B Informatics

Software Komponenten zur
Implementierung von Multimedia
Applikationen fur Android

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Lukas Naske, BSc
Matrikelnummer 01426015

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.techn. Hilda Tellioglu
Mitwirkung: Mag.rer.soc.oec. Dr.rer.soc.oec. Roman Ganhér

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Wien, 22. August 2020

Lukas Naske Hilda Tellioglu

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Software components supporting
the implementation of multimedia
applications for Android

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Lukas Naske, BSc
Registration Number 01426015

to the Faculty of Informatics
at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.techn. Hilda Tellioglu
Assistance: Mag.rer.soc.oec. Dr.rer.soc.oec. Roman Ganhor

Vienna, 22" August, 2020

Lukas Naske Hilda Tellioglu

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Lukas Naske, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. August 2020

Lukas Naske

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Danksagung

Ich mo6chte mich bei Hilda Tellioglu fiir die Betreuung dieser Diplomarbeit bedanken.
Besonderer Dank geht an Roman Ganhér fiir viele groBartige Diskussionen und Hilfestel-
lungen sowie fiir das umfangreiche Feedback, ohne dem diese Diplomarbeit nicht entstehen
hétte konnen. Aulerdem mochte ich mich bei meinen Eltern und bei meiner Freundin Lea
bedanken, die mich nicht nur wiahrend dem Schreibprozess dieser Diplomarbeit sondern
wahrend meines gesamten Studiums immer unterstiitzt haben.

Auch allen, die die MicroDO Software-Bibliothek getested haben und die Probleme der
Software-Bibliothek aufgzeigt haben, gebiihrt aulerordentlicher Dank.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Acknowledgements

I want to thank Hilda Tellioglu for being the advisor for this thesis. Special thanks go
to Roman Ganhor for many hours of discussion and support and the amazing feedback
while reviewing this thesis. Also, I want to thank my parents and my girlfriend Lea for
the support not only during the process of writing this thesis but during all of my studies.

In addition, I want to thank everyone who participated in testing the MicroDO software
library and provide valuable feedback.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Kurzfassung

Moderne Smartphones werden mit jeder Generation an neuen Geréten leistungsfahiger.
Deshalb wird die Bearbeitung von Multimediainhalten, wie zum Beispiel das Bearbeiten
von Videos, direkt auf den Smartphones immer relevanter. Die Designprinzipien von
Desktop-Applikationen sind nicht immer auf den Kontext von mobilen Smarpthone
Applikationen iibertragbar. Das kann vor allem auf die unterschiedlichen Eingabe- und
Ausgabemodalitédten von Smartphones und Desktop-Computer zuriickgefithrt werden,
wie Gestensteuerung statt Keyboard und kleiner tragbarer Bildschirm statt grofien
stationdren Monitor. Trotzdem versuchen zum Beispiel Videobearbeitungsprogramme
auf Smartphones bekannte Konzepte aus Desktop-Videobearbeitungssoftware zu repli-
zieren. Im Rahmen dieser Diplomarbeit wurden mit qualitativen Methoden aus dem
Bereich des User-Centered-Designs neue User-Interaktionen und Design-Elemente fiir
die Arbeit mit Multimediadateien am Smartphone identifiziert und abstrahiert. Dann
wurden die abstrahierten User-Interaktionen und Design-Elemente in einer Software-
Bibliothek mit dem Namen MicroDO zusammengefasst und unter Beachtung moderner
Software-Qualitatsstandards fiir die Smartphone-Platform Android implementiert. Im
Anschlufl daran haben erfahrene Programmiererinnen und Programmierer vorbereitete
Beispiele unter Verwendung der MicroDo Software-Bibliothek implementiert. Wahrend
der Implementierung wurden die Programmiererinnen und Programmierer beobachtet
und danach wurden Semi-Strukturierte Interviews mit ihnen durchgefithrt und ausge-
wertet. Dieser Implementierungstest zeigte, dass die MicroDO Software-Bibliothek eine
modulare und flexible Software-Bibilothek ist, welche sich gut in bestehende Android-
Entwicklungsumgebungen einfiigt und hilfreich fiir die Implementierung von innovativen
Multimedia-Applikationen sein kann.

X1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

The performance of smartphones increases with each generation. Because of this, edit-
ing multimedia content directly on smartphone devices gets more and more relevant.
The design principles of desktop and mobile applications differ in many cases because
smartphones have a smaller screen and use touch-gestures for input instead of using
mouse and keyboard. But, for example, mobile video editing applications on smartphones
often rely on the same metaphors and design decisions of their desktop counterparts.
Within this thesis new user interaction and user interface designs were identified and
described using qualitative methods from the research field of user-centered-design. Then
a software library called MicroDO was implemented, which supports the implementation
of the identified user interactions and user interface designs on the Android operating
system. To evaluate the implementation, experienced Android developers were asked to
implement small tasks using the MicroDO software library and describe any issues they
found within the software library. In addition, semi-structured interviews were held with
the developers after they finished implementing the tasks. The feedback of the developers
and the analysis of the semi-structured interviews showed, that the MicroDO software
library is a flexible and modular software library that can support the implementation of
innovative multimedia applications on Android.

Xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung

Abstract

Contents

1

Introduction

1.1 Background
1.2 Problem definition!
1.3 Expected Results| oo

State of the art

2.1 User Interaction on Smartphones
2.2 Development on Android oL
2.3 Sorting|.
2.4 Video Editing|o
2.5 New ideas for Video editing|
2.6 Componentization of Software

Methodology

3.1 Thematic Analysis|
3.2 Requirements Engineering| oL
3.3 Agile Software Development|
3.4 UserX Story|. oo i
3.5 Semi-Structured Interviews 0oL,
3.6 API Usability Test|

Implementation

4.1 Requirements Analysis oo
4.2 UserX Stories e
4.3 Implementation of the MicroDO library,

Evaluation
5.1 Design of the MicroDO API usability test|

xi

xiii

W N =

S ot O

10

14
20

21
21
22
23
25
27
28

31
31
37
46

57
o7

XV

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Conducting the API usability test| 61

5.3 Feedback Analysis| 66
6 Results 73
6.1 Results of the API usability test, 73
6.2 Categorisation of the Usability Issues/. 77
7 _Conclusion 81
7.1 Summary| 81
7.2 Critical Reflection o 82
7.3 Future Workl 84
List of Figures 85
List of Tables 87
Bibliography 89
Attachements Al
Usability Test Introduction Al
Usability Test Scenario 1] L L oo A3
Usability Test Scenario 2 A6
Usability Test Scenario 3|o A9
Usability Test Scenario 4 Al12
Usability Test Scenario 5|o Al5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

This chapter introduces the topic of this thesis. The background and motivation for
this thesis are described. This is followed by the definition of the problem space and a
discussion of the results expected from completing this thesis. Also, the research questions
this thesis is built upon are stated.

1.1 Background

The performance of smartphones increases with each generation. Using these mobile
devices for consumption and creation of multimedia content has become a familiar use
case for users. With the increasing power of these devices, editing the created content
right on the device gets more and more relevant. But editing multimedia content, like
for example videos, right on the device still does not provide the experience users expect
and because of this, it is rarely done, especially in a professional context.

There exist multiple social media applications like Instagram, Snapchat and Facebook
where videos that have been filmed on mobile phones are posted regularly. Companies
monetize these videos and a whole market has been created around videos for mobile
consumption. But instead of being able to quickly edit videos directly on the device,
they are transferred onto a PC and then edited and posted from there. So, creating a
more enjoyable user experience could improve the workflow.

Software for editing multimedia content like videos is mainly developed for PCs. Because
of this user interactions for the editing process of e.g. videos have been designed with
mouse and keyboard in mind. Shortcuts using the keyboard are also used to improve
productivity. This leads to problems as user interaction design concepts for mouse and
keyboard are not always applicable in the mobile context. Because of this, the well-known
user interactions from PC video editing cannot be mapped easily. As[Schoeffmann et al.
(2015) state, the usage of tablets and smartphones increased very rapidly over the last

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

few years. They also emphasize that mobile devices enable new user interactions through
the integrated touchscreens and the integrated sensors like for example motion. All of
this leads to the necessity of new user interactions with the context of mobile phone
usage in mind.

While mobile devices provide new forms of input in comparison to common desktop
computers, the screen size is far more limited on smartphones in comparison to desktop
computers. This leads to problems with e.g. showing both control elements and the
content to edit on the same screen. As a result, user interface designers have to make
compromises.

Another challenge that still exists is the limited power and storage compared to modern
desktop computers. But the gain in performance over the last years shows a trend that
smartphones will grow even stronger and these limitations might be able to be overcome
in the future. (Cobarzan et al. (2014) showed that mobile devices are capable of taking
over image processing tasks from desktop computers, even though they still lack some of
the performance. Still, it is necessary to create user interfaces that respond fast and give
understandable feedback such that the user can easily comprehend the current state of
the editing process.

1.2 Problem definition

In a user study, Puikkonen et al. (2009) investigated when and why videos are created and
edited. They found out, that taking videos was a major use case for smartphone users.
However, users rarely edited the created videos right on their mobile devices. While there
exists research on how to improve the user experience when editing multimedia content
on smartphones, implementing prototypes is still a challenge. Especially with regards to
adapting old user interfaces to new improved technologies to compare prototypes with
each other. All of this points to a software library that supports the development of
prototypes for new user interaction and user interface ideas as a valuable achievement.

There exist prototypes from prior research, but a real working implementation is still
missing for many of them to be able to re-evaluate the proposed user interactions
with real users. The different implementations are also hard to compare, as they are
programmed as proof-of-concept and not as reusable components. Another aspect that
makes comparison difficult, is the different hardware standards that were available during
the implementation of the proofs-of-concept.

Of course, researchers already use software libraries when implementing novel interaction
ideas, however, software libraries are often targeted at technical aspects and not at
aspects concerning user-interaction. We found, that a software library that focuses on
mobile multimedia user-interaction could be supportive of the advances in this research
area.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.3. Expected Results

Google supplies developers with a fully functioning media player', the editing of videos is
not supported by this player by default. There exist multiple apps for video editing in the
play store, like “InShot” 2. But software libraries to include the editing of videos or other
multimedia content in new apps are scarce and often no longer supported. For example
“Media for Mobile”’| has been created to support multiple multimedia editing processes
but has not been updated for the last two years. Because of this the development of freely
available components to support the creation of prototypes for new user interactions
on Android devices can benefit researches and developers of new multimedia editing
applications.

1.3 Expected Results

The goal of this thesis is to find similarities in existing prototypes for newly proposed
user interactions for the arrangement and ordering of multimedia items on smartphones,
find abstract descriptions for those similarities, group them accordingly and implement
them as standalone software components. The implemented components will be usable
to create prototypes for new user interactions for video editing on smartphones. This will
help researches to not only implement new ideas for user interactions on smartphones
but make the created prototypes easier to compare.

Each of the implemented software components will represent a small part of a user
interface or a user interaction and will be designed with reusability in mind. By using
the created components in combination, it should be possible to create new prototypes
for user interactions on Android* devices. Even though the focus of this thesis lies on
the arrangement and sorting of multimedia items, some of the created components might
be usable in different contexts.

The software will be created for Android smartphones using the programming language
Kotlin°. Even though it would be possible to use Java® to implement Android applications,
Kotlin is the current standard for implementing new software for Android smartphones.

The implementation will be guided using modern quality assurance standards. Since it
is one of the goals of the thesis to make the software usable by other developers, the
documentation of the software is important. To integrate the implemented software
components into other applications, detailed descriptions are required on how to use
the provided software. Advice on when to use each of the software components for user
interaction will be part of this description. In addition, since the software modules should

"https://developer.android.com/qguide/topics/media/mediaplayer (Accessed:
18.08.2019)

2play .google.com/store/apps/details?id=com.camerasideas.instashot (Accessed:
09.06.2020)

%https://github.com/INDExOS/media-for-mobile (Accessed: 09.06.2020)
“https://www.android.com/| (Accessed: 13.08.2019)
®https://kotlinlang.org/| (Accessed: 13.08.2019)
®nttps://www.java.com/ (Accessed: 13.08.2019)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.android.com/guide/topics/media/mediaplayer
play.google.com/store/apps/details?id=com.camerasideas.instashot
https://github.com/INDExOS/media-for-mobile
https://www.android.com/
https://kotlinlang.org/
https://www.java.com/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.

INTRODUCTION

be extendable and maintainable possible in the future, documentation of the code using
KDod'| style comments in the code base will be performed.

Another important aspect of this thesis is to gather valuable feedback from developers
regarding the usability of the created software components with regards to using them
to create new prototypes for the rearrangement and ordering process of videos on
smartphones. Because of this, a usability test will be designed and developers will be
asked to implement given user interfaces. The results of the usability test will be analyzed
and will provide the basis for future improvements of the created software components.

In conclusion, the thesis will focus on answering the following research questions:
RQ1: What is missing in current software-frameworks to better support the implementa-
tion of media-intensive user-interfaces on Android?

RQ2: How can these missing features in current software-frameworks be identified and
defined?

RQ3: How can the software for these missing features be designed to be flexible and
modular?

"https://kotlinlang.org/docs/reference/kotlin-doc.html (Accessed: 13.08.2019)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://kotlinlang.org/docs/reference/kotlin-doc.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the art

The following chapter gives a brief overview of the main topics of this thesis. First, a
short introduction to the history of smartphones and the standards of user interaction
on smartphones is given. Then the principles of developing software applications for
Android devices are described and the sorting elements in general and on mobile devices
are discussed. This is followed by a short introduction into the topic of video editing and
descriptions of research done in the field of new ideas for video editing on mobile devices.
Also, a quick overview of the principles of componentization of software applications in
general, is given at the end of this chapter.

2.1 User Interaction on Smartphones

Before smartphones with touchscreens and a large number of applications that can fulfill
a variety of use cases were introduced, mobile phones mainly consisted only of number
buttons and a few additional buttons for navigation through lists. With the technology
for mobile internet connections improving, mobile phones also started to evolve to adapt
to new functionality available through internet connectivity. In 2007 the first iPhone?
was introduced by Apple, which was revolutionary for using a touchscreen instead of
hardware buttons and supported web browsing via the Safari browser and downloading
audio and video content via the iTunes store, which is a web-based dedicated content and
application store. While the functionality of the first iPhone was still limited, it was the
start of a still growing market of new smartphone devices. There were multiple attempts
to provide the same experience as Apple’s iPhone by other manufacturers. But, only with
the introduction of the Android operating system by Google a variety of manufacturers
were able to establish a market of devices and custom software applications that was
competitive to the Apple ecosystem. With each iteration of new smartphones being

"https://www.apple.com/iphone/ (Accessed: 17.08.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.apple.com/iphone/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

developed, smartphones get higher performance, new sensors and functionality and better
and more cameras. (Cecere et al.l 2015; [Han and Cho, [2016)

The input on a smartphone is mostly carried out through its touchscreen. By using one
or multiple fingers different forms of input can be performed. A list of the gestures that
are commonly performed on smartphones to interact with user interfaces and suggestions
by [Saffer| (2009) on when to use those gestures can be seen in Table 2.1.

Next to the gestures mentioned in the table above, modern touchscreens also allow the
detection of “free-form gestures”(Worndl et al., 2013), which means that any kind of
form could be used to perform interactions, such as squares, circles or also letters. In
addition, most smartphones have a few hardware buttons on the case to perform simple
actions such as locking the smartphone and changing the volume of the speakers among
others. (Worndl et al. 2013)

Smartphones are also often equipped with sensors, that allow the detection of the current
orientation of the smartphone. Through using the information from the sensors, users
can interact with a user interface by e.g. shaking, rotating or tilting the smartphone.
Some smartphones also support the detection of squeezes of the smartphone to trigger
functionality. (Worndl et al., 2013)

2.2 Development on Android

Android is an operating system mainly used for mobile systems. Development on Android
started in 2003 by Android Inc., which was purchased by Google in 2005%. According
to StatCounter| (2020)) the market share of Android in the context of mobile operating
systems is around 70%. Android was created as an open-source project and is used by
many smartphone manufacturers. Even though there exist projects and devices that
use a desktop version of Android known as Chrome OS?| on notebooks and desktop
computers, it is mainly used and designed for usage on smartphones and tablets. There
also exists support for integrated systems in cars*, smart TVs | and wearable devices
like smartwatches which use a dedicated version called Wear OSC.

The programming language Android was primarily developed in was Java. However, lately
the programming language Kotlin is the recommended language for Android development.
Kotlin is a rather new programming language with its first release in 2016. Kotlin and
Java are fully compatible, which allows developers to use both programming languages
within the same software application. This is possible because the Kotlin compiler also
compiles to Java byte-code by default. The benefits of Kotlin are its compatibility with
many platforms such as Android and website development. The compatibility allows for

Zhttps://en.wikipedia.org/wiki/Android_ (operating_system) (Accessed: 17.08.2020)
®https://developer.android.com/chrome-os| (Accessed: 17.08.2020)
“https://www.android.com/auto/ (Accessed: 17.08.2020)
®https://www.android.com/tv/|(Accessed: 17.08.2020)

Shttps://wearos.google.com/ (Accessed: 17.08.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://en.wikipedia.org/wiki/Android_(operating_system)
https://developer.android.com/chrome-os
https://www.android.com/auto/
https://www.android.com/tv/
https://wearos.google.com/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Development on Android

Gesture

Defintion

Recommondation
of use

“TAP?’

“The tip or pad of the finger touches the sur-
face briefly (<100 milliseconds). A double tap
performs this gesture twice rapidly, with a <75-
millisecond pause in between the two contacts.”

Use a tap to start
functionality or select
something

“DRAG/
SLIDE”

“The tip or pad of the finger moves over the
surface without losing contact with the surface.
Use for drag-and-drop and scrolling.”

To move something
on the screen or to
scroll through a list

“FLICK
(“FLING”) b

“Flick can be done in two ways. In the first
way, the finger is crooked to start, and then
the tip of the finger or part of the finger pad
brushes the surface briefly (<75 milliseconds)
as the finger uncurls. In the second way, the
finger is straighter and the movement is nearly
reversed, with the finger drawing closer to the
body and the fingertip or part of the finger pad
brushing the surface. Both of these are also
called Fling.”

To move something
on the screen or to
scroll through a list in
a fast manner

“ (NUDGE”

“The pad of a straight (index) finger slides
briefly (<2 seconds) forward.”

To move something.

“PINCH”

“Two fingers (typically the thumb and index
finger, although it can be two fingers from either
hand or even two fingers on two different hands
on multitouch surfaces) move closer together.”

To decrease the size
of something or to re-
duce the zoom level

“SPREAD”

“Two fingers (typically the thumb and index
finger, although it can be two fingers from either
hand or even two fingers on two different hands
on multitouch surfaces) move farther apart.”

To increase the size
of something or to in-
crease the zoom level

“HOLD”
(“Press”)

“The tip or pad of the finger is pressed onto the
surface for an extended period of time.”

To select something
or to perform contin-
uous scrolling

Table 2.1:

3).

Gestures used on touchscreens. The gesture names and definitions
under quotation marks are taken from |Saffer| (2009, Appendix A). The recom-
mendations of when to use the gestures are rephrased from Saffer| (2009, Chapter

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

the usage of many existing libraries. The design goal of Kotlin was to reduce the amount
of code compared to Java to achieve the same results. (Kotlin Foundation) 2020)

Multiple challenges arise when developing software applications for Android. One
challenge arises due to the fact that a wide variety of different devices from different
manufacturers use the Android operation system, which leads to differences in performance
and the underlying hardware. Also, there exists a wide range of screen sizes and pixel
densities of the touchscreen. Next to the differences in hardware, many different versions
of Android are used. Older devices often do not get updates to newer versions of the
mobile operating system. To overcome the mentioned problems, Knych and Baliga/ (2014])
suggest various methods to ensure that the developed applications can be tested and
how these tests should be structured to make locating errors easier. The main focus of
the research was to improve the automated testing of Android applications. By using
an automated test suite that is run directly on Android devices, a variety of devices
with different versions of the Android operating system can be tested in quick succession
without the need for manual interaction with the mobile devices.

Another challenge that occurs when developing Android applications in comparison to
desktop applications is the importance of application state handling. While desktop
applications get started and remain started until they are closed, an Android application
can be in various states. These states represent that the application is starting or
being stopped, but also if the application is currently not in the foreground because a
separate application was opened over the currently running one. This change of states
is also referred to as the “Activity Lifecycle”(Googlel, 2020), as the software component
responsible for handling the state changes and visualizing the application is referred to
as an Activity. This “Activity Lifecycle” can be seen in Figure 2.1.

On application startup, the main activity gets created, and the onCreate () callback is
called by the system. Within the onCreate () callback anything that has to be done
only once while the application is not completely removed from the memory should
be done. For example, the XML file defining how the application looks like can be
loaded within this method. Then the onStart () callback is called, which is also called
if the application was not completely removed from memory but only minimised by
the user. Within the onStart () callback, all resources that have to be available for
application use have to be allocated and the data to be displayed should be loaded
to let the user interact with the application. After all, resources are allocated, the
onResume () callback is called, which represents that the application entered the state
of running and the user can interact with the application. Within the onResume ()
callback, resources, that should and can only be available while the app is running in
the foreground, should be allocated. An example of such a resource would be accessing
the Camera of the Android smartphone. When the application is currently not in the
foreground anymore, the onPause () callback is called. Here all resources that were
allocated within onResume () should be freed again. As an example, if access to the
Camera was requested in onResume (), the Camera access should be stopped in the
onPause () method. If the app was only paused because of a notification or the usage of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Development on Android

a different application in multi-window mode, the onResume () method is called again
and the application keeps running. In case the application was closed and is no longer
visible, the onStop () callback is called, which represents that the application was closed.
Within this callback, all allocated resources within onStart () should be freed again
and the state of the application should be stored if necessary. If the application was only
minimised and opened again, the onRestart () method is called which is followed by
the onCreate () callback again. The onRestart () method can be used if the app
should behave differently on application restart then on application creation. In case the
application was destroyed either by the user or the system, the onDestroy () callback
is called and all allocated resources should be freed again if they were not freed before.
The lifecycle begins from the onCreate () callback. In some cases it can happen, that
the application process is killed without calling onPause () or onStop (), which is
why the application state should be saved whenever possible if changes were made to
ensure that no information gets lost. The challenges the “Activity Lifecycle” bring, are
that developers have to very careful when to allocate resources and how to ensure that
no information gets lost, especially as applications can be killed without all lifecycle
methods being called. In addition, when e.g. the user changes the orientation of the
phone and the application supports different orientations, the application gets destroyed
and the lifecycle is run through again. This often leads to issues as resources get allocated
multiple times or resources that were expected to be already loaded are in fact not loaded
anymore. (Google, [2020)

By conducting qualitative research with developers of mobile applications, [Francese et al.
(2017) found that testing is one of the big challenges of developing apps for Android. But
they also identified that UX design is a key part of developing successful applications.
While they were also able to identify that agile workflows are the standard development
methodology for mobile applications, they were not able to state one approach to be the
most fitting one.

To create software that is usable by other developers, it is important to rely on modern
quality standards. Documentation is a vital part of these quality standards, as it describes
how components work, without having to understand the actual source code. In some
cases, the creation of documentation takes up to 20% of the development time. This
documentation can be done both inside the source code using comments as well as outside
of the source code by using any kind of external written text. Comments within the
source code are mostly focused on the technical description of the software components
and can be used directly during development. The comments can be left out if a good
naming scheme for classes, methods and variables is used. Some styles of commenting
also make it possible to create external files that can be published as websites for example.
This makes it possible to access the documentation without access to the source code.
The external documentation for a software framework can be done in various forms but is
often done in so-called “Readme” files. The Readme files include a common overview of
the functionality in a less technical description and often also describe how to get started
with using the software framework. (London, [2003])

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. STATE OF THE ART
l Activity .."'I
—
onCreate()
v
onstart() e onRestart()
¢ A
e sy onResume()
R B v
[P (aomy)
\ killed y \ running ; J
- . =
Anather activity comes
inta the foreground TT—
T o * to the aélivi{y
R . ——
|
The activity is
noonger yisble User navigates
* to the a{:ﬁvity
onStop() |
|
The activity is finishing or
being destroyed by the system
v
onDestroy()
(g ey
shut down J/
Figure 2.1: The activity lifecycle of an Android applicaiton. (Google,
2020)
2.3 Sorting
When using desktop computers or mobile phones the users often acquire a big amount of
data files. Similar to the real world, it is in many cases wanted to bring those files into
some kind of order and to categorise similar things together. This process of bringing
order into a set of files or the data within a file can be seen as sorting the files or their
content. Sorting can be done automatically based on the metadata of files, for example
the creation date or the name of the file, or through detection specific features within
the content of the file and putting these features into relation with each other. For
example, when sorting pictures, algorithms can detect specific colors or people within the
pictures to categorise and sort the image files. The automatic detection of similarities
and differences of files is constantly improved by applying new improved algorithms or
through using machine learning. (Drucker et al., 2011} Darwaish et al., |2014])
Because of the limitations of automatic sorting, users are often required to sort and
10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.4. Video Editing

categorise the files on their devices manually. Especially on mobile devices, the limitation
of the screen size can lead to issues when sorting and categorising large amounts of files.
For example, users often use their smartphones to take a lot of photos and through
storage expansions or cloud storage usage the amount of photos that can be accessed
on a single device constantly grows larger. The data to sort is often displayed in lists
but they can mostly only be scrolled horizontally or vertically. One solution to overcome
the limitation of screen size would be to allow the users to scroll both vertically and
horizontally and sort the files based on different parameters on the 2 dimensions. Another
solution as proposed by |Ganhor and Giildenpfennig| (2015) was to split the manual sorting

process into separate steps and to provide proper forms of user interaction for those steps.

The authors proposed that sorting consists of “browsing, selecting and ﬁling”
and Giildenpfennig) [2015, p. 346). They implemented a novel user interface that allowed
the user to browse through images on different levels of detail and then select the exact
ones for the filing process. But sorting images is not only limited to be done in lists, as
Ott et al.| (2012) show in their research where multidimensional interfaces are proposed
and tested. (Panizzi and Marzo|, [2014)

P e e e e e e e e e e e e —————— ~
1 1
i overview bar WS |
: \O(O\N :
]]
‘Q—---_’l
S e e e e e LBl
, A
i detail view Pt
‘Q. ___________________________________ ? _______ 4 ’
'---~~
:' \e(:{'\(\% ‘:
\ € K

selection of two images empty placeholder

Figure 2.2: The interface proposed by |Ganhor and Giildenpfennigf (2015,
p. 346). The top two rows allow for different detail levels of browing,
while the bottom row is used to select images to be filed back into the
center browsing row.

2.4 Video Editing

According to the “Merriam-Webster.com” online dictionary, editing with regards to a
video or a film is defined as

“to assemble (something, such as a moving picture or tape recording) by
cutting and rearranging” (Merriam-Webster.com), [2020))

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

12

The result of video editing is a new video, which is either the final product or part of
further video editing processes. Within the definition, it was already mentioned, that an
integral part of the video editing process is the rearrangement of videos and sections of
those videos to create the wanted result. To start the arrangement process the videos that
should be edited have to be selected. This selection process can result in a single video
or multiple videos to be used. During the selection process, the videos might already
be sorted and ordered for the arrangement process. Depending on the number of videos
used for editing, the videos might also be grouped to ease finding the correct scene during
the whole video editing process. A schematic representation of the video editing process

can be seen in Figure 2.3

Done

Select Video
Edited Video Final Video

Selected Edit

Videos

Source Videos Browsing

Videos

Figure 2.3: The video editing process. The source videos are first
browsed through and selected and then edited. The final video can be
the source for another video editing process.

Video editing software is well established on desktop computers, with a variety of
commercial and free software tools. Some well known programs are “Adobe Premiere””,
“Apple Final Cut Pro X® or “Apple iMovie™. All of the mentioned use a timeline
metaphor in their user interface to arrange the videos on. The videos are arranged by
adding them to and removing them from the timeline. Parts of single video files can be
cut out of videos. Over time this process results in the final video, which in turn can be

used in a different video editing process for further modifications.

As an example, within “Adobe Premiere 2020* the videos to be edited have to be imported
into the project before they can be edited. For this, the “Media Browser”, which gives the
user access to the PC file system, can be used or the videos can be added via drag and
drop from the desktop file system. The imported videos can then be sorted into “Bins’
that function like folders in the desktop file system and as such support the grouping
of videos. The videos can be viewed as list elements with names or - as can be seen in
Figure [2.4 - as elements previewing the content of the video files. Additional functionality
is available in the “Assembly View” of “Adobe Premiere”, which can be accessed in
the large preview of the selected video that can be seen on the right of Figure 2.4, For
example, videos can already be added into a “Sequence”, which represents the timeline
in “Adobe Premiere”.

)

"nttps://www.adobe.com/at/products/premiere.html (Accessed: 07.05.202)
Shttps://www.apple.com/final-cut-pro/| (Accessed: 07.05.202)
nttps://www.apple.com/imovie/ (Accessed: 07.05.202)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.adobe.com/at/products/premiere.html
https://www.apple.com/final-cut-pro/
https://www.apple.com/imovie/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.4. Video Editing

Figure 2.4: Assembly view in Adobe Premiere 2020 (Created on
14.11.2019)

In contrast to desktop video editing applications, mobile video editing applications apply
a more simple approach to the selection and rearrangement process of videos. The top
three mentioned apps when searching for “Video Editor” on the “Google Play Store”!"
“YouCut - Video Editor’'!, “InShot”'? and “VideoShow™'? all have limited functionality
with regards to the arrangement and sorting of videos. When videos are selected, they are
arranged on the timeline in the order they were tapped on. This order can be seen at the
bottom of the screen on the left in Figure [2.5. The order can be modified on the selection
screen by long clicking on an element and dragging it into a different position. On the
timeline itself, the videos can be rearranged and additional functionality is available to
edit the video on the editing screen of the application - which can be seen in on the right
of Figure 2.5l The sorting and arrangement functionalities do not allow the user to sort
and group the files without taking immediate effect on the timeline itself. As a result, a
user would have to use a different application or access the file system directly to do be
able to do this process if wanted. The functionality for selecting, sorting and rearranging
the videos is similar in all three mobile video editing applications.

https://play.google.com/store| (Accessed: 14.11.2019)

Yhttps://play.google.com/store/apps/details?id=com.camerasideas.trimmer (Ac-
cessed: 14.11.2019)

Zhttps://https://play.google.com/store/apps/details?id=com.camerasideas.
instashot| (Accessed: 14.11.2019)

https://play.google.com/store/apps/details?id=com.xvideostudio.
videoeditor (Accessed: 14.11.2019)

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://play.google.com/store
https://play.google.com/store/apps/details?id=com.camerasideas.trimmer
https://https://play.google.com/store/apps/details?id=com.camerasideas.instashot
https://https://play.google.com/store/apps/details?id=com.camerasideas.instashot
https://play.google.com/store/apps/details?id=com.xvideostudio.videoeditor
https://play.google.com/store/apps/details?id=com.xvideostudio.videoeditor

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2.

STATE OF THE ART

14

X Vorkurzem ¥ E : <« SPEICHERN

VIDEO FOTO ALLE

Figure 2.5: Screenshots of selection and editing view of “You Cut - Video Editor”
(Created on 14.11.2019)

2.5 New ideas for Video editing

With the introduction of modern smartphones research on how to bring better user
experience to video editing on the smartphone was conducted as well. Even before
modern smartphones with touchscreens were part of everyday usage, Jokela et al| (2007)
investigated the possibilities of video editing on mobile phones. The mobile phone used
in their experiment had a small “2.2-inch 65,000-color graphical display”(Jokela et al),
p. 345), low pixel density of “176x208 pixels”(Jokela et al. 2007, p. 345) and did
not have touch input on the screen. But as it already had a camera integrated that could
record videos, the need for video editing on the device was identified. All input had to be
done via the keyboard on the device, which only contained numbers, navigation buttons
for direction and a few extra buttons for selection and cancellation. Regardless of these
restrictions Jokela et al.| (2007)) succeeded in providing a prototype to edit videos on the
mobile phone. The video editing application consisted of 8 different user interface screens
for selecting videos, previewing videos, editing the videos and a special view for cutting
a video. An overview of the screens can be seen in Figure 2.6l The separation of the cut
and edit view was done to reduce the complexity of the edit view on the small screen.
The videos were arranged on the edit view using the timeline metaphor. The edit view
supported the arrangement of videos, adding transitions between videos, adding effects

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2.5. New ideas for Video editing

to videos and also allowed to mute the original audio of the videos and to add audio from
audio files.

Bl Viden (17)

. 0:00/0:09 |

= video (17) ¥

RSN 1470212007 - 1146
Video (16)
1410272007 - 11:14.. =5

L= Video (15) Video (15) 0:05
1410242007 - 1108 ? x

options EXit Options Back|

Gallery View / Edit View

Select ﬂIET
Image (43) B
= 202k
----- Image (45)
329k8

Select Cancel
Insert Object Dialog Cut View

Figure 2.6: Overview of the screens of the video editing application by

p. 315)

Image browsing is the process of searching through a set of images to find the wanted
one. Video browsing, in contrast, is the process of looking for a specific section or frame
within a video. focused on the possibilities to improve image and video
browsing on modern smartphones with touchscreens. Sorting and grouping the videos
automatically or manually was identified as a valuable improvement to image browsing
on smartphones. It was shown that using 2D or 3D visualizations can improve the
usability of software applications significantly. For example, the files of the images or

videos to browse through should be displayed on a rendered globe, cylinder or in a grid.

Combining automatic sorting and advanced visualization techniques lead to even higher
improvements in usability. With regards to video browsing, an approach to browse a
video on the visualization of a 3D filmstrip was given and later further investigated,
which can be seen in Figure 2.7a. This film strip showed sections of the video to browse
through and was scrollable using touch input. (Hudelist et al. 2013a)

In a later approach Hudelist et al.| (2013b) implemented a video browsing interface
called “ThumbBrowser” (Hudelist et al.,2013b, p. 405). This user interface was used
in the landscape mode of smartphones and enabled the control of the seekbar vertically
on the side. In most applications, the seekbar is displayed horizontally similar to a
timeline. In addition to the vertical seekbar, a radial menu is used to provide further

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

16

functionality. The radial menu allowed for bookmarking timeframes within the video and
fast-forwarding and fast-reverting of the currently played video. There is also the option
on the radial menu to zoom in on the seekbar to make it easier to find an exact frame
using the vertical seekbar on the right. The positioning of the controls on both sides
of the horizontally held smartphone made it possible to have interactions with content
using both hands at the same time while holding the device. The “ThumbBrowser” user
interface is depicted in Figure 2.7b.

(b) The “Thumbbrowser” user interface.

(a) The 3D Filmstrip for video browsing (Hudelist et al., 2013b} p. 348)
by [Hudelist et al.| (2013a), p. 299).

Figure 2.7: The new ideas for video browsing by Hudelist et al. (2013a.b))

There exists more research on improving video browsing on mobile devices by [Ganhor,
(2012). With “Propane” (Ganhor, 2012, p. 1) a user interface was designed to improve
finding an exact frame in a video using the touchscreen on a smartphone. This interaction
can be performed using only the thumbs in landscape mode of the smartphone, similar
to the approach of [Hudelist et al. (2013b). While other video editing applications use a
seekbar to browse through a video, “Propane” lets the user browse a video by touching
the side areas of the screen. When the left area of the screen is touched the currently
played video gets played in reverse, when the right area is touched the video gets played
forward. The user can slide up and down the areas on the sides to increase or decrease
the playback speed. Depending on where the user begins the touch, the playback speed
can be increased or decreased by more or less granular steps. As an example, if the user
starts on the top of the side areas, the playback speed can be decreased in multiple steps
while it cannot be increased at all. The opposite applies if the user starts the touch
gesture on the bottom of the side areas, where the playback speed can then only be
increased but not decreased. If the user starts the playback in the center of the side
areas, the playback can be increased by sliding up and decreased by sliding down, but
only in less detailed steps. The idea of starting the touch gesture in the center can be
seen in Figure 2.8. By giving the user the possibility to browse through a video frame by
frame or in faster than normal playback speed, the user interaction of finding an exact

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

2.5. New ideas for Video editing

frame in a video was improved over other applications.

-30...-60 | A, D B, | 30...60

_1 s _30 A2 Bz 1 s 30

15 | A, B, | 15

Figure 2.8: The progressive scrolling view of “Propane”. , 2012

p. 4)

In a second paper by another user interface was designed with the focus
on trimming a video instead of only browsing them. The process of trimming a video is
mainly based on setting the In-Point, the frame at which the video should start playing,
and the Out-Point, the frame at which the video should stop playing, for a video. It
was also mentioned that the previously implemented user interaction of video browsing
is tightly coupled to video trimming, as the appropriate timestamps for setting the
In-Point and Out-Point first have to be found. Because of this the user interface from
“Propane” was reused and extended by adding areas for setting the In-Point and the
Out-Point using swipe gestures. The new user interface that was designed within this
research was called “Muvee” and can be seen in Figure [2.9. A user study was conducted
using “Muvee” and compared it to a different existing mobile video editing application
called “iMovie”™. The user study showed that the new ideas for video browsing and
video trimming suggested within the paper are suitable for the context of video editing
on a smartphone. “Muvee” does not implement user interactions that are known from
desktop video editing applications and does not fully comply with “Fitts’ Law” ,
p-230), as the gestures necessary to fulfill tasks require to move the finger over
long distances. The user study conducted within the research suggested that the user

interactions used within “Muvee” are suitable for the context of mobile video editing.

The before mentioned user interfaces for video editing were designed for standalone
applications primarily designed for smartphones and tablets. |Dai et al. (2017) tried to
implement a video editing user interface in a web browser. Web applications can be
accessed both on mobile devices and on desktop computers. If well designed, the user

Yhttps://www.apple.com/ imovie/|(Accessed: 07.08.2020)

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.apple.com/imovie/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.

STATE OF THE ART

18

C1 Cc2

> £ 1 00:05:00 @ oo:05:01 ¥ ’<00:10:o1
Wi \\)

In point Out point
B1 D B2

next clip previous clip

A ! oo:0206 |/ 00:15:00

(a) The “Muvee” user interface with the “
possible swipe gestures. (Ganhor, 2014) The prototype of “Muvee”. (Gan:

p. 232). .m p- 232)

Figure 2.9: The “Muvee” user interface. 1 2014, p. 232)

interface of websites also adapts to the device used to access the website, and as such
should also be usable on smartphones. [Dai et al.| (2017) investigated how to add so-called
hotspots to videos using an HTML5 based video editor. Hotspots can be defined by a
user to track objects or people in a video and display information when hovering over
or clicking on these defined hotspots. A problem identified for this operation was the
performance of the browser, as web browsers are not designed to do perform such a
task in a timely manner. To overcome the limitations in performance, |Dai et al. (2017)
implemented a workflow where the processing was performed remotely and not in the
browser itself. While their solution is not focused on the editing of videos on mobile
devices, it is still important to consider as smartphones are also equipped with modern
web browsers. Designing web pages responsively, which means that they can be used on
both desktop workstations and mobile devices, has become a standard and as such video
editing in a web browser could also be usable using smartphones.

With the limited performance of mobile phones in mind, Yu and Liao (2013)) designed a
solution to move video editing into the cloud. Watching video content that is streamed
to a device is a very common use case and well optimised. But the researches identified
that the process of transforming a video, searching for specific time frames and switching
between multiple videos to edit requires a more versatile approach than just watching
content at the given playback speed. They also mentioned, that having the editing
process stored remotely makes it easier to resume work on a different device or could be
used to enable multiple editors to work concurrently on the same project. Another way
to overcome the restrictions of hardware performance on the devices is to optimize the
used formats. By using different more efficient algorithms or more powerful devices, all
of the video transformations could be done on the device itself. (Islam et al., [2006))

\Zhang et al| (2014) designed new user interactions to explore videos by focusing on the
content of the video instead of relying on the time aspect of multimedia content. Their

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.5. New ideas for Video editing

approach was to create a graph like representation called “VideoGraph”(Zhang et al.,
p. 1123). The idea behind “VideoGraph” was to first etract the scenes of a video
automatically. Then the scenes are put into relation with each other and a graph is built
based on the relation. The final step was to find a fitting form of representing the single
scenes. Figure [2.10 shows different forms of extracting the scenes, building the graph
and displaying the scenes. The left images display the scenes that identified, which are
represented by the different color bars on top of the scenes. The center images represent
the graph that is generated, where each color corresponds to a scene. The right image
then shows different forms of representing the graph. A single scene can be represented
by a single frame or multiple frames. While still limited on many levels this approach
can help video editors to find specific parts of a video easier.

Figure 2.10: The “VideoGraph” depending on the used graph algorithm.

(Zhang et al., 2014} p. 1129)

Most automated editing algorithms focus only on the image and audio of the recorded
video. |Taylor and Qureshi (2016) designed a framework that tries to automate video
editing using the sensors found on a smartphone to gather information on how to edit the
video. The accelerometer, magnetometer and gyroscope readings within others were used
to collect data for the editing process. For example, data from the accelerometer can be

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

20

used to identify parts of the video where the camera was not held stable and as such are
likely to be removed. In addition to collecting data from the sensors while filming the
video, the video gets processed afterwards. For this for example the brightness of the
video was analysed as well as face detection algorithms used to find parts of the video
with people in them. Also, the sections of the video that are not in focus are identified.
All of this information is sorted into streams of data which can then be used during the
video editing process to quickly remove parts of the videos with unwanted attributes, like
being out of focus, or select parts of wanted content, like having the proper brightness
levels.

2.6 Componentization of Software

In object-oriented programming, it is common practice to split the application into small
components. This leads to better reusability of the same code within the same application
as well as within other applications. While there exist many software components to
create user interfaces, these software components for user interfaces often only cover basic
functionality and still require a lot of programming to support complex user interactions.
An example of a predefined software component for user interfaces on Android would
be the VideoView, that is provided by Google. This VideoView can play the videos,
but the user interface elements to provide controls for the user to interact with the video
have to be implemented by the developer using e.g. button components. [Karuzaki and
Savidis (2015) implemented a library that eases the composition of UI elements in Java,
which should also be usable on Android, called “YETI” (Karuzaki and Savidis, 2015,
p. 1). They use a tree-like description of tasks to model how components interact and
how they are contained in each other. This way the composition of the Ul components
can be taken over by the “YETI” library. Even though the “YETI” tool automates the
composition, it is still possible to add other Ul components. An important aspect they
wanted to keep, was the modifiability of the components using the programming language.
This should help the developer to keep control over the user interface and make the tool
more flexible. While “YETI” is a promising approach to user interface reusability, it is
only a research project and not used in production environments.

A problem that Paulheim and Erdogan| (2010) identified is the heterogeneity of created
software components. Over the years many new tools and programming languages were
created and Ul components developed in one language are often not be usable with Ul
components from another language. Even though it might be possible to display them in
the same application the communication can be impossible. To overcome this problem
Paulheim and Erdogan| (2010]) implemented an event bus that enables the communication
between the components in a unified way. For example, they use proxy implementations
to enable the drag and drop behaviour of objects between components that otherwise
were not capable of communicating with each other.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Methodology

This chapter describes the scientific methods used in this thesis. This includes an
explanation of how to conduct a thematic analysis. Then requirements engineering, agile
software development and the concept of “UserX Stories” are described. This is followed
by a description of how to conduct an API usability test.

3.1 Thematic Analysis

Thematic analysis is a qualitative methodical approach to analyse a dataset. Thematic
analysis is widely used in qualitative research and acknowledged as a scientific method.
The benefit of a thematic analysis is its flexibility, as there are no restrictions on what
the result of the thematic analysis should be. This benefit of flexibility is also a big
disadvantage, as researchers who are using thematic analysis for the first time miss a clear
guideline on how to conduct a thematic analysis. Through conducting a thematic analysis
on a dataset, the “themes” of the dataset can be identified. “A theme captures something
important about the data in relation to the research question and represents some level
of patterned response or meaning within the data set”(Braun and Clarke, |2006, p. 10).
The dataset itself can be collected in various forms, which include audio recordings, video
recordings, text and also notes taken during the data collection. (Boyatzis, [1998; |Braun
and Clarke, |2006; [Nowell et al., 2017))

To identify the themes, six phases are applied to reduce the content of the dataset to
the essential parts and to find general descriptions of what can be deducted from the
interviews. The six phases to apply are as follows.

The goal of phase one is to familiarize oneself with the data set. To accomplish this
the dataset has to be read at least once. If the dataset consists of verbal interviews, it
is suggested to transcribe the data as a first step. The first phase is vital even if the

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

METHODOLOGY

22

person who analyses the dataset took part in the collection of the data to get a complete
overview of the data before starting the analysis. (Braun and Clarke, 2006)

In phase two, codes are assigned to sections of the interviews. “Codes identify a feature
of the data (semantic content or latent) that appears interesting to the analyst”(Braun
and Clarke, 2006, p. 18). These codes are the start of generalizing the statements and
identifying common ideas within different interviews. The codes can, for example, be
collected as notes within the dataset. The coding should be done for every part of the
dataset with the same precision to find all relevant parts of the interviews. This can
require the person conducting the thematic analysis to go over the dataset multiple times.

Phase three is used to find the themes within the codes. Codes are grouped under a
theme when they have a similar meaning or represent a similar idea that can be expressed
through a theme. Themes can relate to only small parts of the dataset, but themes can
also be used to group other themes under a single theme. To achieve the grouping a
mindmap can be used where codes are grouped into themes and subthemes. It is also
possible to find a theme for the whole dataset. (Braun and Clarke, |2006; | Attride-Stirling)
2001])

Within phase four the themes are revisited to refine the themes and eliminate, merge
or split themes if necessary. If the data for a theme is not enough to support it as a
standalone theme the theme might be eliminated. Some themes might be merged into a
single theme if they represent similar ideas and the level of detail accomplished through
separate themes is not required. It could also happen that a single theme has to be split
into multiple themes if a higher level of detail for a theme is wanted. Each theme should
be meaningful with regards to the whole dataset while being specific enough to capture
the results from the dataset properly. The mindmap from phase three can be used and
refined to generate the final themes. The refinement process of the themes can require
multiple iterations over the themes, the codes and the dataset. (Braun and Clarke, [2006])

Phase five defines and describes the found themes in written form. With these definitions
and descriptions, a final report about the found themes within the dataset and their
relation to the research questions is written as the sixth and last phase of the thematic
analysis. (Braun and Clarke, [2006))

3.2 Requirements Engineering

In software development, the features a system has to fulfill are often described as
requirements. The field of research related to identifying and describing the requirements
of a system is referred to as Requirements Engineering. The process of identifying the
requirements of a system is called requirements analysis. To find the correct requirements
a lot of different factors have to be taken into account. On the one hand, the technical
requirements have to be defined. This means it needs to analysed, which platforms the
software should be build for, which needs with regards to performance exist and any
other factor that affects the technical design of the resulting system. On the other hand,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.3. Agile Software Development

the needs of the customer and the users have to be taken into account and defined as
requirements. According to the “IEEE Recommended Practice for Software Requirements
Specifications” (IEEEL 1998, p. iii) defining requirements helps to:

o “Establish the basis for agreement between the customers and the suppliers on
what the software product is to do”

e “Reduce the development effort”

e “Provide a basis for estimating costs and schedules”

e “Provide a baseline for validation and verification”

o “Facilitate transfer”

e “Serve as a basis for enhancement”
Requirements can also be seen as goals or ideas. By referring to requirements as goals,
the positive aspect of achieving part of the system when fulfilling a requirement is
emphasized. The concept of calling the requirements ideas should take away the negative
stereotypes that are attached to the word requirement. Ideas also help to encapsulate

that requirements are subject to change and evolve with the system. (Nuseibeh and
Easterbrook,, 2000; van Lamsweerde, 2001; Mohanani et al., 2014)

When it comes to identifying requirements regarding the usability and user interaction of
a system, more than just the system alone has to be taken into consideration. The needs
of the user and the context the user uses the system in affect not only the requirements
itself but also how the requirements should be written down. One form of describing
requirements in a user-centric way is the format of user stories which is discussed later in
Section 3.4. Buhne et al.| (2004) also describe, how describing requirements from different
points of view can help to keep track on how a requirement affects different parts of the
system and the development process. (Harrison and Barnard), 1993; |Cohn, 2004)

3.3 Agile Software Development

In software development projects requirements are often unclear or change during the
development. Changing and unclear requirements make the planning of software projects
difficult and often lead to discrepancies between what the development team delivers and
what the customer expects. To mitigate the challenge of unclarity in software projects,
agile software development strategies are often applied. The agile software development
strategies are mainly based on the agile manifesto by Beck et al. (2001):

“Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan” (Beck et al.| [2001)

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

METHODOLOGY

24

The manifesto should encourage software developers to work in iterative software develop-
ment cycles to create working software quickly, to welcome changes in the requirements
and to react to them effectively and to heavily incorporate the customer in the develop-
ment process. (Radinger and Goeschka, 2003)

Some well known agile software development strategies are “Kanban” (Sugimori et al.,
1977, p. 553), “Scrum”(Schwaber and Beedle, |2001) and “Extreme Programming” (Beck,
1998| p. 1). The three mentioned development strategies are similar with regards to
developing software in an iterative process but distinguish by the approaches taken to
work effectively on the software development. Scrum is most well known for its planning
of each short iteration, which is referred to as a sprint. Each sprint the development team
plans what work should and can be achieved and on the exact date of the end of the
sprint the iteration has to be done or the work is concluded to be not done. By reflecting
on the amount of work a team was able to achieve during a sprint the estimations should
get better over time. In extreme programming, sprints are also used but a lot shorter
and the work done during a sprint can change based on the prioritisation. Following is a
more detailed description of the Kanban software development process. Kanban was first
introduced in the automobile industry and has been adopted by multiple other areas
such as software development. When using Kanban the development is done in iterative
cycles with the goal to release small parts of the software fast and rework the software if
the requirements change. When a task has to be completed during development a ticket
is created, which contains all the information necessary to complete the task. All tickets
are collected in a backlog and prioritised. Based on this prioritisation the tickets are
chosen for development one after the other. The most important artifact of the Kanban
development cycle is the Kanban board. The Kanban board itself is split into columns,
where each column represents a different state a ticket can be in. The states of the tickets
are often similar to “In Development”, “In Testing”, “In Review” and others depending
on the development flow of the project the tickets were created for. The tickets are
getting added to and removed from the columns on the Kanban board based on the
ticket’s current development state. To ensure that a ticket gets completely finished and
will not remain in an almost finished state, like for example in the “In Review” state, a
work in progress limit is applied to each of the columns. This work in progress limit is
the maximum number of tickets that can be in the state represented by the column at
the same time. The work in progress limits should force developers to move tickets to
the end before other tickets can be further developed. This encourages the developers
to react to anything that blocks finishing a ticket in a fast manner. Also, the work in
progress limits should encourage developers to help out other developers to finish their
tickets. (Rautiainen, 2004

The Kanban board can be a real physical board with physical tickets being added to
and removed from it. But there also exist a lot of software solutions for representing
the Kanban board. This allows for integration with other systems like source code
repositories. When using the Kanban board in integration with a source code repository,
the id of the ticket the source code was produced for could be directly mentioned and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. UserX Story

linked. As an example Github' is a website that offers free and paid plans to use their
services as a source code repository using Git? as source code management and version
control framework. Github also offers the option to create so-called “Projects” for source
code repositories. These projects are used to create tickets for tasks that have to be
completed as “Issues”. If wanted, Github also provides the option to create a Kanban
board where the tickets can be moved from one state to the other. Github does not
support the enforcement of work in progress limits on the columns of the Kanban board.
Anyways, the work in progress limits can be added to the names of the columns and
the adherence to the work in progress limit of a column lies in the responsibility of the
software development team.

3.4 UserX Story

In agile software development, it is common to define the features to be implemented as
so-called “User Stories”. User stories focus on describing what is needed by the user to
accomplish a task without defining the technical details. Each user story should start by
defining the kind of role the user that should accomplish the described task has, which
is often done in the form of “As a <user-role>". This way different kinds of users of
the software can be differentiated. An example of this would be to differentiate between
customers and administrators by starting the user stories with “As a customer” or “As
an administrator”. The user story is then further developed by adding the task to be
covered after implementing the user story. An example of a full user story would be
“As a customer, I can log in on the website”. It is important to keep the user stories
focused on tasks completed by the user and not to describe technical parts of the software
application. An example of a poorly written user story would be “As a developer, I
write the application using Java”. This poor example of a user story does not describe
what a user of the software wants to accomplish by using the software, but only a
technical detail about the implementation. Technical requirements can be added in a
later description of the user story within the whole documentation, but should not be
part of the actual user story. Lucassen et al. (2015) describe the qualities of a good

7 4

user story to be “atomic”, “minimal”, “well-formed”, “conceptually sound”, “conflict-

YW bYA3 bE A3

free”, “problem oriented”, “unambiguous”, “complete”, “explicit [in] dependencies”, “full

sentence”, “independent”, “scaleable”, “uniform” and “unique” (Lucassen et al., 2015,
pp. 127-129). (Cohnl 2004} Zeaaraoui et al., |2013)

A user story also includes the criteria to accept the user story as completed. This allows
for testing an application based on the user stories. In addition to the acceptance criteria,
any kind of further information can be added to a description of the user story. This can
include meeting notes about the functionality of the software, requirements regarding
the technical implementation or any kind of diagram to support the implementation.
Any kind of information that supports either the development or the testing of the

"https://github.com/ (Accessed: 01.06.2020)
*nttps://git-scm.com/ (Accessed: 01.06.2020)

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/
https://git-scm.com/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

3.

METHODOLOGY

26

functionality described within the user story is valuable and should be added. A user
story can always be updated if the requirements change or parts of the user story are

vague or ambiguous and need further refinement. (Cohnl [2004)

A “UserX Story”(Choma et al., 2016, p. 131) is a special type of user story, which
incorporates the user interaction as an essential part of the story. Similar to a user story,
a UserX Story describes the task that has to be accomplished and the role the user has.
However, the UserX Story adds a description of how the task is achieved through user
interaction.

UserX Story - Tax Bookkeeping sub-module

As a <Leo Walker> I need to <issue financial reporting and balance
sheets, filtered by agents>, for this < the system allows me to choose
the agent that [want to filter >, through/ when [<for issuing the re-
port> / < regardless of the organization to which I am placed in the
system, it being subsidiary or consolidator>]. I evaluate that my goal
was achieved when <the report only listed the launches carried for
the selected agent >

Acceptance criteria:

Checks < the system will validate if that agent code can be used for the
selected organization > through < filtering by agent code > to satisfy
<H5> of action, and < H9> of feedback.

Checks < the system should display the agent name next to the chosen
code > through < choosing an agent, either by agent code or searching
> to satisfy <H1> of action, and <H6> of feedback.

Figure 3.1: Example of a UserX Stories written by a participant of the
evaluation done by Choma et al.[(2016, p. 138).

Thus, the UserX Story is split into five well-defined parts:

1. The description of the user’s role, which starts similar to a user story with “As a
<Persona>"(Choma et al., 2016, p. 136). “Personas” are a way of describing the
role of a user by also taking the goals and motivation of the users into account and
should encourage to really think about the users who will accomplish the described
task. (Cooper et al. 2007)

2. The description of the goal that has to be achieved by completing the UserX
Story. The goal of the UserX Story is described by adding “I want/need
<goal>"(Choma et al., 2016, p. 136) to the story.

3. The third part of the UserX Story is the description of the interaction of the user with
the application. This is achieved by adding “for this <interacti0n>”

2016l p. 136) to the UserX Story.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.5. Semi-Structured Interviews

4. In addition to the interaction, the context of the user interaction can be described
by adding “through/when [<task> /<context>]"(Choma et al., 2016, p. 136)
to the UserX story.

5. The last part of the UserX Story is the description of how the UserX Story can
be evaluated. This is done by adding “I evaluate that my goal was achieved
when <feedback>”(Choma et al., 2016, p. 136) to the UserX Story.

An example for a UserX Story as proposed by |[Choma et al.| (2016) is shown in Figure 3.1.

Another difference to user stories is the description of the acceptance criteria. User stories
do not require a special format for acceptance criteria. The acceptance criteria of UserX
Stories should include the “Nielsen’s Heuristics”(Nielsen| [1995), which are commonly
used usability guidelines, that should be fulfilled by completing the UserX Story. UserX
Stories help to take user interaction, user interface design and usability into account from
the beginning of the development cycle. (Cohn, 2004)

3.5 Semi-Structured Interviews

There exist open, structured and semi-structured interviews. Open interviews do not
follow a pre-planned interview structure while structured interviews follow a pre-planned
structured very closely. The method of semi-structured interviews is common in qualitative
research and combines the approaches of open and structured interviews. The idea behind
semi-structured interviews is to prepare a set of questions but to only use them as a
guideline and not as a predefined structure of the interview. By prioritising part of the
questions the goal of the interview can still be achieved, while other questions can be

omitted if the time frame set for the interview does not allow asking more questions.

Also, it is important to follow up on answers of the interviewees by asking “How” or
“Why?”, especially if the questions are asked as closed questions. Through the open design
of the interview, the interview can feel more like a conversation and as such might reveal
unexpected outcomes. The acceptance of change in the interview process also relates to
agile development and the prepared questions and their order should be iterated over
regularly in between interviews. Especially after the first interview, it should be assessed

whether the questions and their order have to be adapter to answer the research questions.

(Leech, 2002; Adams, [2015)

The interviews can be recorded or notes can be taken during the interview to analyse
the interviews. It can also be helpful to take notes even if the interview is recorded in

case something the interviewee said that should be followed up later in the interview.

After conducting the interviews, the process of analysing and extracting the results
of the interviews begins. There exist many methods for analysing interviews. The
scientific method of conducting a thematic analysis on the interviews was described
before in Section 3.1. |Burnard| (1991) propose a more detailed method for analysing
semi-structured interviews. A 14 step guide is provided on how to analyse the interviews
which results in a report to be written in the end. (Adams, 2015

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

METHODOLOGY

28

3.6 API Usability Test

Usability tests are performed to identify problems within products and to get feedback
from real users. Because of this usability tests are often used and researched in the
field of human-computer interaction (HCI). Commonly, usability tests are performed on
products that include some form of a graphic user interface (GUI) that the participants
have to interact with. There are different forms of gathering information during the
usability test, for example the “think aloud (TA) protocol” (Alhadreti and Mayhew, 2018,
p. 1) can be used. When using the “TA protocol” the participants of the usability test
are asked to say anything that comes to their mind, which includes also what they are
thinking about while using the software and how they experience the used software. By
having the participants express everything they think about, it should be possible to get
a deeper understanding of how the users experience the software. If it is not possible
or fitting to have the participants of the usability test say everything aloud during the
usability test, t (Ericsson and Simon, |1984)

An application programming interface (API) is used by developers to access a different
software component within their own software application. There are different forms
of APIs. An API can be published by providing the compiled source code to be used
directly within a software application. Another form of accessing an API is by calling
published software application remotely via e.g. REST. While an API does most often
not provide a form of a graphical user interface, its usability when used by developers can
still be tested. |Grill et al.| (2012) suggest in their paper a way to conduct a usability test
for their API, which was a software library to support researchers to “develop contextual
study setups”[169](Grill et al., [2012). The authors combined a variety of different API
usability test methods to test the API. The combination of different methodologies was
done to minimise the disadvantages of other API usability test designs while getting the
advantages of the replicated methods. Disadvantages of other API usability evaluation
methods were their high cost, which made them only suitable for projects with high
financial backing, or the requirement of special knowledge by the participants of the API
usability test. Also, usability tests that rely solely on the evaluation through experts,
which is easier done than tests with real users, do not reflect on the usage of the system
by real users. For this reason, a combination of evaluating the API by experts but also
have real users test the API on a smaller scale was designed. (Bore and Borel 2005}
Farooq et al., 2010))

The API usability test proposed by |Grill et al.| (2012) was done in 5 phases, which can
be seen in Figure 3.2, In the first phase, the “Planning”(Grill et alJ, 2012, p. 168) phase,
experts in the field and developers with experience in programming are recruited to take
part in the API usability test. Programming tasks have to be designed in this primary
phase, which the recruited developers should complete. Also, heuristics are chosen, based
on which the API is evaluated.

Within phase two to four, the usability of the API is evaluated. The experts identify
usability issues by doing a heuristic evaluation based on the heuristics chosen in phase

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.6. API Usability Test

Phase 1 { ‘ Planning
' l

Workshop with developers

- Questionnaires
Heuristic . Hands On s
Phase 2-4 N Tutorial Audio/Video
{ Evaluation Example recording

| | |

Semi-structured
Interviews

Analysis of .
Heuristic Analysis of the questionnaires and the recordings done during I::::ﬁ; o;t:fe
Evaluation the workshop : 9
Results the interviews
Phase 5 5
— ———— 1

Discussion

Fig. 1. Methodological Approach

Figure 3.2: Visualisation of the different stages of the API usability
test. (Grill et al., 2012, p. 168)

one. This is done to find and categorise issues based on standardized heuristics. Each
expert covers only a small subset of the chosen heuristics to find issues for this exact
heuristic in as many places as possible. The heuristics chosen for the heuristic evaluation
in the case of |Grill et al.| (2012) can be seen in Figure 3.3.

In phase three the developers get to use the API to complete a set of tasks. This so-called
“Workshop with Developers”(Grill et al.l 2012, p. 167) starts with an introduction to the
API and the collection of demographic data about the developers. This is followed by
a set of small tasks to be implemented by the developers using the API that is tested
through the API usability test. During the implementation, the developers are asked
to fill out a questionnaire to note the found usability issues and voice and screen of the
developers are recorded. After the workshop, the developers are asked to take part in
a short interview no longer than 30 minutes to discuss the usability of the API, which
is phase four of the API usability test. The interview takes place shortly after the API
usability test to make sure the developers remember the found usability issues.

In phase five the collected data from the heuristic evaluation, the workshop with developers
and the interviews are analysed and the found usability issues are documented. The found
usability issues during the heuristic evaluation are categorised based on the heuristics
they were identified for. The usability issues found by the developers during the workshop
are also categorised based on the chosen heuristics. This allows for a comparison of
the usability issues found by the experts and those found by the developers during the
API usability test and during the interviews. The results of the API usability test are
mainly qualitative, but if the number of developers and experts who take part in the API
usability test is high enough, also quantitative conclusions can be made.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

METHODOLOGY

30

Name Description

Complexity An API should not be too complex. Complexity and flexibil-
ity should be balanced. Use abstraction.

Naming Names should be self-documenting and used consistently.

Caller’s perspective

Documentation

Make the code readable, e.g. makeTV(Color) is better than
makeTV(true).
Provide documentation and examples.

Consistency and Con- Design consistent APIs (order of parameters, call semantics)

ventions
Conceptual correctness

and obey conventions (get/set mehods).
Help programmers to use an API properly by using correct
elements.

Method parameters and Do not use many parameters. Return values should indicate

return type

result of the method. Use exceptions when exceptional pro-
cessing is demanded.

Parametrized construc- Always provide default constructor and setters rather than

tor
Factory pattern
Data types

Concurrency

constructor with multiple parameters.

Use factory pattern only when inevitable.

Choose correct data types. Do not force users to use casting.
Avoid using strings if better type exists.

Anticipate concurrent access in mind.

Error handling and Ex- Define class members as public only when necessary. Excep-

ceptions

tions should be handled near from where it occurred. Error
message should convey sufficient information.

Leftovers for client code Make the user type as few code as possible.

Multiple ways to do one Do not provide multiple ways to achieve one thing.

Long chain of References Do not use long complex inheritance hierarchies.
Implementation vs. In- Interface dependencies should be preferred as they are more

terface

flexible.

Figure 3.3: Heuristics chosen by |Gri11 et al.| (]2012L p. 171)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Implementation

This chapter focuses on the implementation done for this thesis. First, it is described
how the requirements were analysed using thematic analysis and defined using UserX
Stories. This is followed by a description of the implemented software library which was
named MicroDO and what challenges were faced during the development.

4.1 Requirements Analysis

To identify what is missing in current software frameworks to better support the im-
plementation of new media-intensive user interactions, it was first necessary to identify
new ideas for user interactions and user interfaces. This was achieved by conducting a
thematic analysis on 144 student submissions for the course “Interface & Interaction
Design” on the topic of sorting of multimedia elements on mobile phones. The goal
of the exercise of the students was to reflect on how they organise the photos on their
smartphones and how the sorting process could be improved. For this, a set of sketches
had to be drawn and discussed. By knowing what kind of new ideas for user interactions
and user interfaces exist, it was possible to identify how the implementation of the new
ideas could be supported.

The student submissions were analysed by conducting a thematic analysis as described in
Section 3.1. The submissions were first read to get an overlook of the dataset. In phase 2
of the thematic analysis 25 codes have been identified, which can be seen in Table 4.1.
The codes were found by repeatedly reading through the student submissions and noting
what kind of ideas for sorting and rearranging of multimedia files on smartphones the
students mentioned.

The codes were then analysed to identify the themes. The themes show which ideas for
user interaction and user interfaces exist and as such build the basis to answer RQ1.
The codes were analysed and checked if the proposed user interaction or user interface

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. IMPLEMENTATION
Autosort List-To-List
Sidescrolling Folders
Multiselect Multimove
Select and Move Parking
Preview Tagging
3D Visualization Swipe Select
Corner Buttons Selected State Animation
Favorite Order By Selection
Lassoselect Radial Menu
Alternating List Map Visualization
Circular List From Preview To List
Non Linear List Swap 2 Elements
Zoomable
Table 4.1: Codes found during thematic analysis
element can be easily implemented using the Android framework or how it could be
supported. A mind map has been created to visualize the initially identified themes of
user interactions and user interface elements that were identified to benefit from a new
software library supporting their implementation. The themes have also been grouped
into subthemes in a mindmap to get a better overview, which can be seen in Figure 4.1.
(e |
Multiobject i
[Any Format List (e.g. Zick-Zack)
[Map Special Formats List f;&:mable
3D Visualized Lists
Figure 4.1: Mindmap of themes and subthemes after phase 3 of the
thematic analysis of the student submissions.
The themes were then discussed with an expert in the field. This discussion showed
that the themes of “Lassoselect”, “Select In Order”, “Any Format List”, “Map”, “Spe-
cial Formats”, “3D Visualized Lists”, “Radial List”, “Automatic Sorting”, “Folders”,
“Zoomable List” and “Preview” should be dropped. In addition to the remaining themes
32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Requirements Analysis

of “Swipeselect”, “Multimove”, “Alternating List”, “Tagging” and “List-To-List” the
themes of “Corner Gestures” and “Side Tags” were added. The theme “Preview” has
been removed, as a component for this theme already exists as it can be represented by
the “VideoView’!| component provided within the Android framework. The integration
of a preview with a list to preview videos from would couple the components very tightly
and as such make the software component harder to be reused in various ways. Also, the
themes regarding the “Radial List” and the “3D Visualized List” were dropped as they
serve very specific implementations. The “Special Formats Lists” theme lacked data to
support a single implementation to be chosen and was, consequently, also dropped. The
theme “Lassoselect” was dropped in favor of supporting “Swipeselect”. The theme of
“Select In Order” was also dropped as the “Swipeselect” theme covered a more challenging

use case, and it was decided to cover only one form of element selection for this thesis.

The theme of folders was removed because the storage of modern smartphones is still
organised the same way as PC storage systems, which already are folders. Also, the theme
of automatic sorting was removed since the progress of sorting elements via algorithms
is not user interaction based and as such is not as relevant for answering the research
questions of this thesis.

Swipeselect

Multiselect

List-To-List

Tagging

Parking

Element
Operations

Lists
Corner
Gestures

Figure 4.2: Mindmap of themes and grouped into subthemes after phase
4 of the thematic analysis.

Multimove SR 1256

{ Alternating List ‘

It was identified by the expert that the theme of “Multimove” and “Parking” are very
relevant for the research within the field despite not being mentioned by the students
as often. The theme of “Tagging” is mostly focused on adding the functionality to add
meta information in form of tags to a multimedia file. There are various ways to visualize
the tags on the multimedia elements in the user interface. As no form of visualization
was heavily supported by the data of the submissions, a variant suggested during the

https://developer.android.com/reference/android/widget/VideoView (Accessed:

06.06.2020)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.android.com/reference/android/widget/VideoView

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

IMPLEMENTATION

34

discussion with the expert was chosen. It is called “Side Tags” and shows up to 4 tags
visualized via colors on the four sides of a multimedia element. The main focus of this
theme will lie in enabling the usage of tags for video files at all. With the support of the
“Corner Gestures”, which came up a lot during the discussion with the expert and was
mentioned and coded as “Corner Buttons” but not identified as theme initially, a high
number of use cases can be covered.

At the end of phase four, the reduction of the themes led to the final seven themes that
were found by the thematic analysis and the discussion with the expert. A mind map
showing the found themes can be seen in Figure 4.2. The choice of themes supports
a variety of use cases by having a new form of visualizing elements in a list, a way to
interact with elements, ways select elements and drag and drop them and a way to add
more information to elements.

To clarify what exactly is meant by the names of the themes, phase five of the thematic
analysis requires the themes to be defined and described. This can be seen in the following
enumeration. Each theme is also accompanied by a sketch of the user interface element
or user interaction to be supported by the theme.

T1 Alternating List: The Alternating List theme represents a layout for a list,
that supports arranging elements in an alternating fashion. Instead of aligning
all elements in the list on the same height, the elements get displayed having an
offset in height. This can be done both in vertical or horizontal directions. The
Android framework supports different orientations and alignment methods for lists
by default, but none match the design requested within the Alternating List theme.
Also in open-source libraries, no support for such a list layout was found.

Figure 4.3: Sketch of the Alternating List theme

T2 List-To-List: This theme represents an operation on a list element, with which
it should be possible to drag elements from one list to another. The removal and
insertion of elements into the lists should be properly animated. It should also be
possible to use this operation to rearrange elements within the same list. Android
supports the drag and drop of user interface elements, but it requires a lot of code
and is not trivial to implement. As such supporting and easing this behaviour on

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.1. Requirements Analysis

T3

T4

lists is beneficial.
L—M' -To-list

Figure 4.4: Sketch of the List-To-List theme

Parking: The theme of Parking represents a user interface element, where elements
can be placed during the rearrangement process without forcing them to stay within
a list-like form. Which can be seen as parking the element within a user interface
element. In addition, it should not be restricted to what type of element can be
parked in the area, but a copy of the original representation should be used to
visualize the element. As for the List-To-List theme already mentioned, the drag
and drop behaviour for user interface elements is supported by Android. But a
component just accepting any kind of user interface element to be parked and later
moved to a different location does not exist at the moment.

EEEEEE)
IGIE

T ————

Figure 4.5: Sketch of the Parking theme

Tagging: The Tagging theme should support the storage of meta information
within the multimedia files. The meta information can be anything that can be
represented by a character string. Media recording applications often support the

addition of meta information like GPS location or date and time of the recording.

The Tagging theme should enable the user to add any kind of meta information in
as key value pairs. Adding the data directly to the files enables the user to share
the data with other users without the necessity to use the same application to edit

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

IMPLEMENTATION

36

TS

T6

the videos, as long as a standardized key for storing the meta information is used.
To visualize the tags added to a multimedia file in the user interface, the subtheme
of Side Tags was found. For each tag, one of the sides of the displayed component
is colored differently. Each side or color should represent a different tag and as
such supports the display of up to four tags at the same time.

Bl — Sols coloveol
L baveol on

Figure 4.6: Sketch of the Side Tags theme

Multimove: The theme of multimove should enable the movement of multiple
selected elements at once. It should be visualized that the elements get grouped
together and moved as a virtual single element.

Pi(; rcpresc-rk
Moy ey 'c‘em;

Figure 4.7: Sketch of the multimove theme

Corner Gestures: The Corner Gestures theme enables a user to trigger functions
by swiping to the corners of a user interface element. A swipe to one of the corners
could trigger a state change, for example swiping to the top left corner starts
the selection mode in a list, or trigger operations, for example swiping to the
bottom right deletes the element the swipe has been performed on. The operations
themselves are not predefined and can be defined based on the use case the Corner
Gestures feature is used for. This theme supports detecting swipes to the corners as
well as providing a default user interface to use for visualizing the actions performed
at the corners.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.2. UserX Stories

Figure 4.8: Sketch of the corner gestures theme

T7 Swipeselect: Swipeselect enables the user to select elements by swiping over them.

This can be combined with the process of clicking single items to enable fast and
precise selection of multiple elements. Not only should this theme support the
developers in creating the swipe to select gesture but also a user interface element
showing that an element counts as selected should be provided.

Swipeeelet

Figure 4.9: Sketch of the swipeselect theme

4.2 UserX Stories

The last phase of the thematic analysis is writing a report about the found themes. As
the themes should be the basis of the implementation to be done within this thesis, the
themes were transformed into the requirements for the implementation instead of writing
a formal report. UserX Stories, as described in Section 3.4, were created for each theme
identified within the thematic analysis. The format proposed by |Choma et al. (2016)
has been slightly tailored to fit the needs of the development done for this thesis. The

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

38

format of the acceptance criteria has been loosened, as one of the goals of the thesis is to
define abstract software components that can be reused in various different ways. This
would not have been possible if such a concrete description of acceptance criteria was
given in the format of a “Nielsen’s Heuristic” . Since acceptance criteria
are helpful in testing if the wanted behaviour has been fulfilled, a simple enumeration of
the wanted behaviour was written instead. In addition, the sketches from the themes
were transformed into more detailed mockups to clarify how the user interactions and
user interface elements should look after the implementation.

Each of the following UserX Stories represents one theme. The story of the UserX
Story captures the user interaction and the acceptance criteria describe in short what
should be possible when using the implemented user interface element. This built the
basis for the implementation and answer both the research question on what is missing
current software frameworks to better support the implementation of media-intensive
user interfaces (RQ2) on Android and how the missing elements in current software
frameworks can be defined (RQ3]).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.2. UserX Stories

UXS1: List-To-List

As a person who edits videos,

I want to move elements between lists,

for this the system allows me to drag and drop elements between
lists,

when an element is dragged it is no longer part of the source list and
on drop it gets part of the target list.

I evaluate that my goal was achieved when the element is no
longer part of the source list and the element is part of the target list.

Acceptance Criteria:
e On element removal the source list animates the removal
e On element insertion the target list animates the insertion

e The element is not part of the source list after the movement is
finished

e The element is part of the target list after the movement is finished

Mockup:

mev mev

= List-To-List < @ Q List-To-List List-To-List < @9 Q

Figure 4.10: UX flow of an element being removed from
the list (left side), the animation happening (center) and
added to the list (right side)

Table 4.2: UserX Story 1 - List-To-List

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.

IMPLEMENTATION

40

UXS2: Alternating List

As a person who edits videos,

I want to see my elements in a list that alternates the offset per row,
for this the system visualizes the elements alternating on the left or
right side of the list and offsets them.

I evaluate that my goal was achieved when I can see the elements
in a list in an alternating manner.

Acceptance Criteria:

e The elements get inserted with an offset per row if the list is
vertical

e The elements get inserted with an offset per column if the list is
horizontal

Mockup:

mev
= AlternatingList < @ Q

Figure 4.11: Mockup of a vertical alternating list

Table 4.3: UserX Story 2 - Alternating List

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.2.

UserX Stories

UXS3: Tagging

As a person who edits videos,

I want to tag my multimedia files with custom values,

for this the system allows me to select an element and assign a
custom value to it,

when the element is loaded at a later time or on a different device this
custom value can still be read.

I evaluate that my goal was achieved when I can read previously
stored values for an element and see those tags for any video file.

Acceptance Criteria:
e [can add tags to any .mp4 file

e The tags can be visualized on my media files by showing a colored
border on the element in the Ul

e Up to 4 tags get assigned custom colors to represent them in the
Ul

Mockup:

mev

= Tagging < ® Q

Figure 4.12: Mockup of a tagging User Interface. The sides of
the lists elements get colored based on the assigned tags.

Table 4.4: UserX Story 3 - Tagging

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4. IMPLEMENTATION
UXS4: Parking
As a person who edits videos,
I want to temporarily park video files in a predefined area,
for this the system allows me to drag and drop the video into a
predefined are,
when I drop the element it gets displayed similar to its original repre-
sentation.
I evaluate that my goal was achieved when I can drop any video
file into an area.
Acceptance Criteria:
e A video can be dropped inside the parking area where it stays at
least until the app is closed
e A video can be taken out of the parking area to be inserted
somewhere else
Mockup:
= Parking < ® Q = Parking < ® Q = Parking < ® Q
Figure 4.13: Mockup of the parking area. The elements can be
placed anywhere inside the gray area at the bottom and dragged
out to a different location again.
Table 4.5: UserX Story 4 - Parking
42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.2.

UserX Stories

UXS5: Corner Gestures

As a person who edits videos,

I want to trigger functionality with the currently shown video file,
for this the system allows to me swipe to the corners of a shown
video,

when I reach one of the corners the predefined functionality for the
specific corner is triggered.

I evaluate that my goal was achieved when I am able to start
functionality on each of the 4 corners of the element.

Acceptance Criteria:

o If a swipe gesture is done towards one of the corners, a function-
ality that can be freely defined is triggered

e For each corner can trigger different functionality

e Icons can be used to represent the functionality triggered by a
corner

e The minimum distance to a corner to trigger the assigned func-
tionality can be modified

Mockup:

mev

= Corner Gestures < @ Q

Figure 4.14: Mockup of the Corner Gestures.

Table 4.6: UserX Story 5 - Corner Gestures

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. IMPLEMENTATION
UXS6: Swipeselect
As a person who edits videos,
I want to select multiple elements at once,
for this the system allows me to swipe over the elements that I
want to select,
when an element is selected it is visualized on the element.
I evaluate that my goal was achieved when I can select multiple
elements within a list by swiping over them.
Acceptance Criteria:
e Elements that were swiped over are set to be selected
e A checkbox is set to be checked when an element is set to be
selected
Mockup:
= Swipeselect < ® Q = Swipeselect < @ Q
(=) o o a [m] (m] (=] (=) o (=]
o o o o = = o
o o (m] o o = 2
o a a a o = o
()
o o (=] a o o o o ‘ o
Figure 4.15: Mockup of the Swipeselect gesture. All elements
swiped over (left image) are set as selected (right image).
Table 4.7: UserX Story 6 - Swipeselect
44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.2. UserX Stories

UXS7: Multimove

As a person who edits videos,

I want to move multiple elements at once,

for this the system allows me to drag multiple previously selected
elements to a new location,

when the move is happening it is shown how many elements are
currently being moved.

I evaluate that my goal was achieved when all elements that were
supposed to be moved have been moved to the new location.

Acceptance Criteria:

o If one one or more elements are selected and one is dragged all
selected items move into a single item that moves along the finger
during the drag and drop gesture

e When the dragged element is dropped, the previously selected
elements are inserted before the element they are dropped on

e The format of this insertion depends on the Ul element the drop
has been performed on

Mockup:

mev mev mev

= Multimove < ® Q = Multimove < ® Q = Multimove < @9 Q

TEIN

Figure 4.16: Mockup of the multimove gesture

Table 4.8: UserX Story 7 - MultiMove

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

IMPLEMENTATION

46

4.3 Implementation of the MicroDO library

After the definition of the UserX Stories, the development of the software library was
started. The name chosen for the software library and their software components was
“MicroDO”. “Micro” stands for the size of the software components, which should be small
and reusable in different contexts. “DO” stands for supporting the implementation of
user interactions. The definition of a MicroDO software component for the development
was as follows:

A “MicroDO” is a software component that eases the implementation of
user interactions on Android devices. With the combination of multiple
“MicroDOs” complex user interactions and user interfaces can be represented.

In total 42 classes and interfaces were implemented for the MicroDO software library.
These classes are part of eleven software components which represent seven MicroDOs. In
addition to the MicroDO library itself, a demo application was implemented for showcasing
the MicroDOs. This demo application was implemented in a separate software module
to keep it completely separated from the actual MicroDO library source code. As such
it is possible to create a build of the library without containing the source code of the
demo module to keep the size of the final library small.

To avoid confusion within the descriptions of the MicroDO implementation, short low-
level descriptions of commonly used classes within the Android framework are given
below. For more detailed descriptions of the classes and paradigms defined within the

Android development framework, please refer to the Android API reference?.

e Activity: An Activity is the starting point for an Android application. An
Activity gives the developer access to callbacks to react to lifecycle changes
within the application. This also includes the setup and destruction of the user
interface. In many cases, a single Activity object is created for each Window
of a user interface, but also multiple activities can be used within multi-window
applications or when floating windows are shown to the user.

e View: A View is the top-level class that represents a user interface element, similar
to how Object is the top-level class for any Java class. The View class provides
all basic functionality necessary to display user interface elements on the screen.
All other user interface elements within the Android framework either extend the
View class or a subtype of it.

e RecyclerView: The RecyclerView can display bigger datasets in a performant
way. The RecyclerView uses an Adapter to store the data and detect changes
within the dataset and a LayoutManager to handle how the data is presented

*nttps://developer.android.com/reference|(Accessed: 03.06.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.android.com/reference

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Implementation of the MicroDO library

and rendered. To handle big data sets efficiently, a RecyclerView re-uses View
objects instead of creating new View objects repeatedly. The Adapter attached
to the RecyclerView is responsible to handle the management of View object
such that the View objects are re-used efficiently.

Layouts: Layouts are root elements of user interfaces where View objects can be

arranged in. Each layout is a View itself and as such the layouts can be stacked.

The layouts are normally specified within XML files, but can also be modified
from within the source code. To display the XML files, they are “inflated” within
the Activity context to create the View objects. Android provides a selection
of common basic layouts to arrange the user interface elements. Commonly used
layouts are:

— ConstraintLayout: The ConstraintLayout lets the developer assign

constraints to the user interface elements based on other user interface elements.

For example, it can be defined that a View should always be 10 pixels from
the bottom of the screen, or that a Button should always be directly below
another View.

— FrameLayout: The FrameLayout is used as a wrapper around a single
child View to use within another layout. It also supports adding multiple
children that are overlapped.

— RelativeLayout: The RelativeLayout allows the developer to display
user interface elements relative to each other. This is quite similar to the
ConstraintLayout but it uses slightly different paradigms to align the
View objects.

Listeners: Android supports by default a lot of listeners that help the developers
to detect different kinds of user inputs. These listeners are interfaces. Classes that
implement the interface can be attached to any kind of View. Commonly used
listeners are:

— OnClickListener: Detects a single short tap on the View the listener is
attached to.

— OnLongClickListener: Detects a single long tap on the View the listener
is attached to.

— OnTouchListener: Detects any kind of touch on the View the listener is
attached to. The different kinds of events, like starting the touch, moving the
finger and lifting it back up are sent to the listener.

— OnDraglListener: Detects that an element is currently dragged over or
dropped on the View the listener is attached to. The events sent to the
OnDragListener contain information about the dropped object as well as
the exact location.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

W
co

The implementation was done in Kotlin, using Android Studio® as integrated development
environment (IDE) and Gradle as build and dependency management tool. For source
code management and version control, a Git repository on Github was used. Github was
also used to handle ticket management. As mentioned in Section 3.3| Github also provides
a solution for the Kanban board of the project which was also used. The implementation
was done in increments. For this, each feature was first implemented rudimentarily in
a first iteration and then refined in incremental steps. In addition, after finishing a
MicroDO, already finished MicroDOs were revisited and new learnings were applied.

The Kanban board, which was used within the Github platform, can be seen in Figure
4.17. The work in progress limits set to each of the columns of the Kanban board was
two, which means in both the “In Development” and “In Testing” columns only two
tickets could be at the same time. The limit for the “In Development” column was
chosen, to move already finished tickets back into the development column when new
learnings needed to be applied, despite still working on a new ticket. This was essential
to apply an iterative development approach and was necessary to make it possible to
have interactions between the software components and keep all software at the same
level of quality. The “In Testing” column also got the work in progress limit of two
tickets, as this phase was mainly used to implement and polish the demo use cases to
test the functionality. Having two MicroDOs in the columns at the same time, allowed
to combine different MicroDOs into a single demo use case while sticking to the Kanban
development process. By using this approach the limits of the columns on the Kanban
board were never broken. When a column was full it enforced the focus on nearly finished
tickets and as such sped up the development process overall.

3 Todo + 1 In progress (2) + 2 In testing (2) + o 1 Done + o

® Multimove ®© Swipeselect ® List To List ® Tagging

by lukasnaske ™ opened by lukasnaske & pened by lukasnaske]

pened by lukasnask Y]
® Parking
ke S 3 opened by lukasnasks B
pened by lukasnasks B

Figure 4.17: The Kanban board used on Github during development

Following is a list of the implemented MicroDO components and short descriptions of
their usage within Android development. A set of common interfaces and classes was
defined to ensure interoperability and are not specifically mentioned here. For more
detailed information please refer to the documentation in the source code, which can be
found on Github’.

3https://developer.android.com/studio| (Accessed: 31.07.2020)
Yhttps://gradle.org/|(Accessed: 06.06.2020)
®https://github.com/lukasnaske/microdo (Accessed: 17.08.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.android.com/studio
https://gradle.org/
https://github.com/lukasnaske/microdo

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Implementation of the MicroDO library

e AlternatingLayoutManager: This layout manager can be used for a

RecyclerView to get the staggered design from UserX Story 2 - the Alter-
nating List. The RecyclerView concept is widely used and changing the way the
elements of the list are displayed by simply attaching a different LayoutManager
was favored over other list implementations. The AlternatingLayoutManager
supports both vertical and horizontal item alignment and can be configured using
the AlternatingLayoutConfigLookup class if wanted. The design is heavily
based upon a blog post by Emre Babur on baddotech.badoo.com® but extended to
support both vertical and horizontal alignment.

CornerGesturesOnTouchListener: This OnTouchListener allows the
functionality of the Corner Gestures MicroDO. It can be attached to any View and
reports back to a class implementing the CornerGesturesListener interface
which corner has been swiped to. It was also implemented to report if one of the
corners is currently being hovered over, which means that a swipe is happening,
but the touch did not yet end. To specify at which point each corner should be
activated, a percentage can be given. The percentage is then used to calculate the
activation distance by taking the percentage of the shorter side of the view the
CornerGesturesOnTouchListener is attached to.

CornerGestureLayout: This class is an extension of the FrameLayout from
the Android framework. It can be used to show small corner buttons with
icons in them around a view to give a visual representation of the corner ges-
tures. To ease updating the visibility and the color of the corner buttons, the
CornerGestureHelper was implemented. The CornerGestureLayout can
be seen in Figure 4.18bl

ListToListOnDragListener: To fulfill the List-To-List MicroDO, the process
of enabling the Android drag and drop behaviour had to be made easier. For this
the ListToListOnDragListener was implemented, which is a generic class
that accepts a MicroDoDragEvent and adds it to the View the dragged element
was dropped on. If the view the element is dropped on is a RecyclerView,
the element dropped is added to the Adapter of the RecyclerView. Ei-
ther the View itself or the Adapter of the RecyclerView has to implement
the ListToListDropable interface, which defines methods for adding the ele-
ment. To start the drag and drop behaviour for any user interface element, the
ListToListDragInitializer can be used. In addition, as the List-To-List
MicroDO is mainly focused on Lists, the abstract class ListToListAdapter
was implemented as an extension of the RecyclerView.Adapter class. The
ListToListAdapter class is abstract as it only handles the behaviour of
adding or removing data for the drag and drop behaviour. A class extend-
ing the ListToListAdapter then does not have to handle the drag and

6https ://badootech.badoo.com/a-custom-layoutmanager—case—beeline—-on—
android-d8d31526596b (Accessed: 01.03.2020)

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://badootech.badoo.com/a-custom-layoutmanager-case-beeline-on-android-d8d31526596b
https://badootech.badoo.com/a-custom-layoutmanager-case-beeline-on-android-d8d31526596b

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

ot
@)

drop behaviour and only has to focus on the normal responsibilities of an
RecyclerView.Adatper. The ListToListAdapter can also automatically
attach the ListToListOnLongClickListener to all View objects created for
the RecyclerView, which starts the drag automatically on a long click on one of
the items within the RecyclervView.

MultiMoveListToListOnDragListener: To support moving multiple ele-
ments for the Multimove MicroDO, an extension of the List-To-List MicroDO
was implemented. The MultiMoveListToListOnDragListener extends the
before mentioned ListToListOnDragListener and replicates the behaviour for
all elements that were moved. Since the Multimove MicroDO relies on more than a
single view being dragged, the Mut 1iMoveDragInitializer was implemented,
which takes all elements that should be moved and starts the drag and drop be-
haviour. A View object has to be given to the MutliMoveDraglInitializer
that is used as representation during the drag and drop behaviour.

MultimoveLayout: To visualize that more than a single element is dragged, a lay-
out was designed that shows the number of currently dragged elements on any of the
views being dragged as a number. Because of this the Mult imoveLayout was cre-
ated as an extension of the Android FrameLayout. The MultimovelLayout
adds a TextView to the View it surrounds. This TextView can be used
to show the number of elements that are currently being dragged. The
MultiMoveDragInitializer checks if the MultimoveLayout has been ap-
plied to the View that should be used as representation during drag and drop
and automatically shows the number of dragged elements in the TextView of
the MultimoveLayout. In addition the MultiMoveHelper was implemented
to ease updating the visibility of the TextView and the shown number. The
MultimoveLayout can be seen in Figure |4.18al

ParkingLayout: The ParkingLayout is an extension of the
RelativeLayout, which accepts any kind of View object dropped on it
to be stored and later moved out of the ParkingLayout again. It attaches
the ParkingOnDragListener, which accepts a MicroDoDragEvent to
construct a copy of the dropped view and display it. It can also be defined
in the layout XML if and how much the dropped view should be scaled to
make it possible to reduce the size of the dropped views. By default the
ParkingOnLongClickListener is attached to any View dropped in the
ParkingLayout. The ParkingOnLongClickListener starts the drag and
drop behaviour on long click on the dropped View and add the original event
into the drop behaviour. If a different kind of interaction is wanted to start
the drag and drop behaviour, the ParkingLayout can be extended and the
ParkingDragInitializer can be used to start the drag and drop behaviour.

SwipeSelectListener: To enable the Swipeselect MicroDO, it was necessary
to detect all elements that were swiped over within a View. For this the Swipe-

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Implementation of the MicroDO library

455 & @ *an 254 & @

= Mutli Move Layout = Corner Gestures

IR d

(a) The MultiMoveLayout show- (b) The CornerGesturelLayout
ing the number 42. with colors assigned to the corners.

Figure 4.18: The (a) MultiMoveLayout and (b) CornerGestureLayout as
seen in a fullscreen Android application.

SelectListener was implemented that is both an OnTouchListener and an
OnClickListener. This way it can be used when swiping over elements as well
as when the elements are only tapped. The SwipeSelectListener accepts an
SwipeSelectCallback, which gets notified of the elements that are selected.
The SwipeSelectListener also keeps track of elements that have already been
swiped over to not report an element that has been swiped over twice. The
SwipeSelectListener allows also for multiple touches to be seen as a single
swipe, so that also when the user wants to select the items in multiple swipes,
the listener still only reports each element swiped over once. This behaviour can
be triggered by setting a parameter to either true or false, which then either
automatically resets the cache of already swiped over elements or requires the
developer to manually reset it.

SwipeSelectLayout: To have an indicator that a View was selected, an exten-
sion of the FrameLayout was implemented that puts a checkbox on the top right
corner of the view. When using the SwipeSelectHelper this checkbox can be
easily set to be checked or not. The SwipeSelectLayout can be seen in Figure
4.19a.

VideoTaggingService: To store any kind of information with a video file, a
service was implemented that can store any kind of key-value pair with the file. For

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

52

this the free to use software library “JCodec” |"| was used. This library provides the
functionality to store the information within the file structure of an MP4 file. The
implemented VideoTaggingService encapsulates and eases the functionality
of the “JCodec” library and lets the developer use objects called Tag to store and
read the values.

e SideTagsLayout: To provide an indicator that a view has been tagged with
specific values, an extension of the ConstraintLayout has been implemented.
The SideTagsLayout shows a border around the encapsulated view. Each of the
four sides can be assigned with a different color to indicate that the encapsulated
element has been tagged by a specific value, where each color represents a tag. By
using the TaggingHelper the color for each of the border sides can be easily
changed and the visibility updated. The SideTagsLayout can be seen in Figure
4.19b

506 & @ *an 511 & @

= Swipeselect Layout = Tagging Layout

(a) The SwipeSelectLayout with (b) The sideTagsLayout with all
the checkbox checked. sides having different colors assigned.

Figure 4.19: The (a) SwipeSelectLayout and (b) SideTagsLayout as seen
in a fullscreen Android application.

During the development of the MicroDO software library, there were a few challenges to
tackle. The necessity to create a software library that can be reused in multiple contexts
in a flexible and modular way required to focus on potential special cases. To create
software components, which are reusable in different contexts, while providing useful

"nttps://github.com/jcodec/jcodec| (Accessed: 08.05.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/jcodec/jcodec

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Implementation of the MicroDO library

functionality, the concept of generic classes was used a lot. Generic classes allow the
programmer to use the same software component to handle a variety of different data
types. While generic classes provide great benefits, there are also great limitations within
the Java and Kotlin programming languages. When making no restrictions on which
kind of data types can be used for with the generic class, only the most common methods
of the base class Object can be used on objects of the generic type. This only results
in issues when operations on the actual objects of the datatype were required. In cases
where more operations were required, interfaces were implemented, that the users of the
MicroDO software library have to implement in their own classes.

In addition there exist some limitations with regards to subtyping when using generic
classes. Assume Mp4Video is a subtype of Video. Then SwipeSelectListener—
<MP4Video> is not a subtype of SwipeSelectListener<vVideo>. But, assum-
ing CustomSwipeSelectListener is a subtype of SwipeSelectListener, then
CustomSwipeSelectListener<Video> is a subtype of SwipeSelectListener—
<Video>. This behaviour is less intuitive than handling subtyping for non generic objects
and has to be considered within implementations of the same generic class with different
types and subtypes.

The subtyping of generic types had to be considered when implementing the List—
ToListOnDragListener. In cases the View object, which the listener is attached
to, cannot accept the datatype that is dropped, the ListToListOnDragListener
should reject the drop and the drag and drop should be reverted. For this reason,
the View objects that attach a ListToListOnDragListener have to implement the
generic ListToListDroppable interface. Based on the generic datatype chosen for
the ListToListDroppable, the ListToListOnDragListener can decide if the
View can handle the dropped element or not. If the developers using the ListToList-
OnDragListener do not focus on the issues with subtyping of generic classes this could
lead to the drag and drop behaviour not working as intended. Also, there is no way to
enforce the dependency of the ListToListOnDragListener to have the View object
implement the ListToListDroppable interface. But the abstract class ListToList—
Adapter, which is a custom extension of the RecyclerView.Adapter implemented
in the MicroDO library, attaches a ListToListOnDragListener of the correct type
automatically to the RecyclerView. It is also mentioned in the documentation that
this relation of the ListToListOnDragListener and ListToListDroppable is
required when using it outside of the context of RecyclerView instances with the
ListToListAdapter.

In Kotlin all classes are non-extendable by default, which means custom subtypes can
normally not be created. To make it possible to extend the classes within the MicroDO
library and to update as minimal code as possible to cover a custom use case, the classes
and methods in the MicroDO library are marked as open to make them extendable.
The usage of private methods and parameters was also avoided. While it is normally
seen as bad practice to not encapsulate the code within the class, it was more valuable
providing the possibility to override only parts of the implementation while reusing the

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

IMPLEMENTATION

54

main functionality without having to copy and paste the code from private methods.

Doing the implementation for the Android framework did not always result in the
expected behaviour. Android supports attaching listeners to cover the most important
interactions like clicking, long clicking and touch gestures. But it can easily happen that
the listeners attached to a View do not receive events even though it is expected. As
an example, when the child of a layout has an OnClickListener implemented, the
parent View object of the layout does not get any touch events when the child with the
attached listener is touched in any way, even though the touch gesture might be a swipe
that the OnClickListener does not get notified of. To prevent this, the child View
objects may only have an OnTouchListener attached, which can distinguish between
a click event and a swipe and will ignore events that should not be handled. By ignoring
the event correctly, the parent OnTouchListener gets correctly notified of the events.
Also, it is not possible to attach multiple listeners of the same type without adding a
custom implementation for this use case. This process of events not being propagated
to other listeners despite not being handled by the current listener is also referred to as
swallowing events. The listeners implemented in the MicroDO library all try to avoid
swallowing events.

Another challenge that had to be tackled was the inability to create a simple copy of a
View object. In most cases, a View is inflated from the layout definition in an XML file
and then updated with the data to display. For the Parking MicroDO, it was necessary
to accept and display View objects without knowing anything about the used XML file
or the data that is displayed within. In a first attempt the View object that was dropped
into the ParkingLayout was removed from its parent layout and simply added to the
ParkingLayout. But this resulted in issues when dropping a View that was previously
attached to a RecyclerView. As the RecyclerView reuses created View objects,
this led to a different element appearing on the ParkingLayout than the View that
was dropped. This happened because the RecyclerView already updated the data
within the reused View object to show a different list element. To overcome this issue, the
ViewCopy class was created. This class accepts the View and draws the user interface
elements onto a Canvas object with the same size as the View. This drawing onto a
Canvas object is also done when creating a representation of the View for the drag and
drop behaviour within the Android framework. The Canvas that the View was drawn
on, is then drawn onto the ParkingLayout resulting in a copy of the visualization of the
original View that should be added to the ParkingLayout. The only limitation was that
any behaviour or listeners of the View object get lost. When using the ParkingLayout
in an implementation where it is known what kind of objects are dropped into the parking
area, it might be beneficial to create an extension of the ParkingLayout that recreates
the original View instead of creating the ViewCopy object. But this was not possible to
do without limiting the usability of the ParkingLayout and making it less versatile.

When looking back at the themes that were discarded during phase four of the the-
matic analysis in Section 4.1, the theme of “Folders” can also be implemented using
code provided by the List-To-List MicroDO. The interface ListToListDropable is

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Implementation of the MicroDO library

used to check if the ListToListOnDragListener can interact with the View the
ListToListOnDragListener is attached to. If the View implements the given inter-
face, the addItem () method is called on the ListToListDropable object. As the
ListToListDropable interface can be implemented by any extension of a View this
allows for a folder style View to function easily with drag and drop. All that would have
to be added is a user interface element representing the folder and the code to store the
elements dropped into the folder and what to do with them. This is a good example of
the reusability of the code within the MicroDO library.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

This chapter describes how the MicroDO software library was evaluated by conducting
an API usability test. It is described how the API usability test was set up and how the
tasks for the participants were designed. Then the conduction of the API usability test
is explained in detail. This is followed by an analysis of the feedback gathered through
the API usability test by conducting a thematic analysis.

5.1 Design of the MicroDO API usability test

To evaluate the usability of the MicroDO software library, an API usability test was
conducted. The design of the API usability test was based on the API usability test as
described by |Grill et al| (2012). The authors also include a heuristic evaluation in their
APT usability test. However, this was the first iteration of the MicroDO software library
and we were more interested in qualitative feedback from developers than in heuristic
evaluation. Therefore we focused on the “Workshop with Developers”(Grill et al., [2012,
p. 167) and the heuristic evaluation was omitted.

The API usability test was designed to have developers implement a small application
using the MicroDO software library. FEach application to be implemented was described in
the form of a scenario, which consisted of small tasks which built upon each other. Each
task was designed to be implemented using one or more MicroDOs from the MicroDO
software library. At the beginning of an API usability test, demographic data from
the participants was gathered using a questionnaire. Each participant took part in the
API usability test one after the other to make it possible to use the “think aloud (TA)
protocol” (Alhadreti and Mayhew, [2018 p. 1). The participants were encouraged to
say anything that came to their mind during the implementation. The conversation
and development process were recorded. Because of the possibility for the participants
to state anything that came to their mind, it was not necessary for the participants to
take any additional notes in written form as Grill et al.| (2012]) suggest. Right after the

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

58

implementation section of the API usability test, a semi-structured interview was held
with every participant of the API usability test. Through the semi-structured interview,
further feedback of the participants was collected.

The scenarios were designed with four goals in mind.

1. All of the software components implemented in the MicroDO software library should
be used by at least one of the participants. To achieve this goal, each scenario
was designed to cover only a subset of the MicroDOs. Also, the order in which
MicroDOs had to be used was swapped. This way the risk of scenarios not being
finished and the MicroDOs not being used was mitigated.

2. The implementation done in the scenarios should cover realistic new use cases for
the MicroDO software library. Because of this goal, the scenarios were discussed
with the expert of the field who also took part in the discussion of the themes of the
thematic analysis conducted in Section 4.1. Through the discussion relevant and
new use cases could be found to be covered in the scenarios. Also, to simulate the
context of a real software project, the tasks were designed to build upon each other
and allowed for improving the implementation in iterations using the MicroDO
software library.

3. The modularity and extendability of the MicroDO software library should be tested,
as they were core goals of the implementation. To achieve testing of the modularity,
the design of some scenarios was adapted to require the usage of multiple MicroDOs
and standard Android components in combination. The extendability was tested
by designing some scenarios in a way that the MicroDO software library did not
support by default and required the participants to extend the existing code.

4. An experienced Android developer can pass the API usability test in no more than
two hours. This was a goal, as the developers should stay motivated during the
API usability test. Also, it was necessary to recruit multiple developers, which
would have been significantly harder if the API usability test duration was not
limited. To achieve the goal of limiting the time the participation in the API
usability takes, multiple steps were taken. First, the scenarios were adapted to
remove parts that did not require the usage of the MicroDO software library and
were not essential for creating a realistic application. For example, it was decided
not to require navigation between screens to achieve a single task. Secondly, the set
up of the project was prepared beforehand and code that did not require the use of
the MicroDO software library was pre-implemented. This included the basic user
interface, the set up of the Activity and the Fragment components and the
navigation between tasks. Also, the loading of the data to display from the device
was implemented to avoid issues in performance. As a third step, each task should
be possible to be implemented without finishing the previous task if the participants
could not achieve the goal in a limited time frame. As mentioned before the tasks
were designed to build upon each other. To make it possible to skip tasks or parts

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Design of the MicroDO API usability test

of the tasks, the prerequisites for each task were implemented beforehand. These
prerequisites also included the usage of the MicroDOs from the previous tasks,
which made it possible to discuss different solutions for a task in case the developers
took a different approach than the prepared implementation suggested. As each
task was started in order, the developers did not see the pre-implemented sections
until they finished or decided to skip the previous task.

To define the scenarios, the format of the UserX Stories as described in Section 3.4 was
used again. The format of the UseX Stories was chosen as it allowed for a clear description
of what was expected to be implemented while putting a focus on the required user
interaction. The UserX Stories handed to the participants can be seen in the [Attachments
2 to 6. Following is a description of the five scenarios that were designed:

Scenario 1: This scenario covered the MicroDOs Corner Gestures, Alternating List,
Tagging and Multimove. The first subtask was designed to tag a single video that
was displayed with values assigned to the corners using the corner gestures. In the
second task, a list of the videos should be displayed using the SideTagsLayout
showing the tags assigned to each video within the previous task. Using the corner
gestures again, the videos should be filtered based on the assigned tags when swiped
to a corner. Within the final subtask, it should then be possible to long click on
any of the videos that were filtered before and drag all of the currently displayed
videos into another list below using the Multimove MicroDO. The UserX Stories
that were handed to the participant who had to implement scenario one can be
found in |Attachment 2.

Scenario 2: Within the second scenario the MicroDOs for Alternating List, Swipeselect,
Corner Gestures, Tagging, Parking and Multimove were covered. The first subtask
required the participant to display the videos in a list using the Alternating List
layout and enabling the Swipeselect feature on the elements of the list. In the
second subtask, it was then required to add Corner Gestures to the list. With the
corner gestures, all previously selected videos should be tagged with a tag that was
defined for the corner gesture. The third subtask should then enable the user to
long click on any of the selected videos to drag and drop them into a Parking area
below using the Multimove feature. The UserX Stories that were handed to the
participant who had to implement Scenario 2 can be found in Attachment 3|

Scenario 3: In this scenario, the MicroDOs for Alternating List, List-To-List and
Parking were covered. In the first subtask, two lists had to be displayed using the
phone in the landscape orientation. The top list should be displayed using the

Alternating List layout, while the bottom list should use a simple linear layout.

Then the List-To-List feature should be enabled on both lists and videos should
be possible to be drag and dropped from either list. To see if the MicroDOs are
extendable, the default behaviour of long clicking the elements to start the drag and
drop behaviour should be replaced by using a vertical swipe to start the drag and

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

60

drop behaviour. In the second task, two parking areas should be added below the
lists. In subtask three the swipe to drag behaviour implemented for the list elements
should also be enabled on the elements dropped into the parking area. While this
scenario covers fewer MicroDOs, the complexity was a lot higher as extensions of
the classes had to be implemented. The UserX Stories that were handed to the
participant who had to implement Scenario 3 can be found in |Attachment 4.

Scenario 4: The fourth scenario covered the Alternating List, Tagging, List-To-List and
Parking MicroDOs. The first subtask should display a list using the Alternating
List layout. When clicking on any element of the list, a textbox should appear.
Text written into this textbox should be stored within the video files using the
Tagging MicroDO. In the second subtask, a parking area should be added on the
left of the list to park any video. This also required the usage of the List-To-List
MicroDO to start the drag and drop behaviour from the list. The third subtask
focuses on replacing the parking area with a secondary list where the elements
should be possible to be dragged and dropped to as well. The UserX Stories that
were handed to the participant who had to implement Scenario 4 can be found in
Attachment 5.

Scenario 5: This scenario required the usage of the MicroDOs for Swipeselect, Multi-
move and List-To-List. In the first subtask, a list should be displayed that scrolls
horizontally. Using Swipeselect it should be possible to select the elements within
the list. In the secondary subtask, it should be made possible to drag and drop
the selected videos using the Multimove MicroDO. This should make it possible to
drop the selected videos into so-called “Buckets”. These “Buckets” function similar
to folders on desktop computers and collect all videos dropped into the “Buckets”.
Each of these Buckets is represented by an icon and should display the number
of videos that were dropped into it. In the third subtask, the videos, that were
dropped into the buckets, should be displayed in the list below when a bucket is
clicked. The select and drag and drop functionality added to the list in the previous
tasks should still be usable when displaying the videos from a bucket. Through
this, it should be possible to move videos in between buckets. While this scenario
only covers three MicroDOs, it used the MicroDOs in a more complex manner that
required reusing code from the List-To-List MicroDO to enable the dropping of
elements into a user interface element that is not a list. The UserX Stories that
were handed to the participant who had to implement Scenario 5 can be found in
Attachement 6.

The scenarios for the API usability test cover all of the MicroDO software components.
Some of the scenarios require the usage of more MicroDOs by using only the code provided
within the MicroDO software library. Other scenarios encourage the extension of the
functionality or the usage of the MicroDO components for use cases that were not initially
expected. This should ensure to find usability issues in different areas. Also, it supported
verifying that research questions on how to design the software framework in a

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Conducting the API usability test

way to cover a variety of use cases, was answered by making the design decisions for the
MicroDO software library.

To conduct the semi-structured interview after the development section of the API
usability test was done, a set of questions was prepared to guide the conversation. The
questions were adapted based on the conversation flow. In addition to questions about
the usage of the MicroDO library, the participants were also asked for feedback about the
APT usability test itself. During the interviews, the audio and screen were still recorded,
as this allowed the participant to show directly if something would have been expected
to work differently. The questions prepared in advance were the following:

e Is there any important feature missing from the library that you would have liked
to see?

e Is there any feature that you did not need and would have rather implemented
from scratch that was implemented within the MicroDO framework?

¢ Do you have experience with similar libraries like the MicroDO library? If yes, how
does the MicroDO library compare to those?

e How is the MicroDO library different to other libraries in general that you have
used before?

e How could you imagine using the MicroDO library for other tasks?

o How did you feel during this API usability test? (stressed, observed, controlled,
stupid, annoyed, comfortable)

e Is there anything that you would have expected to be different when agreeing to
take part in this API usability test?

¢ Do you have any other feedback that you would like to share regarding the MicroDO
library or the usability test?

5.2 Conducting the API usability test

For the MicroDO API usability test, five experienced Android developers were asked
to take part, so that each of the designed scenarios was implemented by one of the
participants. The participants were recruited by asking already known software developers
if they had acquaintances who fit the participant subscription of being experienced
Android developers. The developers found through this referral were asked to also refer
more developers until the required number of participants for the API usability test was
recruited. This process is also known as snowball sampling. (Naderifar et al., |2017)

At the start of the usability test, a document was sent to the participants which consisted of
an introduction and the scenario to be implemented by the participant. The introduction

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

62

included a summary of the context of the MicroDO API usability test, a questionnaire to
collect the demographic data and a short background story which should set the context
of implementing a real software project. The summary text was not necessary to be read
by the participants but was covered while introducing the participants to the MicroDO
software library and the purpose of the API usability test. The questionnaire to collect
the demographic data of the participants can be seen in Table 5.1, After explaining the
context of the MicrDO software library and filling out the questionnaire, the background
story was read to the participants that should describe a context in which the library
should be used. The introductory part of the API usability test description including the
summary, the questionnaire and the background story can be seen in /Attachment 1. The
introductory part was added to each of the scenario specifications, which consisted of the
task descriptions in the form of UserX Stories and can be seen in |Attachments 2 to 6.

Age:

Years of experience with Android:

<1 1-3 3-6 >6

Years of experience with Kotlin:

<1 1-3 3-6 >6

Years of experience with Programming;:

<1 1-5 5-10 >10

Experience with Video Editing:
Yes No

Table 5.1: Questionnaire handed to participants

The participants had to be provided with the MicroDO software library before the first
release of the MicroDO software library to the public. For this, the participants got
access to the original Git source code repository. A separate software module for the
APT usability test was added to the source code and the MicroDO library module was
linked to the API usability test module. Within the API usability test module, the setup
of the application was done and the subtasks were prepared for each of the scenarios.
The participants were asked to only implement code in the API usability test module to
keep the code separated from the MicroDO software library itself. This should ensure
the usage of the MicroDO library was as close to a real software project without having
the MicroDO software library released. Having the module within the official repository
made it possible for the participants to check both the library source code as well as
the source code for the demo application within the Android Studio IDE. It allowed the
participants to check the comments within the source code without leaving the Android

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Conducting the API usability test

Studio IDE or having to decompile the source code.

For the analysis after completion of the API usability tests, the conversation with the
participants as well as their screen, where the implementation was done, got recorded.
The recording was vital despite the MicroDO API usability test being held one after the
other, as this removed the necessity to write down all remarks by the participants during
the test and staying responsive to questions at any time.

The API usability test was conducted during the COVID-19 pandemic!. Because of this,
it was not allowed by the government of Austria to meet with the participants who agreed
to take part in the API usability test in person. This lead to the API usability test being
conducted remotely using online video chat tools that support screen sharing. The free
web application “Let’s meet”? by Uninett? was used for four of the API usability tests.
The benefits of using “Let’s meet” over other applications were that it did not need any
local installation, it was free to use and had no limit on meeting duration. In general, it
turned out that "Let’s meet" was a viable tool with minor issues which did not hamper
the over-all process. However, one participant asked to use a different web-based video
chat tool (“Google Meet”?), as he did not want to use a tool he was not familiar with.
There was no impact on the API usability test by using a different tool, as “Google Meet”
provided a similar feature set. The only feature both of the video chat platforms were
missing was some kind of pointing device on the shared screen. The possibility to show
the participants during the introduction where some of the described code can be found
or where to click during the setup process would have been very helpful as it was often
hard to describe exactly where the necessary button or feature of Android Studio was
located.

It was not possible to provide the participants with a notebook and smartphone already
setup to start the implementation right away. Because of this, the personal notebooks of
the participants had to be set up before the beginning of the API usability test. The
Android Studio project had to be shared with the participants, the correct Android
Studio version and Android Software Development Kit (SDK) needed to be installed and
the necessary dependencies to other software libraries had to be downloaded. In addition,
an emulator or physical Android device had to be set up with the videos to display in the
API usability test in the correct location. The downloads and installations were done by
the participants beforehand. Parts of the setup, e.g. copying the video files to use during
the API usability test to the correct location on the Android device or emulator, were
more convenient to be done together at the beginning of the API usability test. Overall
this increased the time necessary before starting the implementation section of the API
usability test.

"https://www.who.int/emergencies/diseases/novel-coronavirus—2019 (Accessed:
08.06.2020)

2https://letsmeet.no| (Accessed: 14.05.2020)

Snttps://www.uninett.no/en/about-uninett (Accessed: 14.05.2020)

‘https://meet.google.com/ (Accessed: 23.05.2020)

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://letsmeet.no
https://www.uninett.no/en/about-uninett
https://meet.google.com/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

64

Three of the participants asked to do the implementation in Java instead of Kotlin as
they were more used to write applications using the Java programming language. As
Kotlin provides full interoperability with Java, this was possible. In addition, by testing
the usability with both programming languages, it showed if there are usability issues
that only arise when using the MicroDO software library within one of the programming
languages. The set up of the API usability tests was adapted to be written in Java in
these cases to make all the code easily understandable for the participants.

The tutorial phase of the API usability test was started after the project was fully set up
and running. The demographic data was collected as a first step and can be seen in Table
5.2. The names of the participants were anonymised, the here mentioned names were
chosen in alphabetical order for citation purposes. All of the five participants were male
and were actively working as software developers. The participants used their computers
due to the necessity of the API usability tests being held remotely. This led to two
participants using Windows, two participants using MacOS and one of the participants
using Ubuntu. Two of the participants decided to run the API usability test application
on their own physical Android devices and showed the results into the camera after each
task, the other three participants used an emulator to run the Android application in.

Experience | Experience | Experience in
in Android | in Kotlin | Programming
in Years in Years in Years

Experience in

Name Age Video Editing

Adam 26 1-3 1-3 5-10 No

Bart 28 1-3 <1 > 10 Yes

Cesar

31

1-3

> 10

No

Dennis

24

<1

5-10

Yes

Erik

28

<1

> 10

Yes

Table 5.2: Demographic data of the participants collected during the API usability test

After collecting the demographic data of the participants, a short introduction to the
MicroDOs was given to the participants. The Readme files were also shown to the
participants. Each Readme file contained a description of the MicroDO it was created for
in a less technical way. The descriptions also included screenshots of the available user
interface elements as well as code examples on how to use the software components. A
separate Readme file existed for every MicroDO and the Readme file in the root folder of
the source code repository had the other Readme files linked. These links could be used
like hyperlinks on the Github website to navigate to the correct Readme file without
navigating the file structure.

The set up was done in 10 minutes in general. Only for one API usability test, the files
of Android Studio or the Android SDK were corrupted and the source code could not be

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Conducting the API usability test

compiled successfully. As the participant had a tight schedule, it was decided to reinstall
Android Studio and the necessary Android SDK again, while the API usability test
already started. Because of this, the first task was done in a way that the participant did
not write the code himself, but dictated what code should be written while the screen was
shared to him. He still had full access to the documentation on his own computer. After
finishing the first task the reinstallment of Android Studio was done and the build was
successful. At this point, the participant could take over on his own PC with task two,
as the parts from task one, that were needed for the second task, were pre-implemented
in the setup. In all other cases, the execution of the API usability tests did not run into
any significant issues.

The duration of the API usability tests ranged from 1.5 hours to 2.5 hours. The
implementation of Scenario 1 lasted the longest with 2.5 hours. This was probably due to
the fact, that the user interface for the second subtask was not based on the user interface
of the primary task. In addition, the participant was quite nervous about having someone
watching him implement the tasks. Also, the Corner Gestures MicroDO would have had
to be used twice, which is a MicroDO that takes a considerable amount of time and
implementation effort to assign functionality to each corner. As the API usability test
ran already for over one hour, Scenario 1 was slightly altered during the API usability
test to reduce the implementation time. As such the filtering process via the Corner
Gesture MicroDO and the Multimove functionality were not implemented. Instead, the
participant used the List-To-List MicroDO to move single elements from the list at the
top to the list at the bottom of the screen.

The participants were able to fulfill the tasks with only little help. The most significant
issue where support was needed was when it came to identifying the functionality of
the Alternating List by reading its name. None of the participants was able to identify
the feature of displaying a list in a staggered manner by the name of the Alternating
List MicroDO. All of the participants first tried to find the documentation to create
the staggered layout by checking the documentation of the List-To-List MicroDO. After
the participants were pointed at the documentation of the Alternating List MicroDO,
they were capable to use the software component on their own without any issues. The
participants mentioned that the name of the Alternating List MicroDO was not intuitive
and hard to derive meaning from the name itself. There were other occasions where the
participants that took part in the API usability test first checked the documentation for
a different MicroDO, but they were quickly able to identify the correct MicroDO on their
own in those cases.

Help was also provided to the participants when either the compilation of the API
usability test code failed or the application crashed on startup. The reasons for those
failures were mostly related to typing errors, where syntactic symbols were missing, or
due to the fact that methods were implemented but not used. All of those errors were
only pointed out if the participants seemed to have problems identifying the issue quickly
due to being nervous or not seeing the notifications from the Android Studio IDE.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

66

5.3 Feedback Analysis

To analyse the API usability test a thematic analysis was conducted on the collected
material from the API usability test. For the first phase of the thematic analysis, which is
the introduction to the dataset to be analysed, it is suggested to transcribe any collected
audio material. But, an essential part of the MicroDO library API usability test was not
only what the participants of the API usability test said, but also what they programmed
and how they interacted with the provided documentation and source code. A full
transcription of the interactions and the code written would have proposed significant
effort, while not being able to retain the same level of detail as the video and audio
recordings did. Instead of doing a full transcription, the recordings of the API usability
test were watched and notes were taken with timestamps when anything was said about
the library or the participants encountered new parts of the library. In a second step, the
videos were watched again and the previously taken notes were iterated over. Also, the
timestamps for the questions of the semi-structured interviews were written down and
the answers of the participants during the semi-structured interviews were completely
transcribed. (Denham and Onwuegbuzie, [2013)

The notes with the timestamps were then revisited in phase two of the thematic analysis
to apply the codes. Each of the noted timestamps was watched again and the sections
were coded. By not being limited to a written transcription but having the video recording
of the screen of the participant, the handling with documentation and the usage of the
library within Android Studio was also possible to be coded. The codes were assigned
to sections of the recordings and were documented with essential statements by the
participants and descriptions of how the participants interacted with the software library.
In some cases also screenshots or sections of the produced code were copied to document
the assigned code. The answers to the semi-structured interviews, which were transcribed,
were also coded within this process. The result of coding the API usability test were
55 codes which can be seen in Table 5.3l The codes have been sorted into different
subcategories for better readability.

With the codes extracted from the API usability test, the first iteration of the themes
was created in phase three of the thematic analysis. The mindmap created for the themes
can be seen in Figure[5.1. The themes for the analysis of the API usability tests were
grouped under parent themes to create an overview of the origin of the theme.

The themes of the API usability test were revisited in phase four of the thematic analysis
to verify the found themes. This led to the themes of “Copy & Paste from Readme”,
“Defaults of Kotlin not working Java” and “Java code missing in Readme” being removed,
as they can be represented by the single theme of “External documentation extendable”.
The themes “Swipe To Unselect” and “Searchable Tags” were combined into a single
theme called “Cover more features”. None of the feature requests had enough data
supporting a single feature as a standalone theme. As such it is more suitable to cover the
request for more features under a general theme called “Cover more features”. The themes
of “Methods and variables named understandably “ and “Most classes and features named

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.3. Feedback Analysis

Features recognised
Corner Gestures recognised
Swipeselect recognised
Multimove recognised
Parking recognised
List-To-List recognised
Tagging recognised
Multimove layout recognised
Parkinglayout recognised
Drag initializer recognised

Documentation

Copy & Past from Readme
Different tag objects for each tag
Helper classes not expected
Methods recognised by name
Readme taken for information
Check source code

Generics not expected

Helper initialisation not understood
How does this work internally?
Java code example missing
Source code well commented
Readme ok but extendable

API usability test
Uncomfortable being watched
Comfortable

UI test expected

Very tailored use cases

As expected

Worked well in emulator

Features misunderstood

Differences of Corner Gestures and Tagging
List-To-List and Alternating List confused
Mutimove expected by List-To-List
Parking confused with Tagging

Swipeselect for touch to move
AlternatingLayout misunderstood

Not sure if applies to Android Guidelines
Tagging layout not expected

Parameters of helpers misunderstood

Positive remarks

Works on first try

Easy to use

Small amount of code

Usable in future projects
Similarity to other libraries

Little “black magic”

Few imports

Documentation good for new users
Everything is extendable

Feature Requests

Preview of videos from API usability tests as MicroDO
Searchable tags

Features unreleated to arrangment and sorting
Better Swipeselect integration with lists

Swipe to unselect

TaggingLayout naming not fitting

Helpers also handle features

Configurable Tagging Layout

Always show UI element in editor

List-To-List unnecessary

Table 5.3: Codes extracted from the API usability test during phase

two of the thematic analysis.

understandably“ were combined into a single theme called “Good naming strategies’

)

as it was not necessary to name each well-named part of the code by itself. The one
feature being specifically called out for not being named in a way to understand the
feature was the Alternating List. Because of this, a theme is dedicated to renaming the
Alternating List feature was kept with “Alternating List not named understandably”.
The themes for issues with inconsistencies within the API were slightly renamed. The

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. EVALUATION

Similarities to other
libraries

Few Imports

Copy & Paste
from Readme

Extendability of
code

Swipe To
Unselect

Feature
Requests

Usability

Searchable
Tags

Defaults of Kotlin

not working in Java

Methods and variables
named understandibly

Comfortable

Tailored Use Cases

Usability Test

Atlernating List not
named understandibly

Most classes and
features named
understandibly

External documentation
extendable

Helper function
differently

Inconsitency in API

Documentation

Java code missing in
Readme

TaggingLayout and
Comer Gestures

Good Source Code
documentation

Android design

guidelines

Figure 5.1: Mindmap of themes and subthemes for the API usability
test analysis after phase 3 of the thematic analysis.

theme for the inconsistency of the SideTagsLayout and the Corner Gestures was
removed as the issue was mentioned by only one of the participants in the API usability
test. This participant had to specifically use the features Corner Gestures and Tagging
in combination. He mentioned, that it was confusing, that the corners for the Corner
Gesture feature were identified by “top left”, “top right”, “bottom left” and “bottom
right”, but the sides of the SideTagsLayout were identified by “top”, “left”, “right”,
“bottom”. The ideas behind the “Corner Gestures” and the “SideTagsLayout” are in fact
quite different and were not intended to be consistent with each other. As the issue was
only mentioned by one participant, the theme was discarded. The mindmap of the final
themes for the API usability test analysis can be seen in Figure [5.2.

With phase five of the thematic analysis, the found themes are defined and described.
Following are descriptions of the found themes, which relate to the usability of the
MicroDO software library and were grouped under the theme “Usability”.

« Extendability of code: This theme relates to the fact, that the code of the
MicroDO library is fully extendable. The interfaces can be implemented by custom

(=)}
co

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.3. Feedback Analysis

Similarities to other Cover more Extendability of
libraries Features code
Usability
Good Naming
Comfortable Strategies
Usability Test l { Naming Atlernating List not
l Tailored Use Cases named understandibly

External documentation Helper Functionality
extendable Inconsistency

[Inconsitency in AP Inconsistency With

Other Android
Behaviour

Documentation

Good Source Code
documentation

Figure 5.2: Mindmap of themes and subthemes for the API usability
test analysis after phase 4 of the thematic analysis.

classes and used with the MicroDO implementations. But also all classes of the
MicroDO software library can be extended. Also, all methods are not defined as
private methods and can be overwritten by an extension of the class. This allows
participants that use the MicroDO library to reuse the existing code and only add
new behaviour or replace unwanted behaviour. It has been mentioned in the API
usability tests by participant Dennis that this possibility is not given by many other
libraries, which normally leads to the necessity of finding workarounds. In addition,
Dennis also mentioned that he liked the whole library’s “modular” design. As such
the goal of creating a modular, flexible and reusable software framework has been
fulfilled.

Cover more features: The feature set of the MicroDO library is currently
limited to user interactions and user interface components with regards to sorting
media-items. During the API usability test, it was suggested to provide further
functionality within the already covered use cases. For example, participant Eric
mentioned that it would be a valuable feature to be able to search for tags using
the Tagging MicroDO. In addition, there were features suggested outside of the
context of sorting multimedia items. As an example, participant Cesar mentioned
that he would like a list component, that automatically changes the width of the
elements that get displayed based on the length of the video. Through this, a
representation of the timeline metaphor should be easier to implement. All of the
participants mentioned that the MicroDO software library could be used in the
future for software projects with suitable requirements. Because of this, covering a
bigger variety of use cases for video editing applications can benefit the usability
and relevance of the MicroDO library in the future.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

70

e Similarities to other libraries: All of the participants of the API usability test

mentioned that the MicroDO library has similarities in usage to other software
libraries with regards to quality and usability of the source code and documentation.
The similarities were mentioned as being rather positive, but also feedback on how
to improve the MicroDO library was given. As mentioned before, the possibility to
extend every class of the library fully was mentioned as something the MicroDO
library does better than many other libraries. But, the documentation outside of
the source code of the MicroDO library could be better in comparison to other
software libraries, which is discussed in the “External documentation extendable”
theme.

Next to themes relating to the usability of the MicroDO software, there were also themes
found which specifically relate to the of the MicroDO software library. These themes
were grouped under a common theme “Documentation” and are described below.

e External documentation extendable: The documentation outside of the source

code for the MicroDO library is entirely done within Readme files. The Readme files
that were created for the MicroDO library describe the software components, how
to use them and provide code examples in Kotlin that can be used by copying the
code and pasting the code. The only changes that are necessary outside of the copy
& paste action are adding the correct import statements and potentially changing
variable names to fit the code it is copied into. But, it was mentioned by 4 of the 5
participants that the external documentation could be extended. For example, the
code examples could be given in both Kotlin and Java to remove the necessity for
Java participants to change the code to be in Java. Also, some features of Kotlin,
like default values for parameters within methods or constructors, are not available
in Java. In addition, while the source code documentation covered all methods
and parameters, the participants of the API usability test asked for the source
code documentation to be also available in the Readme files. They mentioned that
the Readme files are the primary source for information for them. The source
code documentation is only checked when looking for implementation-specific
information.

Good source code documentation: Of the five participants, that took part in
the API usability test, three took a look at the source code documentation and
comments within the classes. All three of them mentioned that the source code
of the MicroDO library was well documented and as mentioned in the “External
documentation extendable” theme, they would only ask for parts of the source code
documentation to be added to the external documentation.

Also, themes were found that describe inconsistencies within the MicroDO software
library. Following are description of these themes, which were grouped under the theme
“Inconsistency in API".

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.3. Feedback Analysis

o Helper functionality inconsistency: Of the eleven software components that

were implemented, four contain so-called helper class that supports the participant
in updating user interface components from the MicroDO software library. The
participants of the API usability test mentioned, that after using multiple of these
helper classes, there exist inconsistencies between the different helpers. This means
that the way the helpers are initialized and used is not in line with the same
paradigms for all helpers. It was suggested to choose one design for all of the
helpers.

Inconsistencies with other Android behaviour: Android has quite detailed
design guidelines® that define how the user interface and user interactions should
be designed. By applying those design guidelines it should be easier for users to
use different Android applications, as all Android applications should use similar
user interface and user interaction design approaches. Participant Bart mentioned
during the API usability test, that he was not sure if the user interactions supported

by using the MicroDO library would comply with the Android design guidelines.

Participant Anton brought to attention, that the way the layout components
function within the MicroDO library is different from how the layout components
function within the Android framework. When using the graphical layout editor, it
is normally clear to the participant that the element added last is on top of other
components added earlier. Also, it is normally the case, that when using a layout

to wrap a component, the child components are on top of the parent component.

But in the case of the layouts implemented within the MicroDO library, the parent
components add more user interface components that are added over the child
components. The participant of the API usability test mentioned that this could
lead to confusion.

Some of the found themes relate to the naming used for methods and classes in the
MicroDO software library. These themes were grouped under the theme “Naming” and
following are descriptions of them.

e Alternating List not named understandably: All four of the participants

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

who had to use the Alternating List MicroDO within the API usability test did

not recognise the Alternating List MicroDO to provide the wanted functionality.

They all were confused about what was meant by the name of the Alternating
List MicroDO. All of the participants rather checked the documentation of the
List-To-List MicroDO to find information on how to create the staggered layout
provided by the Alternating List. It does not appear to be an issue with the
naming of the List-To-List MicroDO, as all of the participants recognised the
List-To-List MicroDO to provide the functionality to move elements from one list
to another. The participants mentioned that a different name would be better for
the Alternating List MicroDO, but they could not think of any examples for a

5https://developer.android.com/design (Accessed: 20.08.2020)

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.android.com/design

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

72

better name. The only reason the participants gave as to why they first checked
the List-To-List MicroDO, was that the List-To-List MicroDO had “list” in its
name. The naming for the Alternating List MicroDO should be revisited before
releasing the MicroDO software library to avoid the feature being overlooked. It
could also help to provide descriptions and screenshots of the MicroDOs on the
parent Readme file to give the users of the MicroDO library an idea of what the
MicroDOs feature sets are.

Good naming strategies: Overall the participants had little to no issues finding
the correct classes and MicroDOs to use. The names for most of the MicroDOs were
chosen well, except for the Alternating List MicroDO. The participants were also
easily able to find the classes and methods to use by using the automatic suggestion
feature built within the Android Studio IDE. The participants were able to under-
stand the functionalities of almost all classes, methods and parameters by reading
the name without requiring further investigation by reading the documentation.

In addition to the themes that relate to the source code and quality of the MicroDO
software library, there also exist themes that relate to the design of the API usability
test. These themes are described below.

e Tailored Use Cases: All of the 5 participants who took part in the API usability

test mentioned in the end that they could imagine using the MicroDO library in a
future project. But they also mentioned that the use cases provided during the API
usability tests were tailored to make sure the MicroDO library fulfills the needs
to implement the tasks. As such, they said that it would have to be very clearly
checked whether the requirements of future projects could be fully covered by the
MicroDO library.

Comfortable: 4 of the 5 participants of the API usability test mentioned that
they felt quite comfortable with the set up of the API usability test. Only one
participant would have preferred to implement the scenario without having the
screen recorded and somebody watching him implementing the scenario. He felt it
was more similar to an exam situation when somebody is watching him implement a
feature. On the other hand, the participant that would have preferred to implement
the scenario on his own was glad that the time to implement the single steps was
restricted, as he would have otherwise spend a lot more time on layout changes and
would not have focused only on the MicroDO parts of the API usability test. This
theme shows that the setup and design of the API usability test were successful
in creating a positive environment for the participants. Through this it allowed
the participants to focus on discussing issues within the implementation of the
MicroDO software library instead of criticizing the API usability test itself.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Results

This chapter describes the results of the conducted API usability test. First, the themes
from the thematic analysis are revisited and discussed. This is followed by a categorisation
of the found usability issues.

6.1 Results of the API usability test

The themes from the thematic analysis were rated as positive, rather positive, rather
negative and ‘negative with regards to the usability and quality of a software development
project. The four themes “Good Naming Strategies”, “Extendability of code”, “Simi-
larities to other libraries” and “Good source code documentation” were rated positiv.
The theme “Cover more Features” was rated as rather positive and the theme “External
documentation extendable” as rather negative. The themes “Helper Functionality Incon-
sistency”, “Inconsistencies with other Android behaviour”, “Alternating List not named
understandably” were rated as megative. In addition, the two themes that describe the
API usability test process were rated as well. The “Comfortable” theme was rather as
positive and the “Tailored Use Cases” was rated as rather negative. In the following
paragraphs, first the positive and rather positive rated themes are discussed and the
positive and negative learnings for the themes are pointed out. This is followed by a
discussion of the negative and rather negative rated themes and potential solutions are
considered.

6.1.1 Positive rated themes

The naming chosen throughout the implementation of the MicroDO library was fitting,
which was summarized in the theme of “Good Naming Strategies” and was rated as
positive. The participants of the API usability test had little issues when looking for
the functionality required to fulfill the tasks of the API usability test. The parameters

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

REsuULTS

74

of the methods were also understandable. Only when using the MicroDO library with
the Java programming language, some confusion occurred. When using Kotlin, default
values can be provided for parameters of constructors or methods, making it optional
to change the value assigned to a parameter. The default values for parameters were
used for constructor and method parameters when a parameter was optional. But, when
using constructors and methods which provide default values for parameters with Java,
the values have to be assigned by the participant. To find which value is assigned by
default to a parameter the participants would have to check the documentation or the
source code. A solution for the issue with default parameters would be to overload the
methods, which means to provide the same method with different parameters and set
default values for the parameters this way.

The theme of “Extendability of code” encapsulates that the MicroDO implementation
does not restrict participants to create extensions of the created classes and methods. The
participants liked the fact, that the library allows for custom classes being implemented
by extending the existing implementations. Because of this, the theme was rated as
positive. There exist no restrictions on access to methods and variables in the code, which
allowed the participants to only overwrite the behaviour they wanted to be changed.
The only issue the extendability of the MicroDO software library provides is that the
encapsulation of the code is worsened, as everything can be accessed and changed. But,
this was done intentionally to provide a flexible library that can be used in various ways.

The participants also mentioned that there were quite a few similarities to other well-
known libraries the participants have used before, which is represented by the theme
“Similarities to other libraries”. The similarities mentioned were from a positive nature with
regards to the quality of the source code and the documentation. The participants liked
that, similar to other software libraries, code examples were given in the documentation
that were usable directly in the code. Also, the documentation within the source code
was done for all classes and methods and described how methods and classes are intended
to be used, which is also mentioned as a positive theme called “Good source code
documentation”. An important point that was mentioned with regards to what is often
better in other libraries, was the extend of the external documentation in the Readme files.
Well known open source libraries often do not only provide examples and descriptions of
the use cases for the described software components but also describe the methods and
parameters that can be used. This description of the methods and parameters was only
done in the source code and was missing in the Readme files for the MicroDO software
components.

The fact that the participants requested the implementation of more features, also outside
of the sorting and rearrangement process of video editing, shows the need for such a
library. This fact was captured in the theme of “Cover more Features” and was rated
as rather positive. The theme was not rated as positive, as for example one participant
expected the Tagging MicroDO to also support searching for tags. This shows that
was functionality missing that was expected to exist. But, it was also mentioned that
the library would benefit from even more features that were e.g. provided in the API

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.1. Results of the API usability test

usability test. An example would be the feature to play a video on a tap and only
show a thumbnail while the video is not being played, which was provided for ease of
implementation in the API usability test, could be extracted to a new MicroDO.

With regards to the set up of the API usability test, the theme “Comfortable” was
extracted from the feedback of the participants, which is rated as positive. The participants
generally preferred to implement the tasks during the usability test and to have a limited
time frame in which the tasks had to be implemented. It was also mentioned, that the
already existing code made it easier to start using the MicroDO software library right
from the beginning and removed time-consuming development tasks. Only one of the
participants mentioned that he would have preferred to implement the scenarios on his
own and then discuss the found results afterwards. But he also pointed out, that he
liked the fact that he did have a set time frame for the scenarios. He said that he would
have spent a lot of time perfecting the code and implementing not required functionality
instead of going on to the next task if he would have implemented the scenario on his
own.

6.1.2 Negative rated themes

The documentation of the MicroDO library can be improved. While the source code
documentation was mentioned to be well done and sufficient, the external documentation
in form of Readme files was mentioned to be too extendable. This is encapsulated in the
theme “External documentation extendable”, which was rated as rather negative. The
Readme files contain code examples showing how to use the library, which was perceived
positively. The copy & paste allowed for a quick first look at the functionality of the
software components before adapting the code to fit the needs of the implementation.
An issue with the code within the Reamde files that was mentioned, was that the code
examples were only given in Kotlin. When using the code examples in a Java-based
project, some code had to be adapted. As such it was mentioned to be a good idea
to add the Java variant of the code to the Readme files as well. As mentioned before,
to bring the external documentation to the standards of other well-known open-source
software libraries, the methods and parameters should also be described in detail in
the Readme files. Despite the “Good Naming Strategies”, the theme of “Alternating
List not named understandably” describes that the naming for the Alternating List
theme was not chosen properly. None of the participants that had to use the Alternating
List MicroDO, identified this MicroDO to fulfill the needs of the task description. The
participants were rather checking the documentation of the List-To-List MicroDO. When
asked why this was the case they said that they did not understand what was meant

by the Alternating List and List-To-List was the only other MicroDO referring to a list.

None of the participants could suggest a better name but mentioned that it could help to
include an image showing the alternating list on the primary Reamde file. The primary
Readme file is displayed first when navigating to the MicroDO Github page and contains
links to the Readme files for the single MicroDOs. A better name for the Alternating
List MicroDO should be considered and the MicroDO API should be updated with the

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

REsuULTS

76

new name.

An issue with inconsistencies within the MicroDO software library itself was identified
by the participants during the API usability test as well, which the theme “Helper
Functionality Inconsistency” represents. The inconsistencies within the MicroDO li-
brary were related to the inconsistencies within the helper classes that were created to
support the control of the user interface elements that were implemented within the
MicroDO library. The inconsistencies were related to how the helper classes were used.
For example, the MultiMoveHelper uses static methods, where the View object to
update has to be given in the method. In comparison to the MultiMoveHepler, the
CornerGestureHelper does not use static methods but an object is created and the
View object to update with the helper has to be given in the constructor. Also the
order of parameters was not chosen consistently and not every helper covered the same
functionality. This issue came up when multiple of the helper classes were used within
the same scenario for the API usability test. The inconsistencies within the MicroDO
library should be resolved by choosing one of the design decisions made for the helper
classes and applying the design to all helper classes. In addition an interface should be
designed to ensure all helpers provide similar functionality.

There were also potential inconsistencies with the Android design guidelines identified,
which is represented by the “Inconsistencies with other Android behaviour” theme.
Participant Bart mentioned that the implementation of new user interactions and design
ideas might not be in compliance with the Android design guidelines. It has to be
considered what is more important - either to support new forms of user interactions or
to fully comply with the Android design guidelines. While one of the goals of this thesis
was to support the implementation of new user interactions, the compliance with the
Android design guidelines was not a goal. As such, we deemed creating new possibilities
for user interaction more important than complying with the Android design guidelines
completely. Another inconsistency of the MicroDO library was found when comparing the
behaviour of MicroDO user interface components with other user interface components
within the Android framework. The custom layouts provided by the MicroDO library
automatically add user interface elements that the participants do not have to define. But
the order the user interface elements are added is different from the standard Android
behaviour, which is known to put elements defined inside of a user interface element to
be on the top. For example the CornerGestureLayout adds the corner buttons on
top of the content put inside of the CornerGestureLayout. While this bevahiour is
inconsistent, it was a goal of the implementation of the MicroDO library to ease the
development of specific features. Requiring the participants to for example add each
corner button manually would result in the participants not getting a real benefit from
using the MicroDO software implementation. Anyways, if future feedback on the library
suggests that this behaviour is more confusing than helpful the implementation should
be changed to comply with the Android standards.

The theme of “Tailored Use Cases” encapsulates the issue that the scenarios chosen for
the API usability test were designed to suggest the usage of the MicroDO software library.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.2. Categorisation of the Usability Issues

In a real project, the use cases could be quite different and might result in the MicroDO
software library not covering the required features. Because of this, the theme “Tailored
Use Cases” and was rated as rather negative. Despite the use cases being tailored to
be used with the MicroDO library, the API usability test covered a variety of use cases,
mitigating the effect of the laboratory setting. The API usability test itself was also seen
as well designed by the participants of the API usability test. Except for one participant,
all participants liked the fact that each participant implemented a scenario one after the
other. One participant would have preferred to implement the scenario on his own and
only discuss the implementation and the found usability issues in the semi-structured
interview afterwards.

6.2 Categorisation of the Usability Issues

The API usability test was built upon the API usability test described by |Grill et al.
(2012). The authors used a set of heuristics to categorise the usability issues found within
their API which can be seen in Figure 3.3. In addition, the authors also categorised
the usability issues found by the participants using those heuristics. While the heuristic
evaluation by experts was not done for the MicroDO APT usability test in favor of a more
extensive API usability test by actual participants, it is still of interest how the found
usability issues can be categorised within the heuristics chosen by |Grill et al.| (2012).

e Complexity: There were no comments by the participants take took part in the
APT usability test about the complexity of the MicroDO API. The participants of
the API usability test also seemed to have no issues when it came to understanding
how the software components work and how to use the software components within
the implementation.

e Naming: The naming of the MicroDO software library was deemed to be appro-
priate during the API usability test. Only one of the MicroDOs was named in a
way, that the participants that took part in the API usability test were not able
to understand what the MicroDO should be used for. This was the case for the
Alternating List MicroDO and as mentioned before the Alternating List MicroDO
has to be renamed.

o Caller’s perspective: There were no issues mentioned during the API usability
test regarding method naming and usage within the library.

¢ Documentation: The source code documentation was done well in the MicroDO
library according to the results of the API usability test. But the external documen-
tation needs to be improved and provide more examples and more documentation
about the methods and parameters.

¢ Consistency and Conventions: Regarding this heuristic, there were two main
issues found within the MicroDO library. First, the helper classes to ease the control

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6. RESULTS

of the user interface elements provided by the MicroDO library had inconsistencies.
Second, the participants that took part in the API usability test mentioned that
they were unsure if the MicroDO library was in line with the Android design
guidelines and other behaviour known from using the Android software framework.

Parameterized constructor: The MicroDO library heavily uses parameterized
constructors for required parameters. For optional parameters, there are default
values provided within the Kotlin programming language to overcome this issue.
When using the MicroDO library with the Java programming language, the default
values do not work and as such providing a default constructor and setter methods
would be preferable for using the library with Java.

Factory pattern: The MicroDO library does not use the factory pattern in any
case. As such the MicroDO library is completely in line with this heuristic.

Data types: There were no mentions of issues with the datatypes and the returns
types of methods mentioned during the API usability test.

Concurrency: There is no parallelisation done within the MicroDO library which
could lead to the necessity of concurrency handling.

Error handling and exceptions: There were no mentions of bad error handling
within the MicroDO software library during the API usability test.

Leftover for client code: All participants that took part in the API usability
test mentioned, that the library was “easy to use” and “with very little code”. As
such the necessity for client code is rather small to use the MicroDO library - which
was also a goal of the implementation.

Multiple ways to do one: The participants mentioned nothing with regards
to having multiple ways to achieve the same goal during the API usability tests.
There was also nothing designed within the MicroDO library to support multiple
ways to complete a task.

Long chain of references: No issues were found during the API usability test
regarding this heuristic.

Implementation vs. interfaces: There was nothing mentioned during the API
usability test concerning this heuristic.

Overall this means that there were seven usability issues identified with regards to
the heuristics chosen by |Grill et al.| (2012). Most of the issues found are possible to
be resolved with an update of the MicroDO software library. The Alternating List
MicroDO components should be renamed to get an understanding of the functionality
of the software component from its name. The constructor and methods that use
default parameters should be considered to be rewritten using overloaded methods and

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

6.2. Categorisation of the Usability Issues

constructors. Improvements in the documentation are necessary. The helper classes
should be updated to use the same design paradigms to avoid inconsistencies. The
inconsistencies with the Android design guidelines should be checked and it should
be considered if the MicroDO software library needs to be updated to be in line with
the Android design guidelines. In addition, it should be considered to update the
MicroDO layout components to behave similarly to the Android layout components,
but as mentioned before this might result in different usability issues. And as a last
improvement, the documentation in the Readme files of the MicroDO software library
has to be extended and updated to be more in line with regards to content and quality
with other software libraries.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

This chapter summarizes this thesis and answers the research questions. A summary of
the research done and its results are given and a conclusion is made how the research
questions were answered. This is followed by a critical reflection about the work done and
the results that were collected. In the end potential future work on the topics discussed
in this thesis is described.

7.1 Summary

The goal of this thesis was to support researchers in creating media-intensive software
applications and prototypes. A thematic analysis was conducted on student submission
on the topic of new user interactions for sorting photos on smartphones. The thematic
analysis resulted in seven themes, which represent features for the rearrangement and
sorting process of multimedia items. Each of the themes was identified to benefit from a
software library supporting the implementation of Android applications that are built
upon using those features.

The first research question RQ1 was “What is missing in current software-frameworks to
better support the implementation of media-intensive user-interfaces on Android”. The
themes extracted by conducting the thematic analysis provide an answer to this question.
This shows that thematic analysis can be suitable to identify what is missing in current
software frameworks to support the implementation of media-intensive user-interfaces on

Android.

The requirements for implementing the software components were defined by writing
UserX Stories based on the found themes. With the UserX Stories, a software library
called MicroDO was implemented, with the goal to ease the implementation of the
features defined in the UserX Stories. Eleven software components were implemented
based on the defined UserX Stories. Each software component was called a MicroDO.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

7. CONCLUSION

82

UserX Stories successfully defined the requirements for the software components needed
to implement the missing features in current software-frameworks.

The second research question RQ2 was “How can these missing features in current software-
frameworks be identified and defined?”. By first conducting the thematic analysis on
the student submission to identify the missing features and then defining the missing
features using UserX Stories an answer for RQ2| could be found.

The MicroDO software library was then evaluated by conducting an API usability test.
With the API usability test, usability issues within the MicroDO software library were
found. A variety of different use cases were possible to be implemented during the
API usability test and all of the participants who took part in the API usability test
mentioned that they could consider using the MicroDO software library in future software
projects with fitting requirements. The participants also suggested to cover more features
and extend the functionality of the existing MicroDOs to cover more use cases, which
shows that demand for such a software library exists. But, the API usability test was
conducted in a laboratory setting as the scenarios were designed to ensure that the
MicroDO software library can cover the designed use cases. To mitigate this effect, each
scenario covered a different use case. However, in a real software project, the results
could still be quite different.

The third research question |RQ3/ was “How can the software for these missing features
be designed to be flexible and modular?”. The design decisions of using small and generic
software components, as well as making the whole source code fully extendable, provides
an answer to research question RQ3. The participants of the API usability test were able
to use multiple software components of the MicroDO software library in combination and
together with default Android software components. Also, the participants were able
to provide new functionality by extending existing classes from the MicroDO software
library or using the provided classes in different contexts. As such the goal of easing the
implementation of Android applications for a set of user interactions and user interfaces
was achieved. But, it was also identified that there are aspects of the MicroDO software
library that would benefit from further improvements. The name of the Alternating List
MicroDO should be changed as the name does not reflect the functionality contained in
the software component. Also, the external documentation should be extended as the
participants of the API usability test rather used the external documentation than the
source code documentation. For example, a description of the methods and parameters
should be added, which is also done in other open-source software libraries. Also, the
helper classes which were designed to make it easier to update the implemented user
interface components from within the code should be redesigned to use similar design
principals.

7.2 Critical Reflection

When looking back at the research, there was a lot learned in between conducting the
first thematic analysis on the student submissions and conducting the second thematic

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Critical Reflection

analysis on the results of the API usability test. The issue that conducting a thematic
analysis for the first time can be difficult was also mentioned by (Nowell et al., 2017) as a
big disadvantage of conducting a thematic analysis. In future research, other qualitative
methods like qualitative content analysis by Mayring| (1985)) could be more fitting to
identify missing software components. The second thematic analysis was a lot easier to
conduct.

Also, when doing similar research in the future, the source for identifying the missing
software components could be chosen differently. While the positive side of the student
submissions was the larger number of different people providing ideas, the negative side
was that the students providing the ideas were not experts in the field of user interaction
and user interface design and also not Android participants. As such the students were
not the target user group for MicroDO software library. In future studies on similar
topics, a discussion with experts int the field would be considered to identify the missing
software components.

With regards to the implementation of the MicroDO library, a lot was learned about
the Android framework and the Kotlin programming language during the development.
Despite iterating over all components regularly and applying new learnings, the software
library would potentially be quite different if it would be implemented from the beginning
again.

Also, the effort of creating different scenarios for each of the participants who took part
in the API usability test was underestimated. Not only did it require to create multiple
descriptions and mock-ups but also the base software project for the API usability tests
had to be adapted for every scenario. For future API usability tests, it would be beneficial
to create smaller tasks and provide them to the participants in different orders to ensure
that each software component was used during the API usability test.

Another aspect of the API usability test that was not expected was the necessity to
conduct the API usability test remotely due to the COVID-19 pandemic. Initially, the
API usability test was designed to be conducted together with the participants in the same
location. As the measures to reduce the spread of the COVID-19 virus were announced
the design of the API usability test had to be unexpectedly adopted. The positive side of
conducting the API usability test remotely was, that the library was tested on different
devices and as such, it was ensured that the software library will be usable by anyone.
Also, there was no need for the participants of the API usability test to travel anywhere,
which reduced the time needed to take part in the API usability test. But there were also
challenges that had to be tackled. There existed issues with internet connectivity which
reduced the resolution of the shared screen during the video call or shortly interrupted
the call. Also, despite the participants installing all required software beforehand, there
were still parts of the set up like copying the videos used during the API usability test to
the correct folder on the Android device used, which required time at the beginning of
the API usability test. If the API usability test would have been conducted in the same
location, the participants would have been provided with a fully setup notebook and
Android device to remove the factor of setting up the project from the API usability test.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. CONCLUSION

84

In addition, while the video call platform “Let’s Meet” performed quite well and was
usable without any installation, a more powerful platform could be beneficial for future
remote API usability tests. Features that could help to reduce the negative effects of
conducting the API usability test would be the possibility to point somewhere on the
participant’s screen or to be able to control the PC of the participant for a short time to
complete the setup. Personally conducting the API usability test on location instead of
remotely would be preferred for future API usability tests.

7.3 Future Work

In future studies, more use cases can be supported by extending the MicroDO software
library. The use cases could also be chosen outside of the field of rearrangement and
sorting of multimedia items. By increasing the scope of covered features the MicroDO
library could be used in a variety of projects and the feature set implemented with this
thesis cannot cover all possible use cases right now. The participants of the API usability
test mentioned, they could consider using the MicroDO software library in a future
software project if the requirements were met. Also, the currently existing code can be
reworked with further learnings to improve performance and usability.

While the MicroDO library is focused on supporting the implementation of user interaction
and user interfaces, it could still be interesting to add implementations for supporting
automation. One idea would be to add algorithms to automatically sort or categorise
photos and videos. The automatic sorting was also identified as a theme during the
thematic analysis of the student submissions but dropped in favor of supporting user
interface and user interaction based themes. Supporting user interactions with automated
algorithms was identified to be able to improve the usability of a software application.
The literature on this topic provides ideas on how to support user interaction with
automation. (Hudelist, 2013; Zhang et al., 2014; Taylor and Qureshi, 2016)

Another field for further research is the implementation of more user interfaces and new
user interactions using the MicroDO library. With the MicroDO software library, it
should be easier to implement and compare prototypes for new user interactions and user
interfaces for the sorting and arrangement of multimedia items. Through comparison and
hands-on usability tests, the new ideas for user interactions and user interfaces can be
verified and analysed to bring better user experience to smartphone users in the future.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
2.10

3.1

3.2

3.3

4.1

4.2

4.3
4.4
4.5
4.6
4.7

List of Figures

The activity lifecycle of an Android applicaiton. (Google, [2020)
The interface proposed by |(Ganhor and Gildenpfennig (2015, p. 346). The

top two rows allow for different detail levels of browing, while the bottom row
is used to select images to be filed back into the center browsing row.

The video editing process. The source videos are first browsed through and
selected and then edited. The final video can be the source for another video
editing Process.ol
Assembly view in Adobe Premiere 2020 (Created on 14.11.2019)]
Screenshots of selection and editing view of “You Cut - Video Editor” (Created
on 14.11.2019)]
Overview of the screens of the video editing application by [Jokela et al.| (2007,
D- 348)
The new ideas for video browsing by [Hudelist et al| (2013alb)
The progressive scrolling view of “Propane”. p-4).
The “Muvee” user interface. p.232) ...

The “VideoGraph” depending on the used graph algorithm. (Zhang et al.,

2014L p. 1129). oo

Example of a UserX Stories written by a participant of the evaluation done
by |(Choma et al.| (2016, p. 138)./.
Visualisation of the different stages of the API usability test. (Grill et al.

20120 p. 168)

Heuristics chosen by |Grill et al| (2012, p. 171)

Mindmap of themes and subthemes after phase 3 of the thematic analysis of
the student submissions.) Lo
Mindmap of themes and grouped into subthemes after phase 4 of the thematic
analysis. Lo
Sketch of the Alternating List theme
Sketch of the List-To-List themel
Sketch of the Parking theme
Sketch of the Side Tags theme|
Sketch of the multimove themel

11

12
13

14

15
16
17
18

19

26

29
30

32

33
34
35
35
36
36

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8
4.9
4.10

4.11
4.12

4.13

4.14
4.15

4.16
4.17
4.18

4.19

0.1

0.2

86

Sketch of the corner gestures theme|
Sketch of the swipeselect theme|
UX flow of an element being removed from the list (left side), the animation
happening (center) and added to the list (right side)
Mockup of a vertical alternating list|
Mockup of a tagging User Interface. The sides of the lists elements get colored
based on the assigned tags. L.
Mockup of the parking area. The elements can be placed anywhere inside the
gray area at the bottom and dragged out to a different location again. . .
Mockup of the Corner Gestures.
Mockup of the Swipeselect gesture. All elements swiped over (left image) are
set as selected (right image).
Mockup of the multimove gesture/.
The Kanban board used on Github during development
The (a) MultiMoveLayout and (b) CornerGesturelLayout as seen in a
fullscreen Android application. |. oL
The (a) SwipeSelectLayout and (b) SideTagsLayout as seen in a
fullscreen Android application. |.

Mindmap of themes and subthemes for the API usability test analysis after
phase 3 of the thematic analysis.|
Mindmap of themes and subthemes for the API usability test analysis after
phase 4 of the thematic analysis.,

37
37

39
40

41

42
43

44
45
48
51

52

68

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
0.2
9.3

List of Tables

Gestures used on touchscreens. The gesture names and definitions under quo-
tation marks are taken from (2009, Appendix A). The recommendations

of when to use the gestures are rephrased from Chapter 3). 7
Codes found during thematic analysis| 32
UserX Story 1 - List-To-List|. 39
UserX Story 2 - Alternating List, 40
UserX Story 3 - Tagging| 41
UserX Story 4 - Parking| oL 42
UserX Story 5 - Corner Gestures 43
UserX Story 6 - Swipeselect|o 44
UserX Story 7 - MultiMove, 45
Questionnaire handed to participants/. 62

Demographic data of the participants collected during the API usability test| 64
Codes extracted from the API usability test during phase two of the thematic
analysis.| oL Lo 67

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

Adams, W. C. (2015). Conducting Semi-Structured Interviews, chapter 19, pages 492-505.
John Wiley Sons, Ltd.

Alhadreti, O. and Mayhew, P. (2018). Rethinking thinking aloud: A comparison of three
think-aloud protocols. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, page 1-12, New York, NY, USA. Association for
Computing Machinery.

Attride-Stirling, J. (2001). Thematic networks: an analytic tool for qualitative research.
Qualitative Research, 1(3):385-405.

Beck, K. (1998). Extreme programming: A humanistic discipline of software development.
In Astesiano, E., editor, Fundamental Approaches to Software Engineering, pages 1-6,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto
for agile software development. http://www.agilemanifesto.org/. Accessed:
01.06.2020.

Bore, C. and Bore, S. (2005). Profiling software api usability for consumer electronics. In
2005 Digest of Technical Papers. International Conference on Consumer Electronics,
2005. ICCE., pages 155-156.

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and
code development. Sage Publications, Inc.

Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
research in psychology, 3:77-101.

Buhne, S., Halmans, G., Pohl, K., Weber, M., Kleinwechter, H., and Wierczoch, T.
(2004). Defining requirements at different levels of abstraction. In Proceedings. 12th
IEEFE International Requirements Engineering Conference, 2004., pages 346—-347.

Burnard, P. (1991). A method of analysing interview transcripts in qualitative research.
Nurse education today, 11(6):461—466.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.agilemanifesto.org/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Cecere, G., Corrocher, N., and Battaglia, R. D. (2015). Innovation and competition
in the smartphone industry: Is there a dominant design? Telecommunications Pol-
icy, 39(3):162 — 175. New empirical approaches to telecommunications economics:
Opportunities and challenges Mobile phone data and geographic modelling.

Choma, J., Zaina, L. A. M., and Beraldo, D. (2016). Userx story: Incorporating
ux aspects into user stories elaboration. In Kurosu, M., editor, Human-Computer
Interaction. Theory, Design, Development and Practice, pages 131-140, Cham. Springer
International Publishing.

Cobéarzan, C., Hudelist, M. A., and Del Fabro, M. (2014). Content-based video browsing
with collaborating mobile clients. In Gurrin, C., Hopfgartner, F., Hurst, W., Johansen,
H., Lee, H., and O’Connor, N., editors, MultiMedia Modeling, pages 402-406, Cham.
Springer International Publishing.

Cohn, M. (2004). User Stories Applied: For Agile Software Development. Addison-Wesley
signature series. Addison-Wesley.

Cooper, A., Reimann, R., and Cronin, D. (2007). About face 3 : the essentials of
interaction design. Wiley Pub., Indianapolis, IN, 3rd ed.. edition.

Dai, B., Zhang, Y., Cai, D., and Wang, A. (2017). Html5-based interactive media editing
system. In 2017 3rd IEEE International Conference on Computer and Communications
(ICCC), pages 1185-1189.

Darwaish, S. F., Moradian, E., Rahmani, T., and Knauer, M. (2014). Biometric identifi-
cation on android smartphones. Procedia Computer Science, 35:832 — 841. Knowledge-
Based and Intelligent Information FEngineering Systems 18th Annual Conference,
KES-2014 Gdynia, Poland, September 2014 Proceedings.

Denham, M. A. and Onwuegbuzie, A. J. (2013). Beyond words: Using nonverbal commu-
nication data in research to enhance thick description and interpretation. International
Journal of Qualitative Methods, 12(1):670-696.

Drucker, S. M., Fisher, D., and Basu, S. (2011). Helping users sort faster with adaptive
machine learning recommendations. In Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., and Winckler, M., editors, Human-Computer Interaction — INTERACT
2011, pages 187203, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ericsson, K. A. and Simon, H. A. (1984). Protocol analysis: Verbal reports as data. The
MIT Press.

Farooq, U., Welicki, L., and Zirkler, D. (2010). Api usability peer reviews: A method
for evaluating the usability of application programming interfaces. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, page
2327-2336, New York, NY, USA. Association for Computing Machinery.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Fitts, P. M. (1954). The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Fxperimental PSychology, 74:381-391.

Francese, R., Gravino, C., Risi, M., Scanniello, G., and Tortora, G. (2017). Mobile app
development and management: Results from a qualitative investigation. In Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems,
MOBILESoft '17, pages 133-143, Piscataway, NJ, USA. IEEE Press.

Ganhor, R. (2012). Propane: Fast and precise video browsing on mobile phones. In
Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia,
MUM 12, pages 20:1-20:8, New York, NY, USA. ACM.

Ganhor, R. and Giildenpfennig, F. (2015). Insert: Efficient sorting of images on mobile
devices. In Proceedings of the Annual Meeting of the Australian Special Interest Group
for Computer Human Interaction, OzCHI ’15, page 343-351, New York, NY, USA.
Association for Computing Machinery.

Ganhor, R. (2014). Muvee: An alternative approach to mobile video trimming. In 201/
IEEE International Symposium on Multimedia, pages 229-236.

Google (2020). Understand the activity lifecycle. https://developer.
android.com/guide/components/activities/activity-lifecyclel Ac-
cessed: 16.08.2020.

Grill, T., Polacek, O., and Tscheligi, M. (2012). Methods towards api usability: A
structural analysis of usability problem categories. In Winckler, M., Forbrig, P., and
Bernhaupt, R., editors, Human-Centered Software Engineering, pages 164-180, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Han, Q. and Cho, D. (2016). Characterizing the technological evolution of smartphones:
Insights from performance benchmarks. In Proceedings of the 18th Annual International
Conference on Electronic Commerce: E-Commerce in Smart Connected World, ICEC
16, New York, NY, USA. Association for Computing Machinery.

Harrison, M. and Barnard, P. (1993). On defining requirements for interaction. In [1993]
Proceedings of the IEEE International Symposium on Requirements Engineering, pages
50-54.

Hudelist, M. A. (2013). Next generation image and video browsing on mobile devices. In
Proceedings of the 3rd ACM Conference on International Conference on Multimedia
Retrieval, ICMR ’13, pages 333-336, New York, NY, USA. ACM.

Hudelist, M. A., Schoeffmann, K., and Boeszoermenyi, L. (2013a). Mobile video browsing
with a 3d filmstrip. In Proceedings of the 3rd ACM Conference on International
Conference on Multimedia Retrieval, ICMR, ’13, pages 299-300, New York, NY, USA.
ACM.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Hudelist, M. A., Schoeffmann, K., and Boeszoermenyi, L. (2013b). Mobile video browsing
with the thumbbrowser. In Proceedings of the 21st ACM International Conference on
Multimedia, MM ’13, pages 405—406, New York, NY, USA. ACM.

IEEE (1998). Ieee recommended practice for software requirements specifications. IEEE
Std 830-1998, pages 1-40.

Islam, A., Chebil, F., and Hourunranta, A. (2006). Efficient algorithms for editing h.263
and mpeg-4 videos on mobile terminals. In 2006 International Conference on Image
Processing, pages 3181-3184.

Jokela, T., Karukka, M., and Mékeld, K. (2007). Mobile video editor: Design and
evaluation. In Jacko, J. A., editor, Human-Computer Interaction. Interaction Platforms
and Techniques, pages 344-353, Berlin, Heidelberg. Springer Berlin Heidelberg.

Karuzaki, E. and Savidis, A. (2015). Yeti: Yet another automatic interface composer. In
Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS ’15, pages 12-21, New York, NY, USA. ACM.

Knych, T. W. and Baliga, A. (2014). Android application development and testability.
In Proceedings of the 1st International Conference on Mobile Software Engineering
and Systems, MOBILESoft 2014, pages 37-40, New York, NY, USA. ACM.

Kotlin Foundation (2020). Kotlin. https://kotlinlang.org//. Accessed:
07.08.2020.

Leech, B. L. (2002). Asking questions: Techniques for semistructured interviews. PS:
Political Science and Politics, 35(4):665-668.

London, K. R. (2003). Documentation, page 602-608. John Wiley and Sons Ltd., GBR.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and Brinkkemper, S. (2015).
Forging high-quality user stories: Towards a discipline for agile requirements. In 2015
IEEE 23rd International Requirements Engineering Conference (RE), pages 126—-135.

Mayring, P. (1985). Qualitative inhaltsanalyse. In Jittemann, G., editor, Qualitative
Forschung in der Psychologie. Grundfragen, Verfahrensweisen, Anwendungsfelder,
pages 187-211. Weinheim: Beltz.

Merriam-Webster.com (2020). '"edit". https://www.merriam-webster.com/
dictionary/editing. Accessed: 2020-03-06.

Mohanani, R., Ralph, P., and Shreeve, B. (2014). Requirements fixation. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, page 895-906,
New York, NY, USA. Association for Computing Machinery.

Naderifar, M., Goli, H., and Ghaljaie, F. (2017). Snowball sampling: A purposeful
method of sampling in qualitative research.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://kotlinlang.org//
https://www.merriam-webster.com/dictionary/editing
https://www.merriam-webster.com/dictionary/editing

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Nielsen, J. (1995). 10 usability heuristics for user interface design. |https:
//www.nngroup.com/articles/ten-usability-heuristics/. Accessed:
02.06.2020.

Nowell, L. S., Norris, J. M., White, D. E., and Moules, N. J. (2017). Thematic analysis:
Striving to meet the trustworthiness criteria. International Journal of Qualitative
Methods, 16(1):1609406917733847.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: A roadmap. In
Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, page
35-46, New York, NY, USA. Association for Computing Machinery.

Ott, C., Hebecker, R., and Wakes, S. (2012). Picture the space: Three concepts for
management and presentation of personal digital photographs. In Proceedings of
the 13th International Conference of the NZ Chapter of the ACM’s Special Interest
Group on Human-Computer Interaction, CHINZ ’12, page 1-8, New York, NY, USA.
Association for Computing Machinery.

Panizzi, E. and Marzo, G. (2014). Multidimensional sort of lists in mobile devices.
In Proceedings of the 2014 International Working Conference on Advanced Visual
Interfaces, AVI ’14, page 375-376, New York, NY, USA. Association for Computing
Machinery.

Paulheim, H. and Erdogan, A. (2010). Seamless integration of heterogeneous ui compo-
nents. In Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’10, pages 303-308, New York, NY, USA. ACM.

Puikkonen, A., Hékkild, J., Ballagas, R., and Méantyjéarvi, J. (2009). Practices in creating
videos with mobile phones. In Proceedings of the 11th International Conference on
Human-Computer Interaction with Mobile Devices and Services, MobileHCI ’09, pages
3:1-3:10, New York, NY, USA. ACM.

Radinger, W. and Goeschka, K. M. (2003). Agile software development for component
based software engineering. In Companion of the 18th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’03, page 300-301, New York, NY, USA. Association for Computing Machinery.

Rautiainen, K. (2004). Chapter 12: Kanban for software development. In Heikkil4,
V., Rautiainen, K., and Vahéaniitty, J., editors, Towards Agile Product and Portfolio
Management, chapter 12, pages 184-192. Espoo: Aalto University.

Saffer, D. (2009). Designing gestural interfaces. O’Reilly, Sebastopol, first edition..
edition.

Schoeffmann, K., Hudelist, M. A., and Huber, J. (2015). Video interaction tools: A
survey of recent work. ACM Comput. Surv., 48(1).

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum. Prentice
Hall PTR, USA, 1st edition.

StatCounter (2020). Mobile operating system market share worldwide. https://gs.
statcounter.com/os-market—share/mobile/worldwidel Accessed: 2020-
05-31.

Sugimori, Y., Kusunoki, K., Cho, F., and Uchikawa, S. (1977). Toyota production system
and kanban system materialization of just-in-time and respect-for-human system.
International Journal of Production Research, 15(6):553-564.

Taylor, W. and Qureshi, F. Z. (2016). Automatic video editing for sensor-rich videos. In
2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages
1-9.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. In
Proceedings Fifth IEEE International Symposium on Requirements Engineering, pages
249-262.

Worndl, W., Weicker, J., and Lamche, B. (2013). Selecting gestural user interaction
patterns for recommender applications on smartphones. In Chen, L., de Gemmis,
M., Felfernig, A., Lops, P., Ricci, F., Semeraro, G., and Willemsen, M. C., editors,
Proceedings of the 3rd Workshop on Human Decision Making in Recommender Systems
in conjunction with the 7th ACM Conference on Recommender Systems (RecSys 2013),
Hong Kong, China, October 12, 2013, volume 1050 of CEUR Workshop Proceedings,
pages 17-20. CEUR-WS.org.

Yu, L. and Liao, X. (2013). Cloud based mobile video editing system. In 2013 IEEE 9th
International Conference on Mobile Ad-hoc and Sensor Networks, pages 378-382.

Zeaaraoui, A., Bougroun, Z., Belkasmi, M. G., and Bouchentouf, T. (2013). User
stories template for object-oriented applications. In Third International Conference on
Innovative Computing Technology (INTECH 2013), pages 407-410.

Zhang, L., Xu, Q.-K., Nie, L.-Z., and Huang, H. (2014). Videograph: a non-linear video
representation for efficient exploration. The Visual Computer, 30(10):1123-1132.

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Attachements

Usability Test Introduction

Welcome to the MicroDO usability test!

The background of this usability test is the master thesis | am currently working on. The topic
of this thesis is “Software components supporting the implementation of multimedia
applications for Android” with special focus on the rearrangement process of video editing on
mobile devices. Within this thesis a small software library called MicroDO has been
implemented. This software library should ease the implementation of new prototypes for
video editing applications on Android.

The goal of this usability test is to find out if the provided MicroDO API supports the
implementation of video editing applications as intended and what could be improved upon
further development of the library. During this usability test you will be asked to implement
simple user interfaces for Android using Kotlin within the context of the rearrangement of
Videos. For this you will be asked to use the MicroDO library wherever possible.

If you are ok with it, the implementation process and everything you say will be recorded to
evaluate the test afterwards. All footage and audio will be deleted after the assessment. To
ensure your privacy, all comments will be anonymized within the written thesis.

Feel free to say anything (good and bad) that crosses your mind during the development as
any remark can be useful to improve the quality of the MicroDO library. Any provided
mockups should only be used as a reference and it is not required to have everything look
exactly as displayed on them. You are not required to fully implement all of the user stories
handed to you and any parts can be dismissed or simplified if the effort is higher than
expected. Overall the implementation time should not be longer than 1.5 hours.

If you have questions feel free to ask them, anytime. Also repeatedly. It is ok.

Thank you for your participation.

Al

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Data

Age:

Years of Experience with Android:

<1 1-3 3-6 >6

Years of Experience with Kotlin

<1 1-3 3-6 >6

Years of Experience with Programming in General

<1 1-5 5-10 >10

Experience with video editing

yes no

Background Story:

You have been asked to implement a prototype for a new video editing Android application.
It was suggested to use the new MicroDO library to implement this prototype. An Android
Studio project with the MicroDO library already included has been handed to you. In addition
a set of user stories was provided to show what is expected for this prototype.

A2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Usability Test Scenario 1

Scenario 1

1.1 Tag Videos

Story:

As a person who edits videos,

| want to tag video files with custom meta data,

for this the system allows me to swipe towards one of the corners of a displayed video,
when a corner is reached, the video gets tagged with the tag assigned to the respective
corner.

| evaluate that my goal was achieved when the video shows the newly assigned tag.

Acceptance Criteria

The video can be swapped by click on the arrows to the left or the right.

When swiped to the top right, the displayed video gets tagged as “favorite”
When swiped to the top left, the displayed video gets tagged as “deleteable”
When swiped to the bottom left, the displayed video gets tagged as “nighttime”
When swiped to the bottom right, the displayed video gets tagged as “music”
When a tag is already assigned, it gets removed

Mockup

mHev mev

= Corner Gestures < % Q = Corner Gestures < @ Q

A3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

1.2 Filter Tagged Videos

Story:

As a person who edits videos,

| want to filter my videos by tag,

for this the system allows me to swipe to a corner of my list,

when a corner is selected the list is filtered by having the tag assigned to the corner.

| evaluate that my goal was achieved when only the files with the assigned tag are
shown.

Acceptance Criteria

When swiped to the top right, only the file tagged as “favorite” are shown
When swiped to the bottom left, only the files tagged as “night” are shown
When swiped to the bottom right, only the files tagged as “music” are shown
When swiped to the top left, only files tagged as “deletable” are shown
When swiped to the same corner a second time, all files are shown

Mockup

= MicroDO = MicroDO

A4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.3 Move All Filtered Items Into Different List

Story:

As a person who edits videos,

| want to move all previously filtered files into another List,

for this the system allows me to drag all elements filtered before into another list,
when the videos are dropped, they are part of the new list and no longer part of the
original one.

| evaluate that my goal was achieved, when all previously filtered videos are no longer
part of the original list, but part of the target list.

Acceptance Criteria

e \When long clicked on one of the views that is currently shown, all currently shown
elements are removed and become draggable

e The draggable object shows the long clicked element and the number of dragged
elements on it

e \When dropped into the list below, the elements get inserted as a single element,
still showing how many elements have been dragged

o When dropped anywhere else, the elements get inserted back into the list

e After a successful drop, all elements are shown again

Mockup

= MicroDO = MicroDO = MicroDO

A5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

Usability Test Scenario 2

Scenario 2

2.1 Select multiple videos by swiping

Story:

As a person who edits videos,

| want to select multiple videos within a list,

for this the system allows me to long click on the list and then swipe over the wanted
videos,

when an element is selected a checkmark appears.

| evaluate that my goal was achieved when all Elements | swiped over are marked as
selected.

Acceptance Criteria

o When swiped over the list after a long click, all swiped over elements are marked
as selected

e When swiped over without a long click, nothing happens

e When swiped over an element multiple times, it stays selected

Mockup
eV mev
= MicroDO < ® Q = MicroDO < @ Q
| | ————|
® 5
* e
o — o —
| [——
[— I
A6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2 Tag all selected elements via corners

Story:

As a person who edits videos,

| want to tag multiple videos at once,

for this the system allows me to swipe towards one of the corners of the list,

when a corner is reached, the selected videos get tagged with the tag assigned to the
respective corner.

| evaluate that my goal was achieved when all selected elements show the newly
assigned tag.

Acceptance Criteria

e \When swiped to the top right, the selected elements get tagged as “favorite”
e \When swiped to the top left, the selected elements get tagged as “deleteable”
e \When swiped to the bottom left, the selected elements get tagged as “nighttime”
e When swiped to the bottom right, the selected elements get tagged as “music”
o When no elements are selected, swiping to any corner does nothing
e After a tag, all elements get marked as unselected

Mockup

= MicroDO = MicroDO

AT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.3 Drag all selected videos into parking area

Story:

As a person who edits videos,

I want to park all selected videos for later usage,

for this the system allows me to drag all videos into the parking area below,

when the drag starts, the selected elements are removed and remain as a single element
within the parking area.

| evaluate that my goal was achieved, when the previously selected elements are no

longer i

n the list and the element visualizing them can be found in the parking area.

Acceptance Criteria

When a selected element is long clicked, drag and drop is started

The elements are removed from the list on drag

The dragging object shows the long click element and the number of elements
currently being dragged

When dropped in the parking area, the elements removes where dropped and is
only scaled down slightly

Mockup

= MicroDO = MicroDO

A8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Usability Test Scenario 3

Scenario 3

3.1 Move videos into the timeline

Story:

As a person who edits videos,

| want to move videos into the timeline,

for this the system allows me to drag and drop videos from a list showing my videos in
a list representing the timeline,

when a video is dragged into the timeline, it is no longer part of the original list.

| evaluate that my goal was achieved when the video is no longer in the original list but
in the timeline.

Acceptance Criteria

e When a video is swiped over, drag and drop is started
e When the video is dropped over one of the lists, it is inserted into that list at the
position it has been dragged to

Mockup

= MicroDO

= MicroDO

A9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2 Show parking area

Story:

As a person who edits videos,

| want to switch from the list to the parking areas below the timeline,
for the system allows me to scroll the screen vertically,

when scrolled down 2 parking areas are revealed.

| evaluate that my goal was achieved, when both the parking areas are visible below
the timeline.

Acceptance Criteria

e Vertical scrolling is enabled
e Below the timeline two parking areas get visible

Mockup

= MicroDO < ®Q

= MicroDO

A10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3 Park videos in the parking area

Story:

As a person who edits videos,

I want to move videos from the parking area into the timeline above or the other way
around,

for this the system allows me to drag and drop videos between the parking areas and
the timeline,

when the drag starts the video gets removed from the source and is inserted into the
target on drop.

| evaluate that my goal was achieved, when a video can be dragged out of the parking
area and dropped into the timeline below.

Acceptance Criteria

o When a video is swiped over, drag and drop is started
e When the video is dropped over one of the parking areas or on the timeline, it is
inserted into that target

Mockup

= MicroDO

= MicroDO

All

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Usability Test Scenario 4

Scenario 4

4.1 Store any text

Story:

As a person who edits videos,

| want to store custom text with my videos for the editing process,

for this the system allows me to store any text with a video | click on,
when | click on the video again the text is stored.

| evaluate that my goal was achieved, when | have the written text stored with the video
even after restart of the app.

Acceptance Criteria

o When clicked on a video in the list, a text box appears on the side, showing the
stored text for the video

e If no text is stored, an empty text box is shown

e When clicked on the video again or a different video, the text is stored as a tag

Mockup
mev
= MicroDO <®Q
mnev
= MicroDO < e®Qa
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Morbi odio sapien,
ultricies sodales lobortis
et, porta in odio.

A12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.2 Park videos in parking area

Story:

As a person who edits videos,

| want to store items for later use,

for this the system allows me to drag a video from the list into a parking area and back,
when a video has been dragged it is no longer part of the original source, but part of the
target.

| evaluate that my goal was achieved, when the dragged video is no longer part of the
original source, but part of the target.

Acceptance Criteria

e \When long clicked on a video, drag and drop starts and the video is removed from
the original source

o \When dropped within the parking area or list, it gets inserted at the current position

Mockup

= MicroDO

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.
Morbi odio
sapien, ultricies
sodales lobortis
et, porta in odio.

= MicroDO

Lorem ipsum
dolor sit amet,
consectetur

adipiscing elit.

Morbi odic

sapien, ultricies
sodales lobortis
et, porta in odio.

A13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.3 Add videos to timeline

Story:

As a person who edits videos,

| want to store items for later use,

for this the system allows me to drag a video from the list into the timeline on the right,
when a video has been dragged it is no longer part of the original source, but part of the
target.

| evaluate that my goal was achieved, when the dragged video is no longer part of the
original source, but part of the target.

Acceptance Criteria

e \When long clicked on a video, drag and drop starts and the video is removed from
the original source
e \When dropped within the timeline or list, it gets inserted at the current position

Mockup

Hev

= MicroDO < ®Q

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.
Morbi odioc
sapien, ultricies
sodales lobortis
et, porta in odio.

HeV

= MicroDO < ®Q

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.
Morbi odic
sapien, ultricies
sodales lobortis
et, porta in odio.

Al4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Usability Test Scenario 5

Scenario 5

5.1 Select multiple videos by swiping

Story:

As a person who edits videos,

| want to select multiple videos within a list,

for this the system allows me to swipe over the wanted elements or click on them,
when an element is selected a checkmark shows this.

| evaluate that my goal was achieved when all elements | swiped over are marked as
selected.

Acceptance Criteria

e When swiped over the list after a long click, all swiped over elements are marked
as selected

e When swiped over without a long click, nothing happens

e When swiped over an element multiple times, it stays selected

Mockup

HeV mnev

= MicroDO < @ Q = MicroDO < @ Q

3

A15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Drag videos into buckets

Story:

As a person who edits videos,

| want to quickly sort elements into buckets,

for this the system allows me to drag all selected videos into buckets on the top,
when items are added to buckets, the number showing the amount of elements included
increases

| evaluate that my goal was achieved when all moved videos are no longer part of the
list and the number on the buckets show the correct number of included items.

Acceptance Criteria

e When long clicked on any selected video, the drag and drop starts and the items
are removed from the list

e When the items are dragged they are no longer part of the original list

e When dropped on a bucket, its number of items increases

Mockup
= MicroDO < ® Q = MicroDO < ® Q
Al6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

5.3 Show videos of buckets

Story:
As a person who edits videos,
| want to check what items | have inside my buckets,

for this the system allows me to click on any of the buckets,
when clicked on one of them, the items of this bucket are shown in the list below.

| evaluate that my goal was achieved, when the correct videos from the selected bucket
are shown in the list.

Acceptance Criteria
e When a clicked on a bucket, the items added to this bucket are shown

Mockup

= MicroDO = MicroDO

Al7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Problem definition
	Expected Results

	State of the art
	User Interaction on Smartphones
	Development on Android
	Sorting
	Video Editing
	New ideas for Video editing
	Componentization of Software

	Methodology
	Thematic Analysis
	Requirements Engineering
	Agile Software Development
	UserX Story
	Semi-Structured Interviews
	API Usability Test

	Implementation
	Requirements Analysis
	UserX Stories
	Implementation of the MicroDO library

	Evaluation
	Design of the MicroDO API usability test
	Conducting the API usability test
	Feedback Analysis

	Results
	Results of the API usability test
	Categorisation of the Usability Issues

	Conclusion
	Summary
	Critical Reflection
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Attachements
	Usability Test Introduction
	Usability Test Scenario 1
	Usability Test Scenario 2
	Usability Test Scenario 3
	Usability Test Scenario 4
	Usability Test Scenario 5

