Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DIPLOMARBEIT

A Deep Learning Approach for
Analyzing the Limit Order Book

ausgefiihrt am

Institut fur Stochastik und Wirtschaftsmathematik
TU Wien

unter der Anleitung von

Univ.Prof. Dipl.-Math. Dr.rer.nat. Thorsten
Rheinlander

durch

David Hirnschall, BSc
Matrikelnummer: 01427610

18. August 2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

In den letzten Jahrzehnten haben sich die Finanzmarkte aufgrund der enormen, heut-
zutage verfiigharen, Datenmenge grundlegend verdndert. In dieser Arbeit stellen wir
einen rein datengetriebenen Ansatz ohne zugrunde liegende Annahmen, wie etwa Preis-
dynamiken, fiir die Analyse der Mérkte vor. Wir verwenden modernste Techniken des
maschinellen Lernens, um den Informationsgehalt von Limit Order Biichern (LOB) zu
untersuchen, indem wir die Vorhersage von Preishewegungen sowie Volatilitaten, zwei
der wichtigsten Fragestellungen fiir Investoren, behandeln.

Wir beginnen mit einer detaillierten Einfiihrung in die Theorie neuronaler Netze, wo wir
nicht nur grundlegende Architekturen, insbesondere deep feedforward neuronale Netze,
und deren Trainingsalgorithmus vorstellen, sondern uns auch auf Optimierungs- und
Generalisierungstechniken konzentrieren. Dariiber hinaus préasentieren wir eine mathe-
matisch exakte Beschreibung eines Limit Order Buches sowie seiner tatsédchlichen Da-
tenstruktur, gefolgt von einem unverzerrten Schétzer der realisierten Volatilitdt unter
Verwendung von verrauschten Hochfrequenzdaten. Dieser wird TSRV (Two Scales Rea-
lized Volatility Estimator) genannt.

SchlieBlich zeigen wir empirische Ergebnisse fiir vier verschiedene Aktien. Die verwende-
ten Daten des Limit Order Buches von der NASDAQ), der zweitgrofiten Borse weltweit,
wurden vom Online-Tool LOBSTER bereitgestellt. Fiir jede Fragestellung extrahieren
wir zunachst eine breite Palette technischer und quantitativer Merkmale aus den Da-
ten des Limit Order Buches. Anschlieffend verwenden wir Methoden, wie etwa recursive
feature selection und den Boruta-Algorithmus, zur Auswahl der wichtigsten Merkmale
um die Trainingsgeschwindigkeit zu erhohen und die Leistung zu verbessern. Durch die
Verwendung von deep feedforward neuronalen Netzen, die auf den wichtigsten Merkma-
len trainiert worden sind, kénnen wir haufig verwendete lineare Algorithmen, wie die
logistische Regression, fiir die Vorhersage des mittleren Preises fiir alle vier Aktien tiber-
treffen. Dartiber hinaus liefert unser vorgeschlagener Ansatz weitaus bessere, langfristige
Volatilitatsprognosen als ARIMA Modelle. Folglich wird die Notwendigkeit einer Neuka-
librierung verringert, wodurch schnellere Vorhersagen und damit potenziell vorteilhafte
Indikatoren fiir Anleger ermoglicht werden.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

In the last few decades the financial markets have changed fundamentally because of the
tremendous amount of data which is available nowadays. In this thesis we propose a pu-
rely data-driven approach without any underlying assumptions, such as price dynamics,
for analyzing the markets. We therefore use state of the art machine learning techniques
to investigate the information content of limit order books (LOB), by targeting two of
the most important tasks for investors, namely predicting price movements and forecas-
ting volatility.

We start by giving a detailed introduction into the theory of neural networks, where
we not only present basic architectures, particular deep feedforward neural networks,
and how to train them, but also focus on optimization and generalization techniques.
Furthermore, we present a mathematically precise description of a limit order book as
well as its actual data structure, followed by an unbiased approach to estimate realized
volatility using noisy high-frequency data, referred to as two scales realized volatility
estimator (TSRV).

Finally, we show empirical results for four different stocks. The used limit order book
data from NASDAQ), the second largest stock exchange in the world, was provided by
the online tool LOBSTER. For each task we first extract a wide range of technical and
quantitative features from basic limit order book data. Afterwards, we use feature selec-
tion methods, such as recursive feature selection and the Boruta algorithm to increase
training speed and improve performance. By using deep feedforward neural networks,
trained on the most important features, we are able to outperform commonly used line-
ar algorithms for mid-price prediction such as multiclass logistic regression for all four
stocks. Additionally, our proposed approach yields better long term volatility forecasts
than ARIMA models. Consequently, it reduces the necessity of re-calibration, which
yields faster predictions and therefore potentially beneficial indicators for investors.

ii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
ledge

b

now!

i
r

Acknowledgment

My gratitude goes to Univ.Prof. Dipl.-Math. Dr.rer.nat. Thorsten Rheinlander for
supervising this thesis and being available at all times to answer my questions.

I would like to express my sincere thanks to Sandra Trenovatz, secretary at FAM, for
finding solutions for every organizational problem, but especially for always having stu-
dents’ backs.

Furthermore, I would like to say thank you to my family and friends, especially my
mother, without whose never ending support I would not have gotten this far. Thank
you for being there for me in every imaginable situation.

Last but not least, a special thanks goes my amazing girlfriend not only for her ongoing
love and support but also for always motivating me to do my best.

il

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Eidesstattliche Erklarung

Ich erklire an Eides statt, dass ich die vorliegende Diplomarbeit selbststandig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wortlich oder sinngeméafl entnommenen Stellen als solche kenntlich gemacht
habe.

Wien, am 18. August 2020
David Hirnschall

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Contents

1.

Introduction

1.1.

1
Machine Learning - Terminology 1
1.1.1. Types of machine learning 1
1.1.2. Performance 2

3

1.2, Limit Order Book
2. Deep Learning 5
2.1. Basic Network Architecture 5)
2.1.1. The Perceptron (computing units) 5
2.1.2. Multilayer Neural Networks 8
2.2. Learning Neural Networks 9
2.2.1. Maximum Likelihood Estimation 9
2.2.2. Loss Functions 10
2.3. Optimization for Neural Networks 11
2.3.1. Backpropagation Lo 11
2.3.2. Gradient Descent Algorithms 13
2.3.3. Parameter Initialization Strategies. 16
2.3.4. Batch Normalization 16
2.4. Generalization for Neural Networks 17
2.4.1. Model Selection Lo 17
2.4.2. Regularization Techniques 18
3. Limit Order Book 20
3.1. Mathematical Description 20
3.2. Data Structureo 21
4. Volatility Estimation using Noisy
High-Frequency Data 24
4.1. Quadratic Variation and Realized Volatility 24
4.2. Realized Volatility under Market
Microstructure Noise 25
4.2.1. Setup and Sparse Sampling 25
4.2.2. Biased Realized Volatility 26
4.2.3. Two Scales Realized Volatility Estimator (TSRV) 28
5. Experiments 31
5.1. Preliminaries e 31
5.1.1. Available Data o 31
5.1.2. Handcrafted Features 31
5.1.3. Feature Selection Methods 33
5.1.4. Normalization 34
v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

5.2. Predicting Price Movements 35
5.2.1. Target Labels o 35

5.2.2. Pre-processing e 36

5.2.3. Empirical Results oL 38

5.3. Volatility Forecasting o Lo 41
5.3.1. Pre-processing 42

5.3.2. Empirical Results oo 42

6. Conclusion 47
References 48

vi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

1. Introduction

We are drowning in information and starving for knowledge. — John Naisbitt.

With the rapid increase in the amount of data available due to modern technologies,
the need for automated methods for data analysis continues to grow. We want to define
the set of these methods as machine learning. The goal of machine learning is to au-
tomatically detect patterns in data and then to use these patterns to identify complex
relationships or to predict future outcomes [26]. In other words we are looking for algo-
rithms which learn from given data, even though they are not explicitly programmed to
do so.

These methods, particularly deep neural networks, have been a research topic for many
years and some of major statements have been discovered already 20 years ago in 1989
by Kurt Hornik, Maxwell Stinchcombe, and Halbert White [17]. Back then their usabil-
ity was very limited due to the lack of computational power. With modern computers
machine learning has become one of the most important subjects among researchers and
companies.

Nowadays there are numerous areas of application for machine learning algorithms, such
as science, marketing, natural disaster prediction, image recognition and also finance and
insurance. Particularly deep learning models like deep feedforward neural networks have
already found numerous applications in quantitative finance, such as price prediction or
volatility forecasting.

Although neural networks can yield great results, their calculation process is hard to
interpret and therefore deep learning is frequently criticized as black box with lacking
fundamental theory.

1.1. Machine Learning - Terminology

Before going more into detail of deep neural networks and how to use them in finance,
we give a brief introduction in important machine learning terminologies.

1.1.1. Types of machine learning

Usually machine learning algorithms are divided into three, sometimes even into four
groups, namely supervised, unsupervised, reinforcement and sometimes semi-supervised
learning [4].

Supervised Learning In supervised learning the data set contains out of labeled exam-
ples D = {(z;, ;) })¥,, where z; € R? is referred to as a d-dimensional feature vector and
represents one observation, whereas y; is referred to as target or response variable. The

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

1.1 Machine Learning - Terminology

feature vector a; contains in each dimension j = 1,...,d one observed value that some-
how describes the target y;. These values are called features, attributes or covariates
and are donated as x;’). The labels y; can either be discrete, in particular an element
belonging to a finite set of classes, such as { K, Ks, ..., K,,} or {good, bad}, which yields
a classification problem, or be continuous (eg. y; € R), which yields a regression prob-
lem. The goal of supervised learning is to produce a model which uses x; to predict
some output that allows us to deduce y;. More precisely, we want to solve a regression
problem by approximating a function f : f(x;) = y;, ¢ = 1,..., N, and calculate the
conditional probability p(y;|@;) for a classification problem. In Section 2 we deal with
both tasks in more detail.

Unsupervised Learning In unsupervised learning the data set contains unlabeled ex-
amples D = {x;}¥,, where x;, again represents the d-dimensional feature vector but
this time no target variable is available. The goal here is to learn the unconditional
probability p(x;) and find patterns in the data set. Some of the most used unsupervised
learning algorithms are clustering, which divides the data set into groups according to
interesting patterns, or dimensionality reduction techniques to reduce the number of
features in a data set without losing much information and keeping or even improving
the model’s performance.

We do not cover unsupervised learning in this thesis.

Reinforcement Learning In reinforcement learning we are not dealing with a pre-
defined data set but rather the machine uses available features of every state in an
environment and can take actions there. Every action yields different rewards. The goal
of reinforcement learning is to maximize the reward of a predefined reward function,
thus it can be seen as trail and error.

Reinforcement learning is mostly used to solve problems with long term goals under
sequential decision making, such as game playing or robotics (e.g. AlphaGo).

We do not use reinforcement learning in this thesis.

1.1.2. Performance

Now that we know what type of algorithms we have to use for different problems, we
have to think about its performance. One of the most important aspects is how exact
and complex should a model be trained? Regarding model complexity we differentiate
between two main challenges, namely overfitting and underfitting.

Overfitting Fitting highly complex models often leads to overfitting, meaning a model
learns too precisely from the training data. Models that make predictions based on
too small details in the training data are able to divide them perfectly, but also yield
poor decisions for new data, without these special details. Consequently, it is usually
beneficial avoid considering every minor aspect in the input data as important, since it

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.2 Limit Order Book

is more likely to face noise than true signals. The ability to perform well on previously
unknown input data is called generalization and gets discussed in Section 2.4.

Underfitting On the other hand, if the training data is not analyzed sufficiently pre-
cisely, we are talking about underfitting. The resulting, too simple, model is not able to
recognize data structures, thus it does not make good predictions neither for the training
data nor for new data.

A graphical illustration of under- and overfitting is given in Figure 1.1.

— - Training error

Underfitting zone| Overfitting zone : :
—— (Generalization error

Error

0 Optimal Capacity
Capacity

Figure 1.1: Typical relationship between a model’s ability to fit a wide variety of func-
tions, referred to as capacity, and error. [12]

As a consequence, model selection is one the most important tasks in machine learning
and can make the difference between success and failure of a project. In Section 2.4.1
we are dealing with it in more detail.

1.2. Limit Order Book

The importance of algorithmic trading is growing and nowadays financial instruments
such as stocks and futures are increasingly traded in electronic, order-driven markets.
The heart of these modern trading systems is a double auction mechanism called limit
order Book (LOB), [19], which contains all critical information of buy and sell orders
for each traded stock, in particular it contains all open limit orders at each price level.
A limit order is a order to buy or sell a certain amount of shares of a specific stock at a
certain price. It remains in the order book until it gets executed or canceled. The buy
limit orders are on the bid side and the sell limit orders on the ask side, respectively. The
prices at which the stock can immediately be bought and sold, via a so called market

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.2 Limit Order Book

order, are referred to as best bid and best ask price, respectively. Market orders get
executed immediately at the best level and then "walk their way through' the book for
any additional shares. A graphical representation of a LOB is given in Figure 1.2.

Ask Side

Sell limit order

=
N

Depth available

mid-price il

bid-price

Price

[R R - I T A TR R . R -]
P L MR M I

ask-price (UsD)
ﬁ spread
99 Buy limit order
-104
Bid Side

Figure 1.2: Graphical representation of a limit order book, [§]

The gap between best bid ans best ask is referred to as bid-ask-spread, and varies over
time, although it is often modeled as a constant. Taking the average of best bid and best
ask price yields the mid-price. It is often considered the "price" of the stock, although it
is just a number at which one can not buy or sell. Therefore, theoretically it would be
beneficial to model both the best bid and the best ask [34]. Nevertheless, the so called
market micro-structure noise can be partially reduced by using midprices.

Since the limit order book records changes in open orders in milliseconds, it contains
hundreds of prices at different levels, hence it describes the known demand and supply
of a stock at every point in time. This complexity and high-dimensionallity of the order
book makes modeling extremely challenging.

In this thesis we develop a purely data-driven approach to target these challenges, by
using state of the art machine learning techniques. In order to capture the non-linear
relationship among the different levels in the order book we use deep feedforward neural
networks. For the implementation in Python (version 3.7.7) we use the Keras library
(version 2.3.1) with Tensorflow (version 2.2.0) as backend.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2. Deep Learning

In this chapter we introduce deep feedforward neural networks and how they can cap-
ture non-linear relationship among input variables. We present the back propagation
algorithm and investigate different optimization as well as generalization techniques.

2.1. Basic Network Architecture

Deep feedforward networks, often referred to as multilayer perceptrons, build the basis
of all different kinds of extended neural network architectures. The goal of feedforward
networks is to approximate an function f : y = f(«), by optimazing some parameters 0
such that f (x;) yields the best approximation.

Their main components are an input layer, at least three to four (depending on the
definition) hidden layers -otherwise they are called shallow networks- and one output
layer. These models are called feedforward because information flows from the input
layer directly though the hidden layers to the output layer without any cycles or feed-
backs. Networks extended by feedbacks are referred to as recurrent networks.

In this thesis we focus on feedforward neural networks and do not cover any extensions
such as recurrent neural networks or LSTM models.

Finally, they are called neural network because of the connected nodes each vector val-
ued layer contains. Since neural networks are inspired by the human brain, the role of
each node is analogous to a brain neuron. The number of neurons in a hidden layer gives
the width of the network and the number of hidden layers the depth, respectively.

In this section we mainly follow [1, Section 1.2.1 and Section 1.2.2] and [12].

2.1.1. The Perceptron (computing units)

The simplest neural network is referred to as the perceptron. These neural networks
contain only an input layer and one output node, the computing unit. The basic archi-
tecture can be seen in Figure 2.1.

X
\\
\31 1
N
w N
x; 2 \/Z fo) |y
J/
//)\\V -
,///
o n
x.

Figure 2.1: Basic architecture of a perceptron, [25]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1 Basic Network Architecture

As a basic example consider a binary classification problem with data of the form
{(zs,)X}, where z; = (:1:1(-1), AR ,xZ(N)) contains N input features and y; € {—1, +1}
is the target variable. This example might occur in a credit card fraud detection appli-
cation.
The input layer contains d nodes that send x;, i = 1,2,...,d with edges of weights
w = (wy, Wy, ..., wy) to the output node. There the linear function w-x; = Zév:l wj.rgj)
is computed. The input layer does not perform any computations on its own and is there-
fore not counted as an additional layer. Subsequently, the sign function of this value is
used to predict g; out of x;, © = 1,2,...,d and convert the aggregated value to an class
label as follows: N

9; = sign(w - x;) = sign (Z wjxl(j)>)

j=1

The sign function serves the role of an activation function.
In many situations a prediction is biased, i.e. there is an invariant part of the prediction.
For example mean centered feature variables can yield binary class prediction from
{—1, 41}, with a non-zero mean. This often occurs in situation in which the binary class
distribution is highly imbalanced. In such cases we have to adjust the aforementioned
approach by incorporating a additional bias variable b that captures the invariant part of
the prediction. We can do that by adding a bias neuron and assigning the bias variable
to its weight:

N .
9; = sign(w - x; + b) = sign (Z wjxgj) + b) :

J=1

Activation Functions Choosing an activation function is a critical part, when building
an neural network. For a binary classification problem, such as the one above, we use
the sign function. However, in different situation other functions may be better suited.
For predicting a real-valued target it makes sense to use the identity activation function,
which yields the same as a least squares regression. Predicting the probability of a binary
class, may be achieved by the sigmoid activation function, and the resulting algorithm is
the same as a logistic regression. As a matter of fact, most of the basic machine learning
algorithms can be represented as simple network architectures.

Formally an activation function can be defined as follows:

Definition 2.1 (Activation Function). The often non-linear activation function ¢(-) at
a neuron n transforms the input @ after multiplying it with w to n = ¢(x - w + b) with
bias b.

Hence, each node actually computes two function, one linear summation and one in most
cases non-linear activation function, as illustrated in Figure 2.2.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.1 Basic Network Architecture

W o
X {—. h=p(W-X)
|‘BREAK up

e J_,_ =W-X > h=
R { _’@ . v‘v) ¢ :;:'(-aA’g'I'IVATION

VALUE

PRE-ACTIVATION
VALUE

Figure 2.2: Pre- and post-activation values with a single neuron, [1]

We distinguish between the value before applying the activation function, referred to
as pre-activation value, and the value computed after applying the activation function
referred to as post activation value, respectively. Even though the output of a node is
always the post-activation value, the pre-activation value is very important for compu-
tations, such as backward propagation discussed in Section 2.3.1.

Figure 2.3 illustrates some of the most used activation functions for a single output node.

b b b b
b b b b

(a) Identity (b) Sign (c) Sigmoid

b b b b
Lob bbb
L 5 o

= =

(d) Tanh (e) ReLU (f) Hard Tanh

=

Figure 2.3: Different activation functions, [1]

While the linear activation function in a) is often used in the output node for prediction
real valued targets, non-linear activation functions are very useful for predicting proba-
bilities or in multilayer networks, as discussed in Section 2.1.2.

Multilayer networks allow to combine activation functions and use more advanced acti-
vation functions, such as for example the softmax function. The i-th output is defined
as

P(v)i = =x

& vie{1,2,... k).
Zj:levj { }

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1 Basic Network Architecture

In a multiclass classification problem with k different classes the final hidden layer inputs
data in the sofmax layer. This final layer converts them to outputs, corresponded to the
probabilities of the k classes. An example of a softmax activation function with three
classes is illustrated in Figure 2.4.

OUTPUTS

N
X3 "‘. 7S (== P(y=green)

t =—> P(y=red)

Vi1 [

--------- 4 SOFTMAX LAYER
HIDDEN LAYER

INPUT LAYER

Figure 2.4: Example of classification net using the softmax activation function, [1]

2.1.2. Multilayer Neural Networks

In contrast to the perceptron, multilayer neural networks contain additional computa-
tional layers between the input and output layer, referred to as hidden layers. According
to the default architecture of a feedforward neural network all nodes in each layer are
connected to those in the next layer. Partially connected networks, where not every node
is connected to every node in the next layer, are reffered as to sparse neural networks.
Additional bias neurons can not only be used in the output layer but also in multiple
hidden layers. Basic architectures of multilayer networks containing two hidden layers
with and without bias are shown in Figure 2.5. Once again the input layer is not counted,
because no computations are performed there.

INPUT LAYER INPUT LAYER

HIDDEN LAYER HIDDEN LAYER

SHNR 7]
‘2:5.‘“}": OUTPUT LAYER ’Q A‘ OTPUT LAYER
B =50

TR SO
28 4

(a) No bias neurons (b) With bias neurons

Figure 2.5: Example of a multilayer network with two hidden layers, [1]

Formally we can define a multilayer neural network as follows:

Definition 2.2 (Multilayer Neural Network). Let L, No, Ny,..., N, € N;¢ : R — R
and for any [= 1,2,..., L let A; : RNM-1 — R™ be an affine function. Then a function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2 Learning Neural Networks

F : RN — RN defined as
F(z)=A/0F, 10---0F; with F;=¢o0 A forl=1,2,...,L—1

is called a (feedforward) neural network. Hence the activation function ¢ is applied
componentwise. L denotes the number of layers, Ny, Ny, ..., N;_; denote the dimension
of the hidden layers and Ny, Nj, of the input and output layers, respectively. For any
[=1,2,..., L the affine function A, is given as A;(x) = W'z +¥ for some W! € RN>*Ni-1
and b € RM. Forany i =1,2,...,N;, j =1,2,..., N,_; the number Wi{j is interpreted
as the weight of the edge connecting the node i of layer [— 1 to node j of layer [. The
number of non-zero weights of a network is the sum of the number of non-zero entries
of the matrices W', [=1,2,...,L and vectors b, [=1,2,..., L. [3]

The question of depth and width of a network has always been of highest priority for its
performance. In 1989 [17] showed that for every non-constant and bounded activation
function even standard neural networks with only a single hidden layer can approximate
any function on any compact set arbitrarily well. Later in 1991 Hornik showed in [16]:

Theorem 2.1 (Universal Approximation). Suppose ¢ is non-constant and bounded.
Then the following statement holds:

e For any finite measure p on (RN, B(RM)) and 1 < p < oo, the set of neural
networks mapping from RN — RN s dense in LP(RN, p).

o Ifin addition ¢ € C(R), then the set of neural networks mapping from RNo — RM
is dense in C(RN0) for the topology of uniform convergence on compact sets.

Even though this theorem states that we can represent every function it does not neces-
sarily mean that we can learn it. Thus, the architecture plays an important role when
it comes to performance. As we will see in more detail later on, we often prefer deep
networks to wide ones, since they are often faster to train.

2.2. Learning Neural Networks

In the previous section we discussed the basic architectures of neural networks and how
they map an input @ to an output y = f (x,0) in order to approximate a unknown
function f(-) that represents the targeted variable y = f(x). Finding the best approx-
imation is achieved by optimizing the parameters @ = (6, 0,,...,0y) which is referred
to as training the neural network. In this section we discuss how to find the best weights
for the approximation.

2.2.1. Maximum Likelihood Estimation

In order to predict y; given x;, + = 1,2,..., N, neural networks approximate a function
f(), by estimating a conditional probabilities p(y;|®;;0), i = 1,2,..., N. Hence the
maximum likelihood estimator @,;;, of @ yields the best approximation for the true
probability [12].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2 Learning Neural Networks

Definition 2.3 (Maximum Likelihood Estimator). Let & = (21, @2, ..., xx) be identi-
cally drawn from a generating probability distribution p(x) and p(x; @) ba a parametric
family of probability distribution over the same space indexed by 8. Then the maximum
likelihood estimator for 8 is given by

0, = argmax p(x; 0)
0

N
= argmax | [p(x;, 0)
o =1
Taking the logarithm of the likelihood does not change the argmax, thus yields the
equivalent but more convenient optimization problem:

N
Oy = argmax > In(p(z;; 0))
o =1
To obtain a version that is expressed as an expectation with respect to the empirical
distribution p we divide the right hand side by N and get:

0, = argmax E; [In(p(x; 9))] .
0

The maximum likelihood estimator can be interpreted as finding the best approximation
of the true probability distribution p(x), hence we can equivalently minimize the KL
divergence.

Definition 2.4 (Kullbeck—Leibler Divergence). The Kullbeck—Leibler divergence be-
tween two probability distributions p(x) and p(x; 0) is given by:

Dir(p(@) || p(w;0)) = B In(p(z)) — In(p(;0))] .

Since In(p(x)) is independent of @, minimizing the KL divergence is equivalent to only
minimizing

—E; [In(p(x; 6))],
which is referred to as cross-entropy between the empirical distribution p(x) defined by
the training set and the distribution p(x; @) defined by the model.
Even though for some easy problems, such as linear regression, we can simple calculate
the optimal parameters 6, in practice there is almost never an analytical solution for that.
Hence, we must use the log-likelihood function S | In(p(x;; 6)) to find the optimum.

2.2.2. Loss Functions

In order to optimize the weights w we first define a loss function L(a;,y;, w) that
measures the quality of each prediction ¢; for the corresponding feature vector x;, i =
1,2,...,N. Due to the fact that minimizing the cross-entropy or negative log-likelihood
yields the maximum likelihood estimator, it is the most used loss function.

The exact loss function depends on the problem and therefore on the type of output
node.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3 Optimization for Neural Networks

Linear Regression If we see the linear regression algorithm not as a mapping from
x to one single prediction § but as an algorithm producing a conditional distribution

p(y|x) it can be shown, that maximizing the log-likelihood with respect to the weights

w yields the same estimator as minimizing the mean squared error,
53
MSE =—) |§; —
N

Even though the two criteria have different minima, the location of the optimum remains
the same.

Classification As already discussed earlier, for a K-class classifier we use the softmax
activation function given by

eri

p;j = ply = jla; 0) = softmax(z;) = K o
=1
with K nodes estimating the K class probabilities p(y = jlx) = p; for j =1,2,..., K.
For this reason the target probabilities can be written as

p(y|x; 0) H hoi

with y; being a vector with all elements equal to zero except the j-th one which equals
to one. Given these representations we can determine the corresponding loss function
as follows:

n K n K

1 1
L(yaw 9 = _722%7] lIl yz,j|wi;9)) = _*Zzyi,j lnﬁi,j

i—1 j—1 N353

For binary classification we only need to estimate one class probability p(y = 1|x; 0) = p,
which simplifies the loss function to :

n

1
L(y,x;0) = —g Zyz In(p(yijle:; 0)) + (1 — y;) In(1 — p(y; ;|2 0))

= Z:y (pi) + (1 — i) In(1 = py)

2.3. Optimization for Neural Networks

2.3.1. Backpropagation

In the last sections we have discussed how we can estimate a target y by a neural
network output § = f(a;60). Further we introduced a way to measure the quality of
these predictions, according to which we now want to optimize the parameters 6. In order

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

2.3 Optimization for Neural Networks

to understand how changing the weights at different levels affects the loss L(y, x; 0), we
need the gradients VL(y, x; 0). These gradients are calculated by the backpropagation
algorithm [33], which leverages the chain rule from differential calculus and contains two
main phases:

e Forward phase: In this phase the input x is fed into the network, propagated
through the hidden layers to produce an output ¢, by using the current set of
weights. The output can be compared to the actual target which yields the loss
L(y,x;0). In order to update the weights we then propagate the information from
the loss backward in the network, which is done in the second phase by calculating
the gradients VL(y, x;0).

e Backward phase: In this phase, starting from the output node, the gradients
VL(y,x;0) with respect to the different weights are calculated, using the chain
rule. Afterwards the weights are updated and the whole process starts from the
beginning.

Even though backpropagation is often misunderstood as the whole learning algorithm
for neural networks, it only refers to computing the gradients.

In order to understand backpropagation, let hy, hs, ..., hx be a sequence of hidden units,
followed by an output o, that was used to compute the loss L. Furthermore, let w,,_)
be the weights between to hidden units h, and h,_;. In case only one path exists between
hy to o the gradient of the loss with respect to any of these weights can be easily derived
using the chain rule as follows, [1]:

k=1 o
oL 0L [80 ahm] Oh, Vre{1,2,..., k).

Ohy, Il Oh;

810(}%717}”) - 80 i—1

OW(h,_y by

As seen in Figure 2.5 in general there are multiple possible paths from h; to o. Hence,
we have to generalize the above expression to the case where a set P contains all paths
from h, to o. Using a multivariable chain rule yields

)
8w(hrflyhr) do

80 k1 8hi+1 6]17«
S]

{hr hrt1,e hi,0 EP i=1

oL Oh,
= Vre{l,2,...,k}.
ahr aZU(hT717hr) { }

OW(h, 1 ,hy)

While 7&”(}?}‘* — on the right hand side can be computed straightforward and will be
r—1:0r
oL

discussed later, he
of paths.
Beginning with nodes hy, closest to the output o and recursively going backward to earlier
nodes the multivariable chain rule yields

oL oL Oh
oh, 2 }%ahr

{h|after h,

gets calculated recursively, because of the potentially high number

(2.1)

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.3 Optimization for Neural Networks

Since each h is in a later layer then h,., 2 o L has already been computed during a previous
recursion step. However, we still need to compute 5)1? Thereto let w,) be the weights
between h, and h and let a; be the value computed in hidden umt h just before applying

the activation function ¢, i.e. h = ¢(ay). Using the chain rule, 2 ah can be derived as

Oh Oh da, O¢(ay)

N - =¢ : 2.2
oh, day, Oh, day, Wit) = O (aR)W(H, 1) (2.2)

Plugging (2.1) into (2.2) yields

oL oL ,
= D> ¢ (an)wm,n.
ahr {h:after hr} Oh
Finally, ﬁ can be computed as

oh, _ Oh, Oay,
8w(h7.,1,h7») 8ahr a’l'U(h’r'flJLT)

= ¢,(ahr)hr—l

Using this recursion gradients are computed in a backward direction and every node is
processed exactly one time. As one of many alternative ways to compute the gradients
we could also use the pre-activation values a;, instead of the nodes h as "chain" variables.
However, these different computation ways are equivalent in terms on the final result

[1].

2.3.2. Gradient Descent Algorithms

To train a model we have to constantly update the weights to find their optimum, but so
far, we only described how to compute the partial derivatives of the loss function through
the network. In this section we focus on different approaches to use these gradients for
optimizing the weights.

The most basic algorithm known is referred to as gradient descent. We can imagine
the quality of our predictions measured by the loss function as a landscape similar to a
golf course. The hills represent locations (weights) with high prediction errors,whereas
valleys represent locations with small errors, respectively. The goal is to move the
weights as quickly as possible to areas of low errors. We therefore update the weights in
small steps in the direction of the negative gradient of the loss function with respect to
the weights:

Onew = Oold - €VL(y> €T, 00ld)7

where € is referred to as the learning rate. However gradient descent is hard to use in
practice, since in non-linear problems it often gets stuck at a local minima. Furthermore,
it can be very slow on big training sets, because it computes the gradient on the full
batch.

That is why nearly all deep learning algorithms are using a stochastic gradient decent
(SGD) approach. In order to speed the process up SGD computes the gradients on

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.3 Optimization for Neural Networks

small samples B = {x, &, ..., } of the training set, called minibatches. The size m
of these minibatches is referred to as batch size and normally ranges from one to a few
hundred observations. It is possible to obtain an unbiased estimate of the gradient by
taking the average gradient of each example on a minibatch [12, Chapter 8]. The weights
are then updated every time after the average gradient of each example was computed
on the minibatch as follows:

1 m
enew = oold - E%V Z L<y7 €Z; oold)

i=1

Ever though in general SGD already yields reasonable results there are still some im-
provements in terms of speed using non-constant learning rates.

Momentum On the one hand we can improve the learning process by using momen-
tum. We introduce an additional variable called velocity that specifies in which direction
and with which speed the parameters move through the parameter space. Formally, the
update rule is given by:

1 m
Vyew = QVypld — GinL(yﬁB; 0)
m

=1
Onew - Hold + View-

The larger « is relative to €, the more previous gradients affect the current direction.
More detailed information how to use momentum for improving SGD can be found in
[12, Section 8.3.2].

Adaptive Learning Rate On the other hand we can use a non-constant learning rate
to speed up the learning process. The purpose of an adaptive learning rate is to jump
far when the gradient is high and to jump in small steps when the gradient is small. The
reason behind this is that gradients are high when the weights are far away from the
optimum and small when the weights are already near to the optimum. This technique
not only helps to find the optimal area for the weights faster, but also prevent them
from jumping out of this area again.

We now introduce some of the most important algorithms that use the mini-batch ap-
proach together with an adaptive learning rate:

e The Adagrad algorithm uses a different learning rate for every parameter. To be
more precise, the general learning rate n gets modified for each parameter #; based
on the past gradients that have been computed for #;. This yields

9t+1,z’ = Hti - L : vat,iL(et»i)’

7 \/Grii + €

where G; € R%*? is a diagonal matrix containing the sum of squares of the gradients
computed for 0;; up to time ¢ as diagonal elements and € is a smoothing term to

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.3 Optimization for Neural Networks

avoid division by zero. Typical values for € are around 1078, Since the squared
gradients are non-negative the sum in the denominator keeps growing during the
training process. Hence, the learning rate can get too small to gain any additional
knowledge. A solution for this problem shall be provided by the Adadelta. In order
to reduce this monotonically decreasing of the learning rate only a fixed number w
of previous gradients are accumulated. Finally replacing the default learning rate
1 with the root mean squared error of the parameter-updates at time ¢ — 1,

RMS[AG], , = \/]E I

yields the vectorized Adadelta update rule:

RMS[AG), ,

~ RMS[Ve,L(6,)], Vo L(6:).

01 =0+

Keeping the default learning rate instead of RAMS[A@], , is referred to as RM-
Sprop algorithm.

Nevertheless, the currently most used optimization algorithm for neural networks is
the Adam (Adaptive Moment Estimation). In addition to the previous algorithms,
it not only uses the exponentially decaying average of the squared past gradients vy,
but also exponentially smooths the first order gradients m; in order to incorporate
momentum into the update,

m; = Bymy;_1 + (1 — B1)Ve, L(6;)
vy = Bovi 1 + (1 — ﬂz)thL(et)z

Since the estimates m; and v, of the first and second moment of the gradients are
biased towards zero [20] we use the bias-corrected estimators:

N my
m, =
T 148,
b =
t_l‘i‘ﬁz

Finally, we update the parameters using these estimators and get:

n N
01 =0,——m
t+1 t \/@—t Te t
Hence, the Adam algorithm can be seen as a combination of RMSprop and using
momentum.

A more detailed review of these and even more different learning algorithms can be
found in [32].

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.3 Optimization for Neural Networks

2.3.3. Parameter Initialization Strategies

Now that we know how to recursively update the weights to find an optimum we have
to think about where we actually want to start, i.e. how to specify an initial point from
which to begin the iterations. The initial point can determine how quickly and at what
numerical cost learning converges or whether it converges at all.

Even though there is a lot of literature on initialization available there is still a lack of
understanding of how different initialization approaches affect the results. Perhaps, the
only thing we know with complete certainty so far is that two hidden units with the
same activation function and connected to the same inputs should have different ini-
tial parameters, which is referred to as symmetry breaking. Otherwise, a deterministic
learning algorithm would constantly update both of these units in the same way. Even
for training algorithms capable of using stochasticity to compute different updates for
different units (for example, if we use dropout layers, Section 2.4), it is usually best to
initialize each unit differently [12, Section 8.4].

For situations with at most as many outputs as inputs, we could use Gram-Schmidt
orthogonalization on an initial weight matrix, but in general random initialization over
a high-dimensional space is computationally cheaper and unlikely to assign the same
weights to any unit.

Typically, we initialize the weights to values drawn from a Gaussian or uniform dis-
tribution and the biases for each unit to constants. According to [12] the scale of the
initial distribution affects the outcome of the optimization procedure and the ability
of the network to generalize much more than the actual choice of Gaussian or uniform
distribution. On the one hand, talking from optimization perspective, weights should be
large enough to propagate information successfully, but on the other hand regularization
concerns encourage making them smaller.

One possible approach to initialize the weights of a fully connected layer with m inputs
and n outputs is to sample them from a Gaussian distribution with standard deviation
1/y/m or from the uniform distribution U (—ﬁ, ﬁ) In order to initialize layers with
not only the same activation variance, but also the same gradient variance we can use
the normalized initialization,

WNU(—\/ 6 ,\/ 0)
m-+n m-+n

For more sophisticated initialization approaches using random orthogonal matrices or
scheme called sparse initialization we refer to [12, Section 8.4] and its mentioned refer-
ences.

2.3.4. Batch Normalization

Last but not least, we want to introduce an optimization strategy, referred to as Batch
Normalization [18], that is not an algorithm, but rather a method of adaptive re-
parametrization.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.4 Generalization for Neural Networks

During the training process of deep neural networks we update the weights of all layers
simultaneously and therefore also the distribution of each layer’s inputs changes. In [18]
this problem, referred to as internal covariate, is addressed by normalizing layer inputs
with a Batch Normalization layer. This strategy does not only allow us to use higher
learning rates but also to be less careful about initialization.

The Batch Normalization transformation is defined as follows.

Definition 2.5 (Batch Normalization Layer). Let B = {@1, ®s, ..., @, } be a minibatch

of size m. Let ug = = Y7, @; be the minibatch mean and o = & > (x; — ug)? be
the minibatch variance. Let &; = W\/sz) be the normalized values of @;, + = 1,...,m,
UB €

then the Batch Normalization layer is defined as,
BN, s(x;) = y; = v&; + 3,

where v and 3 have to be learned.

2.4. Generalization for Neural Networks

So far we have described how to minimize the error on the training set, which is simply
an optimization problem. However, the goal of machine learning models is to perform
good on new data and therefore to minimize the so called generalization error. The
generalization error is defined as the expected error on new data.

2.4.1. Model Selection

Unfortunately, when training the model we do not have access to test data and can not
use it to pick the best performing model. However, we can create a test set by splitting
the training data into a part used for training and a part for measuring the error, referred
to as validation set. Then we fit all models on the training set and pick the best one
according to the evaluated error on the validation set.

Cross Validation Dividing the dataset into a fixed training set and a fixed test set
can be problematic if the split either yields a very small test set or does not produce a
representative test set at all. Hence, multiple procedures based on the idea of repeating
the split and evaluation several times on randomly selected subsets try to solve this
issue. The most common one is cross validation.

Using k-fold cross validation we split the data set into k equally sized non-overlapping
subsamples Si, ..., Sk, train the model on all but one subsample and test it on the re-
maining one. We repeat this procedure k times, so that every S; for i = 1,... k serve
as test set exactly once. Finally, the average of all k scores is the generalization score.
We select the model that has the best average score.

In order to pick the best model based on measured errors we have to think about the

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Generalization for Neural Networks

bias-variance trade-off. Since we are looking at stock prices in this thesis, we are dealing
with noisy data, i.e. y; = f(x;)+¢€;, i = 1,2,...,m for an unknown function f and some
additional observation noise ¢;. Usually, every ¢; is modeled independent of the model
and satisfies E[e;] = 0. Then the squared error can be decomposed into the (squared)
bias, variance, and noise, as follows, [1, Section 4.2]:

B MSE] = & | 30 - 7]
=1;E}@—mﬂ

:1ZEX@—EM%HMM—N%D—®?

= LS B[~ B + 200 - B (El3] - f(w) - 20 - Eli)ect
+(E[g:] — f(2:)? — 2(E[g] — f())es + ef] .

Using that ¢; is centered and independent of the model as well as the fact that (E[g;] —
f(x;)) is deterministic, we get:

1 X X | A,
EMSE] = - Y E (% — E[5)°] + (Bl - f(x:)?
i=1 =1
Variance Bias?
N v

The variance is the key term that prevents neural networks from generalizing. Typically,
the variance is higher for neural networks that have a large number of parameters. How-
ever, too few model parameters can cause a high bias because there are not sufficient
degrees of freedom to model the complexities of the data distribution. Hence, stopping
training too late eventually reduces bias but enlarges variance, whereas stopping train-
ing too early eventually reduces variance, but yields a higher bias.

2.4.2. Regularization Techniques
Keeping the above mentioned trade-off in mind, we present two approaches to prevent

neural networks from overfitting and therefore increase their generalization capabilities.

Early Stopping One way to deal with this challenge is the early stopping method
deployed by [35]. In order to find the best stopping point in time a predefined error
measure on the validation set is monitored. Even though, the training set error may

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.4 Generalization for Neural Networks

still decrease during training, sometimes the test set error starts increasing again after
some training steps. In that case early stopping terminates the training process after a
few iterations. Due to its effectiveness in restricting the parameter space and reducing
training time it is one of the most used regularization techniques in deep learning.

Dropout Another common technique to avoid overfitting is to use dropout layers in
which randomly selected units are dropped. More precisely, during each training step
we either keep an individual node with probability p or drop it with probability 1 — p.
Dropping a node means setting its weight to zero, which yields a smaller network with
less parameters to train. As a result the training time per iteration decreases a lot,
however usually almost twice as many iterations are required to converge.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3. Limit Order Book

In this chapter we first want to formulate a mathematically precise description of limit
order books by giving some formal definitions and then have a look into the actual
structure of LOBSTER data.

3.1. Mathematical Description

In order to define a limit order book L(t) we start giving some fundamental definitions,
by following [13].

Definition 3.1 (Limit Order). A limit order x = (p,, w,,t,) submitted at time ¢, at
price p, and size w, > 0 (respectively, w, < 0) is a commitment to sell (respectively,
buy) up to |w,| units of the traded asset at a price no less than (respectively, no greater
than) p,.

For a given limit order book (LOB) lot size o and tick size 7, collectively called its
resolution parameters, can be defined by:

Definition 3.2 (Lot Size). The lot size o of an LOB is the smallest amount of the asset
that can be traded within it. All orders must arrive with a size w, € {xko|lk =1,2,...}.

Definition 3.3 (Tick Size). The tick size 7 of an LOB is the smallest permissible price
interval between different orders within it. All orders must arrive with a price that is
specified to the accuracy of .

Now we can finally define a limit order book as:

Definition 3.4 (Limit Order Book). An LOB L(%) is the set of all active orders in a
market at time ¢.

This set of all active orders, L(t), is a cadlag process since for every new limit order z,
the following holds: = € L(t) and x ¢ limy4,, £(¢'). For further distinctions £(¢) can be
partitioned into the set of active buy orders B(t) = {(ps, ws, t,) | w, < 0} and the set of
active sell orders A(t) = {(ps, Wy, t:) | wy > 0}. This allows us to define the depth size
available for bid and ask side.

Definition 3.5 (Available Depth Size). The bid-side depth available at price p and at

time ¢ is
n(p,t) = Y w,
{z€B(t)|ps=p}

The ask-side depth available at price p and at time ¢, denoted n*(p, t), is defined similarly
using A(t).

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2 Data Structure

The depth of each level in both, bid and ask, sides is modified constantly due to limit
orders, market orders and cancellations. Limit orders increase the size depth while
market orders and cancellations remove liquidity from LOB and therefore reduce the
depth.

Lastly, we define the terms bid price, ask price, mid price and bid-ask spread. These
terms are commonly used in a variety of finance literature and get covered especially in
Section 5.1.2.

Definition 3.6 (Best Bid/Ask Price). The best bid price at time ¢ is the highest stated
price among active buy orders at time ¢,

b(t) == s
(t) = max p
whereas the best ask price at time ¢ the lowest stated price among active sell orders at
time ¢ is,
t) = min p,.

0 = i
Definition 3.7 (Bid-Ask Spread). The difference between best ask price and best bid
price at time ¢ is denoted as bid-ask spread s(t) = a(t) — b(t).

Definition 3.8 (Midprice). The midprice at time ¢ is m(t) == 3(a(t) + b(t))

With these definition in mind, we now want to have a look into the actual data structure
provided by NASDAQ.

3.2. Data Structure

In this section we have a closer look at the data we use and its structure. As mentioned
before we are using limit order book data from the NASDAQ stock exchange. For each
stock all events, such as order submissions, order cancellations and order execution as
well as the state of the order book are recorded. The execution times of these events
are reported in nanosecond decimal precision and the order book state does not change
between two events. In general order books can be very deep and include up to 50
non-zero levels, which are levels with non-zero trading volumes, on both, ask and bid,
side. However, the more levels are needed the more expensive it gets to purchase this
data.

The available data contains a message and a orderbook file for each active trading day
for each selected stock. The message file reports all events causing an update of the
limit order book in the requested price range, while the orderbook file contains the
evolution of the limit order book up to the requested number of levels. These events
are categorized in seven different types and timestamped to seconds after midnight,
with decimal precision of at least milliseconds and up to nanoseconds depending on the
requested period. In Tables 3.1 and 3.2 the basic structure of message and orderbook
files, as provided by LOBSTER, are described in detail.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2 Data Structure

Table 3.1: Structure of a message file

Time (sec) Event Type Order ID Size Price Direction
34713.685155243 1 206833312 100 118600 -1
34714.133632201 3 206833312 100 118600 -1

The columns can be explained as follows:

e Time: Seconds after midnight with decimal precision of at least milliseconds and

up to nanoseconds depending on the period requested

e Event Type:

1. Submission of a new limit order
Cancellation (partial deletion of a limit order)
Deletion (total deletion of a limit order)
Execution of a visible limit order
Execution of a hidden limit order

Indicates a cross trade, e.g. auction trade

No o e W N

Trading halt indicator (detailed information below)

Order ID: Unique order reference number

Size: Number of shares

Direction:

— -1: Sell limit order

— 1: Buy limit order

Price: Dollar price times 10000 (i.e. a stock price of $91.14 is given by 911400)

— Note: Execution of a sell (buy) limit order corresponds to a buyer (seller)

initiated trade, i.e. buy (sell) trade.

The numbers in the head of the orderbook file represent the different levels.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2 Data Structure

Table 3.2: Structure of an orderbook file

Ask Ask Bid Bid Ask Ask Bid Bid
Prize 1 Sizel Prizel Sizel Prizel Size 1 Prizel Size 1
1186600 9484 118500 8800 118700 22700 118400 14930
1186600 9484 118500 8800 118700 22700 118400 14930

Further information regarding the data structure can be found on [24].

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. Volatility Estimation using Noisy
High-Frequency Data

Volatility is a fundamental factor in finance, especially as a parameter for any option
pricing model, such as the famous Black-Scholes model. In the literature, authors often
distinguish between historical or realized and implied volatility. In contrast to historical
volatility, which looks at actual asset prices, implied volatility looks ahead.

e Realized volatility refers to the volatility experienced by a financial instrument
over a certain period of time.

e Implied volatility is the market’s forecast of future fluctuations of a financial
instrument. It can be determined by using an option pricing model, as it is the
only factor that can not be directly observed on the markets.

Since volatility can not be directly observed on the markets it is a common practice
in finance to estimate volatility from the sum of frequently sampled squared returns.
However, this estimator has some weaknesses in presence of market microstructure.
Hence, we present an estimation approach that takes advantage of the rich sources in
tick-by-tick data while preserving the continuous-time assumption on the underlying
returns, as proposed by [36].

4.1. Quadratic Variation and Realized Volatility

In this section, we discuss the estimation of volatility using high frequency data, such
as LOB data. We introduce a traditional approach to estimate realized volatility as well
as its weaknesses in presence of market microstructure. Then, we present the two scales
realized volatility estimator (TSRV), as one of several approaches, especially designed
for capturing noise in high frequency data.

Let S; denote the price process of a security over an interval [0, 7], and suppose that
the process X; = log(S;) follows an It process,

dXt = Mtdt + O-tdBty (41)
where B, is standard Brownian motion. The drift 4; and the instantaneous variance atz
are continuous stochastic processes.

Then parameter of interest is the integrated variance

T
(X)o= [ot
0

where (X); denotes the quadratic variation. According to well known theoretical results
about stochastic processes, the quadratic variation of any Itd process can be expressed
as a limit in probability,

T
> (X = X2 S [o,

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2 Realized Volatility under Market
Microstructure Noise

where 0 =t, < t; < --- < t,_1 <t, =T. Hence, a natural approach to estimate the
integrated variance is to use the sum of squared returns,

n—1

[X> X]T = Z (Xti+1 - Xti)Q'
=0

This estimator is called realized variance and in theory the error of the realized variance
should diminish as the sampling frequency increases.

However, it has been found empirically that this estimator is not robust when the sam-
pling interval is small. In fact, the estimator is highly biased in presence of market
microstructure, including, but not limited to, the existence of the bid—ask spread [36].
Therefore, many authors sample over longer time horizons to obtain more reasonable
estimates. Although this approach is widely used in the literature, there comes a price
with it, namely discarding a lot of data. Since it is hard to accept that sometimes dis-
carding almost 99% of the recorded data would be necessary [14], we present the two
scales realized volatility estimator proposed in [36]. This estimator not only models the
market microstructure as observation error, but also uses two different sampling scales
over all data.

4.2. Realized Volatility under Market
Microstructure Noise

4.2.1. Setup and Sparse Sampling

Let Y; be the log-return process as actually observed at sampling times 0 = ¢, < t; <
s < t,_1 <t, =T, such that

Yi, =Xy, +¢&,, Vie{0,1,...,n} (4.2)
with X, following (4.1). The noise ¢, satisfies
Ele,] = 0 and Var(e,) = E[e?],
with € 1L X, where 1L denotes independence between two random quantities.

Definition 4.1 (Full Grid). The full grid G containing all observations points is given
by,
g = {to, t1, ce ,tn}.

Definition 4.2 (Grid). For an arbitrary grid H C G, denoting successive elements of
the full grid G and t; € H we denote the proceeding and following elements in H by ¢,_
and t;,, respectively. We always denote the i*" point in G with ¢;, thus for H = G we
have t;_y = t;_ and t;1; = t;;. Finally, the number of time increments (t;,%;11], such
that both endpoints are contained in H is given by,

|H| = (# points in grid H) — 1.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2 Realized Volatility under Market
Microstructure Noise

Hence, we can conclude that the size of G is given by, |G| = n.

Definition 4.3 (Observed Quadratic Variation). For a generic process Z, such as X or
Y, and an arbitrary grid H the observed quadratic variation [Z]7 is defined as,

[Z]Z{ = Z (th+ - th)z'

titjr €Mt <t

On the full grid G the quadratic variation is defined as,

n—1
[Z]Iga”) - [Z]z(fj = Z (th+1 - th)2 = Z(AZt1)27
titjpr1€H b1 1<t 7=0

where AZy, = (Zy,,, — Zy;).
The observed quadratic covariations are defined similarly.

Definition 4.4 (Observed Quadratic Covariations). The observed quadratic corvaria-
tion for two processes X and Y on an arbitrary grid H C G is defined as,

[X7 Y]Z{ = Z (th+ - th)2<)/;j+ - Y;f)Z

J
titir €M tj <t

On the full grid G it is defined as,
n—1

XYY = Y (AX,)’(AY,,)2

Jj=0

Finally, in our asymptotic assumption we assume that as the number of observations in
[0, T tends to infinity, the maximum distance in time between two consecutive observa-
tions tends to 0,

mlaXAti — 0 as n — oo.

4.2.2. Biased Realized Volatility

Given the additive model Y;, = Xy, +¢,, ¢ = 0,1,...,n the realized variance based on
the observed log-returns Y;, can be computed as follows.

|
—

VI = Y (Vi — V22

41

s
Il
=)

3
—

(Xti+1 + €tiyr — Xti - Eti)z

I
g

ﬁ
Il
o

3
—

= ((Xti+1 - Xti)Q + 2(Xti+1 - Xti)(eti+1 - Eti) + (Eti+1 - Eti)Q)

i=

o

= [X]7 + 2[X, €l + [d7

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
knowledge

i
r

4.2 Realized Volatility under Market
Microstructure Noise

Proposition 4.1. Assuming E[¢!] < oo, the conditional expectation and conditional
variance of [Y15. are given by,

E[[Y191X] = [X]f + 2nE[€] (4.3)
Var ([Y91X) = 4nE[e'] + O,(1). (4.4)

Proof. Using the result above and € 1L X, we can compute the conditional expectation
of [Y]% as follows,

E[[YI191X] = E |[X]1X] + 2B [[X, df|X] + E [[]§]X]
= [X]§ + 2B [[X, | X] + E [[¢]{]

Using properties of the conditional expectations as well as Ele;,| = 0, Vt; € [0,7] and
Ele, €] = 0 for i # j yields following representations,

1

3
|

E[[X,d|X] = > (Xir — X0 E (61, — €,)?] =0
E[[d9] = Y Bl) + Eley, e0] + Ele] = 20E[)

0

Hence, the conditional expectation is given by,
E [[Y1§X] = [X]{ + 2nE[€"].

For the proof regarding the conditional variance we refer to [36, Appendix A.1] and [15].
O

Equations (4.3) and (4.4) show that in presence of microstructure the realized variance
[Y]§ is not a reliable estimator for the true quadratic variation [X]%. In fact, as n
becomes large both its bias and its variance increase. Nevertheless, Equation (4.3)
provides a consistent estimator for the variance of the noise,

— 1

El[et] = —[Y]§
@ = o [V]E,
that follows the asymptotic distribution,
12 (B12] — Bl21) £ 2
n [€2] — E[e”] —>N(O,E[e]), as n — 00.

According to [36], a consistent estimator of the asymptotic variance of E[¢?] is then given
by,

B = 5, 3 (%) - 3(EL)

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2 Realized Volatility under Market
Microstructure Noise

4.2.3. Two Scales Realized Volatility Estimator (TSRV)

In the previous section we showed that increasing the amount of used data would increase
the bias, thus we could benefit from infrequently sampled data. And yet every basic
statistic lecture tells us not to do that. As a possible solution we present the two scales
realized volatility estimator.

The two scales realized volatility estimator samples over two time horizons by selecting
a number of subgrids of the original grid of observation times and afterwards averages
the estimators derived from the subgrids.

Formally, we partion the full grid G into K non-overlapping subgrids G®), k=1,..., K
satisfying,

K
G=g"
k=1

where G®) N GW® = () for k # [. An intuitive approach of selecting these K subgrids is to
start with ¢,_; and then pick every K*® sample point until 7. This yields,

GH = {th1 b1 s Tk 1426 -+ + s Lhm1pmps K }s

for k =1,2,..., K and an integer n, making t;_i4n,«x the last element in G®*). Using
these subgrids we can define an averaging estimator.

Definition 4.5 (Averaging Estimator). The averaging estimator is given by,

(avg L Z k :

where [V] (&) = 24,4, 00 (Ve —Y3,)? is the observed realized variance on the k™ subgrid
G,
Using this estimator we have to deal with two sources of error.

e Error due to the noise [Y]{9 — [x]{9)
Recalling equations (4.3) and (4.4) we have,
E[[Y]$]X] = [X]$" + 20E [¢?]
(@9)|) — 4 0 [4 1
Var (V1§ X) = 4K €] + Opl(2):
where n = % K g = "‘TKH These expressions allow us to deduce the condi-
tional asymptotic distribution for the estimator [Y]{*9.

Theorem 4.1. Suppose X follows (4.1) and Y is related to X through (4.2).
Additionally, we suppose that E [¢'] < oo holds and that t; and t;1, are not in the
same subgrid for any i € {0,1,...,n}. Then conditioned on X

ﬁ (Y16 - [— 2m8 []) £ 2/,

where 7\ s standard normally distributed, holds for n — oo.

nmse

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2 Realized Volatility under Market
Microstructure Noise

Proof. See [36, Appendix A]]

e Error due to the discretization effect [X]{*9 — (x){*9
Under some additional assumption [36] the asymptotic distribution of this error is
given by the following theorem.

Theorem 4.2. Under some assumptions the error Dy = [X]&9 — (X)) s

asymptotically mized normally distributed. For a random variable n and n — oo,

n av av L
E ([‘Xv]g1 9 <X>§“ g)) — nﬁZdiscretm

where Zgiserete 1S normally distributed, holds.
Proof. For all assumptions and the proof, see [36].]

Finally, we want to combine the two error terms arising from discretization and from
the observation noise. Theorem 4.1 and Theorem 4.2 yield

Y149 — (X)p — 20E[€?] = € Zyorar + 0,(1),

where Zi.a1 is asymptotically standard normally distributed and independent of X and

n 1
&= 4?1[*3[54] + T
—— ——
due to noise due to discretization

For K = cn’ both components of £ are equally present in the limit, whereas for other
values of K one term dominates.

Even though, the average estimator already provides an improvement in asymptotic bias
and asymptotic variance, it is still a biased estimator. Before we present the final bias-
adjusted estimator we first investigate the optimal sampling frequency.

In order to find the optimal value n for subsampling we minimize the MSE of [Y]gﬂl vs)
given by,

L2 2 2\ 2 —2 no_a I,

MSE = bias® + ¢ _4(]E[€]) 7+ 4B+~
2 T

—4(F 2 —2 ~ 2

(Ele])" 7% + =

Computing the first derivative w.r.t. n and setting it equal to 0 yield an optimal n*,

satisfying,
N T7]2 1/3
8 (E[e?])

Therefore, can use all n observations, if we use K* =~
asymptotics to hold we need E[e?] — 0.

n
n*

subgrids. However for the

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.2 Realized Volatility under Market
Microstructure Noise

—

Final Estimator (X)t
So far we have seen that [Y]gfl ") is already an improved but still biased estimator and
that E[€?] can be consistently approximated by,

—— 1

E[e] = -[V]7.

Hence, the bias of [Y]gﬂwg) can be consistently estimated by Zﬁ]E[E\Q] . This allows us to
finally define the bias adjusted two scales realized volatility estimator.

Definition 4.6 (Two Scales Realized Volatility). The bias adjusted estimator for (X),
called two scales realized volatility, is given by,

(X7 = [YIF? — —[v]E".

Note, that the two time scales (avg) and (all) are combined.

Theorem 4.3. Suppose X is an Ité process following (4.1) and Y is related to X through
(4.2). Further, let K = ens and suppose that some asymptotic assumptions. Then,

W0 (X Xy = (X X)r) 5 N (0,862 (& [2))°) + /TN,
1
(s) s o
where ¢ is a constant aiming to minimize the overall variance, holds.

Proof. For all assumptions and the proof, see [306].]

To find the optimal sampling frequency K, we can minimize the expected asymptotic

variance to obtain)
o (BEE)T
-\ TE[#?]) -

For calculation purposes estimators for E[n?] and 7 are used.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. Experiments

In this section we investigate the predictive power of neural networks trained on limit
order book data by using different network architectures and comparing them, regarding
performances, with commonly used algorithms. We target two of the most important
tasks for investors, namely predicting price movements and forecasting volatility.

5.1. Preliminaries

Before presenting empirical results we first specify the actually available data and the
features we extract out of it. Afterwards, we introduce commonly used methods to select
the most important features for every experiment as well as normalization approaches.

5.1.1. Available Data

In this thesis we use data from four different stocks, in particular we use Amazon, Apple,
Google and Tesla. Each data set contains the first five non-zero levels on each side of
the order book. These data sets are summarized in Table 5.1.

Table 5.1: Available data

Ticker Snapshot Trading Days
AMZN | 8.Jan.2018 - 6.Aug.2019 397
APPL 8.Jan.2018 - 8.Aug.2019 399

GOOGL | 8.Jan.2018 - 23.Aug.2019 410
TSLA | 8.Jan.2018 - 23.Aug.2019 410

Note, that not the whole data sets are used during the experiments presented in the
following sections.

5.1.2. Handcrafted Features

In many cases the available data in its original form is not informative enough to yield
reasonable results, thus we have to look for additional features to extract out of the
data.

In this thesis we only use the orderbook files described in Section 3.2 and start by
extracting most of the features proposed in [27]. More specifically, we use three sets of
features:

e a basic set, including the prices and volumes for every level of both, bid and ask,
side

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1 Preliminaries

e a time-insensitive set, containing the bid-ask spread, mid-price, price differences,
mean prices, mean volumes and accumulated price as well as accumulated volume
differences between the bid and ask orders of each level

e Finally, time-sensitive features corresponding to price and volume derivatives are

extracted

A more detailed overview is represented in Table 5.2.

Table 5.2:

Original feature set

Basic Set

Description (i = level index)

v = {f)iask7 V'iask:’ Pibid, ‘/'ibid}?zl

price and volume (n levels)

Time-insensitive Set

Description (i = level index)

vy = {(F)iask o Pibid), %(]jiask +F)ibid> ;1:1

bid-ask spreads and mid-prices

| B4 — P |

v3 = {Pgsk . Plask’ Plbzd o Prlzld7 |f);zf{€ - Piask|’

price differences

1 n ask 1 n bid 1 n ask
vy = {137, P Ly pbid 1s~n oy '
{f " ! g 156 o msa=t B o mean prices and volumes
a el Vi)
vs = {30 (Pask — phid) s~ (Vask _ybid)y accumulated differences

Time-sensitive Set

Description (i = level index)

P /dt}i

ve = {dP%k /dt, dVesk /dt, dPYd/dt, dvbid/dt,

price and volume derivatives

In feature vg the average derivatives of price and volume are computed over the most
recent 5 events as well as the changes between the current and the most recent available
value. We also implement some additional features as proposed in [30] and listed in
Table 5.3. These features are all time-sensitive.

Table 5.3: Additional feature set

Time-sensitive Set

Description (i = level index)

1 m bid\n
m 7=1 V;Z,j =1

_r1 m ask 1 m bid 1 m ask
U7 = {a Zj:l Pz’,j 'y m 2uj=1 Pi,j) aijl Vi,j)

mean prices and volumes
over m most recent values

vs = {& Sy, (Ppt — PR, L 5o, L(Ppsk + P}

first level mean bid-ask spread
and midprice over m most recent
values

. l .
vg = {(L Y25, Ppid — 1yl ppid))

trend oscillator midprice

In feature v; and vy we compute the

average prices and volumes as well as the first

level bid-ask spread and midprice over the most recent 5 values. Feature vg is added to

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1 Preliminaries

capture market momentum, by computing the difference between a short term moving
average over the most recent 3 values and a long term moving average over the most
recent 10 values. Additional technical features to add can be found in [30]

5.1.3. Feature Selection Methods

In Machine Learning projects we often deal with huge data sets containing a tremen-
dous amount of different variables. Some of them may be redundant or even decrease
the accuracy of models. Hence, selecting meaningful features and consequently reducing
the input’s dimensionality is an important step in the extraction of useful information
from a high dimensional dataset. These techniques not only increase the speed but
potentially also the accuracy of many machine learning algorithms. There are almost
countless articles written about selection methods reaching from manually, experienced
based feature selection to completely automatic ways of selecting features. In this sec-
tion we introduce some of the most used techniques, starting with the simplest one and
moving on to more sophisticated algorithms afterwards.

Pearson Correlation In this method, we select features based on the Pearson cor-
relation coefficient. More precisely, we calculate the absolute value of the correlation
between each feature and the target and only keep the top n features based on this
criterion.

Univariate Feature Selection Slightly more sophisticated, we can select the best fea-
tures based on univariate statistical tests. We compare each feature to the target vari-
able, to see if there is any statistically significant relationship between them. Such tests
are referred to as analysis of variance (ANOVA). As already implicated by the word
‘univariate’ each feature gets analyzed separately, meaning when we analyze the rela-
tionship between one feature and the target variable, we ignore all other features. As a
result, each feature has its own test score. Finally, we compare all test scores, and only
select features with top scores [23]. In Python, the selectKbest() function implemented
in the scikit-learn library [6] provides the statistically best features.

Recursive Feature Elimination (RFE) Given an external estimator that assigns weights
to features (e.g., the coefficients of a linear model), we can use recursive feature elimi-
nation (RFE) by recursively considering smaller and smaller sets of features. First, we
train the estimator using the initial set of features. The importance of each feature is
obtained either through a coef or a feature importances attribute. Afterwards, the
least important ones are pruned from the current set of features. This procedure gets
recursively repeated on the pruned set until the desired number of features to select is
eventually reached [23].

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1 Preliminaries

Tree-based Feature Importance After training a tree-based method such as a Ran-
dom Forest we can access the relative importance of each feature directly and use it for
selection purposes. Random Forests provide two straightforward methods for feature
selection, namely mean decrease impurity and mean decrease accuracy [2].

Boruta Last but not least, we want to introduce the Boruta algorithm, which is a smart
algorithm to automatically perform feature selection. It was originally implemented in
2010 as a package for R by M. Kursa and R. Rudnicki [22] and adapted for Python by
Daniel Homola later on. Using the Boruta algorithm, we compare all available features
against a randomized version of themselves, referred to as shadow features. These fea-
tures are created by random shuffling. To confirm or reject an original feature we use
the binomial distribution.

Following the algorithm, we first fix a number of iterations to perform. For each iteration
1,...,n we calculate tree-based feature importances by fitting for example a Random
Forest. After comparing the importance of each original feature with the highest value
recorded among all shadow features, we mark it as success or failure and compare the
number of successes to a binomial distributed random variable in each iteration. Finally,
we end up with three regions, namely the area of refusal, where features are considered
as noise and get dropped, the area of irresolution, where features can be kept and the
area of acceptance, where features are considered as predictive and should be kept [21].

When it comes to pure dimensionality reduction, another commonly used algorithm is
Principal Component Analysis (PCA). Even though it could yield reasonable results it is
strictly speaking not a feature selecting algorithm, because instead of selecting important
ones it replaces the original variables with synthetic ones. Thus, we do not cover PCA
in this thesis.

5.1.4. Normalization

Normalization can be a crucial part in machine learning as data sets often contain
variables with different scales. The goal of normalization is to change the values of
numeric columns in the data set to a common scale, without changing its structural
behavior. Which normalization approach to use, or whether it is reasonable to normalize
data at all depends on the situation. Nevertheless, we introduce some of the most
common approaches.

Z-Score (Standardization): During this normalization process for each feature its
mean is subtracted separately and afterwards the difference divided by the feature’s
standard deviation as follows:

oy Gscore) _ Ti — &

7 72’
VESK, (2 -)

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Predicting Price Movements

where T represents the features mean,
1 N
T = — X;.
S

This approach yields stationary features with mean 0 and a corresponding standard
deviation of 1.

Min-Max Normalization: The second normalization method we present subtracts the
minimum observed value from each feature and divides this difference it by the difference
between the maximum and the minimum observed value of that feature, as follows:
(MM) _ Zi — Tmin

L
Tmax — Tmin

This transformation yields rescaled data in the range [0, 1].

Decimal Precision In the third normalization method, the decimal precision approach,
we simply move the decimal point in each of the feature values. Hence, the transformed

values are:
(DP) _ i

v 10R

where k is the integer that gives us the maximum value for ‘a:(D P)’ < 1.

T

5.2. Predicting Price Movements

In this section, we present how to use LOB data to predict price movements, arguably
one the most challenging tasks in financial markets analysis.

As a first step, we introduce two approaches to label target variables as three different
classes. After that we briefly review the data pre-processing and last but not least we
want to present the algorithms used and their performances.

In this task we investigate all four above mentioned stocks, but due to the tremendous
amount of available data and computational restrictions we do not work with the whole
data sets.

5.2.1. Target Labels

In term of price movements there are several potentially interesting targets. Although
best ask and best bid must theoretically both be modeled separately, since the bid-ask
spread is not constant [34], the so called market microstructure noise can be partially
reduced by using midprices. Thus, in this thesis we focus on the midprice for more
smoothed results in the long-run. We treat the problem of price movement prediction as
a classification problem with three possible outcomes: up, down, and horizontally. We
label these price movement as 1, -1 and 0.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Predicting Price Movements

Since we are only interested in significant price changes and want to reduce some noise
we take only significant movements into account. We present two approaches to label
the target:

Simple Approach: First we calculate the percentage change of the price as follows:

Pt+1 — Pt
pct__change; g = ———,
g

where p; denotes the choosen (best ask, best bid, mid) price at time ¢. The label [(¢) for
time t is defined as

, if pct_change,_1+ > o
l(t)=4¢0 , if pct_change, 14 € (—a,)
-1 , if pct change,_1; < —a

where o determines the significance of the price movement.
Smoothed Approach: In order to reduce microstructure noise even further, we present

an approach proposed by [31]. An averaging filter is applied over the future N values of
the price to classify the changes in the price as follows:

Lo, it =R > (1+a)
ty=<0 if 22 —1€ (o,)
-1, =< (1+a)

where p; denotes the price at time ¢ and mp; = % SN piys is the average of the future
price events with window size N = 5. Again, « determines the significance of the price
movement.

In both approaches the value of a can bee seen as a trade-off between the balance among
classes and the meaningfulness of the produced labels. As « increases, so does the
number of samples belonging to the no-movement class. Although raising this threshold
would lead to a more balanced problem, meaning all three classes would contain about
the same number of samples, high values of o are undesirable as they allow upwards and
downwards movements to get categorized as no movement even though the movement
could be significant.

5.2.2. Pre-processing

As already indicated, due to computational limitations we can not use all available data
but rather need to narrow it down to some parts. In particular, we want to only focus
on the first five days of available data. Additionally we do not use every observation,
but only every 70%" one for APPL and every 20" one for AMZN, GOOGL, TSLA,
respectively.

After loading the data we perform following steps for each data set:

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Predicting Price Movements

1. First we specify our actual goal by labeling the targets to use, as described in
section Section 5.2.1. Using o = 2% 107° for the simple approach and av = 5% 107°
as well as N = 5 for the smoothed approach yields following results:

Table 5.4: Class partition
Simple Approach Smoothed Approach

Ticker Price Observations 1 0 -1 1 0 -1

AMZN | Midprice 39322 12852 | 14160 | 12310 | 13226 | 14239 | 11857

APPL | Midprice 41618 16892 | 7421 | 17305 | 13200 | 15405 | 13013

GOOGL | Midprice 33112 8795 | 15593 | 8724 | 9178 | 15018 | 8916

TSLA | Midprice 34805 15066 | 5565 | 14174 | 15480 | 5201 | 14124

Frequency Count {simple approach) Frequency Count {(smoothed approach)
17500 ticker 16000 1 ticker
15000 1 = gzu"él_ 14000 A = gﬁ':; }
. T5lLA 12000 4 N TSLA
12500 = PPl = ApPL
o .. 10000 1
2 10000 =
) 2 8000 |
& 75007 £ 6000 |

5000 2000 1

2500 1 2000
0- 0-

-1.0 0a 10 -1.0 L] 10
label label
(a) Class frequencies (simple approach) (b) Class frequencies (smoothed approach)

Figure 5.1: Comparison of class frequencies

From Table 5.4 and Figure 5.1, which are summarizing the corresponding labels,
we can clearly see that some targets have unbalanced classes. Thus, we need to
use a weighted cross-entropy as loss function. We therefore modify the version of
the cross-entropy defined in Section 2.2.2 to

1. K
L(y,x;0) —Ezzwkyi,k In i g,

i=1 k=1

where K = 3 represents the number of classes and wy, = % frequen’ée a7, are the

class weights. This modification allows us to train the model with best generaliza-
tion capability, by weighting all classes equally important.

In this thesis we focus on the more straightforward, simple approach. Besides the
unbalanced classes, we can see that except for APPL the targets’ distributions are
very similar for both approaches. Given that observation and the fact that we are

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Predicting Price Movements

interested in the pure predictive power of the LOB together with the capability of
neural networks to capture the non-linearity in the LOB, it is sufficient to focus
on the straightforward, simple approach. Nevertheless, to implement profitable
trading strategies it might be reasonable to use the smoothed approach, as some
noise gets canceled out there.

2. Next, we add the features presented in Section 5.1.2 to the data set. Extracting
these features from the limit order book data already yield 111 dimensional input
vectors. Remember, that one feature vector is extracted for every 70 or 20 limit
order events that change the LOB. But, instead of using only the feature vectors
extracted from the current time step, as originally proposed in [27], we propose
extracting representations capable of capturing more temporal information as in
[28]. Therefore we concatenate each consecutive 6 feature vectors together, yielding
new 666-dimensional input vectors.

3. We select the most relevant features, by either using RFE to select 256 features or
using Boruta for 50 iterations.

4. Last but not least, we normalize the input data, using the z-scores normalization
approach, as described in Section 5.1.4.

5.2.3. Empirical Results

In this section we want to use empirical results to first compare different model architec-
tures, using various hyper-parameter settings. Furthermore, we investigate the impact
of different feature selection methods, namely RFE as well as the Boruta algorithm.
Finally, we show that deep neural networks are indeed more capable of capturing the
non-linearity in the limit order book, as indicated in [34], by comparing them to a single
layer shallow neural network using the softmax activation function.

To quantify the comparison results we use accuracy as metric, giving the percentage of
correctly identified observations.

Model Tuning Hyper-parameter tuning is another crucial part in machine learning
projects, especially for more complex algorithms, such as deep neural networks. The
tuning procedure consists of first, fitting many models with different parameter settings
and evaluating each of them followed ba selecting the hyper-parameter setting that yields
the best performing model.

For evaluation purposes we would usually split the available data into a train set to train
the model and a test set to evaluate its performance, but in order to yield more reliable
results we use a k-fold cross validation, as described in Section 2.4.1, instead. Due to
the huge amount of available data it is sufficient to use a 3 fold cross validation in the
experiment.

During the tuning process we mainly focus on the model architecture, meaning depth
and width. Hence, we use the default value batchsize = 32, fix epochs = 20, select tanh
as activation function for the hidden layers and the softmax function for the output

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Predicting Price Movements

layer. Furthermore, we select the Adam algorithm from Section 2.3.2 as optimizer for
all models.

To find the best model, we perform a grid search on layers x nodes_per_layer with
layers = {4, 5, 6, 7} and nodes_per_layer = {32, 64, 128, 256}. Since, we want to
investigate the predictive power of deep neural networks, we only use models with at
least four layers.

In order to further improve the results we realize the grid search for each learning rate
in learning_rates = {0.001,0.005, 0.01, 0.05, 0.1, 0.5}. The tuning process can be
implemented using the GridSearchCV() function from the scikit-learn Python library.
In Figures 5.2, 5.3, 5.4 and 5.5 we show the grid search results for each stock using both
RFE and the Boruta algorithm. The presented figures are given in terms of average
accuracy after realizing the 3-fold cross validation for each combination.

Note, that results are only presented for the best performing learning rates.

Scores with Learningrate: 0.001000 Scores with Learningrate: 0.001000

0.38 1
038

o 2 o3
o o
(=] (=]
v 037 w
g g 0.36
o e
g 0:38 132 S i —es— Nodes: 32
< +— Nodes: 64 < +— Nodes: 64
5 0351 —e— Nodes: 128 o i —s— Nodes: 128

—s— Nodes: 256 ' —e— Nodes: 256

40 45 50 55 50 65 70 40 45 5.0 55 60 65 70

Layers Layers

(a) AMZN, Boruta (b) AMZN, RFE

Figure 5.2: Grid search results for AMZN

Scores with Learningrate: 0.001000 Scores with Learningrate: 0.001000

042 - & i +— |
@ 040 o 00
P P
g g
W 038 7] —
w w
g 0.36 4 g
T o3 : 32 g 0304 Nodes: 32
< +— Nodes: 64 < +— MNodes: 64
5 "1 —s— Nodes: 128 G 0251 —e— Nodes: 128

030 —e— Nodes: 256 —e— Nodes: 256

40 45 50 55 50 65 70 40 45 5.0 55 50 65 70
Layers Layers

(a) APPL, Boruta (b) APPL, RFE

Figure 5.3: Grid search results for APPL

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.2 Predicting Price Movements

Scores with Learningrate: 0.001000

a2

041

040

039 4

CV Average Score

35| —*— Nodes: 256

40 45 50 55 50 65 70
Layers

(a) GOOGL, Boruta

CV Average Score

Scores with Learningrate: 0.010000

042 4

0.40

0.38

0.36

034 4

132
032
31—« Nodes: 64 .
037 { —e— MNodes: 128 '

0.28

0.26

1 . —

| —s— Nodes: 32
+— Nodes: 64
—a— Nodes: 128
—e— Nodes: 256

\
N

40 45 5.0 55 50 65 70
Layers

(b) GOOGL, RFE

Figure 5.4: Grid search results for GOOGL

Scores with Learningrate: 0.010000

0425 17

0400

0375

0350

033951 Nodes: 32

CV Average Score

CV Average Score

Scores with Learningrate: 0.050000

0400

: 32

0:300 +— Nodes: 64 +— Nodes: 64
0275 | —e— Nodes: 128 027517 —s— Nodes: 128
0250 | —® Nodes: 256 0250 1" —e— Nodes: 256
4.‘0 4.‘5 5.‘0 5!5 6‘0 6‘5 '.I‘TCI i 4.‘0 4.‘5 5.‘0 5!5 6:0 6‘5 ?TCI

Layers
(a) TSLA, Boruta

Layers
(b) TSLA, RFE

Figure 5.5: Grid search results for TSLA

From Figures 5.2, 5.3, 5.4 and 5.5 we notice that in three out of four cases the Boruta
algorithm outperformed RFE. Even though for APPL using the RFE algorithm yields
slightly higher cross validation score than using the Boruto algorithm, we still prefer
using Boruta, because it is much more stable regarding the cross validation score’s
standard deviation. In Table 5.5 we summarize the preferred hyper-parameter settings

as well as the preferred feature selection algorithm for each data set.

Table 5.5: Preferred hyper-parameter settings and feature selection algorithm

Ticker | Learning Rate | Feature Selecting | Layers | Nodes per Layer
AMZN 0.001 Boruta 32 5
APPL 0.001 Boruta 64 7
GOOGL 0.001 Boruta 256 6
TSLA 0.01 Boruta 32 6
40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3 Volatility Forecasting

From Figures 5.2, 5.3, 5.4 and 5.5 and Table 5.5 we notice that it is beneficial to use
just a few nodes, while a higher number of layers can increase the performance. Conse-
quently, we prefer deeper instead of wider networks. Of course, this is neither a proof
nor an universally valid rule just an observation for our available data.

Final Comparison Finally, we test the best performing multilayer perceptrons against
a commonly used algorithm for classification, namely a multinomial logistic regression.
In order to do that we first split the used data into a training set, containing randomly
selected 80% of the available data, and a test set, containing the remaining 20%. Af-
terwards, we train the multilayer perceptron (MLP) only on the training set using the
best hyper-parameter setting, as given in Table 5.5. As baseline model we use a multi-
nomial logistic regression, by training a single layer perceptron (SLP) on the training
data using the default hyper-parameter settings from keras. Additionally, we use the
LogisticRegression() function from the scikit-learn package to fit an ultimate challenger
model. In Table 5.6 we show the results of each fitted.

Table 5.6: Comparison of different algorithms

SLP LogisticRegression() MLP
Ticker | Biggest Class | Train | Test | Train Test Train | Test
AMZN 0.360 0.407 | 0.396 | 0.44 0.41 0.467 | 0.406
APPL 0.415 0.370 | 0.361 | 0.40 0.39 0.464 | 0.425
GOOGL 0.471 0.417 | 0.396 | 0.45 0.42 0.603 | 0.454
TSLA 0.433 0.413 | 0.404 | 0.43 0.41 0.477 | 0.430

We can clearly see, that the multilayer perceptron sometimes even by far outperformes
the single layer one. But even more impressive is the fact that just tuning the model
architecture (width and depth) together with using different learning rates is already
sufficient to outperform the logistic regression model implemented in the scikit-learn
package. Hence, we conclude that multilayer perceptrons are indeed able to capture
parts of the non-linearity in limit order book data, making them far more suitable for
predicting price movements than linear models, such as logistic regression. Moreover,
outsourcing the training process to clouds system, such as AWS or AZURE, with by far
more computational power, can improve perceptrons’ accuracy even further. This would
allow us to implement more sophisticated hyper-parameter tuning approaches.

5.3. Volatility Forecasting

In the second experiment we use neural networks to forecast volatility. Volatility it is a
key parameter for pricing financial derivatives, as all modern option-pricing techniques
rely on a volatility parameter. Furthermore, volatility is used in risk management and

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3 Volatility Forecasting

portfolio optimization, which makes it, next to returns, one of the most important figures
in the financial markets.

5.3.1. Pre-processing

Similar to the previous experiment we do not use all available data, due to computational
limitations. This time we use data from every day, but only every 100" observation for
GOOGL and AMZN and every 150" observation for APPL. Unfortunately we can not
use TSLA, because the data-quality was insufficient for some days.

In order to prepare the data set for training purposes we perform following steps:

1. Again, we first specify the target variable. As discussed in Section 4 we use the
two scales realized volatility estimator to approximate the realized variance and
afterwards take the square root to end up with the estimated realized volatility.
Normally we would do this procedure for each day, but since our longest available
time series contains only 410 days, we split each day into 3 snapshots and work
with intraday volatilities.

2. Next, we prepare the input data. We add the features presented in Section 5.1.2 for
each observation. To keep the needed computational effort reasonable we summa-
rize each snapshot with 8 equidistant feature vectors. After concatenating these 8
vectors and adding the last 8 intraday volatilities, we end up with 1008-dimensional
input vectors. Thus, each vector contains the limit order book information from
the previous snapshot together with the last 8 intraday volatilities.

3. Since using the Boruta algorithm does not yield any reasonable results here, we
only use RFE and test it against using all features.

4. Once again, we normalize the input data, using the z-score normalization tech-
nique. To increase the model’s performance, this time we also normalize the target
variables. Although normalizing the targets is not a big deal, it is very important
to mention that in order to receive correct predictions we have to use the inverse
z-score transformation on the model’s predictions.

5.3.2. Empirical Results

In this section we present the empirical results. Again, we start by comparing different
model architectures and various hyper-parameter settings. For tuning purposes we use
two different approaches, namely using the RFE algorithm for feature selection as well
as using no feature selection algorithm at all. In the final test we compare the best
perfoming deep neural networks to ARIMA models.

To quantify the results we use the root mean squared error (RMSE),

1 n
- L 4.2
J”;:l \yi — Uil

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3 Volatility Forecasting

as well as the mean absolute percentage error (MAPE),

1 n

Yi — Ui
n = -

Yi

Model Tuning Similar to the previous experiment, we perform a 3-fold cross validation
to find the best hyper-parameter setting. Since we are mainly interested in the model
architecture we fix batchsize = 32, epochs = 20 and select tanh as activation function.
For each learning rate in learning rates = 0.0005,0.001, 0.005,0.01, 0.05 we perform a

grid search on layersxnodes__per_layer, with layers = {4,5,6,7} and nodes__per_layer =

{32,64,128,256}. Furthermore, we perform the grid searches after using the RFE algo-
rithm as well as for all features.

The results for the best learning rates are presented in Figures 5.6, 5.7 and 5.8. In order
to stay consistent with the previous experiment, and therefore improve readability, the
best results shall be on the top of the graphs. Therefore we choose the negative RMSE
as error metric.

Scores with Learningrate: 0.001000 Scores with Learningrate: 0.005000
—0.0042 1 =0.0048 1
[F] [F]
B =LA S 000501
i};’ -0.0044 { i};’
fil] @ —0.0052 1
g -0.0045 1 — 1 g
e —s— Nodes: 32 gl St el —s— Nodes: 32
= . =
< +— Nodes: 64 < goosed | | +— Nodes: 64
= —0.0047 41— =
O —s— Nodes: 128 O —+— Nodes: 128
~0.0048 1 ' —s— Nodes: 256 BT [== *_ — —=— Nodes: 256
4.‘0 4.‘5 5‘0 5.‘5 E_IU 6‘5 TTG 4.‘0 4.‘5 5‘0 5.‘5 E_IU 6‘5 TTG
Layers Layers
(a) AMZN, All Features (b) AMZN, RFE
Figure 5.6: Grid search results for AMZN
Scores with Learningrate: 0.001000 Scores with Learningrate: 0.005000
-0.00265 1 t i : : _go029 4 I [-
L 500270 1 9 o030 = ~ !
S o = Shee—ay
n —0.00275 1 U —0.0031 1 1 I
& &
© _p.00280 @~ ! : [| | [
@ Nodes: 32 @ |/—=— Nodes:32 —— YV ————
= = 00033
<L -0.00285 + —»— Nodes: 64 < *— Nodes: 64
a _cooe0 { % Nodes: 128 a 000347 s Nodes: 128 | |
' —— Nodes: 256 -0.0035 1 —e— Nodes: 256 —— i ! :
~0.00295 “— : ; : : : :] ; ; . : : .
40 45 50 55 60 65 7.0 40 45 50 55 6.0 65 7.0
Layers Layers
(a) APPL, All Features (b) APPL, RFE

Figure 5.7: Grid search results for APPL

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3 Volatility Forecasting

Scores with Learningrate: 0.001000

Scores with Learningrate: 0.005000

= ~
_0.00295 4 . . —e— Nodes: 32 ~00031 =
v /\ *— Nodes: 64 U 00032 4
§ —0.00300 1 ./ —e— Nodes: 128 § 00033 4= - | \ |
@ —e— Nodes: 256 o i
o o —0.0034 : 2 : : 3
o -0.00305 o
§ § 00035 + —s— Nodes: 32 i i L
<{ -0.00310 + << _goozs I —*— Nodes: 64 ! | | !
o O _yoss | —— Nodes: 128 _ |
LS — —— Nodes: 256
—~0.0038 1 ! - |

40 45 50 55 60 65 7.0 40 45 5.0 5.5 ETG EIS 7.0
Layers Layers

(a) GOOGL, All Features (b) GOOGL, RFE

Figure 5.8: Grid search results for GOOGL

In Table 5.7 we summarize the best performing hyper-parameter settings.

Table 5.7: Preferred hyper-parameter settings and feature selection algorithm

Ticker | Learning Rate | Feature Selecting | Layers | Nodes per Layer
AMZN 0.001 none 128 5

APPL 0.001 none 128 7
GOOGL 0.001 none 128 7

Surprisingly, despite the high number of features, we receive the best results without
using any feature selection algorithms. Furthermore, we can not observe a clear trend
to favor either wider or deeper networks.

Final Comparison Finally, we do two different tests to compare the best performing
multilayer perceptrons against ARIMA(p, d, ¢) models.

For the first test we simply use the least recent 90% of available data to train the neural
network and calibrate the ARIMA model and the remaining 10% to test them. This test
shows us how suitable the different models are for receiving good long-term predictions
The second test starts similar to the first one, by training the neural network only once
on the first 90% of the data and predicting the remaining 10%. But afterwards we
do not only calibrate the ARIMA model once but in every time step. More precisely,
we start with the same 90% of training data and then increase the training data one
step at a time until we reach the most recent observation. In each step we calibrate
a new ARIMA model and only predict the volatility exactly one step ahead. This
allows us to increase the ARIMA model’s precision but at the cost of computationally
efficiency. Thus, this test compares a neural network’s long-term predictions to short-
term predictions of commonly used ARIMA models, which are calibrated with much
more recent information.

In both tests we use the auto_arima() function from the pmdarima library in Python.

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.3 Volatility Forecasting

This function automatically finds and uses the best order, meaning the best figures for
the parameters p, d and q.

In Figures 5.9, 5.10 and 5.11 we present the results for both tests. The plots on the
left hand side represent the first test and the ones on the right hand side represent the
second test.

ARIMA vs. MLP ARIMA vs. MLP
0012
0.010 1
4".;_‘; 0.008
E
.g 0.006 A
=
5 0.004 +
o
:g 0,002 A
5}
Z 0 2 0 80 B 00 120 0 0 0 60 @ 100 120
2 Snapshot Snapshot
S
2 (a) without re-calibrating (b) with re-calibrating
=
C
o .
£ = Figure 5.9: ARIMA vs. MLP for AMZN
=2 g
@
2 5
L=
S P ARIMA vs. MLP ARIMA vs. MLP
BT
= = 0.0175 | Actual 00175 | Actual
2 = ARIMA ARIMA
a = 0.0150 1 00150 1
(_ED) ‘E“ 0.0125 -E? 00125 |
23 = | =]
o) (_TS © 00100 o 00100
é % g 0.0075 1 g 00075 1
[S7)]
Ty 0.0050 1 cooso{ |
=)
2e 0.0025 1 0.0025 1
g g o 2‘0 40 60 80 100 l?lﬂ o 20 40 &0 80 ld{l 120
£ Snapshot Snapshot
(o))
= C
o9 (a) without re-calibrating (b) with re-calibrating
QO =
xe .
S Figure 5.10: ARIMA vs. MLP for APPL
sE
o=
o ©
Tt o
Q0
88
s o
g
o 2
o~

45

M 3ibliothek,
Your knowledge hu

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3 Volatility Forecasting

ARIMA vs. MLP ARIMA vs. MLP
0014 4 0014 4
0012 0.012
£ 0010 £ 0010
E 0.00E - E 0.008 A
g 0.006 g 0.006
0.004 1 0.004 4
0.002 4 0.002 4
o 20 A0 60 80 100 120 [I'-‘ 20 A0 60 B0 100 120
Snapshot Shapshot
(a) without re-calibrating (b) with re-calibrating

Figure 5.11: ARIMA vs. MLP for GOOGL

In Table 5.8 we present the MAPE corresponding to each plot above.

Table 5.8: Comparison of ARIMA model and MLP

Ticker | ARIMA | ARIMA re-calibrated | MLP
AMZN 77.097 26.921 51.607
APPL 39.375 28.227 27.760
GOOGL 39.079 25.918 35.349

Looking at the results clearly points out that on the one hand feedforward neural net-
works together with the limit order book information have a better performance when
it comes to long-term predictions. But on the other hand in two out of three cases they
are not able to outperform continuously re-calibrated ARIMA models. Thus, we are
obviously dealing with a trade-off between precision and calibration effort.

However, since many transactions on the financial markets are very time critical it might
not be feasibly to calibrate a model each time we want to predict future volatility. Thus,
using pre trained neural networks are a reasonable alternative to classical ARIMA mod-
els to reduce calibration efforts and therefore increase speed.

Additionally it is important to notice that neural networks are performing best for huge
data sets, whereas our biggest data set only contains 410 days. Thus increasing the
amount of available data can yield a huge improvement of performance.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. Conclusion

In this thesis we gave a detailed introduction into the theory of neural networks, where
we presented basic architectures, particular deep feedforward neural networks. We not
only described how to train them, but also focused on optimization and generalization
techniques.

Furthermore, we presented a mathematically precise description of a limit order book as
well as its actual data structure, followed by an unbiased approach to estimate realized
volatility using noisy high-frequency data, referred to as two scales realized volatility
estimator (TSRV).

Finally, we showed how to apply this methodology on real market data. The used limit
order book data from the NASDAQ stock exchange was provided by the online tool
LOBSTER. For each data set we used handcrafted features and investigated the im-
pact of different feature selection methods, such as recursive feature selection and the
Boruta algorithm to decrease training speed and improve performance. Afterwards we
trained and optimized deep feedforward neural networks on the most important features
to outperform commonly used linear algorithms for mid-price prediction such as multi-
class logistic regression for all four stocks. Additionally, our proposed approach yielded
better long term volatility forecasts than ARIMA models. Consequently, it reduces the
necessity of re-calibration, which yields faster predictions and is therefore a potentially
beneficial indicator for investors.

Nevertheless, predictions are always uncertain and investments are risky. A neural net-
work in its basic form is neither capable of capturing the evolution of financial markets
in the long term nor able to understand the financial risk of wrong prediction. Conse-
quently, it would be an interesting future project to investigate recurrent models together
with a strategy that adds some financial indicator as risk measure for trading purposes.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

References

References

Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Springer,
2018.

Ando. Selecting good features — Part III: random forests. URL: https://blog.
datadive.net/selecting-good-features-part-iii-random-forests/.

Hans Biihler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep Hedging. 2018.
URL: https://arxiv.org/pdf/1802.03042.pdf.

Andriy Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

blog contributers. Machine Learning Mastery. URL: https://machinelearningmastery.
com.

scikit-learn developers. URL: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.f classif.html#sklearn.feature_
selection.f classif.

scikit-learn developers. URL: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.
RFE.

Joaquin Fernandez-Tapia. Modeling, optimization and estimation for the on-line
control of trading algorithms in limit-order markets. URL: https://www.researchgate.
net/publication/284900784 Modeling optimization_and_estimation for_
the_on-line_control_of trading algorithms_in_limit-order_markets.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning. Vol. 1. Springer series in statistics New York, 2001. URL: https://web.
stanford.edu/~hastie/ElemStatLearn/printings/ESLII%5C print12.pdf.

James Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An in-
troduction to statistical learning. Vol. 112. Springer, 2013. URL: http: //www -
bcf.usc.edu/~gareth/ISL/ISLRY,20Seventh),20Printing. pdf.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. 2010. URL: http://proceedings.mlr.press/v9/
gloroti0a/gloroti0a.pdf.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

Martin D Gould et al. Limit order books. 2013. URL: https://people.maths.ox.
ac.uk/porterm/papers/gould-qf-final.pdf.

Rainer Hirk. Nichtparametrische Volatilitatsschatzer unter Market Microstructure
Noise. 2014. URL: http://repositum.tuwien.ac.at/obvutwhs/download/pdf/
16353717originalFilename=true.

Tobias Hitzig. High-frequency trading and limit order book indicators. 2016.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://blog.datadive.net/selecting-good-features-part-iii-random-forests/
https://blog.datadive.net/selecting-good-features-part-iii-random-forests/
https://arxiv.org/pdf/1802.03042.pdf
https://machinelearningmastery.com
https://machinelearningmastery.com
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
https://www.researchgate.net/publication/284900784_Modeling_optimization_and_estimation_for_the_on-line_control_of_trading_algorithms_in_limit-order_markets
https://www.researchgate.net/publication/284900784_Modeling_optimization_and_estimation_for_the_on-line_control_of_trading_algorithms_in_limit-order_markets
https://www.researchgate.net/publication/284900784_Modeling_optimization_and_estimation_for_the_on-line_control_of_trading_algorithms_in_limit-order_markets
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII%5C_print12.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII%5C_print12.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://people.maths.ox.ac.uk/porterm/papers/gould-qf-final.pdf
https://people.maths.ox.ac.uk/porterm/papers/gould-qf-final.pdf
http://repositum.tuwien.ac.at/obvutwhs/download/pdf/1635371?originalFilename=true
http://repositum.tuwien.ac.at/obvutwhs/download/pdf/1635371?originalFilename=true

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

References

[27]

28]

[29]

Kurt Hornik. Approzimation capabilities of multilayer feedforward networks. 1991.
URL: http://www.sciencedirect.com/science/article/pii/089360809190009T.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. 1989.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. 2015. URL: https://arxiv.
org/pdf/1502.03167 .pdf.

Pankaj K. Jain, Pawan Jain, and Thomas H. Mclnish. The Predictive Power of
Limit Order Book for Future Volatility, Trade Price, and Speed of Trading. 2011.
URL: https://ssrn.com/abstract=1787625.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
2014.

Dawid Kopczyk. Feature Selection algorithms — Best Practice. URL: https://
dkopczyk.quantee.co.uk/feature-selection/.

Miron B Kursa and Witold R Rudnicki. Feature Selection with the Boruta Packag.
2010. URL: https://www. jstatsoft.org/article/view/v036i1l.

Richard Liang. Feature selection using Python for classification problems. URL:
https://towardsdatascience.com/feature-selection-using-python-for-
classification-problem-b5£00alc7028.

Lobster. LOBSTER data. URL: https://lobsterdata.com/info/DataStructure.
php.
Lulu. Lulu’s Blog. URL: https://lucidar.me/en/neural-networks/summary/.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,

2012. URL: https://doc.lagout.org/science/Artificial’,20Intelligence/
Machine’20learning/Machine%20Learning %20A%20Pro%20babilistic’,20Perspective,
20%5BMurphy%202012-08-24%5D . pdf.

Alec N.Kercheval and Yuan Zhang. Modeling high-frequency limit order book dy-

namics with support vector machines. 2013. URL: https://pdfs.semanticscholar.
org/9e84/5fb8805509ad716c698c4cfadf4f50a450fb . pdf? _ga=2.127074885.

974364117 .1583268636-1478772359.1583268636

Paraskevi Nousi et al. Machine Learning for Forecasting Mid Price Movement using
Limit Order Book Data. 2019. URL: https://arxiv.org/pdf/1809.07861.pdf.

Adamantios Ntakaris. Mid-Price Movement Prediction in Limit Order Books Using
Feature Engineering and Machine Learning. 2019. URL: https://trepo.tuni.
fi/bitstream/handle/10024/117394/978-952-03-1288-6.pdf ?sequence=5&
isAllowed=y.

Adamantios Ntakaris, Juho Kanniainen, Moncef Gabbouj, and Alexandros losi-
fidis. Mid-price prediction based on machine learning methods with technical and
quantitative indicators. 2019. URL: https://arxiv.org/pdf/1907.09452 . pdf.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.sciencedirect.com/science/article/pii/089360809190009T
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://ssrn.com/abstract=1787625
https://dkopczyk.quantee.co.uk/feature-selection/
https://dkopczyk.quantee.co.uk/feature-selection/
https://www.jstatsoft.org/article/view/v036i11
https://towardsdatascience.com/feature-selection-using-python-for-classification-problem-b5f00a1c7028
https://towardsdatascience.com/feature-selection-using-python-for-classification-problem-b5f00a1c7028
https://lobsterdata.com/info/DataStructure.php
https://lobsterdata.com/info/DataStructure.php
https://lucidar.me/en/neural-networks/summary/
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning_%20A%20Pro%20babilistic%20Perspective%20%5BMurphy%202012-08-24%5D.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning_%20A%20Pro%20babilistic%20Perspective%20%5BMurphy%202012-08-24%5D.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning_%20A%20Pro%20babilistic%20Perspective%20%5BMurphy%202012-08-24%5D.pdf
https://pdfs.semanticscholar.org/9e84/5fb8805509ad716c698c4cfa4f4f50a450fb.pdf?_ga=2.127074885.974364117.1583268636-1478772359.1583268636
https://pdfs.semanticscholar.org/9e84/5fb8805509ad716c698c4cfa4f4f50a450fb.pdf?_ga=2.127074885.974364117.1583268636-1478772359.1583268636
https://pdfs.semanticscholar.org/9e84/5fb8805509ad716c698c4cfa4f4f50a450fb.pdf?_ga=2.127074885.974364117.1583268636-1478772359.1583268636
https://arxiv.org/pdf/1809.07861.pdf
https://trepo.tuni.fi/bitstream/handle/10024/117394/978-952-03-1288-6.pdf?sequence=5&isAllowed=y
https://trepo.tuni.fi/bitstream/handle/10024/117394/978-952-03-1288-6.pdf?sequence=5&isAllowed=y
https://trepo.tuni.fi/bitstream/handle/10024/117394/978-952-03-1288-6.pdf?sequence=5&isAllowed=y
https://arxiv.org/pdf/1907.09452.pdf

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

References

Adamantios Ntakaris, Giorgio Mirone, Juho Kanniainen, Moncef Gabbouj, and
Alexandros losifidis. Feature engineering for mid-price prediction with deep learn-
ing. 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.
URL: http://arxiv.org/abs/1609.04747.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. 1985. URL: https://apps.dtic.mil/dtic/
tr/fulltext/u2/a164453.pdf.

Justin A. Sirignano. Deep Learning for Limit Order Books. 2016. URL: https:
//arxiv.org/pdf/1601.01987.pdf.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On Farly Stopping in Gra-
dient Descent Learning. 2007.

Lan Zhang, Per A Mykland, and Yacine Ait-Sahalia. A tale of two time scales:
Determining integrated volatility with noisy high-frequency data. 2005. URL: http:
//wwwf . imperial.ac.uk/~pavl/AitSahalia2005.pdf.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://arxiv.org/abs/1609.04747
https://apps.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf
https://arxiv.org/pdf/1601.01987.pdf
https://arxiv.org/pdf/1601.01987.pdf
http://wwwf.imperial.ac.uk/~pavl/AitSahalia2005.pdf
http://wwwf.imperial.ac.uk/~pavl/AitSahalia2005.pdf

	Introduction
	Machine Learning - Terminology
	Types of machine learning
	Performance

	Limit Order Book

	Deep Learning
	Basic Network Architecture
	The Perceptron (computing units)
	Multilayer Neural Networks

	Learning Neural Networks
	Maximum Likelihood Estimation
	Loss Functions

	Optimization for Neural Networks
	Backpropagation
	Gradient Descent Algorithms
	Parameter Initialization Strategies
	Batch Normalization

	Generalization for Neural Networks
	Model Selection
	Regularization Techniques

	Limit Order Book
	Mathematical Description
	Data Structure

	Volatility Estimation using Noisy High-Frequency Data
	Quadratic Variation and Realized Volatility
	Realized Volatility under Market Microstructure Noise
	Setup and Sparse Sampling
	Biased Realized Volatility
	Two Scales Realized Volatility Estimator (TSRV)

	Experiments
	Preliminaries
	Available Data
	Handcrafted Features
	Feature Selection Methods
	Normalization

	Predicting Price Movements
	Target Labels
	Pre-processing
	Empirical Results

	Volatility Forecasting
	Pre-processing
	Empirical Results

	Conclusion
	References

