on how Klaus Zöggeler initially implemented data sharing within
the FPGA code and thus only partially applicable anyways, as previously mentioned. This is
further discussed in Section 6.2.

Function thread txhandler pdata

This function periodically transmits the data generated by thread datagen via the vl sln -

pdata virtual link to the master. After initializing a TTE end system handle for transmitting
messages, the thread enters its run loop.

For data exchange between data generation thread and data transmission thread, a mutex-
protected double buffer is used along with an also mutex-protected buffer selector variable, which
stores which part of the double buffer is currently used for storing new data. The idea is that the
data generator thread always writes to the buffer given by this buffer selector variable; when the
transmission thread wants to send data, it locks, fetches, and toggles the buffer selector variable.
This makes the data generation thread write to the part of the buffer previously not used the next
time it wants to write data. The other part of the buffer, to which the data generation thread
previously wrote data to can then be copied by the transmission thread into the transmission
buffer. Each part of the double buffer is also protected by its own mutex.

Since appending values to the current write buffer by the data generation thread should not lock
the current write buffer for too long, the time the transmission thread has to wait for switching
buffers is bounded by the time of this write operation. Also, this is only relevant in case buffer
switching occurs, while lock holding times for the buffer selector are also fairly short and should
generally not lead to lock contention. To verify this, locking is first tried with pthread mutex-

trylock which does not block but returns instantly even if locking was not possible; if no lock
could be acquired, a call to the blocking pthread mutex lock is issued while the time before and
after acquiring the lock is stored, thus the contention time can be measured.

62

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Prototype Implementations

Note however that measuring anything within the program itself does induce at a performance
penalty and that, due to the problems described in the paragraph detailing the issues of time
measurement and clock sources in Linux in Subsection 5.3.1, these measurements can only serve as
hint towards possible issues but might also, in the worst case, introduce them. The overall execu-
tion time of each loop iteration is also measured to ensure it is below the cycle time of the virtual
link it is sending data on; in case this time is exceeded however, a warning is issued and the next
loop iteration start time is calculated as the last execution time plus the smallest integer multiple
of the cycle time. The remaining time up to this point is waited using clock nanosleep().

The global flag signaling all thread functions to clean up and return is checked at the beginning
of the run loop.

Function thread txhandler slstate

This function periodically transmits generated test data via the vl sln slstate virtual link.
The transmitted data structure is altered after each send event by incrementing and decrementing
several struct members; since the master knows of this behavior, it can compare the received data
with its set of expected values. In its technical implementation, this function is identical to the
master application’s functions thread txhandler permcyc and thread txhandler perfire.

4.2.6 Notable Caveats

Overall the documentation of the TTEthernet C programming interface is nicely done with small
snippets of code describing the use; however, examples with a small library of ready-to-use func-
tions wrapping the TTEthernet functions as has been created during the course of implementing
this prototype would have sped up development and made it more clear how to use certain
functions in context.

A notable caveat of the way the TTEthernet stack works is that sending uses one outgoing buffer
per access point, not per virtual link. This is also noted in the documentation, but should be
noted here as well since it has been overlooked at first and was hard to debug. The problem
caused two threads, both sending data independently from each other on two different virtual
links, to overwrite the send buffer prepared by the other thread. This lead to strangely altered
data from time to time being received. This problem has been fixed by implementing a simple
spinlock with in the sending wrapper function, effectively allowing only one caller after the other
actually accessing the output port.

The most notable, already mentioned limitation of the TTEthernet stack on this platform is that
there is only one receive queue buffer. Therefore, multiple virtual links are all received by one
thread via one input buffer. Instead of using multiple MAC SAP input ports which handle the MAC
header on their own and only present the actual Ethernet payload to the receiving application,
one common MAC SAP port has to be used. With this port type, the TTEthernet stack does not
do further processing of the MAC header of the incoming frame but passes it to the receiving
application along with the actual payload data. The receiving application then can parse the
header and determine the virtual link based on the recipient address.
As mentioned in the prototype description, there was a problem with the header extraction func-
tion tte es get hdr macsap port() which read beyond its supposed boundaries, thus causing
the first 2B of the actual payload to be missing (c.f. Subsection 5.3.2.1).

63

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

5 Results

The practical part of this project had mainly the goal of discerning whether the two systems
selected for further study and implementation would prove up to the requirements of the project.
However, a big part of the whole work was also selection of these systems, and in the following
section, a short recap of the resulting findings shall be given. Then, the specific results, encoun-
tered problems, and experiences with the two systems tested are discussed in their respective
sections.

The main question at hand for implementation of the prototypes was initially whether 100Mbps
Ethernet-based systems are at all feasible for implementation of a centralized motor control
system. Along with the high bandwidth requirement, the need to also process this high amount
of incoming data arises. This requirement for processing power is in case of the prototype mainly
on the slave side, which has to generate data; in the final product, this data generation would
be mainly done by FPGA logic outside the slave application only responsible for periodically
packaging and sending data. The master, receiving data from up to 12 slaves and having to
run partially rather computationally complex algorithms on it is in the final product in more
demand for processing power since in this prototype, it does only relatively little processing on
the received data.

Other criteria are the overall stability, the ease of application development and extension, and
possible future extensibility. Also, the commercial availability and pricing was a factor of concern
for the commissioning company, however, due to the overall limited options, these economical
considerations could only be observed partially.

5.1 Recap of the Prototype Systems Selection

EtherCAT has been chosen from the list of possibly suitable 100Mbps Ethernet-based systems as
the system providing the most flexible configuration options when regarding the main alternatives,
Sercos-III and SafetyNET-p RTFL and the most widespread industry adoption with an array of
suppliers for hard- and software-based implementations.

Sercos-III, while similar to EtherCAT at a high-level glance, is somewhat less flexible in terms
of the configurable cycle times and the amount of data that can be transferred within one com-
munication cycle from and to the master. This is due to the separation between frames carrying
data from the master to the slaves and vice-versa; per communication cycle, there may be up to
four of these frames each.

64

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

In EtherCAT, cyclic data may be packed into multiple Ethernet frames without regarding the
data’s direction; also the cycle time is for the most part freely selectable which allows to select it
more to suite the application’s requirements than the communication system.

SafetyNET-p RTFL is in principle rather similar to EtherCAT but neither the company origi-
nally marketing the system, Pilz GmbH1, nor the official user organization, SafetyNetwork In-
ternational2 lists any kind of FPGA IP-core in their product catalogs and requests about the
availability of specifications or products like the FPGA IP-core not listed on the website failed.

TTEthernet was initially not considered as one of the most viable options due to the limited
products currently available; however, when the already high bandwidth requirements were in-
creased during the planning phase, concerns about the feasibility of systems limited to 100Mbps
grew and thus it has been decided to build a TTEthernet prototype as well, since the option to
use 1Gbps Ethernet with it promises to allow for future extensibility in a way all systems limited
to 100Mbps will not.

Overall, both tested systems performed adequately; however, there are some caveats for each
system which have to be observed. For both systems there are issues which have to be attended
to before any of them can realistically be considered for use within a production environment.

In the following two sections, encountered problems are explained along with in some cases already
implemented solutions; possible alternative solutions are also discussed. In some cases solutions
came with their own problems, which is also highlighted.

5.2 EtherCAT Prototype

Overall, implementing a basic EtherCAT-based prototype was quite unproblematic; however,
when the requirements became more demanding, implementation of a more “fully featured”
prototype became more complicated. The final version of the prototype runs stable with 12 slaves
and both SM and DC synchronization. There were some problems encountered that required fine-
tuning of the master’s settings as well as settings within the Slave Stack Code Tool.
The EtherCAT technology group’s developer’s forum was rather helpful in some situations where
the documentation of more in-depth TwinCAT and Slave Stack Code Tool settings proved to be
insufficient to find solutions to specific problems.

It shall be noted that the final testing was done with Infineon XMC4800 slaves, which seemed to
be at the beginning only poorly supported with regards to the Slave Stack Code Tool and with
only a small sample application available, not supporting DC synchronization. During the course
of implementation and testing however, an update of the XMC4800 slave stack took care of this
issue.

In the following subsection, a short overview over the data logging done by the prototype ap-
plication is given; the subsections thereafter specific problems encountered and their respective
solutions are discussed.

1https://www.pilz.com/
2http://safety-network.org

65

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

5.2.1 Logged Data and Measurements

Since the prototype was implemented on a relatively high level beyond the actual hardware
in order to test the communication system relatively independent of the final implementation
platform as efficiently as possible, only very few data could actually be measured. The application
itself is designed to detect occurred errors by checking received data and to allow deducing the
origin of the erroneous behavior.

The messages being logged by the master application have already been discussed in the respective
subsection; they were very helpful in logically deducing the reasons of aforementioned problems
during slave development discussed in Subsection 4.1.7.

TwinCAT itself does log the number of cyclic and acyclic frames sent, the number of lost frames,
and the number of encountered receive and transmit errors in the “Online” tab of the master
device adapter pane (c.f. Figure 5.1).

Figure 5.1: TwinCAT – Online Master Adapter Statistics

Packet Logging with Wireshark

The actual frames sent by the EtherCAT master is largely implementation dependent. In Twin-
CAT, the real-time data frames submitted can be viewed in the “EtherCAT” tab in the master
device’s preference pane (c.f. Figure 5.2). However, e.g., the non-real-time mailbox service does
also require bandwidth to operate; this additional bandwidth is not listed in this listing but did
contribute significantly to encountered problems when testing the system with more than 6 slaves
(c.f. Subsection 5.2.2.2).

However, it shall be noted that Beckhoff states that capturing traffic this way instead of by using
a dedicated capturing device physically inserted into the line may lead to packages being missing
from the dump in case of insufficient performance of any hard- or software component employed
in the capturing process. Also, capturing frames directly on the same machine running the master
application is not guaranteed not to impact the real-time application’s performance.

66

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

Figure 5.2: TwinCAT – Online Master Adapter Statistics

Expected Output of Master- And Slave-Application

The expected output of the master application is shown in Listing 5.1; it shall be noted however,
that all log data listed has been adapted not to include redundant or otherwise unnecessary
information for better readability. Since there is no way to produce more than one byte output
on the slaves, debug information and status data is transmitted back to the master which produces
a warning in case a slave, e.g., reports a higher error count than the last time.

At startup, a number of errors is to be expected to be reported. These errors are a result of the
master starting up its C++ modules and setting the requested slave state to “operational” at
the same time; the time this state transition takes place on each slave however is depends on the
current state of the slave and varies slightly. Usually, the slaves are in free-run mode, operating
and generating data at their own internal cyclic rate or in the initialization state; thus, the slaves
produce output unsynchronized with the master in the beginning, also possibly resulting in an
offset.

Since one invalid mux sequence number results in subsequent warnings for every other received
data chunk until the next mux sequence is started, sometimes many warnings are issued in a
rather short burst. In this case, the logger logs an error and suspends further logging for a
short time, and reporting only the number of dropped messages. However, these artifacts of the
startup procedure settle after about a second and subsequently, no further warnings and errors
are expected to occur.

67

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

During normal operation, every 10000 cycles processed by a C++ module instance, a status
message with the total number of received frames, the number of process data errors, and the
number of errors related to multiplexing are logged. These error counters should not increase
during normal operation except a process data or multiplexing error is deliberately generated by
the slave.

Message 17:13:47 372 ms | ’TwinCAT System ’ (10000): TwinCAT System Restart initiated from AmsNetId: 192.168.1.242.1.1

port 32798.

Warning 17:13:47 312 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3510 , 3609, 3608, 3608)

Message 17:13:47 312 ms | Obj03: RX PDATA ERR errs: 1 (new: 1445; old: 1444); pkts_ok: 3078193; pkts_err: 1734;

Warning 17:13:47 312 ms | Obj08: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3879 , 3978, 3977, 3977)

Message 17:13:47 312 ms | Obj08: RX PDATA ERR errs: 1 (new: 1446; old: 1445); pkts_ok: 3078197; pkts_err: 1729;

Warning 17:13:47 312 ms | Obj02: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (6453 , 6552, 6551, 6551)

Message 17:13:47 312 ms | Obj02: RX PDATA ERR errs: 1 (new: 1444; old: 1443); pkts_ok: 3078199; pkts_err: 1725;

Warning 17:13:47 312 ms | Obj07: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4212 , 4311, 4310, 4310)

Message 17:13:47 312 ms | Obj07: RX PDATA ERR errs: 1 (new: 1443; old: 1442); pkts_ok: 3078196; pkts_err: 1727;

Warning 17:13:47 312 ms | Obj12: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (7128 , 27, 26, 26)

Message 17:13:47 312 ms | Obj12: RX PDATA ERR errs: 1 (new: 7493; old: 7492); pkts_ok: 3071827; pkts_err: 8095;

Warning 17:13:47 312 ms | Obj01: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (90, 189, 188, 188)

Message 17:13:47 312 ms | Obj01: RX PDATA ERR errs: 1 (new: 1438; old: 1437); pkts_ok: 3078195; pkts_err: 1725;

Warning 17:13:47 312 ms | Obj06: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4500 , 4599, 4598, 4598)

Message 17:13:47 312 ms | Obj06: RX PDATA ERR errs: 1 (new: 1439; old: 1438); pkts_ok: 3078191; pkts_err: 1728;

Warning 17:13:47 312 ms | Obj11: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (5985 , 6084, 6083, 6083)

Message 17:13:47 312 ms | Obj11: RX PDATA ERR errs: 1 (new: 7367; old: 7366); pkts_ok: 3072252; pkts_err: 7665;

Warning 17:13:47 312 ms | Obj05: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (6273 , 6372, 6371, 6371)

Message 17:13:47 312 ms | Obj05: RX PDATA ERR errs: 1 (new: 1437; old: 1436); pkts_ok: 3078187; pkts_err: 1730;

Warning 17:13:47 312 ms | Obj10: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (909, 1008, 1007, 1007)

Message 17:13:47 312 ms | Obj10: RX PDATA ERR errs: 1 (new: 1433; old: 1432); pkts_ok: 3078190; pkts_err: 1725;

Warning 17:13:47 312 ms | Obj04: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4221 , 4320, 4319, 4319)

Message 17:13:47 312 ms | Obj04: RX PDATA ERR errs: 1 (new: 1432; old: 1431); pkts_ok: 3078167; pkts_err: 1747;

Warning 17:13:47 312 ms | Obj09: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3402 , 3501, 3500, 3500)

Message 17:13:47 312 ms | Obj09: RX PDATA ERR errs: 1 (new: 1430; old: 1429); pkts_ok: 3078187; pkts_err: 1725;

Warning 17:13:47 313 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3510 , 3609, 3608, 3608)

Message 17:13:47 313 ms | Obj03: RX PDATA ERR errs: 1 (new: 1446; old: 1445); pkts_ok: 3078193; pkts_err: 1735;

Warning 17:13:47 313 ms | Obj08: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3879 , 3978, 3977, 3977)

Message 17:13:47 313 ms | Obj08: RX PDATA ERR errs: 1 (new: 1447; old: 1446); pkts_ok: 3078197; pkts_err: 1730;

Warning 17:13:47 313 ms | Obj02: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (6453 , 6552, 6551, 6551)

Message 17:13:47 313 ms | Obj02: RX PDATA ERR errs: 1 (new: 1445; old: 1444); pkts_ok: 3078199; pkts_err: 1726;

Warning 17:13:47 313 ms | Obj07: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4212 , 4311, 4310, 4310)

Message 17:13:47 313 ms | Obj07: RX PDATA ERR errs: 1 (new: 1444; old: 1443); pkts_ok: 3078196; pkts_err: 1728;

Error 17:13:47 315 ms | ’TCOM Server ’ (10): The logging of messages has been temporarily halted because too many

messages have been issued! This can lead to a loss of messages.

Message 17:13:47 475 ms | ’TwinCAT System ’ (10000): Saving configuration of COM server TcEventLogger !

Message 17:13:48 208 ms | ’TwinCAT System ’ (10000): Loading configuration of COM server TcEventLogger !

Message 17:13:48 209 ms | ’TwinCAT System ’ (10000): Initializing COM Server TcEventLogger !

Message 17:13:48 217 ms | ’TwinCAT System ’ (10000): TcIoEth Server started: TcIoEth.

Message 17:13:48 220 ms | ’TwinCAT System ’ (10000): TcRtsObjects Server started: TcRtsObjects.

Message 17:13:48 224 ms | ’TwinCAT System ’ (10000): TcIoECat Server started: TcIoECat.

Message 17:13:48 227 ms | ’TwinCAT System ’ (10000): TCIO Server started: TCIO.

Message 17:13:48 231 ms | ’TwinCAT System ’ (10000): TCDrvGEAppl01 Server started: TCDrvGEAppl01.

Message 17:13:48 240 ms | ’TwinCAT System ’ (10000): TCRTIME Server started: TCRTIME.

Message | ’TCRTIME ’ (200): CAT support detected: Intel(R) Core(TM)-i 4’th generation (Xeon)

Message 17:13:48 802 ms | ’TCOM Server ’ (10): The logging of messages is now enabled again , 24195 messages have been

dropped

Warning 17:13:48 802 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj03: RX PDATA ERR errs: 1 (new: 354; old: 353); pkts_ok: 0; pkts_err: 354;

Warning 17:13:48 802 ms | Obj08: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj08: RX PDATA ERR errs: 1 (new: 352; old: 351); pkts_ok: 0; pkts_err: 352;

Warning 17:13:48 802 ms | Obj02: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj02: RX PDATA ERR errs: 1 (new: 351; old: 350); pkts_ok: 0; pkts_err: 351;

Warning 17:13:48 802 ms | Obj07: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj07: RX PDATA ERR errs: 1 (new: 350; old: 349); pkts_ok: 0; pkts_err: 350;

Warning 17:13:48 802 ms | Obj12: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj12: RX PDATA ERR errs: 1 (new: 348; old: 347); pkts_ok: 0; pkts_err: 348;

Warning 17:13:48 802 ms | Obj01: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj01: RX PDATA ERR errs: 1 (new: 347; old: 346); pkts_ok: 0; pkts_err: 347;

Warning 17:13:48 802 ms | Obj06: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj06: RX PDATA ERR errs: 1 (new: 345; old: 344); pkts_ok: 0; pkts_err: 345;

Warning 17:13:48 802 ms | Obj11: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj11: RX PDATA ERR errs: 1 (new: 344; old: 343); pkts_ok: 0; pkts_err: 344;

Warning 17:13:48 802 ms | Obj05: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj05: RX PDATA ERR errs: 1 (new: 343; old: 342); pkts_ok: 0; pkts_err: 343;

Warning 17:13:48 802 ms | Obj10: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj10: RX PDATA ERR errs: 1 (new: 341; old: 340); pkts_ok: 0; pkts_err: 341;

Warning 17:13:48 802 ms | Obj04: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj04: RX PDATA ERR errs: 1 (new: 340; old: 339); pkts_ok: 0; pkts_err: 340;

Warning 17:13:48 802 ms | Obj09: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 802 ms | Obj09: RX PDATA ERR errs: 1 (new: 339; old: 338); pkts_ok: 0; pkts_err: 339;

Warning 17:13:48 803 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 803 ms | Obj03: RX PDATA ERR errs: 1 (new: 355; old: 354); pkts_ok: 0; pkts_err: 355;

Warning 17:13:48 803 ms | Obj08: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 803 ms | Obj08: RX PDATA ERR errs: 1 (new: 353; old: 352); pkts_ok: 0; pkts_err: 353;

Warning 17:13:48 803 ms | Obj02: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 803 ms | Obj02: RX PDATA ERR errs: 1 (new: 352; old: 351); pkts_ok: 0; pkts_err: 352;

Warning 17:13:48 803 ms | Obj07: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (0, 0, 0, 735)

Message 17:13:48 803 ms | Obj07: RX PDATA ERR errs: 1 (new: 351; old: 350); pkts_ok: 0; pkts_err: 351;

Error 17:13:48 804 ms | ’TCOM Server ’ (10): The logging of messages has been temporarily halted because too many

messages have been issued! This can lead to a loss of messages.

Message 17:13:49 602 ms | ’TCOM Server ’ (10): The logging of messages is now enabled again , 68121 messages have been

68

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

dropped

Warning 17:13:49 603 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (225, 126, 323, 323)

Message 17:13:49 603 ms | Obj03: RX PDATA ERR errs: 1 (new: 1443; old: 1442); pkts_ok: 0; pkts_err: 1447;

Warning 17:13:49 603 ms | Obj02: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3168 , 3069, 3266, 3266)

Message 17:13:49 603 ms | Obj02: RX PDATA ERR errs: 1 (new: 1440; old: 1439); pkts_ok: 0; pkts_err: 1444;

Error 17:13:49 605 ms | ’TCOM Server ’ (10): The logging of messages has been temporarily halted because too many

messages have been issued! This can lead to a loss of messages.

Message 17:13:49 852 ms | ’TwinCAT System ’ (10000): Starting COM Server TcEventLogger !

Message 17:13:50 402 ms | ’TCOM Server ’ (10): The logging of messages is now enabled again , 7057 messages have been

dropped

Message 17:13:55 869 ms | Obj03: RX INF rx_pdata_errs: 1444; slave_mux_errs: 1462; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 870 ms | Obj08: RX INF rx_pdata_errs: 1444; slave_mux_errs: 1459; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 871 ms | Obj02: RX INF rx_pdata_errs: 1441; slave_mux_errs: 1448; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 872 ms | Obj07: RX INF rx_pdata_errs: 1442; slave_mux_errs: 1448; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 873 ms | Obj12: RX INF rx_pdata_errs: 1440; slave_mux_errs: 1456; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 874 ms | Obj01: RX INF rx_pdata_errs: 1437; slave_mux_errs: 1450; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 875 ms | Obj06: RX INF rx_pdata_errs: 1435; slave_mux_errs: 1450; pkts_ok: 8267; pkts_err: 1733;

Message 17:13:55 876 ms | Obj11: RX INF rx_pdata_errs: 1436; slave_mux_errs: 1452; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 877 ms | Obj05: RX INF rx_pdata_errs: 1435; slave_mux_errs: 1447; pkts_ok: 8263; pkts_err: 1737;

Message 17:13:55 878 ms | Obj10: RX INF rx_pdata_errs: 1433; slave_mux_errs: 1439; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 879 ms | Obj04: RX INF rx_pdata_errs: 1428; slave_mux_errs: 1433; pkts_ok: 8276; pkts_err: 1724;

Message 17:13:55 880 ms | Obj09: RX INF rx_pdata_errs: 1431; slave_mux_errs: 1440; pkts_ok: 8276; pkts_err: 1724;

...

Message 23:51:43 977 ms | Obj03: RX INF rx_pdata_errs: 1444; slave_mux_errs: 1462; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 978 ms | Obj08: RX INF rx_pdata_errs: 1444; slave_mux_errs: 1459; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 979 ms | Obj02: RX INF rx_pdata_errs: 1441; slave_mux_errs: 1448; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 980 ms | Obj07: RX INF rx_pdata_errs: 1442; slave_mux_errs: 1448; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 981 ms | Obj12: RX INF rx_pdata_errs: 1440; slave_mux_errs: 1456; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 982 ms | Obj01: RX INF rx_pdata_errs: 1437; slave_mux_errs: 1450; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 983 ms | Obj06: RX INF rx_pdata_errs: 1435; slave_mux_errs: 1450; pkts_ok: 32588267; pkts_err: 1733;

Message 23:51:43 984 ms | Obj11: RX INF rx_pdata_errs: 1436; slave_mux_errs: 1452; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 985 ms | Obj05: RX INF rx_pdata_errs: 1435; slave_mux_errs: 1447; pkts_ok: 32588263; pkts_err: 1737;

Message 23:51:43 986 ms | Obj10: RX INF rx_pdata_errs: 1433; slave_mux_errs: 1439; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 987 ms | Obj04: RX INF rx_pdata_errs: 1428; slave_mux_errs: 1433; pkts_ok: 32588276; pkts_err: 1724;

Message 23:51:43 988 ms | Obj09: RX INF rx_pdata_errs: 1431; slave_mux_errs: 1440; pkts_ok: 32588276; pkts_err: 1724;

...

Listing 5.1: Expected Application Log Output for Master

5.2.2 Encountered Problems and Solutions

While implementation of a minimal working prototype was quite straightforward using only
Beckhoff-supplied components, increasing the exchanged process data and the number of slaves,
using slaves not supplied by Beckhoff, and switching from SM to DC synchronization, some issues
came up which are detailed within this subsection.

5.2.2.1 Slave Too Slow for Operation at Standard Cycle Time

As already mentioned in Subsection 4.1.7, a lot of missing frames as well as what appeared to
be frames with corrupted data were observed at the first stage of prototype development, when
using the EL9800 development kit as only slave when running the application at the desired cycle
time of 732.6µs.

When doubling the cycle time, these problems were gone; this suggested the errors shown to be
not an inherent problem of the slave or master application itself but a performance problem.
To verify that these errors are not due to a programming error but actually a performance issue,
the application was run with a cycle time of 1.4ms. At this cycle time, the application still
worked as expected; with a cycle time 0.2ms lower, errors already began to show.

Nested for-loops were added to the end of the processing code in the main application function;
the repetitions of the outer loop were made adjustable by an additional integer value from the
master. The higher the number of repetitions was set, the more packets were invalid or missing at
the master, which sufficiently confirmed the assumption of the encountered errors being caused
by performance issues.

69

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

This problem was circumvented by switching from using the EL9800 board to the XMC4800
EtherCAT kit as slave hardware. This transition also provided the opportunity to actually test
the system with 12 slaves due to the XMC4800 boards being available at far lower cost than the
EL9800 board.

5.2.2.2 Eventual Network Thrashing With More Than 6 Slaves

When the application was working as intended with one slave, the other 11 slave devices where
connected and configured. All 12 slaves were configured the same, as mentioned in Subsec-
tion 4.1.5, using DC synchronization. Since the first tests in DC mode where not satisfactory,
the application was also run in SM mode, since in previous error scenarios DC synchronization
proved to be just another source of problems that should be precluded until everything else is
working as intended.

However, the erroneous behavior observed stayed basically the same. Though the application
seemed to work fine for in some cases even up to about 1.5 hr; at some point, a lot of sequence
errors stared to be logged. That means that a received packet contains a sequence number
different from the expected number. These errors usually were output for a time of a few cycles
up to some seconds and after that, application behavior seemed to get back to normal again; in
some instances however, the application did not recover from this failure for more than 10min.

Analyzing the application log files, the sequence errors seem to indicate missed packets as can be
seen in Listing 5.2, for example: for each slave, there’s two times the same received mux sequence
number and the same received expected first angle. This parallelism indicates that it was not the
slave not finishing to write data to the output buffer as it happened with the EL9800 board at
too fast cycle times; instead, this means that between the two runs of the cyclic function for each
slave, the process image of the master has not been updated. This could be due to frame loss
or delay; only in rare cases, frame loss has been logged by TwinCAT itself, which would indicate
that frames were not actually lost but have arrived or have been handled after processing of the
cyclic I/O module instances started.

Warning 14:44:28 228 ms | Obj03: S2M MUX SEQ ERR , seq rcvd: 42; expect: 43; next expected: 43

Warning 14:44:28 228 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (2511 , 2610, 2609, 2609)

Message 14:44:28 228 ms | Obj03: RX PDATA ERR errs: 1 (new: 207; old: 206); pkts_ok: 7438129; pkts_err: 249;

Warning 14:44:28 228 ms | Obj08: S2M MUX SEQ ERR , seq rcvd: 77; expect: 78; next expected: 85

Warning 14:44:28 228 ms | Obj08: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (5976 , 6075, 6074, 6074)

Message 14:44:28 228 ms | Obj08: RX PDATA ERR errs: 1 (new: 206; old: 205); pkts_ok: 7438128; pkts_err: 249;

Warning 14:44:28 228 ms | Obj07: S2M MUX SEQ ERR , seq rcvd: 90; expect: 91; next expected: 99

Warning 14:44:28 228 ms | Obj07: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (63, 162, 161, 161)

Message 14:44:28 228 ms | Obj07: RX PDATA ERR errs: 1 (new: 203; old: 202); pkts_ok: 7438164; pkts_err: 210;

Warning 14:44:28 228 ms | Obj12: S2M MUX SEQ ERR , seq rcvd: 214; expect: 215; next expected: 225

Warning 14:44:28 228 ms | Obj12: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4815 , 4914, 4913, 4913)

Message 14:44:28 228 ms | Obj12: RX PDATA ERR errs: 1 (new: 202; old: 201); pkts_ok: 7438162; pkts_err: 211;

Warning 14:44:28 228 ms | Obj06: S2M MUX SEQ ERR , seq rcvd: 64; expect: 65; next expected: 71

Warning 14:44:28 228 ms | Obj06: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4689 , 4788, 4787, 4787)

Message 14:44:28 228 ms | Obj06: RX PDATA ERR errs: 1 (new: 199; old: 198); pkts_ok: 7438162; pkts_err: 208;

Warning 14:44:28 228 ms | Obj11: S2M MUX SEQ ERR , seq rcvd: 47; expect: 48; next expected: 57

Warning 14:44:28 228 ms | Obj11: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (1170 , 1269, 1268, 1268)

Message 14:44:28 228 ms | Obj11: RX PDATA ERR errs: 1 (new: 197; old: 196); pkts_ok: 7438160; pkts_err: 208;

Warning 14:44:28 228 ms | Obj05: S2M MUX SEQ ERR , seq rcvd: 70; expect: 71; next expected: 71

Warning 14:44:28 228 ms | Obj05: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (5283 , 5382, 5381, 5381)

Message 14:44:28 228 ms | Obj05: RX PDATA ERR errs: 1 (new: 197; old: 196); pkts_ok: 7438160; pkts_err: 208;

Warning 14:44:28 228 ms | Obj10: S2M MUX SEQ ERR , seq rcvd: 72; expect: 73; next expected: 85

Warning 14:44:28 228 ms | Obj10: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (5481 , 5580, 5579, 5579)

Message 14:44:28 228 ms | Obj10: RX PDATA ERR errs: 1 (new: 195; old: 194); pkts_ok: 7438158; pkts_err: 208;

Warning 14:44:28 228 ms | Obj04: S2M MUX SEQ ERR , seq rcvd: 62; expect: 63; next expected: 71

Warning 14:44:28 228 ms | Obj04: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4491 , 4590, 4589, 4589)

Message 14:44:28 228 ms | Obj04: RX PDATA ERR errs: 1 (new: 194; old: 193); pkts_ok: 7438157; pkts_err: 208;

Warning 14:44:28 228 ms | Obj09: S2M MUX SEQ ERR , seq rcvd: 80; expect: 81; next expected: 85

Warning 14:44:28 228 ms | Obj09: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (6273 , 6372, 6371, 6371)

Message 14:44:28 228 ms | Obj09: RX PDATA ERR errs: 1 (new: 192; old: 191); pkts_ok: 7438155; pkts_err: 208;

Warning 14:44:28 229 ms | Obj03: S2M MUX SEQ ERR , seq rcvd: 42; expect: 43; next expected: 43

Warning 14:44:28 229 ms | Obj03: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (2511 , 2610, 2609, 2609)

Message 14:44:28 229 ms | Obj03: RX PDATA ERR errs: 1 (new: 208; old: 207); pkts_ok: 7438129; pkts_err: 250;

Warning 14:44:28 229 ms | Obj08: S2M MUX SEQ ERR , seq rcvd: 77; expect: 85; next expected: 85

Warning 14:44:28 229 ms | Obj08: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (5976 , 6075, 6074, 6074)

70

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

Message 14:44:28 229 ms | Obj08: RX PDATA ERR errs: 1 (new: 207; old: 206); pkts_ok: 7438128; pkts_err: 250;

Warning 14:44:28 229 ms | Obj02: S2M MUX SEQ ERR , seq rcvd: 56; expect: 57; next expected: 57

Warning 14:44:28 229 ms | Obj02: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (3897 , 3996, 3995, 3995)

Message 14:44:28 229 ms | Obj02: RX PDATA ERR errs: 1 (new: 204; old: 203); pkts_ok: 7438127; pkts_err: 249;

Warning 14:44:28 229 ms | Obj07: S2M MUX SEQ ERR , seq rcvd: 90; expect: 99; next expected: 99

Warning 14:44:28 229 ms | Obj07: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (63, 162, 161, 161)

Message 14:44:28 229 ms | Obj07: RX PDATA ERR errs: 1 (new: 204; old: 203); pkts_ok: 7438164; pkts_err: 211;

Warning 14:44:28 229 ms | Obj12: S2M MUX SEQ ERR , seq rcvd: 214; expect: 225; next expected: 225

Warning 14:44:28 229 ms | Obj12: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (4815 , 4914, 4913, 4913)

Message 14:44:28 229 ms | Obj12: RX PDATA ERR errs: 1 (new: 203; old: 202); pkts_ok: 7438162; pkts_err: 212;

Warning 14:44:28 229 ms | Obj01: S2M MUX SEQ ERR , seq rcvd: 244; expect: 245; next expected: 1

Warning 14:44:28 229 ms | Obj01: RX DATA ERR , in.AngFirst != ang_exp || in.AngLast != last_exp (549, 648, 647, 647)

Message 14:44:28 229 ms | Obj01: RX PDATA ERR errs: 1 (new: 200; old: 199); pkts_ok: 7438164; pkts_err: 208;

Message 14:44:28 229 ms | Obj11: RX PDATA ERR errs: 1 (new: 198; old: 197); pkts_ok: 7438160; pkts_err: 209;

Listing 5.2: Partial Log Output Indicating Missed Frames

Since these problems show at seemingly random intervals and last for different time intervals, a
systematic problem like an error in the application code itself has been ruled out.
The application was then tested with a cycle time slowed down to 15× the base time, i.e. 0.999ms
instead of the projected 0.732ms. Also, it was tested with 11 slaves and the normal cycle time. In
both tests, SM sync mode was used. Both tests were conducted without witnessing the erroneous
behavior. Since the common factor in both cases was the reduced overall bandwidth, the results
suggest the original problem to be caused by insufficient bandwidth. The real-time traffic for 12
slaves operating at the planned cycle time of 0.732ms is reported by TwinCAT to be 77.40Mbps
(c.f. Figure 5.2); due to the real-time traffic not changing in volume over time, any bandwidth
problem caused by the real-time traffic itself would have to show immediately or never.

However, besides the cyclic real-time data, there also exists a non-real-time, acyclic data exchange
service in EtherCAT, the Mailbox Service. This service is used to exchange status data between
master and slave systems and set, e.g. parametrization data; also, services like CAN application
protocol over EtherCAT (CoE), Ethernet over EtherCAT (EoE), and File Access over EtherCAT
(FoE) operate based on the mailbox. In the default configuration of TwinCAT, the mailbox service
with CoE is enabled and the slaves’ mailboxes are polled event-based in case state changes occur.
This introduces an indeterministic amount of data to be exchanged and works fine in case the
available bandwidth is not critically low already, but in this case, the extra bandwidth required
in some cases seems to be too much to ensure reliable operation. Also, using this configuration,
errors occurring due to a lack of bandwidth and triggering another mailbox operation amplify the
problem, which does lead to network thrashing ; in this case, only a reset of the master brought
the system to function as intended again.

To resolve this issue, the mailbox polling was configured to take place cyclically every 1000ms
instead of on every state change. This allows state and configuration parameters to still be up-
dated via the mailbox service while ensuring its impact on the overall bandwidth to be negligible.
Besides the reconfiguration of the mailbox polling interval, the by default enabled CoE part of
the mailbox service was disabled altogether since it is not used anyways.

5.2.2.3 DC Synchronization Problems For More Than 6 Slaves

Due to providing more precise synchronization which is not dependent on the master’s frame
transmission time accuracy, DC synchronization is the preferred, albeit less simple method for
synchronizing EtherCAT traffic.

When running the application with only one slave connected using DC synchronization mode, the
application ran fine; when connecting and configuring all other 11 slaves the same way however,
slaves 7 and 8 reported multiplexing sequence errors for both multiplexed connections from master

71

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

to slave. In Listing 5.3, the respective first lines of each block of error messages are shown. These
messages show, that the received multiplexing sequence number within a data frame is one below
the expected number. This symptom has already been discussed in the previous subsection
(c.f. Subsection 5.2.2.2) where it was identified as an indicator of the application loop processing
starting before the process data image was actually received and updated to be used by the
application.

Warning 16:19:25 855 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24487 , 24488 , 36, 35)

Warning 16:19:25 855 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24286 , 24287 , 154, 153)

...

Warning 16:19:45 550 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24493 , 24494 , 105, 104)

Warning 16:19:45 550 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24287 , 24288 , 113, 112)

...

Warning 16:20:06 470 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24512 , 24513 , 126, 125)

Warning 16:20:06 470 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24289 , 24290 , 222, 221)

...

Warning 16:20:13 198 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24551 , 24552 , 207, 206)

Warning 16:20:13 198 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24290 , 24291 , 7, 6)

...

Warning 16:20:17 731 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24591 , 24592 , 245, 244)

Warning 16:20:17 731 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24292 , 24293 , 99, 98)

...

Warning 16:20:45 119 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24594 , 24595 , 237, 236)

Warning 16:20:45 119 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24295 , 24296 , 145, 144)

...

Warning 16:21:03 042 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24604 , 24605 , 102, 101)

Warning 16:21:03 042 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24297 , 24298 , 226, 225)

...

Warning 16:21:27 176 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldataa_seq_errcnt != in.DBG_MCtrlDataA_MuxSeqErrs || in.

DBG_MCtrlDataA_MuxExpected != in.DBG_MCtrlDataA_MuxGotten (24655 , 24656 , 81, 80)

Warning 16:21:27 176 ms | Obj08: SLAVE MUX SEQ ERR , mux_mctrldatab_seq_errcnt != in.DBG_MCtrlDataB_MuxSeqErrs || in.

DBG_MCtrlDataB_MuxExpected != in.DBG_MCtrlDataB_MuxGotten (24300 , 24301 , 149, 148)

...

Listing 5.3: Partial Log of Mux Sequence Errors on Slaves 7 and 8 in DC Mode

This behavior was the same with only 8 slaves connected; with only 7 slaves connected, the errors
occurred far less frequently and also were limited to slave 7, but the basic pattern was the same.
With up to 6 slaves and the DC synchronization configuration described in the prototype descrip-
tion (c.f. Subsection 4.1.5), the system ran reliably.

The bandwidth utilization given by TwinCAT for the real-time traffic with 6 slaves is 39.00%;
the process data to and from the 6 slaves is split onto 3 Ethernet frames. With one slave more, a
4th frame is sent in addition and the bandwidth utilization is at 45.74%; with 8 slaves, bandwidth
utilization rises to 51.79%.

The default shift time, i.e., the time interval by which the SYNC0 event of the slaves is offset from
the prospective cycle start times at the master, is set to 40% of the cycle time, which is 293.04µs.
The frame durations of the first three Ethernet frames together amount to 284.24µs; therefore,
frame data processing on slaves 1 to 6 starts always after the cyclic frames have been delivered,
which explains, why the error does not show when the system is run with only 6 slaves.

Thus it was assumed that the occurring errors are related to the DC sync shift times; in the
following paragraphs, the differences of DC and SM synchronizations are detailed in order to
explain the problem and its proposed solution.

72

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

In SM synchronization mode, in case inputs and outputs are defined, receiving data from the
master to the slave (i.e. the SM2 event) triggers running the application processing loop; in case
only inputs (i.e., data from slave to master) are defined, the SM3 event triggers the application
loop (c.f. [Bec13a, Subsection 9.1.2]). This means that there’s always the latest data available for
processing within the application loop since running the application loop is logically and causally
coupled to updating the process data image. However, loop execution times may vary since the
frame transmission times of the master are subjected to jitter; also, this event occurs on slaves
topologically farther away from the master later than on slaves closer to the master.

In DC synchronization mode however, the application processing loop is triggered by the SYNC0

event and independent of the reception of any EtherCAT frames; these two different methods are
illustrated in Figure 2.5 and Figure 2.6. The SYNC0 event is synchronized by the distributed clock
algorithm and independent of any data communication. This enables precisely synchronized
actions to be actuated by multiple slaves. The actual timing of when data from and to the
slaves is exchanged between the application memory and the sync managers as well as when the
application loop is actually triggered depends on the specific DC configuration and the behavior
and configuration of the slave stack code itself.

The DC mode supported by the XMC4800 slave stack template is the “pure” SYNC0 mode de-
scribed in [Bec13a, Subsection 9.1.5]. In this mode, output data mapping (i.e., copying data from
master to slave from the sync manager buffer to the application memory) and then running the
application main function is triggered by the SYNC0 event. However, nothing ensures that at the
point in time this event is triggered, new data from the master is already available from the sync
manager buffer due to the decoupling of the sync manager events and the SYNC0 event.

The symptom seen predominately on slave 8 and, to some extent, also on slave 7 is the result
of the frame jitter in some low percentage of the frames sent preventing the data portion of the
master for the slave to be available at the sync manager before the SYNC0 event triggered fetching
the data for application processing.
For data from the slave to the master, this does not lead to any problems since the input data
mapping (i.e., copying the application-calculated data from the application memory to the sync
manager buffers in order to be picked up and delivered to the master by the next passing frame)
is done after application processing and takes place with enough time offset not to be influenced.

For slaves 9 to 12, this problem does not show, since the EtherCAT frame for each cycle arrives
after the SYNC0 event triggered fetching the input data from the sync manager and running the
application, then writing the data from slave to master to the sync manager. This means, that
– unlike for slaves 1 to 6 – the data received from the master that is being processed within a
cycle is actually from the previous cycle. These two different erroneous behavioral patterns in
comparison to the correct behavior are illustrated in Figure 5.3.

Since the application does only check whether the arriving sequence numbers at the slave and
at the master are consecutive, but the data output of the slave does not relate to its inputs,
this problem did not really show. In order to explicitly demonstrate this problem, an additional
check has been added to the master’s C++ module code. For debugging purposes, the received
multiplexing sequence numbers for both multiplexed control data structures are sent by the slave
back to the master. When processing these sequence numbers, the master can compare them to
the ones it sent two cycles before; in case these do not match, a warning indicating a possible shift
between the input and the output parts of the process data is logged. The difference between the
expected and the received value shows by how many cycles the shift affects the respective slave.

73

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

Figure 5.3: EtherCAT – Erroneous Behaviors with Default SYNC0 Shift Configuration

Confirming the assumption about the source of the error on slaves 7 and 8, all slaves above 6
showed these errors, though only for slave 7 and 8, actual application errors occurred due to the
shift between input and output data of a cycle not being constant.

Configuring an additional shift of 1/2 of the cycle time for slaves 7 and 8 did prevent the application
errors from showing, but consequently, for slaves 9 to 12, the warnings indicating a shift between
input and output data were unchanged.

To finally resolve this problem, for the slaves 7 to 12, additional, custom shift times for the SYNC0
event have been configured.
The shift intervals are calculated from the frame delay of the frame carrying the data for the
respective slave. Since there are two slaves addressed per Ethernet frame, this yields these three
delay intervals, derived from the total percentage of bandwidth used by real-time up to the end
of the respective frame:

delay 7, 8 = tcycle · 51.62% = 378µs
delay 9, 10 = tcycle · 64.41% = 472µs
delay11, 12 = tcycle · 77.40% = 567µs

With these shift time intervals configured on slaves number 7 to 12, the system ran reliably and
without any errors or warnings.

74

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

5.3 TTEthernet Prototype

The very first, simple TTEthernet application preceding the prototype documented in Section 4.2
with only one receiving and one transmitting thread each for the slave- and master-application
ran without any problems. Then, the more or less fully featured prototype as it is documented
was implemented. The limitations of a heavily multithreaded programming approach with tight
real-time constraints on rather limited hardware became apparent. Also, when using cycle times
below 1ms, problems with synchronizing the sending thread using the Linux timers with the
TTEthernet time showed.

The following subsection discusses which data is logged and how and which measurements have
been taken; the subsections thereafter explain encountered problems as well as possible and
implemented solutions. Since, however, most of the testing functionality is inherently built into
the application itself and this general implementation has already been discussed in the previous
chapter, details of the implementation are in this chapter only elaborated on when pertinent to
explaining the erroneous behavior in question.

5.3.1 Logged Data and Measurements

Due to the nature of the application as prototype for testing a communication system with only
limited access to the actual hardware, only very few data could actually be measured. Overall,
most results stem from the self-checking nature of the implemented application; detecting whether
errors occurred and, if so, which ones, was the only option besides logging sent frame data with
Wireshark.

Compile-Time Flags Related to Logging

There are several compile-time flags which can be used to alter where and how much the two
applications log as well as overall application behavior by disabling certain parts of the application.
The following defines determine the verbosity of the application; neither of these messages are of
special interest during normal operation. Due to their volume, logging all that data might also
impair normal functioning of the application.

– WITH ERROR SIMULATION: Though not directly related to logging only, this compile time
flag enables the randomized generation of errors within the slave’s data generator thread.
The process data frame containing deliberately wrong data will be counted as erroneous
and a notification will be shown; the statistics shown when quitting the application include
the error counters so they can be compared with the receiver’s error counters in order to
detect undeliberately occurred errors.

– DATAGEN LOG: This constant, if defined, is interpreted as path to the file, the loop durations
and other details of the data generation thread of the slave application will be logged to.
This has been added when it became apparent that generating a single data tuple each 7.4µs
is not feasible for the prototype application due to the overhead caused by data locking and
sleeping in between this short timespan to facilitate debugging (c.f. Subsection 5.3.2.3).

– DBG PRINTTUPLES: When this define is set and the data handling thread within the master is
not disabled by setting the MASTER NO SLDATAHANDLER define, the master logs every pressure
data tuple it receives, which is in almost any circumstances much more output than actually

75

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

usable; however it was useful to debug the problems occurring at the interface between the
receiving thread and the data handling thread.

– DBG PRINTADDMSGS: With this flag enabled, both master and slave applications log addi-
tional output about their current actions to the console. This option also produces too
much output in most cases.

– DBG TTEXMSGS: This flag causes the wrapper functions created around the TTEthernet C
stack functions and used as library within master and slave application to log additional
information about their current internal workings. Since most of the functions log more
than 4 lines per call, this produces far too much output normally and was mostly used to
debug the functions while they were created.

Execution Time Measurements

Besides logging data, both parts of the application have also execution time measurements built
in in order to ensure that worker loop iterations take at most the time they are supposed to; if
the given limits are exceeded, this timeout is logged.

Measuring execution times within the code itself has the obvious problem of – depending on
the functions and hardware used – adding delays on its own. Also, different clock sources with
different properties are provided by the Linux kernel itself and the TTEthernet controller.

Notes on Time Measurement and Clock Sources under Linux

Several combinations of the clock sources made available through the Linux kernel; these are
listed in /sys/devices/system/clocksource/clocksource0/available clocksource. On the
RTLinux systems used for the prototype, both the hpet as well as the tsc timer has been used
as clock source without decisive impact on the application’s overall performance and behavior.
Which timer is best to use depends very much on the respective hardware and there is most often
a trade-off between fastest average performance and predictable performance.

The selected of the aforementioned timers can be used via the C library via a selection of different
function calls. The functions gettimeofday() and clock gettime() have different drawbacks,
for the latter, the clock source to be used can be specified.

Functions returning the wall clock time should not be used to measure intervals due to the possi-
bility of leap seconds or the clock being reset, e.g. by an external time server update; ambiguously,
the corresponding clock is called CLOCK REALTIME under Linux/POSIX. This eliminates the op-
tion of using gettimeofday() which uses this clock as well as using clock gettime() with clock
id CLOCK REALTIME.

As alternative, the clock CLOCK MONOTONIC is supposed to provide a monotonic time scale for
measuring intervals, but the rate of this clock can still be adjusted with the adjtime() call, e.g.
due to time server updates; a clock not affected by this is CLOCK MONOTONIC RAW, but using it, in
turn, has other drawbacks: to wait until a certain point in time, the clock nanosleep() function
with the flag TIMER ABSTIME can be used which then interprets the given timespec structure as
absolute clock value and not as interval. This is the recommended implementation of sleeping
a given time; however, clock nanosleep() cannot use the CLOCK MONOTONIC RAW clock ID but
only CLOCK MONOTONIC or CLOCK REALITME.

76

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

Ideally, the TTEthernet time base should be used since this is the time base relevant to whether
sent frames are actually accepted or not. The current TTEthernet timestamp can be obtained
by the function tte es get time() which returns the current nanosecond timestamp as unsigned
64 bit integer; however, the underlying timer is only 32 bit wide and reset with initialization of the
TTEthernet end system driver [TTT15, Subsection 7.2.14.24]. Consequently, it is not usable as
absolute time base, but it might be of use both for measuring execution times as well as precisely
synchronizing execution to the TTEthernet time base (c.f. Subsection 5.3.2.2).

Expected Output of Master- and Slave-Application

The expected output of the master- and slave-application is shown in Listing 5.4. It shall be
noted, that some errors pertaining to unexpected frame sequence numbers and values are normal
due to the fact that both applications do not start at exactly the same time, so either one or
the other will have already sent frames before its counterpart was up and running, thus making
the first frame of each virtual link received by the application which has been started later have
unexpected sequence numbers in it. In the given sample output listing, the master has been
started before the slave application; also, the slave application was shut down before the master.
Thus, the sent and received frame counts for the frames sent by the slaves should be correct on
the master’s side, while it is expected that the master sent overall more frames than the slave
could ever receive.

./ testmaster.exe from_tools/master.bin

MAIN configuring endpoint ...

MAIN EP INIT config filename given = from_tools/master.bin ,←֓

hwtype = 1

MAIN EP INIT endpoint initialization OK

MAIN EP INIT endpoint configuration OK

MAIN endpoint configuration OK

MAIN slave data handler threads initializing ...

DH[00] initialized

...

DH[11] initialized

MAIN slave data handler threads initialized (took ~1ms)

TX_PERFIRE INIT endpoint initialization OK

TX_PERMCYC INIT endpoint initialization OK

RX/DMA INIT endpoint initialization OK

RX/DMA INIT DMA initialization OK

RX/DMA initialized

RX ===

...

RX closing DMA handle

RX closing endpoint handle

RX closed endpoint handle OK

DH[00] ---

DH[00] RECEIVED 2054 PROCESS DATA PACKETS

2052 OK, 2 ERRORS

DH[00] ---

DH[00] exiting

...

DH[11] ---

DH[11] RECEIVED 0 PROCESS DATA PACKETS

0 OK, 0 ERRORS

DH[11] ---

DH[11] exiting

==

RX RCVD 2084 PACKETS OVERALL , 0 INV VLINKS

RX RCVD 2054 PROCESS DATA PACKETS FOR SLAVE 1

RX RCVD 30 SLAVE STATE PACKETS FOR SLAVE 1, 28 OK , 2 ERR

...

RX RCVD 0 PROCESS DATA PACKETS FOR SLAVE 12

RX RCVD 0 SLAVE STATE PACKETS FOR SLAVE 12, 0 OK , 0 ERR

==

TX_PERFIRE closing endpoint handle

TX_PERFIRE closed endpoint handle OK

TX_PERFIRE SENT 3032 CTRL_B PACKETS

TX_PERMCYC closing endpoint handle

TX_PERMCYC closed endpoint handle OK

TX_PERMCYC SENT 86 CTRL_A PACKETS

==

WARNING , rx thread returned 3

MAIN shutting down endpoint

MAIN endpoint shutdown ok

./testslave -nodma.exe from_tools/sl01.bin 1 pcie 50

MAIN configuring endpoint ...

MAIN EP INIT config filename given = from_tools/sl01.bin ,←֓

hwtype = 1

MAIN EP INIT endpoint initialization OK

MAIN EP INIT endpoint configuration OK

MAIN endpoint configuration OK

MAIN waiting for rxhandler thread to initialize ...

RX tte_rx_acc_point: 2 ; tte_rx_acc_port: 8

RX INIT endpoint initialization OK

RX initialized

RX ===

MAIN waiting for txhandler threads to initialize ...

TX_PDATA INIT endpoint initialization OK

TX_PDATA initialized

TX_PDATA ===

TX_STATE INIT endpoint initialization OK

TX_STATE ===

MAIN txhandler threads initialized (took ~2ms)

RX PERFIRE err , x.ctrl_b_u32i1_c1 != val_expected1 (-2237,←֓

0) OR x.ctrl_b_u32i2_c1 != val_expected2 (2237, 0) OR←֓

x.ctrl_b_u8i2_c2 != val_expectedB (189, 0)

RX PERMCYC err , x.elems[slavenum -1]. ctrl_a_u32i1_c1 !=←֓

val_expected1 (62, 0) OR x.ctrl_a_u32i2_c2 !=←֓

val_expected2 (-62, 0) OR x.ctrl_a_uch21_c2 [20] !=←֓

val_expectedB (62, 0)

^Csignal received: 2

RX closing endpoint handle

RX closed endpoint handle OK

==

RX RCVD 50 CTRL_A (PER_MCYC) PACKETS

49 OK , 1 ERRORS

RX RCVD 1779 CRTL_B (PER_FIRE) PACKETS

1778 OK, 1 ERRORS

==

TX_PDATA closing endpoint handle

TX_PDATA closed endpoint handle OK

TX_PDATA SENT 3549 PROCESS DATA PACKETS

TX_STATE closing endpoint handle

TX_STATE closed endpoint handle OK

TX_STATE SENT 51 SLSTATE DATA PACKETS

==

MAIN shutting down endpoint

MAIN endpoint shutdown ok

Listing 5.4: Expected Application Output for Master and Slave

77

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

Logging Real-Time Ethernet Frames with Wireshark

Besides the error detection and time measurements built into the application itself, using one of
the free Gigabit ports of the TTEthernet switch to log all time-triggered traffic to a connected
Linux workstation with Wireshark proved a valuable tool in debugging some of the encountered
problems as well; it should be noted however, that the connected workstation doing the log-
ging only had a standard Realtek Gigabit network card without any synchronization or precise
timestamping and also did not run a real-time operating system, so the timestamps of the logged
Ethernet frames are only precise enough to, e.g., show whether the temporal spacing of the frames
is uniform and whether frames are missing (c.f. Figure 5.4).

The debug port of the switch is one of the switch’s normal ports connected to a system configured
as TTEthernet end system and sync client set up to receive all virtual links sent from any device
in the network. It does not interfere with the operation of the actual TTEthernet application
and does not influence the bandwidths of any of the links to the other end systems.

Figure 5.4: TTEthernet – Wireshark Showing Missing Frame for Virtual Link 201

5.3.2 Encountered Problems and Solutions

Implementing a minimal working prototype was quite straightforward; introducing multiple send-
ing threads required implementing locking when actually accessing the TTEthernet stack so the
senders would not interfere with each other, which is, however, mentioned in the TTEthernet
Manual anyways [TTT15, Subsection 3.3.1]. Reducing the cycle time to the planned 740µs how-
ever presented some issues pertaining to the synchronization of Linux- and TTEthernet timing.
This problem as well as a bug in one of the TTEthernet helper functions is detailed within this
subsection.

78

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

5.3.2.1 Received Payload Data Offset

When adding the additional VLs in both directions to and from the master, it was necessary
to switch from using MAC COM ports to MAC SAP ports which allow the receiver to handle the
MAC header within the application itself to determine on which virtual link a frame was sent on
(c.f. Subsection 4.2.6).

The TTEthernet programming documentation refers to the tte es get hdr macsap port() for
the task of parsing the MAC header. As this was implemented, all received data seemed to be
completely wrong; only a hex dump of the sent versus the received payload showed a compre-
hendible pattern: The received data seemed to be missing 2B in the beginning, with the rest of
the data just offset to the left; this can be easily seen in the hexdump shown in Listing 5.5, for
example.

The problem was simple to fix by not using the problematic function but reading the header plus
the actual payload into the data input buffer without the helper function; the payload itself is
usable as normal with an offset of 14B to account for the payload being prefixed by the MAC
header.

0x000000: 01 00 00 00 00 00 00 00

0x000008: 00 00 00 00 ff ff ff ff

0x000016: 00 00 00 00 00 00 00 00

0x000024: 00 00 00 00 00 00 00 00

0x000032: 00 00 00 00 00 00 00 00

0x000040: 00 00 00 00 00 00 00 00

0x000048: 00 00 00 00 00 00 00 00

0x000056: 00 00 00 00 00 00 00 00

0x000064: 00 00 00 00 00 00 00 00

0x000072: 00 00 00 00 00 00 00 00

0x000080: 00 01 01 00 00 00 00 00

0x000088: 00 00 00 00 00 00 ff ff

0x000096: ff ff 00 00 00 00 00 00

0x000104: 00 00 00 00 00 00 00 00

0x000112: 00 00 00 00 00 00 00 00

0x000120: 00 00 00 00 00 00 00 00

0x000128: 00 00 00 00 00 00 00 00

0x000136: 00 00 00 00 00 00 00 00

0x000144: 00 00 00 00 00 00 00 00

0x000152: 00 00 00 00 00 00 00 00

0x000160: 00 00 00 02 01 00 00 00

0x000168: 00 00 00 00 00 00 00 00

0x000176: ff ff ff ff 00 00 00 00

0x000184: 00 00 00 00 00 00 00 00

0x000000: 00 00 00 00 00 00 00 00

0x000008: 00 00 ff ff ff ff 00 00

0x000016: 00 00 00 00 00 00 00 00

0x000024: 00 00 00 00 00 00 00 00

0x000032: 00 00 00 00 00 00 00 00

0x000040: 00 00 00 00 00 00 00 00

0x000048: 00 00 00 00 00 00 00 00

0x000056: 00 00 00 00 00 00 00 00

0x000064: 00 00 00 00 00 00 00 00

0x000072: 00 00 00 00 00 00 00 01

0x000080: 01 00 00 00 00 00 00 00

0x000088: 00 00 00 00 ff ff ff ff

0x000096: 00 00 00 00 00 00 00 00

0x000104: 00 00 00 00 00 00 00 00

0x000112: 00 00 00 00 00 00 00 00

0x000120: 00 00 00 00 00 00 00 00

0x000128: 00 00 00 00 00 00 00 00

0x000136: 00 00 00 00 00 00 00 00

0x000144: 00 00 00 00 00 00 00 00

0x000152: 00 00 00 00 00 00 00 00

0x000160: 00 02 01 00 00 00 00 00

0x000168: 00 00 00 00 00 00 ff ff

0x000176: ff ff 00 00 00 00 00 00

0x000184: 00 00 00 00 00 00 00 00

Listing 5.5: Hexdump of the First 192B of a Frame, Sent vs. Received Data

5.3.2.2 Missing Process Data Frames on the Master

It has been observed that there seem process data frames missing on the receiving master side.
As already explained in Section 4.2, process data is generated on the slave asynchronously to the
sending thread and checked on the master asynchronously to the receiving thread. Since faulty
behavior of the interfaces between data transmission/reception and generation/checking threads
should be distinguishable from actual errors in the transmission, another check has been added to
the process data transmission. An integer struct member of the process data frame is incremented
directly before each sending and this value is checked to match with the expected value directly
within the receiving thread before passing the data on to the separate checking thread.

In this case however, there is for every error detected by the data checking thread also one of
the receiving thread, which means that the error cannot only be caused by a malfunction of the
checking thread.

79

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

Also, in this special instance for example (c.f. Listing 5.6), the slave reported to have submitted
10295 process data frames while the receiving thread reported to have received only 10290 frames.
The Wireshark dump also shows only 10290 being sent and they all appear temporarily evenly
spaced, so there are no frames obviously missing with regards to the sending pattern of the slave.
This means that the error has to be in between the slave application, from the point of view
of which it seems like sending of all 10295 was successful, and the switch, which already only
forwarded 10290 frames but without any “holes” in the sending pattern. Consequently, the
problem seems to be located on the sender’s side, but not within the application itself, since the
TTE stack sending function did not return any kind of error.

RX PDATA serial exp!=new (11 ,16)

DH[00] DATA -WARN ang_first != (3600 angle_expected (174 vs 111)

RX PDATA serial exp!=new (372 ,373)

DH[00] DATA -WARN ang_first != angle_expected (4638 vs 4623)

RX PDATA serial exp!=new (2273 ,2274)

DH[00] DATA -WARN ang_first != angle_expected (6840 vs 6828)

RX PDATA serial exp!=new (4156 ,4157)

DH[00] DATA -WARN ang_first != angle_expected (1620 vs 1608)

RX PDATA serial exp!=new (6039 ,6040)

DH[00] DATA -WARN ang_first != angle_expected vs 3588)

Listing 5.6: Sequence Number Errors Detected on Master

The TTEthernet controller accepts frames for delivery at any time instant and buffers them to
send them at the scheduled points in time, but in general, the application has to take care that
it does not exceed the rate of frames that can be fit within the schedule. The suspicion that the
application kept transmitting messages at a slightly higher rate than permissible matched the
exhibited behavior. The nanosecond timestamps of the TTEthernet controller itself were logged
before and after the call to the sending wrapper function. The averages of the differences between
these two sets of timestamps before and after give a loop time of 739991.24 ns or 739990.08 ns,
respectively. This means that, on average, every loop iteration interval is between 8.76 ns and
9.92 ns too short.

The way the loop first executes its cyclic code and then waits for the next loop run time was
already explained in the previous chapter; clock nanosleep() is used to wait until the next pre-
calculated, absolute loop start time value. A jitter in the loop activation time should not really
be an issue since this the actual message send times are handled by the TTEthernet controller
anyways and the actual loop times are, since based on precalculated absolute time values, all the
same and not affected by any form of variations in the actual execution times of each iteration.
However, clock nanosleep() can not be used in conjunction with the CLOCK MONOTONIC RAW

clock provided by the Linux kernel which is unaffected by any time adjustments, but only with
CLOCK MONOTONIC. Since no Network Time Protocol (NTP) daemon is running on the test ma-
chines, this should theoretically not be an issue. But independent from that problem, the system
time is not necessarily in unison with the TTEthernet time and thus might drift. This is the
most likely scenario happening in this case.

To test this hypothesis, the loop iteration time has been extended by 400 ns, which caused an
average loop time of 740.39µs from the TTEthernet controller’s point of view and fixed this
problem. Adding smaller intervals has been tried but did not fix the problem.
Since the overall deviation does not average out to zero however, this fix can also lead to a send
buffer underflow and thus a frame being missing out; this, in turn, will be no problem at normal
rotational speeds for the transmission of the pressure measurement data, but for the knocking
sensor data, which is not dependent on rotational speed, it is a problem in any case. However,
this behavior has not been exhibited while testing the application multiple hours, monitored with
Wireshark.

80

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Results

For a cleaner problem solution, the loop execution has to be synchronized with the actual sending
cycle of the frame. This could be either achieved by a send function that blocks until the frame
is actually sent or by using the TTEthernet timebase to measure execution time of the loop;
the second approach can be implemented by using the standard clock nanosleep() function
to coarsely wait until some tenth of a millisecond before the actually precalculated loop start
time according to the TTEthernet time base and then busy-waiting and constantly checking the
TTEthernet time until the exact point in time is reached.

This method has the disadvantage of being rather CPU-intensive, which is only acceptable if the
thread running the busy waiting loop can run on its own CPU core which needs not be shared
with other threads. A less CPU-intensive resolution of this problem would be to measure the
cumulative temporal deviation of a number of loop iterations using the TTEthernet controller’s
time and adjust the loop runtime each few rounds for this deviation.

5.3.2.3 Slow Data Generation on Low-Powered Slave Hardware

This issue has been encountered after the work as being defined as scope of this thesis was already
finished; when porting the slave application to the RTLinux-based end system running on the
Zynq board, the drawbacks of a rather heavily multithreaded application on an underpowered
single-core CPU became evident: when emulating higher rotational speeds, the data generation
loop often did not complete in time.

While the current way of the slave application mimicking data generation is not an accurate
representation of how in a more production-ready, FPGA-based end system implementation data
would be processed within the slave C application, the uncovered issue of using a heavily multi-
threaded application within this context should still be addressed.

To reduce the number of threads, data sent from slave to the master can be multiplexed and thus
be handled within one thread instead of two; data generation is in the final product not necessary
but replaced with copying data from a shared memory segment or a buffer which can be done
directly within the sending thread. In case all data processing should be done with one thread
only, the cycle time for data from the master being sent to the slaves would have to be adapted
to match the cycle time for data from slave to the master, so that for every frame received by
the slave, another can be sent within one loop iteration.

81

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

6 Conclusions

From the beginning of the project on, there existed several concerns about the idea of a centralized
cylinder pressure measurement data processing system. The net bandwidth required to transfer
the initially required pressure measurement data is already quite at the limit of what is being
feasible to use standard 100Mbps-Ethernet for (c.f. Section 1.4 and Section 3.2).
In case of using COTS Ethernet hardware and a distributed application communicating via, e.g.,
TCP/IP, this constant network load would most probably lead to the network thrashing, i.e.,
the network becoming effectively unusable due to overload, while further tries to re-deliver data
packets not acknowledged in time by the recipient act to perpetuate this overload situation.

Since for this project, a deterministic transmission of the data is required, only real-time com-
munication systems providing sufficient bandwidth were applicable for its realization. Various
systems have been screened and researched more in-depth if they seemed a viable option. This
process and its steps’ intermediate results have been discussed in Chapter 3. A large part of
the work only touched on in this chapter was the reading of specifications and lengthy email and
phone communications with system vendors to collect information about what hard- and software
solutions are actually currently available at which cost.

Due to the high bandwidth utilization on 100Mbps Ethernet-based systems, concerns about the
viability of these systems in general warranted the evaluation of alternative Gigabit Ethernet ca-
pable solutions. Thus, not only an EtherCAT prototype has been developed but also TTEthernet
was evaluated as alternative and a prototype built. Both prototypes basically provide the same
functionality with respect to the special properties of either system, testing the real-time transfer
capabilities and providing a basis for further development of a more production-ready system.

Generally, both tested systems performed well in the final versions of the prototypes; however,
there are still some open issues remaining that need to be addressed before using either system
within a production environment.

In the following sections, for each prototype the implementation and testing results will be dis-
cussed with regards to a possible transition from the current prototypes to a production-ready
system. Also, the open questions and problems which have to be addressed before such a transi-
tion can be considered are discussed.
Finally, a more generalized overview of the project will be given as discussion of its goals and
results and possible alternatives to the presented solutions.

82

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

6.1 Discussion of the EtherCAT Prototype

As stated in the chapter discussing the results of the prototype implementation (c.f. Section 5.2),
the final version of the EtherCAT prototype worked reliably as far as the tests with up to 12
slaves and DC synchronization on top of the XMC4800 platform slaves and a TwinCAT master
on Windows go; limited testing was done with up to 14 slaves utilizing up to 90.40Mbps in order
to demonstrate that there is still some leeway with regards to the available bandwidth.

TwinCAT as Master Software

During early prototype development, the TwinCAT master often crashed to a bluescreen with
various error messages, and while the actual cause could not be determined, the last version of
the prototype with the newest version of TwinCAT did not exhibit these problems any more, but
nevertheless, it is a problem that should be explicitly watched out for when the master soft- and
hardware is selected and tested for a production-ready system. Beckhoff sells a special selection
of systems pre-installed with TwinCAT which are certified to work well with it. These systems
are priced depending on their performance criteria, e.g., the number of CPU cores and the CPU
speed1. The highest licensing fees apply to TwinCAT when used on a customized, non-Beckhoff
system; in this case the hardware of the system would have to be purchased separately as well.

Alternative Master Software

Due to the licensing cost to be expected from using Beckhoff’s Windows-based master soft-
ware and the drawbacks of being locked into a proprietary operating and programming environ-
ment, a further look should be given to other EtherCAT master implementations. Especially the
EtherLab2 master implementation could be an interesting alternative since it does not require
a Windows-based operating system and is available as open-source project, though commercial
support is also provided by the original developers.

Production-Ready Slave Implementation

The XMC4800 implementation is only viable as prototype implementation due to the limited
peripherals available; as final implementation platform, a customized FPGA board with the
required ADCs and other external interfaces would presumably be the best compromise between
later extensibility, cost-effectiveness, and actually providing all required external interfaces. To
this end, an implementation based on the EtherCAT FPGA IP-core by Beckhoff for the Xilinx
FPGA family has currently already been partially realized, though there are still issues to be
worked out regarding getting the slave stack code which is to be run on the Microblaze soft-core
CPU to compile and run properly in conjunction with the IP-core.

1https://download.beckhoff.com/download/document/catalog/main_catalog/german/Gesamtkatalog_

2017.pdf, pg. 964ff
2https://etherlab.org/

83

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

Next Steps

Thus, in conclusion, the next steps would be:

– to get the slave stack to work on the Xilinx Artix7 platform that has been chosen as platform
for the FPGA prototype implementation;

– to handle data generation within the FPGA instead of generating data within the slave
application itself;

– to get the FPGA to provide preprocessed measurement data from the ADCs connected to
it instead of generating data;

– to evaluate the EtherLab master as cost-effective open-source alternative for TwinCAT.

6.2 Discussion of the TTEthernet Prototype

Generally, the developed prototype works as intended, though testing was limited to only the
master and two slave nodes, one with the TTEthernet hardware identical to the master and one
Xilinx Zynq Board with the TTEthernet IP-core running on the FPGA and the application run-
ning on an embedded RTLinux on the ARM CPU on the board (c.f. Section 5.3). The limitation
of only having three end systems within the network does not limit the validity of the finding
that the TTEthernet prototype provides enough bandwidth for the full number of slaves due to
the strict scheduling of real-time traffic; in fact, the network configuration used for the setup with
three end systems was the same as would be used for the system with all twelve slaves.

Open Issues Regarding the Current Implementation

Though the prototype proved the technical viability of TTEthernet for this project, there are
still some open issues needing to be addressed.

– A closer synchronization between the TTEthernet time base and the application loop must
be implemented at the fast cycle times used in this project to guarantee that actually all
cyclic send slots can be utilized, which is necessary in case of the machine operating at its
maximum rotational speed (c.f. Subsection 5.3.2.2).

– The number of threads used within the slave application has to be reduced in order for
the application to run efficiently on embedded or otherwise comparatively low-powered
processors. Different suggestions about how to resolve this issue, have been detailed in
Subsection 5.3.2.3; to determine the most feasible of these suggestions however requires to
decide on the implementation hardware platform first.

Production-Ready Slave Implementation

The Zynq platform tested with the FPGA IP-core is similarly unsuited for a final production
version of the system as the initially tested PCIe-card-based approach and was only to test the
FPGA IP-core. However, there were several problems when trying to use the IP-core in a cus-
tomized design coupled with the data acquisition and preprocessing logic. Since the IP-core was
not sold or otherwise appraised as a finished usable product but provided by TTTech as an inof-
ficial development snapshot, not promising any support for it in the future, it was decided not to
invest more time trying to get it to run on a platform not suited for a finished product.

84

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

However, this leaves the question as to which platform a final production version should be
developed on. TTTech announced the release of several embedded boards with an ASIC imple-
mentation of the TTEthernet core within this year. These boards would have a dedicated CPU
for running the real-time application and would provide two or four external Ethernet interfaces
which would allow daisy-chaining the boards in a line topology, rendering the use of a dedicated
switch superfluous and simplifying the cabling requirements.

Next Steps

While the issues regarding the current implementation can be fixed independently from the future
implementation platform choices, this choice does affect, i.e., how much simplifications to the
multithreaded program architecture are necessary to accommodate for possible limitations of the
most viable implementation platform.
Thus, it is suggested to defer any further development until a suitable implementation platform is
chosen and then focus on adapting and simplifying the prototype slave application to best match
the possibilities of the platform.

6.3 Final Conclusions with Regards to the Project Goals

The overall goal of the project was to verify the feasibility of a centralized data processing and
motor control system. While from a purely technical point of regarding the actual implementation,
the project was successful in showing that the tested fieldbus systems can be used to for such an
application, some questions regarding the overall feasibility considering a “bigger picture” remain.

The following paragraphs will briefly discuss points of interest which should be considered before
continuing the project.

Future Extensibility

One implicit goal of the redesign of the whole system was to provide an in-house, future-proof
base platform to improve upon; this platform should be extensible in order to accommodate new
requirements to come with newer generations of motors the system is to be used with. As already
witnessed during the implementation of the initial prototypes, these additional requirements
already started to come up (c.f. Subsection 1.3.1).

The communication system could be in case of the 100Mbps-only Ethernet-based solutions a
limiting factor which severely reduces the overall possibilities for future additions, while the slave
systems are planned to be implemented on an FPGA-based platform that allows for new features
to be added later and the master, implemented as PC-based application, also allows for modular
extensibility.

Component Availability

While there are multiple implementations from different vendors currently available for Ether-
CAT, there are far less options for TTEthernet. Though this in itself is not necessarily a problem,
it is a factor decision makers should be aware of when considering a continuation of the project.

85

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

Apart from this, there is currently no official, commercially available FPGA IP-core implemen-
tation available for TTEthernet; thus, as an interim solution, an TTTech-internal build has been
made available for use with the Xilinx Zynq platform. There are however problems with integra-
tion of the IP-core into a new design that have not been resolved so far and the support status
of this internal IP-core build is also questionable. However, as previously mentioned, there are
new embedded boards with a TTEthernet ASIC and two to four external Ethernet connectors
providing daisy-chaining support for TTEthernet promised to be released within the current year;
these could also provide a good alternative to running TTEthernet on a customized FPGA-board,
though data preprocessing logic would then have to be done on the processor integrated with the
board which also runs the TTEthernet slave application.

Functional Safety

Another important additional factor that has not really been covered by the initial specification
is whether provisions with regards to the functional safety of the transmission system should be
made or not. Protocols adding functional safety to any communication system usually duplicate
the safe data as well as add checksums to it, i.e. the bandwidth for safe data is more than
doubled (c.f. [Ves11, Eth13b, Gui09, Ser13a]). With a transmission medium limited to 100Mbps,
implementing a safety protocol for all transferred data is thus not possible. For only the control
data sent by the master, the available bandwidth would presumably suffice; however, additional
tests would be required with the specific safety protocol implementation to be used.

Security

As vertical integration of automation networks with a company’s management networking infras-
tructure and, consequently, the Internet is becoming increasingly popular and the commissioning
company also is likely to consider it as an option for remote collection of diagnostics data in case
problems occur with the machinery, security of the automation network and the master system
which in case of this aforementioned vertical integration would be connected to a management
network has to be given additional thought.

Regarding the security of the automation network component, encrypting the real-time traffic has
been considered. To use an asymmetric encryption system to initially authenticate the connected
slaves and encrypt a shared encryption key that then in turn can be used to efficiently secure
the exchanged real-time data cryptographically by use of a symmetric encryption algorithm.
Whether, and accordingly, how much overhead would ensue due to encryption and how encryption
would be used in conjunction with a functional safety protocol is however still to be further
investigated.

A probably even more important security aspect in case of connecting the master computer system
to the Internet directly or indirectly by connecting it with other connected systems is securing
and locking down access to the system itself, only allowing minimal outside access and, if this is
not opposed to the desired use cases, prohibit access completely, only allowing the system itself to
transmit diagnostics data to a predefined server. For obvious reasons, the choice of the operating
system does matter in this case also from a security and not only from a stability point of view.

86

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

Fully Centralized Approach

The fully centralized approach of the control application as it is assumed for this thesis has
undeniable advantages: all data is collected at the master, which then can use whatever parts
it might need as input for its control algorithms and adapting the control parameters of the
slaves accordingly. The algorithms can be changed rather independently from the slave nodes
themselves and also, as long as they report the same data, the slave nodes can be changed or
upgraded fairly easily. Considering the relatively little remaining bandwidth available in case of
additional data being required to be transmitted when using a 100Mbps medium, there are two
slightly different approaches to be considered.

Firstly, the required bandwidth could be reduced by shifting some calculations from the master
to the slaves so that only a condensed set of data has to be transferred. Since the same data, i.e.,
the pressure measurement data, is used for a lot of algorithms however, it is questionable, whether
partially moving algorithms to the slave nodes would change anything with respect to the required
data to be transmitted. A fully distributed approach in which all slaves do all calculations they can
do on their own and receive only a minimal, condensed set of state information data necessary for
some decisions requiring knowledge about the overall system state from their peers would thus be
more sensible. However, this distributed approach would contradict the requirement of a central
data collection for later diagnostic purposes and is thus probably not as suited for the task at
hand.

As second alternative solution that does fit the requirements of a centralized diagnostics data
collection system, it is suggested to consider the use of dedicated transmission lines to each slave
(c.f. Figure 6.1). The cabling requirements are certainly a drawback over a real-time communi-
cation system that can be used with a physical line topology, however the cost and complexity of
additional cabling is in no relation to the cost and complexity of a commercial real-time commu-
nication system with overall limited bandwidth and the requirement to work within the confines
of the given automation system programming framework. In the simplest case, up to twelve
Ethernet cables can be used with a few multiport network cards and a C application that di-
rectly exchanges data via these direct links without the need for any scheduling and without the
danger of any contentions or collisions, while still providing all the benefits of a fully centralized
system. Since the full media bandwidth is available on each slave connection, even 100Mbps
Ethernet hardware can be used in this case with a net bandwidth utilization below 10% on each
link. However, additional bandwidth must be provided for the procedures required to allow for
deterministic real-time behavior on top of standard Ethernet hardware; this is discussed below
in more detail.

Figure 6.1: Centralized Data Collection System Using Direct Transmission Lines

87

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

As a different version of this alternative, using a daisy-chained cabling structure with a similar
functional logic has been suggested when concerns about the commercial marketability of the
direct cabling approach due to its more cluttered look were raised (c.f. Figure 6.2). This approach
does lend itself to a much cleaner appearance at the expense of complicating the functionality to
be included within the slave nodes as well as the protocol that has to be designed for the real-time
data exchange. Since this approach does not rely on a protocol limited to the 100Mbps Ethernet
physical layer, Gigabit hardware can be used to accommodate for the custom real-time protocol
necessary and the possibly required safety features or other enhancements.

Figure 6.2: Centralized Data Collection System Using Daisy-Chained Transmission Lines

Since with neither of both these custom approaches special Ethernet hardware is used, the crucial
problem of guaranteeing deterministic real-time behavior has to be specifically discussed. Both
transmission jitter and slave synchronicity are not generally a problem for the application at hand
since slave actions (e.g., injection or ignition timings) are synchronized by the communication
system but locally on the slaves derivable trigger signals. It only needs to be precluded that
these factors impact the complete and timely transmission of control data and all generated
measurement data.

For both approaches, a simple protocol can be used in which the master cyclically polls each
connected slave; upon reception of such a poll frame addressed to the respective slave, the contents
of the response buffer previously populated by the slave application can be promptly returned.

Within the slave nodes, a customized, FPGA-based Ethernet MAC can be used which reacts to
received frames carrying real-time data completely without involvement from any more complex
processing layer, thus guaranteeing deterministic processing delays. To use this scheme with a
daisy-chained topology, each slave Ethernet MAC node would have to include a small switching
logic that relays frames not addressed to the node itself to its other Ethernet port. This also can
be realized fully within the FPGA logic itself and since the used protocol inherently precludes
any kind of contention situation, the resulting switching delay is deterministic.

Application logic handled by, for example, a C program running on a soft-core CPU, can be
decoupled from actual real-time data exchanges by double- or triple-buffered send- and receive
buffers, thus ensuring that application processing cannot interfere with the overall real-time
communication behavior.

Considering the master using a standard Ethernet NIC, real-time behavior of the communication
cannot be guaranteed by the hardware itself. Instead, the real-time properties required must be
provided by the communication protocol. For this application, there are two important properties
the communication system must provide.

88

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Sufficient transmit slots to transfer all measurement data generated at the maximum rate from
the slaves to the master must be provided. Since frame timing cannot be as precise as with
dedicated hardware, some jitter with respect to the transmission cycle times must be expected;
if two consecutive frames are offset against each other by the encountered jitter, it can lead to
the first frame not being fully utilized while the later frame is then not able to carry all the data
generated since the previous frame was transmitted. Thus, even in the worst case scenario of two
consecutive frames being offset two times the maximum jitter from each other, enough transfer
slots must be scheduled so that all generated data can be transmitted.

The actual over-provisioning necessary consequently depends on the maximum jitter; the maxi-
mum jitter, in turn, is difficult to determine for standard Ethernet hardware and must be assumed
to be theoretically not bounded. Therefore, to ensure a timely response – or the detection of what
has to be regarded as a loss of communication – within a given time interval, the application-side
delay between request frame transmission and response frame reception has to be monitored, thus
effectively bounding the maximum jitter on the application layer. This bounding is, however, also
affected by possible jitter within the timing of the master’s operating system or the application
itself which therefore also have to be considered when calculating the jitter that has to be toler-
ated during normal operation. From the resulting maximum jitter, the required over-provisioning
of cyclic frames with respect to the actually required transmission slots can be derived.

6.4 Outlook and Future Work

As already mentioned in the specific previous sections, the EtherCAT slave application is currently
being ported to be used on a Xilinx-based FPGA platform; after this, measurement data should
be acquired from connected ADCs instead of being generated. There are however currently
problems getting the IP-core to work correctly which still have to be solved. In a related project
also commissioned by the external company, a data generator is being developed which can
output predefined sets of stimuli; this data generator then can be used in conjunction with the
FPGA-based prototype to test the overall system.

For the TTEthernet-based prototype, the slave application has been adapted to work on the
ARM CPU on the Zynq board with the TTEthernet core running on the FPGA; however, due
to problems getting the IP-core to work in a custom design and the board itself not being a
viable option for subsequent development, the currently suggested course of action with regards
to TTEthernet is to wait for the new ASIC-based boards to be released and then to test these
for their viability in a production-ready system.

For the further development of the control application running on the master, additional input
from the commissioning company regarding the specifics of the control algorithms to be integrated
into the application is required in order to estimate the performance requirements of the master
system and to extend the implemented stubs within master application that currently only check
generated data for their validity with actual control functionality.

Though the initial prototype development was a success, at the present state, neither of the
systems can yet be wholly recommended for production use within the given constraints and
further development and testing is still required; these necessary additional steps are currently
being undertaken in the course of a further cooperative research project with the commissioning
company.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Appendices

Appendix A: Bandwidth Efficiency Estimation

The tables listed here are the results of the calculations mentioned in Subsection 3.2.2.

A.1: Bandwidth Efficiency Estimation for Single-Frame Systems

The best-matching number of tuples for each row of parameters is highlighted blue; in case the
resulting payloads are beyond the permissible 1500B, they are marked red; in this case, the
calculated percentage for the Ethernet overhead is inherently wrong and thus not applicable.

NUM TUPLES PER DATA FRAME SINGLE 100 247 248 249 297 298 299 321 322 324

packets/rev (per slave) 36 15 15 15 13 13 13 12 12 12

time between packet sends (per slave) 0.7407 1.7778 1.7778 1.7778 2.0513 2.0513 2.0513 2.2222 2.2222 2.2222 ms

degrees/packet 10 24.7 24.8 24.9 29.7 29.8 29.9 32.1 32.2 32.4 ◦CA

frame overhead/rev 1368 570 570 570 494 494 494 456 456 456 B

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 37 STD 464 1144 1148 1153 1375 1380 1384 1486 1491 1500 B

payload/rev 16704 17160 17220 17295 17875 17940 17992 17832 17892 18000 B

total required bandwidth (1 slave) 5.4216 5.319 5.337 5.3595 5.5107 5.5302 5.5458 5.4864 5.5044 5.5368 Mbps

total required bandwidth (all slaves) 65.0592 63.828 64.044 64.314 66.1284 66.3624 66.5496 65.8368 66.0528 66.4416 Mbps

ethernet overhead 7.57 3.21 3.20 3.19 2.69 2.68 2.67 2.49 2.49 2.47 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 37 1PC-RP 472 1152 1156 1161 1383 1388 1392 1494 1499 1508 B

payload/rev 16992 17280 17340 17415 17979 18044 18096 17928 17988 18096 B

total required bandwidth (1 slave) 5.508 5.355 5.373 5.3955 5.5419 5.5614 5.577 5.5152 5.5332 5.5656 Mbps

total required bandwidth (all slaves) 66.096 64.26 64.476 64.746 66.5028 66.7368 66.924 66.1824 66.3984 66.7872 Mbps

ethernet overhead 7.45 3.19 3.18 3.17 2.67 2.66 2.66 2.48 2.47 2.46 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 37 1PC+RP 476 1156 1160 1165 1387 1392 1396 1498 1503 1512 B

payload/rev 17136 17340 17400 17475 18031 18096 18148 17976 18036 18144 B

total required bandwidth (1 slave) 5.5512 5.373 5.391 5.4135 5.5575 5.577 5.5926 5.5296 5.5476 5.58 Mbps

total required bandwidth (all slaves) 66.6144 64.476 64.692 64.962 66.69 66.924 67.1112 66.3552 66.5712 66.96 Mbps

ethernet overhead 7.39 3.18 3.17 3.16 2.67 2.66 2.65 2.47 2.47 2.45 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 40 STD 501 1236 1241 1246 1486 1491 1496 1606 1611 1621 B

payload/rev 18036 18540 18615 18690 19318 19383 19448 19272 19332 19452 B

total required bandwidth (1 slave) 5.8212 5.733 5.7555 5.778 5.9436 5.9631 5.9826 5.9184 5.9364 5.9724 Mbps

total required bandwidth (all slaves) 69.8544 68.796 69.066 69.336 71.3232 71.5572 71.7912 71.0208 71.2368 71.6688 Mbps

ethernet overhead 7.05 2.98 2.97 2.96 2.49 2.49 2.48 2.31 2.30 2.29 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 40 1PC-RP 509 1244 1249 1254 1494 1499 1504 1614 1619 1629 B

payload/rev 18324 18660 18735 18810 19422 19487 19552 19368 19428 19548 B

total required bandwidth (1 slave) 5.9076 5.769 5.7915 5.814 5.9748 5.9943 6.0138 5.9472 5.9652 6.0012 Mbps

total required bandwidth (all slaves) 70.8912 69.228 69.498 69.768 71.6976 71.9316 72.1656 71.3664 71.5824 72.0144 Mbps

ethernet overhead 6.95 2.96 2.95 2.94 2.48 2.47 2.46 2.30 2.29 2.28 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 40 1PC+RP 513 1248 1253 1258 1498 1503 1508 1618 1623 1633 B

payload/rev 18468 18720 18795 18870 19474 19539 19604 19416 19476 19596 B

total required bandwidth (1 slave) 5.9508 5.787 5.8095 5.832 5.9904 6.0099 6.0294 5.9616 5.9796 6.0156 Mbps

total required bandwidth (all slaves) 71.4096 69.444 69.714 69.984 71.8848 72.1188 72.3528 71.5392 71.7552 72.1872 Mbps

ethernet overhead 6.90 2.95 2.94 2.93 2.47 2.47 2.46 2.29 2.29 2.27 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 48 STD 601 1483 1489 1495 1783 1789 1795 1927 1933 1945 B

payload/rev 21636 22245 22335 22425 23179 23257 23335 23124 23196 23340 B

total required bandwidth (1 slave) 6.9012 6.8445 6.8715 6.8985 7.1019 7.1253 7.1487 7.074 7.0956 7.1388 Mbps

total required bandwidth (all slaves) 82.8144 82.134 82.458 82.782 85.2228 85.5036 85.7844 84.888 85.1472 85.6656 Mbps

ethernet overhead 5.95 2.50 2.49 2.48 2.09 2.08 2.07 1.93 1.93 1.92 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 48 1PC-RP 609 1491 1497 1503 1791 1797 1803 1935 1941 1953 B

payload/rev 21924 22365 22455 22545 23283 23361 23439 23220 23292 23436 B

total required bandwidth (1 slave) 6.9876 6.8805 6.9075 6.9345 7.1331 7.1565 7.1799 7.1028 7.1244 7.1676 Mbps

total required bandwidth (all slaves) 83.8512 82.566 82.89 83.214 85.5972 85.878 86.1588 85.2336 85.4928 86.0112 Mbps

ethernet overhead 5.87 2.49 2.48 2.47 2.08 2.07 2.06 1.93 1.92 1.91 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 48 1PC+RP 613 1495 1501 1507 1795 1801 1807 1939 1945 1957 B

payload/rev 22068 22425 22515 22605 23335 23413 23491 23268 23340 23484 B

total required bandwidth (1 slave) 7.0308 6.8985 6.9255 6.9525 7.1487 7.1721 7.1955 7.1172 7.1388 7.182 Mbps

total required bandwidth (all slaves) 84.3696 82.782 83.106 83.43 85.7844 86.0652 86.346 85.4064 85.6656 86.184 Mbps

ethernet overhead 5.84 2.48 2.47 2.46 2.07 2.07 2.06 1.92 1.92 1.90 %

Table APX.1: Bandwidth and Bandwidth Efficiency Estimations Depending on the Number of
Tuples Sent for Single-Frame Systems

90

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

A.2: Bandwidth Efficiency Estimation for Summation-Frame Systems

The best-matching number of tuples for each row of parameters is highlighted blue; in case
the resulting payloads are beyond the permissible 1500B, they are marked orange; to account
multiple frames per communication cycle being required to transmit this payload, an additional
row gives the number of actually required frames per cycle and the calculated overhead percentage
is adjusted accordingly.

The tables listed here are the results of the calculations mentioned in Subsection 3.2.2.

NUM TUPLES PER DATA FRAME SHARED 18 19 20 22 23 24 24 25 26 100

packets/rev (shared) 200 190 180 164 157 150 150 144 139 36

time between packet sends (for any slave) 0.1333 0.1404 0.1481 0.1626 0.1699 0.1778 0.1778 0.1852 0.1918 0.7407 ms

degrees/packet 1.8 1.9 2 2.2 2.3 2.4 2.4 2.5 2.6 10 ◦CA

frame overhead/rev 7600 7220 6840 6232 5966 5700 5700 5472 5282 1368 B

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 37 STD 1011 1059 1119 1227 1287 1335 1335 1395 1455 5559 B

payload/rev (1 slave) 16850 16768 16785 16769 16839 16688 16688 16740 16854 16677 B

payload/rev (all slaves) 202200 201210 201420 201228 202059 200250 200250 200880 202245 200124 B

total required bandwidth (shared) 62.94 62.529 62.478 62.238 62.4075 61.785 61.785 61.9056 62.2581 60.4476 Mbps

number of frames required 1 1 1 1 1 1 1 1 1 4 %

ethernet overhead 3.62 3.46 3.28 3.00 2.87 2.77 2.77 2.65 2.55 2.66 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 37 1PC-RP 1107 1155 1215 1323 1383 1431 1431 1491 1551 5655 B

payload/rev (1 slave) 18450 18288 18225 18081 18095 17888 17888 17892 17966 16965 B

payload/rev (all slaves) 221400 219450 218700 216972 217131 214650 214650 214704 215589 203580 B

total required bandwidth (shared) 68.7 68.001 67.662 66.9612 66.9291 66.105 66.105 66.0528 66.2613 61.4844 Mbps

number of frames required 1 1 1 1 1 1 1 1 2 4 %

ethernet overhead 3.32 3.19 3.03 2.79 2.67 2.59 2.59 2.49 4.67 2.62 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 37 1PC+RP 1155 1203 1263 1371 1431 1479 1479 1539 1599 5703 B

payload/rev (1 slave) 19250 19048 18945 18737 18723 18488 18488 18468 18522 17109 B

payload/rev (all slaves) 231000 228570 227340 224844 224667 221850 221850 221616 222261 205308 B

total required bandwidth (shared) 71.58 70.737 70.254 69.3228 69.1899 68.265 68.265 68.1264 68.2629 62.0028 Mbps

number of frames required 1 1 1 1 1 1 1 2 2 4 %

ethernet overhead 3.19 3.06 2.92 2.70 2.59 2.50 2.50 4.71 4.54 2.60 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 40 STD 1083 1143 1203 1323 1383 1443 1443 1503 1563 6003 B

payload/rev (1 slave) 18050 18098 18045 18081 18095 18038 18038 18036 18105 18009 B

payload/rev (all slaves) 216600 217170 216540 216972 217131 216450 216450 216432 217257 216108 B

total required bandwidth (shared) 67.26 67.317 67.014 66.9612 66.9291 66.645 66.645 66.5712 66.7617 65.2428 Mbps

number of frames required 1 1 1 1 1 1 1 2 2 5 %

ethernet overhead 3.39 3.22 3.06 2.79 2.67 2.57 2.57 4.81 4.64 3.07 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 40 1PC-RP 1179 1239 1299 1419 1479 1539 1539 1599 1659 6099 B

payload/rev (1 slave) 19650 19618 19485 19393 19351 19238 19238 19188 19217 18297 B

payload/rev (all slaves) 235800 235410 233820 232716 232203 230850 230850 230256 230601 219564 B

total required bandwidth (shared) 73.02 72.789 72.198 71.6844 71.4507 70.965 70.965 70.7184 70.7649 66.2796 Mbps

number of frames required 1 1 1 1 1 2 2 2 2 5 %

ethernet overhead 3.12 2.98 2.84 2.61 2.50 4.71 4.71 4.54 4.38 3.02 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 40 1PC+RP 1227 1287 1347 1467 1527 1587 1587 1647 1707 6147 B

payload/rev (1 slave) 20450 20378 20205 20049 19979 19838 19838 19764 19773 18441 B

payload/rev (all slaves) 245400 244530 242460 240588 239739 238050 238050 237168 237273 221292 B

total required bandwidth (shared) 75.9 75.525 74.79 74.046 73.7115 73.125 73.125 72.792 72.7665 66.798 Mbps

number of frames required 1 1 1 1 2 2 2 2 2 5 %

ethernet overhead 3.00 2.87 2.74 2.52 4.74 4.57 4.57 4.41 4.26 3.00 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 48 STD 1299 1371 1443 1587 1659 1731 1731 1803 1875 7203 B

payload/rev (1 slave) 21650 21708 21645 21689 21706 21638 21638 21636 21719 21609 B

payload/rev (all slaves) 259800 260490 259740 260268 260463 259650 259650 259632 260625 259308 B

total required bandwidth (shared) 80.22 80.313 79.974 79.95 79.9287 79.605 79.605 79.5312 79.7721 78.2028 Mbps

number of frames required 1 1 2 2 2 2 2 2 2 5 %

ethernet overhead 2.84 2.70 2.57 4.57 4.38 4.21 4.21 4.04 3.90 2.57 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 48 1PC-RP 1395 1467 1539 1683 1755 1827 1827 1899 1971 7299 B

payload/rev (1 slave) 23250 23228 23085 23001 22962 22838 22838 22788 22831 21897 B

payload/rev (all slaves) 279000 278730 277020 276012 275535 274050 274050 273456 273969 262764 B

total required bandwidth (shared) 85.98 85.785 85.158 84.6732 84.4503 83.925 83.925 83.6784 83.7753 79.2396 Mbps

number of frames required 1 1 2 2 2 2 2 2 2 5 %

ethernet overhead 2.65 2.52 4.71 4.32 4.15 3.99 3.99 3.85 3.71 2.54 %

⇒ ETH PAYLOAD SIZE FOR NUM TUPLES 48 1PC+RP 1443 1515 1587 1731 1803 1875 1875 1947 2019 7347 B

payload/rev (1 slave) 24050 23988 23805 23657 23590 23438 23438 23364 23387 22041 B

payload/rev (all slaves) 288600 287850 285660 283884 283071 281250 281250 280368 280641 264492 B

total required bandwidth (shared) 88.86 88.521 87.75 87.0348 86.7111 86.085 86.085 85.752 85.7769 79.758 Mbps

number of frames required 1 2 2 2 2 2 2 2 2 5 %

ethernet overhead 2.57 4.78 4.57 4.21 4.04 3.90 3.90 3.76 3.63 2.52 %

Table APX.2: Bandwidth and Bandwidth Efficiency Estimations Depending on the Number of
Tuples Sent for Summation-Frame Systems

91

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

Appendix B: Listing of Initially Reviewed Fieldbus Systems

Name Bandwidth
AFDX / ARINC-664 10 / 100Mbps
ARINC-429 100 kbps
AS-Interface 167 kbps
CAN/CANopen/CiA < 1Mbps
CC-Link ≤ 10Mbps
CC-Link IE Control 1Gbps
CC-Link IE Field 1Gbps
CC-Link LT < 2.5Mbps
ControlNet 5Mbps
DeviceNet 125− 500 kbps
EtherCAT 100Mbps
EtherNet/IP-CIP 100Mbps/1Gbps
FlexRay 5− 10Mbps
Foundation Fieldbus H1 31.25 kbps
Foundation Fieldbus HSE 100Mbps
Interbus 500 kbps
LIN 1− 20 kbps
Modbus 19.2− 115 kbps
Modbus/TCP 100Mbps
MOST < 150Mbps
PowerLink 100Mbps
ProfiBus/DP 9.6 kbps− 12Mbps
ProfiBus/PA 31.25 kbps
ProfiBus/CbA 100Mbps
ProfiNet/IO 100Mbps
ProfiNet/IRT 100Mbps
RAPIEnet 100Mbps/1Gbps
SafetyNET-p RTFL 100Mbps
SafetyNET-p RTFN 100Mbps
Sercos-III 100Mbps
SynqNet 100Mbps
TCnet 100Mbps
TTCAN < 1Mbps
TTEthernet 100Mbps/1Gbps
TTP/A < 1Mbps
TTP/C < 5Mbps/25Mbps
VARAN 100Mbps

Table APX.3: Initially Reviewed Fieldbus Systems

92

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

Appendix C: Commonly Used Data Structures

These data structures have been used in the EtherCAT and the TTEthernet prototypes as refer-
enced in Section 4.1 and Section 4.2, respectively.

C.1: Control Data A

Control data from master to each slave, required update time 53.3̇ ms.

PACKED_OBJ

{

uint32_t ctrl_a_u32i1_c1;

uint32_t ctrl_a_u32i1_c2;

uint32_t ctrl_a_u32i2_c1;

uint32_t ctrl_a_u32i2_c2;

byte_t ctrl_a_uch12_c1[12];

byte_t ctrl_a_uch12_c2[12];

byte_t ctrl_a_uch21_c1[21];

byte_t ctrl_a_uch21_c2[21];

} t_m2s_ctrl_a_data;

PACKED_OBJ

{

t_m2s_ctrl_a_data elems[NUM_SLAVES];

} t_m2s_ctrl_a_message;

C.2: Control Data B

Control data from master to each slave, required update time 1.6ms.

PACKED_OBJ

{

uint32_t ctrl_b_u32i1_c1;

uint32_t ctrl_b_u32i1_c2;

uint32_t ctrl_b_u32i2_c1;

uint32_t ctrl_b_u32i2_c2;

uint16_t ctrl_b_u16i_c1;

uint16_t ctrl_b_u16i_c2;

uint8_t ctrl_b_u8i1_c1;

uint8_t ctrl_b_u8i1_c2;

uint8_t ctrl_b_u8i2_c1;

uint8_t ctrl_b_u8i2_c2;

} t_m2s_ctrl_b_data;

PACKED_OBJ

{

t_m2s_ctrl_b_data elems[NUM_SLAVES];

} t_m2s_ctrl_b_message;

93

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Conclusions

C.3: Process Data

Pressure measurement and knock sensor data from each slave to the master, required maximum
cycle time 740µs.

PACKED_OBJ

{

uint16_t ang_first;

uint16_t ang_last;

int16_t pdata_len;

uint16_t pdata_c1[TUPLES_PDATA_PER_MSG];

uint16_t pdata_c2[TUPLES_PDATA_PER_MSG];

int16_t kdata_len;

uint16_t kdata_c1[TUPLES_KDATA_PER_MSG];

uint16_t kdata_c2[TUPLES_KDATA_PER_MSG];

} t_s2m_pdata_message;

C.4: Slave Status Data

Slave status data from each slave to the master, required update time 26.6̇ ms.

PACKED_OBJ

{

uint16_t engspeed;

uint16_t msrdata_c1;

uint16_t msrdata_c2;

uint16_t temp_c1;

uint16_t temp_c2;

uint16_t ivoltage_c1;

uint16_t ivoltage_c2;

} t_s2m_slstate_message;

94

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Literature

[Bec13a] Beckhoff GmbH. Application Note ET9300 – EtherCAT Slave Stack Code, 2013.
[Bec13b] Beckhoff GmbH. EtherCAT Specification – Part 1: Overview, 2013.
[Bec13c] Beckhoff GmbH. EtherCAT Specification – Part 2: Physical Layer service and protocol

specification, 2013.
[Bec13d] Beckhoff GmbH. EtherCAT Specification – Part 3: Data Link Layer service definition,

2013.
[Bec13e] Beckhoff GmbH. EtherCAT Specification – Part 4: Data Link Layer protocols definition,

2013.
[Bec13f] Beckhoff GmbH. EtherCAT Specification – Part 5: Application Layer service definition,

2013.
[Bec13g] Beckhoff GmbH. EtherCAT Specification – Part 6: Application Layer protocols defini-

tion, 2013.
[Bos91] Bosch GmbH. CAN Specification, 1991.

[CAH17] G. T. Chala, A. R. A. Aziz, and F. Y. Hagos. Combined effect of boost pressure and
injection timing on the performance and combustion of CNG in a DI spark ignition
engine. Automotive Technology, International Journal of, 18(1):85–96, 2017.

[CKK+08] J. W. Chung, J. H. Kang, N. H. Kim, W. Kang, and B. S. Kim. Effects of the fuel
injection ratio on the emission and combustion performances of the partially premixed
charge compression ignition combustion engine applied with the split injection method.
Automotive Technology, International Journal of, 9(1):1–8, 2008.

[CKL06] D. M. Cuong, M. K. Kim, and H. C. Lee. Supporting Hard Real-time Communication of
Periodic Messages over Switched Ethernet. In Strategic Technology, 2006 International
Forum on, pages 419–422, Oct 2006.

[CSS14] Marco Cereia, Jochen Streib, and Reinhard Sperrer. Industrial Communication Tech-
nology Handbook, Second Edition, chapter SafetyNET p Protocol. CRC Press, 2014.

[DH03] O. Dolejs and Z. Hanzalek. Simulation of Ethernet for real-time applications. In Indus-
trial Technology, 2003 IEEE International Conference on, volume 2, pages 1018–1021
Vol.2, Dec 2003.

[Ech96] Echelon Corporation. LonTalk Protocol Specification Version 3.0, 1996.
[Eth12] EtherCAT Technology Group. EtherCAT Introduction, 2012.

[Eth13a] Ethernet POWERLINK Standardization Group. Ethernet POWERLINK – Communi-
cation Profile Specification, 2013.

[Eth13b] Ethernet POWERLINK Standardization Group. openSAFETY Basics, 2013.
[Eth14] Ethernet POWERLINK Standardization Group. Ethernet POWERLINK Basics, 2014.
[Eth16] EtherCAT Technology Group. EtherCAT Communication Principles, 2016.
[GR05] S. Ganti and B. Raahemi. Differentiated back-off for Ethernet. In Electrical and Com-

puter Engineering, 2005. Canadian Conference on, pages 417–420, 5 2005.
[Gui09] Dr. Beckmann Guido. Overview – Safety over EtherCAT, 2009.
[IEE98] IEEE. ISO/IEC 8802-5:1998, Information Technology – Telecommunications and infor-

mation exchange between systems – Local and metropolitan area networks – Specific
requirements – Part 5: Token ring access method and physical layer specifications. IEEE
Std 802.5, 1998 Edition (ISO/IEC 8802-5:1998), pages 1–256, June 1998.

[IEE08] IEEE. IEEE Standard for Information Technology – Telecommunications and Infor-
mation Exchange Between Systems–Local and Metropolitan Area Networks – Specific
Requirements Part 3: Carrier Sense Multiple Access With Collision Detection (CS-
MA/CD). IEEE Std 802.3-2008 (Revision of IEEE Std 802.3-2005), 2008.

95

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

[IEE12] IEEE. IEEE Standard for Information Technology – Telecommunications and Infor-
mation Exchange Between Systems–Local and Metropolitan Area Networks – Specific
Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-
2007), 2012.

[Int96] International P-NET User Organization. The P-NET Fieldbus for Process Automation,
1996.

[ISO08] ISO. ISO/IEC Standard 7498: Open Systems Interconnection – Basic Reference Model,
2008.

[MAP06] R. Marau, L. Almeida, and P. Pedreiras. Enhancing Real-Time Communication over
COTS Ethernet switches. In Factory Communication Systems, 2006 IEEE International
Workshop on, pages 295–302, 2006.

[MSZL02] M. Mískowicz, M. Sapor, M. Zych, andW. Latawiec. Performance analysis of predictive
p-persistent CSMA protocol for control networks. In Factory Communication Systems,
4th IEEE International Workshop on, pages 249–256, 2002.

[OK02] S. Ouni and F. Kamoun. Hard and soft real time message scheduling on Ethernet
networks. In Systems, Man and Cybernetics, 2002 IEEE International Conference on,
volume 6, pages 6 pp. vol.6–, Oct 2002.

[PRO98] PROFIBUS Nutzerorganisation e.V. PNO. PROFIBUS Specification, 1998.
[PRO03] PROFIBUS Nutzerorganisation e.V. PNO. PROFInet Architecture Description and

Specification. PROFIBUS Nutzerorganisation e.V. PNO, Version 2.01, Aug. 2003,
Order-No. 2.202 edition, 2003.

[PRO11] PROFINET International. PROFINET System Description – Technology and Applica-
tion, 2011.

[SAE11a] SAE. SAE Standard AS6802: Time Triggered Ethernet, 2011.
[SAE11b] SAE. SAE Standard AS6803: TTP Communication Protocol. (AS6003), 2011.
[Sau10] T. Sauter. The Three Generations of Field-Level Networks – Evolution and Compatibil-

ity Issues. IEEE Transactions on Industrial Electronics, 57(11):3585–3595, Nov 2010.
[Ser11] Sercos International. Sercos Specification – General Overview and Architecture, 2011.

[Ser13a] Sercos International. CIP Safety on Sercos, 2013.
[Ser13b] Sercos International. Sercos Specification – Communication Profile, 2013.
[Ser13c] Sercos International. Sercos Specification – Generic Device Profile, 2013.
[Ser14] Sercos International. Sercos Specification – Communication Specification, 2014.

[SGAK06] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz. A Time-Triggered Ethernet
(TTE) Switch. In Design, Automation and Test in Europe, 2006. Proceedings, volume 1,
pages 1–6, 3 2006.

[TTT08] TTTech Computertechnik AG. TTEthernet Specification, 2008.
[TTT15] TTTech Computertechnik AG. The TTEthernet End System Linux Driver and Inte-

gration, 2015.
[TV14] Federico Tramarin and Stefano Vitturi. Industrial Communication Technology Hand-

book, Second Edition, chapter Ethernet POWERLINK. CRC Press, 2014.
[Ves11] Miodrag Veselic. Opensafety – the open source safety solution. 2011.

[WHL+08] Jinhua Wang, Zuohua Huang, Bing Liu, Ke Zeng, Jinrong Yu, and Deming Jiang.
Effect of ignition timing and hydrogen fraction on combustion and emission character-
istics of natural gas direct-injection engine. Frontiers of Energy and Power Engineering
in China, 2(2):194–201, 2008.

[Zö14] Klaus Zöggeler. Central Crankshaft Angle Measurement Unit for Internal Combustion
Engines. 2014.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen Quellen oder indirekt
übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Wien, am 31.05.2017 Richard Christian Tessarek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

https://www.tuwien.at/bibliothek

	Titlepage
	Introduction
	Motivation
	Problem Statement
	Technical Requirements
	Engine Specifications and Requirements
	Control Algorithm Requirements
	Derivative Requirements and Constraints

	Proposed Methodology
	Organization of this Thesis

	State of the Art
	General Differentiations and Definitions
	Real-Time Communication Classes
	Control- and Communication System Concepts
	Media Access Control and Communication Mechanisms

	Technological Introduction to Short-listed Protocols
	EtherCAT
	Sercos-III
	TTEthernet

	Proposed Implementation Approaches
	Basic Concepts for Proposed Fieldbus Systems
	Calculations and Considerations
	Multiple Cycle Times Versus Multiplexing
	Data Packing
	Tuple Generation Versus Communication Cycle Time
	Net Bandwidth
	Preliminarily Excluded Systems

	Additional Considerations for Hard Real-Time Operation
	Unsuitability of TCP/IP
	Unsuitability of MAC-CSMA(/CD)
	Unsuitability of COTS Switched Ethernet

	Discussion of Remaining Systems

	Prototype Implementations
	EtherCAT Prototype
	Used Hard- and Software
	General Remarks about the Test Application
	Network Structure
	Network Cycle Time and Multiplexing
	Master Application
	Slave Application
	Notable Caveats

	TTEthernet Prototype
	Used Hard- and Software
	General Remarks about the Test Application
	Network Structure and Schedule
	Master Application
	Slave Application
	Notable Caveats

	Results
	Recap of the Prototype Systems Selection
	EtherCAT Prototype
	Logged Data and Measurements
	Encountered Problems and Solutions

	TTEthernet Prototype
	Logged Data and Measurements
	Encountered Problems and Solutions

	Conclusions
	Discussion of the EtherCAT Prototype
	Discussion of the TTEthernet Prototype
	Final Conclusions with Regards to the Project Goals
	Outlook and Future Work

	Appendices
	Bandwidth Efficiency Estimation
	Bandwidth Efficiency Estimation for Single-Frame Systems
	Bandwidth Efficiency Estimation for Summation-Frame Systems

	Listing of Initially Reviewed Fieldbus Systems
	Commonly Used Data Structures
	Control Data A
	Control Data B
	Process Data
	Slave Status Data

	Literature

