

Diploma Thesis

Comparative fatigue performance assessment of asphalt mastics in DSR

Submitted in satisfaction of the requirements for the degree of Diplom-Ingenieur / Diplom-Ingenieurin of the TU Wien, Faculty of Civil Engineering

DIPLOMARBEIT

Vergleichende Untersuchungen zur Ermüdungsbeständigkeit von Asphaltmastix am Dynamischen Scherrheometer (DSR)

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines / einer Diplom-Ingenieurs/ Diplom-Ingenieurin eingereicht an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

von

Martin Peyer

Matr.Nr.: 01125128

unter der Anleitung von

Assoc.-Prof. Dipl.-Ing. Dr.techn. Bernhard Hofko

Und der Mitbetreuung von

Projektass. Dipl.-Ing. Michael Steineder

Institut für Verkehrswissenschaften Forschungsbereich Straßenwesen Technische Universität Wien, Gußhausstraße 28/230, A-1040 Wien

Wien, im September 2020

Kurzfassung

Der Widerstand der einzelnen Asphaltschichten gegen Materialermüdung ist für die Aufrechterhaltung der Tragfähigkeit und der Gebrauchstauglichkeit von Asphaltoberbauten von besonderer Bedeutung. Zur Beschreibung des Ermüdungsverhaltens werden dabei hauptsächlich Prüfverfahren mit Probekörpern aus Asphalt oder Bitumen angewendet, mit deren Hilfe ermüdungsrelevante Parameter quantitativ erfasst werden. Der wesentliche Einfluss des Füllers auf die Ermüdungseigenschaften der Asphaltschichten wird bei diesen Prüfverfahren jedoch nur unzureichend beschrieben. Eine mangelnde Qualität des Füllers als Bestandteil der Asphaltmastix (= Füller + Bitumen) oder seiner mangelnden Kompatibilität zum verwendeten Bitumen kann eine verringerte Dauerhaftigkeit des Asphaltoberbaus zur Folge haben.

Zur Ermittlung des Ermüdungsverhaltens von Asphaltmastix werden in der Forschung aktuell unterschiedliche Prüfmethoden angewendet, da keine Kriterien oder Richtlinien zu Ermüdungsprüfungen an Asphaltmastix existieren. Beispielsweise wurde an der TU Wien ein standardisierter Ermüdungsversuch im dynamischen Scherrheometer (DSR) mit einem hyperbolischen Probekörper entwickelt.

In der gegenständlichen Arbeit werden zuerst einige Prüfverfahren erläutert, welche im europäischen bzw. nordamerikanischen Raum für die Beschreibung des Ermüdungsverhaltens von Bitumen oder Asphalt zur Anwendung kommen. Dabei werden die Vor- und Nachteile der einzelnen Prüfverfahren betreffend der Versuchsdurchführung bzw. der Versuchsauswertung angeführt und deren potentielle Anwendbarkeit für Ermüdungsprüfungen an Asphaltmastix analysiert.

Aus den angeführten Prüfverfahren wurden drei gängige Verfahrensarten ausgewählt (dehnungsgesteuerte Time-Sweep-Prüfung, spannungsgesteuerte Time-Sweep-Prüfung und Linear-Amplitude-Sweep-Prüfung) und an hyperbolischen sowie zylindrischen Probekörpern, welche aus jeweils drei unterschiedlichen Asphaltmastixsorten hergestellt wurden, angewandt.

Die einzelnen Prüfergebnisse wurden in weiterer Folge unter Anwendung unterschiedlicher Ermüdungskriterien ausgewertet und in Abhängigkeit des verwendeten Prüfverfahrens und der verwendeten Asphaltmastixsorte mittels Regressionsanalysen in Wöhler-Kurven abgebildet, welche anschließend miteinander verglichen wurden.

Dabei zeigte sich, dass die Auswertung spannungsgesteuerter Time-Sweep-Prüfungen und die Auswertung der Linear-Amplitude-Sweep-Prüfungen äquivalente Resultate zum Ermüdungsverhalten der untersuchten Asphaltmastixsorten liefern. Im Vergleich dazu lieferte die Auswertung der verschiebungsgesteuerten Time-Sweep-Prüfungen bei einer Mastixsorte ein abweichende Ergebnis in der Beschreibung des Ermüdungsverhaltens. Weiters zeigte sich bei allen drei angewendeten Prüfverfahren, dass zwar betreffend der Anfangswerte des Betrags des komplexen Schubmoduls |G*| betragsmäßig große Unterschiede zwischen den durchgeführten Prüfungen an hyperbolischen und zylindrischen Probekörpergeometrien auftraten, und folglich ein Materialversagen aufgrund Ermüdung bei hyperbolischen Probekörpern zu einem früheren Zeitpunkt eintritt als bei zylindrischen Probekörpern. Dennoch wurde beim Vergleich der abgebildeten Wöhlerkurven sowohl bei hyperbolischen als zylindrischen Probekörpern ein äquivalentes Ermüdungsranking ermittelt. In Folge dessen konnte nachgewiesen werden, dass innerhalb der durchgeführten Testreihen die Verwendung von hyperbolischen und zylindrischen Probekörpern zu äquivalenten Ergebnissen hinsichtlich der Beschreibung des Ermüdungsverhaltens der drei untersuchten Asphaltmastixsorten führt.

Abstract

The fatigue resistance of asphalt pavement layers is of particular importance for sustaining the loadbearing capacity and serviceability of asphalt pavements. To describe the fatigue behavior, test methods with test specimens made of asphalt mixture or bitumen are mainly used, which enable the characterization of fatigue related parameters. However, the main influence of the filler on the fatigue behavior of the asphalt layers is not adequately described in these test methods. A poor quality of the filler as part of the asphalt mastic (= filler + bitumen) or its incompatibility with the used bitumen can result in a reduced durability of the asphalt pavement and thus, reduced technical lifetimes.

To determine the fatigue behavior of asphalt mastic, different test methods are currently used in research, as there are no standards for fatigue tests on asphalt mastic. Lately an efficient fatigue test in the dynamic shear rheometer with a hyperbolic test specimen was developed at TU Wien.

In the thesis at hand, some test methods are presented which are used in Europe and North America to assess the fatigue behavior of bitumen or asphalt. The advantages and disadvantages of the individual test procedures with regard to the test procedure and the test evaluation are listed and their potential applicability for fatigue tests on asphalt mastic is analysed.

Afterwards, three common types of test procedures were selected (strain-controlled time-sweep test, stress-controlled time-sweep test and linear amplitude sweep test) and applied to hyperbolic and cylindrical test specimens, each made from three different types of asphalt mastic.

The individual test results were then evaluated using different fatigue criteria and, depending on the test method used and the type of asphalt mastic used, were derived into Woehler curves by the use of regression analyses, which were then compared with one another.

It was found that the evaluation of the stress-controlled time-sweep tests and the evaluation of the linear amplitude sweep tests provide comparable results of the fatigue behavior of the asphalt mastic samples. In comparison, the evaluation of the strain-controlled time-sweep tests for one type of mastic gave a different result in the characterization of the fatigue behavior. In addition, it was found with all three test methods used that there were large differences in initial complex modulus of shear $|G^*|$ between tests carried out on hyperbolic and cylindrical test specimens, and consequently material failure due to fatigue occurs earlier in the case of hyperbolic test specimens than in the case of cylindrical specimens. Nevertheless, when comparing the derived Woehler curves, an equivalent fatigue ranking was determined for both hyperbolic and cylindrical test specimens. As a result, it was possible to demonstrate that the use of hyperbolic and cylindrical test specimens within the test series led to equivalent results with regard to the description of the fatigue behavior of the three types of asphalt mastic under investigation.

Inhaltsverzeichnis

1	Einl	eitun	g	1
	1.1	Allg	emein	1
	1.2	Auf	gabenstellung	2
	1.3	Beg	riffsdefinitionen	2
	1.3.	.1	Asphaltmastix	2
	1.3.	.2	Dynamischer Scherrheometer	2
	1.3.	.3	Linear-viskoelastischer Bereich (LVE)	4
	1.3.	.4	Materialermüdung	5
	1.3.	.5	Wöhlerkurven	6
2	Aus	gewä	hlte Prüfmethoden zur Bestimmung des Ermüdungsverhaltens auf Bitumenebene	7
	2.1	Vers	such zur Ermittlung des Ermüdungsindex G $*$ sin(δ) (AASHTO PG-Grading)	7
	2.1.	.1	Beschreibung des Prüfverfahrens	7
	2.1.	.2	Vorteile des Prüfverfahrens	7
	2.1.	.3	Nachteile des Prüfverfahrens	8
	2.2	Tim	e-Sweep Prüfverfahren	8
	2.2.	.1	Beschreibung des Prüfverfahrens	8
	2.2.	.2	Vorteile des Prüfverfahrens	9
	2.2.	.3	Nachteile des Prüfverfahrens	9
	2.3	Line	ar-Amplitude-Sweep Prüfverfahren (LAS) nach AASHTO TP101 [35]	9
	2.3.	.1	Beschreibung des Prüfverfahrens	9
	2.3.	.2	Vorteile des Prüfverfahrens	12
	2.3.	.3	Nachteile des Prüfverfahrens	12
	2.4 [37]	Mul 12	tiple Stress Creep and Recovery Test (Kriechtest - MSCRT) – nach ÖNORM EN 16659)
	2.4.	.1	Beschreibung des Prüfverfahrens	12
	2.4.	.2	Vorteile des Prüfverfahrens	16
	2.4.	.3	Nachteile des Prüfverfahrens	16
	2.5	Zug	versuch am zweiseitig gekerbten Bitumenstreifen (DENT) - nach MTO LS-299 [38]	17
	2.5.	.1	Beschreibung des Prüfverfahrens	17
	2.5.	.2	Vorteile des Prüfverfahrens	18
	2.5.	.3	Nachteile des Prüfverfahrens	19
3	Aus	gewä	hlte Prüfmethoden zur Bestimmung des Ermüdungsverhaltens auf Asphaltmastix-	_
//	Asphalt	eben	e	20
	3.1	Dyn	amisch-mechanische Analyseprüfung (DMA)	20

	3.2	1.1	Beschreibung des Prüfverfahrens	. 20	
	3.2	1.2	Vorteile des Prüfverfahrens	. 20	
	3.2	1.3	Nachteile des Prüfverfahrens	. 20	
	3.2 1269	Vie 7-24 [rpunkt-Biegebalken-Versuch am prismatischen Probekörper (4PB-PR) nach ÖNORM E 44]	:N . 21	
	3.2	2.1	Beschreibung des Prüfverfahrens	. 21	
	3.2	2.2	Vorteile des Prüfverfahrens	. 22	
	3.2	2.3	Nachteile des Prüfverfahrens	. 22	
4	An	wend	barkeit der Prüfverfahrens zur Prüfung von Asphaltmastix	. 23	
5	5 Materialauswahl und Probekörpereigenschaften		auswahl und Probekörpereigenschaften	. 25	
	5.1	Ma	terialauswahl	. 25	
	5.2	Pro	bekörpergeometrie	. 25	
	5.3	Pro	bekörperherstellung	. 26	
	5.3	3.1	Zylindrischer Probekörper	. 26	
	5.3	3.2	Hyperbolischer Probekörper	. 26	
6	Pr	üfgerä	t	. 28	
7	7 Bestimmung linear-viskoelastische Bereiche (LVE)				
	7.1	Allg	emeines	. 29	
	7.2	Line	eare Viskoelastizität zylindrischer Probekörper	. 29	
	7.3	Line	eare Viskoelastizität hyperbolischer Probekörper	. 31	
	7.4	Geg	genüberstellung der Ergebnisse	. 32	
8	An	ngewei	ndete Prüfverfahren zur Beschreibung des Ermüdungsverhaltens von Asphaltmastix	. 34	
	8.1	Tim	e-Sweep-Prüfverfahren (verschiebungsgesteuert)	. 34	
	8.2	1.1	Prüfparameter	. 34	
	8.2	1.2	Prüfablauf	. 34	
	8.2	Tim	e-Sweep-Prüfverfahren (spannungsgesteuert)	. 35	
	8.2	2.1	Prüfparameter	. 35	
	8.2	2.2	Prüfablauf	. 35	
	8.3	LAS	-Prüfverfahren	. 36	
	8.3	3.1	Prüfparameter	. 36	
	8.3	3.2	Prüfablauf	. 36	
9	Eri	müdur	ngskriterien	. 37	
	9.1	Übe	ersicht	. 37	
	9.2	Ang	ewendete Ermüdungskriterien	. 38	

9. Ki	.2.1 riteriur	Abfall des Betrags des komplexen Schubmoduls auf 50% des Ausgangswerts (G*(50%)- n)
9.	.2.2	Erreichen des maximalen Phasenverschiebungswinkels (δ_{max} Kriterium)
9. (E	.2.3 DER-Kri	Änderung bzw. Zunahme der dissipativen Energie bei fortschreitender Lastspielanzahl terium)
10	Ausw	ertung und Analyse der Prüfergebnisse 43
10.1	L Allg	gemeines
10.2	2 Ern	nüdung verschiebungsgesteuerter Time-Sweep-Prüfungen
10	0.2.1	Allgemeines
10	0.2.2	Anwendung Ermüdungskriterium G*(50%) 43
10	0.2.3	Anwendung Ermüdungskriterium δ_{max} :
10	0.2.4	Anwendung Ermüdungskriterium DER:47
10	0.2.5	Gegenüberstellung der Ergebnisse 48
10.3	B Ern	nüdung spannungsgesteuerter Time-Sweep-Prüfungen
10	0.3.1	Allgemeines
10	0.3.2	Anwendung Ermüdungskriterium G*(50%)50
10	0.3.3	Anwendung Ermüdungskriterium δ_{max} :
10	0.3.4	Anwendung Ermüdungskriterium DER:53
10	0.3.5	Gegenüberstellung der Ergebnisse55
10.4	l Ern	nüdung gemäß Linear-Amplitude-Sweep-Test (LAS)57
10	0.4.1	Allgemeines
10	0.4.2	Prüfungen mit zylindrischen Probekörpern57
10	0.4.3	Prüfungen mit hyperbolischen Probekörpern58
10	0.4.4	Gegenüberstellung der Ergebnisse 59
11	Zusan	nmenfassung und Ausblick62
11.1	L Zus	ammenfassung
11.2	2 Aus	sblick
12	Verze	ichnisse
12.1	L Lite	eraturverzeichnis
12.2	2 Abl	oildungsverzeichnis
12.3	8 Tab	pellenverzeichnis
13	Anhai	ng70

1 Einleitung

1.1 Allgemein

Das Auftreten von Rissen infolge Materialermüdung, vor allem bedingt durch wiederholt auftretende Verkehrsbelastung, ist eines der am häufigsten anzutreffenden Schadensbilder in Asphaltoberbauten. Die verkehrsinduzierten Belastungen führen bei jedem Lastwechsel zu Spannungen und Dehnungen in den darunterliegenden Asphaltschichten, welche mit fortlaufender Dauer zu Schadensakkumulationen, in Form von anwachsenden Mikrorissen an der Unterseite der Asphalttragschichten, führen. Nachdem sich diese Mikrorisse zu Makrorissen vereinigt haben, schlagen sich letztere häufig bis zu den oberen Asphaltschichten bzw. bis zur Oberfläche des Straßenoberbaus durch.

Der Prävention ermüdungsbedingter Risse kommt daher im Asphaltstraßenbau eine tragende Rolle zu. Um das Ermüdungsverhalten der verwendeten Materialien bzw. Materialkompositionen hinreichend genau zu erfassen, werden eine Vielzahl unterschiedlicher Prüfverfahren angewandt, welche das Materialverhalten hauptsächlich auf Bitumenebene (z.B. PG-Grading-Prüfung) oder Asphaltebene (z.B. 4-Punkt-Biebebalken-Prüfung) beschreiben.

Bei diesen Prüfverfahren wird jedoch der wesentliche Einfluss des Füllers auf den Widerstand gegen Materialermüdung nicht bzw. unzureichend beachtet. Der Füller lagert sich in den Zwischenräumen der grobkörnigen Zuschlagsstoffe der Asphaltmixtur, inmitten der Bitumenphase ein und beeinflusst daher als Bestandteil der Asphaltmastix (= Füller + Bitumen) die Belastungsfähigkeit des eingebauten Asphalts. Beispielsweise wurden in Österreich in der näheren Vergangenheit immer häufiger Korn- und Schollenausbrüche in Asphaltdeckschichten festgestellt, deren Ursache nicht immer eindeutig einer klimatischen oder verkehrsinduzierten Belastung zugeordnet werden konnten. Als mögliche Schadensursache kommt dabei die mangelnde Dauerhaftigkeit von Asphaltmastix, infolge unzureichender Qualität der Asphaltmastixkomponenten, in Frage [1].

Untersuchungen von Liao et al. [2] mit dem DSR an Probekörpern aus Asphaltmastix und Bitumen haben Änderungen der Ermüdungseigenschaften infolge Zugabe von Füller zum Bitumen aufzeigt. Es wurde festgestellt, dass die Steifigkeit von Asphaltmastix, vor allem mit zunehmenden Füllergehalt, deutlich über jener von reinem Bitumen liegt. Die Abweichungen bei den Wöhlerkurven zwischen Asphaltmastix und Bitumen, weisen weiters die Beeinflussung des Ermüdungsverhaltens durch den Füller nach.

In weiterer Folge stellen die Beschreibung des Ermüdungsverhaltens auf Ebene der Asphaltmastix und dessen Korrelation zum Ermüdungsverhalten der einzelnen Asphaltschichten einen interessanten Untersuchungsumfang dar. Unter anderem dadurch werden in der Forschung neue Prüfverfahren entwickelt bzw. existierende Prüfverfahren auf Bitumen- bzw. Asphaltebene adaptiert, um das Ermüdungsverhalten auf Asphaltmastix-Ebene beschreiben zu können. Für die Anwendung bzw. die Auswertung dieser Prüfverfahren existieren zum aktuellen Zeitpunkt jedoch größtenteils noch keine Richtlinien bzw. Grenzwerte. Auch die generelle Anwendbarkeit mancher Prüfverfahren bzw. die Aussagekraft der Ergebnisse sind noch Ziel genauerer Untersuchungen.

1.2 Aufgabenstellung

Im Zuge des Forschungsprojekt "Auswirkung des Feinanteils auf das Gebrauchsverhalten der Asphaltmastix – Grundlagen zum Aufbau eines Qualitätskriteriums" am Institut für Verkehrswissenschaften der TU Wien [1] wurde ein standardisierter Ermüdungsversuch am dynamischen Scherrheometer (DSR) zur Beschreibung der Ermüdungseigenschaften von Asphaltmastix entwickelt.

In der gegenständlichen Arbeit soll dieses Prüfverfahren mit anderen Verfahren hinsichtlich ihrer Anwendbarkeit zur Bestimmung des Ermüdungsverhaltens von Asphaltmastix untersucht werden. Dazu werden die Ergebnisse der durchgeführten Prüfungen analysiert und Korrelationen zwischen den einzelnen Prüfparametern sowie mögliche Einschränkungen hinsichtlich der Verwendbarkeit des Prüfverfahrens aufgezeigt.

Der Untersuchungsumfang der vorliegenden Arbeit begrenzt sich dabei auf:

- Prüfen von drei unterschiedlichen Asphaltmastix-Sorten mit jeweils drei unterschiedlichen Prüfmethoden an zwei unterschiedlichen Probekörperformen
- Auswertung und Analyse der Prüfergebnisse
- Auswertung und Analyse der Prüfmethoden
- Zusammenfassung der Arbeit (Vergleich der Ergebnisse und Empfehlungen zufolge der Testreihen)

1.3 Begriffsdefinitionen

1.3.1 Asphaltmastix

Die Asphaltmastix als Bestandteil eines klassischen Heißmischgut-Asphalts, bezeichnet das Gemisch aus Bitumen und Füller (Überwiegender Anteil der Körner < 0,063mm [3]). Innerhalb des Asphaltmischguts umhüllt die Asphaltmastix in Ihrer Eigenschaft als Bindemittelsubstanz die grobkörnigeren Asphaltbestandteile. Die Festigkeit der Asphaltmastix sowie deren Haftvermögen an den gröberen Gesteinskörnungen, sind wichtige Parameter für die Eigenschaften der jeweiligen Asphaltschichten. Untersuchungen haben gezeigt, dass die mineralogische Zusammensetzung des Füllers bzw. der Feinanteile die Qualität der Asphaltmastix, sowie deren Festigkeit und Haftungsvermögen an grober Gesteinskörnung, wesentlich beeinflusst [4]-[6]. Die Verwendung qualitativ ungeeigneter Asphaltmastixbestandteile kann in weiterer Folge zu deutlichen Einbußen in der Lebensdauer der entsprechenden Asphaltschichten führen.

1.3.2 Dynamischer Scherrheometer

Der dynamische Scherrheometer (DSR) ist ein Prüfgerät, das eine oszillierende Scherbeanspruchung auf einen eingebauten Probekörper ausübt und dessen Materialantwort in Form von Schubdehnungen aufzeichnet (siehe Abbildung 1). Im Bereich des Straßenbaus wird der DSR hauptsächlich für die Charakterisierung der rheologischen Eigenschaften von Bitumen verwendet.

Abbildung 1: Funktionsweise des DSR [7]

Im Zuge der Versuchsdurchführung wird auf einen Bitumenprobekörper mittels eines DSR-Stempels eine definierte, oszillierende Schubspannung τ (spannungsgesteuerter Versuch) mit bekannter Frequenz f bei einer konstanten Temperatur T aufgebracht. Als Reaktion auf die Belastung antwortet der Prüfkörper mit einer Schubverformung γ , welche für jeden Zeitpunkt des Versuchs aus der Prüfkörpergeometrie (Radius r und Höhe h) und dem gemessenen Drehwinkel α gemäß Gleichung (1) ermittelt wird.

$$\gamma_{\max} = \frac{s}{h} = \frac{r \cdot \alpha}{h} \tag{1}$$

Aufgrund des viskoelastischen Materialverhaltens von Bitumen erfolgt die Reaktion des Bitumenprobekörpers zeitversetzt auf die eingebrachte Schubbeanspruchung (siehe Abbildung 2). Die Dauer dieses Zeitversatzes wird als Zeitverschiebung Δt bezeichnet, und über die gesamte Versuchsdauer aufgezeichnet.

Abbildung 2: Phasenverschiebungswinkel eines viskoelastischen Materials [7]

Das Verhältnis von Δt zur gesamten Periodendauer T (bzw. zur Frequenz f) wird als Phasenverschiebungswinkel δ bezeichnet und errechnet sich gemäß Gleichung (2).

$$\delta = \frac{\Delta t}{T} \tag{2}$$

Der Phasenverschiebungswinkel δ gibt Aufschluss über das rheologische Materialverhalten des untersuchten Probekörpers. Kleine Phasenverschiebungswinkel (unterer Grenzwert $\delta = 0^{\circ}$) weisen auf ein eher elastisches Materialverhalten hin, während ein großer Phasenverschiebungswinkel (oberer Grenzwert $\delta = 90^{\circ}$) ein viskoses Verhalten beschreibt.

Neben der Schubverformung γ_{max} wird auch der Verlauf der eingebrachten Schubbeanspruchung τ_{max} aufgezeichnet. Diese Schubbeanspruchung wird mittels Anlegen eines Drehmoments M an den sogenannten DSR-Stempel erzeugt, welcher diese Beaufschlagung als Schubbeanspruchung an den Probekörper weitergibt. Die eingebrachte Schubspannung τ lässt sich als Verhältnis der eingebrachten Schubkraft F zur Querschnittsfläche A des Prüfkörpers gemäß Gleichung (3) errechnen.

$$\tau_{\max} = \frac{F}{A} = \frac{\frac{2 \cdot M}{r}}{r^2 \cdot \pi} = \frac{2 \cdot M}{r^3 \cdot \pi}$$
(3)

Der Quotient aus der sinusförmig eingebrachten Schubspannung τ_{max} und der Materialantwort des Prüfkörpers in Form der Schubverformung γ_{max} entspricht dem Betrag der komplexen Schubsteifigkeit $|G^*|$ des untersuchten Materials (siehe Gleichung (4)).

$$\left|G^*\right| = \frac{\tau_{\max}}{\gamma_{\max}} \tag{4}$$

Aufgrund der Phasenverschiebung δ , die als Folge des viskoelastischen Materialverhaltens von Bitumen auftritt, gliedert sich die komplexe Schubsteifigkeit G* gemäß Gleichung (5) bis (7) in einen elastischen Anteil G' (Speichermodul = Realteil) und einen viskosen Anteil G'' (Verlustmodul = Imaginärteil).

$$G' = G^* * \cos \delta \tag{5}$$

$$G'' = G^* * \sin \delta \tag{6}$$

$$\left|G^{*}\right| = \sqrt{G'^{2} + G''^{2}} \tag{7}$$

Neben der Durchführung von belastungsgesteuerten Versuchen kommen auch verschiebungsgesteuerte Versuche zur Anwendung. Bei diesen Versuchsdurchführungen wird der Probekörper einer konstanten Verformung γ anstatt einer konstanten Spannung τ ausgesetzt. Dabei wird die daraus resultierende Materialantwort in Form einer oszillierenden Schubspannung gemessen. Beide Versuche werden in der Regel im Bereich mit linear-viskoelastischem Materialverhalten durchgeführt [8].

1.3.3 Linear-viskoelastischer Bereich (LVE)

Der linear-viskoelastische Bereich LVE definiert sich als jener Bereich in dem der Betrag des komplexen Schubmoduls |G*|, unabhängig vom aufgebrachten Verformungs- bzw. Spannungsniveau, einen annähernd konstanten Verlauf aufweist [9]. Für die Definition des Grenzwerts des linearviskoelastischen Bereichs lassen sich in den Normen unterschiedliche Festlegungen finden. Beispielsweise wird der Grenzwert gemäß EN 14770 [9] an jener Stelle definiert, an der sowohl der Speichermodul G' als auch der Verlustmodul G'' (gemäß Gleichung (5) und (6)) infolge des Aufbringens eines bestimmten Verformungs- bzw. Spannungsniveaus auf jeweils 95% seines Initialwerts abgefallen sind. Im Gegensatz dazu wird der Grenzwert gemäß DIN 53019-4 [10] bzw. ASTM D7175 [11] an jenem Punkt definiert, an der der Betrag des komplexen Schubmoduls |G*| auf 95% (DIN 53019-4 [10]) bzw. 90% (ASTM D7175 [11]) seines Ausgangswerts abgesunken ist.

Wird beispielsweise ein Probekörper im Zuge einer durchgeführten Time-Sweep-Prüfung mit einem Verformungs- oder Spannungsniveau beaufschlagt, welches einen annähernd konstanten Verlauf des Betrags des komplexen Schubmoduls zur Folge hat, befindet sich die Messstruktur im linearviskoelastischen Bereich wodurch der untersuchte Probekörper frei von Zerstörung bleibt. Viele Prüfverfahren, wie z.B. der PG-Grading-Versuch (siehe Abschnitt 2.1) oder der erste Abschnitt (Frequenz-Sweep) des LAS-Prüfverfahrens (siehe Abschnitt 2.3) zur Ermittlung der Ermüdungsfestigkeit von Bitumen, dürfen nur innerhalb des linear-viskoelastischen Bereichs des zu untersuchenden Probekörpers stattfinden.

1.3.4 Materialermüdung

Unter Materialermüdung versteht man die langsam voranschreitende Schädigung einer oder mehrerer Asphaltschichten infolge dynamischer Beanspruchungen, welche sich hauptsächlich auf klimatische oder verkehrsbedingte Einwirkungen zurückführen lassen.

Der Prozess der Materialermüdung lässt sich typischerweise auf insgesamt vier, zeitlich aufeinander folgende Ermüdungsphasen aufteilen (für spannungsgesteuerte Versuchsdurchführung siehe Abbildung 3) [12]. Zu Belastungsbeginn tritt Phase 1 (Einschwingphase) auf, innerhalb dieser thixotrope Vorgänge [13],[14] sowie geringe Materialerwärmungen infolge Energiedissipation zu einer reversiblen Steifigkeitsverminderung führen. Während der zweiten Phase folgen die Entstehung und die anschließende Ausbreitung bzw. das Anwachsen von Mikrorissen, welche zu einer kontinuierlichen Abnahme der Steifigkeit und einer Zunahme der Schädigung pro Lastzyklus führen. In verschiedenen Untersuchungen [15]-[18] hat sich gezeigt, dass die in Phase zwei auftretenden Schädigungen in Form von Mikrorissen während belastungsfreier Perioden vom Material wieder abgebaut werden können. In Phase drei vereinigen sich die anwachsenden Mikrorisse zu größeren Makrorissen, welche nicht rückbildbare Schädigungen zur Folge haben. Phase drei kennzeichnet sich weiters durch eine, verglichen mit Phase 2, wesentlich raschere Abnahme der Materialsteifigkeit bei zunehmender Anzahl an Lastspielen [19]. Durch das weitere Anwachsen der Materials zur Folge haben [12].

Abbildung 3: Ermüdungsphasen während spannungsgesteuerter Time-Sweep-Prüfung

1.3.5 Wöhlerkurven

Die Auswertung der Einzelergebnisse der durchgeführten Ermüdungsprüfungen führen im Allgemeinen zur Ermittlung jener Lastspielenzahlen, bei denen während der jeweiligen Versuchsdurchführung Ermüdung eintritt. Mithilfe von Wöhlerdiagrammen werden die ermittelten Anzahlen an Lastspiele bis zum Ermüdungseintritt (x-Achse) dem jeweils aufgebrachten Beanspruchungsniveau (y-Achse) gegenübergestellt. Um das Ermüdungsverhalten der untersuchten Materialien auch außerhalb der bereits aufgebrachten Beanspruchungsniveaus beschreiben zu können, werden die jeweiligen Einzelergebnisse mittels Regressionsanalysen zusammengefasst und in Regressionskurven, die sogenannten Wöhlerkurven, abgebildet. Stellt man die x-Achse des Wöhlerdiagramms (Anzahl der Lastspiele bis zum Ermüdungseintritt) in einem besser geeigneten Maßstab dar, zeigen sich die einzelnen Wöhlerkurven als Geraden. In der gegenständlichen Arbeit wurde jeweils ein logarithmischer Maßstab angewendet, wodurch die Funktionswerte der einzelnen Wöhlerkurven gemäß Gleichung (8) beschrieben werden können.

$$y = k \cdot \ln(x) + d \tag{8}$$

Die Korrelation zwischen den einzelnen Ermüdungslastspielzahlen und den daraus abgeleiteten Wöhlerkurven werden mit Hilfe des Bestimmtheitsmaßes R² beurteilt. Hohe Werte von R² bedeuten eine gute Korrelation zwischen den Einzelergebnissen und den abgeleiteten Wöhlerkurven, während geringe R²-Werte auf eine schlechte Korrelation schließen lassen.

2 Ausgewählte Prüfmethoden zur Bestimmung des Ermüdungsverhaltens auf Bitumenebene

2.1 Versuch zur Ermittlung des Ermüdungsindex G*sin(δ) (AASHTO PG-Grading)

2.1.1 Beschreibung des Prüfverfahrens

Die Ermittlung des Ermüdungsindex G*sin(δ) eines bituminösen Bindemittels erfolgt durch Prüfung mit dem DSR. Dabei werden der Betrag des komplexen Schermoduls |G*| und der Phasenverschiebungswinkel δ des untersuchten Bitumenprobekörpers ermittelt, ausgewertet und als Ermüdungsindex G*sin δ abgebildet.

Bei Durchführung des PG-Grading-Tests gemäß AASHTO T315 [20] wird ein Bitumenprobekörper innerhalb von 10 Schwingzyklen mit einer Beanspruchungsfrequenz von 1,592Hz (bzw. 10 s⁻¹), zur Simulation einer Schubbeanspruchung infolge einer Überfahrt mit 90 km/h [21], sinusförmig belastet. Dabei werden die Verläufe des Betrags des komplexen Schermoduls $|G^*|$ und des Phasenverschiebungswinkels δ für alle 10 Schwingzyklen aufgezeichnet. Im Anschluss daran werden die Verläufe gemäß AASTHO T315 [20] ausgewertet und daraus der Ermüdungsindex G*sind δ ermittelt.

Als Prüfkörper kommt entweder ein Bitumen-Plättchen mit einem Durchmesser von 8mm und einer Dicke von 2mm oder ein Bitumen-Plättchen mit einem Durchmesser von 25mm und einer Dicke von 1mm zum Einsatz. Auf Basis der ausgewählten Prüftemperatur erfolgt die Auswahl der Probekörpergeometrie. Bei Versuchsdurchführung im hohen Temperaturbereich (46-82°C) wird ein 25mm-Plättchen verwendet. Erfolgt die Versuchsdurchführung bei niedrigerer Temperatur (4-40°C) findet das 8mm-Plättchen seine Anwendung [20],[21].

Bei Ermittlung des Ermüdungsindex G*sin(δ) nach Vorgaben der Prüfparameter gemäß ÖNORM EN 14770 [8], soll die Beanspruchungsfrequenz des jeweiligen Bitumenprobekörpers innerhalb des Bereichs von 0,1 bis 10 Hz liegen. Dabei kann der jeweilige Versuch bei einer konstanten Frequenz oder innerhalb eines vordefinierten Frequenzbereichs stattfinden. Die Prüftemperatur soll gemäß ÖNORM EN 14770 [8] im Bereich zwischen +25 und +85°C liegen. Für die Beschreibung des Ermüdungsverhaltens des untersuchten Bitumenprobekörpers werden in der Praxis jedoch auch Versuche bei Temperaturen T < 25°C durchgeführt.

Anforderungen an das Bindemittel hinsichtlich des Ermüdungsindex $G^*sin(\delta)$ sind bei Anwendung der Performance-Grade-Klassifizierung geregelt. Dabei gilt der Widerstand gegen Materialermüdung als hinreichend groß, wenn das zu prüfende RTFOT- und PAV-gealterte Bitumen einen Ermüdungsindex $G^*sin(\delta) \leq 5000$ kPa aufweist [22].

2.1.2 Vorteile des Prüfverfahrens

- + Probekörper kann einfach, schnell und kostengünstig hergestellt werden
- + Gute Beurteilungsmöglichkeit der Auswirkungen der Langzeitalterung auf die Materialeigenschaften von Bitumen [23]
- + Variable Einstellungsmöglichkeiten betreffend die Regelung von Temperatur

- + Verhältnismäßig rasche Versuchsdurchführung
- + Aus Versuchsdurchführung können bemessungsrelevante, physikalische Parameter (Komplexer Schubmodul, Phasenverschiebungswinkel) ermittelt werden

2.1.3 Nachteile des Prüfverfahrens

- Speziell bei modifizierten Bitumensorten schlechte Korrelation zwischen Ergebnissen für den Ermüdungsindex G*sind(δ) und Ergebnissen aus Vergleichsuntersuchungen, wie beispielsweise mit dem 4-Punkt-Biebalken-Versuch, oder Ergebnissen aus anderen Langzeitermüdungsuntersuchungen [24]-[26].
- Nur teilweise Nachbildung einer praxisnahen Beanspruchung. Ermüdungsindex G*sind(δ) ist ein steifigkeitsbasierender Parameter der infolge einer relativ geringen Beanspruchung ohne Auftreten einer Schädigung und mit einer geringen Anzahl an Lastzyklen ermittelt wird. Diese Prüfsituation weicht relativ stark von der in der Realität vorhandenen komplexen Ermüdungseinwirkung ab, welche sich durch eine hohe Anzahl an Lastspielen und eine hohe Lastintensität kennzeichnet [24]. Unter anderem deswegen wird die Anwendbarkeit des Ermüdungsindex G*sind(δ) zur Beschreibung des Ermüdungsverhaltens von Bitumen, in vielen Untersuchungen stark angezweifelt [27]-[31].
- Keine Information zum chemischen Aufbau bzw. der Struktur des untersuchten Bitumens.
 Restrisiken infolge von Fehlern bei der Beurteilung des untersuchten Bitumens anhand der Prüfergebnisse können nicht ausgeschlossen werden.
- Anwendung ausschließlich im linear-viskoelastischen Bereich [24]

2.2 Time-Sweep Prüfverfahren

2.2.1 Beschreibung des Prüfverfahrens

Mit dem Time-Sweep-Prüfverfahren wird das Ermüdungsverhalten von Bitumen mit Hilfe des DSR untersucht. Dabei wird ein Bitumenprobekörper bei einer konstanten Temperatur sowie einer definierten Frequenz solange einer vorgegebenen oszillierenden Spannung (spannungsgesteuerter Versuch) oder einer vorgegebenen oszillierenden Verformung (verschiebungsgesteuerter Versuch) ausgesetzt, bis ein Materialversagen eintritt oder ein Ermüdungskriterium erfüllt wird. Folglich wird der Bitumenprobekörper während des Time-Sweep-Tests in den meisten Fällen mit einer deutlich höheren Anzahl an Lastspielen beaufschlagt als während des Versuchs zur Ermittlung des Ermüdungsparameters G $sin(\delta)$ gemäß PG-Grading System (siehe Abschnitt 2.1).

Aufgrund des Fehlens einer einheitlichen Prüfnorm für die Durchführung des Time-Sweep-Prüfverfahrens können die spezifischen Prüfparameter wie beispielsweise Prüftemperatur oderfrequenz nur in Anlehnung an unterschiedliche, sich mit diesem Prüfverfahren befassende Publikationen ausgewählt werden, welche sich teilweise zusätzlich noch hinsichtlich der gewählten Ermüdungskriterien unterscheiden [12],[32]-[34].

Bei vielen dieser Publikationen findet die Versuchsdurchführung bei relativ niedrigen Temperaturen, meist im Bereich zwischen 0 – 25°C statt, um zu Prüfbeginn einen hinreichend großen Initialwert für $|G^*|$ zu gewährleisten. Diese hohen Initialwerte für $|G^*|$ sind erforderlich um während der Prüfung hauptsächlich Schädigungen infolge Materialermüdung zu beschreiben und die Einflüsse aus den sogenannten Kantenrissen zu minimieren, welche die Prüfergebnisse negativ beeinflussen können [33]. Die Prüffrequenz liegt bei vielen der Publikationen bei f= 10 Hz.

Als Bitumenprobekörper kommt in der Regel ein zylinderförmiges Bitumenplättchen mit einem Durchmesser von 8mm und einer Höhe von 2mm zur Anwendung.

Beim Time-Sweep-Prüfverfahren werden während der gesamten Prüfdauer die Verläufe des komplexen Schubmoduls $|G^*|$ und des Phasenverschiebungswinkel δ aufgezeichnet. Die verfahrensbezogenen, analytischen Zusammenhänge zwischen den eingebrachten Spannungen bzw. Dehnungen und den abgeleiteten Werten für den Betrag des komplexen Schubmoduls $|G^*|$ sowie den Phasenverschiebungswinkel δ werden in Abschnitt 1.3.2 beschrieben.

2.2.2 Vorteile des Prüfverfahrens

- + Probekörper kann einfach, schnell und kostengünstig hergestellt werden
- + Variable Einstellungsmöglichkeiten betreffend die Regelung von Temperatur, Frequenz und Art der Versuchsdurchführung (dehnungs- oder belastungsgesteuert)
- + Nachbildung einer praxisnahen Beanspruchung
- + Aus Versuchsdurchführung können bemessungsrelevante, physikalische Parameter (Komplexe Schubsteifigkeit, Phasenverschiebungswinkel) direkt ermittelt werden
- + Keine Beschränkung auf linear-viskoelastischen Bereich

2.2.3 Nachteile des Prüfverfahrens

- Teilweise Abhängigkeit der Prüfergebnisse von verwendeter Probekörpergeometrie [33]
- lange Versuchsdauer (oft mehrere Stunden pro Versuch)
- Bei Verwendung zylindrischer Probekörper kann bei sehr hohen Beträgen des Initialwerts des komplexen Schubmoduls (|G*_{init}| >>~100 MPa) und in Kombination mit hohen Beanspruchungsfrequenzen (z.B. f = 30 Hz) Materialversagen an der Kontaktfläche zwischen dem Bitumenprobekörper und der oberen, oszillierenden DSR-Platte auftreten. Dadurch werden die Prüfergebnisse in Abhängigkeit der Ausbildung bzw. der Adhäsionsverhältnisse in der Kontaktfläche unzulässig beeinflusst [12].

2.3 Linear-Amplitude-Sweep Prüfverfahren (LAS) nach AASHTO TP101 [35]

2.3.1 Beschreibung des Prüfverfahrens

Die LAS-Prüfung dient zur Beurteilung des Ermüdungsverhaltens von Bitumenprobekörpern unter Verwendung des DSR. Gemäß der US-amerikanischen Richtlinie AASHTO TP101 [35] kommen als Probekörper zylindrische sowie RTFOT-kurzzeitgealterte Bitumenplättchen mit einem Durchmesser von 8 mm und einer Höhe von 2 mm zum Einsatz. Die Versuchsdurchführung gemäß AASHTO TP101 [35] gliedert sich dabei in zwei Abschnitte:

Der erste Prüfabschnitt dient zur Ermittlung des Materialverhaltens und der rheologischen Bitumenprobekörpers Kennwerte des unbeschädigten mittels einer verschiebungsgesteuerten Frequenz-Sweep-Prüfung im DSR. Dabei wird der Bitumenprobekörper bei einer konstanten Prüftemperatur mit einer oszillierenden Schubbeanspruchung beaufschlagt, welche eine konstante, betragsmäßig geringe Dehnungsamplitude von 0,1% zur Folge hat (verschiebungsgesteuert). Gemäß AASTHO TP101 [35] wird die Frequenz der eingebrachten oszillierenden Beanspruchung während dieses ersten Prüfabschnitts in zwölf definierten Frequenzstufen über einen Bereich von f = 0,2 - 30 Hz gesteigert (Frequenz-Sweep). Dabei werden der Betrag des komplexen Schubmoduls |G*| sowie der Phasenverschiebungswinkel δ in Abhängigkeit der beaufschlagten Frequenz f aufgezeichnet (siehe Abbildung 4).

Abbildung 4: Resultat Abschnitt 1 - Frequenzabhängige Funktionsgraphen für $|G^*|$ und δ [35]

Bedingt durch die betragsmäßig geringe, eingebrachte Dehnungsstufe reagiert der Probekörper innerhalb des Bereichs des linear-viskoelastischen Materialverhaltens, was keine Schädigung des untersuchten Materials zur Folge hat. Aus den aufgezeichneten Funktionsgraphen lässt sich der Parameter α ermitteln, welcher später zur Bestimmung der Ermüdungskenngröße N_f benötigt wird. Hierzu wird aus den aufgezeichneten Werten für |G^{*}|, δ und f (bzw. die Kreisfrequenz ω) der zugehörige Speichermodul G[′] errechnet (siehe Gleichung (9)).

$$G'(\omega) = \left| G^* \right| (\omega) \cdot \cos \, \delta(\omega) \tag{9}$$

Der Verlauf des Speichermoduls G´ wird anschließend näherungsweise durch Anlegen einer logarithmischen Gerade gemäß Gleichung (10) beschrieben.

$$\log G'(\omega) = m \cdot \log(\omega) + b \tag{10}$$

Der zur Bestimmung der Ermüdungskenngröße N_f erforderliche Parameter α entspricht gemäß Gleichung (11) dem Kehrwert des Steigungsparameters m aus vorangegangenen Gleichung (10).

$$\alpha = \frac{1}{m} \tag{11}$$

Während des zweiten Prüfabschnitts wird der Bitumenprobekörper mit Hilfe des DSR einer verschiebungsgesteuerten Amplituden-Sweep-Prüfung unterzogen, die mit einer konstanten Frequenz von 10 Hz und bei einer konstanten, bereits für Prüfabschnitt 1 ausgewählten Prüftemperatur durchgeführt wird. Die Amplitude der dabei aufgebrachten Schub-Deformation wird innerhalb des Verlaufs von 3100 Lastzyklen linear von 0% auf 30% gesteigert. Die Maximalwerte der Schubdeformation γ_{max} und der Schubspannung τ_{max} werden sekündlich (entspricht alle 10 Lastzyklen) aufgezeichnet und daraus, wie in Abschnitt 1.3.2 beschrieben, der Betrag des komplexen Schubmoduls und der Phasenverschiebungswinkel abgeleitet [35].

Durch Anwendung des viskoelastischen Kontinuum-Schadensmodells (VECD) in Form der zugehörigen Formeln aus AASTHO TP101 [35], können gemeinsam mit dem α -Parameter aus dem 1. Prüfabschnitt (Frequenz-Sweep) und den Funktionsgraphen für $|G^*|$ und δ aus dem 2. Prüfabschnitt (Amplituden-Sweep), die Schadensakkumulation zum Versagenszeitpunkt D_f und im nächsten Schritt die beiden Modellparameter A und B (siehe Gleichung (12) und Gleichung (13)) ermittelt werden.

$$A = \frac{f \cdot (D_f)^k}{k \cdot (\pi \cdot C_1 \cdot C_2)^{\alpha}}$$
(12)

$$B = 2 \cdot \alpha \tag{13}$$

Mit:

k

$$= 1 + (1 - C_2) \cdot \alpha \tag{14}$$

C1, C2 Ermüdungskoeffizienten gemäß AASTHO TP101-5

Mithilfe der Parameter A und B kann in weiterer Folge das Ermüdungsgesetz aus Gleichung (15) angewendet werden:

$$N_f = A \cdot \left(\gamma_{\max}\right)^{-B} \tag{15}$$

Mit:

N_f Kenngröße für Widerstand gegen Ermüdung

A,B Modellparameter aus Anwendung des viskoelastischen Kontinuum-Schadensmodells

γ_{max} Maximal zu erwartende Schubdeformation im Bitumen einer gegebenen Asphaltstruktur

Durch Anwendung von Gleichung (15) lässt sich eine lineare Korrelation zwischen der Kenngröße N_f für den Widerstand gegen Ermüdung und der erwartbaren Schubdeformation γ_{max} in Form einer Geradengleichung, mit der initialen y-Verschiebung A und dem Gefälle B, darstellen (siehe Abbildung 5).

Abbildung 5: Funktionsgraph von N_f in Abhängigkeit von γ_{max} [35]

2.3.2 Vorteile des Prüfverfahrens

- + Probekörper kann einfach, schnell und kostengünstig hergestellt werden
- + Variable Einstellungsmöglichkeiten betreffend die Regelung von Temperatur
- + Aus Versuchsdurchführung können bemessungsrelevante, physikalische Parameter (Komplexe Schubsteifigkeit, Phasenverschiebungswinkel) direkt ermittelt werden
- + Sehr rasche Versuchsdurchführung (ca. 15 min/Versuch)
- + Gute Korrelation zwischen Ergebnissen aus LAS-Prüfungen mit Daten zum Ermüdungsverhalten aus Langzeituntersuchungen an Versuchsstrecken [36].

2.3.3 Nachteile des Prüfverfahrens

- Keine Nachbildung einer praxisnahen Beanspruchung

2.4 Multiple Stress Creep and Recovery Test (Kriechtest - MSCRT) – nach ÖNORM EN 16659 [37]

2.4.1 Beschreibung des Prüfverfahrens

Das Multiple Stress Creep and Recovery-Prüfverfahrens (MSCR-Test) stellt einen mehrstufigen Kriech-Erholungsversuch dar mit dessen Hilfe die Rückformung und die Nachgiebigkeit von Bitumenprobekörpern, unter Verwendung des DSR, ermittelt werden können [37]. Obwohl das MSCR-Prüfverfahren hauptsächlich für die Beschreibung des Widerstands von Bitumenprobekörpern gegen plastische Verformungen bei hohen Temperaturen (Spurrinnenbildung) angewendet wird, gibt es erste Untersuchungen bezüglich der Verwendung dieses Verfahrens zur Beschreibung des Ermüdungsverhaltens von Bitumen. Beispielsweise wird in [24] geprüft ob der MSCR-Kennwert für die Rückformung als Parameter verwendet werden kann, um die zeitverzögerte, elastische Antwort von Bitumen zu beschreiben. Während der Versuchsdurchführung wird der Bitumenprobekörper abwechselnd einer kurzzeitigen Schubbeanspruchung (Dauer t = 1,0 s) und einer nachfolgenden Erholungsphase (Dauer t = 9,0 s) ausgesetzt, wobei dieser Vorgang für jedes gewählte Spannungsniveau insgesamt zehn Mal (also 10 Be- und Entlastungszyklen) durchgeführt wird (siehe Abbildung 6 – 10 Lastzyklen).

Die für das jeweilige Spannungsniveau ermittelte Rückformung gibt Aufschluss über die elastische Materialantwort des Probekörpers und die ebenfalls für jede Spannungsstufe ermittelte Nachgiebigkeit beschreibt die Empfindlichkeit des Bitumenprobekörpers hinsichtlich bleibender Verformungen unter wiederholter Belastung [37].

Abbildung 6: Exemplarische Kriech-Erholungskurve für 10 aufeinanderfolgende Lastzyklen [37]

Die MSCR-Prüfung gemäß ÖNORM EN 16659 [37] erfolgt bei einer konstanten Prüftemperatur, welche entweder 50°C, 60°C, 70°C oder 80°C betragen muss. Dabei wird innerhalb der ersten 10 Lastzyklen (d.h. 10 Last-/Erholungszyklen) ein Kriechspannungsniveau von σ = 0,1 kPa und innerhalb der darauffolgenden 10 Lastzyklen ein Spannungsniveau von σ = 3,2 kPa aufgebracht (siehe Abbildung 6). Als Probekörper kommt jeweils ein Bitumenplättchen mit einem Durchmesser von 25mm und einer Dicke von 1mm zur Anwendung.

Während der Versuchsdurchführung wird in geringen Zeitabständen der Spannungs- und Dehnungsverlauf des Probekörpers aufgezeichnet. Die dabei ermittelte Gesamtdehnung ε_{ges} pro Lastzyklus gliedert sich jeweils in einen elastischen bzw. rückformbaren Verformungsanteil ε_{el} und in einen bleibenden bzw. nicht rückformbaren Verformungsanteil ε_{pl} [37].

Der Kennwert der elastische Rückformung gemäß Gleichung (16) stellt für jeden Lastzyklus das Verhältnis des elastischen Verformungsanteils ε_{el} zur Gesamtdehnung ε_{ges} dar und ist ein Maß für die elastischen Verformungseigenschaften des Bitumenprobekörpers (siehe Abbildung 7) [37]:

$$R\"{uckformung} = \frac{elastische Dehnung}{Gesamtdehnung} = \frac{\varepsilon_{el}^{N}}{\varepsilon_{ges}^{N}} \cdot 100$$
(16)

Bei der Berechnung des Kennwerts der elastischen Rückformung gemäß ÖNORM EN 16659 [37] wird zunächst für jeden Zyklus N die 0,1%-prozentige Rückformung R^{N}_{σ} , getrennt nach dem jeweiligen Kriechspannungsniveau σ = 0,1kPa bzw. 3,2kPa, ermittelt (siehe Gleichung (17)):

$$\% R_{0,1\,kPa}^{N} bzw. \% R_{3,2\,kPa}^{N} = \frac{\varepsilon_{el}^{N}}{\varepsilon_{ges}^{N}} \cdot 100 = \frac{\varepsilon_{1}^{N} - \varepsilon_{10}^{N}}{\varepsilon_{1}^{N}} \cdot 100$$
(17)

Mit:

 $\ensuremath{\%R^{N}_{0,1kPa}}\ensuremath{\beta}$ Rückformung bei Zyklus N infolge Kriechspannungsniveau von σ = 0,1 kPa in [0,1%] $\ensuremath{\%R^{N}_{3,2kPa}}\ensuremath{\beta}$ Rückformung bei Zyklus N infolge Kriechspannungsniveau von σ = 3,2 kPa in [0,1%] $\ensuremath{\epsilon_{el}^{N}}\ensuremath{}$ der am Ende eines Zyklus N ermittelte elastische Dehnungsanteil

 $\epsilon_{\text{ges}}{}^{N}$ \quad der am Ende eines Zyklus N ermittelte gesamte Dehnungswert

 ϵ_1^N der am Ende der Kriechphase eines Zyklus N (d.h. nach 1,0 s) ermittelte Dehnungswert

 ϵ_{10}^{N} der am Ende der Erholungsphase eines Zyklus N (d.h. nach 10,0 s) ermittelte Dehnungswert

Im nächsten Schritt (siehe Gleichung (18) und Gleichung (19)) werden die ermittelten Rückformungen pro Zyklus R^{N}_{σ} innerhalb des jeweiligen Spannungsniveaus σ aufsummiert und daraus ein Mittelwert für die durchschnittliche Rückformung R_{σ} gebildet:

$$\% R_{0,1\,kPa} = \frac{1}{10} \cdot \sum_{N=1}^{10} \% R_{0,1\,kPa}^{N}$$
(18)

$$\% R_{3,2kPa} = \frac{1}{10} \cdot \sum_{N=1}^{10} \% R_{3,2kPa}^{N}$$
(19)

Mit:

 $R_{0,1kPa}$ Durchschnittliche Rückformung infolge Kriechspannungsniveau von σ = 0,1 kPa in [0,1%] $R_{3,2kPa}$ Durchschnittliche Rückformung infolge Kriechspannungsniveau von σ = 3,2 kPa in [0,1%]

Die Differenz zwischen den durchschnittlichen Rückformungen $R_{0,1kPa}$ und $R_{3,2kPa}$ errechnet sich gemäß Gleichung (20) zu:

$$R_{diff} = 100 \cdot \frac{\% R_{0,1kPa} - \% R_{3,2kPa}}{\% R_{0,1kPa}}$$
(20)

Durch den Vergleich von Ergebnissen für die Rückstellung aus unterschiedlichen Kriechspannungsniveaus können Rückschlüsse auf das spannungsabhängige Verhalten der untersuchten Bitumensorte gezogen werden [37].

Gemäß Gleichung (21) errechnet sich der Kennwert der Nachgiebigkeit für jeden Lastzyklus aus dem Verhältnis des nicht rückformbaren Verformungsanteils ϵ_{pl} zur aufgebrachten Belastung σ und lässt

dadurch Rückschlüsse hinsichtlich des Widerstands des Bitumenprobekörpers gegen bleibende Verformungen zu (siehe Abbildung 7):

Nachgiebigkeit =
$$\frac{bleibende Dehnung}{aufgebrachte Belastung} = \frac{\varepsilon_{pl}^{N}}{\sigma}$$
 (21)

N

Bei der Berechnung des Kennwerts der Nachgiebigkeit gemäß ÖNORM EN 16659 [37] wird zunächst für jeden Zyklus N die Nachgiebigkeit $J^{N}_{nr \sigma}$, getrennt nach dem jeweiligen Kriechspannungsniveau σ , ermittelt (siehe Gleichung (22)):

$$J_{nr0,1\,kPa}^{N} bzw. J_{nr3,2\,kPa}^{N} = \frac{\varepsilon_{pl}^{N}}{\sigma} = \frac{\varepsilon_{10}^{N}}{\sigma}$$
(22)

Mit:

 $J^{N}_{nr0,1kPa}$ Nachgiebigkeit bei Zyklus N infolge Kriechspannungsniveau von $\sigma = 0,1$ kPa in [kPa⁻¹] $J^{N}_{nr3,2kPa}$ Nachgiebigkeit bei Zyklus N infolge Kriechspannungsniveau von $\sigma = 3,2$ kPa in [kPa⁻¹] ε_{10}^{N} der am Ende der Erholungsphase jedes Zyklus N (d.h. nach 10,0 s) ermittelte Dehnungswert

σ eingebrachtes Kriechspannungsniveau

Im nächsten Schritt werden gemäß Gleichung (23) und Gleichung (24) die ermittelten Nachgiebigkeiten pro Zyklus $\% J^{N}_{nr \sigma}$ innerhalb des jeweiligen Spannungsniveaus σ aufsummiert und daraus ein Mittelwert für die durchschnittliche Rückformung $\% J_{nr \sigma}$ gebildet:

$$J_{nr\,0,1\,kPa} = \frac{1}{10} \cdot \sum_{N=1}^{10} J_{nr\,0,1\,kPa}^{N}$$
(23)

$$J_{nr3,2kPa} = \frac{1}{10} \cdot \sum_{N=1}^{10} J_{nr,3,2kPa}^{N}$$
(24)

Mit:

 $J_{nr 0,1kPa}$ Durchschnittliche Nachgiebigkeit infolge Kriechspannungsniveau von σ = 0,1 kPa in [kPa⁻¹] $J_{nr 3,2kPa}$ Durchschnittliche Nachgiebigkeit infolge Kriechspannungsniveau von σ = 3,2 kPa in [kPa⁻¹]

Die Differenz zwischen den durchschnittlichen Nachgiebigkeiten $J_{nr\,0,1kPa}$ und $J_{nr\,3,2kPa}$ errechnet sich gemäß Gleichung (25) zu:

$$J_{nr-diff} = 100 \cdot \frac{J_{nr\,3,2kPa} - J_{nr\,0,1kPa}}{J_{nr\,0,1kPa}}$$
(25)

Durch den Vergleich von Ergebnissen für die Nachgiebigkeit aus unterschiedlichen Kriechspannungsniveaus können Rückschlüsse auf das spannungsabhängige Verhalten der untersuchten Bitumensorte gezogen werden [37].

Abbildung 7: Ermittlung Nachgiebigkeit und Rückformung innerhalb eines Lastzyklus [37]

Beide Kennwerte werden innerhalb einer Spannungsstufe ermittelt. Dadurch können durch Vergleich der Ergebnisse aus unterschiedlichen Spannungsniveaus das spannungsabhängige Verhalten der untersuchten Bitumensorte untersucht werden [37].

Für die Beschreibung des Ermüdungsverhaltens von Bitumenprobekörpern soll der Kennwert der elastischen Rückformung dienen, welche ein Maß für die (zeitverzögerte) elastische Antwort des Bitumens darstellt. In der Forschung [24] wird davon ausgegangen, dass mit zunehmender elastischer Rückformung auch der Widerstand des untersuchten Bitumenprobekörpers gegen Materialermüdung zunimmt.

In ÖNORM EN 16659 [37] werden aktuell noch keine Grenzwerte für die Nachgiebigkeit und die Rückstellung definiert. Speziell für die Anwendbarkeit des MSCR-Prüfverfahrens zur Beschreibung des Ermüdungsverhaltens bituminöser Probekörper müssen daher noch weitere Untersuchen, vor allem für niedrigere Prüftemperaturen, erfolgen, um daraus entsprechende Grenzwerte zur Beschreibung von Materialermüdung ableiten und definieren zu können.

2.4.2 Vorteile des Prüfverfahrens

- + Verhältnismäßig rasche Versuchsdurchführung
- + Probekörper kann einfach, schnell und kostengünstig hergestellt werden
- + Variable Einstellungsmöglichkeiten betreffend die Regelung von Temperatur
- + Nachbildung einer praxisnahen Beanspruchung
- 2.4.3 Nachteile des Prüfverfahrens
 - In der zugehörigen ÖNORM EN 16659 [37] werden für das MSCR-Prüfverfahren, hinsichtlich des Widerstands gegen Materialermüdung von Bitumen, aktuell noch keine Grenzwerte für Nachgiebigkeit und Rückstellung definiert.

- Geringe Anzahl an Untersuchungen betreffend die Verwendung des MSCR-Pr
 üfverfahrens zur Beschreibung des Erm
 üdungsverhaltens von Bitumen
- Schlechte Korrelation zwischen Ergebnissen f
 ür Materialerm
 üdung von Bitumen aus MSCR-Pr
 üfverfahren mit jenen aus VECD-modellierten Erm
 üdungspr
 üfungen [24].
- Ermüdungsversagen tritt meist bei niedrigeren Temperaturen (~25°C) auf, welche unterhalb des typischen Prüftemperaturbereich des MSCR-Prüfverfahrens liegen

2.5 Zugversuch am zweiseitig gekerbten Bitumenstreifen (DENT) nach MTO LS-299 [38]

2.5.1 Beschreibung des Prüfverfahrens

Beim DENT-Test werden definierte und an zwei Seiten eingekerbte sowie RTFOT und PAV gealterte Bitumenstreifen bei einer definierten Temperatur solange einer einaxialen Zugbeanspruchung mit konstanter Belastungsgeschwindigkeit ausgesetzt bis im eingekerbten Querschnittsbereich ein Materialversagen auftritt. Während des Zugversuchs werden die aufgebrachte Kraft P und die Verformung d des Bitumenstreifens aufgezeichnet. Für jeden Bitumentyp muss dieser Versuch 3x durchgeführt werden, wobei die Bitumenprobekörper für jeden dieser drei Versuche eine unterschiedliche aber genormte Länge der Einkerbung L aufweisen müssen [38].

Die infolge der Zugbeanspruchung auftretende Normalspannung in dem jeweiligen Bitumenprobestreifen lässt sich gemäß Gleichung (26) für jeden Zeitpunkt als Verhältnis der aufgebrachten Kraft P zur Querschnittsfläche des Streifens A ermitteln:

$$\sigma = \frac{P}{A}$$
(26)

Die zugehörige Dehnung ϵ wird gemäß Geleichung (27)aus der Längenänderung d mit Bezug auf die ursprüngliche Länge des Probestreifens L₀ ermittelt:

$$\varepsilon = \frac{d}{L_0} \tag{27}$$

Der Verläufe der ermittelten Spannungen und Dehnungen werden anschließend in einem Spannungs-Dehnungs-Diagramm gegenübergestellt.

Nach dem Versagenseintritt wird für jeden Bitumenprobestreifen der Gesamtwert der bis zum Versagen geleisteten mech. Arbeit W_t gemäß Gleichung (28) ermittelt. Dieser Wert entspricht dabei der Fläche unterhalb des Funktionsgraphen im zugehörigen Spannungs-Dehnungs-Diagramm.

$$W_t = \int_0^{t_{crack}} P \cdot d \ dt \tag{28}$$

Im Anschluss wird mittels Division durch das Produkt aus der Kerblänge L und der Querschnittsdicke B des jeweiligen Bitumenprobestreifens eine spezifische Gesamtversagensarbeit w_t ermittelt (siehe Gleichung (29)).

$$w_t = \frac{W_t}{L \cdot B} \tag{29}$$

Die errechneten Werte für die spezifische Gesamtarbeit w_t werden gemeinsam mit den zugehörigen Kerblänge L in einem w_t-L-Diagramm aufgetragen. Mit Hilfe dieses Diagramms kann eine möglichst passende Korrelation zwischen w_t und L in Form eines linearen Funktionsgraphen ermittelt werden. Mit Hilfe dieses Funktionsgraphen können im Anschluss Werte für die spezifische elastische Versagensarbeit w_e und für den Term β w_p ermittelt werden.

Die spezifische elastische Versagensarbeit w_e entspricht dem Wert des Funktionsgraphen von w_t bei einer Kerblänge von L=Om. Diese Arbeit beschreibt jene Energie die erforderlich ist um eine dünne Bitumenfaser, welche Teil eines eingebauten Asphaltbetonverbunds ist, auf eine duktile Art und Weise aufzutrennen bzw. aufzureißen.

Der Term β w_p beschreibt die plastischen, dissipativen Verformungen im Bitumen und entspricht der Steigung des Funktionsgraphen gemäß folgender Gleichung (30):

$$w_t = w_e + \beta \cdot w_p \cdot L \tag{30}$$

Im letzten Schritt wird durch das Verhältnis der spezifischen elastischen Versagensarbeit w_e zu der Netto-Querschnittsspannung des Bitumenprobestreifens mit der kürzesten Länge σ_{nt,5mm} die kritische Rissbreitenaufweitung CTOD gemäß Gleichung (31) näherungsweise ermittelt.

$$CTOD = \frac{W_e}{\sigma_{nt,5mm}}$$
(31)

Die kritische Rissbreitenaufweitung CTOD liefert eine näherungsweise Beschreibung der Verformungsverträglichkeit von Bitumen im duktilen/elastischen Bereich infolge starker Zugbeanspruchung. Mit dem Prüfverfahren an sich und mittels der Auswertung eines CTOD-Werts wird also beschrieben wie stark sich dünne bituminöse Fasern zwischen den Zuschlägen im Asphaltbeton auf Zug beanspruchen lassen, bis Materialversagen in den Fasern eintritt [39].

Durch weiterführende Untersuchungen wurde eine Korrelation zwischen der kritischen Rissbreitenaufweitung CTOD und dem Widerstand gegen Ermüdungsrissbildung von Bitumen festgestellt. Bei der Verwendung von Bitumensorten, welche sich bei Vorhandensein einer starken Zwangsbeanspruchung besser ausdehnen können (also einen größeren CTOD-Wert besitzen), traten im untersuchten Asphalt weniger Ermüdungserscheinungen auf [39].

2.5.2 Vorteile des Prüfverfahrens

- Gemäß Untersuchungen der US-amerikanischen Federal Highway Administration gute Korrelationen zwischen den Ergebnissen aus DENT-Prüfungen von Bitumen, welches in einer Teststrecke verwendetet wurde, und der beobachteten Ermüdungsrissbildung an dieser Teststrecke [40].
- + Im Zuge von Vergleichsuntersuchungen gute Korrelation zwischen Ergebnissen aus DENT-Prüfungen und Ergebnissen aus vergleichenden VECD-modellierten Ermüdungsprüfungen festgestellt [24].
- + Probekörper kann einfach, schnell und kostengünstig hergestellt werden
- + Verhältnismäßig rasche Versuchsdurchführung

2.5.3 Nachteile des Prüfverfahrens

- Bei instabiler Struktur des Bitumens bildet der CTOD-Wert bzw. der Term der elastischen Arbeit die auftretenden Verformungen nur unzureichend ab [41].
- In europäischen Ländern aktuell noch wenig Praxisrelevanz und daher wenig Erfahrung mit Pr
 üfverfahren.
- Im Vergleich zu Prüfungen am DSR größere Mengen an Probenmaterial notwendig
- Spezielles Prüfgerät notwendig

3 Ausgewählte Prüfmethoden zur Bestimmung des Ermüdungsverhaltens auf Asphaltmastix-/Asphaltebene

3.1 Dynamisch-mechanische Analyseprüfung (DMA)

3.1.1 Beschreibung des Prüfverfahrens

Die dynamisch-mechanische Analyseprüfung ist ein Verfahren, welches in unterschiedlichsten Bereichen (z.B. Chemie, Medizin, etc.) dazu angewandt wird, das Materialverhalten von hauptsächlich viskoelastischen Materialien zu beschreiben. Weiters findet dieses Verfahrens auch zur Ermittlung des Ermüdungsverhaltens von bituminösen Materialkompositionen seine Anwendung. Beispielsweise verwendete Kim et al. [42] die DMA-Prüfung zur Beschreibung bzw. Modellierung des Ermüdungsverhaltens von Probekörpern aus einem Bitumen-Sand-Gemisch sowie Castelo Branco et al. [43] zur Untersuchung von der Belastungsart unabhängigen einer, Ermüdungscharakterisierung von Asphalt.

Das DMA-Prüfgerät ähnelt hinsichtlich seines Aufbaus und seiner Prüfcharakteristik stark dem dynamischen Scherrheometer (DSR). Aufgrund seiner, im Vergleich zum DSR größeren Gerätedimensionen kann mit Hilfe des DMA-Prüfgeräts das Ermüdungsverhalten von zylindrischen Asphalt- bzw. Asphaltmastixprobekörpern mit verhältnismäßig großen Abmessungen (z.B. typische Probekörperabmessungen Höhe x Durchmesser = 50 x 12 mm) geprüft werden.

Aufgrund der flexiblen Einstellungsmöglichkeiten am Prüfgerät können mit dem DMA-Prüfverfahren, ähnlich wie bei der Verwendung eines DSR, unterschiedliche Prüfansätze verfolgt werden. Häufig wird der Probekörper zwischen zwei Platten fixiert und bei einer konstanten Prüftemperatur bzw. Prüffrequenz oder innerhalb eines vorgegebenen Temperatur- bzw. Frequenzbereichs einer vorgegebenen Schubbeanspruchung (spannungsgesteuert) oder einer vorgegebenen Dehnung (dehnungsgesteuert) ausgesetzt.

Beim DMA-Prüfverfahren werden während der gesamten Prüfdauer die Verläufe des komplexen Schubmoduls [G*] und des Phasenverschiebungswinkel δ aufgezeichnet. Die verfahrensbezogenen, analytischen Zusammenhänge zwischen den eingebrachten Spannungen bzw. Dehnungen und den abgeleiteten Werten für den Betrag des komplexen Schubmoduls |G*| und den Phasenverschiebungswinkel δ sind dabei identisch zu jenen des DSR, die in den Abschnitt 1.3.2 beschrieben werden.

3.1.2 Vorteile des Prüfverfahrens

- + Variable Einstellungsmöglichkeiten betreffend die Regelung von Temperatur, Frequenz, Art der Versuchsdurchführung (dehnungs- oder belastungsgesteuert), usw.
- + Direkte Prüfung von Probekörpern aus Asphalt- bzw. Asphaltmastix möglich
- + Nachbildung einer praxisnahen Beanspruchung
- + Aus Versuchsdurchführung können bemessungsrelevante, physikalische Parameter (Komplexe Schubsteifigkeit, Phasenverschiebungswinkel) direkt ermittelt werden
- 3.1.3 Nachteile des Prüfverfahrens
 - Aufwendige Pr
 üfkörperherstellung.

3.2 Vierpunkt-Biegebalken-Versuch am prismatischen Probekörper (4PB-PR) nach ÖNORM EN 12697-24 [44]

3.2.1 Beschreibung des Prüfverfahrens

Der 4-Punkt-Biegebalken-Versuch am prismatischen Probekörper (4PB-PR) wird unter anderem dazu verwendet das Ermüdungsverhalten von prismatischen Asphaltprobekörpern mit definierten Abmessungen zu beschreiben. Dazu wird der Probekörper bis zum Ermüdungseintritt, unter Anwendung des G*(50%)-Ermüdungskriteriums gemäß Abschnitt 9.2.1, einer periodischen 4-Punkt-Biegebelastung unterzogen.

Gemäß ÖNORM EN 12697-24 [44] werden spezielle Ansprüche an die Probekörpergeometrie gestellt. So müssen die Breite B und die Höhe H des prismatischen Probekörpers mindestens das Dreifache der maximalen Korngröße der Gesteinskörnung D des verwendeten Asphaltmischguts betragen. An die Schlankheit des Probekörpers wird die Forderung gestellt, dass die Probekörperlänge L zwischen den beiden Außenklemmen mindestens das Sechsfache der Höchstwerte für B und H betragen muss.

Innerhalb der Prüfmaschine wird der jeweilige Probekörper symmetrisch zwischen vier Klemmen situiert. Die zwei Außen-Klemmen dienen als Endlager und müssen eine vertikale Verschiebung des Probekörpers verhindern. Die inneren beiden Klemmen dienen als Lastangriffspunkte, durch welche die sinusförmige Belastung längs und quer zur Längsachse des Probekörpers auf diesen übertragen wird. Infolge dieser Versuchsanordnung treten zwischen den beiden inneren Klemmen ein konstantes Biegemoment und eine konstante Dehnung auf.

Bei Durchführung der Prüfungen kann, neben der Prüftemperatur und der Prüffrequenz, zusätzlich noch zwischen zwei unterschiedlichen Belastungsarten gewählt werden. So kann der jeweilige Probekörper entweder mit einer konstanten Durchbiegung oder mit einer konstanten Last beaufschlagt werden.

Nach den ersten 100 Zyklen und in definierten Zeitabschnitten während der gesamten Prüfdauer werden die eingebrachte Last, die Durchbiegung und die Phasenverzögerung aufgezeichnet. Aus den ermittelten Parametern für den 100. Lastzyklus lässt sich in weiterer Folge die anfängliche Dehnungsamplitude sowie der Anfangswert des berechneten Moduls S_{mix} ermitteln.

Um das Ermüdungsverhalten der untersuchten Asphaltsorte hinreichend genau beschreiben zu können, müssen mehrere Einzelprüfungen mit unterschiedlichen Spannungsniveaus bei gleichbleibender Frequenz und Temperatur durchgeführt und deren Ergebnisse in einer Ermüdungskurve zusammengefasst werden. Diese Ermüdungskurve beschreibt dann das Ermüdungsverhalten der geprüften Asphaltmixtur für die gewählten Prüfparameter. Die Dauerhaftigkeiten müssen bei mindestens drei unterschiedlichen Laststufen und mit mindestens sechs Wiederholungen pro Laststufe ermittelt werden.

Aus den erhaltenen Wöhlerkurven lassen sich gemäß ÖNORM EN 12697-24 [44] folgende Werte berechnen:

- Stufe Q der 10⁶ Lastzyklen entsprechenden Lastart-Prüfbedingung für die Dauerhaftigkeit entsprechend den gewählten Versagenskriterien
- Anstieg p der im doppellogarithmischen Koordinatensystem aufgetragenen Ermüdungskurve
- Schätzwert der Standardabweichung der Restverteilung der natürlichen Logarithmen der Dauerhaftigkeiten S_{x/y}

Aus diesen ermittelten Werten lassen sich die Zusammenhänge zwischen der Lebensdauer log (N_i) und der anfänglichen Dehnungsamplitude log (ϵ_i) gemäß Gleichung (32) beschreiben:

$$\log(N_i) = A_0 + A_1 \cdot \log(\varepsilon_i)$$
(32)

Mit:

Schätzwert von A₀ ermittelt aus Anstieg p

Schätzwert von A1 ermittelt aus Q

3.2.2 Vorteile des Prüfverfahrens

- + Variable Einstellungsmöglichkeiten betreffend die Regelung von Temperatur und Frequenz
- + Nachbildung einer praxisnahen Beanspruchung
- + Aus Versuchsdurchführung können bemessungsrelevante, physikalische Parameter direkt ermittelt werden

3.2.3 Nachteile des Prüfverfahrens

- Sehr aufwendige Probekörperherstellung
- Sehr lange Versuchsdauer (oft mehrere Stunden bzw. Tage pro Versuch)
- Anpassung Probekörpergeometrie notwendig

4 Anwendbarkeit der Prüfverfahrens zur Prüfung von Asphaltmastix

Die Anwendbarkeit der in Abschnitt 2 und 3 angeführten Prüfverfahren zur Ermittlung des Ermüdungsverhaltens von Asphaltmastix wird in der nachfolgenden tabellarischen Übersicht (Tabelle 1) behandelt. Darin werden die Prüfverfahren hinsichtlich der Herstellung von Prüfkörpern aus Asphaltmastix und der Verfügbarkeit der notwendigen Prüfgerätschaften beschrieben. Weiters wird der verfahrensspezifische Anpassungsaufwand abgeschätzt, der erforderlich ist um die Mitwirkung des Füllers bzw. der Feinanteile zu erfassen, welche deutliche Veränderungen im Materialverhalten von Asphaltmastix im Vergleich zu jenem von reinem Bitumen zur Folge haben. Abschließend wird die Anwendbarkeit des jeweiligen Prüfverfahrens, unter Berücksichtigung der zuvor beschriebenen Charakteristiken und unter Einbeziehung der Aussagekraft der Prüfergebnisse, abgeschätzt.

Prüf- verfahr en	Herstellung von Prüfkörpern aus Asphaltmastix	Verfügbarkeit der notwendigen Prüfgerätschaft en	Erforderliche Anpassung des Prüfverfahrens	Anwendbarkeit
PG- Grading	Einfache Herstellung mittels Gussformen. Geringe Mengen an Probenmaterial notwendig	DSR weit verbreitetes Prüfgerät	Einfache Anpassung durch Veränderung der Prüfparameter	Aufgrund eingeschränkter Aussagekraft von G*sinδeher nicht geeignet
Time- Sweep	Einfache Herstellung mittels Gussformen. Geringe Mengen an Probenmaterial notwendig	DSR weit verbreitetes Prüfgerät	Einfache Anpassung durch Veränderung der Prüfparameter Eventuell spezielle Probekörpergeomet rie notwendig	Potentiell sehr gute Eignung Weitere Untersuchungen sinnvoll
LAS	Einfache Herstellung mittels Gussformen. Geringe Mengen an Probenmaterial notwendig	DSR weit verbreitetes Prüfgerät	In engen Grenzen genormtes Prüfverfahren. Auswirkungen von geänderten Materialeigenschaft en und Prüfparametern unklar Zusätzlicher Untersuchungsaufw and notwendig	Potentiell sehr gute Eignung Weitere Untersuchungen sinnvoll
MSCR	Einfache Herstellung mittels Gussformen. Geringe Mengen an	DSR weit verbreitetes Prüfgerät	Anpassung und Abstimmung der	Aktuell eher ungeeignet, da grundsätzliche Aussagekraft der

	Probenmaterial notwendig		Belastungs- und Entlastungsdauer Hoher zusätzlicher Untersuchungsaufw and notwendig	Nachgiebigkeit für Ermüdungsverhalte n noch zu wenig untersucht wurde
DENT	Einfache Herstellung mittels Gussformen. Große Mengen an Probenmaterial notwendig	Adaptierung der Gerätschaften für direkten Zugversuch (DTT) Spezielle Prüfgeräte erforderlich	Einfache Anpassung durch Veränderung der Prüfparameter	Grundsätzlich geeignet. In Europa bisher jedoch nicht relevant
DMA	Komplizierte Herstellung von Probekörpern Sehr große Menge an Probenmaterial notwendig	DMA im Straßenbau weniger weit verbreitet als DSR	Einfache Anpassung durch Veränderung der Prüfparameter	Gute Eignung, wird bereits zur Ermüdungsprüfung von Asphaltmastix verwendet
4PBB	Komplizierte Herstellung von Asphaltmastixprobekör pern nicht sinnvoll	4PBB weniger weit verbreitete als DSR	Auswirkungen von geänderten Materialeigenschaft en und Prüfparametern unklar Jedenfalls Anpassung bei Probekörpergeomet rie notwendig	Eignung möglich Anpassung des Verfahrens infolge geänderter Probekörpergeome trie muss noch untersucht werden

5 Materialauswahl und Probekörpereigenschaften

5.1 Materialauswahl

Im Zuge der gegenständlichen Arbeit wurden insgesamt drei unterschiedliche Mastixsorten hinsichtlich ihrer Ermüdungseigenschaften untersucht.

Als Füller wurde mit Kalksteinmehl und Quarzpulver zwei Materialien verwendet, welche in Österreich dem Asphaltmischgut häufig als Füller zugemischt (Kalksteinmehl) bzw. landläufig als ungünstiges Füllermaterial (Quarzpulver) beschrieben werden. Zusätzlich wurde eine Mastixsorte mit indischem Marmorpulver hergestellt, welches im Zuge der Marmorplattenherstellung in Indien als Abfall entsteht und als möglicher Füller seine Anwendung findet.

Zur Mischung der drei Mastixsorten wurde jeweils das im österreichischen Straßenbau häufig verwendete Bitumen 70/100 in ungealterter Form verwendet.

Im Zuge des Mischvorgangs wurden die jeweiligen Füller/Feinteile im Ofen bei 180°C in Gefäßen getrocknet und anschließend mit dem ebenfalls auf 180°C erwärmten Bitumen im Mischungsverhältnis Bitumen:Füller = 1:1,5 vermengt. Danach wurden die drei Mastixsorten solange mit einem Rührstabes verrührt, bis eine hinreichend homogene Vermischung der Mastix-Komponenten festzustellen war. Die anschließende Lagerung der Probenbehälter erfolgte im Kühlschrank bei Temperaturen von < 10°C.

Eine Übersicht über die Zusammensetzungen der einzelnen Mastixsorten ist in Tabelle 2 ersichtlich.

Labor- Code	Bitumen		Masse	Füller/Feinanteile		Kornklasse	Masse
MX0037	B136A	OMV 70/100	200g	F099	Kalksteinmehl (Limberg)	0/0,125	300g
MX0038	B136A	OMV 70/100	200g	F041	Quarzpulver	0/0,125	300g
MX0039	B136A	OMV 70/100	133,3g	F151	Marmorpulver (Indien)	0/0,125	200g

Tabelle 2: Zusammensetzung der zu untersuchenden Mastixsorten

5.2 Probekörpergeometrie

Bei Prüfverfahren zur Ermittlung des Ermüdungsverhaltens von Asphaltmastix, die in einem DSR durchgeführt werden, finden hauptsächlich zylindrische Mastixprobekörper mit einem Durchmesser von D = 8 mm und einer Höhe von H = 2 mm ihre Anwendung.

Im Zuge einer Forschungsarbeit der TU Wien, betreffend die Entwicklung eines neuen Prüfverfahrens zur Beschreibung des Ermüdungsverhaltens von Asphaltmastix [12], wurde eine hyperbolische Probekörpergeometrie entwickelt (siehe Abbildung 8 - links). Bedingt durch diese spezielle Probekörperform tritt Materialversagen infolge Ermüdung ausschließlich im Bereich des kleinsten Querschnitts in der Probekörpermitte ein (siehe Abbildung 8 rechts). Ein Adhäsions-Versagen an der Trennfläche zwischen der oszillierenden DSR-Platte und dem Probekörper, welches bei der Verwendung von zylindrischen Probekörpern häufig auftrat und falsche Messergebnissen zur Folge hatte, kann formbedingt nicht mehr auftreten [12].

Abbildung 8: Hyperbolische Probekörpergeometrie (links) und definierter Versagensquerschnitt (rechts) [12]

In der gegenständlichen Arbeit wurden sämtliche untersuchte Prüfverfahren mit beiden Probekörperformen (zylindrisch und hyperbolisch) an der Platte-Platte-Prüfgeometrie PP08 durchgeführt. Die Prüfergebnisse und deren Korrelation in Abhängigkeit der jeweiligen Probekörperform werden in Abschnitt 10 und Abschnitt 11 erläutert.

5.3 Probekörperherstellung

5.3.1 Zylindrischer Probekörper

Die Herstellung der zylindrischen Probekörper erfolgt außerhalb des DSR-Geräts mithilfe von Silikongussformen (siehe Abbildung 9 links und Mitte). Dabei wird eine Mastixprobe aus dem jeweiligen Probebehälter entnommen, auf eine Temperatur von 180°C erwärmt und anschließend in diese Silikongussformen gegossen. Nach einer Abkühlzeit von ca. 10 min wird der zylindrische Probekörper in die DSR-Prüfvorrichtung eingebaut und anschließend getrimmt (siehe Abbildung 9 - rechts).

Abbildung 9: Links und Mitte: Silikonform zur Herstellung zylindrischer Mastixprobekörper (ohne und mit hergestellten Probekörper); Rechts: in DSR eingebauter zylindrischer Probekörper, nach dem Trimmen

5.3.2 Hyperbolischer Probekörper

Die Herstellung hyperbolischer Probekörper erfolgt mithilfe spezieller Silikongussformen, die mit einem Gummiring gesichert (siehe Abbildung 10 links) und bereits vor der Probekörperherstellung auf der unteren, temperierten Platte des verwendeten DSR-Prüfgerät eingebaut werden müssen (siehe Abbildung 10 Mitte). Im Anschluss wird die auf 180°C erhitzte Asphaltmastix mit einem geeigneten Eingussgefäß in die eingebaute Silikongussform gegossen, welche nach einer Abkühlung auf 10°C und einer anschließenden Wartezeit von 10min wieder aus der Prüfmaschine entnommen wird, bevor mit der Beanspruchung des Probekörpers begonnen werden kann (siehe Abbildung 10 rechts).

Abbildung 10: Links: Silikonform zur Herstellung hyperbolischer Mastixprobekörper; Mitte: Eingebaute Silikonform nach dem Einfüllvorgang; Rechts: in DSR eingebauter hyperbolischer Probekörper, nach Entfernung der Silikonform

6 Prüfgerät

Aufgrund der höheren initialen Steifigkeit von Asphaltmastix im Vergleich zu reinem Bitumen, werden an das verwendete DSR-Prüfgerät höhere Ansprüche notwendig. Beispielsweise muss es in der Lage sein eine betragsmäßig große Momentenbeanspruchung bereitzustellen und diese auch über mehrere Stunden aufrecht zu erhalten ohne dabei zu Überhitzen.

Für die durchgeführten Ermüdungsprüfungen wurden zwei baugleiche Geräte vom Typ MCR 302 der Fa. Anton Paar verwendet (siehe Abbildung 11).

Abbildung 11: Verwendete Messgeräte – Anton Paar MCR302 BJ2012 (links) und Anton Paar MCR302 BJ2019 (rechts)

7 Bestimmung linear-viskoelastische Bereiche (LVE)

7.1 Allgemeines

In der gegenständlichen Arbeit wurde für jede der drei untersuchten Mastixsorten der linearviskoelastische Bereich, sowohl für eine zylindrische als auch für eine hyperbolische Probekörpergeometrie, mittels durchgeführter Prüfungen im DSR, ermittelt. Die Auswertung dieser Versuche ist in den folgenden Abschnitten 7.2 bis 7.4 beschrieben. Betreffend die Grenzwertdefinitionen aus Abschnitt 1.3.3, wurde in dieser Auswertung jene aus der DIN 53019-4 [10] angewendet. Demnach endet der linear-viskoelastische Bereich bei jenem Punkt, an dem Betrag des komplexen Schubmoduls |G^{*}| auf 95% seines Ausgangswerts abgesunken ist.

7.2 Lineare Viskoelastizität zylindrischer Probekörper

In Abbildung 12 bis Abbildung 14 ist jeweils die Auswertung des linear-viskoelastischen Bereichs für eine zylindrische Probekörpergeometrie der drei untersuchten Mastixsorten MX0037, MX0038 und MX0039 ersichtlich. Dabei lässt sich erkennen, dass die Mastixsorte MX0037 mit einem komplexen Schubmodul von $|G^*| = 213,8$ MPa den ausgeprägtesten LVE-Bereich besitzt. An zweiter Stelle folgt die Mastixsorte MX0038 mit $|G^*| = 203,3$ MPa gefolgt von Mastixsorte MX0039 mit $|G^*| = 197,6$ MPa.

Weiters zeigen Abbildung 12 bis Abbildung 14, dass bei der Mastixsorte MX0039 das größte Verformungs- bzw. Spannungsniveau aufgebracht werden kann, ehe der G*(95%)-Grenzwert des LVE-Bereichs erreicht wird. Dagegen erreicht MX0038 den G*(95%)-Grenzwert bereits bei den geringsten Verformungs- bzw. Spannungsniveaus aller untersuchten Mastixsorten.

Eine Zusammenfassung der ermittelten LVE Kennwerte für zylindrische Probekörper ist in Tabelle 3 ersichtlich.

Abbildung 12: Lineare Viskoelastizität – MX0037 (zylindrischer Probekörper)

LVE MX0038 (Quarzpulver + OMV 70/100) - zyl PK

LVE MX0039 (Marmorpulver + OMV 70/100) - zyl PK

Abbildung 14: Lineare Viskoelastizität – MX0039 (zylindrischer Probekörpe	er)
---	-----

	MX0037	MX0038	MX0039
	(Kalksteinmehl + OMV 70/100)	(Quarzpulver + OMV 70/100)	(Marmorpulver + OMV 70/100)
G* (95%) in [MPa]	213,8	203,3	197,6
LVE Dehnungsniveau in [%]	0,25	0,228	0,321
LVE Spannungs- niveau in [MPa]	0,533	0,462	0,633

Fahalla 3: Auflistung dar I VE Kannwarta für zylindrischa Probakörnar	racometria
7.3 Lineare Viskoelastizität hyperbolischer Probekörper

In Abbildung 15 bis Abbildung 17 sind die Auswertungen des linear-viskoelastischen Bereichs für die hyperbolische Probekörpergeometrie der drei untersuchten Mastixsorten MX0037, MX0038 und MX0039 ersichtlich. Dabei lässt sich erkennen, dass die Mastixsorte MX0039 mit einem komplexen Schubmodul von $|G^*| = 87,4$ MPa den ausgeprägtesten LVE-Bereich besitzt. An zweiter Stelle folgt die Mastixsorte MX0037 mit $|G^*| = 86,5$ MPa gefolgt von Mastixsorte MX0038 mit $|G^*| = 85,5$ MPa.

Weiters zeigen Abbildung 15 bis Abbildung 17, dass bei der Mastixsorte MX0037 das größte Verformungs- bzw. Spannungsniveau aufgebracht werden kann, ehe der G*(95%)-Grenzwert des LVE-Bereichs erreicht wird. Dagegen erreicht MX0038 den G*(95%)-Grenzwert bereits bei den geringsten Verformungs- bzw. Spannungsniveaus aller untersuchten Mastixsorten.

Eine Zusammenfassung der ermittelten LVE Kennwerte für hyperbolische Probekörper ist in Tabelle 4 ersichtlich.

LVE MX0038 (Quarzpulver + OMV 70/100) - hyp PK

Abbildung 16: Lineare Viskoelastizität – MX0038 (hyperbolischer Probekörper)

LVE MX0039 (Marmorpulver + OMV 70/100) - hyp PK

	MX0037	MX0038	MX0039
	(Kalksteinmehl + OMV 70/100)	(Quarzpulver + OMV 70/100)	(Marmorpulver + OMV 70/100)
G* (95%) in [MPa]	86,5	85,5	87,4
LVE Dehnungsniveau in [%]	0,325	0,204	0,249
LVE Spannungs- niveau in [MPa]	0,280	0,174	0,218

7.4 Gegenüberstellung der Ergebnisse

Beim Vergleich der LVE-Kennwerte der untersuchten Mastixsorten aus Abbildung 12 bis Abbildung 17 bzw. Tabelle 3 und Tabelle 4, lässt sich erkennen, dass die G*(95%)-Grenzwerte der hyperbolischen Probekörpergeometrie betragsmäßig deutlich unter jenen der zylindrischen Probekörpergeometrie liegen. Dies lässt sich wiederum auf die geometriebedingt erhöhte Schubbeanspruchbarkeit der zylindrischen Probekörpergeometrie zurückführen.

Im Gegensatz zu den G*(95%)-Grenzwerten liegen die Beträge der maximal aufzubringenden Verformungs- bzw. Spannungsniveaus von zylindrischen und hyperbolischen Probekörpern erwartungsgemäß in derselben Größenordnung.

Der Vergleich der ermittelten LVE Kennwerte innerhalb der drei untersuchten Mastixsorten weist jedoch Abweichungen im jeweiligen Ranking zwischen zylindrischer und hyperbolischer Probekörpergeometrie auf (siehe Tabelle 5). Dies lässt eine mangelnde Anwendbarkeit des durchgeführten Verfahrens zur Ermittlung von LVE-Kennwerte hyperbolischer Probekörper vermuten.

	MX0037		MX0038		MX0039	
	(Kalkstei OMV 7	inmehl + '0/100)	(Quarzpulver + OMV 70/100)		(Marmorpulver + OMV 70/100)	
Probekörper- geometrie	ZYL	НҮР	ZYL	НҮР	ZYL	НҮР
G* (95%) in [MPa]	+	0	0	-	-	+
LVE Verformungs- niveau in [%]	0	+	-	-	+	0
LVE Spannungs- niveau in [MPa]	0	+	-	-	+	0
Legende: + = höchster Wert, O = zweithöchster Wert, - = niedrigster Wert						

Tabelle 5	: Vergleich	der LVE-Kennwerte
-----------	-------------	-------------------

8 Angewendete Prüfverfahren zur Beschreibung des Ermüdungsverhaltens von Asphaltmastix

Aus den Abschnitten 2 und 3 wurden die folgenden drei gängigen Ermüdungs-Prüfverfahren ausgewählt um die Prüfverfahren selbst, deren Ergebnisse und ihre Anwendbarkeit für die Prüfung von Asphaltmastix zu analysieren.

- Time-Sweep-Prüfverfahren (verschiebungsgesteuert)
- Time Sweep-Test (spannungsgesteuert)
- LAS-Prüfverfahren

8.1 Time-Sweep-Prüfverfahren (verschiebungsgesteuert)

8.1.1 Prüfparameter

Die verschiebungsgesteuerten Time-Sweep-Prüfungen wurden bei einer konstanten Prüftemperatur von +10°C durchgeführt. Dabei wurden die Probekörper mit einer konstanten Prüffrequenz von 30 Hz sowie mit drei unterschiedlichen Verformungsniveaus beaufschlagt. Die Beträge der drei Verformungsniveaus wurden so gewählt, dass jeweils eine kurze (ca. 15 min), eine mittlere (ca. 60 min) und eine lange (mehrere Stunden) Belastungsdauer bis zum Ermüdungseintritt erreicht wurde. Dadurch können die Einflüsse des Beanspruchungsniveaus auf das Ermüdungsverhalten der unterschiedlichen Mastixsorten bei unterschiedlichen Probekörpergeometrien über eine hinreichend große Bandbreite an Beanspruchungsniveaus untersucht werden. Um statistische Schwankungen in den Messwerten zu berücksichtigen, wurden an jeder Mastixsorte und jeder Probekörpergeometrie pro Verformungsniveau drei Prüfungen durchgeführt (siehe Tabelle 6).

Mastixsorte	MX0037		MX0038		MX0039	
Probekörper- geometrie	Hyper- bolisch	Zylindrisc h	Hyper- bolisch	Zylindrisch	Hyper- bolisch	Zylindrisch
Prüftemperatur	10°C	10°C	10°C	10°C	10°C	10°C
Prüffrequenz	30Hz	30Hz	30Hz	30Hz	30Hz	30Hz
Verformungsniveau	1,0%	1,0%	1,0%	1,0%	1,0%	1,0%
"kurz Dauer"	(3x)	(3x)	(3x)	(3x)	(3x)	(3x)
Verformungsniveau	0,75%	0,75%	0,75%	0,75%	0,75%	0,75%
"mittlere Dauer"	(3x)	(3x)	(3x)	(3x)	(3x)	(3x)
Verformungsniveau	0,5%	0,5%	0,5%	0,5%	0,5%	0,5%
"lange Dauer"	(3x)	(3x)	(3x)	(3x)	(3x)	(3x)

8.1.2 Prüfablauf

Die Eingabe der Prüfparameter und die schrittweise Durchführung der Prüfung erfolgte mittels Anwendung der Prüfsoftware "Anton Paar RheoCompass". In Abhängigkeit der zu untersuchenden Probekörpergeometrie wurden bei jeder durchgeführten Prüfung mit diesem Prüfprogramm die vorprogrammierten Prüfschritte gemäß Anhang A (verschiebungsgesteuerte Time-Sweep-Prüfungen am zylindrischen Probekörper) und Anhang B (verschiebungsgesteuerte Time-Sweep-Prüfungen am hyperbolischen Probekörper) der Reihe nach durchlaufen.

8.2 Time-Sweep-Prüfverfahren (spannungsgesteuert)

8.2.1 Prüfparameter

Die spannungsgesteuerten Time-Sweep-Prüfungen wurden bei einer konstanten Prüftemperatur von +10°C durchgeführt. Dabei wurden die Probekörper mit einer konstanten Prüffrequenz von 30 Hz sowie mit drei unterschiedlichen Spannungsniveaus beaufschlagt. Die Beträge der drei Spannungsniveaus wurden so gewählt, dass jeweils eine kurze (ca. 15 min), eine mittlere (ca. 60 min) und eine lange (mehrere Stunden) Belastungsdauer bis zum Ermüdungseintritt erreicht wurde. Dadurch können die Einflüsse des Beanspruchungsniveaus auf das Ermüdungsverhalten der unterschiedlichen Mastixsorten und Probekörpergeometrien über eine hinreichend große Bandbreite an Beanspruchungsniveaus untersucht werden. Um statistische Schwankungen in den Messwerten zu berücksichtigen, wurden an jeder Mastixsorte und jeder Probekörpergeometrie pro Verformungsniveau drei Prüfungen durchgeführt (siehe Tabelle 7).

Mastixsorte	MX0037		MX0038		MX0039	
Probekörper- geometrie	Hyper- bolisch	Zylindrisch	Hyper- bolisch	Zylindrisch	Hyper- bolisch	Zylindrisch
Prüftemperatur	10°C	10°C	10°C	10°C	10°C	10°C
Prüffrequenz	30Hz	30Hz	30Hz	30Hz	30Hz	30Hz
Spannungsniveau "kurz Dauer"	500kPa (3x)	1200kPa (3x)	500kPa (3x)	1200kPa (3x)	500kPa (3x)	1200kPa (3x)
Spannungsniveau "mittlere Dauer"	400kPa (3x)	1000kPa (3x)	400kPa (3x)	1000kPa (3x)	400kPa (3x)	1000kPa (3x)
Spannungsniveau "lange Dauer"	300kPa (3x)	700kPa (3x)	300kPa (3x)	700kPa (3x)	300kPa (3x)	700kPa (3x)

Tabelle 7: Prüfparameter für Time-Sweep-Prüfung	(spannungsgesteuert)
rabelle / raiparameter far finle offeep fraiang	(opannangogeoteacit)

8.2.2 Prüfablauf

Die Eingabe der Prüfparameter und die schrittweise Durchführung der Prüfung erfolgte mittels Anwendung der Prüfsoftware "Anton Paar RheoCompass". In Abhängigkeit der zu untersuchenden Probekörpergeometrie wurden mit diesem Prüfprogramm bei jeder durchgeführten Prüfung die vorprogrammierten Prüfschritte gemäß Anhang C (spannungsgesteuerte Time-Sweep-Prüfungen am zylindrischen Probekörper) und Anhang D (spannungsgesteuerte Time-Sweep-Prüfungen am hyperbolischen Probekörper) der Reihe nach durchlaufen.

8.3 LAS-Prüfverfahren

8.3.1 Prüfparameter

Der erste Abschnitt des LAS-Prüfverfahrens (Frequenz-Sweep) wurde bei einer konstanten Prüftemperatur von T = +10°C durchgeführt. Dabei wurden die Probekörper gemäß AASHTO TP101[AASHATO] mit einem konstanten Verschiebungsniveau von $\gamma = 0,1\%$ und innerhalb eines Frequenzbands von f = 0,2 bis 30 Hz beaufschlagt. Im direkt anschließend stattfindenden zweiten Abschnitt des LAS-Prüfverfahrens (verschiebungsgesteuert) wurden die Probekörper bei einer gleichbleibenden Prüftemperatur von $T = +10^{\circ}C$ und einer konstanten Prüffrequenz von f = 10 HzAASHTO TP101 innerhalb von 3100 Lastspielen mit gemäß [AASHTO] zunehmenden Verschiebungsniveaus von 0 bis 30% beaufschlagt. Um statistische Schwankungen in den Messwerten zu berücksichtigen, wurden an jeder Mastixsorte und jeder Probekörpergeometrie je drei Prüfungen durchgeführt (siehe Tabelle 8).

Mastivearta NAV0027 NAV0028 NAV0020					000	
wastixsorte	IVIXU	JU37	10170038		10170033	
Probekörper- geometrie	Hyper- bolisch	Zylindrisc h	Hyper- bolisch	Zylindrisch	Hyper- bolisch	Zylindrisch
1. Abschnitt (Frequenz-Sweep)						
Prüftemperatur	10°C	10°C	10°C	10°C	10°C	10°C
Prüffrequenz	0,2 – 30Hz	0,2 – 30Hz	0,2 – 30Hz	0,2 – 30Hz	0,2 – 30Hz	0,2 – 30Hz
Verformungs- niveau	0,1% (3x)	1,0% (3x)	1,0% (3x)	1,0% (3x)	1,0% (3x)	1,0% (3x)
	2. /	Abschnitt (ve	erschiebungsge	esteuert)		
Prüftemperatur	10°C	10°C	10°C	10°C	10°C	10°C
Prüffrequenz	10Hz	10Hz	10Hz	10Hz	10Hz	10Hz
Verformungs- niveau	0 - 30% (3x)	0 - 30% (3x)	0 - 30% (3x)	0 - 30% (3x)	0 - 30% (3x)	0 - 30% (3x)

Tabelle 8:	Prüfparameter	für LAS	Prüfverfahren
	•		

8.3.2 Prüfablauf

Die schrittweise Durchführung der Prüfung erfolgte mittels Anwendung der Prüfsoftware "Anton Paar RheoCompass". In Abhängigkeit der zu untersuchenden Probekörpergeometrie wurden mit diesem Prüfprogramm die vorprogrammierten Prüfschritte gemäß Anhang E (LAS-Prüfungen am zylindrischen Probekörper) und Anhang F (LAS-Prüfungen am hyperbolischen Probekörper) bei jeder durchgeführten Prüfung der Reihe nach durchlaufen.

9 Ermüdungskriterien

9.1 Übersicht

Die im DSR durchgeführte Beaufschlagung von Probekörpern aus Asphaltmastix mittels oszillierender Verformungen oder Spannungen führt zu zeitversetzten Materialantworten welche vom DSR-Prüfgerät aufgezeichnet und in Form von zeitlichen Verläufen des Betrags des komplexen Schubmoduls $|G^*|$ sowie des Phasenverschiebungswinkels δ widergegeben werden. Die zeitlichen Verläufe von $|G^*|$ und δ folgen zwar grundsätzlich den in Abschnitt 1.3.4 angeführten Phasen der Ermüdung, letztere treten jedoch, vor allem in Abhängigkeit des gewählten Prüfverfahrens, in unterschiedlichen Zeiträumen und unterschiedlicher Ausprägung auf. Während beispielsweise bei Verläufen von $|G^*|$ und δ infolge spannungsgesteuerter Time-Sweep-Prüfungen der Eintritt des Materialversagens infolge Ermüdung relativ klar ersichtlich ist (siehe Abbildung 18) weisen die Verläufe infolge verschiebungsgesteuerter Time-Sweep-Prüfungen oftmals keinen eindeutigen Ermüdungseintritt auf (siehe Abbildung 19). Für die Auswertung der Prüfergebnisse sind deshalb Kriterien festzulegen, welche den Ermüdungseintritt möglichst realitätsnah beschreiben und definieren.

Abbildung 18: Zeitlicher Verlauf von $|G^*|$ und δ bei spannungsgesteuerter TS-Prüfung

Abbildung 19: Zeitlicher Verlauf von $|G^*|$ und δ bei verschiebungsgesteuerter TS-Prüfung

Zur Beurteilung des Ermüdungsverhaltens von Bitumenprobekörpern existieren in der Forschung unterschiedliche Definitionen ab wann Ermüdung eintritt. Nachfolgend werden einige häufig verwendete Konzepte angeführt, auf deren Basis konkrete Ermüdungskriterien definiert wurden:

- Absinken des Betrags des komplexen Schubmoduls auf 50% seines Ausgangswerts [33],[49]-[51].
- Erreichen des maximalen Phasenverschiebungswinkels [45]
- Eintreten des kompletten Versagens des Bitumenprobekörpers
- Erreichen eines definierten Risswachstumsindex [43]
- Änderung bzw. Zunahme der dissipativen Energie bei fortschreitender Lastspielanzahl [19],[46]-[48].

9.2 Angewendete Ermüdungskriterien

Im Zuge der Auswertung der Prüfergebnisse der spannungs- und verschiebungsgesteuerten Time-Sweep Prüfungen (siehe Abschnitt 10.2 und 10.3) wurden die drei nachfolgenden, in der Forschung häufig zum Einsatz kommenden Ermüdungskriterien angewendet. Für die Auswertung der Prüfergebnisse der LAS-Prüfungen (siehe Abschnitt 10.4) wurde das Auswerteverfahren gemäß AASHTO TP101-5 [35] verwendet.

9.2.1 Abfall des Betrags des komplexen Schubmoduls auf 50% des Ausgangswerts (G*(50%)-Kriterium)

Das G*(50%)-Kriterium definiert den Ermüdungseintritt bei jener Lastspielzahl, bei der Betrag des komplexen Schubmoduls $|G^*|$ auf 50% seines Initialwerts $|G^*_{init}|$ abgesunken ist (siehe Abbildung 20). Dieses Kriterium wurde unter anderem von Kim et al. [49], Hicks et al. [50] oder Williams [51] genutzt,

um Ermüdung unabhängig vom Belastungsmodus (spannungs- oder verschiebungsgesteuert) beschreiben zu können. Obwohl dieses Ermüdungskriterium aufgrund seiner einfachen Anwendung verhältnismäßig oft verwendet wird, basiert seine Definition auf einem willkürlich gewählten Kriterium und weist daher keinen Zusammenhang mit der Schadensakkumulation infolge Ermüdung auf [33],[46].

Abbildung 20: Anwendung des G*(50%)-Kriterium bei verschiebungsgesteuerter Time-Sweep-Prüfung

9.2.2 Erreichen des maximalen Phasenverschiebungswinkels (δ_{max} Kriterium)

Das δ_{max} Kriterium definiert den Ermüdungseintritt bei jener Lastspielzahl, bei der der Verlauf des Phasenverschiebungswinkels sein Maximum erreicht (siehe Abbildung 21). Seine Definition folgt dabei aus der Annahme, dass ab Erreichen des maximalen Phasenverschiebungswinkels schrittweise eine Schädigung infolge Ermüdung eintritt [15],[45]. Obwohl das δ_{max} Kriterium grundsätzlich sowohl für die Auswertung spannungs- als auch verschiebungsgesteuerter Prüfmodi angewendet werden könnte, zeigt sich in den nachfolgenden Auswertungen (siehe Abschnitt 10.2 und 10.3) dass dieses Kriterium Schwächen bei der Auswertung verschiebungsgesteuerter Time-Sweep-Prüfungen aufweist und daher für die Auswertung dieser Art von Versuchen nicht geeignet ist.

Abbildung 21: Anwendung des δ_{max} -Kriterium bei verschiebungsgesteuerter Time-Sweep-Prüfung

9.2.3 Änderung bzw. Zunahme der dissipativen Energie bei fortschreitender Lastspielanzahl (DER-Kriterium)

Gemäß den Erläuterungen aus Abschnitt 1.3.4 lässt sich der Ermüdungsfortschritt bei Asphalt in die Einschwingphase, die Phase des Anwachsens von Mikrorissen, die Phase des Anwachsens von Makrorissen und der Phase des Materialversagens einteilen. Untersuchungen von Pronk [47],[48] und Ghuzlan und Carpenter [46] zeigten, dass die Zeitpunkte des Erreichens der Phasen 2 und 3 realitätsnahe Ermüdungskriterien darstellen können. Weiterführende Untersuchungen von Bonetti et al. [19] bzw. Wang, et al. [52] resultierten in der Definition des DER-Kriteriums, demnach sowohl bei spannungs- als auch verschiebungsgesteuerter Versuchsdurchführung Ermüdung bei jener Lastspielzahl N_{p20} eintritt, bei der der Funktionsgraph des dissipierten Energieverhältnisses (DER) in den nichtlinearen Bereich übergeht. Der Übergang in den nicht linearen Bereich wurde dabei an jenem Punkt definiert, an dem der Verlauf des ermittelten dissipativen Energieverhältnisses DER um mehr als 20% vom Verlauf einer angenäherten, linearen Anfangsgerade abweicht (siehe Abbildung 22 und Abbildung 23).

Abbildung 22: Anwendung des DER-Kriteriums zur Auswertung spannungsgesteuerter TS-Prüfung

Abbildung 23: Anwendung des DER-Kriteriums zur Auswertung verschiebungsgesteuerter TS-Prüfung

Das Verhältnis der dissipierten Energie (DER) errechnet sich dabei gemäß Gleichung (33) aus der bis zum Lastzyklus n aufsummierte dissipative Energie pro Lastzyklus ΣW_i und der dissipierten Energie des n-ten Lastzyklus W_n .

$$DER = \frac{\sum_{i=1}^{n} W_i}{W_n}$$
(33)

Die dissipative Energie pro Lastzyklus Wi errechnet sich dabei gemäß Gleichung (34).

$$W_i = \pi \cdot \gamma_{0,i}^2 \cdot \left| G_i^* \right| \cdot \sin(\delta_i)$$
(34)

Mit:

- Wi dissipative Energie pro Lastzyklus i
- |G^{*}_i| Spannungsamplitude bei Lastzyklus i
- γ_i Schubdehnungsamplitude bei Lastzyklus i
- δ_i Phasenverschiebungswinkel bei Lastzyklus i
- W_n dissipative Energie des n-ten Lastzyklus (entspricht W_i bei Lastzyklus i = n)

10 Auswertung und Analyse der Prüfergebnisse

10.1 Allgemeines

Die Auswertung der Prüfergebnisse der durchgeführten Time-Sweep-Prüfungen (spannungs- bzw. verschiebungsgesteuert) zur Ermittlung des Ermüdungsverhaltens der untersuchten Mastixsorten erfolgt durch Gegenüberstellung des jeweils aufgebrachten Beanspruchungsniveaus mit der ermittelten Ermüdungs-Lastspielzahl. Die Ermittlung der Anzahl der Lastspiele bis zum Eintritt der Ermüdung erfolgt durch Anwendung von drei unterschiedlichen Ermüdungskriterien (G*(50%), DER, δ_{max}), welche den Zeitpunkt des Ermüdungseintritts unterschiedlich definieren. Die Auswertung der Prüfergebnisse aus den durchgeführten LAS-Versuche erfolgt mit Hilfe der Auswertearithmetik der US-amerikanischen Norm AASTHO TP101 [35].

Die Analyse des Ermüdungsverhaltens der drei untersuchten Mastixsorten MX0037 (Kalksteinmehl + OMV 70/100), MX0038 (Quarzpulver + OMV 70/100) und MX0039 (Marmorpulver + OMV 70/100) erfolgt, unterteilt nach den gewählten Prüfverfahren (Time-Sweep last- bzw. verschiebungsgesteuert LAS-Prüfverfahren) sowohl für die zylindrische als auch die hyperbolische sowie Probekörpergeometrie, durch Abbildung der ausgewerteten Einzel-Prüfergebnisse in mastixsortenspezifischen, logarithmischen Wöhlerkurven (siehe Abschnitt 1.3.5). Diese Wöhlerkurven werden hinsichtlich ihrer Verläufe und ihrer Korrelation mit den zugehörigen Einzelprüfungen analysiert und miteinander verglichen. Daraus wird die Widerstandsfähigkeit der einzelnen Mastixsorten gegen Materialermüdung abgeleitet und innerhalb des jeweiligen Prüfverfahrens bewertet.

10.2 Ermüdung verschiebungsgesteuerter Time-Sweep-Prüfungen

10.2.1 Allgemeines

Die ausgewerteten Prüfergebnisse aus den verschiebungsgesteuerten Time-Sweep-Prüfungen an zylindrischen und hyperbolischen Probekörpern, sowie die daraus abgeleiteten Wöhlerkurven zur Beschreibung des Ermüdungsverhaltens der drei untersuchten Mastixsorten, werden nach dem jeweils angewendeten Ermüdungskriterium unterteilt und in Abbildung 24 bis Abbildung 30 dargestellt.

10.2.2 Anwendung Ermüdungskriterium G*(50%)

Abbildung 24 und Abbildung 25 stellen das jeweils aufgebrachte Dehnungsniveau der ermittelten Anzahl an Lastspielen bis zum Auftreten von Materialermüdung unter dem Ermüdungskriterium G*(50%) gegenüber. Dieses definiert Ermüdung als jene Lastspielzahl, bei der der Betrag des komplexen Schubmoduls auf 50% seines Ausgangswertes abgesunken ist (siehe Abschnitt 9.2.1).

Abbildung 24: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am <u>zylindrischen</u> Probekörper mit Ermüdungskriterium G*50%

Abbildung 25: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am <u>hyperbolischen</u> Probekörper mit Ermüdungskriterium G*50%

Da die Bestimmtheitsmaße (R^2) der drei untersuchten Mastixsorten sowohl bei Prüfungen mit zylindrischen als auch mit hyperbolischen Probekörpern allesamt bei $R^2 > 0,95$ und daher sehr nahe bei 1,0 liegen, weisen die drei Mastixsorten eine gute Korrelation zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven auf.

Neigung der Ermüdungskurve:

Sowohl Abbildung 24 als auch Abbildung 25 zeigen einen annähernd parallelen Verlauf der drei Wöhlerkurven. Daraus lässt sich ableiten, dass bei Anwendung des G*(50%)-Ermüdungskriteriums sich bei allen drei Mastixsorten der Zeitpunkt des Ermüdungseintritts bei Veränderung des aufgebrachten Dehnungsniveaus ähnlich stark verschiebt.

Ermüdungsbeständigkeit:

Aus Abbildung 24 und Abbildung 25 lässt sich ableiten, dass bei Anwendung des Ermüdungskriterium G*(50%) für Prüfungen an beiden Probekörpergeometrien die Mastixsorte MX0038 (Quarzpulver + OMV 70/100) die besten Ermüdungseigenschaften aufweist, gefolgt von der Mastixsorte MX0039 (Marmorpulver + OMV 70/100). Die Mastixsorte MX0037 (Kalksteinmehl + OMV 70/100) weist die geringste Ermüdungsbeständigkeit aller untersuchten Mastixsorten auf.

10.2.3 Anwendung Ermüdungskriterium δ_{max} :

In den Auswertungen gemäß Abbildung 26 und Abbildung 27 findet das Ermüdungskriterium δ_{max} zur Bestimmung des Ermüdungseintritts seine Anwendung. Dieses Kriterium definiert Ermüdung bei jener Lastspielzahl, bei der während des Prüfversuchs der Maximalwert des Phasenverschiebungswinkels auftritt (siehe Abschnitt 9.2.2).

Lastspielzahl bis Ermüdungseintritt in [log LS]

Abbildung 26: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am <u>zylindrischen</u> Probekörper mit Ermüdungskriterium δ_{max}

Abbildung 27: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am <u>hyperbolischen</u> Probekörper mit Ermüdungskriterium δ_{max}

Die Bestimmtheitsmaße (R²) der drei untersuchten Mastixsorten liegen gemäß Abbildung 26 und Abbildung 27 zwischen 0,84 \leq R² \leq 0,93 und weisen daher innerhalb der untersuchten Mastixsorten auf mittelmäßige bis gute Korrelationen zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven hin. Die Bestimmtheitsmaße liegen, aufgrund größerer Streuungsbreiten in den ermittelten Anzahlen der Ermüdungslastspiele je Dehnungsstufe, bei beiden Probekörpergeometrien betragsmäßig unter jenen aus Abschnitt 10.2.2. Diese Streuungen lassen sich auf die annähernd waagrechten Verläufe der Phasenverschiebungswinkel zurückführen, wie sie speziell bei geringen Dehnungsstufen ($\gamma < 0,75\%$) über einen längeren Zeitraum auftreten (siehe

Abbildung 28). Innerhalb dieses waagrechten Abschnitts sind betragsmäßig nur sehr geringe Schwankungen im Verlauf des Phasenverschiebungswinkels erkennbar. Unter anderem dadurch kann die Verwendung des Ermüdungskriteriums δ_{max} bei der Auswertung verschiebungsgesteuerter Time-Sweep-Prüfungen dazu führen, dass je nach Lage des maximalen δ -Ausschlags, innerhalb dieses waagrechten Abschnitts, der definierte δ_{max} -Ermüdungszeitpunkt den tatsächlichen Zeitpunkt des Ermüdungseintritts unterschätzt, wodurch größere Abweichungen in den Ergebnissen für Ermüdungslastspielzahlen innerhalb gleichartig durchgeführter Versuche auftreten können.

Abbildung 28: Abschnittsweise annähernd waagrechter Verlauf des Phasenverschiebungswinkels δ bei Durchführung einer verschiebungsgesteuerten Time-Sweep-Prüfung an einem zylindrischen Mastixprobekörper bei einem geringen Beanspruchungsniveau (γ=0,5%)

Neigung der Ermüdungskurve:

Sowohl in Abbildung 26 als auch in Abbildung 27 lassen sich keine parallelen Verläufe in den Wöhlerkurven der drei Mastixsorten erkennen. Infolge Prüfungen an zylindrischen Probekörpern (siehe Abbildung 26) weist der Verlauf von MX0038 ein deutlich größeres Gefälle als die beiden anderen Mastixsorten. Die Auswertung von Prüfungen an hyperbolischen Probekörpern (siehe Abbildung 27) lässt dagegen bei MX0039 das größte Gefälle erkennen. Daraus lässt sich ableiten, dass bei Anwendung des δ_{max} -Ermüdungskriteriums sich der Zeitpunkt des Ermüdungseintritts bei Veränderung des aufgebrachten Dehnungsniveaus unterschiedlich stark verschiebt.

Ermüdungsbeständigkeit:

Bei größeren Dehnungsstufen ($\gamma > 0.75\%$) weist bei beiden Probekörperformen die Mastixsorte MX0038 (*Quarzpulver + OMV 70/100*) das beste Ermüdungsverhalten auf, während sie bei niedrigeren Dehnungsstufen ($\gamma < 0.50\%$) rascher ermüdet als die Mastixsorte MX0039 (*Marmorpulver + OMV 70/100*), welche bei niedrigeren Beanspruchungen die höchste Ermüdungsbeständigkeit aufweist. Die Mastixsorte MX0037 (*Kalksteinmehl + OMV 70/100*) zeigt nach Anwendung des δ_{max} -Kriteriums sowohl bei hohen als auch bei niedrigen Dehnungsstufen das schwächste Ermüdungsverhalten.

10.2.4 Anwendung Ermüdungskriterium DER:

Abbildung 29 und Abbildung 30 zeigen die Beschreibung der Ermüdungsbeständigkeit der drei Mastixsorten unter Anwendung des DER-Ermüdungskriterium. Dieses Kriterium definiert Ermüdung bei jener Lastspielzahl N_{p20} bei der der Wert des dissipativen Energieverhältnisses des untersuchten Probekörpers um mehr als 20% vom Wert des dissipativen Energieverhältnisses der Anfangstangente abweicht (siehe Abschnitt 9.2.3).

Abbildung 29: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am <u>zylindrischen</u> Probekörper mit Ermüdungskriterium DER

Abbildung 30: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am <u>hyperbolischen</u> Probekörper mit Ermüdungskriterium DER

Da die Bestimmtheitsmaße (R^2) der drei untersuchten Mastixsorten sowohl bei Prüfungen mit zylindrischen (siehe Abbildung 29) als auch mit hyperbolischen Probekörpern (siehe Abbildung 30) allesamt bei $R^2 > 0.95$ und daher sehr nahe bei 1,0 liegen, weisen die drei Mastixsorten eine gute Korrelation zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven auf.

Neigung der Ermüdungskurve:

Sowohl Abbildung 29 als auch Abbildung 30 zeigen einen annähernd parallelen Verlauf der drei Wöhlerkurven. Einzig die Ermüdungskurve zylindrischer Probekörper der Mastixsorte MX0037 weist gemäß Abbildung 29 im Verhältnis zu den übrigen Mastixsorten ein etwas größeres Gefälle auf. Dennoch lässt sich aus Abbildung 29 und Abbildung 30 ableiten, dass bei Anwendung des DER-Ermüdungskriteriums sich bei allen drei Mastixsorten der Zeitpunkt des Ermüdungseintritts bei Veränderung des aufgebrachten Dehnungsniveaus ähnlich stark verschiebt.

Ermüdungsbeständigkeit:

Aus Abbildung 29 und Abbildung 30 lässt sich ableiten, dass auch bei der Verwendung des DER-Kriteriums die Mastixsorte MX0038 (*Quarzpulver + OMV 70/100*) die besten Ermüdungseigenschaften aufweist, gefolgt von der Mastixsorte MX0039 (*Marmorpulver + OMV 70/100*). Die Mastixsorte MX0037 (*Kalksteinmehl + OMV 70/100*) weist von den drei untersuchten Mastixsorten die geringste Ermüdungsbeständigkeit auf.

10.2.5 Gegenüberstellung der Ergebnisse

Die Auswertungen der Ergebnisse der verschiebungsgesteuerten Time-Sweep-Prüfungen gemäß Abbildung 24 bis Abbildung 30 zeigen, dass bei Verwendung der Ermüdungskriterien G*(50%) und DER, sowohl bei zylindrischer als auch für hyperbolischer Probekörpergeometrie, die Wöhlerkurven aller drei untersuchten Mastixsorten MX0037, MX0038 und MX0039 annähernd parallele Verläufe aufweisen. Daraus lässt sich ableiten, dass die drei untersuchten Mastixsorten hinsichtlich der Veränderung des Zeitpunkts des Ermüdungseintritts in einem ähnlichen Ausmaß auf Änderungen im aufgebrachten Spannungsniveau reagieren. Bei Anwendung des Ermüdungskriteriums δ_{max} weist die Ermüdungskurve der Mastixsorte MX0038 bei zylindrischer Probekörpergeometrie dagegen einen deutlich steileren Verlauf und bei hyperbolischen Probekörpern die Ermüdungskurve der Mastixsorte MX0039 einen deutlich flacheren Verlauf als die beiden jeweils anderen untersuchten Mastixsorten auf.

Beim Vergleich der Wöhlerkurven der untersuchten Mastixsorten aus Abbildung 24 bis Abbildung 30, lässt sich weiters erkennen, dass bei verschiebungsgesteuerten Time-Sweep-Prüfungen die hyperbolischen Probekörper, trotz Aufbringung einer identischen Dehnungsstufe, ermüdungsbedingt früher versagen als zylindrische Probekörper. Dies lässt sich auf die geometriebedingt deutlich größere Widerstandsfähigkeit des zylindrischen Probekörpers gegen Schubbeanspruchung zurückführen, welche sich unter anderem in deutlich größeren Anfangswerten für den Betrag des komplexen Schubmoduls widerspiegeln (siehe Tabelle 9 und Abbildung 31).

Abbildung 31: Initialwert des Betrags des komplexen Schubmoduls zyl. und hyp. PK (TS verschiebungsgesteuert)

Time-Sweep-Prüfungen	MX0037	MX0038	MX0039
(verschiebungsgesteuert)	Kalksteinmehl + OMV 70/100	Quarzpulver + OMV 70/100	Marmorpulver + OMV 70/100
Zylindrische Probekörpergeometrie:			
Mittelwert der Initialwerte des Betrags des komplexen Schubmoduls G* _{init,zyl}	184,5 MPa	184,1 MPa	187,2 MPa
Hyperbolische Probekörpergeometrie:			
Mittelwert der Initialwerte des Betrags des komplexen Schubmoduls G* _{init,hyp}	90,8 MPa	72,7 MPa	78,1 MPa
Verhältnis G [*] _{init,zyl} / G [*] _{init,hyp}	2,04	2,53	2,40

Hinsichtlich Ermüdungsverhaltens zeigen der Bewertung des die Ergebnisse der verschiebungsgesteuerten Time-Sweep-Prüfungen sowohl für zylindrische als auch für hyperbolische Probekörper, dass die Mastixsorte MX0038 (Quarzpulver + OMV 70/100), bei Verwendung der Ermüdungskriterien G*(50%) und DER, innerhalb des Untersuchungsbereichs (0,5 % $\leq y \leq 1,0\%$) das beste Ermüdungsverhalten aller untersuchten Mastixsorten aufweist. Einzig bei Anwendung des Ermüdungskriteriums δ_{max} verfügt MX0038 bei geringeren Dehnungsniveaus (bei hyperbolischen Probekörpern ab ca. $\gamma \le 0.75\%$ und bei zylindrischen Probekörpern ab ca. $\gamma \le 0.5\%$) über ein schlechteres Ermüdungsverhalten als MX0039. Aufgrund der fragwürdigen Anwendbarkeit dieses Kriteriums für verschiebungsgesteuerte Time-Sweep-Prüfungen (siehe Abschnitt 10.2.3) werden diese Abweichungen gemäß Ermüdungskriterium δ_{max} bei der Beschreibung des Ermüdungsverhaltens vernachlässigt. Nach der Mastixsorte MX0038 weist die Mastixsorte MX0039 (Marmorpulver + OMV 70/100) das zweitbeste Ermüdungsverhalten auf, gefolgt von der Mastixsorte MX0037, welche unabhängig von Probekörpergeometrie und verwendetem Ermüdungskriterium stets das schlechteste Ermüdungsverhalten aufweist (siehe Tabelle 10).

Aufgebrachtes	Reihung der untersuchten Mastixsorten nach dem Ermüdungsverhalten (Prüfverfahren: Time-Sweep - verschiebungsgesteuert)			
Verformungs- niveau	MX0037	MX0038	MX0039	
	Kalksteinmehl +	Quarzpulver +	Marmorpulver +	
	OMV 70/100	OMV 70/100	OMV 70/100	
1,0%	-	+	0	
0,75%	-	+	0	
0,5%	-	+	0	
Legende: + = Bestes	Ermüdungsverhalten,	tes Ermüdungsverhalten, - = sch	lechtestes Ermüdungsverhalten	

10.3 Ermüdung spannungsgesteuerter Time-Sweep-Prüfungen

10.3.1 Allgemeines

Die ausgewerteten Prüfergebnisse aus den spannungsgesteuerten Time-Sweep-Prüfungen an zylindrischen und hyperbolischen Probekörpern, sowie die daraus abgeleiteten Wöhlerkurven zur Beschreibung des Ermüdungsverhaltens der drei untersuchten Mastixsorten, werden, unterteilt nach dem jeweils angewendeten Ermüdungskriterium, in Abbildung 32 bis Abbildung 37 dargestellt.

10.3.2 Anwendung Ermüdungskriterium G*(50%)

Abbildung 32 und Abbildung 33 stellen das jeweils aufgebrachte Spannungsniveau der ermittelten Anzahl an Lastspielen bis zum Auftreten von Materialermüdung unter dem Ermüdungskriterium G*(50%) gegenüber. Dieses definiert Ermüdung bei jener Lastspielzahl, bei der der Betrag des komplexen Schubmoduls auf 50% seines Ausgangswertes abgesunken ist (siehe Abschnitt 9.2.1).

Abbildung 32: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am <u>zylindrischen</u> Probekörper mit Ermüdungskriterium G*(50%)

Abbildung 33: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am <u>hyperbolischen</u> Probekörper mit Ermüdungskriterium G*50%

Da die Bestimmtheitsmaße (R^2) der drei untersuchten Mastixsorten sowohl bei Prüfungen mit zylindrischen (siehe Abbildung 32) als auch mit hyperbolischen Probekörpern (siehe Abbildung 33) allesamt bei $R^2 > 0.91$ und daher sehr nahe bei 1,0 liegen, weisen die drei Mastixsorten eine gute Korrelation zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven auf.

Neigung der Ermüdungskurve:

Sowohl in Abbildung 32 als auch in Abbildung 33 weisen nur die beiden Mastixsorten MX0037 und MX0039 einen annähernd parallelen Verlauf ihrer Wöhlerkurven auf. Daraus ist abzuleiten, dass bei Anwendung des G*(50%)-Ermüdungskriteriums, sich bei diesen beiden Mastixsorten die Zeitpunkte des Ermüdungseintritts infolge Veränderung des aufgebrachten Spannungsniveaus in einem ähnlichen Verhältnis verändern. Der Verlauf der Ermüdungskurve der Mastixsorte MX0038 weist dagegen ein deutlich stärkeres Gefälle als die beiden anderen Mastixsorten auf. Dies führt dazu, dass sich die Lastspielzahl bis zum Ermüdungseintritt von MX0039 bei gleichzeitiger Zunahme der aufgebrachten Spannungsstufe weniger stark reduziert als bei den beiden anderen Mastixsorten MX0037 und MX0039.

Ermüdungsbeständigkeit:

Bei größeren Laststufen ($\tau > 1200$ kPa bei zylindrischen Probekörpern sowie $\tau >> 500$ kPa bei hyperbolischen Probekörpern) weist die Mastixsorte MX0038 (*Quarzpulver + OMV 70/100*) bei Anwendung des Ermüdungskriterium G*(50%) das beste Ermüdungsverhalten auf, während sie bei niedrigeren Laststufen ($\tau << 700$ kPa bei zylindrischen Probekörpern sowie $\tau < 300$ kPa bei hyperbolischen Probekörpern) am schnellsten ermüdet. Das Ermüdungsverhalten der Mastixsorte MX0039 (*Marmorpulver + OMV 70/100*), welche bei niedrigeren Beanspruchungen die höchste Ermüdungsbeständigkeit aufweist, ist zusätzlich über das gesamte Prüfspektrum besser zu beurteilen als jenes der Mastixsorte MX0037 (*Kalksteinmehl + OMV 70/100*), die bei großen Laststufen das schlechteste Ermüdungsverhalten aller untersuchten Mastixsorten zeigt.

10.3.3 Anwendung Ermüdungskriterium δ_{max} :

In den Auswertungen gemäß Abbildung 34 und Abbildung 35 findet das Ermüdungskriterium δ_{max} zur Bestimmung des Ermüdungseintritts seine Anwendung. Dieses Kriterium definiert Ermüdung bei jener Lastspielzahl, bei der während des Prüfversuchs der Maximalwert des Phasenverschiebungswinkels auftritt (siehe Abschnitt 9.2.2).

Abbildung 34: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am <u>zylindrischen</u> Probekörper mit Ermüdungskriterium δ_{max}

Abbildung 35: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am <u>hyperbolischen</u> Probekörper mit Ermüdungskriterium δ_{max}

Bestimmtheitsmaß/Korrelation:

Da die Bestimmtheitsmaße (R²) der drei untersuchten Mastixsorten sowohl bei Prüfungen mit zylindrischen (siehe Abbildung 34) als auch mit hyperbolischen Probekörpern (siehe Abbildung 35)

allesamt bei R² > 0,91 und daher sehr nahe bei 1,0 liegen, weisen die drei Mastixsorten eine gute Korrelation zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven auf.

Neigung der Ermüdungskurve:

Sowohl in Abbildung 34 als auch in Abbildung 35 weisen die beiden Mastixsorten MX0037 und MX0039 einen annähernd parallelen Verlauf ihrer Wöhlerkurven auf. Daraus ist abzuleiten, dass auch bei Anwendung des δ_{max} -Ermüdungskriteriums, sich bei diesen beiden Mastixsorten die Zeitpunkte des Ermüdungseintritts infolge Variation des aufgebrachten Spannungsniveaus in einem ähnlichen Verhältnis verändern. Der Verlauf der Ermüdungskurve der Mastixsorte MX0038 weist dagegen ein deutlich stärkeres Gefälle als die beiden anderen Mastixsorten auf. Dies führt dazu, dass sich die Lastspielzahl bis zum Ermüdungseintritt von MX0039 bei gleichzeitiger Zunahme der aufgebrachten Spannungsstufe weniger stark reduziert als bei den beiden anderen Mastixsorten MX0037 und MX0039.

Ermüdungsbeständigkeit:

Bei größeren Laststufen ($\tau > 1200$ kPa bei zylindrischen Probekörpern sowie $\tau >> 500$ kPa bei hyperbolischen Probekörpern) weist die Mastixsorte MX0038 (*Quarzpulver + OMV 70/100*) bei Anwendung des Ermüdungskriterium δ_{max} das beste Ermüdungsverhalten auf, während sie bei niedrigeren Laststufen ($\tau << 700$ kPa bei zylindrischen Probekörpern sowie $\tau < 300$ kPa bei hyperbolischen Probekörpern) am schnellsten ermüdet. Das Ermüdungsverhalten der Mastixsorte MX0039 (*Marmorpulver + OMV 70/100*), welche bei niedrigeren Beanspruchungen die höchste Ermüdungsbeständigkeit aufweist, ist zusätzlich über das gesamte Prüfspektrum besser zu beurteilen als jenes der Mastixsorte MX0037 (*Kalksteinmehl + OMV 70/100*), die bei großen Laststufen das schlechteste Ermüdungsverhalten aller untersuchten Mastixsorten zeigt.

10.3.4 Anwendung Ermüdungskriterium DER:

Abbildung 36 und Abbildung 37 zeigen die Beschreibung der Ermüdungsbeständigkeit der drei Mastixsorten unter Anwendung des DER-Ermüdungskriterium. Dieses Kriterium definiert Ermüdung bei jener Lastspielzahl N_{p20} bei der der Wert des dissipativen Energieverhältnisses des untersuchten Probekörpers um mehr als 20% vom Wert des dissipativen Energieverhältnisses der Anfangstangente abweicht (siehe Abschnitt 9.2.3).

Abbildung 37: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am <u>hyperbolischen</u> Probekörper mit Ermüdungskriterium DER

Da die Bestimmtheitsmaße (R^2) der drei untersuchten Mastixsorten sowohl bei Prüfungen mit zylindrischen (siehe Abbildung 36) als auch mit hyperbolischen Probekörpern (siehe Abbildung 37) allesamt bei $R^2 > 0.91$ und daher sehr nahe bei 1,0 liegen, weisen die drei Mastixsorten eine gute Korrelation zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven auf.

Verlauf der Ermüdungskurve:

Sowohl in Abbildung 36 als auch in Abbildung 37 weisen die beiden Mastixsorten MX0037 und MX0039 einen annähernd parallelen Verlauf ihrer Wöhlerkurven auf. Daraus ist abzuleiten, dass auch bei Anwendung des DER-Ermüdungskriteriums, sich bei diesen beiden Mastixsorten die Zeitpunkte des Ermüdungseintritts infolge Variation des aufgebrachten Spannungsniveaus in einem ähnlichen Verhältnis verändern. Der Verlauf der Ermüdungskurve der Mastixsorte MX0038 weist dagegen ein deutlich stärkeres Gefälle als die beiden anderen Mastixsorten auf. Dies führt dazu, dass sich die Lastspielzahl bis zum Ermüdungseintritt von MX0039 bei gleichzeitiger Zunahme der aufgebrachten Spannungsstufe weniger stark reduziert als bei den beiden anderen Mastixsorten MX0037 und MX0039.

Ermüdungsbeständigkeit:

Hinsichtlich der Beschreibung des Ermüdungsverhaltens lässt sich infolge der Verwendung hyperbolischer Probekörper und der Anwendung des Ermüdungskriteriums DER feststellen, dass die Mastixsorte MX0039 im untersuchten Beanspruchungsbereich (300 kPa $\leq \sigma \leq 500$ kPa) durchgehend über das beste Ermüdungsverhalten verfügt. Während bis zu einer Prüfbelastung von ca. $\sigma \geq 300$ kPa bei Mastixsorte MX0037 das schwächste Ermüdungsverhalten erkennbar ist, weist bei Beanspruchungen von ca. $\sigma \leq 300$ kPa die Mastixsorte MX0038, auf Basis ihrer größeren Wöhlerkurven-Neigung, das schlechteste Ermüdungsverhalten aller untersuchten Mastixsorten auf.

Bei Verwendung zylindrischer Probekörper zeigt sich, unter anderem bedingt durch wesentlich höhere Prüfbelastungen (siehe Abschnitt 8.2.1), dass die Mastixsorte MX0038 innerhalb des Untersuchungsbereichs, bei Beanspruchungen ab ca. $\sigma \ge 1200$ kPa über das beste Ermüdungsverhalten verfügt, während ab Beanspruchungen von ca. $\sigma \le 1200$ kPa die Mastixsorte MX0039 das beste Ermüdungsverhalten aller untersuchten Mastixsorten aufweist. Die Mastixsorte MX0037 weist bei der Verwendung zylindrischer Probekörper und des Ermüdungskriteriums DER über den gesamten Prüfbereich die schlechtesten Ermüdungseigenschaften auf.

10.3.5 Gegenüberstellung der Ergebnisse

Die Auswertungen der Ergebnisse der spannungsgesteuerten Time-Sweep-Prüfungen gemäß Abbildung 32 bis Abbildung 37 zeigen, dass die Wöhlerkurven der Mastixsorten MX0037 und MX0039 annähernd parallele Verläufe aufweisen. Daraus lässt sich ableiten, dass diese beiden Mastixsorten hinsichtlich der Veränderung des Zeitpunkts des Ermüdungseintritts, in einem ähnlichen Ausmaß auf Änderungen im aufgebrachten Spannungsniveau reagieren. Die Ermüdungskurve der Mastixsorte MX0038 weist dagegen bei beiden Probekörpergeometrien und unabhängig vom verwendeten Ermüdungskriterium die größte Neigung aller untersuchten Mastixsorten auf.

Gemäß Abbildung 32 bis Abbildung 37 weisen die Wöhlerkurven zylindrischer Probekörper zudem deutlich größere Neigungen als jene der hyperbolischen Probekörper auf. Dies lässt sich auf die geometriebedingt höheren Spannungsniveaus zurückführen (siehe Abschnitt 8.2.1), welche bei zylindrischen Probekörpern aufgebracht werden müssen um aussagekräftige Prüfdauern zu gewährleisten.

Innerhalb der untersuchten Asphaltmastixsorten zeigen sich gemäß Abbildung 32 bis Abbildung 37, zwischen zylindrischer und hyperbolischer Probekörpergeometrie deutliche Unterschiede bei den ermittelten Ermüdungslastspielzahlen. Diese lassen sich jedoch, aufgrund der unterschiedlichen Beträge der aufgebrachten Spannungsniveaus, nur bedingt vergleichen. Dennoch lässt sich aus Abbildung 38 bzw. Tabelle 11 ableiten, dass die Initialwerte der Beträge des komplexen Schubmoduls $|G^*|$ der zylindrischen Probekörpergeometrie liegen, wodurch in weiterer Folge auch höhere Lastspielzahlen bis zum Ermüdungseintritt angenommen werden können.

Abbildung 38: Initialwerte des Betrags des komplexen Schubmoduls zyl. und hyp. PK (TS spannungsgesteuert)

Time-Sweep-Prüfungen (spannungsgesteuert)	MX0037	MX0038	MX0039
	Kalksteinmehl + OMV 70/100	Quarzpulver + OMV 70/100	Marmorpulver + OMV 70/100
Zylindrische Probekörpergeometrie:			
Mittelwert der Initialwerte des Betrags des komplexen Schubmoduls G* _{init,zyl}	202,8 MPa	197,3 MPa	215,2 MPa
Hyperbolische Probekörpergeometrie:			
Mittelwert der Initialwerte des Betrags des komplexen Schubmoduls G* _{init,hyp}	84,6 MPa	78,7 MPa	81,8 MPa
Verhältnis G [*] init,zyl / G [*] init,hyp	Aufgrund unterschiedlicher Spannungsniveaus nicht direkt vergleichbar		

Hinsichtlich der Bewertung des Ermüdungsverhaltens lassen sich die Ergebnisse aus den spannungsgesteuerten Time-Sweep-Prüfungen gemäß Abbildung 32 bis Abbildung 37, aufgrund ähnlicher Verläufe der jeweiligen, sortenspezifischen Wöhlerkurven und trotz Unterschiede in den aufgebrachten Spannungsniveaus zwischen zylindrischen (700 kPa $\leq \sigma \leq 1200$ kPa) und hyperbolischen Probekörpern (300 kPa $\leq \sigma \leq 500$ kPa), miteinander verknüpfen. Dadurch zeigt sich, dass unabhängig vom verwendeten Ermüdungskriterium die Mastixsorte MX0038 bei höheren Belastungen über das beste und bei niedrigeren Belastungen über das schlechteste Ermüdungsverhalten aller untersuchten Mastixsorten verfügt. Die Mastixsorte MX0039 weist in weiterer Folge bei mittleren und niedrigeren Belastungen das beste Ermüdungsverhalten sowie die Mastixsorte MX0037 bei hohen und mittelgroßen Beanspruchungen das schlechteste Ermüdungsverhalten auf (siehe Tabelle 12).

Tabelle 12: Reihung der Mastixsorten hinsichtlich	Ermüdungsverhalten (TS-spannungsgesteuert)
---	--

Legende: + = Bestes Ermüdungsverhalten, o = zweitbestes Ermüdungsverhalten, - = schlechtestes Ermüdungsverhalten			
aufgebrachtes	Reihung der untersuchten Mastixsorten nach dem Ermüdungsverhalten (Prüfverfahren: Time-Sweep - spannungsgesteuert)		
spannungs-	MX0037	MX0038	MX0039
niveau	Kalksteinmehl + OMV 70/100	Quarzpulver + OMV 70/100	Marmorpulver + OMV 70/100
hoch	-	+	0
mittelgroß	-	0	+
niedrig	0	-	+
Legende: + = Bestes Ermüdungsverhalten, • = zweitbestes Ermüdungsverhalten, - = schlechtestes Ermüdungsverhalten			

10.4 Ermüdung gemäß Linear-Amplitude-Sweep-Test (LAS)

10.4.1 Allgemeines

Die ausgewerteten Prüfergebnisse aus den durchgeführten LAS-Prüfungen an zylindrischen und hyperbolischen Probekörpern, sowie die daraus abgeleiteten Wöhlerkurven zur Beschreibung des Ermüdungsverhaltens der drei untersuchten Mastixsorten, werden in Abbildung 39 und Abbildung 40 dargestellt.

Der aus der Modellbildung des Linear-Amplitude-Sweep-Prüfverfahren abgeleitete Formelapparat zur Auswertung dieses Prüfverfahrens gemäß AASTHO TP101 [35], bezieht sich auf die Verwendung einer definierten, zylindrischen Probekörpergeometrie (siehe Abschnitt 2.3). Die Anwendbarkeit dieser Auswertearithmetik auf Prüfergebnisse, die infolge der Verwendung hyperbolischer Probekörpergeometrie ermittelt wurden, ist daher voraussichtlich nur in eingeschränktem Maße gegeben. Genauere Untersuchungen zur Anwendbarkeit dieser Auswertearithmetik bzw. zu deren Adaptierung für die Möglichkeit der Beschreibung des Ermüdungsverhaltens von hyperbolischen Probekörpern, müssen zukünftig noch genauer untersucht werden und sind nicht Teil der gegenständlichen Arbeit. Dennoch wurden LAS-Prüfungen an hyperbolischen Probekörpern durchgeführt und gemäß AASTHO TP101 [35] ausgewertet, um etwaig vorhandene Korrelationen zu den Prüfungsergebnissen an zylindrischen Probekörpern zumindest ansatzweise aufzeigen zu können.

10.4.2 Prüfungen mit zylindrischen Probekörpern

Abbildung 39 zeigt die Darstellung der LAS-Wöhlerkurven der drei untersuchten Mastixsorten unter Anwendung der Auswertearithmetik gemäß AASTHO TP101 [35] und unter Verwendung der darin definierten, zylindrischen Probekörpergeometrie. In diesem Diagramm wird die Anzahl der Lastspiele bis zum Ermüdungseintritt infolge einer oszillierenden Beanspruchung mit einer Dehnungsamplitude von $\gamma = 2,5\%$ bzw. 5,0% aus jenen Kennwerten rückgerechnet, die während der frequenz- bzw. dehnungsgesteuerten Versuchsdurchführung (siehe Abschnitt 2.3) ermittelt wurden.

Abbildung 39: Auswertung der LAS-Prüfungen am zylindrischen Probekörper

Die Bestimmtheitsmaße (R^2) der Wöhlerkurven der drei untersuchten Mastixsorten schwanken zwischen $R^2 = 0,74$ (MX0037) und $R^2 = 0,99$ (MX0038) und weisen daher nur auf eine eingeschränkte Korrelation zwischen den einzelnen Prüfergebnissen und den daraus abgeleiteten Wöhlerkurven hin.

Verlauf der Ermüdungskurve:

Gemäß Abbildung 39 weisen die beiden Mastixsorten MX0037 und MX0039 einen annähernd parallelen Verlauf ihrer Wöhlerkurven auf, d.h. beide Mastixsorten reagieren hinsichtlich der Veränderung des Zeitpunkts des Ermüdungseintritts in einem ähnlichen Ausmaß auf Änderungen in der aufgebrachten Beanspruchung. Der Verlauf der Ermüdungskurve der Mastixsorte MX0038 weist dagegen ein stärkeres Gefälle als jenes der beiden anderen Mastixsorten auf.

Ermüdungsbeständigkeit:

Hinsichtlich der Beschreibung des Ermüdungsverhaltens lässt sich feststellen, dass die Mastixsorte MX0038 im höheren Beanspruchungsbereich ($\gamma = 5,0\%$) über das beste Ermüdungsverhalten verfügt, während im niedrigeren Beanspruchungsbereich ($\gamma = 2,5\%$) die Mastixsorte MX0039 die ausgeprägteste Ermüdungsresistenz besitzt. Die Mastixsorte MX0037 weist dagegen bei beiden Beanspruchungsniveaus das schlechteste Ermüdungsverhalten auf.

10.4.3 Prüfungen mit hyperbolischen Probekörpern

Abbildung 40 zeigt die Darstellung der LAS-Wöhlerkurven der drei untersuchten Mastixsorten unter Anwendung der Auswertearithmetik gemäß AASTHO TP101 [35] und unter Verwendung einer hyperbolischen Probekörpergeometrie. Darin wird die Anzahl der Lastspiele bis zum Ermüdungseintritt infolge einer oszillierenden Beanspruchung mit einer Dehnungsamplitude von γ = 2,5% bzw. 5,0% aus jenen Kennwerten berechnet, die während der frequenz- bzw. dehnungsgesteuerten Versuchsdurchführung (siehe Abschnitt 2.3) ermittelt wurden.

Abbildung 40: Auswertung der LAS-Prüfungen am hyperbolischen Probekörper

Da die Bestimmtheitsmaße (R^2) der drei untersuchten Mastixsorten MX0037, MX0038 und MX0039 allesamt bei $R^2 > 0.98$ und daher sehr nahe bei 1,0 liegen, weisen die abgeleiteten Wöhlerkurven der drei Mastixsorten eine gute Korrelation zu den einzelnen Prüfergebnissen auf.

Verlauf der Ermüdungskurve:

Gemäß Abbildung 40 weisen alle drei untersuchten Mastixsorten MX0037, MX0038 und MX0039 einen annähernd parallelen Verlauf ihrer Wöhlerkurven auf, d.h. die drei Mastixsorten reagieren hinsichtlich der Veränderung des Zeitpunkts des Ermüdungseintritts in einem ähnlichen Ausmaß auf Änderungen in der aufgebrachten Beanspruchung.

Ermüdungsbeständigkeit:

Hinsichtlich der Beschreibung des Ermüdungsverhaltens lässt sich feststellen, dass die Mastixsorte MX0038 sowohl höheren Beanspruchungsbereich ($\gamma = 5,0\%$) als auch im niedrigeren Beanspruchungsbereich ($\gamma = 2,5\%$) über das beste Ermüdungsverhalten verfügt. Die Mastixsorte MX0039 weist die das zweitbeste Ermüdungsverhalten auf, gefolgt von der Mastixsorte MX0037 die bei beiden Beanspruchungsniveaus das schlechteste Ermüdungsverhalten zeigt.

10.4.4 Gegenüberstellung der Ergebnisse

Die Auswertungen der Ergebnisse der LAS-Prüfungen an zylindrischer (Abbildung 39) und hyperbolischer Probekörpergeometrie (Abbildung 40) zeigen trotz der in Abschnitt 10.4.1 beschriebenen, eingeschränkten Anwendbarkeit der Auswertearithmetik teilweise ähnliche Wöhlerkurven-Verläufe.

So weisen die Wöhlerkurven der Mastixsorten MX0037 und MX0039 bei beiden Probekörpergeometrien annähernd parallele Verläufe auf, d.h. beide Mastixsorten reagieren hinsichtlich der Veränderung des Zeitpunkts des Ermüdungseintritts in einem ähnlichen Ausmaß auf Änderungen im aufgebrachten Beanspruchungsniveau. Die Ermüdungskurve der Mastixsorte MX0038 weist dagegen bei einer zylindrischen Probekörpergeometrie eine deutlich stärkere Neigung auf als jene der beiden übrigen Mastixsorten. Bei Verwendung der hyperbolischen Probekörpergeometrie weist die Ermüdungskurve von MX0038 dagegen einen annähernd parallelen Verlauf, in Bezug auf die Wöhlerkurven der Mastixsorten MX0037 und MX0039, auf.

Beim Vergleich der Wöhlerkurven der untersuchten Mastixsorten aus Abbildung 39 und Abbildung 40 lässt sich ebenfalls erkennen, dass bei LAS-Prüfungen an hyperbolischen Probekörpern, trotz gleicher Versuchsdurchführung, ein ermüdungsbedingtes Versagen früher eintritt als bei Prüfungen an zylindrischen Probekörpern. Dies lässt sich auf die geometriebedingt deutlich größere Widerstandsfähigkeit des zylindrischen Probekörpers gegen Schubbeanspruchung zurückführen, welche sich unter anderem in deutlich größeren Anfangswerten für den Betrag des komplexen Schubmoduls widerspiegeln (siehe Abbildung 41 bzw. Tabelle 13).

			1 11 81/	1
hhildung 41 Initialworte	dag Katrage dag kom	nlavan Schuhmadule 71		11 Δ51
	acs bellags acs Rolli	DICACII JUIUDIII00003 20		LAJI

Time-Sweep-Prüfungen (spannungsgesteuert)	MX0037	MX0038	MX0039
	Kalksteinmehl + OMV 70/100	Quarzpulver + OMV 70/100	Marmorpulver + OMV 70/100
Zylindrische Probekörpergeometrie:			
Mittelwert der Initialwerte des Betrags des komplexen Schubmoduls G* _{init,zyl}	139,9 MPa	137,8 MPa	149,4 MPa
Hyperbolische Probekörpergeometrie:			
Mittelwert der Initialwerte des Betrags des komplexen Schubmoduls G* _{init,hyp}	55,6 MPa	54,3 MPa	57,5 MPa
Verhältnis G [*] _{init,zyl} / G [*] _{init,hyp}	2,52	2,54	2,60

سمام ملاحظة واسمال فاعرام والمراجع	Indiate house when sheet house	minute and Cale subman advised	
labelle 13: vernalthis der	Initialwerte des kom	piexen schupmoduls	II AS-Prutungi
		pressent oenalonitoalaio	

Im Zuge der Bewertung des Ermüdungsverhaltens der untersuchten Mastixsorten infolge der Durchführung des LAS-Prüfverfahrens, zeigt sich gemäß Abbildung 39 und Abbildung 40, dass beim höheren Beanspruchungsniveau ($\gamma = 5,0$ %), unabhängig der Probekörpergeometrie, die Mastixsorte MX0037 über das schlechteste und die Mastixsorte MX0038 über das beste Ermüdungsverhalten verfügt. Bei der Betrachtung des niedrigeren Beanspruchungsniveaus ($\gamma = 2,5$ %) weisen die Auswertungen für die zylindrische und die hyperbolische Probekörpergeometrie jedoch unterschiedliche Ergebnisse hinsichtlich der Ermüdungsresistenz auf. Während gemäß der Auswertung von LAS-Versuchen an zylindrischen Probekörpern die Mastixsorte MX0039 über das beste Ermüdungsverhalten verfügt, weist als Ergebnis der Auswertung der Versuche an hyperbolischen Probekörpern die Mastixsorte MX0038 den größten Widerstand gegen Materialermüdung auf.

Aufgrund der eingeschränkten Anwendbarkeit der Auswertearithmetik gemäß AASTHO TP101 [35] auf LAS-Prüfungen mit hyperbolischer Probekörpergeometrie, werden in der nachfolgenden Reihung der untersuchten Mastixsorten nach dem Ermüdungsverhalten (siehe Tabelle 14) nur die Ergebnisse aus Abbildung 39 (Prüfungen an zylindrischer Probekörpergeometrie) berücksichtigt.

aufgebrachtes	Reihung der untersuchten Mastixsorten nach dem Ermüdungsverhalten (Prüfverfahren: LAS)		
niveau	MX0037	MX0038	MX0039
lineedd	Kalksteinmehl + OMV 70/100	Quarzpulver + OMV 70/100	Marmorpulver + OMV 70/100
5,0%	-	+	0
2,5%	-	0	+
Legende: + = Bestes Ermüdungsverhalten, • = zweitbestes Ermüdungsverhalten, - = schlechtestes Ermüdungsverhalten			

Tabelle 14: Reihung der Mastixsorten hinsichtlich Ermüdungsverhalten (LAS)

11 Zusammenfassung und Ausblick

11.1 Zusammenfassung

Die gegenständlichen Untersuchungen vergleichen das durch unterschiedliche Prüfverfahren an unterschiedlichen Probekörpergeometrien abgeleitete Ermüdungsverhalten von insgesamt drei unterschiedlichen Asphaltmastixsorten. Daraus können folgende Schlüsse gezogen werden:

- Die Anwendung unterschiedlicher Ermüdungskriterien zur Definition des Ermüdungseintritts, führt zu nennenswerten Abweichungen zwischen den Verläufen der Wöhlerkurven, welche infolge der Auswertung spannungsgesteuerter Time-Sweep-Prüfungen ermittelt wurden.
- Im Gegensatz dazu zeigen bei Auswertung verschiebungsgesteuerter Time-Sweep-Versuchen die jeweiligen Wöhlerkurven nur dann ähnlichen Ergebnisse, wenn die Ermüdungskriterien G*(50%) und DER angewendet werden. Die Annahme des Ermüdungseintritts bei Erreichen des Maximalwerts des Phasenverschiebungswinkels führt zu teilweise abweichenden Resultaten und kann daher als Ermüdungskriterium zur Auswertung verschiebungsgesteuerter Time-Sweep-Prüfungen nicht empfohlen werden.
- Bei allen drei untersuchten Prüfverfahren (Time-Sweep-Prüfverfahren spannungs- bzw. verschiebungsgesteuert sowie LAS-Prüfverfahren) verfügen die aus den Einzelprüfungen abgeleiteten Wöhlerkurven mit wenigen Ausnahmen über sehr hohe Anpassungswerte bzw. Bestimmtheitsmaße (R² > 0,95). Beim Vergleich der Verläufe einzelnen Wöhlerkurven zeigen sich zwischen den drei Prüfverfahren zum Teil gute Korrelationen. So weisen die LAS-Prüfungen und die spannungsgesteuerten Time-Sweep-Prüfungen äquivalente Ergebnisse, betreffend das Ermüdungsverhalten der drei untersuchten Asphaltmastixsorten, auf. Die Ergebnisse der verschiebungsgesteuerten Time-Sweep-Prüfungen zeigen dagegen für die Asphaltmastixsorte MX0038 ein von den anderen beiden Prüfverfahren abweichendes Ermüdungsverhalten auf.
- Beim Vergleich der Ergebnisse zwischen zylindrischer und hyperbolischer Probekörpergeometrie lassen sich keine nennenswerten Abweichungen im Ermüdungsverhalten der untersuchten Asphaltmastixsorten feststellen. Zwar weisen die hyperbolischen Probekörper, unabhängig vom angewendeten Prüfverfahren, geometriebedingt niedrigere Anfangswerte für den Betrag des komplexen Schubmoduls auf, wodurch in weiterer Folge Ermüdung rascher eintritt als bei Verwendung zylindrischer Probekörper. Dennoch weisen die ausgewerteten Wöhlerkurven infolge hyperbolischer und zylindrischer Probekörpergeometrie untereinander ähnliche Verläufe auf. Dadurch lassen sich keine Rückschlüsse auf etwaige Adhäsionsversagen ziehen, welche bei vorangegangenen Untersuchungen [12] an der Grenzfläche zwischen der oberen, oszillierenden DSR-Platte und dem Probekörper auftraten.
- Da bei den untersuchten Time-Sweep-Pr
 üfverfahren, infolge der Verwendung hyperbolischer Probek
 örper, niedrigere Anfangswerte f
 ür den Betrag des komplexen Schubmoduls (im Vergleich zu Pr
 üfungen an zylindrischen Probek
 örpern) auftraten, mussten im Zuge der Versuchsdurchf
 ührung vom DSR auch deutlich geringere Schubspannungen aufgebracht werden. Da die Ergebnisse hinsichtlich der Beschreibung des Erm
 üdungsverhaltens der untersuchten Asphaltmastixsorten, an beiden Probek
 örpergeometrien
 äquivalent sind, stellen die niedrigeren Anforderungen an, die vom DSR-Ger
 ät einzubringenden Schubspannungen,

einen wesentlichen Vorteil zugunsten der Verwendung hyperbolischer Probekörper dar. In diesem Fall könnten auch noch ältere DSR-Geräte zur Prüfung des Ermüdungsverhaltens von Asphaltmastix verwendet werden, welche nur begrenzte Schubspannungen bzw. Drehmomente aufbringen können und daher für die Prüfung von zylindrischen Asphaltmastixprobekörpern ungeeignet wären. Aufgrund dessen wird bei spannungs- bzw. verschiebungsgesteuerten Time-Sweep-Prüfungen, welche zur Beschreibung des Ermüdungsverhaltens von Asphaltmastix durchgeführt werden, die Verwendung von hyperbolischen Probekörpern empfohlen. Im Gegensatz dazu wird bei Anwendung des LAS-Prüfverfahrens zur Ermittlung der Dauerhaftigkeit von Asphaltmastix, aufgrund der ungewissen Anwendbarkeit des zugehörigen Auswerteverfahrens auf eine hyperbolische Probekörpergeometrie, auch weiterhin die Verwendung zylindrischer Probekörper empfohlen. Die empfohlenen Probekörpergeometrien sind in Abhängigkeit der untersuchten Prüfverfahren in Tabelle 15 zusammengefasst.

Tabelle 15: Übersicht der	empfohlenen Probekörpergeometrie
---------------------------	----------------------------------

Untersuchtes Prüfverfahren:	Empfohlene Probekörpergeometrie:
Time-Sweep (verschiebungsgesteuert)	hyperbolisch
Time-Sweep (spannungsgesteuert)	hyperbolisch
Linear Amplitude Sweep (LAS)	zylindrisch

11.2 Ausblick

Die Ergebnisse der gegenständlichen Arbeit beschränken sich auf eine verwendete Bitumensorte (OMV 70/100) und drei verwendete Füllersorten (Kalksteinmehl, Marmorpulver und Quarzpulver). Weiterführende Untersuchungen an zusätzlichen Bitumen- und Füllersorten sind notwendig um die Anwendbarkeit der drei untersuchten Prüfverfahren hinsichtlich der Beschreibung des Ermüdungsverhaltens von Asphaltmastix besser beurteilen zu können. Vor allem die zum Teil vorhandenen Korrelationen zwischen den Ergebnissen der drei Prüfverfahren müssen an weiteren Asphaltmastixkompositionen und mit weiteren Beanspruchungsniveaus geprüft und zusätzlich mit den Ergebnissen vergleichender Prüfverfahren bzw. von Langzeituntersuchungen verglichen werden.

Weiters beziehen sich die Ergebnisse der gegenständlichen Arbeit auf die angewendeten Prüfparameter gemäß Abschnitt 8.1.1, 8.2.1 und 8.3.1. Zukünftig können weiterführende Untersuchungen mit davon abweichenden Prüfparametern durchgeführt werden, um beispielsweise die Beeinflussung der Prüfergebnisse durch geringere initiale Werte für den Betrag des komplexen Schubmoduls zu untersuchen.

12 Verzeichnisse

12.1 Literaturverzeichnis

- [1] M. HOSPODKA, B. HOFKO, R. BLAB: "Auswirkungen des Feinanteils auf das Gebrauchsverhalten der Asphaltmastix Grundlagen zum Aufbau eines Qualitätskriteriums", Wien, IVWS, 2017
- [2] M. LIAO, J. CHEN, K. ZHOU: "Fatigue Characteristics of Bitumen-Filler Mastics and Asphalt Mixtures", Hainan, American Society of Civil Engineers Vol. 24, Nr. 7, S. 916-923, 2012
- [3] ÖNORM EN 933-10: "Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen -Teil 10: Beurteilung von Feinanteilen - Kornverteilung von Füller (Luftstrahlsiebung).", Wien, Austrian Standards Institute, 2009-08-15
- BJ. SMITH, SAM. HESP: "Crack pinning in asphalt mastic and concrete: Regular fatigue studies.", Kingston, Transportation Research Record, 1728(1), 75–81, 2000
- [5] YR. KIM, DN. LITTLE, IJ. SONG: "Effect of mineral fillers on fatigue resistance and fundamental material characteristics: Mechanistic evaluation", College Station, Transportation Research Record, 1832(1), 1–8, 2003
- [6] W. MARTONO, H. BAHIA, J. D'ANGELO: "Effect of testing geometry on measuring fatigue of asphalt binders and mastics.", Madison, Journal of Materials in Civil Engineering 19(9):746-752, 2007
- [7] R. BLAB, L. EBERHARDSTEINER: "Skriptum zur Vorlesung konstruktiver Straßenbau.", Wien, TU Wien, 2016
- [8] ÖNORM EN 14770: "Bitumen und bitumenhaltige Bindemittel Bestimmung des komplexen Schermoduls und des Phasenwinkels - Dynamisches Scherrheometer (DSR).", Wien, Austrian Standards Institute, 2012-07-15
- [9] EN 14770: "Bitumen und bitumenhaltige Bindemittel –Bestimmung des komplexen Schermoduls und des Phasenwinkels – Dynamisches Scherrheometer (DSR).", Brüssel, CEN Europäisches Komitee für Normung, 05/2012
- [10] DIN 53019-4: "Rheometrie Messung von Fließeigenschaften mit Rotationsrheometern Teil
 4: Oszillationsrheologie.", Berlin, Deutsches Institut für Normung e. V., 10/2016
- [11] ASTM D7175: "Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer.", ASTM International, 2015-07-01
- [12] M. HOSPODKA, B. HOFKO, R. BLAB: "Introducing a new specimen shape to assess the fatigue performance of asphalt mastic by dynamic shear rheometer testing", Wien, Springer, 2018
- [13] L. SHAN ET AL: "Separation of thixotropy from fatigue process of asphalt binder.", Harbin, Transportation Research Record, 2207(1), 89–98, 2011
- [14] L. SHAN ET AL: "Application of thixotrophy to analyze fatigue and healing characteristics of Asphalt Binder.", Harbin, Transportation Research Record, 2179(1), 85–92, 2010
- YR. KIM, DN. LITTLE, RL. LYTTON: "Fatigue and Healing Characterization of Asphalt Mixtures", College Station, Journal of Materials in Civil Engineering, Band 15, Ausgabe 1, 75-83, 2003

- [16] YR. KIM: "Evaluation of healing and constitutive modeling of asphalt concrete by means of the theory of nonlinear viscoelasticity and damage mechanics.", College Station, Phd thesis, Texas A&M Univ., 1988
- [17] YR. KIM, SL. WHITMOYER, DN. LITTLE: "Healing in asphalt concrete pavements: is it real?", College Station, Transportation Research Record 1454, 89–96., 1994
- [18] H. BAHIA, H. ZHAI, K. BONETTI, S. KOSE: "Non-linear viscoelastic and fatigue properties of asphalt binders.", Madison, J. Assn. Asphalt Paving Technologists, 68, 1–34, 1999
- [19] K. BONETTI, K. NAM, H. BAHIA: "Measuring and defining fatigue behavior of asphalt binders", Madison, Transportation Research Record 1810, 33-43, 2002
- [20] AASHTO T315: "Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)", Washington D.C., American Association of State Highway and Transportation Officials, 2020
- [21] PAVEMENT INTERACTIVE: Verfügbar unter: https://pavementinteractive.org, (Zugriff am 11.08.2020)
- [22] AASHTO PROVISIONAL STANDARDS APRIL 2000 EDITION: "Standard specifications for transportation materials", Washington D.C., American Association of State Highway and Transportation Officials, 2000
- [23] C. JOHNSON, H. BAHIA: "Evaluation of an accelerated procedure for fatigue characterization of asphalt binders", Madison, Dissertation University of Wisconsin-Madison, 2010
- [24] F. ZHOU, W. MOGAWER, H. LI, A. ANDRIESCU, A. COPELAND: "Evaluation of Fatigue Tests for Characterizing Asphalt Binders", College Station, Journal of Materials in Civil Engineering 25(5):610-617, 2013
- [25] M. SABOURI, D. MIRZAIYAN, A. MONIRI: "Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance", Teheran, Elsevier, 2018
- [26] KD. STUART, WS. MOGAWER, P. ROMERO: "Validation of the superpave asphalt binder fatigue cracking parameter using an accelerated loading facility.", Dartmouth, Journal. Association of Asphalt Paving Technologists, Vol. 71, 2000, pp. 116-146, 2002
- [27] JA. DEACON, ET AL.: "Influence of binder loss modulus on the fatigue performance of asphalt concrete pavements.", Lexington, Journal of the Association of Asphalt Paving Technologists, 66, 633-668, 1997
- [28] H. BAHIA, ET AL.: "Characterization of modified asphalt binders in superpave mix design", Madison, Transportation Research Record (459), 176p, 2001
- [29] H. BAHIA, ET AL.: "Development of binder specification parameters based on characterization of damage behavior (with discussion)", Madison, Journal of the Association of Asphalt Paving Technologists (70), 442-470, 2001
- [30] A. ANDRIESCU, SAM. HESP, J. YOUTCHEFF: "Essential and Plastic Works of Ductile Fracture in Asphalt Binders", Washington D.C., Transportation Research Record (1875), 1-7, 2004
- [31] BW. TSAI, ET AL.: "Influence of asphalt binder properties on the fatigue performance of asphalt concrete pavements", Berkeley, ournal of the Association of Asphalt Paving Technologists (74), 733-789, 2005

- [32] C. HINTZ, H. BAHIA: "Understanding mechanisms leading to asphalt binder fatigue in the dynamic shear rheometer", Madison, Road Mater Pavement Des 14, 231-251, 2013
- [33] DA. Anderson, ET AL.: "Evaluation of fatigue criteria for asphalt binders", State College, Transportation Research Record, 1766(1), 48–56, 2001
- [34] JP Planche, ET AL.: "Evaluation of fatigue properties of bitominous binders", State College, Materials and Structures 37,356-359, 2004
- [35] AASHTO TP101: "Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep", Washington D.C., American Association of State Highway and Transportation Officials, 2012
- [36] C. HINTZ, ET AL: "Modification and Validation of Linear Amplitude Sweep Test for Binder Fatigue Specification", Madison, Transportation Research Record, 2207(1), 99–106, 2011
- [37] ÖNORM EN 16659: "Bitumen und bitumenhaltige Bindemittel MSCR-Prüfung (Multiple Stress Creep and Recovery Test).", Wien, Austrian Standards Institute, 2016-03-01
- [38] MTO LS-299: "Method of test for the determination of asphalt cement's resistance to ductile failure using double edge notched tension test (DENT).", Toronto, Ministry of Transportation, Ontario, Revision 27, 2001-04-12
- [39] I. OMARI, V. AGGARWAL, SAM HESP: "Investigation of two Warm Mix Asphalt additives", Kingston, International Journal of Pavement Research and Technology, 2016
- [40] N. GIBSON, ET AL.: "Full-scaled accelerated performance testing for Superpave and structural validation", Washington D.C., Federal Highway Administration FHWRA-RT-01946, 2011
- [41] M. PALIUKAITE, ET AL.: "Implementation of the Double-Edge-Notched test for asphalt cement acceptance.", Vilnius, Transportation in Developing Economies 3(1):6, 2017
- [42] YR. KIM, I. SONG, D. LITTLE: "Use of dynamic mechanical analysis to predict damage in asphalt mastic.", Austin, International Center for Aggregates Research 11th Annual Symposium: Aggregates - Asphalt Concrete, Bases and Fines, 2003
- [43] VTF. CASTELO BRANCO, ET AL.: "Fatigue Analysis of Asphalt Mixtures Independent of Mode of Loading.", College Station, Transportation Research Record, 2057(1), 149–156, 2008
- [44] ÖNORM EN 12697-24: "Asphalt Prüfverfahren Teil 24: Beständigkeit gegen Ermüdung.", Wien, Austrian Standards Institute, 2019-04-01
- [45] R. REESE: "Properties of aged asphalt binder related to asphalt concrete fatigue life.", Salt Lake City, Asphalt Paving Technology, 1997
- [46] KA. GHUZLAN, SH. CARPENTER: "An Energy-Derived/Damage-Based Failure Criteria for Fatigue Testing.", Urbana, Transportation Research Record, 1723(1), 141–149, 2000
- [47] AC. PRONK, PC. HOPMAN: "Energy dissipation: the leading factor of fatigue.", London, Highway Research: Sharing the Benefits. The United States Strategic Highway Research Program, 1990
- [48] AC. PRONK: "Evaluation of the dissipated energy concept for the interpretation of fatigue measurements in the crack initiation phase.", Delft, Ministerie van Verkeer en Waterstaat, 1997
- [49] YR. KIM, HJ. LEE, DN. LITTLE: "Fatigue characterization of asphalt concrete using viscoelasticity and continuum damage theory (with discussion).", College Station, Journal of the Association of Asphalt Paving Technologists 66, 1997
- [50] RG. HICKS, ET AL.: "Validation of SHRP binder specification through mix testing (with discussion).", Journal of the Association of Asphalt Paving Technologists 62, 1993
- [51] DA. WILLIAMS: "Microdamage Healing in Asphalt Concretes: Relating Binder Composition and Surface Energy to Healing Rate.", College Station, Dissertation Texas A&M University, 1998
- [52] H. WANG, ET AL.: "Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives.", Delft, Construction and Building Materials 239, 2020

12.2 Abbildungsverzeichnis

Abbildung 1: Funktionsweise des DSR [7]
Abbildung 2: Phasenverschiebungswinkel eines viskoelastischen Materials [7]
Abbildung 3: Ermüdungsphasen während spannungsgesteuerter Time-Sweep-Prüfung
Abbildung 4: Resultat Abschnitt 1 - Frequenzabhängige Funktionsgraphen für $ G^* $ und δ [35] 10
Abbildung 5: Funktionsgraph von N _f in Abhängigkeit von γ_{max} [35]12
Abbildung 6: Exemplarische Kriech-Erholungskurve für 10 aufeinanderfolgende Lastzyklen [37] 13
Abbildung 7: Ermittlung Nachgiebigkeit und Rückformung innerhalb eines Lastzyklus [37] 16
Abbildung 8: Hyperbolische Probekörpergeometrie (links) und definierter Versagensquerschnitt
(rechts) [12]
Abbildung 9: Links und Mitte: Silikonform zur Herstellung zylindrischer Mastixprobekörper (ohne und
mit hergestellten Probekörper); Rechts: in DSR eingebauter zylindrischer Probekörper, nach dem
Trimmen
Abbildung 10: Links: Silikonform zur Herstellung hyperbolischer Mastixprobekörper; Mitte:
Eingebaute Silikonform nach dem Einfüllvorgang; Rechts: in DSR eingebauter hyperbolischer
Probekörper, nach Entfernung der Silikonform
Abbildung 11: Verwendete Messgeräte – Anton Paar MCR302 BJ2012 (links) und Anton Paar MCR302
BJ2019 (rechts)
Abbildung 12: Lineare Viskoelastizität – MX0037 (zylindrischer Probekörper)
Abbildung 13: Lineare Viskoelastizität – MX0038 (zylindrischer Probekörper)
Abbildung 14: Lineare Viskoelastizität – MX0039 (zylindrischer Probekörper)
Abbildung 15: Lineare Viskoelastizität – MX0037 (hyperbolischer Probekörper)
Abbildung 16: Lineare Viskoelastizität – MX0038 (hyperbolischer Probekörper)
Abbildung 17: Lineare Viskoelastizität – MX0039 (hyperbolischer Probekörper)
Abbildung 18: Zeitlicher Verlauf von $ G^* $ und δ bei spannungsgesteuerter TS-Prüfung
Abbildung 19: Zeitlicher Verlauf von $ G^* $ und δ bei verschiebungsgesteuerter TS-Prüfung
Abbildung 20: Anwendung des G*(50%)-Kriterium bei verschiebungsgesteuerter Time-Sweep-
Prüfung
Abbildung 21: Anwendung des δ_{max} -Kriterium bei verschiebungsgesteuerter Time-Sweep-Prüfung 40
Abbildung 22: Anwendung des DER-Kriteriums zur Auswertung spannungsgesteuerter TS-Prüfung 41
Abbildung 23: Anwendung des DER-Kriteriums zur Auswertung verschiebungsgesteuerter TS-Prüfung
Abbildung 24: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am zylindrischen
Probekörper mit Ermüdungskriterium G*50%
Abbildung 25: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am hyperbolischen
Probekörper mit Ermüdungskriterium G*50%
Abbildung 26: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am zylindrischen
Probekörper mit Ermüdungskriterium δ_{max}
Abbildung 27: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am hyperbolischen
Probekörper mit Ermüdungskriterium δ_{max}
Abbildung 28: Abschnittsweise annähernd waagrechter Verlauf des Phasenverschiebungswinkels δ
bei Durchführung einer verschiebungsgesteuerten Time-Sween-Prüfung an einem zvlindrischen
Mastixprobekörper bei einem geringen Beanspruchungsniveau (v=0.5%) 46
Abbildung 29: Auswertung der Time-Sween-Prüfungen (verschiebungsgesteuert) am zvlindrischen
Probekörper mit Frmüdungskriterium DFR

Abbildung 30: Auswertung der Time-Sweep-Prüfungen (verschiebungsgesteuert) am hyperbolische	en
Probekörper mit Ermüdungskriterium DER	. 47
Abbildung 31: Initialwert des Betrags des komplexen Schubmoduls zyl. und hyp. PK (TS	
verschiebungsgesteuert)	. 49
Abbildung 32: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am zylindrischen	
Probekörper mit Ermüdungskriterium G*(50%)	50
Abbildung 33: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am hyperbolischen	
Probekörper mit Ermüdungskriterium G*50%	. 51
Abbildung 34: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am zylindrischen	
Probekörper mit Ermüdungskriterium δ_{max}	. 52
Abbildung 35: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am hyperbolischen	
Probekörper mit Ermüdungskriterium δ_{max}	. 52
Abbildung 36: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am zylindrischen	
Probekörper mit Ermüdungskriterium DER	. 53
Abbildung 37: Auswertung der Time-Sweep-Prüfungen (spannungsgesteuert) am hyperbolischen	
Probekörper mit Ermüdungskriterium DER	. 54
Abbildung 38: Initialwerte des Betrags des komplexen Schubmoduls zyl. und hyp. PK (TS	
spannungsgesteuert)	. 55
Abbildung 39: Auswertung der LAS-Prüfungen am zylindrischen Probekörper	. 57
Abbildung 40: Auswertung der LAS-Prüfungen am hyperbolischen Probekörper	. 58
Abbildung 41: Initialwerte des Betrags des komplexen Schubmoduls zyl. und hyp. PK (LAS)	. 60

12.3 Tabellenverzeichnis

Tabelle 1: Abschätzung der Anwendbarkeit der Prüfverfahren23
Tabelle 2: Zusammensetzung der zu untersuchenden Mastixsorten
Tabelle 3: Auflistung der LVE Kennwerte für zylindrische Probekörpergeometrie
Tabelle 4: Auflistung der LVE Kennwerte für hyperbolische Probekörpergeometrie
Tabelle 5: Vergleich der LVE-Kennwerte 33
Tabelle 6: Prüfparameter für Time-Sweep-Prüfverfahren (verschiebungsgesteuert)
Tabelle 7: Prüfparameter für Time-Sweep-Prüfung (spannungsgesteuert)
Tabelle 8: Prüfparameter für LAS Prüfverfahren
Tabelle 9: Verhältnis der Initialwerte des Betrags des komplexen Schubmoduls (TS-
verschiebungsgesteuert)
Tabelle 10: Reihung der Mastixsorten hinsichtlich Ermüdungsverhalten (TS-verschiebungsgesteuert)
Tabelle 11: Verhältnis der Initialwerte des Betrags des komplexen Schubmoduls (TS-
spannungsgesteuert)
Tabelle 12: Reihung der Mastixsorten hinsichtlich Ermüdungsverhalten (TS-spannungsgesteuert) 56
Tabelle 13: Verhältnis der Initialwerte des komplexen Schubmoduls (LAS-Prüfung) 60
Tabelle 14: Reihung der Mastixsorten hinsichtlich Ermüdungsverhalten (LAS) 61
Tabelle 15: Übersicht der empfohlenen Probekörpergeometrie

13 Anhang

Anhang A: Prüfablauf der verschiebungsgesteuerten Time-Sweep-Prüfungen an zylindrischen Probekörpern:

No.	Prüfschritt	Beschreibung
1	Start	Start des Prüfprogramms und Eingabe der Projektdaten (Mastixbezeichnung, Projektnummer), der Betriebsart (verschiebungsgesteuert) sowie der Größe des eingebrachten Verformungsniveaus.
2	Druckluftkontrolle	Kontrolle ob an DSR-Prüfmaschine bereitgestellte Zuluftstrom ≥ 200l/h.
3	Initialisierung des Geräts	Geräteinitialisierung (automatisch).
4	Vorgeben Temperatur	Temperierung auf vorgegebene Temperatur von 15°C (automatisch).
5	Einbau der Prüfgeometrie PP08	Einbau der Platte-Platte-Prüfgeometrie PP08 und anschließend Absenken der Temperierhaube.
6	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten bei 15°C (automatisch).
7	Vorgeben Temperatur	Anhaltende Temperierung auf vorgegebene Prüftemperatur von 10°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
8	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten, bei der späteren Prüftemperatur von 10°C (automatisch).
9	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Einbautemperatur von 60°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
10	Bereitschaft Probeneinbau	Wenn zylindrische Probekörper bereit zum Einbau sind, kann der nächste Schritt (Probeneinbau) durch manuelle Bestätigung gestartet werden.

11	Probeneinbau	Obere, bewegliche Prüfplatte wird ca. 10cm vertikal nach oben bewegt um Einbau des zylindrischen Probekörpers zu ermöglichen. Anschließend wird der zylindrische Probekörper auf die Unterseite der oberen Platte gedrückt.
12	Messposition anfahren und trimmen	Obere Prüfplatte bewegt sich wieder zurück in Nullspaltposition. Anschließend Temperierhaube anheben und mit dem Trimmvorgang starten. Nachdem zylindrischer Probekörper fertig getrimmt wurde, Temperierhaube wieder absenken und nächsten Schritt einleiten.
13	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Prüftemperatur von 10°C mit anschließender, 1000 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
14	Prüfbeginn	Beginn der Prüfung und Start der Aufzeichnung der Prüf- bzw. Messparameter (automatisch).
15	Export/Tabelle	Ende der Prüfung und Speichern der aufgezeichneten Prüf- bzw. Messparameter in Tabellenform (automatisch).
16	Gerät/Zubehör ausschalten	Prüfgerät schaltet sich aus.
17	Prüfende	Ende des Prüfprogramms erreicht.

Anhang B: Prüfablauf der verschiebungsgesteuerten Time-Sweep-Prüfungen an hyperbolischen Probekörpern:

No.	Prüfschritt	Beschreibung
1	Start	Start des Prüfprogramms und Eingabe der Projektdaten (Mastixbezeichnung, Projektnummer), der Betriebsart (verschiebungsgesteuert) sowie der Größe des eingebrachten Verformungsniveaus.
2	Druckluftkontrolle	Kontrolle ob an DSR-Prüfmaschine bereitgestellte Zuluftstrom ≥ 200l/h.
3	Initialisierung des Geräts	Geräteinitialisierung (automatisch).
4	Vorgeben Temperatur	Temperierung auf vorgegebene Temperatur von 15°C (automatisch).
5	Einbau der Prüfgeometrie PP08	Einbau der Platte-Platte-Prüfgeometrie PP08 und anschließend Absenken der Temperierhaube.
6	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten bei 15°C (automatisch).
7	Vorgeben Temperatur	Anhaltende Temperierung auf vorgegebene Prüftemperatur von 10°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
8	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten, bei der späteren Prüftemperatur von 10°C (automatisch).
9	Einbau Silikonform	Einlegen der mit einem Gummiring fixierten Silikonform
10	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Einbautemperatur von 130°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
11	Bereitschaft Probeneinbau	Wenn die Mastixprobe auf 180°C erwärmt wurde und zum Eingießen bereit steht kann der nächste Schritt (Probeneinbau) durch manuelle Bestätigung gestartet werden.

12	Probeneinbau	Obere, bewegliche Prüfplatte wird ca. 10cm vertikal nach oben bewegt um anschließend wird flüssige Mastixprobe in die Silikonform gegossen.
13	Messposition anfahren und trimmen	Obere Prüfplatte bewegt sich wieder zurück in Nullspaltposition. Anschließend Temperierhaube anheben und mit dem Trimmvorgang starten. Nach Trimmen Temperierhaube wieder absenken und nächsten Schritt einleiten.
14	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Prüftemperatur von 10°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
15	Entfernen der Silikonformen	Silikonform entnehmen und Temperierhaub absenken.
16	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Prüftemperatur von 10°C mit anschließender, 1000 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
17	Prüfbeginn	Beginn der Prüfung und Start der Aufzeichnung der Prüf- bzw. Messparameter (automatisch).
18	Export/Tabelle	Ende der Prüfung und Speichern der aufgezeichneten Prüf- bzw. Messparameter in Tabellenform (automatisch).
19	Gerät/Zubehör ausschalten	Prüfgerät schaltet sich aus.
20	Prüfende	Ende des Prüfprogramms erreicht.

Anhang C: Prüfablauf der spannungsgesteuerten Time-Sweep-Prüfungen an zylindrischen Probekörpern:

Nr.	Prüfschritt	Beschreibung
1	Start	Start des Prüfprogramms und Eingabe der Projektdaten (Mastixbezeichnung, Projektnummer), der Betriebsart (spannungsgesteuert) sowie der Größe des eingebrachten Spannungsniveaus.

Die Prüfschritte Nr. 2 – 17 sind identisch zu jenen in Anhang A.

Anhang D: Prüfablauf der spannungsgesteuerten Time-Sweep-Prüfungen an hyperbolischen Probekörpern:

Nr.	Prüfschritt	Beschreibung
1	Start	Start des Prüfprogramms und Eingabe der Projektdaten (Mastixbezeichnung, Projektnummer), der Betriebsart (spannungsgesteuert) sowie der Größe des eingebrachten Spannungsniveaus.

Die Prüfschritte Nr. 2 – 20 sind identisch zu jenen in Anhang B.

Anhang E: Prüfablauf der LAS-Prüfungen an zylindrischen Probekörpern:

No.	Prüfschritt	Beschreibung
1	Start	Start des Prüfprogramms und Eingabe der Projektdaten (Mastixbezeichnung, Projektnummer), der Betriebsart (LAS) sowie der Größe des eingebrachten Verformungsniveaus.
2	Druckluftkontrolle	Kontrolle ob an DSR-Prüfmaschine bereitgestellte Zuluftstrom ≥ 200I/h.
3	Initialisierung des Geräts	Geräteinitialisierung (automatisch).
4	Vorgeben Temperatur	Temperierung auf vorgegebene Temperatur von 15°C (automatisch).
5	Einbau der Prüfgeometrie PP08	Einbau der Platte-Platte-Prüfgeometrie PP08 und anschließend Absenken der Temperierhaube.
6	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten bei 15°C (automatisch).
7	Vorgeben Temperatur	Anhaltende Temperierung auf vorgegebene Prüftemperatur von 10°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
8	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten, bei der späteren Prüftemperatur von 10°C (automatisch).
9	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Einbautemperatur von 60°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
10	Bereitschaft Probeneinbau	Wenn zylindrische Probekörper bereit zum Einbau sind, kann der nächste Schritt (Probeneinbau) durch manuelle Bestätigung gestartet werden.
11	Probeneinbau	Obere, bewegliche Prüfplatte wird ca. 10cm vertikal nach oben bewegt um Einbau des zylindrischen Probekörpers zu ermöglichen. Anschließend wird der zylindrische Probekörper auf die Unterseite der oberen Platte gedrückt.

12	Messposition anfahren und trimmen	Obere Prüfplatte bewegt sich wieder zurück in Nullspaltposition. Anschließend Temperierhaube anheben und mit dem Trimmvorgang starten. Nach Trimmen Temperierhaube wieder absenken und nächsten Schritt einleiten.
13	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Prüftemperatur von 10°C mit anschließender, 1000 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
14	Prüfbeginn fsweep	Beginn der Prüfung und Start der Aufzeichnung der Prüf- bzw. Messparameter des 1. Prüfabschnitts (automatisch).
15	Wartezeit	Wartezeit von 5min zwischen Ende des 1. Prüfabschnitts und Start des 2. Prüfabschnitts (automatisch).
16	Prüfbeginn LAS	Beginn der Prüfung und Start der Aufzeichnung der Prüf- bzw. Messparameter des 2. Prüfabschnitts (automatisch).
17	Export/Tabelle	Ende der Prüfung und Speichern der aufgezeichneten Prüf- bzw. Messparameter in Tabellenform (automatisch).
18	Gerät/Zubehör ausschalten	Prüfgerät schaltet sich aus.
19	Prüfende	Ende des Prüfprogramms erreicht.

Anhang F: Prüfablauf der LAS-Prüfungen an hyperbolischen Probekörpern:

No.	Prüfschritt	Beschreibung
1	Start	Start des Prüfprogramms und Eingabe der Projektdaten (Mastixbezeichnung, Projektnummer) sowie der Betriebsart (LAS).
2	Druckluftkontrolle	Kontrolle ob an DSR-Prüfmaschine bereitgestellte Zuluftstrom ≥ 200l/h.
3	Initialisierung des Geräts	Geräteinitialisierung (automatisch).
4	Vorgeben Temperatur	Temperierung auf vorgegebene Temperatur von 15°C (automatisch).
5	Einbau der Prüfgeometrie PP08	Einbau der Platte-Platte-Prüfgeometrie PP08 und anschließend Absenken der Temperierhaube.
6	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten bei 15°C (automatisch).
7	Vorgeben Temperatur	Anhaltende Temperierung auf vorgegebene Prüftemperatur von 10°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
8	Nullspaltbestimmung	Bestimmung des Nullspalts (h=2,0mm) zwischen den beiden Prüfplatten, bei der späteren Prüftemperatur von 10°C (automatisch).
9	Einbau Silikonform	Einlegen der mit einem Gummiring fixierten Silikonform
10	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Einbautemperatur von 130°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
11	Bereitschaft Probeneinbau	Wenn die Mastixprobe auf 180°C erwärmt wurde und zum Eingießen bereit steht, kann der nächste Schritt (Probeneinbau) durch manuelle Bestätigung gestartet werden.

12	Probeneinbau	Obere, bewegliche Prüfplatte wird ca. 10cm vertikal nach oben bewegt um anschließend wird flüssige Mastixprobe in die Silikonform gegossen.
13	Messposition anfahren und trimmen	Obere Prüfplatte bewegt sich wieder zurück in Nullspaltposition. Anschließend Temperierhaube anheben und mit dem Trimmvorgang starten. Nach Trimmen Temperierhaube wieder absenken und nächsten Schritt einleiten.
14	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Prüftemperatur von 10°C mit anschließender, 600 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
15	Entfernen der Silikonformen	Silikonform entnehmen und Temperierhaub absenken.
16	Vorgeben Temperatur	Anhaltende Temperierung auf die vorgegebene Prüftemperatur von 10°C mit anschließender, 1000 sekündiger Wartezeit ab Erreichen der Temperatur (automatisch).
17	Prüfbeginn fsweep	Beginn der Prüfung und Start der Aufzeichnung der Prüf- bzw. Messparameter des 1. Prüfabschnitts (automatisch).
18	Wartezeit	Wartezeit von 5min zwischen Ende des 1. Prüfabschnitts und Start des 2. Prüfabschnitts (automatisch).
19	Prüfbeginn LAS	Beginn der Prüfung und Start der Aufzeichnung der Prüf- bzw. Messparameter des 2. Prüfabschnitts (automatisch).
20	Export/Tabelle	Ende der Prüfung und Speichern der aufgezeichneten Prüf- bzw. Messparameter in Tabellenform (automatisch).
21	Gerät/Zubehör ausschalten	Prüfgerät schaltet sich aus.
22	Prüfende	Ende des Prüfprogramms erreicht.

approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	e approved original version of this thesis is available in print at TU Wien Bibliothek.
Die	The
hek	ub
3ibliot	Your knowledge h

| 1000kPa_3 1000 20847
1200kPa_1 1200 18424 | 1000kPa 2 1000 19600 | 1000kPa_1 1000 19734 | | /UUKPa 2 /UU 19/49 | 700kPa_1 700 20452
700kPa_2 700 19749 | 700kPa 1 700 20452
700kPa 2 700 19749 | KPa (kP
700kPa 1 700 20452
700kPa 2 700 19749 | Laststufe G*
kPa (kP
700kPa 1 700 20452
700kPa 2 700 19749 | Laststufe G*
kPa [kP
700kPa 1 700 20452
700kPa 2 700 19749 | 1200kPa_5 1200 22186 | 1200kPa_3
1200kPa_5
1200kPa_5
1200kPa_5
1200kPa_5
1200kPa_5
1200kPa_5
1200kPa_6
1200kPa_6
1200kPa_6
1200kPa_6
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kPa_7
1200kP | 1200kPa 1 1200 21328
1200kPa 3 1200 19284
1200kPa 5 1200 22186
1200kPa 5 1200 22186
1200kPa 5 1200 22186
1200kPa 6
700kPa 1 700 20452
700kPa 2 700 19749 | 1004Pa 2 1000 21298
1004Pa 3 1000 21042
12004Pa 3 1200 21328
12004Pa 3 1200 21328
12004Pa 5 1200 22186
12004Pa 5 1200 22186
Laststufe G*
7004Pa 1 700 20452
7004Pa 2 700 19749 | 1000kPa 1 1000 20479 1000kPa 2 1000 21298 1000kPa 3 1000 21042 1200kPa 1 1200 21328 1200kPa 3 1200 19284 1200kPa 3 1200 21328 1200kPa 5 1200 22186 1200kPa 5 1200 22186 1200kPa 1 1200 22186 1200kPa Laststufe G* G* 700kPa 1 700 20452 700kPa 2 700 19749 | 700kPa_3 700 23611 1000kPa_1 1000 20479 1000kPa_2 1000 21098 1000kPa_3 1000 21042 1200kPa_1 1200 21328 1200kPa_3 1200 21328 1200kPa_3 1200 21388 1200kPa_5 1200 22186 1200kPa_5 1200 22186 1200kPa_5 1200 22186 1200kPa_1 1200 22186
 1200kPa_5 1200 22186 1200kPa_1 1200 22186 700kPa_1 700 20452 700kPa_2 700 19749 | 700kPa_2 700 22637 700kPa_3 700 23611 1000kPa_1 1000 20479 1000kPa_3 1000 21098 1000kPa_3 1000 21042 1000kPa_3 1000 21328 1200kPa_3 1200 21328 1200kPa_5 1200 21864 1200kPa_5 1200 22186 1200kPa_1 700 20452 700kPa_2 700 19749 | 700kPa 1 700 21798 700kPa 2 700 22637 700kPa 3 700 23611 1000kPa 1000 20479 1000kPa 1000 21092 1000kPa 1000 21092 1000kPa 1000 21328 1200kPa 1200 12328 1200kPa 1200 21328 1200kPa 1200 22186 1200kPa 1200 22186 1200kPa 1200 22186 1200kPa 1200 22186 1200kPa 1200 20422 700kPa 1 700 20452 700kPa 2 700 19749 | kPa 21798 700kPa 2 700 22637 700 23611 1000kPa 1 1000 20479 20479 1000kPa 1 1000 21298 1000kPa 1 1000 21429 1000kPa 1 1000 21328 1200kPa 1 1200 21328 1200kPa 1 1200 21328 1200kPa 1 1200 2138 1200kPa 1 1200 21328 1200kPa 1 1200 2138 1200kPa 1 1200 2138 1200kPa 1 200 2148 1200kPa 1 700 20452 700kPa 2 700 19749 | KPa (kPa (kPa 700kPa 1 700 21798 700kPa 2 700 2637 700kPa 3 700 23611 1000kPa 1 1000 20479 1000kPa 3 1000 21298 1000kPa 1 1000 21328 1200kPa 1 1200 21328 1200kPa 1 1200 21864 1200kPa 1 700 20452 700kPa 2 700 19749
 | Laststufe G* 700kPa 1 700 21798 700kPa 700 22637 700 23611 1000kPa 1 1000 20479 1000kPa 1 1000 21098 1000kPa 1 1000 21298 1000kPa 1 1000 21479 1000kPa 1 1000 21498 1000kPa 1 1000 21498 1000kPa 1 1000 21498 1000kPa 1 1200 21328 1200kPa 1 1200 21388 1200kPa 1 1200 2186 1200kPa 1 1200 2186 1200kPa 1 1200 2186 1200kPa 1 200 2186 1200kPa 1 700 20452 700kPa 2 700 19749 | Iaststufe G* 700kPa_1 700 21798 700kPa_1 700 2151 700kPa_2 700 22637 700kPa_3 1000 210479 700kPa_1 1000 210479 1000kPa_2 1000 210429 1000kPa_3 1200 21328 1200kPa_3 1200 21328 1200kPa_5 1200 22186 1200kPa_5 1200 22186 1200kPa_5 1200 22186 1200kPa_5 1200 22186 1200kPa_5 1200 20452 700kPa 2 700 19749
 | 1200kPa 1200 18535 Iaststufe 6* KPa [kP 700kPa 700 2153 700kPa 700 2153 700kPa 1000 20479 700kPa 1000 20479 700kPa 1000 21328 1000kPa 1000 21328 1000kPa 1200 21328 1200kPa 1200 22186 1200kPa 1200 22186 1200kPa 1200 219749 700kPa 700 | 1200kPa 2 1200 18904 1200kPa 3 1200 18535 I200kPa 1200 18535 1200 18535 I200kPa kPa [kPa [kPa [kPa [kPa 700kPa 700kPa 700 22637 700 23611 1000kPa 1 1000 210429 120449 1000kPa 1 1000 21042 1000kPa 1 1000 21328 1200kPa 1 1200 21328 1200kPa 1200 21328 1200 21328 1200kPa 1 1200 21328 1200 21386 1200kPa 1 700 20452 700 20452 700kPa | 1200kPa 1 1200 18588 1200kPa 2 1200 18904 1200kPa 3 1200 18904 1200kPa 3 1200 18904 1200kPa 1200 18535 1200 18535 1200kPa 1200 18534 1200 18534 700kPa 700 21798 700 21351 700kPa 1 1000 21042 1000kPa 1 1000 21042 1000kPa 1 1000 21328 1200kPa 1 1200 21328 1200kPa 1200 21328 1200 21328 1200kPa 1 700 20452 700 20452 700kPa | 1000kPa 3 1000 21292 1200kPa 1 1200 18588 1200kPa 1200 18594 700kPa 1000 21798 700kPa 700 21297 1000kPa 1000 21292 1000kPa 1000 21298 1000kPa 1000 210479 1000kPa 1000 21042 1000kPa 1000 21042 1200kPa 11000 21042 1200kPa 1200 21328 1200kPa 1200 21328 1200kPa 1200 21328 1200kPa 1200 21384 1200kPa 1200 21384 1200kPa 1200 21384 1200kPa 120 | 1000kPa 2 1000 20021 1000kPa 3 1000 21292 1200kPa 3 1200 18588 1200kPa 3 1200 18588 1200kPa 3 1200 18588 1200kPa 3 1200 18588 1200kPa 1200 18588 1200 18588 1200kPa 1 700 21517 1853 700kPa 2 700 22637 200479 700kPa 3 1000 210479 1000kPa 1 1000 21042 1000kPa 1 1000 21042 1000kPa 1 1000 21042 1200kPa 3 1200 21328 1200kPa 3 1200 21328 1200kPa 3 1200 21328 1200kPa 1 1200 21328 1200kPa 1200 21328 1200 1200kPa
 | 1000kPa 1000 22272 1000kPa 1000 22272 1000kPa 1000 2021 1000kPa 1000 2021 1000kPa 1000 2021 1000kPa 1200 1858 1200kPa 1200 1858 1200kPa 1200 1858 1200kPa 1200 1858 1200kPa 1700 2132 1000kPa 700 2151 700kPa 700 20479 700kPa 1000 20479 1000kPa 1000 20479 1000kPa 1000 20479 1000kPa 1000 21928 1000kPa 1000 21928 1200kPa 1200 21328 | 700kPa 700 1000kPa 1000 1000kPa 1000 1000kPa 1000 1000kPa 1000 1000kPa 1000 1200kPa 1000 1200kPa 1200 700kPa 700 2 700 700kPa 700 1000kPa 700 1000kPa 1000 1000kPa 1000 1000kPa 1000 1000kPa 1000 1000kPa 1000 1200kPa 1200 1200kPa 1200 1200kPa 1200 1200kPa 1200 1200kPa 1200 1200kPa 1200 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | KPa KPa KPa 700KPa 700 2259 700KPa 700 2001 700KPa 700 2001 700KPa 1000 2001 700KPa 1000 2027 1000KPa 1200 1858 1200KPa 1200 1858 1200KPa 1200 1859 700KPa 700 2159 700KPa 700 2159 1000KPa 1000 2149 1000KPa 1200 2138 1200KPa | Laststufe (aststufe (aststufe (aststufe (aststufe (bstack | Iaststufe (aststufe (aststufe (aststufe (aststufe (bstack (bstack |
|--|------------------------|--|--------------------------------|-----------------------------|--|---|---|---|---|---|---|--|---|---
--|---|---|---
--
---|--
--
--|--|--|--
--|--
--|---|--|---
--|---|
| 78110 104239055 1 15192 92122596 1 | 5361 98002680,5 | 4159 98672079,5 1 | 1/2090 98/40348
103227545 5 | | 1211 102260605,5 1 | 'a] [kPa] /1211 102260605,5 /1211 0074/0740 | berechnet 'a] [kPa] 11211 102260605,5 102260605,5 1000000000000000000000000000000000000 | int G*(50%) berechnet berechnet 'a] [kPa] 11211 102260605,5 102240605,5 102240605,5 | Int G*(50%) 2a] berechnet 11211 102260605,5 | 7955 110933977,5 1 Int G*(50%) G*(50%) Jaj berechnet G*(200%) J1211 10226605,5 G*(200%) | 2796 96421398 110933977,5 1 110933977,5 1 Int G*(50%) berechnet 1 2a] [kPa] 1102260605,5 1 | 3613 1052410074 1052410074 2796 96421398 105644306,5 27955 110933977,5 1 7955 110933977,5 1 7955 110933977,5 1 7955 110933977,5 1 7955 110923977,5 1 7955 110923977,5 1 7911 6*(50%) 1 792 [kPa] 1 793 [kPa] 1 | 1719 106490859,5 3748 105211874 1 18613 10664306,5 3 3 3 1796 96421398 3 | 20008 102396004 10 1719 106490859,5 10 1748 105211874 10 1796 96421398 10 17955 110933977,5 10 1795 110933977,5 10 101t G*(50%) 10220605,5 111211 10220605,5 10 | 2681 118056340,5 1 20008 102396004 1 11719 106490859,5 1 13748 105211874 1 12796 96421398 1 12795 110933977,5 1 17955 110933977,5 1 1795 110933977,5 1 1795 110933977,5 1 1795 110933977,5 1 1795 110933977,5 1 1795
 110933977,5 1 1795 110933977,5 1 1795 10226605,5 1 29] [kPa] [kPa] 21211 10226605,5 1 | 4110 113187055 1 2681 118056340,5 1 20008 102396004 1 2719 106490859,5 1 3748 105211874 1 2796 96421398 1 27955 110933977,5 1 27955 110933977,5 1 27955 110933977,5 1 101 G*(50%) 1 29] [kPa] 1 29] [kPa] 1 29] [kPa] 1 29] [kPa] 1 | 9681 108994840,5 1 4110 113187055 1 2681 118056340,5 1 2008 102396004 1 12796 106490859,5 1 3748 105211874 1 12796 96421398 1 12795 110933977,5 1 1795 110933977,5 1 104 G*(50%) 1 1921 LPPa 1 29 [kPa] Lerechnet 29 [kPa] LePa | 'a] [kPa] 9681 108994840,5 1 2681 113187055 3 2681 118056340,5 1 2008 102396004 1 13719 106490859,5 1 37748 105211874 1 12796 96421398 1 12795 110933977,5 1 17955 110933977,5 1 104 G*(50%) 1 10220605,5 1 1 102211 102226605,5 1 | berechnet 'a] [kPa] '9681 108994840,5 1 '4110 113187055 1 '2681 102396004 1 '2008 106490859,5 1 '2796 96421398 1 '2795 106644306,5 1 '2796 96421398 1 '1795 10933977,5 1 '1nt G*(50%) 1 'pa] [kPa] [kPa] '1211 10226605,5 1
 | Init G*(50%) berechnet berechnet 'a] [[kPa] '9681 108994840,5 1 '2681 11387055 1 '2008 102396004 1 '1719 106490859,5 1 '2776 105211874 1 '2796 96421398 1 '2795 110933977,5 1 '1mit G*(50%) 1 '29] [kPa] berechnet '29] [kPa] 102226605,5 '102226605,5 1 1 | Int G*(50%) berechnet [kPa] 'a] [kPa] '9] [kPa] '9] 108994840,5 2681 113187055 2681 11318056340,5 12008 102396004 21719 106490859,5 123748 105211874 12796 96421398 27955 110933977,5 'int G*(50%) 'pa] [kPa] 10220605,5 1
 | 0933 92675466,5 Int G*(50%) 'a] [kPa] 'b681 108994840,5 2681 113187055 2681 113187055 21719 106490859,5 32748 105211874 32748 105211874 32748 105211874 32796 96421398 37955 110933977,5 'int G*(50%) 'pa] [kPa] 10220605,5 1 | 7604 94523802 0933 92675466,5 101 6*(50%) 101 berechnet 101 1089480,5 102681 102396004 1013187055 1 1006430604 1 1106490859,5 1 12796 96421398 105211874 10664306,5 1064308,5 1 105211874 1 10624306,5 1 10796 96421398 110933977,5 1 101210 6*(50%) 10226605,5 1 10226605,5 1 | 3625 92941812,5 7664 94523802 0933 92675466,5 108 92675466,5 101 681 101 113187055 2681 102396004 113187055 123748 10644306,5 138765 1106490859,5 13748 105211874 106643306,5 12796 96421398 105211874 1065433977,5 25055 110933977,5 101 6*(50%) 111 10220605,5 11211 10220605,5 | 4398 106462199 3625 92941812,5 3625 92941812,5 3625 94523802 3625 94523802 3625 94523802 36255
 36255 36255 | 5430 100107715 1 4398 106462199 3 3625 92941812,5 3 97604 94523802 9 1083 92675466,5 3 111 6*(50%) 1 111 10894840,5 1 111 113187055 3 2681 112396004 3 12008 105211874 3 131719 106490859,5 3 132746 105211874 3 13748 105211874 3 13795 96421398 3 10795 110933977,5 3 10220605,5 10226605,5 3 11211 10226605,5 1 | 3710 111361855 3710 3710 111361855 37430 5430 10010715 3 5438 106462199 3 3625 92941812,5 3 3780 92675466,5 3 101 6*(50%) 1 101 113187055 3 2681 113187055 3 2681 11389640,5 3 2681 102396004 3 2008 102396004 3 21719 106490859,5 3 23748 105211874 3 23748 105221874 3 21796 96421398 3 27955 110933977,5 3 211211 10226605,5 1 212211 10226605,5 3 212211 102270605,5 3 | 10000 100005412,5 100005412,5 1000051952 10000051952 10000051952 100000051952 100000051952 1000000051952 1000000051952 1000000051952 1000000051952 1000000000000000000000000000000000000
 | 44707 100008415,5 1 8831 100008415,5 1 37100 111361855 1 39304 100107715 1 3430 100107715 1 3430 100462199 1 3430 10642199 1 3625 92941812,5 1 933 92675466,5 1 108 113187055 1 14168 102396004 1 113187055 1 106490859,5 1 2681 1025211874 1 105211874 31719 106643306,5 1 1 32748 105211874 1 1 3795 106643306,5 1 1 3748 105211874 1 1 3795 106643306,5 1 1 3795 110933977,5 1 1 3795 10220605,5 1 1 3795 10220605,5 1 1 | 1 [K+8] 4767 112647383,5 3904 102051952 3910 111361855 3920 10010715 3938 10642199 3625 92941812,5 9933 92675466,5 94] [K+7] 1138085 1 94] [K+8] 94523802 94523802 9933 92675466,5 94 [K+8] 113187055 1 2681 113887055 2681 102396004 113187055 1 2008 102396004 31719 106490859,5 32748 105211874 3105211874 105221874 32748 105221874 32795 110933977,5 321211 10220605,5 10220605,5 10220605,5 10220605,5 10220605,5 | berechnet 'a] [kPa] 4767 112647383,5 6831 100008415,5 3904 102051952 3904 10261952 3904 10261952 3904 106462199 34398 106462199 3625 92941812,5 37664 9254788 933 92675466,5 39681 108994840,5 2681 108994840,5 2681 108994840,5 20008 105211874 32748 105211874 37955 105644306,5 32748 105211874 37955 105644306,5 37955 105211874 37955 105211874 37955 110933977,5 3795 10226605,5 3795 102226605,5 4112 102226605,5 | Init G*(50%) 'a] [kPa] 'a] [kPa] 'a] [kPa] 4767 112647383,5 3904 102051952 3710 111361855 3904 106462199 3625 92944812,5 9333 92675466,5 3625 92944812,5 3625 9294840,5 'a] [kPa] 'berechnet 'a] [kPa] 1138056340,5 2008 102396004 113180555 2008 105211874 32748 105211874 32796 96421398 37955 110933977,5 32748 105211874 32796 96421398 37955 110933977,5 3211 10226605,5 321211 102226605,5 | Int G*(50%) a] berechnet a] [kPa] 44767 11264783.5 33004 102051952 33700 111361855 3430 100008415,5 35430 100008415,5 34308 100462199 35430 1004642199 3625 92941812,5 3631 106462199 3625 92941812,5 36362 94523802 3933 92675466,5 36481 11387055 37199 1064930634,5 31719 10652340,5 32748 1025211874 3179 106643306,5 32748 105211874 37955 106543306,5 37955 110933977,5 361 10220605,5 37955 10220605,5 311211 10220605,5 312211 10220605,5
 |
| 105413595 5880 94044137 1670 | 99555132 4910 | 100339417 20030 100339417 4270 | 103775920 26690 | | 102483046 21570
08033407 19740 | [kPa] [sec]
102483046 21570
08933407 19740 | untere Schro
[kPa] [sec]
102483046 21570
08033407 19740 | G*(50%) t untere Schro [kPa] [sec] 102483046 21570 08833407 19740 | Versu G*(50%) t untere Schru untere Schru [kPa] [sec] 102483046 21570 08833407 19740 | 113477499 3090 Verst Verst G*(50%) t untere Schri untere Schri [kPa] [sec] 102483046 21570 08833407 19740 | 99257802 1590 113477499 3090 Versu G*(50%) t untere Schru untere Schru [kPa] [sec] 102483046 21570 08633407 19740 | Inv Solution 110070433 3050 99257802 1590 113477499 3090 I13477499 3090 Untere Schru Versu G*(50%) t Untere Schru Untere Schru [kPa] [sec] 102483046 21570 08833407 19740 | 107981631 4070 107598067 4130 1100759607 3090 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477491 500 113477492 3090 113477493 1000 113477494 1000 113477495 1000 113477496 11000 1002483046 21570 1002483046 21570 1002483047 10740 | 103461895 3960 107981631 4070 107559607 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 untere Schrr t KPaj [sec] 102483046 21570 102483046 21570 | 118236882 40920 103461895 3960 107981631 4070 107559607 4130 110070433 3050 99257802 1590 113477499 3090 113477495 3090 113477496 Verst G*(50%) t L(kPa) [sec] 102483046 21570 1072483046 21570
 | 113794306 35240 118236882 40920 103461895 3960 107981631 4070 107559607 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 1590 113477499 3090 113477499 1590 113477499 1590 113477499 1590 113477499 1590 113477499 1590 113477499 1590 11347749 1590 11347749 1590 102483046 21570 102483046 21570 10843407 19740 | 109486877 28100 113794306 35240 118236882 40920 103461895 3960 107981631 4070 107559607 4130 11007559607 4130 11007559607 3050 99257802 1590 113477499 3090 1134777499 3090 1134777499 3090 (F*(50%) t Untere Schrift Vntere Schrift [kPa] [sec] 102483046 21570 102483046 21570 102483046 21570 | [kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 103461895 3960 107981631 4070 107559607 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 1590 113477499 1590 113477491 t 500 t 6*(50%) t 113477 [sec] 102483046 21570 1072483407 19740 | untere Schra [kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 118236882 40920 103461895 3960 107981631 4070 107559607 4130 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 1590 113477499 3090 113477499 1590 113477499 1590 113477491 [sec] 1072483046 21570 1072483046 21570 1072483047 19740
 | G*(50%) t $untere Schre [kPa] [sec] 109486877 28100 113794306 35240 1132794306 35240 103461895 3960 107981631 4070 107559607 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 1590 113477499 1590 113477499 1590 113477499 1590 113477499 1590 113477499 1590 1072483046 21570 107$ | Versu G*(50%) t untere Schra
[kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 3950 103461895 3960 107559607 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 <td>95079090 1000 Versu G*(50%) t Juntere Schra
[kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 3920 103461895 3960 107981631 4070 107595802 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 1134477499 3090</td> <td>98138794 1190 95079090 1000 Versu Versu G*(50%) t [kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 113794306 3960 103461895 3960 107070433 3950 99257802 1590 113070433 3050 99257802 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 1134477499 3090 1134477499 3090</td> <td>939398427 1020 98138794 1190 95079090 1000 Versu G*(50%) t L(Pa) [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 3960 103461895 3960 107070433 3950 99257802 1590 113070433 3050 99257802 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 1134477499 3090 1134477499 3090 1</td> <td>$\begin{array}{llllllllllllllllllllllllllllllllllll$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{llllllllllllllllllllllllllllllllllll$</td> <td>1133007/23 22320 1130525726 12320 1100525726 3250 101573290 3050 101573290 3000 93938427 1190 93938427 1000 95079090 1000 95079090 t $Cf*(50\%)$ t $[kPa]$ [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113795802 1590 1007559607 4130 1007559607 4130 11007559607 4130 113076433 3050 99257802 3050 99257802 1590 113477499 3090 113477499 3050 902483046 21570 1072483046 21570 <</td> <td>[KP] [Sec] 113380723 25520 100525726 14620 101573290 3050 107944118
 3380 93998427 1020 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 28100 1118236887 28100 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 11307559607 4130 1007559607 4130 1007559607 4130 113077433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 <</td> <td>untere Schra
[kPa] [sec] 113380723 25520 1100525726 12350 100525726 33950 111666706 4540 1017373290 33050 98138773 1020 98138774 1020 98138775 1010 9813877 1010 98138882 1000 98179486877 28100 118236882 40920 107981631 40920 1070781631 40920 107559607 4130 107559607 4130 1130707433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477491</td> <td>G*(50%) t $untere$ Schra [kPa] [sec] 113380723 25520 100525726 14620 1111666706 4540 101573290 3050 1007944118 3380 98138794 1190 99398427 1020 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 10754418 58240 113794306 35240 113070438 3050 100759802 1590 113070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499<!--</td--><td>Versu G*(50%) t untere Schra
[kPa] [sec] 113380723 25520 100525726 14230 101573290 3050 101573290 3050 101573290 3050 101573290 3050 101573290 1000 93998427 1000 93998427 1010 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 113794306 35240 113794306 35240 113206882 40920 1007559607 4130 1007559607 4130 1130707433 3050 99257802 1590 113477499 3090 113477499</td></td> | 95079090 1000 Versu G*(50%) t Juntere Schra
[kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 3920 103461895 3960 107981631 4070 107595802 4130 110070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 1134477499 3090 | 98138794 1190 95079090 1000 Versu Versu G*(50%) t [kPa] [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 113794306 3960 103461895 3960 107070433 3950 99257802 1590 113070433 3050 99257802 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 1134477499 3090 1134477499 3090 | 939398427 1020 98138794 1190 95079090 1000 Versu G*(50%) t L(Pa) [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 3960 103461895 3960 107070433 3950 99257802 1590 113070433 3050 99257802 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 1134477499 3090 1134477499 3090 1 | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $
 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{llllllllllllllllllllllllllllllllllll$
 | 1133007/23 22320 1130525726 12320 1100525726 3250 101573290 3050 101573290 3000 93938427 1190 93938427 1000 95079090 1000 95079090 t $Cf*(50\%)$ t $[kPa]$ [sec] 109486877 28100 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113795802 1590 1007559607 4130 1007559607 4130 11007559607 4130 113076433 3050 99257802 3050 99257802 1590 113477499 3090 113477499 3050 902483046 21570 1072483046 21570 < | [KP] [Sec] 113380723 25520 100525726 14620 101573290 3050 107944118 3380 93998427 1020 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 28100 1118236887 28100 113794306 35240 113794306 35240 113794306 35240 113794306 35240 113794306 35240 11307559607 4130 1007559607 4130 1007559607 4130 113077433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 < | untere Schra
[kPa] [sec] 113380723 25520 1100525726 12350 100525726 33950 111666706 4540 1017373290 33050 98138773 1020 98138774 1020 98138775 1010 9813877 1010 98138882 1000 98179486877 28100 118236882 40920 107981631 40920 1070781631 40920 107559607 4130 107559607 4130 1130707433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477491 | G*(50%) t $untere$ Schra [kPa] [sec] 113380723 25520 100525726 14620 1111666706 4540 101573290 3050 1007944118 3380 98138794 1190 99398427 1020 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 95079090 1000 10754418 58240 113794306 35240 113070438 3050 100759802 1590 113070433 3050 99257802 1590 113477499 3090 113477499 3090 113477499 3090 113477499 3090 113477499 </td <td>Versu G*(50%) t untere Schra
[kPa] [sec] 113380723 25520 100525726 14230 101573290 3050 101573290 3050 101573290 3050 101573290 3050 101573290 1000 93998427 1000 93998427 1010 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 113794306 35240 113794306 35240 113206882 40920 1007559607 4130 1007559607 4130 1130707433 3050 99257802 1590 113477499 3090 113477499</td> | Versu G*(50%) t untere Schra
[kPa] [sec] 113380723 25520 100525726 14230 101573290 3050 101573290 3050 101573290 3050 101573290 3050 101573290 1000 93998427 1000 93998427 1010 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 93998427 1000 113794306 35240 113794306 35240 113206882 40920 1007559607 4130 1007559607 4130 1130707433 3050 99257802 1590 113477499 3090 113477499
 |
| 176400
50100 | 147300 | 128100 | 000700 | 800700 | 647100
592200
800700 | [LS]
647100
592200
800700 | ranke
[LS]
647100
592200
800700 | N für G*(50%)
ranke
[LS]
647100
592200
800700 | suche Mastix M)
N für G*(50%)
<i>ranke</i>
[LS]
647100
592200
800700 | 92700
Suche Mastix M)
N für G*(50%)
<i>ranke</i>
[LS]
647100
592200
800700 | 47700
92700
N für G*(50%)
<i>ranke</i>
[LS]
647100
592200
800700 | 91500
92700
92700
92700
92700
92700
92700
92700
800700 | 122100
123900
91500
92700
92700
92700
92700
92700
92700
47100
647100
592200
800700 | 118800
122100
91500
92700
92700
92700
92700
47700
647100
522200
800700 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $
 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 843000
1057200
1127600
1122100
122100
122100
91500
92700
Suche Mastix MJ
N für G*(50%)
[LS]
647100
800700 | [LS] 843000 1057200 1227600 118800 122100 122100 123900 91500 92700 W für G*(50%) K [LS] 647100 800700 | ranke
[LS]
843000
11057200
11227600
1122100
122100
91500
92700
92700
92700
92700
47700
92700
47700
92700
647100
522200
800700
 | N für G*(50%) ranke [LS] 843000 1057200 11227600 1122700 122100 122100 91500 92700 N für G*(50%) Ke [LS] 647100 800700 | Suche Mastix Mi N für G*(50%) ranke [LS] 843000 1057200 1057200 11227600 1122700 1123900 91500 92700 92700 Suche Mastix MI N für G*(50%) (LS) Kur G*(50%) (LS) Suche (LS) 800700
 | | 35700 suche Mastix M3 N für G*(50%) I I ranke [LS] I 843000 1057200 I 11227600 1227600 I 122700 122100 I 122700 91500 I 92700 92700 I N für G*(50%) ILS] I V für G*(50%) ILS] I \$22200 522200 522200 800700 800700 I | 30600 35700 30000 Niche Mastix MJ N für G*(50%) ranke [LS] 843000 11227600 1227600 122700 122700 92700 92700 N für G*(50%) N für G*(50%) Kür G*(50%) S22200 800700 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $
 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Image: space spa | $\begin{tabular}{ c c c c c } \hline & $438600 \\ & $438600 \\ \hline & $43600 \\ \hline & $101400 \\ \hline & $30000 \\ \hline & $101400 \\ \hline & $1057200 \\ \hline & $1057200 \\ \hline & $11227600 \\ \hline & $1122700 \\ \hline & $112270 \\ \hline & $$ | $\begin{tabular}{ c c c c c } \hline & (10300) \\ \hline & (101400) \\ \hline & (10160) \\ \hline & (101$ | $ LS = \frac{ LS }{765600} = \frac{370500}{370500} = \frac{370500}{101400} = \frac{30600}{30000} = \frac{30000}{30000} = \frac{101400}{30000} = \frac{101400}{30000} = \frac{101400}{30000} = \frac{101400}{30000} = \frac{101400}{101400} = \frac{10040}{101400} = \frac{10040}{1014$ | ranke ISI 765600 370500 370500 438600 91500 101400 30000 30000 30000 N für G*(50%) ILS] Ranke [LS] 118800 122100 122100 122100 91500 92700 W für G*(50%) 47700 92700 92700 K für G*(50%) Hür G*(50%) K für G*(50%) 647100 522200 522200 800700 800700 | N für G*(50%) ranke [LS] 765600 370500 370500 316200 30600 30000 30000 30000 101400 30000 101400 30000 101400 30000 101400 30000 101400 30000 101400 30000 101400 30000 1012100 1122100 122100 122100 122100 122100 122100 122100 92700 47700 92700 K für G*(50%) K für G*(50%) 647100 800700 | suche Mastix Mir N für G*(50%) $ranke$ [LS] 765600 370500 330600 136200 91500 30500 30600 101400 30500 101400 30500 N für G*(50%) [LS] N für G*(50%) [LS] 1057200 1227600 1122700 122100 91500 92700 92700 92700 N für G*(50%) N für G*(50%) N für G*(50%) [LS] N für G*(50%) [LS] N
für G*(50%) [LS] S22200 522200 800700 522200 |
| 103574544 58 89176373 16 | 96797656 49 | 98395570 42 | | 102786844 267 | 101649804 215 98335430 197 102786844 267 | [kPa] [se
101649804 215
98335430 197
102786844 267 | obere Sch [kPa] [se 101649804 215 98335430 197 102786844 267 | G*(50%) t
obere Sch
[kPa] [se
101649804 215
9835430 197
102786844 267 | XOO38 t G*(50%) t obere Sch [kPa] [kPa] [se 101649804 215 102786844 267 102786844 267 | 110761068 31 XOO38 G*(50%) t obere Sch [kPa] [kPa] [se 101649804 215 102786844 267 | 94884056 16
110761068 31
X0038 6
(s(50%) t
(s [*] (50%) t
(s [*] (50%) t
(s [*] (50%) t
(s [*]) t
(s [*]) (s | 105736911 30 94884056 16 110761068 31 KOO38 4 C3*(50%) t C3*(50%) t J054800 5 J054800 5 J054800 5 J054800 5 J054800 5 J054800 197 98335430 197 J05786844 215 102786844 215 | 103817691 40 102914999 41 105736911 30 94884056 16 110761068 31 1107610761068 31 G*(50%) t G*(50%) t Image: Comparison of the state of the stat | 100663042 39 103817691 40 102914999 41 105736911 30 94884056 16 110761068 31 MORDB Jobere Sch (kPa) [se 101788844 215 102983430 19 | 117580934 409 100663042 39 103817691 40 102914999 41 105736911 30 94884056 16 110761068 31 MOODS 0 64*(50%) t 64*(50%) t 98335430 19 102786844 215 102786844 26 | 113079651 352 117580934 409 100663042 39 103817691 40 102914999 41 105736911 30 94884056 16 110761068 31 MOD38 Jobere Sch G*(50%) t [kPa] [se 102786844 215 102786844 267 | 108981033 281 113079651 352 117580934 409 100663042 39 103817691 409 102914999 41,1 105736911 30 94884056 16 110761068 31 10767068 31 G*(50%) t G*(50%) t I02786844 215 102786844 219 102786844 26 | [kPa] [se 108981033 281 113079651 352 117580934 409 100663042 39 103817691 409 102914999 41 102914999 41 102736911 30 94884056 16 110761068 31 MOOG* 06 re Sch CG*(50%) t [kPa] [se 102786844 215 102786844 267 | obsere Sch [kPa] [se 108981033 281 113079651 352 117580934 409 100663042 39 103817691 409 102914999 41 105736911 30 94884056 16 110761068 31 110761068 31 MOO38 S CG*(50%) t [kPa] [se 101788840 16 110761068 31 94384056 16 110761068 31 1027808 S 10378684 16 102786844 215 102786844 215 102786844 215
 | G*(50%) t obere Sch [kPa] [se 108981033 281 113079651 352 113079651 352 117580934 409 100663042 39 102914999 41 102914999 41 102736911 30 94884056 16 1107761068 31 XOO38 S G*(50%) t I0254804 215 98335430 197 10254804 215 101649804 215 102786844 265 | XOO39 t G*(50%) t obere Sch [kPa] [kPa] [se 108981033 281 113079651 325 117580934 409 1008817691 40 102914999 41 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 107761068 31 107761068 16 110761068 16 1007880 5 6*(50%) t [kPa] [se 101649804 215 98335430 197 102786844 215
 | 89440795 10 XOO39 obsers Sch G*(50%) t obsers Sch [se [kPa] [se 113079651 323 113079651 329 1008817691 40 102914999 41 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 1007761068 31 1007864 15 98335430 197 98335430 197 98335430 197 102786844 215
 | 93484251 12 89440795 10 XOO39 obere Sch obere Sch [se [kPa] [se 113079651 325 113079651 30 1008817691 40 1003817691 40 1005736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 XOO38 5 G*(50%) t [kPa] obere Sch 101649804 215 98335430 197 98335430 197 98335430 197 98335430 197 102786844 215 | 91047147 10 93484251 12 89440795 10 XOO39 obere Sch [kPa] [se 108981033 281 113079651 352 113079651 352 1008817691 40 1005736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 107761068 31 107761068 31 107763064 15 100788644 215 98335430 197 98335430 197 102786844 215 | 105278799 33 91047147 10 93484251 12 89440795 10 XOO39 obere Sch [kPa] [se 108981033 281 113079651 352 113079651 352 100881033 352 1003817691 40 102736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 1076380 5 [kPa] [se 101649804 215 102786844 215 102786844 215 | 99569571 30 105278799 33 91047147 10 93484251 12 89440795 10 C4*(50%) t G*(50%) t [kPa] 0bere Sch 113079651 353 113079651 352 113079651 352 113079651 352 113079651 352 113079651 352 113079651 352 113079651 352 1103817691 409 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 107761068 31 107763064 15 98335430 197 102786844 215 98335430 197 102786844 215 | Just 2002 Just 2002 109754378 45 99569571 30 99569571 30 991047147 10 993484251 12 89440795 10 G*(50%) t [kPa] 0 fl17580934 405 100881033 281 113079651 325 100663042 39 1005736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30
105736911 30 94884056 16 110761068 31 100761068 31 1007649804 215 98335430 197 98335430 197 102786844 215 | 393-174-0 146 101238025 146 109754378 45 99569571 30 105278799 33 91047147 10 93484251 12 89440795 10 G*(50%) t G*(50%) t I13979651 283 113979651 323 113979651 329 100538934 409 100536911 30 1005736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 107761068 31 107649804 215 98335430 197 98335430 197 102786844 215 | 99474074 123 111230325 124 109754378 45 99474074 123 992569571 30 105278799 33 91047147 10 93484251 12 89440795 10 G*(50%) t G*(50%) t I13979651 323 1130958034 409 100538042 39 100663042 39 100536911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 107649804 215 98335430 197 98335430 197 | [KPa] [Sea 1112503132 255 99474074 123 101238025 146 109754378 45 99474074 10 109278799 33 91047147 10 93484251 12 89440795 10 G*(50%) t G*(50%) t I13979651 328 113979651 329 1008387691 40 1008387691 30 1005736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 101649804 215 98335430 197 | obere Sch [kPa] [se 112503132 255 99474074 123 102738025 144 109754378 45 99569571 30 991047147 10 93484251 12 93484251 10 93484251 10 93484251 10 93484251 10 93484251 10
 93484251 10 93484251 10 93484251 10 108981033 281 113079651 352 113079651 352 1005802 39 103817691 409 102914999 41 102914999 41 102704068 31 100761068 31 100761068 31 1007649804 215 98335430 197 102786844 215 98335430 197 102 | G*(50%) t [kPa] [se [112503132 255 99474074 123 101238025 146 109754378 45 99569571 30 91047147 10 93484251 12 91047147 10 93484251 12 105278799 33 91047147 10 93484251 12 105278795 10 G*(50%) t [kPa] [se 108981033 281 113079651 352 1107663042 39 1005736911 30 102914999 41 105736911 30 105736911 30 94884056 16 110761068 31 107761068 31 10278844 215 98335430 197 102786844 215 102786844 215 | XOQ37 obere Sch
[kPa] [kPa] [se
112503132 235
239474074 112503132 124
239474074 123
239569571 99474074 123
99569571 30
99569571 99574378 45
99569571 30
91047147 99574378 45
934940795 10
10578691 934940795 10
93484251 12
10
8940795 G*(50%) t 5
113079651 113079651 352
113079651 30
30
102736911 100663042 30
94884056 16
1010751068 1107761068 31
1007649804 11
31
30
98333430 G*(50%) t t G*(50%) t t J00763068 31
30
98333430 19
31
30
31
30
31
31
30
31
31
30
31
31
30
31
31
30
31
31
31
31
31
31
31
31
31
31
31
31
31 |
| 5890 176700
1680 50400 | 1920 147600 | 1280 128400 | | 9/50 592500
6700 801000 | 1580 647400 9750 592500 6700 801000 | sec] [LS] 1580 647400 9750 592500 6700 801000 | chranke sec [LS] 1580 647400 9750 592500 9770 80100 6700 80100 | t N für G*(50%)
<i>chranke</i>
<u>sec] [LS]</u>
<u>1580</u>
<u>647400</u>
<u>9750</u>
<u>592500</u>
<u>6700</u>
<u>801000</u> | t N für G*(50%)
<i>chranke</i> <u>sec [LS] sec 647400 9750 592500 66700 801000</u> | 1100 93000 t N für G*(50%) chranke [LS] ssec] [LS] 1580 647400 9750 592500 6700 801000 | 600 48000 1100 93000 t N für G*(50%) chranke [LS] ssec] [LS] 1580 647400 9750 592500 6700 801000 | 124-00 124-00 1060 91800 1000 93000 1100 93000 t N für G*(50%) chranke [LS] sec] [LS] 1580 647400 9750 592500 67700 801000 | 122400 1140 124200 1060 91800 100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 11100 1100 | 119100 1080 122400 1140 124200 1060 91800 1000 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 11000 1100 | 3930 1227900 1970 119100 1080 122400 1140 124200 1140 124200 1100 91800 1600 48000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100
 93000 1100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 111100 93000 111100 93000 111100 93000 111100 93000 111100 93000 111100 93000 11100 | 5250 1057500 3930 1227900 1970 119100 1080 122400 1140 124200 1060 91800 1600 48000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 111100 93000 1111100 93000 111100 93000 111100 93000 111100 93000 111100 93000 111100 | 3110 843300 5250 1057500 9930 1227900 9970 119100 1080 122400 1140 124200 1060 91800 100 93000 100 93000 100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 | sec] [LS]
3110 843300
5250 1057500
0930 1227900
1970 119100
1080 122400
1140 122400
1140 91800
100 91800
1100 91800
5300 48000
5300 93000
t N für G*(50%)
t [LS]
sec] [LS]
sec] [LS]
59750 592500
647400
9750 801000 | chranke [LS] sec] [LS] 3110 843300 5250 1057500 9370 112100 1080 1227900 119100 119100 1080 122400 1140 124200 1060 91800 100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 93000 11100 <td< td=""><td>t N für G*(50%)
<i>chranke</i>
<u>sec</u> [LS]
<u>8110</u> 843300
<u>5250</u> 1057500
<u>19370</u> 112100
<u>1080</u> 122400
<u>1140</u> 122400
<u>1140</u> 122400
<u>1140</u> 91800
<u>1140</u> 91800
<u>1140</u> 91800
<u>1140</u> 91800
<u>1140</u> 93000
<u>1140</u> 93000
<u>1140</u> (LS]
<u>1180</u> 647400
<u>91750</u> 592500
<u>66700</u> 801000</td><td>t N für G*(50%)
chranke
sec[[LS]
sec] 1057500
0930 1227900
1970 119100
1080 122400
1140 124200
1140 124200
1100 93000
1100 93000
1100 93000
t N für G*(50%)
chranke
sec] [LS]
sec] [LS]
1580 647400
9750 592500
6700 801000</td><td>$\begin{array}{ c c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$</td><td>1200 36000 010 30300 010 30300 chranke [LS] sec[[LS] s110 843300 5250 1057500 0930 112100 1080 122700 1140 124200 1140 124200 1100 93000</td><td>100 30900 1200 36000 100 30300 110 30300 t N für G*(50%) chranke [LS] 8810 1057500 9930 1227900 9970 119100 1040 124200 1050 122700 1140 124200 1100 124200 1100 93000 1100 93000 1100 93000 1100 124200 1100 124200 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93</td><td>1390 101700 1200 30900 1200 36000 101 30300 101 30300 101 30300 101 30300 101 30300 101 30300 101 843300 5250 11257900 1227900 1125700 13080 1122100 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 125500 1160 93000 1160 93000 1160</td><td>1060 91800 101700 30900 101700 30900 101 30300 101 30300 101 30300 101 30300 101 30300 101 30300 101 30300 101 843300 5250 11257900 12970 1125700 12930 1122700 12400 1124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 12550 1160 93000 1160 93000 1160 93000 1160 93000 1160 93000 1160 <t< td=""><td>t N für G*(50%) 136500 30900 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 1057500 1057500 119100 11900 11227900 11900 1122000 1140 124200 1100 93000 1100 93000 1100 124200 1100 93000 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 124200 1100 1250</td><td>Chranke [LS] 3000 136500 136500 30900 1300 30900 1200 36000 101700 30300 101700 30300 101700 30300
 1010 30300 1010 30300 1010 30300 1010 30300 1011 843300 5250 1227900 3970 119100 1080 122200 1140 124200 1140 124200 1140 124200 1100 93000 1100 93000 1100 124200 1100 124200 1100 93000 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 124200 1100 125250 66700</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Sec [L3] 5530 765900 2360 370800 4630 438900 1050 136500 1030 30900 101700 30300 101700 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 843300 5250 1125700 1057500 1125700 1057500 122700 1140 142300 5250 122400 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 48000 1160 93000 1160 93000 1160</td><td>chranke ssel [LS] 5530 765900 5360 370800 4630 438900 1550 136500 100 91800 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 1057500 93970 119100 119100 1227900 39700 1227900 39700 1227900 39700 122700 119100 122700 12000 12200 12000 122700 39700 122700 39700 122700 1200 93000 1200 93000 1200 93000 1200 93000 1200</td><td>t N für G*(50%) chranke [LS] sec] [LS] 3530 765900 2360 370800 2360 370800 2360 370800 2360 370800 2360 370800 2360 33000 2360 36000 101700 30300 101 30300 101 30300 101 30300 1010 30300 1010 30300 1010 1027900 1027 119100 1020 11227900 1300 122200 1300 1224200 140 124200 140 124200 1500 48000 140 124200 1500 48000 1580 647400 9750 592500 6700 801000</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></t<></td></td<> | t N für G*(50%)
<i>chranke</i>
<u>sec</u> [LS]
<u>8110</u> 843300
<u>5250</u> 1057500
<u>19370</u> 112100
<u>1080</u> 122400
<u>1140</u> 122400
<u>1140</u> 122400
<u>1140</u> 91800
<u>1140</u> 91800
<u>1140</u> 91800
<u>1140</u> 91800
<u>1140</u> 93000
<u>1140</u> 93000
<u>1140</u> (LS]
<u>1180</u> 647400
<u>91750</u> 592500
<u>66700</u> 801000 | t N für G*(50%)
chranke
sec[[LS]
sec] 1057500
0930 1227900
1970 119100
1080 122400
1140 124200
1140 124200
1100 93000
1100 93000
1100 93000
t N für G*(50%)
chranke
sec] [LS]
sec] [LS]
1580 647400
9750 592500
6700 801000
 | $\begin{array}{ c c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$ | 1200 36000 010 30300 010 30300 chranke [LS] sec[[LS] s110 843300 5250 1057500 0930 112100 1080 122700 1140 124200 1140 124200 1100 93000 | 100 30900 1200 36000 100 30300 110 30300 t N für G*(50%) chranke [LS] 8810 1057500 9930 1227900 9970 119100 1040 124200 1050 122700 1140 124200 1100 124200 1100 93000 1100 93000 1100 93000 1100 124200 1100 124200 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93000 1100 93 | 1390 101700 1200 30900 1200 36000 101 30300 101 30300 101 30300 101 30300 101 30300 101 30300 101 843300 5250 11257900 1227900 1125700 13080 1122100 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 125500 1160 93000 1160 93000 1160 | 1060 91800 101700 30900
 101700 30900 101 30300 101 30300 101 30300 101 30300 101 30300 101 30300 101 30300 101 843300 5250 11257900 12970 1125700 12930 1122700 12400 1124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 12550 1160 93000 1160 93000 1160 93000 1160 93000 1160 93000 1160 <t< td=""><td>t N für G*(50%) 136500 30900 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 1057500 1057500 119100 11900 11227900 11900 1122000 1140 124200 1100 93000 1100 93000 1100 124200 1100 93000 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 124200 1100 1250</td><td>Chranke [LS] 3000 136500 136500 30900 1300 30900 1200 36000 101700 30300 101700 30300 101700 30300 1010 30300 1010 30300 1010 30300 1010 30300 1011 843300 5250 1227900 3970 119100 1080 122200 1140 124200 1140 124200 1140 124200 1100 93000 1100 93000 1100 124200 1100 124200 1100 93000 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 124200 1100 125250 66700</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Sec [L3] 5530 765900 2360 370800 4630 438900 1050 136500 1030 30900 101700 30300 101700 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 843300 5250 1125700 1057500 1125700 1057500 122700 1140 142300 5250 122400 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 48000 1160 93000 1160 93000 1160</td><td>chranke ssel [LS] 5530 765900 5360 370800 4630 438900 1550 136500 100 91800 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 1057500 93970 119100 119100 1227900 39700 1227900 39700 1227900 39700 122700 119100 122700 12000 12200 12000 122700 39700 122700 39700 122700 1200 93000 1200 93000 1200 93000 1200 93000 1200</td><td>t N für G*(50%) chranke [LS] sec] [LS] 3530 765900 2360 370800 2360 370800 2360 370800 2360 370800 2360 370800 2360 33000 2360 36000 101700 30300 101 30300 101 30300 101 30300 1010 30300 1010 30300 1010 1027900 1027 119100 1020 11227900 1300 122200 1300 1224200 140 124200 140 124200 1500 48000 140 124200 1500 48000 1580 647400 9750 592500 6700 801000</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></t<> | t N für G*(50%) 136500 30900 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 1057500 1057500 119100 11900 11227900 11900 1122000 1140 124200 1100 93000 1100 93000 1100 124200 1100 93000 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 124200 1100 1250 | Chranke [LS] 3000 136500 136500 30900 1300 30900 1200 36000 101700 30300 101700 30300 101700 30300 1010 30300 1010 30300 1010 30300 1010 30300 1011 843300 5250 1227900 3970 119100 1080 122200 1140 124200 1140 124200 1140 124200 1100 93000 1100 93000 1100 124200 1100 124200 1100 93000 1100 124200 1100 93000 1100 124200 1100 124200 1100 124200 1100 124200 1100 125250 66700
 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Sec [L3] 5530 765900 2360 370800 4630 438900 1050 136500 1030 30900 101700 30300 101700 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 30300 1010 843300 5250 1125700 1057500 1125700 1057500 122700 1140 142300 5250 122400 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1140 124200 1150 48000 1160 93000 1160 93000 1160 | chranke ssel [LS] 5530 765900 5360 370800 4630 438900 1550 136500 100 91800 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 30300 101700 1057500 93970 119100 119100 1227900 39700 1227900 39700 1227900 39700 122700 119100 122700 12000 12200 12000 122700 39700 122700 39700 122700 1200 93000 1200 93000 1200 93000 1200 93000 1200 | t N für G*(50%) chranke [LS] sec] [LS] 3530 765900 2360 370800 2360 370800 2360 370800 2360 370800 2360 370800 2360 33000 2360 36000 101700 30300 101 30300 101 30300 101 30300 1010 30300 1010 30300 1010 1027900 1027 119100 1020 11227900 1300 122200 1300 1224200 140 124200 140 124200 1500 48000 140 124200 1500 48000 1580 647400 9750 592500 6700 801000 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
 |
| 176592
50218 | 147469 | 100071 | 178357 | 392294
800866
1 78257 | 647180
592294
800866
1 792357 | [LS]
647180
592294
800866
1 28257 | interpoliert
[LS]
647180
592294
800866
1 78257 | Image: Normal System Similar System interpoliert [LS] 647180 592294 592294 130257 | 6) N für G(50%) G* _{nt.zy}
interpoliert
[LS]
647180
592294
800866 | 92981
6) N für G(50%) G* _{mL2Y}
<i>interpoliert</i>
[LS]
647180
592294
800866
1 79257 | 47895
92981
6) N für G(50%) G* _{nt.2y}
<i>interpoliert</i>
[LS]
647180
592294
800866 | 47895 92981 47895 92981 interpolient [LS] 647180 592294 800866 178257 | 122207
124052
91737
47895
92981
647180
[LS]
647180
592294
800866 | 118914
122207
91737
47895
922981
64) N für G(50%)
<i>intergliert</i>
[LS]
647180
592294
800866 | 1227683 118914 122207 124052 91737 47895 92981 47895 92981 interpolient [LS] 647180 592294 800866 178257
 | 1057455 1227683 118914 122207 122207 124052 91737 47895 92981 Intro(50%) G*mt.zy ILS] 647180 592294 800866 | 843292
1057455
1227683
118914
122207
124052
91737
47895
92981
47895
92981
inter G(50%)
[LS]
647180
592294
800866 | [LS] 843292 1057455 11227683 1118914 122207 122207 122207 124052 91737 47895 92981 Intraferon | interpoliert
[LS]
843292
1057455
1227683
118914
122207
124052
91737
47895
92981
47895
92981
inter G(50%)
[LS]
647180
592294
800866
 | N für G(50%) G* _{nh,zy} interpoliert [LS] 1057455 1057455 1127683 11217683 11217683 11217683 1122707 122207 122207 124052 91737 91737 47895 92981 VIT G(50%) G* _{nh,zy} interpoliert [LS] 647180 592294 800866 179257 | 6) N für G(50%) G* _{mb,2y} interpoliert [LS] 122 1057455 118914 1227683 118914 122207 1227683 118914 1127683 1122107 12207 124052 91737 91737 47895 92981 647180 G* _{mb,2y} 647180 592294 800866 1 39357
 | 30128 interpoliert [LS] 843292 1057455 11227683 118914 1227683 118914 1227683 118915 1227683 118914 12207 128052 91737 47895 92981 60 111 (Itcg(50%)) G*mt.zy interpoliert [LS] 647180 592294 800866 179357 | 35933 30128 interpoliert [LS] 843292 1057455 1127683 118914 1227683 118914 1227683 118915 91737 47895 92981 92981 interpoliert [LS] 647180 592294 800866 | 30707 35933 30128 interpoliert [LS] 843292 1057455 11227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 12207 124052 91737 47895 92981 interpoliert [LS] interpoliert [LS] 647180 592294 800866 1793257 | 101567 30707 35933 30128 Interpoliert [LS] 843292 1057455 11227683 118914 1227683 118914 1227683 118914 1227683 118914 12207 124052 91737 47895 92981 ILS interpoliert [LS] 647180 592294 800866 193257 | 91719
101567
30707
35933
30128
(N für G(50%) G* _{int.zy}
<i>interpoliert</i>
1227683
118914
122207
124052
91737
47895
92981
(LS)
124052
91737
47895
92981
(LS)
647180
592294
800866
12825
 | | 438603 91719 101567 30707 30707 30128 interpoliert [LS] 843292 1057455 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 12207 124052 91737 47895 92981 (Its] (Its] 647180 592294 800866 1793257
 | 370648 370648 91719 136248 91719 101567 30707 303028 interpoliert [LS] 843292 1057455 1127683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118914 1227683 118915 1227683 118914 12207 124052 91737 47895 92981 (IS) interpoliert [LS] 647180 592294 800866 128256 | (LS) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 | interpoliert [LS] 765851 370648 43603 136248 91719 101567 30707 35933 30128 interpoliert [LS] 1057455 11227683 11227683 11227683 11277683 11227683 112914 122207 122207 122207 122207 122207 122207 122207 122207 122207 122207 122207 122207 122207 122207 124052 91737 47895 92981 ILS] 647180 592294 800866 17805 592294 800866 | N für G(50%) G* _{mt.zy} interpoliert [LS] 765851 370648 91719 136248 91719 330707 330707 330707 330128 1101567 101567 101567 30707 330128 1101567 1118214 1127083 1127083 1118914 122207 122207 124052 91737 47895 92981 122 11251 12207 12207 124052 91737 47895 92981 47895 92981 47895 92981 47895 92981 47895 92924 647180 592294 592294 800866 1 20257 | δ N für G(50%) $G^*_{mb,xy}$ $interpollert$ [LS] $1SS1$ 370648 370648 91719 136248 91719 91719 101567 30707 35933 30128 [LS] $interpollert$ [LS] 18914 1227683 118914 122207 1277683 1227683 118914 122207 124052 91737 124052 91737 47895 92981 $G^*_{mb,xy}$ (htur G(50%) $G^*_{mb,xy}$ (htur G |
| 2,63 | 2,43 | 2,51 | | 2,50 | 2,53
2,38
2,50 | 2,53
2,38
2,50 | 2,53
2,38
2,50 | 2,53
2,50
2,50 | <u>د</u> / G* _{Int.hyp} Anmerkung
2,53
2,50 | 2,88
 | 2,50
2,88
 | 2,73
2,50
2,88
2,88
 | 2,79
2,69
2,73
2,50
2,88
 | 2,48
2,79
2,69
2,73
2,50
2,88
2,88
2,88
2,50
2,53
2,53 | 2,53
2,48
2,79
2,69
2,73
2,50
2,88
2,88
2,88
2,50
2,53
2,53
 | 2,59
2,48
2,79
2,69
2,73
2,50
2,88
2,88
2,88
2,88
2,50
2,53
2,53 | 2,48
2,53
2,48
2,79
2,69
2,73
2,50
2,88
 | 2,48
2,59
2,48
2,79
2,69
2,73
2,50
2,88
2,88
2,88
2,88
2,88
2,88
2,50
2,50
2,53 | 2,48
2,59
2,53
2,48
2,79
2,69
2,73
2,73
2,73
2,50
Anmerkun ₆
2,53
2,53
 | E.zyl / G*Int.hyp Anmerkung 2,48 2,59 2,59 2,79 2,79 2,69 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,53 2,50 2,38 2,50 2,38 2,50 2,38 | L.zyl / G* Anmerkung 2,48 2,59 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,78 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,73 2,79 2,73 2,2,88 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,30 2,38
 | 2,17
<u>k.zyl</u> / G* _{intk.hyp}
2,48
2,53
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,79
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,79
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,79
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,78
2,79
2,78
2,79
2,79
2,78
2,78
2,79
2 | 2,46
2,17
2,17
Anmerkung
2,48
2,59
2,59
2,69
2,69
2,69
2,73
2,73
2,73
2,73
2,73
2,73
2,73
2,73 | 2,46
2,17
2,17
2,17
2,17
2,17
2,17
2,59
2,59
2,59
2,59
2,73
2,73
2,50
2,73
2,88
2,73
2,88
2,73
2,50
2,50
2,50
2,50
2,51
2,52
2,53
2,53 | 2,58
2,46
2,47
2,17
2,17
2,48
2,59
2,59
2,59
2,59
2,59
2,73
2,73
2,73
2,88
2,73
2,88
2,73
2,50
2,73
2,50
2,50
2,50
2,51
2,52
2,53
| 2,52
2,58
2,46
2,46
2,17
2,17
2,17
2,48
2,59
2,59
2,59
2,59
2,69
2,69
2,69
2,73
2,73
2,88
2,73
2,88
2,73
2,88
2,73
2,50
2,50
2,50
2,50
2,51
2,52
2,53 | 2,40
2,52
2,58
2,46
2,46
2,46
2,47
2,59
2,59
2,59
2,73
2,73
2,73
2,73
2,73
2,73
2,73
2,73 | 2,44
2,52
2,52
2,52
2,46
2,46
2,46
2,47
2,59
2,59
2,59
2,59
2,73
2,73
2,73
2,73
2,73
2,73
2,73
2,73
 | 2,00
2,11
2,28
2,46
2,46
2,46
2,46
2,47
2,59
2,59
2,59
2,59
2,69
2,69
2,69
2,69
2,69
2,69
2,73
2,88
2,73
2,88
2,73
2,50
2,50
2,50
2,50
2,50
2,50
2,50
2,50 | 2,66
2,11
2,28
2,40
2,52
2,46
2,46
2,46
2,47
2,59
2,59
2,59
2,59
2,69
2,69
2,73
2,48
2,73
2,48
2,73
2,48
2,73
2,50
2,50
2,50
2,50
2,50
2,50
2,50
2,50 | 2,66
2,11
2,28
2,28
2,52
2,52
2,53
2,46
2,46
2,46
2,46
2,48
2,59
2,59
2,59
2,59
2,59
2,59
2,59
2,59 | Exyl / G* ^{init, hyp} Anmerkunge 2,66 2,11 2,240 2,240 2,240 2,246 2,46 2,47 2,47 2,245 2,48 2,48 2,53 2,53 2,53 2,53 2,53 2,53 2,73 2,53 2,73 2,58 2,73 2,53 2,88 2,88 2,73 2,53 2,73 2,58 2,73 2,59 2,73 2,53 2,73 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,50 2,53 2,50 2,53 2,50 2,53 2,50 2,53 2,50 2,50 | Layl / G* Init.hyp Anmerkunge 2,66 2,11 2,28 2,46 2,46 2,12 2,46 2,46 2,46 2,46 2,46 2,46 2,46 2,46 2,46 2,46 2,47 2,53 2,59 2,53 2,79 2,69 2,79 2,50 2,73 2,50 2,73 2,53 2,73 2,53 2,73 2,53 2,73 2,53 2,73 2,53 2,73 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53 2,53
 |

Anhang G: Auswertung spannungsgesteuerter Time-Sweep-Prüfungen an zylindrischen Probekörpern

gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	iginal version of this thesis is available in print at TU Wien Bibliothek.
Die approbierte	The approved o
Sibliothek	Your knowledge hub

1200kPa_3 1200	1200kPa 2 1200	1200kPa_1 1200	1000kPa_3 1000	1000kPa_2 1000	1000kPa_1 1000	700kPa_3 700	700kPa_2 700	700kPa_1 700	kPa	Lasisiale	l aststufe		1200kPa_5 1200	1200kPa_3 1200	1200kPa_1 1200	1000kPa_3 1000	1000kPa_2 1000	1000kPa_1 1000	700kPa_3 700	700kPa_2 700	700kPa_1 700	kPa	Laststufe		1200kPa_3 1200	1200kPa_2 1200	1200kPa_1 1200	1000kPa_3 1000	1000kPa_2 1000	1000kPa_1 1000	700kPa_3 700	700kPa_2 700	700kPa_1 700	kPa	Laststufe	-		
191539416	189967432	184245192	208478110	196005361	197344159	206455091	197492696	204521211	kPa		G(100%)		221867955	192842796	213288613	210423748	212981719	204792008	236112681	226374110	217989681	kPa	G(100%)		185350933	189047604	185883625	212924398	200215430	222723710	204103904	200016831	225294767		G(100%)	-	En	
39,367	39,361	39,463	37,736	38,97	38,674	36,55	37,436	37,361	o	othic	S(init)		36,269	37,297	36,496	35,836	35,711	36,92	34,06	34,014	34, 701	0	δ(init)		37,797	37,606	37,459	36,575	37,103	36,373	35, 153	35, 785	34,816		δ(init)	_	müdungski	
56,957	53,903	55,562	49,83	50,684	50, 567	45, 384	46,012	46, 677	o	OIIIax	Amay	/ersuche MX	49,622	53,357	54,718	48,519	47,976	48,005	49,304	42,438	43, 754	•	бтах	/ersuche MX	54, 558	54, 145	52, 184	54, 169	64,876	56, 764	54,274	47,701	43, 274		δmax	/ersuche MX	<u>riterium:</u> Er	
3213853	2016216	815926	1038657	17084555	33143150	39852464	33032526	33134852	kPa	oloniov)	G(δmax)	0038	39832777	9157232	711253	27196915	40915611	36531163	736465	37994249	37133880	kPa	G(δmax)	0039	2166,965	8668,412	859,929	1100,975	996, 665	2454,491	595, 259	8733,059	38364,628		G(δmax)	0037	reichen vor	
2160	2310	1750	6040	5040	4420	27050	20210	22010	sec	r(oilliay)	t/Amav)		3200	1650	3150	4210	4160	4080	41440	35760	28590	sec	t(δmax)		1060	1260	1120	3520	3170	4690	15010	12720	25950	[s]	t(δmax)	-	۱ δ _{max}	
64800	69300	52500	181200	151200	132600	811500	606300	660300	צו		N fiir G(Amax)		96000	49500	94500	126300	124800	122400	1243200	1072800	857700	SI	N für G(δmax)		31800	37800	33600	105600	95100	140700	450300	381600	778500	צו	N für G(δmax)	-		
											Δnmerkiingen												Anmerkungen												Anmerkungen			

	;						
	59700	1990	122250693	154.9419953	4051494.734	1200	1200kPa 3
	63600	2120	121354859	164, 6615023	4348112,977	1200	1200kPa 2
	46800	1560	118978591	121,6003888	3267505,404	1200	1200kPa_1
	165900	5530	140819657	442,7113915	6639871,25	1000	1000kPa_3
	140100	4670	128160199	370,4429623	6287064,541	1000	1000kPa_2
	119700	3990	129585068	316,0176973	5257411,88	1000	1000kPa_1
	768300	25610	145031257	2052, 334332	13842755,11	700	700kPa_3
	554100	18470	136355970	1476,807617	10758758,03	700	700kPa_2
	609600	20320	139901837	1620, 5365 29	11587799,1	700	700kPa_1
	[LS]	[sec]	[kPa]	[-]	[1]	[%]	
Anmerkungen	N _{p20}	t(N _{p20})	G(N _{p20})	DER	ΣWi	Laststufe	Bezeichnung
			MX0038	Versuche			
	87000	2900	143844626	227,5116191	4777273,336	1200	1200kPa_5
	45300	1510	121968467	115,6697145	2942776,853	1200	1200kPa_3
	87300	2910	137294180	228, 1239583	5046793,01	1200	1200kPa_1
	117300	3910	144174025	311, 2212832	4405890,305	1000	1000kPa_3
	114900	3830	146114639	304,652313	4244562,895	1000	1000kPa_2
	111000	3700	134983061	292, 1515305	4519495,947	1000	1000kPa_1
	1185900	39530	163987202	3141,89429	17742186,43	700	700kPa_3
	1003200	33440	159898216	2685,727963	15514500,42	700	700kPa_2
	797100	26570	151689820	2121, 648077	13193350,1	700	700kPa_1
	[LS]	[sec]	[kPa]	[-]	[J]	[%]	
(1	-		-		.(
Anmerkungen	N 020	t(N _{p20})	G(N _{p20})	DER	ΣWi	Laststufe	Bezeichnung
			MX0039	Versuche			
	27900	930	115835713	71,41510473	1906195,407	1200	1200kPa_3
	33300	1110	117464051	85,17239842	2233060,834	1200	1200kPa_2
	27300	910	116791749	70,32554156	1842661,61	1200	1200kPa_1
	94800	3160	138783074	248,6511616	3680484,507	1000	1000kPa_3
	85500	2850	129920761	223,2729908	3578009,141	1000	1000kPa_2
	127500	4250	147191853	337,409107	4683305,613	1000	1000kPa_1
	403200	13440	143082616	1077, 170653	7080463,944	700	700kPa_3
	339600	11320	140420998	905, 5329747	6161423,71	700	700kPa_2
	717900	23930	159505794	1940, 552848	11361469,81	700	700kPa_1
	[LS]	[sec]	[kPa]	[-]	[J]	[%]	
	-	1	-				
Anmerkungen	N p20	t(N _{p20})	G(N _{p20})	DER	ΣWi	Laststufe	Bezeichnung
			MX0037	Versuche			
	s (DER)	ieverhältni	itives Energ	<u>um:</u> Dissipa	<u>dungskriteri</u>	Ermü	

500kPa_3	500kPa_2	500kPa_1	400kPa_3	400kPa_2	400kPa_1	300kPa_3	300kPa_2	300kPa_1					500kPa_3	500kPa_2	500kPa_1	400kPa_3	400kPa_2	400kPa_1	300kPa_3	300kPa_2	300kPa_1					500kPa_3	500kPa_2	500kPa_1	400kPa_3	400kPa_2	400kPa_1	300kPa_3	300kPa_2	300kPa_1						
500	500	500	400	400	400	300	300	300	kPa		Laststufe		500	500	500	400	400	400	300	300	300	kPa		Laststufe		500	500	500	400	400	400	300	300	300	kPa		Laststufe			
73960286	76298028	72949478	79155794	80522428	78745351	82637523	82836337	80821247	[kPa]		G* _{init}		77115233	75033868	78169091	78264294	76454894	82604049	93199755	87238998	87755326	[kPa]		G* _{init}		85311084	76911972	75531212	82449327	79575955	92621837	89713382	94830132	84697986	[kPa]		G* init			
36980143	38149014	36474739	39577897	40261214	39372675,5	41318761,5	41418168,5	40410623,5	[kPa]	berechnet	G*(50%)		38557616,5	37516934	39084545,5	39132147	38227447	41302024,5	46599877,5	43619499	43877663	[kPa]	berechnet	G*(50%)		42655542	38455986	37765606	41224663,5	39787977,5	46310918,5	44856691	47415066	42348993	[kPa]	berechnet	G*(50%)		irmüdung	
38009181	40084267	37834534	39713671	40722665	39536939	41460718	41513387	40622399	[kPa]		G*(50%)	Ve	39594514	39759919	40089594	39691870	38583999	41329102	46737327	43870302	43903506	[kPa]		G*(50%)	Ve	44011271	39185805	38079240	41581124	40436301	47504309	44895124	47496929	42675920	[kPa]		G*(50%)	Ve	skriteriu	
1050	1230	860	3350	4000	3300	8370	15710	10820	[sec]	intere Schrar	t	ersuche N	1430	1410	910	4560	3180	3300	15500	13860	14210	[sec]	intere Schrar	Ŧ	rsuche N	1020	770	640	2770	2840	3270	12760	11750	11760	[sec]	intere Schrar	t	rsuche N	<u>m:</u> Erreio	
31500	36900	25800	100500	120000	00066	251100	471300	324600	[LS]	ike	N für G*(50%)	lastix MX00	42900	42300	27300	136800	95400	00066	465000	415800	426300	[LS]	ike	N für G*(50%)	lastix MXOC	30600	23100	19200	83100	85200	98100	382800	352500	352800	[LS]	ike	N für G*(50%)	lastix MX00	chen von (
36541210	37829216	36033220	38757945	39489732	38674052	41291078	41264708	40255953	[kPa]	0	G*(50%)	38	36864924	37364399	37097564	39041010	38009247	40354352	46339242	43496620	43628534	[kPa]	0	G*(50%)	39	42002792	36667944	35936794	40509100	39596509	46154952	44596198	47752483	42200239	[kPa]	0	G*(50%)	37	3*(50%) = (
1060	1240	870	3360	4010	3310	8380	15720	10830	[sec]	bere Schrank	4		1440	1420	920	4570	3190	3310	15510	13870	14220	[sec]	bere Schrank	+		1030	780	650	2780	2850	3280	12770	11760	11770	[sec]	bere Schrank	+		0,5 · G* _{ini}	
31800	37200	26100	100800	120300	99300	251400	471600	324900	[كا]		N für G*(50%)		43200	42600	27600	137100	95700	99300	465300	416100	426600	[21]	_ (0	N für G*(50%)		30900	23400	19500	83400	85500	98400	383100	352800	353100	[21]		N für G*(50%)		-	
31710	37157	26026	100543	120112	99057	251351	471415	324773	[LS]	interpoliert	N für G(50%)		43014	42581	27401	137058	95586	80066	465104	416001	426328	[LS]	interpoliert	N für G(50%)		30803	23187	19244	83200	85432	98365	382839	352404	353006	[LS]	interpoliert	N für G(50%)			
											Anmerkungen													Anmerkungen													Anmerkungen			

Anhang Probekörpern

hyperbolischen

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN vourknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

13. Anhang

bierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	wed original version of this thesis is available in print at TU Wien Bibliothek.
Die approbier	The approvec
Sibliothek	'our knowledge hub

500kPa_3 500 7	500kPa_2 500 7	500kPa_1 500 7	400kPa_3 400 7	400kPa_2 400 8	400kPa_1 400 7	300kPa_3 300 8	300kPa_2 300 8	300kPa_1 300 8	kPa	Laststute	-		500kPa_2 500	500kPa_1 500 7	400kPa_3 400 7	400kPa_2 400 7	400kPa_1 400 8	300kPa_3 300 9	300kPa_2 300 8	300kPa_1 300 8	kPa	Laststufe		500kPa_3 500 8	500kPa_2 500 7	500kPa_1 500 7	400kPa_3 400 8	400kPa_2 400 7	400kPa_1 400 9	300kPa_3 300 8	300kPa_2 300 9	300kPa_1 300 8	kPa	Laststufe	-		
73960286	76298028	72949478	79155794	30522428	78745351	32637523	32836337	30821247	kPa	G(100%)		//115233	/5033868	78169091	78264294	76454894	32604049	93199755	37238998	37755326	kPa	G(100%)		35311084	76911972	75531212	32449327	79575955	92621837	39713382	94830132	34697986	kPa	G(100%)	-	E	En
<u>39,072</u>	39,115	39,139	37,298	37,848	37,734	36,189	36,496	36,368	°	δ(init)	<	36,697	37,044	37,106	35,447	35,509	35,597	33,58	34,62	34,396	o	δ(init)	V	37,037	37,411	38,403	35,872	36,008	35,548	34,738	34,677	35,011	۰	δ(init)	<		THUUTESKI
49,989	52,795	50,243	47,89	49,178	49,353	43,82	46,112	44,307	•	δmax	ersuche MXC	48,976	52,502	48,076	46,262	45,246	46,801	42,034	44,173	43,51	•	δmax	ersuche MXC	48,163	50,959	47,873	45,997	45,674	45,282	43,234	42,773	44,669	o	δmax	ersuche MXC		
16729742	2368379	12146408	11257111	12609729	14012447	14066591	15185425	14637322	kPa	(omax)	038	1/452122	8219429	23245194	8651875	11811490	7197402	1726559	13558596	13696949	kPa	G(δmax))039	20941956	10633215	25221547	13156315	19296938	19529765	15647383	14908505	9433809	kPa	G(δmax))037		
1110	1300	930	3490	4120	3450	0688	16030	11190	sec	t(ðmax)		1480	14/0	950	4720	3330	3430	15880	14220	14560	sec	t(δmax)		1070	820	670	2880	2960	3390	13070	12130	12100	sec	t(δmax)		Cmax	0
33300	39000	27900	104700	123600	103500	266700	480900	335700	LS	N für G(δmax)		44400	44100	28500	141600	00666	102900	476400	426600	436800	SI	N für G(δmax)		32100	24600	20100	86400	88800	101700	392100	363900	363000	LS	N für G(δmax)			
										Anmerkungen												Anmerkungen												Anmerkungen			

obierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	roved original version of this thesis is available in print at TU Wien Bibliothek.
Die approb	The approv
3iblioth	our knowledge hub

500kPa_3	500kPa_2	500kPa_1	400k Pa_3	400k Pa_2	400kPa_1	300kPa_3	300kPa_2	300kPa_1		Bezeichnung		500k Pa_3	500k Pa_2	500kPa_1	400kPa_3	400kPa_2	400kPa_1	300kPa_3	300kPa_2	300kPa_1		Bezeichnung			500kPa_3	500kPa_2	500kPa_1	400k Pa_3	400kPa_2	400kPa_1	300k Pa_3	300kPa_2	300kPa_1		Bereichnigh	Rezeichnung			
500	500	500	400	400	400	300	300	300	[%]	Laststufe		500	500	500	400	400	400	300	300	300	[%]	Laststure	I potet i fo		500	500	500	400	400	400	300	300	300	[%]		laststiife		<u>ا</u> ت	
878618,0541	1076478,859	735394,8536	1617404,31	1978370,19	1628428,244	1894208,689	3966434,932	2619528,922	5	ΣWi		1170250, 251	1220074,338	703223,5518	2145254, 322	1527964, 346	1466882,851	3038577,893	3044194, 245	3117370,827	[J]	2 Wi	2141		747370,9466	595622,5708	538752,9254	1230196,062	1306526,753	1330198,469	2759354,461	2362287,212	2657579,17	[J]		ΣW.		r <mark>müdungsk</mark> ı	
73,87317239	89,61670163	59,7873252	243,2068655	297,3314487	237,0921151	565,8557214	1183,063971	795,3140273	[-]	DER	Versuch	104,7732518	103,847518	64, 33893294	333,8569135	228,7347531	240,7638569	1137,349012	1032,68691	1060,782293	[-]	DEK	73	Versuch	73, 58689123	53,82833023	45, 13787912	200,1395735	205,1213964	240,5614387	952,3054982	861,6403973	878,0155583	[-]		DFR	Versuch	<u>riterium:</u> Di	
46322278	46433297	44880738	50590903	51132752	49605310	53619214	54320837	54556716	[kPa]	G(N _{p20})	ne MX0038	47804164	45948406	48927905	50661302	48774129	53429960	63500953	58977830	59000048	[kPa]	G(N _{p20})		ne MX0039	52089493	48102906	45645805	52551853	50928954	58208025	59593557	62985108	57207216	[kPa]		G(N)	1e MX0037	ssipatives E	
950	1170	780	3120	3790	3040	7110	14880	9970	[sec]	t(N _{p20})		1360	1350	840	4250	2930	3080	14290	12910	13270	[sec]	T(N _{p20})	+/NI 1		960	690	590	2560	2630	3090	11940	10830	10970	[sec]	107d a 10	t/ N)		nergieverhä	
28500	35100	23400	93600	113700	91200	213300	446400	299100	[LS]	N _{p20}		40800	40500	25200	127500	87900	92400	428700	387300	398100	[LS]	N p20	2		28800	20700	17700	76800	78900	92700	358200	324900	329100	[LS]	07d A i	N		áltnis	
										Anmerkungen												Anmerkungen	A 5 50 5													Anmerkiingen			

te gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek ve d original version of this thesis is available in print at TU Wien Bibliothek.
Die approbier The approved
Bibliothek

1 በ% 3	1,0% 2	1,0%_1	0,75%_3	0,75%_2	0,75%_1	0,5%_6	0,5%_5	0,5%_4			Bezeichnung		1,0%_3	1,0%_2	1,0%_1	0,75%_3	0,75%_2	0,75%_1	0,5%_3	0,5%_2	0,5%_1			Bezeichnung		1,0%_3	1,0%_2	1,0% 1	0,75%_3	0,75%_2	0,75%_1	0,5%_4	0,5% 3	0,5%_2	0,5% 1			Bezeichnung		
1,0	1,0	1,0	0,75	0,75	0,75	0,5	0,5	0,5	[%]		Dehnungsniveau		1,0	1,0	1,0	0,75	0,75	0,75	0,5	0,5	0,5	[%]		Dehnungsniveau		1,0	1,0	1,0	0,75	0,75	0,75	0,5	0,5	0,5	0,5	[%]	,	Dehnungsniveau		
166158850	170932820	176569700	177306992	189729368	185133902	203492536	193752984	193945008	[Pa]		G*init		175269546	181871626	173052354	176563430	194422187	187984998	200448208	198868575	196032256	[Pa]		G*int		167843092	177034475	168863096	176462899	186926144	189171618	196598180	192121414	188732312	213487201	[Pa]		G* _{int}		
83079425	85466410	88284850	88653496	94864684	92566951	101746268	96876492	96972504	[kPa]	berechnet	G*(50%)		87634773	90935813	86526177	88281715	97211093,5	93992499	100224104	99434287,5	98016128	[kPa]	berechnet	G*(50%)		83921546	88517237,5	84431548	88231449,5	93463072	94585809	98299090	96060707	94366156	106743601	[kPa]	berechnet	G*(50%)		
85001064	86904942	89926158	89232983	95520319	92725529	102024151	96929605	97073906	[Pa]		G*(50%)		87942035	91213847	87856444	88950776	97637303	94735382	100431650	99486997	98151284	[Pa]		G*(50%)		84420719	86696307	85327092	88481181	93536204	8556133	98479652	96115145	94562568	107062242	[Pa]		G*(50%)		
1090	1110	1080	2960	2760	3050	12870	13440	12600	[sec]	untere Schra	t	Ver	920	810	980	2380	2700	2470	11190	10530	10510	[sec]	untere Schra	t	Ver	760	650	690	1960	1900	1760	9140	8770	9700	7240	[sec]	untere Schra	t	Ver	
32700	33300	32400	88800	82800	91500	386100	403200	378000	[یا]	nke	N für G*(50%)	suche Mastix	27600	24300	29400	71400	81000	74100	335700	315900	315300	[كا]	nke	N für G*(50%)	suche Mastix	22800	19500	20700	58800	57000	52800	274200	263100	291000	217200	[21]	nke	N für G*(50%)	suche Mastix	
83068112	85072963	87830696	88460584	94517187	92074223	101736083	96719326	96880046	[Pa]		G*(50%)	(MX0038	85810081	89085555	85481365	88120280	96814298	93779780	100177127	99277707	97908473	[Pa]		G*(50%)	(MX0039	82199754	84557546	83231542	87538055	92767514	94480394	98223971	95847981	94331731	106661494	[Pa]		G*(50%)	(MX0037	
1100	1120	1090	2970	2770	3060	12880	13450	12610	[sec]	obere Schra	t		930	820	066	2390	2710	2480	11200	10540	10520	[sec]	obere Schra	Ŧ		770	660	700	1970	1910	1770	9150	8780	9710	7250	[sec]	obere Schra	t		
33000	33600	32700	891.00	83100	91800	386400	403500	378300	[یا]	nke	N für G*(50%)		27900	24600	29700	71700	81300	74400	336000	316200	315600	[كا]	nke	N für G*(50%)		23100	19800	21000	59100	57300	53100	274500	263400	291300	217500	[21]	nke	N für G*(50%)		
32998	33536	32635	89025	82996	91573	386389	403276	378157	[21]	interpoliert	N für G(50%)		27643	24339	29568	71642	81155	74333	335945	315976	315467	[LS]	interpoliert	N für G(50%)		22867	19245	20828	58879	57029	53100	274412	263161	291255	217439	[S1]	interpoliert	N für G(50%)		
2,53	2,53	2,63	2,42	2,60	2,58	2,59	2,48	2,43			G [*] init,zyl / G [*] init, hyp		2,42	2,49	2,37	2,30	2,53	2,44	2,41	2,30	2,33			G [*] init, zy1 / G [*] init, hyp		2,26	2,52	2,47	2,19	2,41	2,63		2,14	2,38	2,35			G*init.zvI / G*init.hvp		
											Anmerkungen													Anmerkungen														Anmerkungen		

Anhang I: Auswertung verschiebungsgesteuerter Time-Sweep-Prüfungen an zylindrischen

e approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. As anneved anvinal version of this thesis is available in arint at TU Mian Bibliothek	
10 3ibliothek,	WIEN Your knowledge hub

	28800	960	107978396	44.908	43.247	166158850	1.0	1.0% 3
	25500	850	125077416	45,265	42,773	170932820	1,0	1,0% 2
	27000	900	121662794	45,385	42,822	176569700	1,0	1,0%1
	80400	2680	112318075	42,709	42,691	177306992	0,75	0,75%_3
	50100	1670	151306967	43,515	41, 17	189729368	0,75	0,75%_2
	53400	1780	146834620	43,455	41,176	185133902	0,75	0,75%_1
	250200	8340	170535920	39,804	37,723	203492536	0,5	0,5%_6
	142500	4750	164783903	40,43	38,489	193752984	0,5	0,5%_5
	127800	4260	166374486	40,336	38,479	193945008	0,5	0,5%_4
	[LS]	[sec]	[kPa]	[°]	[°]	[kPa]	[%]	
				bei Erreichenvon 10% Schubmoduls				
Anmerkungen	N für δ _{max}	t(δ _{max})	G(δ _{max})	δ _{max}	δ _{init}	G*init	Dehnungsniveau	Bezeichnung
				suche Mastix MX0038	Vers			
	21600	720	123112200	43,248	40,564	175269546	1,0	1,0%_3
	19200	640	124716832	43,004	40,335	181871626	1,0	1,0%_2
	22800	760	122506256	43,118	40,463	173052354	1,0	1,0%_1
	50100	1670	133789915	40,726	38,239	176563430	0,75	0,75%_3
	65700	2190	131452006	40,766	38,107	194422187	0,75	0,75%_2
	55500	1850	140839242	41,89	39,241	187984998	0,75	0,75%_1
	288600	9620	136287825	37,836	35,638	200448208	0,5	0,5%_3
	123900	4130	168856233	38,838	36,822	198868575	0,5	0,5%_2
	138000	4600	164877,956	38,662	36,647	196032256	0,5	0,5%_1
	[LS]	[sec]	[kPa]	[°]	[°]	[kPa]	[%]	
				bei Erreichenvon 10% Schubmoduls				
Anmerkungen	N für δ _{max}	t(δ _{max})	G(δ _{max})	δ _{max}	δ _{init}	G*init	Dehnungsniveau	Bezeichnung
				suche Mastix MX0039	Vers			
	23100	770	82199,754	42,895	40,725	167843092	1,0	1,0%_3
	17400	580	101384,179	42,729	40,545	177034475	1,0	1,0%_2
	18900	630	98255,518	42,379	40,471	168863096	1,0	1,0%1
	59700	1990	85652,142	41,122	36,266	176462899	0,75	0,75%_3
	35400	1180	140559,644	41,378	39,305	186926144	0,75	0,75%_2
	41400	1380	130218,557	41,464	39,456	189171618	0,75	0,75%_1
	75000	2500		38,592	37,017	196598180	0,5	0,5%_4
	266400	0888	93160,128	37,496	35,755	192121414	0,5	0,5% 3
	100200	3340	160679,079	38,137	36,588	188732312	0,5	0,5%_2
	216900	7230	107468,713	37,915	35,867	213487201	0,5	0,5%_1
	[LS]	[sec]	[kPa]	[°]	[°]	[kPa]	[%]	
				bei Erreichenvon 10% Schubmoduls				
Anmerkungen	N für δ _{max}	t(δ _{max})	G(δ _{max})	δ _{max}	δ _{init}	G* _{init}	Dehnungsniveau	Bezeichnung
				suche Mastix MX0037	Vers			
			nδ _{max}	riterium: Erreichen vo	Ermüdungsk			

te gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	d original version of this thesis is available in print at TU Wien Bibliothek.
Die approbierte g	The approved ori
Bibliothek	Your knowledge hub

						-1-	
	0000	1000	101486210	137.8085975	9019009.039	1.0	1.0% 3
	00605	1030	101028869	137,7681702	3134769,966	1,0	1,0% 2
	30300	1010	103736350	135,5361878	3174830,157	1,0	1,0%_1
	78600	2620	117262937	339, 3442543	4817659,164	0,75	0,75%_3
	76200	2540	116119410	334, 3934228	4719867,277	0,75	0,75%_2
	81600	2720	113326960	356, 6860777	4895418,67	0,75	0,75%_1
	347400	11580	134367500	1494,656491	10185931,7	0,5	0,5%_6
	364800	12160	123751917	1578,940573	9931748,173	0,5	0,5%_5
	337200	11240	124181969	1464,48863	9215883,106	0,5	0,5%_4
	[21]	[sec]	[kPa]	[-]	[L]	[%]	
Anmerkungen	N _{p20}	t(N _{p20})	G(N _{p20})	DER	ΣWi	Dehnungsniveau	Bezeichnung
			MX0038	rsuche Mastix	Ve		
	M8c7	708	100843205	110,1202931	2044009,234	1,U	1,U%_3
	22500	750	103720167	102,1975376	2291941,083	1,0	1,0%_2
	27900	930	98832498	125,9804818	2697618,305	1,0	1,0%_1
	64800	2160	107291040	284, 5945542	3552953,815	0,75	0,75%_3
	00857	2460	115800031	324,0379965	43/1181,082	0,75	0,75%_2
	68400	2280	113653854	300,7921944	4026396,117	0,75	0,75%_1
	302400	ORANT	96T77077T	1309,7169	8098414,315	U,0	0,5%_3
		10000	12020106	1209,07760	0000414 015	0,0	U,5%_2
	000202	0000	000001421	1000 077005	7520400 200		0,570_1
				1000 185727			U K% 1
	[16]	[cor]	[604]		[1]	[%]	
Anmerkungen	N _{p20}	t(N _{p20})	G(N _{p20})	DER	ΣWi	Dehnungsniveau	Bezeichnung
			MX0039	rsuche Mastix	Ve		
	13800	460	124582822	50,487	1353943,705	1,0	1,0%_3
	13500	450	124416404	51,446	1376754,544	1,0	1,0%_2
	20100	670	89662211	95,436	1829598,689	1,0	1,0%_1
	54000	1800	103306606	240,461	2890637,382	0,75	0,75%_3
	51000	1700	109754370	226,445	2891109,547	0,75	0,75%_2
	49200	1640	108454569	222,347	2818729,423	0,75	0,75%_1
	0					0,5	0,5%_3
	216000	7200	131131982	871,542	5509083,370	0,5	6_%20
	261900	8730	115909987	1163,941	6522567,346	0,5	0,5%_2
	194100	6470	136327144	828,054	5489707,914	0,5	0,5%_1
	[21]	[sec]	[kPa]	[-]	[J]	[%]	
Anmerkungen	N _{p20}	t(N _{p20})	G(N _{p20})	DER	ΣWi	Dehnungsniveau	Bezeichnung
			MX0037	rsuche Mastix	Ve		
		rhältnis (DEF	es Energieve	<u>n:</u> Dissipative	Ingskriteriun	Ermüdu	
			ı		-	1	

	-										
Bezeichnung	Dehnungsniveau	G*init	G*(50%)	G*(50%)	t	N für G*(50%)	G*(50%)	t	N für G*(50%)	N für G(50%)	Anmerkungen
			berechnet		untere Schra	nke		obere Schra	nke	interpoliert	
	[%]	[Pa]	[kPa]	[Pa]	[sec]	[LS]	[Pa]	[sec]	[LS]	[LS]	
0,5%_3	0,5	90829805	45414902,5	45494886	6090	182700	45373002	6100	183000	182897	
0,5%_5	0,5	79435484 89867678	39/1//42	39/51412	6100	183000	39695528 44836660	6110	183300	269881 183044	
0.75% 1	0.75	71864370	35932185	35982923	2080	62400	35762948	2090	62700	62469	
0,75% 2	0,75	77714473	38857236,5	38877794	1690	50700	38630141	1700	51000	50725	
0,75%_4	0,75	80721025	40360512,5	40928063	1350	40500	40596352	1360	40800	41013	
1,0%_1	1,0	68339189	34169594,5	34953245	750	22500	34070618	760	22800	22766	
1,0%_2	1,0	70190724	35095362	35497849	710	21300	34703056	720	21600	21452	
1,0%_3	1,0	74373798	37186899	37945293	540	16200	36759304	550	16500	16392	
				Ve	rsuche M	astix MX003	9				
Bezeichnung	Dehnungsniveau	G* _{init}	G*(50%)	G*(50%)	t	N für G*(50%)	G*(50%)	t	N für G*(50%)	N für G(50%)	Anmerkungen
			berechnet		untere Schro	inke		obere Schra	nke	interpoliert	
	[%]	[Pa]	[kPa]	[Pa]	[sec]	[LS]	[Pa]	[sec]	[LS]	[LS]	
0,5%_1	0,5	84275255	42137627,5	42194079	7710	231300	42089750	7720	231600	231462	
0,5%_2	0,5	86588334	43294167	43319614	8520	255600	43222407	8530	255900	255679	
0,5%_3	0,5	83209163	41604581,5	41702772	7740	232200	41602619	7750	232500	232494	
0,75%_1	0,75	77067863	38533931,5	38578085	1600	48000	38315527	1610	48300	48050	
0,75%_2	0.75	81761/9/	38359009	38301027	01820	54600	1/1900005	1830	54900	54602	
1.0% 1	1.0	72949384	36474692	37414053	750	22500	36394388	760	22800	22776	
1,0%_2	1,0	73040349	36520174,5	37493752	620	18600	36490006	630	18900	18891	
1,0%_3	1,0	72295126	36147563	36673278	660	19800	35590446	670	20100	19946	
				Ve	rsuche M	astix MX003	8				
Bezeichnung	Dehnungsniveau	G* _{init}	G*(50%)	G*(50%)	t	N für G*(50%)	G*(50%)	t	N für G*(50%)	N für G(50%)	Anmerkungen
			berechnet		untere Schra	nke		obere Schra	nke	interpoliert	
	[%]	[Pa]	[kPa]	[Pa]	[sec]	[LS]	[Pa]	[sec]	[LS]	[LS]	
0,5%_1	0,5	79718502	39859251	39935769	9120	273600	39837141	9130	273900	273833	
0,5%_2	0,5	77989157	38994578,5	39072813	10810	324300	38992158	10820	324600	324591	
0,5%_3	0,5	78551150	39275575	39299956	8660	259800	39242004	8670	260100	259926	
0,75%_1	0,75	71707433	35853716,5	36040763	3260	97800	35780232	3270	98100	98015	
0,75%_2	0,75	73039920	36519960	36538744	2500	75000	36266578	2510	75300	75021	
0,75%_3	0,75	73386891	36693445,5	37007904	2920	87600	36731783	2930	87900	87942	
1,0%_1	1,0	67188087	33594043,5	34397451	770	23100	33589233	780	23400	23398	
1,0%_2	1,0	67460243	33730121,5	34415056	800	24000	33612160	810	24300	24256	
1 0% 3		65668144	37834072	32896207	TZD	23100	32302172	780	23400	23131	

Anhang J: Auswertung verschiebungsgesteuerter Time-Sweep-Prüfungen an hyperbolischen Probekörpern

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN vourknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

Ermüdungskriterium: Erreichen von $G^*(50\%) = 0, 5 \cdot G^*_{init}$

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar	The approved original version of this thesis is available in print at TU Wien Bibliothek.
TU Sibliothek	WIEN Your knowledge hub

			10000			000021	<u> </u>	
	11700	Uot	49483640	44 219	41.943	65668144	1.0	1.0% 3
	17700	590	48370224	43,987	41,594	67460243	1,0	1,0% 2
	15600	520	48878889	43,857	41,472	67188087	1,0	1,0%_1
	55500	1850	55421508	42,617	40,124	73386891	0,75	0,75%_3
	33900	1130	56261268	41,642	39,148	73039920	0,75	0,75%_2
	63300	2110	53059933	42,463	39,993	71707433	0,75	0,75%_1
	90300	3010	64866297	38,977	37,029	78551150	0,5	0,5%_3
	144900	4830	62991922	39, 757	37,855	77989157	0,5	0,5%_2
	136500	4550	64555107	39,008	36,985	79718502	0,5	0,5%_1
	[LS]	[sec]	[Pa]	[°]	[°]	[Pa]	[%]	
Anmerkungen	N für δ _{max}	t(δ _{max})	G(δ _{max})	δ _{max}	δ _{init}	G* _{init}	Dehnungsniveau	Bezeichnung
			X0038	che Mastix M.	Versu			
	15900	530	49148198	41, 701	38,857	72295126	1,0	1,0% 3
	15900	530	45679076	41,087	38,305	73040349	1,0	1,0%_2
	17100	570	52374880	42,33	39,714	72949384	1,0	1,0%_1
	55500	1850	49992490	39,408	36,449	76748762	0,75	0,75%_3
	33900	1130	55594962	39,309	36,672	76719218	0,75	0,75%_2
	25800	860	56738177	39,895	37,493	77067863	0,75	0,75%_1
	171600	5720	59060107	36,85	34,541	83209163	0,5	0,5%_3
	139500	4650	67225955	36, 393	34,064	86588334	0,5	0,5%_2
	193500	6450	54190371	36, 783	34,547	84275255	0,5	0,5%_1
	[LS]	[sec]	[Pa]	[°]	[°]	[Pa]	[%]	
Anmerkungen	N für δ _{max}	t(δ _{max})	G(δ _{max})	δ _{max}	δ _{init}	G* _{init}	Dehnungsniveau	Bezeichnung
			X0039	che Mastix M	Versu			
	12600	420	49711598	42,317	40,229	74373798	1,0	1,0%_3
	14700	490	48882469	41,392	39,249	70190724	1,0	1,0%_2
	17100	570	46759624	41,491	39,362	68339189	1,0	1,0%_1
	21600	720	58896677	38,778	36,831	80721025	0,75	0,75%_4
	33300	1110	53360784	38,787	36,613	77714473	0,75	0,75%_2
	38700	1290	52663782	39, 565	37,421	71864370	0,75	0,75%_1
	76800	2560	71428961	37,27	35,356	89867678	0,5	0,5%_6
	109500	3650	64464310	36, 563	34,906	79435484	0,5	0,5%_5
	136800	4560	61705611	36,366	34,559	90829805	0,5	0,5%_3
	[LS]	[sec]	[Pa]	[°]	[°]	[Pa]	[%]	
Chillingthan			U(Umax)	Cmax	Cinit	C int	Deliniungsnitveau	bezeiciiliulig
Apmorkupgop	N für S	+ 18 1		Я	Å	*	Dehningenivesi	Bezeichnung
			X0037	che Mastix M	Versu			
		nax	ichen von δ _n	<u>terium:</u> Erre	<u>rmüdungskri</u>	ļm		

				,	,		
	21000	700	36990064	94.71695984	770993.2948	1.0	1.0% 3
	22200	740	39400243	98,95315843	858115,1393	1,0	1,0% 2
	21600	720	38331211	97,82918865	821857,2259	1,0	1,0%_1
	79800	2660	43927830	348, 8378	1825843,711	0,75	0,75%_3
	68400	2280	42103180	302,77953	1506431,466	0,75	0,75%_2
	00606	3030	41764432	401,4654756	1992519,973	0,75	0,75%_1
	212700	7090	47577292	924, 3256492	2186678,644	0,5	0,5%_3
	288300	9610	48301075	1243,973793	3006480,921	0,5	0,5%_2
	239400	7980	49797980	1032,219462	2559905,362	0,5	0,5%_1
	[LS]	[sec]	[kPa]	Ŀ	[1]	[%]	
Anmerkungen	^{IN} p20	L(IN _{p20})	G(N _{p20})		2 VV j	Denhungsniveau	Bezeichlung
Apporkingon	2	+/NI \		76	2101	Dohamaraiyoou	Bozoichpung
			stix MX0038	Versuche Ma			
	18600	620	41000723	84,52609111	730233,4289	1,0	1,0%_3
	17700	590	40499768	80,29399585	677553,9776	1,0	1,0%_2
	21000	700	42426804	93,63733861	838210,2547	1,0	1,0%_1
	59100	1970	45843916	259,7087292	1348789,212	0,75	0,75%_3
	47400	1580	45106635	208, 1971372	1059136,615	0,75	0,75%_2
	41100	1370	44597821	180,9509259	911882,0146	0,75	0,75%_1
	199200	6640	51862078	859, 75 1 78 19	2119932,22	0,5	0,5%_3
	225000	7500	52478189	977, 8201171	2408386,051	0,5	0,5%_2
	200100	6670	52313453	864, 7498137	2148638,651	0,5	0,5%_1
	[LS]	[sec]	[kPa]	-	[J]	[%]	
Anmerkungen	N _{p20}	t(N _{p20})	G(N _{p20})	DER	ΣWi	Dehnungsniveau	Bezeichnung
			stix MX0039	Versuche Ma			
	15600	520	40357815	72,16060188	615146,2607	1,0	1,0%_3
	20100	670	38644335	91,62868007	732665,517	1,0	1,0%_2
	21300	710	38283875	96,32532478	765750,2128	1,0	1,0%_1
	37800	1260	43984263	171,6350572	840925,2599	0,75	0,75%_4
	44400	1480	44028002	195,0491726	957390,9906	0,75	0,75%_2
	55500	1850	41563963	246,3758974	1148163,381	0,75	0,75%_1
	162000	5400	53062529	711, 5876585	1809981,433	0,5	0,5%_6
	224400	7480	48524439	975, 71 70405	2225879,212	0,5	0,5%_5
	164400	5480	52815332	727, 8596885	1806226,454	0,5	0,5%_3
	[LS]	[sec]	[kPa]	-	[J]	[%]	
Anmerkungen	N _{p20}	t(N _{p20})	G(N _{p20})	DER	ΣWi	Dehnungsniveau	Bezeichnung
			stix MX0037	Versuche Ma			
	(DER)	everhältnis (tives Energie	<u>ium:</u> Dissipa	<u>üdungskrite</u>	Erm	

			(Verschie	bungsgesteuert,	zylindrischer Pro	bekörper)		
Printmention Definition for backdoper \int_{C}^{-2mm} h $-2mn$ Versuche Mask NUNO37 Versuche Mask NUNO37 Precedung Dehmingsnive Streigung Image: Company of the streigung Streigung Image: Company of the streigung Image: Company of th	Driiftemneratur:	10	ĥ					
Produktion-per De Sam, h : 2mm Versuche Maskix MX0037 Bezeichnung Dehnungsniveau Streijung a Gr., 1,30 Gr., 1,30 Gr., 1,30 Gr., 1,30 Gr., 1,30 Maskix MX0037 K B N Bezeichnung Dehnungsniveau Streijung Gr., 1,30 <	Prüffrequenz:	10	H ²					
Versuch MaxXXX0037 Bezeichnung Obhungsniveau Streigung a G^{a}_{m} G^{a}_{m} a B <	Probekörpergeometrie:	Zylindrischer Probekörpe	, D = 8mm, h = 2mm					
Bezeichnung Dehnungsmiteau Streigung I				Versuche M	astix MX0037			
	Bezeichnung	Dehnungsniveau	Streigung	α	G* _{init}	A	В	Nf
				_	bereu	chnet		
olg 2 2.5 0.568 1,782 3032.00<		[%]	-	[-]	[kPa]	-	-	[LS]
	cyl_2	2,5	0,568	1,762	149329909,3	87660	-3,523	3474
	cyl_3	2,5	0,513	1,949	140085868,1	50240	-3,897	1413
	cyl_4	2,5	0,576	1,736	130178175,1	13270	-3,473	551
	cyl_2	5	0,568	1,762	149329909,3	87660	-3,523	302
op(4 5 0.5% 1,76 13078 1.5 13270 13270 3,473 5,673 vertice vertice ve	cyl_3	б	0,513	1,949	140085868,1	50240	-3,897	95
Versuch VVOOS Bezeihnung Dehnungsniveau Streigung α G^*_{10} α G^*_{10} α G^*_{10} α $Bezeinturg Bezeinturg \alpha G^*_{10} Bezeinturg Be$	cyl_4	л	0,576	1,736	130178175,1	13270	-3,473	50
Bezeichnung Dehnungsnivead Streigung C_1 $(r_1^{\circ})_{n.}$ $(r_1^{$				Versuche M	astix MX0039			
opplane opplane (-1	Bezeichnung	Dehnungsniveau	Streigung	α	G*init	A	В	Nf
					bereu	chnet	-	-
(q,1) $(2,5)$ $(0,53)$ $(1,80)$ (1526860) (14570) $(-3,615)$ (530) (320) <td></td> <td>[%]</td> <td>-</td> <td>[-]</td> <td>[kPa]</td> <td>-</td> <td>[-]</td> <td>[LS]</td>		[%]	-	[-]	[kPa]	-	[-]	[LS]
	cyl_1	2,5	0,553	1,808	159628560	145700	-3,615	5305
q_13 $2,5$ $0,58$ $1,791$ $14832803,8$ 18950 $-3,82$ 7117 q_11 5 $0,530$ $1,308$ 19628601 149700 $3,615$ 433 $q_0'_12$ 5 $0,559$ $1,791$ 19628601 149700 $3,615$ 433 $q_0'_12$ 5 $0,559$ $1,791$ $148322803,8$ 18950 392 391 $q_0'_13$ 5 $0,559$ $1,791$ $148322803,8$ 18950 $3,562$ 391 $p_0'_13$ 5 $0,558$ $1,791$ $148322803,8$ 18950 $3,562$ 591 $p_0'_11$ Dehnungsniveau Streigung a a a a a b h	cyl_2	2,5	0,559	1,789	140321667,1	60610	-3,579	2282
$q_l 1$ 5 $0,53$ $1,80$ 159628560 14570 $3,615$ 433 $q_l 2$ 5 $0,553$ $1,79$ $14032166,1$ 60610 $3,579$ 191 $q_l 2$ 5 $0,558$ $1,79$ $14032166,1$ 60610 $3,579$ 191 $q_l 3$ $0,5$ $0,558$ $1,79$ $14832280,8$ 18950 $3,579$ 91 $q_l 3$ $0,5$ $0,558$ $1,79$ $14832280,8$ 18950 $3,572$ 91 $sechnung$ Dehnungsniveau Streigung α G^*_{int} A B N_i $sechnug$ Dehnungsniveau Streigung $(1-1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $q_i 1$ $2,5$ $0,594$ $1,692$ $14327358,7$ 93540 $-3,364$ 4288 $q_i 1$ $2,5$ $0,594$ $1,672$ $13334748,1$ 38240 $3,344$ 381	cyl_3	2,5	0,558	1,791	148322803,8	189500	-3,582	7117
	cyl_1	σ	0,553	1,808	159628560	145700	-3,615	433
opl_3 5 0,58 1,791 14832803,8 189500 -3,582 592 592 Versuche Mstix MX0038 Versuche Mstix MX0038 5900 -3,582 5900 -3,582 5900 -592 -592	cyl_2	л	0,559	1,789	140321667,1	60610	-3,579	191
Versuche Nattie National Versuche Nattie National Bezeichnung Dehnungsniveau Streigung α α^*_{nit} α^*_{nit} α α^*_{nit} α^*_{ni	cyl_3	5	0,558	1,791	148322803,8	189500	-3,582	594
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Versuche M	astix MX0038			
Image: box series $brechnet brechnet brechne brechnet brechnet $	Bezeichnung	Dehnungsniveau	Streigung	α	G*init	A	в	Nf
					bereu	chnet		-
c_{V1} $2,5$ $0,594$ $1,682$ $14327538,7$ 93540 $-3,364$ 4288 c_{V1} $2,5$ $0,596$ $1,679$ $135794797,4$ 10800 $-3,357$ 4982 c_{V1} $2,5$ $0,598$ $1,679$ $135794797,4$ 10800 $-3,344$ 3869 c_{V1} 5 $0,594$ $1,672$ $134344748,1$ 82840 $-3,344$ 3869 c_{V1} 5 $0,594$ $1,672$ $14327538,7$ 93540 $-3,364$ 416 c_{V1} 5 $0,596$ $1,679$ $135794797,4$ 10800 $-3,357$ 486 c_{V1} 5 $0,598$ $1,672$ $134344748,1$ 82840 $-3,344$ 381		[%]	-	-	[kPa]	-	[-]	[LS]
c_{V1} 32,50,5961,679135794797,410800-3,3574982 c_{V1} 52,50,5981,672134344748,182840-3,3443869 c_{V1} 150,5941,682134344748,193540-3,364416 c_{V1} 350,5961,679135794797,410800-3,357486 c_{V1} 350,5961,679135794797,410800-3,357486 c_{V1} 550,5981,672134344748,182840-3,344381	cyl_1	2,5	0,594	1,682	143275358,7	93540	-3,364	4288
cyl 5 2,5 0,598 1,672 134344748,1 82840 -3,344 3869 cyl 1 5 0,594 1,672 134344748,1 82840 -3,344 3869 cyl 3 5 0,594 1,682 143275358,7 93540 -3,364 416 cyl 3 5 0,596 1,679 135794797,4 10800 -3,357 486 cyl 5 0,598 1,672 134344748,1 82840 -3,344 381	cyl_3	2,5	0,596	1,679	135794797,4	10800	-3,357	4982
cyl_1 5 0,594 1,682 143275358,7 93540 -3,364 416 cyl_3 5 0,596 1,679 135794797,4 10800 -3,357 486 cyl_5 5 0,598 1,672 134344748,1 82840 -3,344 381	cyl_5	2,5	0,598	1,672	134344748,1	82840	-3,344	3869
cyl_3 5 0,596 1,679 135794797,4 10800 -3,357 486 cyl_5 5 0,598 1,672 134344748,1 82840 -3,344 381	cyl_1	л	0,594	1,682	143275358,7	93540	-3,364	416
cyl_5 5 0,598 1,672 134344748,1 82840 -3,344 381	cyl_3	л	0,596	1,679	135794797,4	10800	-3,357	486
	cyl_5	5	0,598	1,672	134344748,1	82840	-3,344	381

Anhang K: Auswertung LAS-Prüfungen an zylindrischen Probekörpern

rte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	d original version of this thesis is available in print at TU Wien Bibliothek.
Die approbierte	The approved o
Bibliothek	Your knowledge hub

		(Verschieb	Auswertung: ungsgesteuert, h	LAS-Prüfungen yperbolischer Pro	obekörper)		
Prüftemperatur:	10	°C					
Prüffrequenz:	10	Hz					
Probekörpergeometrie:	Hyperbolischer Probekörp	er, D0 = 6mm, h = 3mm					
			Versuche Ma	astix MX0037			
Bezeichnung	Dehnungsniveau	Streigung	α	G* _{init}	A	В	Nf
				bere	chnet		
	[%]	-	-	[Pa]	[-]	-	[LS]
hyp 1	2,5	0,553	1,807	56961701	17510	-3,615	638
hyp_2	2,5	0,542	1,844	57761578	19168	-3,688	653
hyp_3	2,5	0,546	1,831	51972626	13430	-3,662	469
hyp_1	ъ	0,553	1,807	56961701	17510	-3,615	52
hyp_2	л	0,542	1,844	57761578	19168	-3,688	51
hyp_3	5	0,546	1,831	51972626	13430	-3,662	37
			Versuche Ma	astix MIX0039			
Bezeichnung	Dehnungsniveau	Streigung	α	G* _{init}	A	В	Nf
				berev	chnet	-	
	[%]	[-]	[-]	[Pa]	-	[-]	[L2]
hyp_1	2,5	0,539	1,854	55362446	23290	-3,708	779
hyp_2	2,5	0,532	1,881	57790626	26623	-3,762	847
hyp_3	2,5	0,529	1,89	59460137	20880	-3,780	654
hyp_1	5	0,539	1,854	55362446	23290	-3,708	60
hyp_2	5	0,532	1,881	57790626	26623	-3,762	62
hyp_3	5	0,529	1,89	59460137	20880	-3,780	48
			Versuche Ma	astix MIX0038			
Bezeichnung	Dehnungsniveau	Streigung	α	G* _{init}	A	В	Nf
				berei	chnet		
	[%]	[-]	[-]	[kPa]	[-]	[-]	[LS]
hyp_1	2,5	0,571	1, 751	55374988	27064	-3,502	1093
hyp_2	2,5	0,571	1,753	54217148	20893	-3,506	841
hyp_3	2,5	0,574	1,743	53211480	24923	-3,486	1022
hyp_1	л	0,571	1,751	55374988	27064	-3,502	96
hyp_2	5	0,571	1,753	54217148	20893	-3,506	74
hvp 3	ы	0,574	1, 743	53211480	24923	-3,486	91

Anhang L: Auswertung LAS-Prüfungen an zylindrischen Probekörpern