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Introduction

Ideals contained in the algebra of bounded linear operators on a Hilbert space H is a well discussed
functional analytic topic. For H being separable each proper ideal is contained in the algebra of
compact operators on H. Since Calkins’s groundbreaking work Two-sided ideals and congruences in
the ring of bounded operators in Hilbert spaces [Cal41] published in 1941, it is known that operator
ideals . contained in K(H) correspond bijectively to specific spaces of nonincreasing zero sequences.

Of special interest in the spectral theory are ideals endowed with a symmetric norm, forming
Banach spaces. These are called “symmetrically normed ideals” (s.n.-ideals), and examples would be
the Schatten—von Neumann classes, which are the operator theoretical counterparts of L? spaces. It
turned out that s.n.-ideals are heavily tied to the s-numbers of their elements. Naturally, the question
arises, which spaces of zero sequences correspond bijectively to s.n.-ideals. Up until recently, it was
an open question in the field of operator theory. In 2008 N.J. Kalton and F.A. Sukochev answered
this question in “Symmetric norms and spaces of operators” [KS08] via the newly introduced uniform
Hardy-Littlewood majorization. The main part of this master thesis revises, reshapes N.J. Kalton
and F.A. Sukochev results and presents them in a more attractive way. This is achieved by breaking
down complex structures to reach a deep level of understanding. Another aim of this work is to be self
contained. To this end, the first two chapters introduce the reader to geometry of sequences, the theory
of s-numbers and s.n.-ideals. In the first chapter we study some algebraic notions in the space of zero
sequences of real numbers, which are basic for all what follows. This includes rearrangement processes,
several quasi orders and their interplay, and some operators on sequences. The second chapter gives
a brief overview on s-numbers of compact operators, their connection with operator ideals and some
theory about symmetrically normed ideals w.r.t. symmetric norming functions. We avoid diving too
much into details, for the sake of self-containment. Therefore the presented theory is kept at a basic
level and can be found in I.C. Gohberg and M.G. Krein’s extensive work Introduction to the theory of
linear nonselfadjoint operators published in 1969 [GK69]. The subsequent chapter presents, in a more
modern style, Calkin’s correspondence via replication closed subcones of nonincreasing zero sequences.
Chapter 4 consists of the technical core and in chapter 5 Calkin’s correspondence between symmetric
Banach sequences spaces and s.n.-ideals is established.

Moreover, this master thesis contains an additional chapter, more of preparational nature, that
gives a tiny glimpse of a planned survey paper, which aims to present and proof some, almost unknown
theorems, discovered by A. A. Mititel and G. I. Russu from the 70’s and 80’s concerning s.n.-ideals.
They give necessary and sufficient conditions when to expect an operator ideal to satisfy the Macaev
property (for more details, see the upcoming survey paper).
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Some basic notation

To start with, let us fix common notation.

Throughout this work H denotes an infinite dimensional Hilbert space over K, where K € {R, C}.

The set of all bounded linear operators on H is denoted by B(#) and the subset of all compact
linear operators is denoted by K(H).

N={1,2,3,...} is the set of natural numbers.

Cardinalities of a set (we will deal only with at most countable cardinalities) are understood as a
natural number or co. For notational convenience, we will identify a natural number n with the
set {1,...,n} and the cardinality oo with N. This makes expressions like for example “Vi € N”
meaningful.

Sequences of real numbers are generically denoted as a = (a,)nen-

co is the Banach space of all sequences a of real numbers with lim,, .., a,, = 0 endowed with the
supremum norm.

We denote

ct = {(an)neN € ¢o ‘ VneN:a, > 0},

cé = {(an)neN € ca' | VneN:a, > an_H}.
The natural pointwise order on sequences of real numbers is

a<b & YneN: a, <b,.

We denote
la| := (lan|)nen-

14 denotes the characteristic sequence of A, i.e.

(1 ifjea,
(La); ==14(j) = {

0 otherwise.

| . | denote the floor function and | .] denotes the ceiling function, i.e.

lz] ==max{m e€Z|z>m}, [2]:=min{meZ]|z<m}.

For completeness we list some properties; none of them requires explicit proof. Recall here that a cone
is a subset of a vector space which is closed under linear combinations with nonnegative coefficients.

i)
ii)
iii)

)

iv

é v) Va,becl: a<b = suppa C suppb.
gandcoarecones vi)a<bedcec): b=a+c
Va,b,c€cy: a<b & a+c<b+ec. vil) Va € cg: a < |al.

Va,b€co,3>0: a<b &< Ba<pb. viil) Va,b€co:  |lal — [b]| < |a+b] < |a] + |b].
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Chapter 1

Geometry of Sequences I

In this chapter we study some algebraic notions in the space of zero sequences of real numbers,
which are basic for all what follows. This includes rearrangement processes, several quasi orders
and their interplay, and some operators on sequences. Many facts which are stated here are
elementary, and we will not elaborate all proof details.

1.1 Rearrangement operators

We saw that there is the obvious map |.| from ¢q to 03' . It is also possible to pass further from (33' to

cé. We can “obviously” rearrange the elements |a,| (and possibly remove some zero terms) to obtain
a nonincreasing sequence (a})nen with the property that every positive number « occurs the same
number of times among the values @} as it occurs among the values |a,|. This rearranging process,
however, is more involved than is looks on first sight. A sound definition reads as follows.

1.1.1 Definition. Let a € ¢y. We define a map ¢ : N — N recursively by the following procedure.

e Let n € N. Then, since a is a zero sequence, the maximum
max {|a;| | i € N\ «({k € N|k <n})}

is attained. Now choose a number «(n) € N\ «({k € N |k < n}) such that |a,(,)| equals this
maximum.

Having the map ¢, we set
* Pp—
an = |aL(n)|.
The sequence a* := (a)nen is called the nonincreasing rearrangement of a.

The nonincreasing rearrangement a* of a sequence a € ¢y again belongs to ¢y, is indeed nonincreas-
ing, and the values |a,| are listed in a* according to the number of their occurrances in the sequence
|al.

A useful characterisation of the nonincreasing rearrangement is obtained using level sets of a: for
each 6 > 0 we set

Los(a) :={n € N|lay| > 6}, Ls(a):={neN]||a,| =05}

Since a is a zero sequence, all these sets are finite.
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1.1.2 Lemma. The following statements hold.

i) Va€co,VneN,6>0: a}, >0 & |Lss(a)| >n.
i) Va,becy: a* <b* & V6>0:|Lss(a)| < |Lss(b)|.
iii) Ya € 5,0 >0:  Lug(a) = [1,|Lss(a)|] NN.

iv) Ya € ¢o: |suppa| = |suppa*|.

Proof.
“1)” : Obviously, holds.
“ii)” . Follows from i)
“iii)” :  Is a consequence of a* = a, for all sequences a € cé.
“iv)”:  Follows from i). O

For ¢ € £>° we denote by M, the multiplication operator with ¢, i.e. M¢(a) := (¢uan)nen. Some
computation rules for the operators | .|, (.)*, and M, are:

1.1.3 Lemma. The following statements hold.

i) (co)* = c% and *| . = idcé. iv) Va€co,f €R:  (Ba)* =|Bla*.
0
ii) Va€cy: Jal* =a*. v) Va,b€co: |a| <|b] = a* <b*.
ili) Va€cy: (a*)* =a*. vi) V(€ l®a€co:  |Mcal < [|(]lslal.

Let us emphasize that the operator (.)* : ¢o — co is not compatible with sums.

Proof. We start with an example to illustrate that (.)* is not compatible with sums. Consider the

sequences
a' :=(1,0,0,0,...), a*:=(0,1,0,0,...).

Then (a' + a?)* = (1,1,0,0,...), but (a*)* + (a?)* = (2,0,0,...).
Of the remaining statements we only prove v), all the others are obviously true. Let a,b € ¢y be given
with |a| < |b|. Moreover, let § > 0 be arbitrary. We have

L-s(a) = {n eN ‘ |an| > (5} C {n eN ‘ = 5} = L+s(b),
and therefore |Lss(a)| < |Lss(b)|. Using Lemma 1.1.2 ii) yields a* < b*. O

Next we show two continuity properties. Here, a family M C ¢ is called equicontinuous, if (think
of a zero sequence as a continuous function on the one-point compactification of N)

Ve > 0,3ng € N,Vn > ng,Va e M : |a,| <e.
1.1.4 Lemma. The following statements hold.
i) (.)*:co = co is continuous w.r.t. ||.|lco-

ii) Let (a');en be a sequence in cy which converges pointwise to some sequence a € RY, and assume
that the set {(a")* | i € I} is equicontinuous. Then a € ¢y and

Ve >0,3ip e N,Vi >ip: a" <(a')" +ely. (1.1)
The condition (1.1) is equivalent to
Vn € N:a} <liminf(a"):. (1.2)

1— 00
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Proof. For the proof of i) assume that (a’);ey — a uniformly. Let e > 0, and choose § € (0, ¢) such
that
{16 |1 e N} {|ay| |neN}=0.

Since the first of these sets accumulates only at co and the second only at 0, their distance €’ is positive,
and we find ig € N such that [|a’ — all < ¢ for all i > ig. From this we see that

VieN,i>ig: Lyis(a) = L>l§(ai)-
Based on Lemma 1.1.2, it follows that
VieN,neNi>ig: a€ (6 (1+1)5] < (a)i e (16, (1 +1)d],

and consequently also _
YneN: ar < & (a')) <6.

These conditions together cover all values of n, and we conclude that ||(a*)* —a*[|oc < 29 for all i > .

We come to the proof of ii). Assume that (a”);en is a sequence as in the statement of this item.
By pointwise convergence, we have

V6 > 0,YN € N, Jig € I,Yi > i : (N < |Lss(a)) = N < |L>5(ai)|). (1.3)

Let € > 0 be given. Using again Lemma 1.1.2, our equicontinuity assumption yields sup;c |{n €
N | |(a®)n| > €}| < co. Thus there exist only finitely many elements of a whose absolute value exceed
€. We conclude that a € c¢g.

Let again € > 0 be given, and let n € N. Set § := a} —e. Then |L-s(a)| > n by Lemma 1.1.2, and
(1.3) provides iy € N such that for all i > iy also |Lss(a’)| > n. In turn, (a*)? > §, and we conclude
that liminf; o (a®)? > a¥ —e. This shows (1.2). To deduce (1.1), choose an index ng such that a} < e

for all n > ng. Then af < (a'): + € holds for n > ng. For the remaining finitely many coordinates,
use (1.2) to obtain the required index ig. The fact that (1.1) implies (1.2) is obvious. O

It turns out practical, and is a significant gain in conceptional clarity, to formalise the concept of
rearranging and removing terms of a sequence. We denote

Bij(N) := {L CNxN|* is the graph of a bijective map of some subset }

dom ¢ C N onto some subset ran: C N

The set Bij(N) carries an algebraic structure. Namely, it is a semigroup with the relational composition.
This semigroup has a unit element (the function idy), contains many idempotents (all functions id 4,
where A C N), and its group of invertible elements is the permutation group S(N) of our base set N.
It is invariant under taking relational inverses, and ¢ ™! o ¢ = idgom, and ¢ o ¢~ ! = idyap,.

1.1.5 Definition. For each ¢ € Bij(N) we define an operator %, : cg — co by setting Z,(ap)nen =
(aln)nEN with

, ay(ny if n € dome,
a, =
0 otherwise.

Applying %, means to rearrange the terms a,, with m € ran¢, and to remove the terms a,, with
m € N\ ran .

1.1.6 Example.

i) Rearrangement operators can be used to pass to the nonincreasing rearrangement. Revisiting
Definition 1.1.1, we observe that the map ¢ constructed there belongs to Bij(N), and a* = %, |al.
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ii) a can be reconstructed from a* in the sense that
a = (M]lA—ﬂB © ‘%L)a*
with suitable ¢ € Bij(N) and partition {4, B} of N.

iii) Rearrangement operators can be used to select elements of a sequence. For a subset A C N we
have
a, ifne€ A,

(Frana)n = {

0  otherwise.
In other words, %iq,a = My ,.

iv) Rearrangement operators can be used to shift sequences. For a nonnegative integer N, set

N — {keN|k>N}
LN -
N n — n+N

Then ¢y € Bij(N), and

R,y (a1,...,aN,aN+1,-..) = (AN11,GN42, - .) (1.4)
%’L; :(ay,ag,...)—(0,...,0,a1,as,...) (1.5)
T
N-th place

We denote the left shift (1.4) as 7, and the right shift (1.5) as 7.

In the context of realizing the nonincreasing rearrangement, the following observations are some-
times practical.
Some facts and computation rules for the operators Z, are:

1.1.7 Lemma. The following statements hold.

i) Let v € Bij(N). Then %, : co — co is linear and contractive. It is isometric, if and only if
rant = N.

il) The map v — %, is compatible with the algebraic structure in the sense that
Vi,k € Bij(N): %, 0 Ry = Ko, Riay = 1. (1.6)

In particular, we have %, o #,-+ = Mu,,,,, and #,-1 o #, = My,,,, for all v € Bij(N).

iii) Let ¢ € Bij(N) with ran.Nsuppa # 0, and set N := |{j € N\ ran¢ | |a;| > [ %Z.al|}|- Then
(#,a)* < TN(a").

In particular, we have (%Z,a)* < a* for all v € Bij(N) and a € ¢g, and in this relation equality
holds if suppa C rant.
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Further properties are:

iv) Va € cy: suppZ.a=."(suppa). viil) Va € co,0 € Bij(N) :  |Z,a| = Z.]al.
v) kerZ, = {a € ¢ | suppaNran: = @}. viii) Va,b € cg,t € Bij(N) :
vi) ran%L:{aECO ’ suppagdomb}. a<b = Za<Ab.
Proof. All statements are obviously true. O

1.1.8 Lemma. The map constructed in Definition 1.1.1 has the properties

i) Z.|a) € c. ii) ran: 2 suppa. iii) dom¢ = N.

The first two properties characterize bijective graphs which give the nonincreasing rearrangement,
namely: if v € Bij(N), then %,|a| = a* if and only if v satisfies 1) and ii).

Proof. Let a be a zero sequence and ¢ the map constructed in Definition 1.1.1. The fact that i) holds,
follows from

a1y = max{|ai| | ieNt({keN | k<n+ 1})} < max{\ai| | 1€ N\t({k eN | k< n})} = laym)l-
ii) and iii) are also immediately derived from the definition.
Now let ¢ € Bij(N) be given with %,|a| = a*. Z,|a| € ¢} follows from a* € ¢y. To see that ¢

satisfies ii), assume the contrary, i.e. there exists a natural number ¢ € supp a such that i ¢ ran¢. Let
0 < € < |a;] be arbitrary. Then we have the following estimate

| Lo s —=(ZJal)| = [{7 € N | (Z.]a]); > lai| — e} = [{j € N[ lay;)| > |ai] — e}
= H] S ranL} la;| > |a| —8}’ < H] € (rant U {i}) ‘ laj| > |a| —5}!
< {7 €N|laj| > la;] = €} = |Lsja;-<(a)]-
Since ’L>‘ai|_s(92|a|)| < ‘L>‘ai‘_s(a)|, invoking Lemma 1.1.2 ii) yields the contradiction
Aa| = a” = (a”)" = (Z.a])” # a”.

Now suppose that ¢ € Bij(N) satisfies i) and ii). Moreover, let § > 0 be given. Note the obvious
fact that Lss(a) C suppa. Then Lss(a) C rane. Consider

v (Lss(a)) = {c7'(i) | i € suppa,|a;| > 6} = {j € dom¢ | (j) € suppa, |a,j)| > 0}
- {j € domt ‘ la, )| > (5} = {j € dome¢ | (Z#,)al); > (5} = {j eN ‘ (Z#,|al); > 6}
= L>5(Z.]al)
Since ¢ is bijective, we obtain ’L>5(a)‘ < ‘L>5(%|a|)’. On the other hand, we have
|L>s(Aa)| = {5 € N[ (Zulal); > 0} = [{j € dome [ ]a,;)| > 6} < |{i € N[ |ai] > 5}[ = |L>5(a)]
and we conclude that |L>5(a)| = ’L>5(%‘a|)‘. Using Lemma 1.1.2 ii) yields the desired result, %, |al E
a*.

1.1.9 Remark. The freedom in the choice of ¢ left by Lemma 1.1.8 is sometimes of good use. For
example, if |suppa| < oo and B O suppa, we can choose ¢ € Bij(N) satisfying properties i) and ii)
from the last lemma, such that in addition «(|B|) = B.
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1.2 Elementary quasi orders on zero sequences

By pushing forward the partial order < with the operator (.)*, we obtain a quasi order.

1.2.1 Definition. For a,b € ¢y we denote
a<b & a* <b*.
Moreover, we write
a~b & (a<b AN b=<a) < a"=Db"

Then indeed < is nothing but the inverse image of < under the map (.)* x (.)* : cg X co — cé X cé.

Some computation rules for < are:

1.2.2 Lemma. The following statements hold.

i) Va,becy: a| <|b] = a=<b. vi) Va€co:  a~al.

i) Va,becy: a<b < a<b. vil) Va,b € ¢l € Bij(N) :

iii) 0 is the smallest element of (co, <). a<b = Za<Rb.

iv) Va,b€co,>0: a<b < Ba=<pb viil) Va € ¢cg,t € Bij(N) :  (Z,a) <a
v) Ya,b€cp: a<b = |suppal C |suppbl.

Proof. Since matters get quickly more and more involved, we give proofs for most of the items in
Lemma 1.2.2, even though they seem easy.
“i)” : Let a,b € co with |a|] < |b]. Choose ¢ € Bij(N) such that a* = %,|,]. Then we have

1.1.7 viii)
a*=Rlal < A

Using Lemma 1.1.7 and Lemma 1.1.3 yields

« 1.1.3 iii) 1.1.3 v) 1.1.7 iii)
a =

(@) < (@) < b

“ii)” . Follows from 1).
Obviously 0 is the smallest element of (cg, <).

‘v Follows from Lemma 1 1.3 iv).

“v)” . Since for all a,b € Co it holds that a < b implies suppa C suppb, we obtain suppa* C
bupp b*. Keeping in mind that |suppa| = |supp a*|, | supp b| = | supp b*| yields v).

“vi)” . Trivial.
“vii)?:  Let a,b € ¢f and ¢ € Bij(N) be given with a < b. Then invoking Lemma 1.1.7 viii), we have
H,a < %,b. Using ii) yields Z,a < %,b.
“viii)”:  Follows from Lemma 1.1.7 iii).

O

Compatibility with sums, as it holds for <, is lost since (.)* is not additive. To see this, consider
the example
1.=(1,0,0,0,...), a*:=(0,1,0,0,...), b:=(2,0,0,0,...).

Obviously, at,a? < b, but a + a? £ b.
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In the context of compact operators and their s-numbers, another partial order on ¢y occurs.

10
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1.2.3 Definition. For a,b € ¢y we denote
n
akb & Vn e N: ZajSij.

Also this relation can be seen as a pushforward of <.

1.2.4 Remark. The Cesaro-means operator, which is defined for sequences of real numbers as

Clonuen= (2300)
j=1

induces a linear, contractive, order preserving and injective operator on c¢y. The relation < is the
inverse image under € X € : ¢y X ¢g — ¢g X ¢g of the pointwise order <.

Some computation rules for < are:

1.2.5 Lemma. The following statements hold.

i) Va,b€cy: a<b = a<b. iv) Va € ¢g,t € Bij(N):  Z,a < a*.
11) va,bECO,ﬁ>OZ akb & Ba/<<ﬁb V) \v’a’bECO; (a+b)*<<a*+b*
iii) Va,b,c€c¢cp: a<k<bsatebte.

Proof. 1) — iii) obviously hold.
“iv)” . Follows from the fact that, for every sequence a € ¢y and finite subset G C N it holds that

|G|

Z a; < Za;.
j=1

JjeG

“v)” : Leta,b € ¢y. Choose ¢ € Bij(N) such that (a+b)* = Z,|a+b|. Since Z,|a+b| < Z,|a|+Z%,|b]
and by iv), Z,|a| < a*, Z,|b] < b*, it follows that (a + b)* < a* + b*. O

Compatibility with (.)*, as it holds for < by Lemma 1.1.3 v), is lost. An example is
11
:=(0,1,0,... b:=(=,=,0,...
a ( s 4y Yy )7 (23 P )7

where a < b, but b* < a* and a* # b*.
Further pushing forward < with (.)*, leads to a quasi order known as Hardy-Littlewood majoriza-
tion.

1.2.6 Definition. For a,b € ¢y we denote
a<b & a® < b*.

Some computation rules for < are:

11
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1.2.7 Lemma. The following statements hold.

i) Va,becy: a<b = a<b. vii) Va,b € ¢ :

ii) Va,becy: a<b & a<b. (b<a A blgppe =0a) = b=a.
iii) 0 is the smallest element of (co, <). vili) Va € ¢p,¢ € Bij(N):  Z.a < a.

iv) Va,b€co,>0: a<b & Ba< fb. ix) Va,b,c€cop: a<b = at+c<b +c".
v) Va,be€co: a+b=<a*+b*. x) Va,beco: a<b = [ale <|bllc-
vi) (a<b A b<a) & a~b. xi) Va,bech: a<b & Fa<Eb.

Proof. i) —iv) and ix) — xi) obviously hold.

“v)” :  Follows from Lemma 1.2.5 v).

“vi)”:  Let a,b € ¢g. Obviously, a ~ b implies a < b. Let a < b, b < a hold. Then we have
>4 =20
j=1 j=1

for every natural number n. This implies a; = b} for every j € N.

“vii)”: Let a,b € ¢o with b < a and blgppa = a. Since blgppa < b, @ = blgyppa and in
particular a ~ blgyppq, We have a < b < a and thus by vi) we obtain b ~ Lgyppab. We conclude that

supp b = supp a.
“viii)”:  Follows from i) and Lemma 1.2.2 viii).

12


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Chapter 2

s-numbers and symmetrically
normed ideals

This chapter is all about giving a brief overview on s-numbers of compact operators, their
connection with operator ideals and some theory about symmetrically normed ideals w.r.t.
symmetric norming functions. We avoid diving too much into details, for the sake of self-
containment. Therefore the presented theory is kept at a basic level and can be found in
Gohberg-Krein [GK69].

2.1 Compact operators and elementary properties of s-numbers

We recall the definition of compact operators. An operator T' € B(H) is compact, if the image of
the closed unit ball under T is relative compact in H. The set of all compact operators on a Hilbert
space H is denoted by K(H). It is a well known fact that every compact self-adjoint operator T' can
be represented via its eigenvalues and eigenvectors, i.e. T = Zj’;l Aj(-,e;)e;j. However, there exist
compact operators, called Volterra operators, having a spectrum containing only 0. To obtain a similar
representation for arbitrary compact operators, one has to study the operator |T| = (T*T)% and its
eigenvalues.

2.1.1 Definition. Let T € K(#H). The Eigenvalues of |T| in decreasing order are called s-numbers
and will be denoted by (s;(T))32; = s(T).

Via polar decomposition, one can get the Schmidt expansion (or Schmidt series) for compact
operators:

2.1.2 Theorem. (Schmidt expansion) T € K(H). Then there exist two orthonormal systems { ¢; ’ je
N} and {%‘ | JjE N} such that T admits a representation

T = s;(T) (- ¢;);.
j=1

s-numbers satisfy various properties and we state the most basic ones needed in this paper.

2.1.3 Theorem. Let T € K(H), A, B € B(H). Then

VieN: s;(ATB) <[l All[|B]|s;(T).

13
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2.1.4 Theorem. s-numbers satisfy the following properties:

(T, x)
T) = A 27 2.1
0= 8% el >y
T
$j+1(T) = min { zerﬂnia\)f{o} <|£|;|C|’2x> L is a j-dimensional linear subspace ofH}. (2.2)

Considering the Schmidt expansion T = Zj’;l si(T)(-, @)%, in fact the mazimum in (2.1) is attained
for x = ¢1 and the minimum in (2.2) is attained for £ = span{¢1,...,¢;}.

2.1.5 Theorem. Let S,T € K(H). Then
i) for allc e K and T € K(H) it holds that

s;(cT) = |els;(T), jeN.

ii) for all S,T € KC(H) it holds that
5m+n—1(S+T) Ssm(‘g)+5n(T)7 m,n € N.

holds. In particular
52n71(S+T) Ssn(s)"_sn(T)a n € N.

2.1.6 Theorem. Let (T),)nen be a sequence in K(H) with lim T,, =T. Then
n—oo

s(T) = lim s(T,),

n—oo
holds w.r.t. || - lco-

2.1.7 Theorem. Let T € K(H). Denote by F; the subspace of B(H) containing all operators F with
dimran F' < j, for 5 € N. Then

s;(T) =inf {||T — F| | F € F}}, jeN. (2.3)
The numbers on the right side in (2.3) are called approximation numbers.

2.1.8 Theorem. Let S,T € K(H). Then s(S+T) < s(S) + s(T), i.e.

n

D si(S+T) <> (s5(5) +5;(T), neN,

j=1 j=1
2.1.9 Lemma.

i) For two positive operators S, T € B(H) with S < T the corresponding s-numbers satisfy

sj(5) < s;(T), jeN.
ii) For all T € KK(H) it holds that
si(T) = s;(IT1),  jeN.
ili) For all T € K(H) and partial isometries U,V € B(H) it holds that

SJ(UTV*) = SJ‘(T)7 jeN.

14
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2.2 Elementary properties of operator ideals

We recall the notion of operator ideals:
2.2.1 Definition. A subset . of B(H) is called an (two-sided) operator ideal if
i) & is a linear subspace of B(H).
ii) for all A, B € B(H) and T € . it holds that ATB € ..
Additionally, an operator ideal .7 is called a proper operator ideal if
iii) . # {0} and . # B(H).
It turns out, that operator ideals, are heavily tied to the s-numbers of their elements.

2.2.2 Proposition. Let .Z be an operator ideal. Furthermore let S € B(H) and T € 7. If
s(S) <s(T), then S € 7.

One could get an equivalent definition of operator ideals by interchanging item ii) in Definition 2.2.1
with the statement of Proposition 2.2.2.

2.2.3 Theorem. Let .¥ be a proper operator ideal. Then
FCZ CK(H),
holds, where F denotes the finite rank operators in B(H).

We recall the notion of diagonal operators. For a sequence a € ¢y and an orthonormal system
{en | n € N} in H the operator

o0
Eo:=)_a;{¢))e;,
j=1
is called the diagonal operator of the sequence a w.r.t. the orthonormal system (e,)nen. We state
some obvious properties of these operators without proof.

2.2.4 Lemma. The following statements hold
i) Va,b€cy: Eupp = E,+ Ep. iii) Va€cog: (E,)*=E,
i) VAeRa€cy: Eng=AE,. iv) Va€co: s(E,)=a".

To analyse operator ideals, it is convenient to consider subsets, from which the original ideal can
be reproduced. We briefly discuss a very useful class of such subsets.

2.2.5 Example. Let B := {en | n e N} be an arbitrary orthonormal basis in . For an operator ideal
& C K(H), let the subset of compact self-adjoint operators consisting out of all diagonal operators
w.r.t. the orthonormal basis B denoted by

=S N{E,|a€col,

By Proposition 2.2.2 and Lemma 2.1.9 iii), .¥5 contains enough information to fully reproduce .,

namely by
= {T S K:('H) ‘ Es(T) S yg}.

15
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The set of all diagonal operator w.r.t B is given by K(H)g = {Ea | a € co} and is in fact closed w.r.t.

convergence in the operator norm || - ||. Too see this, let T' € K(H) and let (T},),en be a sequence in

K(H)p with T}, M T. Since each T;, is an element of (H)p, they admit representations

Tn = Ean7 n e N,

; Il-1l . N .
for some sequences a" € cg. Since The; = aje; — Tey, for every j € N, the limit lim a" =: a exists
n—oo

pointwise. Hence, each e; is an eigenvector of T'. The set {en | neN } already contains all eigenvectors
of T'. Thus, by the spectral theorem for compact self-adjoint operators T' admits a representation

T :=F,,

and therefore T € K(H)z.
Now suppose that .# is endowed with a norm || - ||» stronger than || - ||, i.e

C>0vT e s |T[| < C|T]|.o,

such that (7, - ||.») is a Banach space. Obviously, .7 is a linear subspace of the operator ideal .
and by the argument above, we immediately obtain that (%, | - ||.»| f5> is a Banach space.

2.3 Symmetrically normed ideals vs. symmetric norming func-
tions

This section is based on [GK69, Chapter 3] and solely summarises known results about symmetrically
normed ideals and symmetric norming functions. We put particular emphasize on the relation between
these two notions. The results are presented without proofs, which can be found in [GK69, Chapter
3], unless stated otherwise.

2.3.1 Definition. Let . be an operator ideal. A norm | - |.» on . is called symmetric if
i) for all T € . and A, B € B(H) it holds that [|[ATB||.» < || AT~ ||B]l-
ii) for all F' € F; it holds that ||F|.» = || F||.

2.3.2 Definition. Let .7 be an operator ideal endowed with a symmetric norm ||-||.»». Then (7, |-||.»)
is called a symmetrically normed ideal (s.n.-ideal, for short) if it is complete.

2.8.3 Example. Define for each 1 < p < 0o

Sy ={T € KH) | S s,(T) < o0} and [T, = (3 s,(T)7)".

Jj=1 Jj=1
In fact (7, - ||p) are separable s.n.-ideals.
The next proposition shows in particular that symmetric norms depend only on s-numbers.

2.3.4 Proposition. Let.? be an operator ideal endowed with a symmetric norm || - ||s. Then for all
SeB(H) and T € . with s(S) < s(T) it holds that S € . and ||S||» < ||T||.~-

2.3.5 Theorem. Let.? be an operator ideal and let ||- ||, and |- ||.» be two symmetric norms on .
such that (&, || - ||.=#) and (&, - ||l.#) are s.n.-ideals. Then || - ||, and | - || are equivalent norms
on &
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2.3.6 Definition. A function @ : ¢g9o — R is called a norming function if

o Va € cgo\{0}: @(a) > 0. e Va,becopy: Pla+b) <P(a)+ D(b).
e Ya>0,a€cy: Plaa)=aP(a). e $(1,0,0,...)=1

It is called a symmetric norming function (s.n.-function, for short) if it additionally satisfies
e for all a € ¢pp and permutations 7 of N it holds that ®(a) = ®(ar).
2.3.7 Proposition. Let ® be a symmetric norming function. Then ® has the following properties.
i) For all a,b € cog with a < b it follows that ®(a) < D(b).
ii) For all a € coo it holds that ®(a*) = ®(a).
2.3.8 Example. Define functions
oo
bo(a):=aj, Pi(a):= Za;, a € cop.
j=1

It is easy to see, that these are indeed s.n.-functions. They are extremal in the sense that for every
s.n.-function ®
D(a) < P(a) < Pq(a), a € cgp.

2.3.9 Theorem. There is a one-to-one correspondence between s.n.-functions and symmetric norms
on F. It is established by the following assignments:

i) For a given symmetric norm | - |z on F and an arbitrary orthonormal basis {e; | j € N} one
can define a s.n.-function by

0o
@;(a) = || Za}f(-,eﬂejn}., a € coo-
j=1

ii) For a given s.n.-function ® one can define a symmetric norm on F by

|Fle := ®(s(F)), FeF.

-l =——1"lle

Pr() —— @()
Assume we are given a s.n.-function ®. Since ®(al(; ) < ®(al(; p4qy) holds for n € N, one can

extend the domain of ® to {b € coo | sup,,ey P(alfr ) < 00} =: co(N) in a natural way by

®(a) := sup ®(alp ), a € cp(N).
neN

co(N) is called the natural domain of ®. We recall some properties of ¢ (N).

17
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2.3.10 Proposition. Let ® be a s.n.-function. Then the natural domain of ® has the following
properties.

i) Va,beca(N): a+be€cop(N). iil) Va € cp,b € ca(N): a <b=a € ce(N).
ii) Vo € R,a € co(N) 1 aa € co(N) iv) Va€cp: a€co(N)ea* €cop(N).
2.3.11 Theorem. Let ® be a s.n.-function. Then
o= {TEKH) | s(T) € caM)}, Tl = B((T)), T,

defines a s.n.-ideal.

Denote by g the closure of the finite rank operators F in S, i.e. S = Fllze  Then SR s a
separable s.n.-ideal. It is given as

S ={T € S| Jlim (5341 (T), sn42(T),-.) = 0}.

We have /g C S, ad equality holds if and only if L& is separable.
2.8.12 Remark.

i) If /¢ # S, there exist infinitely many s.n.-ideals (whose norm is given by || - || &, ) between .78
and ., see [Rus69b, Theorems 2,3] (proofs are published in [Rus69c¢]).

ii) Every separable s.n.-ideal is of the form .#g with some s.n.-function ®. However, there exist
s.n.-ideals whose norm is not of the form || - ||., with a s.n.-function ® (this is a consequence of
[Rus69a, Theorema 2]).

The next theorem addresses the question, when two s.n.-functions ®,.®, generate the same operator
ideal.

2.3.13 Theorem. We say two s.n.-functions ®1, ®o are equivalent if

( sup @4 (a)

<I’2(a)
Sup <I>2(a) < oo) N ( sup

< o0),
a€coo (I)l(a) )

holds. Let ®1, Py be two s.n.-functions. Then their associated s.n.-ideals S&,, %5, coincide if and
only if their s.n.-functions ®1, P2 are equivalent.
Furthermore, let ® be a s.n.-function. Then Fo = K(H) if and only if  is equivalent to P .
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Chapter 3

The Calkin correspondence

This chapter discusses the one-to-one correspondence between solid symmetric subspaces of
¢o and operator ideals in KC(#), called the Calkin correspondence [Cal41l]. Beginning with a
short section to introduce replication operators and to present a few basic properties of them.
The subsequent section establishes a correspondence between solid symmetric subspaces of
co and replication closed solid subcones of cé and a correspondence between operator ideals
in k(M) and replication closed solid subcones of cé. Proofs are adapted from [Gar67] w.r.t.
rearrangement operators and replication closed subcones.

3.1 Replication operator

3.1.1 Definition. Define for every natural number n operators &2, : ¢ — ¢o by

((‘@”a)j)jeN = (a(i])jeN =(ay,...,a1,a2,...,02,a3...),
n —_——— ——
n-times n-times

3.1.2 Lemma. The following statement holds.

i) Vn e N: Wncé - cé. iil) Py = ide,-
i) Vn,keN: P = Pro...0P,. iv) VHEN,CLEC$: %@na<<a.
k—times

v) an,ngeNaedj: ny <ng = Pna< Pp,a.
vi) Val,...,a¥ €co: Pr((a')* + ...+ (a¥)*) > (al + ... +d¥)*.
vii) Vnq,...,nr € Nyal,...,a" € cé : (Ele z@mai)* = Zle P.at.

Proof. Obviously, i), ii), iii), iv), v) and vii) hold.
“vi)”:  Tosee vi) let al,...,a* € ¢y be given. Note that for every natural number j € N the set

{neN| (al);—i-...—l—(ak);- <lah+...+af|}
contains at most k(j — 1) elements. We conclude

(al); +...+ (ak); >(a' 4 ...+ ak)z(j71)+1
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which leads to

(Pe((a") +...+ (ak)*))j = (al)?%] +...F (a’“)? > (a* +...+a’“);((%%1)+1 > (a' +...+d")

s

3.2 The algebraic theory

Using s-numbers one can show that operator ideals correspond bijectively to a certain class of linear
subspaces of sequences. This class can be characterised in a neat way, namely by two simple geometric
properties.

3.2.1 Definition. Let & be a linear subspace of ¢g. Then & is called
i) solid, if for all a € ¢y and b € & with |a| < |b] it holds that a € &.
ii) symmetric, if for all a € & and permutations 7 of N it holds that ar := (ar(1), Gr(2),--.) € &.
Note the following fact.
3.2.2 Lemma. A subset & of ¢ is a solid symmetric subspace of ¢y, if and only if
i) & is a linear subspace.
ii) & is solid.
ili) Vae &, €Bij(N): Zacé.

Proof.
“=7 : Trivially, i) and ii) holds. For iii) let ¢ € Bij(N) be given. If |dom¢| < co, then there exists a
permutation o of N such that 0" dom, = ¢~ Then we have

|Z,a| = %,|a| < Ryal.

On the other hand, if | dom ¢| = oo, we can find two subsets My, My C dom ¢ such that | M| = | M| = o0
and dom ¢ = M; U M5 hold. Subsequently, we find two permutations o1, 09 of N satisfying

oi1(n) ne€ M,
u(n) =
09 (Tl) n e MQ.
Then we have the following pointwise estimate for the rearranged sequence Z,a.

‘%ba| = '%L|a| = '%01|a| : ]lMl +%02|CL‘ : ]lM2 < '@Ul‘a| +%02|CL‘

Note the fact that a € & if and only if |a| € &. Due to & being solid and symmetric, we have in both
cases |#Z,a| € & and property iii) follows.
“«=” : This implication is obvious. O

The connection between solid symmetric subspaces of ¢y and ideals of compact operators is estab-
lished via a third class of objects, namely certain subcones of cé.
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3.2.3 Definition. Let G be a subcone of cé. Then G is called
i) solid, if for all a € cé and b € G with a < b it holds that a € G.
ii) replication closed, if for all @ € G and n € N it holds that &,a € G.
Note the following fact.
3.2.4 Lemma. A subset G of cé s a solid replication closed subcone of cé, if and only if
i) Va,be G: a+beg.
ii) Va€c$,begr a<b = acg.
ili) Vae G: Paaeg.

Proof.
“=» . Clearly, properties i), ii) and iii) hold.
“e=”: Let a€Gand X >0 be given. Choose n € N with n > A, then

M<na=a+...+a€g,
—_———
n-times

and hence also Aa € G. Clearly, G is solid. To see replication closedness of G, let n € N be given.
Remembering the computation rules for replication operators, cf. Lemma 3.1.2, it follows that

Va€c$: Pna < Pona = (Pyo0...0Py)a € g,
—_———
n-times
and we obtain &,a € &. O

3.2.5 Theorem. The assignment
& ENc

establishes a bijection between the set of all solid symmetric subspaces of co and the set of all solid
replication closed subcones of 03. Its inverse is given by

QH{aEcO‘a*EQ}.

Proof.

> Let & be a solid symmetric subspace of ¢y. To see that & N cé is indeed a solid replication closed

subcone of cé it is sufficient to show that &N cg satisfies 1) - iii) from Lemma 3.2.4. Properties i) and
ii) clearly hold. To prove iii) let a € &N c(% be given. Define two functions ¢1, 1o by

2n—1—n

{neN|neven} - N {neN|nodd} - N
1 L
' 2n—=n

Then, using Lemma 3.2.2, we obtain

Psa = (a1, a1,a,a2,as,...) = (a1,0,a2,0,...) + (0,a1,0,az,...) = Z,,a+Z%Z,,a.

Hence, Poa € & N ¢}
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> Let G be a solid replication closed subcone of 03, and define the set
&g ::{aEco‘a*eg}.

To see that &g is a linear subspace of ¢g, let a,b € &;. From P5(a* + b*) € G and Lemma 3.1.2 vi),
we obtain (a4 b)* € G, and thus a + b € &g. Clearly, &g is closed under scalar multiplication.

Now let a € ¢y and b € &g be arbitrary with |a| < |b|. Then a* < b* by Lemma 1.1.3 v), and since
G is solid, we obtain a¢* € G. Thus a € &g. For every zero sequence a and permutation 7 of N it holds
that (ar)* = a*, and we conclude that &g is symmetric.

> For some appropriate ¢ € Bij(N) we have a* = Z,|a| and |a| = #Z,-1a*. Invoking Lemma 3.2.2 we
know that a is an element of a solid symmetric subspace & of ¢g if and only if a* € &. From this we
see that & = ‘%’mci' The fact that G = &g N c% is clear, and we conclude that

0

E—ENcy and G &

are inverse to each other.

Therefore, the correspondence between solid symmetric subspaces of ¢y and solid replication closed
subcones of cé is bijective.

O

Coming from the side of operator ideals, we can also connect to solid replication closed cones. This
connection proceeds via s-numbers.

3.2.6 Theorem. The assignment
S = {(Sn(T))nEN | T e ,5”}

establishes a bijection between the set of all operator ideals on K(H) and the set of all solid replication
closed subcones of cé. Its inverse is given by

G {T eKH)|s(T)eg}.
Proof.
> Let . C K(H) be an operator ideal and set
G:={s(T)|T e}

To see that G is indeed a solid replication closed subcone of cé, it is sufficient to show that G satisfies

i) - iii) from Lemma 3.2.4. To show that property i) holds w.r.t. G, let a,b € G. The fact that G C cg,
and by Lemma 2.2.4 iv), the diagonal operators F,, F} w.r.t. any fixed orthonormal basis in H satisfy

s(Ey) =a, s(Ep)=0.
Therefore E,, Ep € .. Again, by computation rules of Lemma 2.2.4, we obtain
s(Eoe+ Ep) =(a+b)* =a+b,

leading us to a + b € G.
To see ii) let a € c% and b € G with a < b be given. Again, we consider diagonal operators E,, E, w.r.t
any fixed orthonormal basis in . Once more invoking Lemma 2.2.4 iv) gives us

s(E,) =a <b=s(Ep).
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Remembering Proposition 2.2.2, we conclude that E, € .¥, and therefore a € G.

To prove iii) let a € G. Define sequences a',a? € ¢y by
a' :=(a1,0,a,0,...), a*:=(0,a1,0,as,...).

and consider their diagonal operators E,1, F,2 w.r.t. any fixed orthonormal basis. Keeping in mind
that
S(Eal) = (al)* =a, S(Eaz) = (GQ)* =a,

yields E,1, B2 € . and in particular E,1 + E,2 € .. Lemma 2.2.4 gives us the final result

$(FBg + Eg2) = 8(Egiyq2) = (a' +a*)* = (a1,a1,a2,a9,...)" = Paa €G.

> Let G be a solid replication closed subcone of cé, and define
Sg={T e K(H)|s(T) €G}.

First we prove that G is indeed a linear subspace of IC(#). To this end, let A € K and T € 5. Since
G is a subcone, it follows that AT € .%g. Now let S, T € .#;. We can estimate

s(S+T) = (s1(S+T),52(5+1T),...)
= (51(S+171),0,83(S4+7T),0,...)+(0,82(S+T),0,84(S +T),...)
(51(S+1T),0,53(S+1),0,...)+ (0,51(S+T),0,s3(S+T),...)

IA

n

2.1.5 ii

2" (51(8) + 51T, 51(S) + 51(T), 85(S) + 85(T), 53(S) + 85(T), ..) = Pa(5(S) + 8(T),

which leads to S+ 71 € .75.
Now let T € /g and A, B € B(H) be arbitrary. By Theorem 2.1.3 we have

s(ATB) < [[A[l[|Blls(T).
Since G is a solid subcone of cg, we obtain AT B € .75.

> Invoking Proposition 2.2.2 we know that 7" is an element of an operator ideal . if and only if there
exists an operator S € . such that s(S) = s(T"). From this we see that .75 = .. The fact that
{T e K(H)|s(T) € 5} =G is clear, and we conclude that

y»—){(sn(T))neN|T€Y} and G S

are inverse to each other.
Therefore, the correspondence between operator ideals and solid replication closed subcones of c%
is bijective.
O

3.2.7 Remark. Putting together Theorem 3.2.5 and Theorem 3.2.5, we obtain a bijective correspon-
dence between operator ideals in C(H) and solid symmetric subspaces of cg.

This correspondence is given explicitly as follows:

i) & ={a€q | E, € &} for . ideal in K(H) and diagonal operator E w.r.t. any orthonormal
basis.

i) S :={T € K(H)|s(T) € &} for & solid symmetric subspace of .
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Chapter 4

Geometry of sequences 11

This chapter is split into 3 connected parts. The first one, analyzes specific subsets of beginning
sections w.r.t. Hardy-Littlewood majorization and characterizes their extreme points. The
second section discusses uniform Hardy-Littlewood majorization introduced by J. Kalton und
F.A. Sukochev in [KS08] and relates it to the partial orders <, < from section 1.2. In the third
section we consider extended Minkowski functionals associated with beginning sections of each
partial order <, <, <.

4.1 Beginning sections w.r.t. Hardy-Littlewood majorization

We analyze the partial order < by clarifying the structure of its beginning sections, in fact, for slightly
more general subsets.

4.1.1 Definition. For a subset B C N and an element ¢ € ¢y we set
Qf = {a € co ‘ suppa C B,a <X c}.

Then QY is nothing but the beginning section [0,c]«. To start with we collect some algebraic
properties of sets QZ.
4.1.2 Lemma. Let B CN and c € ¢.

i) Q8 =08 =qQF

C*]I‘B‘ .

ii) For each v € Bij(N) with B C domt, the operator Z,

QB s a bijection of QQ(B) onto Qf.

iii) QF is absolutely convex.

Proof.
“i)” © Since a < c if and only if a < ¢*, the equality QF = QZ holds. If | B| = oo, the assertion
08 = anw‘ trivially holds. Thus assume |B| < co. From Lemma 1.1.2 iv) we have for every natural

number N > |suppa| that a}; = 0. Hence, a < ¢* if and only if a < ¢*1p.
“ii)” :  Let ¢ € Bij(N) and a € Q4P By Lemma 1.2.7 viii) we have that

Z,a < a,
and in particular Z,a < ¢. Since

supp Z,a = 1 (suppa) C .~ (1(B)) = B,
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we obtain that the operator %, |.cs) maps QLC(B) onto QF. An analogous argumentation yields

K| os Q8 — QLB
Due to
%L—1|QB O%L|QL(B) = (%L—l O%L)

i = M, |gus = idgus),

K, QLB oK, ‘Qf = (%, O%Lfl)‘gg = My, QB — ide)
X, QLB is a bijection of Qé(B) onto Qf.
“iii)” : Let Zle Aic’ be an absolute convex combination in QF. We estimate
n k 12T V) k ‘ k n n n
2 ne)y =2 D NIE; = ) N () <Z|A|ZC >.¢
j=1 =1 j=11i=1 =1 j=1 =1 j=1 =
It follows that 2% | \i¢' € Q5. O

Our first aim is to show an important topological property of Q2. To this end we need an elementary
fact about pointwise convergent sequences. Thereby, we say that a family of zero sequences M C ¢
is equicontinuous if it has this property considered as a subset of the space C(NU {co}) of continuous
functions on the one-point compactification of N. Explicitly, this means that

Ve > 0,3ng € N,Vn > ng,Va e M :  |a,| <e.

4.1.3 Proposition. Let B C N and ¢ € cg. Then QF is a bounded subset of co and is closed in RY
w.r.t. pointwise convergence.

In particular, QCB is weakly compact in cg.

Proof. The crucial observation is that Qfﬁcg is equicontinuous. To see this, let € > 0 be given. Choose
ni € N such that ¢}, < £. Then, for all a € Q' N c(i) and n € N with

2
n > max{g Zc;,nl}
j=1

it holds that

n

n n ni
* * * € €
A S ST MRED Sl Pt SR P
j=1 j=1 j=1 j=ni1+1
Now let (a;)icr be a net in QY which converges pointwise to some a € RY. Since (25)* € Q¥ n cé, we

may apply lemma 1.1.4 ii). This shows that a € ¢y and that for each € > 0 we find ¢ € T for all N € N

with
N

N
Za; < Z:(a’);k + Ne.

j=1 j=1
The sum on the right cannot exceed Z;‘V:1 ¢j + Ne. Since € > ( was arbitrary, we conclude that a < c.

The property that suppa C B is obviously inherited from the elements a’. Thus, indeed, QZ is closed
in RN w.r.t. pointwise convergence. Clearly, ||a|ls < ||¢/oo for all a € Q.

To show weak compactness in ¢, we pass onto the bidual ¢j = ¢*°. Since w*-convergence in ¢

implies pointwise convergence, we know that QF is w*-closed in /. By the Banach-Alaoglu theorem,
it is w*-compact in the bidual and hence weakly compact in the original space cq. O
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4.1.4 Remark. By the Arzeld-Ascoli theorem the set cé N Q8 is || - [|so-compact in ¢y. The whole set
QB is certainly || - ||oo-closed and || - [|-bounded. Moreover, if B is infinite and ¢ # 0, then QZ is not
|| - ||co-compact. To see this note that each sequence

a":=(0,...,0,]|¢||l0c,0,...,0), n € B,
0
n-th place

belongs to QF. If B is infinite, this family of sequences is not equicontinuous.

For a convex subset C' of some linear space, we denote by Ext C' the set of its extreme points. For
any subset M of a linear space conv M denotes the convex hull of M.

4.1.5 Corollary. Let BCN and c € ¢g. Then

QF = convExt(QB),

where the closure is understood w.r.t. || - ||co-
Proof. The Krein-Milman theorem gives QF = conv(Ext(Q?))w. By convexity, the weak closure
coincides with the || - ||o-closure. O

To understand the geometry of Q2 it is left to determine its extreme points.
4.1.6 Theorem. Let B C N and ¢ € ¢g. Then
Ext(Q) = {a € co | suppa C B,a ~ c*1 g} (4.1)
The essential step towards the proof of this theorem is the following assertion.
4.1.7 Lemma. Let a,c € cé with a < ¢ and a # ¢, and set
. | supp a| if |suppa| > |supp ¢/,
o {|suppa| +1 if |suppal < |suppc]|.

Then
a ¢ Ext(Q2).

Proof. We start with a preliminary observation. Namely, that for all n > 1

n—1 n—1
ch:Zaj:anan (4.2)
j=1 j=1

n

n—1 n—1 n
(ch >Zaj A ch:Zaj) = Apa1 < Ay (4.3)
j=1 j=1 j=1

=1

The first implication follows immediately from a < ¢, and the second from a,+1 < ¢py1 < ¢ < ap-

Next we show that
{neN|a,+#cn} Nsuppec# 0. (4.4)

Assume the contrary, i.e. that a,, = ¢, holds for all n € suppc. For each n € N with n > |suppc¢|, it
holds that

n

n n
OSZCJ‘—ZG]‘:— Z aj.
J=1 j=1

Jj=|suppc|+1
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We conclude that a,, = 0 for all n > |suppc|, and in total that @ = ¢. This establishes (4.4).

Set
k.= min{n eN ’ Qp F cn}.

Then k € supp ¢; note here that suppc (and also suppa) are beginning sections of N. Moreover, if
k > 1, it also follows that ap < ¢x < cp_1 = ag_1.
We distinguish two cases.

1. Case: a1 =0
The implication (4.2), and the fact that c¢x # ag, yields that a; < ¢x. Moreover, for all n > k, we have

n n n
E cj—g aj:E cj —ap > cp—ag > 0.
j=1 j=1 =k

Choose € > 0 such that

C — ag ifk:L
O<e<
min {ck — Ak, Qp_1 — ak} if k>1,
and set
ot i=a+elyy, a i=a—celyy.

Our choice of € ensures that

ifk>1: ap+e<ag_1, |ak76|<ak_1,

n n
Vn>k: ch—Zaj'ch—ak—€>O,
=1 =1

n n
Vn>k: ch72|a;|zckfak75>0.
j=1 j=1

The first two relations show that (a™)* = a™, (a7)* = |a~|, and the second two relations show that
a* < c. Note that af = a,, for all n < k, and hence certainly

Vn<k: zn:cjzzn:aj
j=1 j=1

holds. We see that a® € QL™"PPI T and clearly a = £ (a* +a™), while a® # a™.
2. Case: apy1 >0

Set
m := max Lg,_, (a).

Since Z?Zl cj > Z?Zl a;, we may invoke (4.3) to obtain that

Vn € Lg,,, (a)\{m} : ch > Zaj.
j=1 j=1
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Choose € > 0 such that

n n
VE<n<m: 0<5<ch—2aj,
j=1 j=1

€< am — Gm-1,
€< Qp—1 — Qk, if k> 1,

e <ap— Gpy1, if ag41 < ag,

and set
at i=a+ elpy —elpny, a :=a—celgy +elyyy.

Our choice of € ensures that (a®)* = a™ and

n

VE<n<m: chZiaj, Vn € N\[k,m) : iaj:iaj.
Jj=1 j=1 j=1

j=1

Furthermore, (a™)* = a~ if ary1 < ax, and (a7)* = a* if ap1 = ax. We see that a™ € QLSUppa‘, and
clearly a = £ (a™ + a™), while a™ #a™. O

The converse to Lemma 4.1.7 is easy to see.

4.1.8 Lemma. Letc € cé. Then

c € Ext(QY).
In particular cl|p| € Ext(QZ) for every subset B C N.
Proof. Consider a representation of ¢ as a convex combination
cljp = A" + (1= A)?

with some A € (0,1) and ¢!, c¢? € QB. Then for each n € B,

n

Do =AY+ (1-N)>
j=1 j=1

j=1

If ¢! < ¢ and ¢ < ¢, then both sums on the right cannot exceed the value of the sum on the left. It

follows that
n n n
Vne€ B: chl :Zcf :ch,
j=1 j=1 j=1

and in total that ¢! = ¢ = clp. O
The proof of Theorem 4.1.6 is now merely a matter of reduction.

Proof (of Theorem 4.1.6). Let a € QF be given. Since QF = anw‘, we may assume w.l.o.g. that
¢ = c*1;p. According to remark 1.1.9, choose ¢ € Bij(N) such that %,|a] = a* holds, and that
t(|B]) = B if | suppa| < co.

To prove the inclusion “C” in (4.1), we distinguish two cases.
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1. Case: |suppal = |B|
Since «(| supp a|) = supp a, the linear operator %, induces a bijection of Q5"PP% onto QLSUppa‘. Thus

a € Ext(QS%PP9) & ¢* € Ext(Qlsrral),
We have|supp a| = |B| > | supp ¢|, and Lemma 4.1.7 shows that
a* # ¢ = a* ¢ Ext(Qlsupral)
Keeping in mind the trivial implication
a € Ext(QF) = a € Ext(QS"PP9),
establishes the inclusion “C” in (4.1).

2. Case: |suppa| < |B|
In this case suppa is finite, hence ¢(|B|) = B, and |suppa| + 1 < |B|. %, induces a bijection of Q2
onto Q‘CBl, which maps a to a*. Thus

a € Ext(QF) & o e BExt(QP), (4.5)
and Lemma 4.1.7 yields
a* # ¢ = a* ¢ Ext(QIsurraltly o % ¢ Ext(QIP]).
Again, we have shown the inclusion “C” in (4.1).

For the proof of “2” in (4.1), we assume that a* = ¢, and we have
a=Xa"+ (1 - \)a?

with some A € (0,1) and a',a? € QF. Let ¢ € {—1,1}" such that |a| = M¢a = ((n@n)nen. Then for
appropriate ¢ € Bij(N) we have a* = (%, o M¢)a. Then

a* = X%, (Mca') + (1= \) - Z,(Mca?),

By Lemma 4.1.8 we have a* is an extreme point of Q2. Since QF = QI and obviously %, (Mca'), #,(M:a?) €
QN we obtain
R,(Mca') = #,(Mca?) = a*.

Applying M o Z,-1 and remembering that ran¢ 2 supp a, yields
alllsuppa = a2]lsuppa = a.

Moreover, a',a? < a. Invoking Lemma 1.2.7 vii) leads to a' = a? = a. We see that also in this case

a € Ext Q5. O
An important particular case occurs under a finiteness assumption.

4.1.9 Corollary. Let B C N be finite and let ¢ € co. Then each element a € QF can be written as a

convex combination of |B| 4+ 1 elements b',. .., bIBI+1 with
W ~c*lip, je{1,....|B+1}.
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Proof. The set of all a € ¢y which are supported in B and satisfy a ~ ¢*1p| is finite. Therefore, its
convex hull is compact. Corollary 4.1.5 yields

QF = conv{a € co | suppa C B,a ~ c¢"1p}.

We may consider QF as a subset of the finite dimensional space RIZl. Carathéodory’s theorem (see
for example [Roc70, Theorem 17.1]) yields the assertion. O

4.1.10 Remark. 1t is interesting to observe that the extreme points of
Qlc\l = [07 C]<<
already belong to a much smaller set. Namely, we have [0, c]< C [0, ¢]«, and obviously

Ext[0,c]« C [0,¢]|<.

4.2 Uniform Hardy-Littlewood majorization

The quasi order < is, by its definition as a pushforward with the operator (.)*, compatible with (.)*.
A big backdraw is that it is not compatible with sums. Hardy-Littlewood majorization < is a quasi
order containing < which is compatible with (.)* (just by its definition) and compatible with sums in
the sense of Lemma 1.2.7 v). But, for certain purposes, < is too large.

The relation of uniform Hardy-Littlewood majorization introduced below is a quasi order which
lies in between < and < and has both compatibilities. This quasi order is of much more complex
nature than Hardy-Littlewood majorization.

4.2.1 Definition. Let A € N. For a,b € ¢y we denote

adyb = VneNreNu{o}: > ar< ) b (4.6)
Fj=Ar+1 j=r+1

The union over all relations <1 is called uniform Hardy-Littlewood majorization, and is denoted by
<. Explicitly,
a<db & dANeN: adyb

Some facts and computation rules for <) and < are:
4.2.2 Lemma. The previously defined relations are related among each other as

= —kK =

c <. (4.7)

= =

The following statements holds.

1

VAe N, Va,becy,5>0: adyb < Ba <y pb.

iii) Va,b,c€co: (a <y, bAL Dy, ¢) = a <y, ., C

)
i) VAeN,Va,becy: a<xb = |suppa| < A|suppb|.
)
iv)

< is a quasi order.
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Proof. i) — iv) are all trivial.
It is easy to see that all inclusions in (4.7) are strict. For k € N with k > 2 consider sequences

1 1 111
k [e%S)
=(=,..., = =(=,—-=,... b:=(1
a (k7 7k70307 )7 a (2’4787 ), ( ’O’O’ )
—_——
k-times
Obviously, a* £ b for every k € N. Furthermore, a* <y b, a® < b but a* €;_1 b and a*> € b. O

Our goal is to show that < is indeed compatible with sums. To achieve this, we need a preparatory
lemma.

4.2.3 Lemma. Let a € ¢g. Then

VneN,reNy: Z a; LGHB13X) Fg(lilol}m (%Ja\)j. (4.8)
j=r+1 | dom ¢|= n|F| n—rJ€F

In particular, the maximum is attained, in fact for 1 = /»z|n, where k € Bij(N) gives the nonincreasing
rearrangement of a.

Proof.
“<” : Let a €cyand n € N,r € Ng. Furthermore, let x € Bij(N) such that %,|a| = a*. Then

n
max min (%’L|a|) . > min E (%,Ja\) .= min E a;- = E a;.
1€Bij(N) FCdom. J FCn “4 J FCn <4 )

| dom ¢|=n |F|=n—rJEF |F|=n—rJ€F |F|=n—rJ€F j=r+1

“>” . Let a € ¢y, n € N7 € Ny and ¢ € Bij(N) be arbitrary with dom¢ = n. Let G, C n with
|G| = n — r such that
Vie G, ien\G,: (%L|a|)j < (Z.|al),.

By Lemma 1.1.7 iii) we obtain

n—r n—r n
O

4.2.4 Proposition. Let a',...,a" € ¢y, then
a4+ ... +d" g (ah) + .+ (dF) (4.9)

Proof. Let n € N,r € Ny, a',...,a" € ¢y and ¢+ € Bij(N) with |dom (| = n. For each i € {1,...,k}
consider subsets G¢ C dom: with |G?| = r such that

Z(%|a| = max Z #,|a’|)

JEG! \F| » JEF

holds. Then choose a set F, with |F,| = n — kr satisfying

F, C (domu) U Gl
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Using the identity (4.8) yields the desired result:

E (a'+...+a); = max min g (Z.)a* +...+d"|),
. t€Bij(N) FCdom¢ J
j=kr+1 | dom t|=n |F|=n—Fkr JEF

< max Z (%L|al+...+

1€BIj(N)

< o, DX ()

| dom ¢|= njeF | dom ¢|= n =1 JEF.
k n—r
< maic) E E (e@b|a’|)j <  max E E (%,a")
1€Bij(N L€BIj(N)
| dom ¢|= n =1 jedom \Gi | dom ¢|= n =1 7=l

To better illustrate the nature of <, we give another — more involved — example that < # <.

4.2.5 Example. Consider the sequences

1 1 1 1 1 1 1

. . _ n—1
ai=Grgig) b=l g )= @ e

Obviously, a < b. To show that a 9 b holds, we consider \,7,n € N with 2 < XA <r and 0 < M\ < n.
We estimate

n n 1 1 n 1oig n 1. i1 T 1 1 1— (L)n 1— (%)r
Z b= Z (o) = Z () :Z(?)J Z(2T)J 1L oI
Jj=r+1 j=r+1 j=r+1 j=1 j=1 27 Pis

1 1 1 1 1
== (Gr—aw) S g <

or

The last inequality holds due to 2 < A < r. On the other hand, consider the estimates

. G A 1 1 1 1
Z @ = Z 2 2 = 2)\r+1 B 2n+1) ~ o (1- 2717)\7") = AT+1
J=Ar+1 J=0 J=0

Hence, 775, a; > > 7_, b and therefore a £ b.

4.3 Minkowski functionals related to uniform Hardy-Littlewood
majorization

After having clarified the structure of beginning sections w.r.t. Hardy-Littlewood majorization, we
investigate the beginning sections w.r.t. < and <. To start with note the following facts.

4.3.1 Lemma. Let c € ¢g. The sets [0,c]« and conv(0,c]< are absolutely convex. We have

[O,C]<< 2 [O,C]ﬂ 2 COHV[O’C]< (410)
and
[0,c]< = [0, c]a = conv|0, | <. (4.11)
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Proof. The set conv[0, c|]< is by definition convex, and by the computation rules Lemma 1.2.2 it is
invariant under multiplication with scalars from [—1, 1].
To see that [0, ¢]« is absolutely convex, consider an element of the form 25:1 A;¢? with some ¢/ < ¢

and 2?21 |A;| < 1. Choose A € N such that ¢/ < ¢ holds for all j € {1,...,k}. Then

n k . (4.9 n k n )
SRRSO WINEIED SOV R e
J=(kN)r+1  i=1 F=Ar+1 i=1 J=Ar41
Z|)\| Z c; < Z c;
Jj=r+1 j=r+1

The inclusions “O” in (4.10) certainly hold, and we need to give examples that they are strict. To see

[0,c]< # [0, c]«, consider
11
a: (5 8 s
Then a < ¢ holds, but a < ¢ is false (if » > 2, the sum on the right hand side in (4.6) is zero). To see
that [0, ¢]« # conv[0, ¢]<, Let ¢ € Co be a sequence with ¢; > ¢j41 > 0 with satisfies the condition

= (1,0,0,...). (4.12)

2k _1

E Cj > Cok—141,

—9k—1

for each £ € N. Now define a sequence a € Co by

1 2k_1
Ay = oh 1 Z cj, for okl < < 9F,
j:2k—1

Obviously, a < b. Furthermore, we have for each k € N that

2 (4.13)

From the above equality, we can easily deduce a <y ¢. Let r,n € N. Choose k € N with 2¢F~1 < 2 < 2%,
Then, using the fact that  + 1 < 2¥~! we can estimate

2k 1_1 2k—1_1

z”: aj:Zaj—i:ajgzn:cj Z ch Z cj = z": c; < z”: Cj.

Jj=2r+1 Jj=1 j=1 Jj=1 Jj=1 Jj=1 j=2k-1 j=r+1

This shows indeed that a <3 ¢. To see that a ¢ conv|0,c|, assume the contrary, i.e. a can be
represented as a convex combination in [0, c]<, say a = Zjvzl Ajc?. Due to ¢ < ¢, we can find

t; € Bij(N), such that |¢/| < %,c. Hence, we have a < Zjvzl Aj - Z,c. Since Z,c < ¢, and using the
equality (4.13) yields

bt
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Due to ¢ being strictly decreasing, each ¢; leaves [2¢—1 2F — 1] NN invariant. Choose any k € N such
that N < 25~1. Then there exists Iy € [2¢71,2F — 1NN such that ¢;(lp) # 2871, for all j € {1,...,N}.
Hence, we conclude

N N
ai, S Z}\J . (,@Lc)lo S Z)\jCQk—lJrl < Ay,
j=1 j=1
and therefore a ¢ conv|0, ] <.
To see (4.11), it is enough to recall Corollary 4.1.5 and Remark 4.1.10. O

We consider the (extended) Minkowski functionals associated with the various beginning sections,
namely

la|* ==inf{p>0]aecpu-0,d<}, laf =inf{p>0]|acpu-[0,da},

la|S* :=inf{p>0]acpn-[0,da,}, la|f:=inf{u>0 | a € p-conv(0,c]<}.

These maps are defined on ¢y and take values in [0,00]. Due to the above lemma, |a|¥,|a|2, |a| are
(extended) seminorms.

We use the convex hull of [0,c]< in the definition of |a|; to enforce validity of the triangular
inequality. This is not needed for |a|Z*, for this Minkowski functional it is enough to know |ya|» =
v - |a|Z> for all a € ¢y and v > 0, which holds just by the definition.

From (4.10) we obtain that

Ve,a€co: alf <lal2 <lalf. (4.14)

The first of these inequalities may be strict. For example, the sequences (4.12) satisfy |a|X = 1 and
a3 = co.

Our aim in this section is to prove the crucial and somewhat surprising fact that in the second
inequality in (4.14) always equality holds.

4.3.2 Theorem. Let c € c¢g. Then
Vacco: a2 =alF.

The actual proof of this theorem is slightly technical. Before going into the details, we present an
outline.

Outline of the argument

We are going to show the following result, from which Theorem 4.3.2 can be deduced easily.

4.3.3 Proposition. Let a,c € cé with a < ¢. Then, for all positive integers N > 2 there exist
01,00 >0, and b, ..., bN € cg, such that

i) a € conv{b!,..., bV},

ii) for all k € {1,...,N} and v > 0, the element vb* can be written as a sum of at most ¥5; + Ja
elements of [0,c|<.

The infimum of all possible choices of 01 is equal to 1.

The idea how to prove this proposition is to proceed as follows.
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e Split the sequence a into sections with finite length along a geometric progression with some base
r € N, r > 2 (to illustrate this we draw on a logarithmic scale)

logn
log r

e Truncate a by dropping whole sections along — in the logarithmic scale — arithmetic progressions
with some step width N € N, N > 2 (in the picture N = 4)

0 1 2 3 4 5 6 7 8 9 10 11 12
1 . I 1 1 ] I 1 1 ] I 1 1 ]
a : | f T T 1 f T T 1 f T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12
a® A f } } i f } } i f } i

|

Formally, we set
Iy o= N (PR pEONTR=1 0 e (1 NV e {-1,0,1,2,...},

and

a* :za-(i 11%), ke{l,...,N).

I=—1
Then a can be recovered from the truncated sequences a',...,a" as
1 N
k
a=——-" a”. 4.15
N1 (415)

e Prove estimates for truncated sequences a*, and deduce estimates for a of the form required in
Proposition 4.3.3 with some d1, do depending on r and N.

e Let the parameters » and N tend to infinity to push d; towards 1.
The technical core is the third step. In order to work it out efficiently we introduce a notation.

4.3.4 Definition. For a,c € ¢y we denote
[a]c :=inf {n € N| 3t e0,ds: a= ZCJ}
j=1

The following four lemmata are then the essential ingredients. The first one shows that for finitely
supported sequences the number [a]  can be controlled in terms of Hardy-Littlewood majorization.
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4.3.5 Lemma. Let a,c € cé, Then
la], <a|* + |suppal + 1. (4.16)

Let in addition r € N, and recall that T denotes the left shift operator which shifts r times, cf. (1.4).
Then

su a
[77a], < |al$.. + ‘271“ +1. (4.17)

The second lemma exhibits the role of uniform Hardy-Littlewood majorization.

4.3.6 Lemma. Letr € N, A€ N, and a,c € cé with a <y c¢. Then

-1
TMa<(1+\A—=1r)- T"c and  VYmeN,m>A\: 9mra<<:_)\'yrc.

From this we obtain an estimate for sections of sequences.
4.3.7 Lemma. Let a,c € cg, let r be a positive odd integer, and let A € N with 2\ + 1 < r. Then

r—3

k+1 .
Vk,n € N,rk™ < W“M“M&mmﬂgifﬁfiﬁ

n
-Ja|2A +E L

Finally, we need a tool to glue together estimates for separate sections.

4.3.8 Lemma. Let ¢ € ¢y and let {Bi ‘ i€ I} be a partition of N. Then

Va € ¢g : [a}c < sup [a]lBi]

1g.
i€l B

Proof details

We start with some computation rules for Minkowski functionals and the function (a,c) — [a] ..

4.3.9 Lemma. The four functions (a,c) — |a|¥,]alF,]a|Z, [a], depend only on the nonincreasing
rearrangements of a and c, are monotone in a, and anti-monotone in c.
Written in detail, the following statements hold.

D) Va,ceco: alf =a"|%, [af = a*|3, ol = la"|Z, [a], = [a"]...
i) Va',a®,c€cp:  a' < a® = |a|F < |a?|F,
al Da? = |al[F <]a?F,
ol <= (Ja1F < a2 A )], < [],)-
iii) Va,c',c* €co: <= alf > alZ,
' 4= al2 > al2,

<= (|a\j1 > lalg A [a], > [a]cz).

Proof. The fact that each of the four functions depends only on ¢* and is anti-monotone in the argument
c is clear. Moreover, it is clear that the Minkowski functionals related with < and < depend only on
a* and are montone in the argument a.
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The crucial observation to prove the remaining assertions, is that (recall that M. denotes the
multiplication operator with ()

nv[0, c]<,

Ve € Bij(N) : £, (conv[0,c]<) C co
<) C convl0, d<. (4.18)

v¢e -1, 1N M¢(conv(0,c]

Note here that the operators %, and M, are linear.
Each of the elements a and a* can be written as some appropriate operator %, o M applied to the
respective other element, and we obtain

a € conv]0,c]<x < a* € conv|0, c|<

from which |a|F = |a*|] follows. Again using that the operators %, and M, are linear, we also see
that [a}c = [a*}c.
Finally, we turn to the remaining monotonicity properties. By what we have shown so far, we may

assume w.l.o.g. that a',a? € cg. Then a! > 0 and the premise “gl < a?” means that a! < a?. Set

G m {ggzg; i @) >0
J o

0 otherwise,

then a* = Mca?. Yet another time referring to linearity and (4.18), we find that |a'|F < |a?|7 and

], < (@], 5
(& C

Proof (of Lemma 4.5.5). If one of |a|¥ and |suppa| is infinite, there is nothing to prove. Hence,

assume that |a|¥ < oo and |suppa| < co. Let p > |a|¥. Then 2 a € QPP and by Corollary 4.1.9

ia can be represented as a convex combination with at most |supp al + 1 summands, say

| supp a|+1
1 j
—a = E Aja
1Y =

with \; € [0,1], Z‘ supp al+1 Aj =1, and @/ ~ ¢*1|guppql- Thus we have the representation

[supp al+1 [pA;] | supp a|+1

a= Z Z a’ + Z (kAj = [uA;])a’

Clearly, each of the summands in this representation belongs to [0, ¢|<. The number of summands is

| supp a|+1 | supp al+1
S Led)+lsuppal 1< Y7 pd;+[suppal + 1=+ |suppal + 1.
j=1 j=1

Since p > |a|¥ was arbitrary, the estimate (4.16) follows.

The second assertion (4.17) is reduced to the readily shown estimate (4.16). This is done by using
smashed and replicated sequences instead of shifted ones. In this place recall the replication operator
2, from Definition 3.1.1.

We start with a general observation. Let r € N, b € cé, and define y; := bjr41, 7 € N. For every

j € N we have
1 1 1 1 .
e el R bl R
r r r r r
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Since b is nonincreasing, it follows that
bj+r = b(%+1)r+1 < b([%]-i-l)r-i-l < b%r-s-l = bja
—_———
THriy

and this says that
T"b < Py < b.

Let us illustrate what happens here (in the picture for r = 3):

1751 12 M3

bs be bg by b1y b12

Prt: ba ba ba b7 b7 b7 b1o bio bio bis big b1

b: b1 b2

=l
w

y'ra: b4 b5 bG b7 bg bg b10 b11 b12 b13 b14 b15

Now we set &; := ajr4+1 and 7; := ¢jr41, and use our computation rules and (4.16) to estimate

(4.16)
(77a], < [20€] 5, < €], < L5+ [suppé| +1
<| 2[5, + Isupp €| + 1 < [al5. .+ [supp&| + 1.

Finally, observe that |supp&| < m (again, since a is nonincreasing). O

Proof (of Lemma 4.3.6). We start with estimating .7*"a by 7 "c.

n n+Ar a<y n+Ar r+n Ar+n
A d
ST SRS SR S S
j=1 j=14+Ar j=14r j=14r j=r+n+1
r+n n
A—1D)r A—Dr
<Y G+ AT < (1+!) (7,
fl L L=
SZ] 1+r

The factor in front of the sum is nonincreasing in n, and its maximal value is 1+ (A — 1)r. This shows
that 72a < (14+ (A —1)r) - I7c.
Now let m > X be given. Consider the set

M = {n EN| i(?’\ra)j > ::i -zn:(f’“c)j}.

j=1 =1

.

For n > (m — A)r, we have =1 > 1+ (/\;Ll)T, and hence M C [1,(m — A)r). Clearly,

m

n

vneN\M: Y (T™a); <3 (V) m:i.z(y%)j.

j=1 j=1 j=1

3

I = (), we already obtain the asserted relation 7™ a < ﬁ—:i - ITe. Assume that M # (), and set
k :=max M. Then k < (m — A)r, and we can estimate for all n € N (we need the estimate actually
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only for n € M)

n n n+k
Y (Tma); < (TN Fa); = > (TN,
j=1 j=1 j=1+k
n+k k m—1 n—+k m—1 k
= (9MG)J - Z(g)@a)J < m—\ (77c)j — m— \ -Z(ﬂrc)]
Jj=1 Jj=1 j=1 Jj=1
m—1 &L - m—1 < -
T Z(yc)jﬁm_)\‘ (T7c);-
j=1+k Jj=1

O

Proof (of Lemma 4.3.7). If |a]3* = oo, there is nothing to prove. Hence, assume that |a|Z* < co. Let
p > 0 be such that a <) pc. Then also alfy ,,) Iy pelyy ). Next observe that

(aﬂ(rml’n])* = yrk+1 (a]l(rkﬂ’n]) = 9’”
(L) =T (i) = T (L )-

k41
(alpn),

Now we can estimate

ok (4.17) (=1 ok < n
[a]l(rk*—l’n]](ﬂl(rkm] = [9 (aﬂ[l,n])] gk (011[1,74) < ‘y 2 (a]l[l,n])|g2rk (eLirm) + Tilc +1
4.3.6 rgl —1 n r— n
- %—)\M+rk+ Sr—(1+2)\)u+77€+1'

The proof of the glueing lemma 4.3.8, is based on the following algebraic fact.

4.3.10 Lemma. Let {AZ- | i€ 1}7 {Bi ’ i€ I} C P(N) be two partitions of N. Then, for all a € RY
and b € ¢y, we have
(Viel: aly, <blp) = (a€co A a=<b). (4.19)

Proof. By Lemma 1.1.2 the premise means that
V6 >0,Viel: |Lss(ala,)|<|Lss(blp,)|.

Now note that, for each o > 0,

La(a) = | JLa(al ),

iel

where U denotes a disjoint union. Therefore we have

Las(a) = | J[Loslata,)].

iel
From this, and analogous equality for b, we find
V6> 0: [Lss(a)] <|Lss(b)],

and this means that a* < b*. O
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Proof (of Lemma /.3.8). If the right side is infinite, there is nothing to prove. Assume that

N :=sup [alp,]
i€l

clp, < 09,

N s
., ¢, Define

and choose ¢/ € [0,clp,]<,i€1,j € {1,...,N}7 such that alp, = ZJ

=) Mg eRY,  je{l,...,N}
iel
Note here that the sets B; are pairwise disjoint, and hence at each coordinate there is at most one
nonzero summand in this sum.

We have
Viel: C]]].Bi:CZJ]lBi-<CZ’J-<C]lBi7

and Lemma 4.3.10 implies that ¢/ < ¢. Obviously,

N N N
azZa]lBi :ZZCMHB,- =ZZci’j]lBi =ch,
j=1

iel i€l j=1 j=1iel
and we see that [a}c < N. O
Proof (of Proposition 4.3.3). Let a,c € cé with a < ¢, and choose A € N such that a <) c.
For each N > 2, r > 2\ + 1, and k € {1,...,N}, we consider the partition of N given by the

intervals
By =N (PN HEL pUEDNFR=1 0 e 110,12, ).

Then ak]lBk}l =aly,,. Let v > 0. For I > 0 we can estimate

4.3.7 r—3 ,r(H-l)N-i-k—l
k - 4
[’ya ]lBk’JC]lBk,L n [’ya]llk’l]C]lBk,z oor— (2/\ + 1) ' |'7a|c s piN+k-1 +1
r—3 N
<. 1.
e s R
For | = —1 we proceed as follows. We have By ;1 = [1,78=1], and a’“]l[lm] < al ) for all n, and

a < ¢ which yields al; ,) < cl[y ) for all n. Thus,

(4.16)
k < E—1 N-1
[’Ya ]1[177&_1]}61[[1‘1&,1] < I:fya]l[l,rk_lﬂcn[lmk71] < |7a1[1,r’“_1]|c]1[1mk,1] +r +1 < v +r + 1
Lemma 4.3.8 implies that
k r—3 N
< . 1.
L e ) A

Now remember the representation (4.15), which can be written in the form of a convex combination
N
a= — . —a".
pIRPRS

Set b* := 2= a”. Then a € conv{b!,...,b"}, and for all v > 0

r—3

W = [y—— - af] <. Ni1).
e=by—- s oyt Y
::52(7’,]\7)
=:51(r,N)
Obviously, lim, y—ye0 01(r, N) = 1. O
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It remains to deduce Theorem 4.3.2 from Proposition 4.3.3.

Proof (of Theorem 4.3.2). Let a,c € cg. Without loss of generality we may assume that a,c € cé.

We know that |a|S < |a|F. To prove the reverse inequality, let a € ¢y with |a| < oo be given. If
la|2 = 0, then a = 0 and hence also |a|F = 0. We may therefore assume that |a| # 0.

Let € > 0. We have a

— 5 Jec
(1+6)al&

Choose, according to Proposition 4.3.3 applied with @, data §; < 1+4¢, 63 >0, N > 2, and b',...,b",
with the properties stated in the proposition.
Let v >0 and k € {1,...,N}. Then we can write

m
2.
=1

with some ¢! € [0,¢]x and m < 76, + 62. This shows that

bt =

8
BH5 < b1+
v
and therefore also |a|} < &1 + 572. Since 7 was arbitrary, it follows that |a|; < 6; < 1+ €. From this,

we find
la|X < (1+ e)2|a|§,

and since € was arbitrary, it follows that |a|X < |alZ. O
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Chapter 5

Operator ideals vs. sequence spaces

In the first section of this chapter, we proof specific lemmata and theorems, from [KS08, section
8] for compact operators, which are needed to proof that every symmetric Banach sequence
space gives rise to a s.n.-ideal. The second section establishes the Calkin correspondence
between symmetric Banach sequence spaces and s.n.-ideals.

5.1 Uniform Hardy-Littlewood majorization of s-numbers of
a sum

In this section we prove the following theorem, which gives a triangular inequality for s-numbers.

5.1.1 Theorem. Let k € N and Ty, ..., T, € K(H). Then
S(T1+...+Tk) < 5(T1)+...+S(Tk). (51)

In fact, we have more generally

k n n
Voi,...,06>0,) o <1VneNreNU{0}: > si(Ti+...+Te) <>, > si(Th). (5.2)
i=1 Jj=r+1 i=1 j=|a;r]+1

Note that (5.2) implies (5.1) by using o; := 1.

We prove the theorem first for positive operators (this is a discrete version of [KS08, Lemma 8.5]).
The proof is based on a lemma similar to Wielandt [Wie55, Theorem 1] which helps us to understand
the sums on the right-hand side of (5.2).

Recall the notion of the trace of an operator: For a compact operator 7' € K(H) with 72 s;(T) <

00, and an arbitrary orthonormal basis {ei | 1€ N} of H, the sum Z;L(Tej, e;) is finite and does not
depend on the choice of the orthonormal basis. We denote

trT = Z(Tej, ;)
j=1

and this number is the trace of T. Note that, for an orthogonal projection @ € B(#H), the trace of Q
equals the dimension of ran Q.
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5.1.2 Lemma. Let T € K(H) be positive with Schmidt representation T = 3772 s;(T)(., ¢;)¢; and
denote by P, the orthogonal projection with range span {qﬁl, ey qbn}. Then

n

Z s;(T) = min { tr QTQ | Q orthogonal projection,Q < P, trQ =n — r}. (5.3)
Jj=r+1
The minimum is attained for Q@ being the orthogonal projection onto span {¢r+1, ey d)n}.

Proof.
“>” . Let @ be the orthogonal projection onto span {QSTH, ceey ¢n}. Then tr Q = n — r, and since
the trace is independent of the choice of and orthonormal basis, we may evaluate

rQTQ = (QTQe;,6;) = Y (Tej ;) = > 5;(T).
j=1 j=r+1 j=r+1

“<” : Let r € Ny be arbitrary but fixed. We proceed by induction on n.

Let n =7+ 1, and let @ be an orthogonal projection with Q < P, and tr@Q = 1. Then ran @ is a
one-dimensional subspace of ran P,,, and thus () admits the representation

Q = <a€>§7

with some £ € ran P,, ||¢|| = 1. Therefore we get

n

trQTQ = (TE, &) = Z<T5 (€ b)) = > si(ME ) > 50(T) D (€. 0)> = su(T).  (5.4)
i=1

i=1

Hence “<” in (5.3) holds for n = r + 1.

Now let n > r+1 and assume “<” in (5.3) holds for n. Let @ < P,,+1 be an orthogonal projection
withtrQ=n+1—r.

1. Case: Q <P,
Let F < @ < P, be an arbitrary orthogonal projection with tr E = n —r. By the induction hypothesis
we estimate

I.H U
trQTQ =tr ETE +tx(Q - E)T(Q— E) > Y s;(T)+tx(Q — E)T(Q — E).

Jj=r+1

Note that (Q — E) < P,41 is an orthogonal projection with a one-dimensional range. The same
argument as in (5.4) yields

tr(Q = EYT(Q = E) = s (T).

2. Case: Q £ P,
Let E be the orthogonal projection onto the subspace ran @ Nran P,. Due to Q £ P,, the dimension
of the subspace ran @) 4+ ran P, equals n + 1. Using the dimension formula we obtain

dim(ran @ Nran P,,) = dimran Q + dimran P, —dim(ran @ +ran P,) =n — r.
—_———

n+l—r n n+1
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The same argument as in Case 1 yields

n+1
trQTQ > Z 5;(T).
j=r+1
O
Proof (of Theorem 5.1.1 for T; positive). Assume that T7, ..., Ty are positive compact operators, and

that ag,...,qr > 0 satisfy Zle a; < 1. Moreover let n € N;r € NU {0} and assume w.l.o.g. that
0 <7 < n. The operator T; + ...+ T} is again positive, and its Schmidt representation thus reads as

Jj=1

with some orthonormal system {¢j ’ jE€ N}. Let E be the orthogonal projection onto span {¢1, cee ¢>n},
ie. .
j=1

Since (ran E, || - || |ranE> is itself a Hilbert space and ET;E|
we obtain the representations

€ K(ran E), for every i € {1,...,k},

ran E

ET,E =Y s;(ETE){(.,¢])¢;', i€ {l,... Kk},

Jj=1

for some orthonormal bases {%Tz je{L,..., n}} of the subspace ran E. Let E7, denote the orthogonal

projection onto the subspace span {(blTi, e (b{éirj }, fori e {1, e k:} Note that these subspaces equal
the zero space if |«;r| = 0. Then the equations

Vie{l,...,lor]}:  s;(ETiE) = s;(En,T;Er,),

, (5.5)
Vie{l,...,n—|asr]}: s (ETE) =s;((E — Er,)T(E — Er,)),

hold for i € {1,...,k}. Since
k k

ZLO&L’I"J < Zair < T,

=1 i=1

we can find an orthogonal projection F' with tr F' = r satisfying

{o7°

ie{l,...;k},je{l,....[ar]}} CranF CranE.
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Using Lemma 5.1.2 we get

n 5.1.2 k
> si(Tit...+Tp) < (E-F)(Ti+...+ T)(E~F) =Y tr(E~F)Ti(E - F)
j=r+1 i=1
k k n—|a;r]
< > w(E-Ep)T(E-Ep)=)Y s;j((E — Er,)T;(E — Er,))
i=1 i=1 j=1
5.5) k n—|a;r] k n
=3 Sivlan (BELE) =Y > s;(ELE)
i=1 j=1 =1 j=|a;r]+1
213 F n
< Z s;(13)

O

We give a few auxiliary lemmata which allow to reduce the general case to the readily settled one.
Before we present these statements, let us clarify notation.

For T € B(H) we denote Re(T') := T'ET* and |T| = (T*T)=. Since Re(T) self-adjoint, there exists
a spectral measure F with

Re(T) = / tAE (). (5.6)
a(Re(T))
We define
Re(7) i= Re(T)E(0.0¢)) = [ tLigo(O1AE(®)
o(Re(T))

and call it the positive part of Re(T'). Note that
Re(T) s = E([0, 50)) Re(T) E([0, 50)).
The polar decomposition an operator T' € B(H) is the representation
T =UIT|,

where |T| = (T*T)2 and U is a partial isometry (see for example [GGK90, Theorem 6.3]). Recall the

property
UruiT| =0T =1|T).

The following two lemmata are particular cases of Kosaki [Kos84, Lemma 4, Corollary 5].
5.1.3 Lemma. Let T € B(H). Then there exists a partial isometry U € B(H) with
Re(T);+ < U|T|U*.

Proof. Let T € B(H), and write E for the orthogonal projection E([0,00)) from (5.6). The polar
decomposition provides a partial isometry V such that 7= V|T'| . Now define

A= %E(I +V),

and consider the polar decomposition A|T|z = U’A\Tﬁ |. Since

(A" Az, z) < ||z]|* = (Iz, 2),
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the inequality A*A < I holds. Using
A|T|A* = U|AIT|3|*U* = U(|T|? A*A|T|?)U* < U|T|U*,
leads to the desired result:
UIT|U* — Re(T), = UT|U* — %E(V\T| +ITIVIE > A|T|A" %E(V|T\ TV E

1 1
= JEI+ VT +V*)E = SE(VIT| +|T|V)E

- iE[(I V)T + V) — 2VIT| — 2T|V*]E = iE[(I V)T - V)E

> 0.

O

5.1.4 Lemma. Letk € N and Ty,..., Ty € B(H). Then there exist partial isometries Uy, ..., U, W €

B(H) such that
k

T+ 4 Th| <> UW T U™
=1

Proof. Let Ty,..., Ty € B(H), and choose a partial isometry W € B(H) with
Th+...+ T, =W|Ty + ...+ Tkl

Then we obtain

|T1 ++Tk| = Re\Tl + ... +Tk‘ = RG(W*Tl ++W*Tk) = RG(W*Tl) + ... +R6(W*Tk)

< Re(W*Tl)_,_ + ...+ RQ(W*Tk)+.

From Lemma 5.1.3 we know that there exist partial isometries Uy, ..., U, € B(H) such that

Re(W*T’Z)+ §U1|W*E|U2*, (S {]—a"'vk},
and this completes the proof.

Now we gathered the necessary tools to prove Theorem 5.1.1.

Proof (of Theorem 5.1.1). Let Th,..., T € K(H) and n € N,r € NU {0} such that 0 < r < n.
Moreover, let Uy, ..., U, and W be partial isometries as in Lemma 5.1.4. Using the readily proven fact

that (5.2) holds for positive operators, we can estimate

514&
n 2.1.91) & 21.91) & : P
SoosiTit . +Te) = 7 ) s+ +T) < > s (D UIWT|U")
j=r+1 j=r+1 j=r+1 =1

n

(52) Kk = L 213 .
< Y N sjwwrmus) T<5 YT Y s wrny)

i=1 j=|a;r]+1 =1 j=[a;r]+1
k n
<D > sl
i=1j=|a;r|+1
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5.2 Symmetric Banach sequence spaces

We saw in Section 3.2 that operator ideals in () correspond bijectively to solid symmetric subspaces
of ¢y, namely via the Calkin correspondence

& S ={T € K(H) | s(T) e &} for & solid symmetric subspace. (5.7)

The question arises which solid symmetric subspaces correspond to symmetrically normed ideals. This
question is much more involved than the algebraic theory, and was answered only recently in [KKS08].

5.2.1 Definition. Let & be a linear subspace of ¢y endowed with a norm || - ||¢. Then & is called a
symmetric Banach sequence space if

i) & is a solid symmetric subspace of cy.

il) (&, - |le) is a Banach space.

)
)
iii) for all a € ¢y and b € & with |a| < |b| it holds that |lalle < [|b]|s-
iv) for all a € & it holds that |a*||e = ||ale-

) 11(1,0,0,...)|l¢ = 1.

Our aim in this section is to prove that in the Calkin correspondence symmetric Banach sequence
spaces correspond to symmetrically normed ideals. Recall here that E, denotes the diagonal operator
with eigenvalues a w.r.t. some orthonormal basis.

5.2.2 Theorem. The following two statements hold.

i) Given a symmetrically normed ideal (&, || - ||.#), define
lalley = Ealls  for a€ &y
Then (&, || - le,) is a symmetric Banach sequence space.
il) Given a symmetric Banach sequence space (&, || - ||l&), define
1T == lls(T)lle  for T € Fs. (5.8)
Then (Zg, || - |.#.) is a symmetrically normed ideal.

The fact that every symmetrically normed ideal gives rise to a symmetric Banach sequence space
is seen in a straightforward way.

Proof (of Theorem 5.2.2, first item). Assume (.7, |-||.») is a symmetrically normed ideal, and consider
the associated sequence space &y = {a € ¢o | E, ¢ ¥ }, where F, is the diagonal operator of a
sequence a w.r.t. to an orthonormal basis B of . In Section 3.2 we elaborated the fact that & is a
solid symmetric subspace of ¢y. Since norms on a symmetric Banach sequence spaces solely depend on
the nonincreasing rearrangement of a sequence, it is somewhat natural to define a functional on &
by |lalle, = ||Eull>, as the right side only depends on s(E,) = a*. That || - ||, is a norm is easy
to see and follows from the fact that || - ||.» is a norm and using computation rules of Lemma 2.2.4.
In fact £ endowed with || - ||¢,, is a symmetric Banach sequence space. That & satisfies iv) and v)
from Definition 5.2.1 is obvious. To see that iii) holds for &, let a € ¢y, b € &5 with |a|] < |b|. This
implies that a* < b* holds. By Proposition 2.2.2, we have

lalls, = |Eulls < [|Ebll.e = [Iblls,, -
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To see completeness of &, let (a™),en be a Cauchy sequence in &». Then (Eyn)pen is a Cauchy
sequence in .. It is here to be mentioned that every symmetric norm on an operator ideal is stronger
than the operator norm. This follows from

1T} = 51(T) = 51(T) - |1 Ex.000..0 .7 = | E(sy (.00, 7 < 1Byl = 1T

Hence, the sequence (Egn),en converges in the operator norm to some operator T € K(H). Now
invoking Example 2.2.5 ensures that T is indeed a diagonal operator itself, i.e. there exists a zero
sequence a such that T'= FE, holds. We conclude that (a™),en converges to a in &x». Hence, & is
complete, and in particular (€, || - ||s,, ) is a symmetric Banach sequence space. O

The second item in Theorem 5.2.2 is a deep result. Given a symmetric Banach sequence space
(&, - lle), it is natural to use the stated definition of || - ||.», since norms on symmetrically normed
ideals solely depend on s-numbers. Then it has to be proven that indeed a symmetrically normed ideal
is obtained in this way. The key steps are to show the triangular inequality for ||-|| -, and completeness
of the space.

We start with a couple of lemmata. The first two exploit a somewhat surprising viewpoint on solid
symmetric subspaces of ¢y and lead to the triangular inequality for || - ||.»,. The second two contain
the technical core for the proof of completeness.

5.2.3 Lemma. Let & be a linear subspace of co. Then & is a solid symmetric subspace of cq if and
only if
Va€cp,ce&: a<c = a€é.

Proof.
“=7: Leta € ¢y and ¢ € & be given with a < ¢. Using Theorem 4.3.2 we obtain |a|} = |a|T < 1.
Let 4 > 1, then we can write ia as a convex combination %a = 2?21 Ajc? with ¢/ < c. Since & is

solid, we obtain ¢/ € &, and therefore a € &.

“«”: Let a € ¢y and assume that there exists b € & such that either |a| < |b] or a = %Z,b for some
permutation 7. In both cases it follows that a < b, and hence that a < b. From this we conclude
a€é. O

5.2.4 Lemma. Let & be a symmetric Banach sequence space. Then
Va,c€ E\{0}:  lalls < lalZ - Jlc]ls-
In particular, ||a|ls < ||c||e whenever a < c.

Proof. Let a,c € &\{0}. If |a| = oo, there is nothing to prove. Hence, assume that |a|S < oo. Re-

member Theorem 4.3.2, and again choose p > |a|S = |a|F and a convex combination ia = Z?Zl Ajc?

with ¢/ < ¢. Then ||c?|l¢ < ||lc|l¢ by the properties of || - ||&, and we can estimate

1 n ) n ) n
lalle = - ll=alle = p- 1D Nlle <D Al e <u-D_ Ajllele = - llels-
H j=1 j=1 j=1
Since p was arbitrary, we see that the statement of the lemma holds. O

5.2.5 Lemma. Let a € cé, let n € N,r € NU{0} with 2r <n, and let ¢ € N. Then

n

. 42> g

lE
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Proof. First note that

n qn
q Z aj = Z ariy
j=1%]+1 j=ql %] +1

We split the sum on the right in two parts, cutting at r:

an s qn
P D DI DI
j=al¥F]+1 j=al % ]+1 j=r+l

The first sum has at most ¢ — 1 summands. If it is at all present, i.e., if qL%J +1 <, then

= A =[5

T+1—‘ _ "qL%JJrl
q | q

and hence necessarily [ —‘ . Therefore we obtain

T qn
Z aray S(qfl)arpqu] <(g-1) Z ari- (5.9)
j=alFF 141 g=r+1

Putting together, it follows that

n qn
o oe<a Y apy
j=1&]+1 j=r+1

It holds that m
(=) > ey <lan=1) 3 apy,

Jj=r+1 Jj=r+1
and from this we see that
qn n n
Z ari) S Z qariy-
j=r+1 Jj=r+1
Finally, observe that # < 2. O

5.2.6 Lemma. Let & be a symmetric Banach sequence space. Then, for each q € N, the replication
operator &4 is bounded with norm at most q.

In particular, if we have q; >0 and a; € & with Y .0, ¢?||a;]|s < 0o, then the series Y o ¢; Py a;
is absolutely convergent w.r.t. || - ||s.

Proof. We have

[ Zqalle = (a1, ... a1,a2,...a2,...)|le < qllalls.
——— ——
q times q times
The additional statement is now clear. O

Proof (of Theorem 5.2.2, second item). Assume we are given a symmetric Banach sequence space
(&, - lle), and consider the solid symmetric subspace .#s endowed with || - ||.», as in (5.8).
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It is obvious that ||T||.», > 0 with equality if and only if 7' = 0, and that ||aT||.», = |a|||T||.», for
all @ € K. For the proof of the triangle inequality, let S,T € Z. Since s(S+T) < s(S) + s(T') by
Theorem 5.1.1, the above Lemma 5.2.4 yields

1S+ Ty = 15(S + Dlls < 1505 + T[S pacry - [15(8) + 5(Dls < 15(5) + 5(D)]ls
< s(S)lls + Is(Dls = 181l + 1T

We see that || - ||, is a norm. The fact that it is a symmetric norm is again clear. First, for every
one-dimensional operator it holds that |T|| = s1(T) = ||s(T)||¢. Second, for bounded operators A, B
we have $(ATB) < || ||| B|ls(T), and hence [|s(ATB)s < | Al Bls(T)]ls-

It remains to prove completeness. Assume that (7,,)men is a Cauchy sequence in (Fg, | - ||.#,)-
Note that || - || < || - ||, since

IT]| = s1(T) = [I(51(T),0,0,..)lle < s(T)lle = T2

Hence, (Tr;)men is also a Cauchy sequence w.r.t. the operator norm, and therefore converges in the

operator norm to some compact operator 7. We are going to show that T € ., and is the limit w.r.t.

| - ||z, of some subsequence of (T}, )men. From this it is then clear that T;,, — T w.r.t. || - ||, .
Choose a sequence of natural numbers ¢;, such that > °°, i < 1. Since (Tyn)men is a Cauchy-

sequence, we can extract a subsequence (T, )jen with

. 1 1
Vi>2: Ty —Tmlloe < = - -
a; J

For notational convenience set T,,,, := 0. Then we can write T" as the telescoping series

T=> (Tm, = Tm,_,), (5.10)
j=1

which converges w.r.t. the operator norm.
Set T := Ty, — Tin;_,- Let k € N, then Lemma 5.2.6 yields that the series

Pi=Y 0P, (s(T)
1=k

converges w.r.t. || - | & and, by the completeness of &, thus c¥ € &. Clearly, ||c*|le < ZJ & % for k > 2.
We use c* to estimate s-numbers. Let n € N, € NU {0}, and k, N € N. Then

n n k+N n
Z sj(ka+N_ka—1): Z sj(Tk+"'+Tk+N 511 Z Z
Jj=2r+1 j=2r+1 i=k j= LT.J+1
59.5 k+N n ~ n
< > 2> aspa(T) <2 Z qusrﬂ (T) = > )
i=k j=r+1 j=r+1i=k Jj=r+1

Letting N — oo, we conclude that s(T — Ty,,_,) < 2¢¥. By means of Lemma 5.2.3 this implies that
T € .%s. Now Lemma 5.2.4 applies, and yields

IT = Tl < lIc* s Z 7 k=2

We see that T, — T w.rt. || - ||, O

50


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Chapter 6

Normed cones and cone maps

This chapter is more or less preparation for a survey paper, which aims to present and proof
some, almost unknown theorems, discovered by A. A. Mititel and G. |. Russu from the 70’s
and 80’s concerning s.n.-ideals. Section 6.1 introduces notions like normed cones, cone maps
and semigroups of cone maps and establishes the powerful Lemma 6.1.5. The second section
discusses some necessary and sufficient condition, when to expect the Cesaro-means and its
weighted dual version to be invariant and bounded on specific normed cones. In the final
section, an interpolation theorem is established.

6.1 Normed cones and semigroups

Recall that a cone is a subset of a vector space which is closed under linear combinations with non-
negative coefficients. Moreover, a map f between two cones C; and Cs is called a cone map, if it is
positively homogeneous and additive, i.e.:

e VA>0,aeC: f(ha)=\-f(a). e Va,beC: fla+b)= f(a)+ f(b).

The set of all cone maps mapping from C; to Cy is denoted by Hom(Cy,C2).
In this chapter we deal with cones which additionally carry a norm, and with bounded maps
between such cones.

6.1.1 Definition. A pair (C,||-||¢) is called a normed cone, if C is a cone and the map ||-||¢ : C — [0, 00)
satisfies

i) VaeC: a=0 & Ja|c=0. iii) VA>0,aeC: | Aalle =A-la]c.
i) Va,beC: fla+ble < llalle + [[blle-
If C; and Cy are normed cones and f € Hom(Cy,Cs), we set

171l == sup { || fallc, | a € C1. [lalle, <1} € [0, 00],
and say that f is bounded, if || f|| < cc.
6.1.2 FExample. For 1 < p < oo let LP be the cone

oo
L? = {a€c$| Za§<oo}.
J=1

51


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Naturally, it becomes a normed cone with
oo
lallp == Zaé‘)-
j=1
In a similar way, we have the normed cones
oo
LY = {aech|allf <oo} with [af;} =Y j» a,,

L

£

={ac cé | lall;y < oo} with |la|ly :=inf {C >0 } VYneN:a, < Cnf%}.
Note that LY C L2 and that L C LP*€ for all € > 0.
Given a cone map f € Hom(céo, cé), we can naturally extend it to a generically much larger cone.
6.1.3 Definition. For f € Hom(cly,cj) and a € ¢ we set
N
fla):= lim Y (a; —a;1) - f(Ip,;) € [0,00]",

N—o0

Jj=1

and
dom f:={a € o | fla)y < oo}

Note that for each a € ¢ we have a = > i (aj —aji1) - Iy j) uniformly, that dom f is a cone and

f:domf — cé is a cone map.

6.1.4 Definition. Let C be a cone. A map F : N — Hom(C,C) is called a semigroup of cone maps, if
it is a homomorphism of the monoids (N, -,1) and (Hom(C,C), o,id¢). Explicitly, this means that

F(l)=ide and VN;,NyeN: F(NiN;)=F(Ny)o F(Na).
Observe the following, simple but powerful, fact.

6.1.5 Lemma. Let (C,|| - |lc) be a normed cone, and let F : N — Hom(C,C) be a semigroup of cone
maps. Assume that

VN eN: | F(N)|<oo and ||FN)|<|FIN+1). (6.1)
Then, for any fized Ny € N\{1}
YNeN: [F(N)|<|F(No)|l-N?,

log || F(No)|

where B := log No

Proof. Let N € N and choose k € N with Né“_l <N N(’f. Then

kf
IF() < IFNE) < [F NP = NG*F = N§ - NgE™ < N§ - N§N = | F(No) || - NP
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6.1.6 Corollary. Let (C,| - |lc) be a normed cone, and let F : N — Hom(C,C) be a semigroup of cone
maps which satisfies (6.1). Then the following statements are equivalent.

i) I3B<1: || F(N)|=O(NP). iii) 3Ny e N: || F(No)|| < No.
i) [|F(N)]| = o(N).
Proof. The implications i) = ii) = iii) are trivial.

“iii) = 1)”:  Let Ny € N be given such that || F(No)|| < No. Then 5 := logllgw < 1, and
Lemma 6.1.5 gives us the estimate

IF(N)]| < IF(No)l| - N7

6.2 A boundedness criterion

In this section we study some concrete cone maps on particular classes of normed cones.
The cone maps we are interested in are the replication operator &y, the Cesaro means operator
%, and dual versions of those.

6.2.1 Definition.
e The Hardy-operator %, : cé — cé is defined as

1 Jn a1 +...+a, ape1+ ...+ ao,
(k)= (5 X ) = (B L),
k=(G-Dn+1 7

e We define a family of summation operators 2,, where w € [0, 1] as

(Fua), =3 (2)".

j=n J

for a € cé such that the series converge.

The relevant properties of normed cones are the following.
6.2.2 Definition. We call a normed cone (C, || - ||¢) which is contained in cé

e complete, if for every Cauchy sequence (a"),en in C, there exists a € C such that nl;rrgo a =a

holds w.r.t. to || - ||c and pointwise.
e solidly normed, if C is solid and

Va,be C: |a| <|b] = |lallc < [b]c-

e Hardy-monotone, if C is solid and

VNeN: |[IN-Hn||<[(N+1) ANl

e <-monotone normed, if
Va,beC: a<b=|alc <|ble-
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To start with, we observe some simple facts about these notions.

6.2.3 Lemma. Let (C.| - |lc) be a normed cone which is contained in cé and is solid.
i) For all N €N and a € cé we have Hna < a.
ii) For all N e N anda € cg)’ we have (AN o Py)(a) = a.
iii) If (C,] - lle) is <-monotone normed, then it is Hardy-monotone.
Proof. The first two assertions are obvious, the third follows since n,a < (n + 1), 11a. O
Our aim in this section is to prove the following boundedness criterion.
6.2.4 Theorem. Let (C, || - |lc) be a replication closed and solidly normed cone in cé.

1) If (C,] - |le) is complete, then

[Znlell =o(N) = F(C)SC A [[Fle| < oo

it) If (C, | - ||c) is <-monotone, then

[Znlell =o(N) = F([C)SC A [[Fle] < oo

iii) If (C, || - |lc) is complete and Hardy-monotone, then

|n|cl| =0(1) = 3Jwe (0,1 Vo' €[0,w]: 2w (C) CC A ||Dulc] < .

iv) If (C, || - llc) s <-monotone

|#ncl|l =0(1) <= 3Fwe (0,1] V' €[0,w]: 2w (C) CC A [|Duwlc| < .

For a cone enjoying all the properties occurring in the theorem, we have a slightly stronger assertion.

6.2.5 Proposition. Assume that (C,| - |lc) is a replication closed complete <-monotone and solidly

normed cone in cé. Then the following equivalences hold.

i) |Pn]|=0(N) <= E(C)CC A ||| < 0.
i) |o&n] =0(1) <<= Z(C)CC A | D < .

The core of the proof of Theorem 6.2.4 is to show mutual domination relations between the repli-
cation operator & and the Cesaro-means operator %, and between the Hardy-operator 7 and the
family 2,,. We present these relations in the form of two lemmata.

6.2.6 Lemma. Leta € cé. Then we have

N 1 N-1
Ca < 22171 - Poia and Pya < —— - Ca, N >4,
= log N

where the limit in the left inequality is pointwise in [0, o).
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Proof.

> At first we show that the left statement holds. To this end, let n € N be arbitrary. Furthermore,
let k be a natural number such that 28—1 < n < 2% is satisfied. Then an elementary estimation proves
the asserted property:

221 J. @zga 221 J 3”2111 >Z21 J @ya ZQ Ja2(k ])+Z21 e

k—1 k
= 21_k(2 Qk_jaz(k—j) + 2(11) =2tk ( Z 21.(121' + 2a1)
=0 i=1
gi+l_1q ok+1_
(55 ) (5 e
=1 j=2°
2k+1 ok—1

Z ‘Ka Qk L > (%a)n.
> We continue with an auxiliary notice. For each N > 1 and « € [1, N| we have

rz—1
N -1

=1-X-14+4X-N with X:= € [0,1].
The function log z is concave, and it follows that

—1
logxz(1—)\)~10g1+>\~logN:%~logN

Equivalently, we may say that

log N < log N

Vo € [1,N]: N1 SwN-o1

+logz. (6.2)

> We give another auxiliary notice. Let (a™)nen, (b™)nen be two sequences in cé with a™ < b", for

every n € N. Furthermore, assume that the limits lim o™ =: @, lim b" =: b exists w.r.t. convergence
n—oo n—oo

in || - ||oc- Consider
N N N N
E a; = lim E a? < lim E b;-’ = E b;
n—oo n—oo
Jj=1 Jj=1 Jj=1 Jj=1

Hence, we conclude that a < b.

> Note that each sequence a € cé can be uniformly approximated by linear combinations of charac-

teristic sequences in cé, namely by

N

a= zx}gnoo 1(%‘ —ajp1) Ly = ]\}ijﬂoo(al —aN41,82 — N1, -, GN — AN4+1,0,0,...).
j=
By the last step, and since &, % are continuous operators on ¢y, < is compatible with the algebraic
operations, it is sufficient to show the assertion for characteristic sequences 1y ,,. To this end, we

start with observing that for each m € N

1 ifn<m,

(Clpm), = {m

= oifm<n.

if n < m,

1+Z;-L:m+1%) if m <n.

1
(¢*1p,m), = {m(
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From this it follows that

log N log N «i) log N
]\(;g PN ) X Clp1 ) & ]\(;gi 1 ANy < Gl 2L 08 55]1[1 mn] < CP L[ m)
lj%g_]\lf <1 if n < m,
& el é%(1+2§:m+1§.) if m < n < mN,
lo m n .
sl mN < m(] 4 D immi1 %) if mN < n.

The first line holds for all N > 2. To show the second line, use (6.2) with z := > to compute

n log N m _ logN 1
Nl m SN o1 T T X

where the remainder term py, ., is subject to —5— < ppm < 5
it follows that indeed

The third line follows at once from the already established case “n = mN".

6.2.7 Lemma. Let a € cé and w € [0,1]. Then we have

oo
) 1
Dpa < ZQH']“’ - Iia  and  Fna < eV Doa, N >4,
i=0 og IV
where the limit in the left inequality is pointwise in [0, oo]N.

Proof.

> At first we show that the left statement holds. To this end, let n € N and w € [0, 1] be arbitrary.

Then an elementary estimation proves the asserted property:

n2itl

0o 1 n2i+1 a o] 1 1
(%}a)n: + Z ( ) ZT) > wﬁan+zn7'(n21)1—‘w >
k=n-+1 =0 =n2i+4+1 7=0 k=n27i+1
o (n+i+1)27 — o1y (n+i)27
:an+z2jw'722] Z ak:an+z2]w'EZ§ Z . ag
7=0 =0 =(n+1)27 7=0 i=1 k=(n+i—1)27i+1
0o n o S
=an+z2j“’~ Z Hia) San+z2jw(%1a)nSZTH“’(%ja)n
— el =0 0
. J J
= (D2 Hya),
j=0

> Again it is enough to show that the asserted inequality holds for each sequence 1[; ,,), m € N,

equivalently, that

log N - (€ o Hn) < (€0 Zo)Lim) (6.3)
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We compute the involved expressions:

1 if nV < m,
(€ 0ot 1pm) = (€1pm),y = {

ﬂN if m < nN.

oo

L
(Zol11m),, ; {

if n <m,

m.\»—l

ifm<n.

=N

<

nmin{m,n}

Zn: (Zolj1m)); =

Jj=1 Jj=1 k=j

3\'—‘

((% ° .@0)1[1’@)” -

min{m,n}

1 1 min{m, n} = 1
Z ;'j—F Z 3~m1n{m,n})=7(1+ Z 5)

Il
S
—

j=1 j=min{m,n} j=min{m,n}
_ 1+, 5 ifn<m,
o if m <n.
It follows that
10gN<1+ZJ n+1] lfn§%7
(6.3) holds < ¢ log N - N§1+2J n+1% if % <n<m,
log N - % < if m <n.
The first line holds since
1+ Z - —1+ln( )+ pman = 1+10g () + pmn 2 log N,

Jj= n+1

% < Pmn < % The third line is obviously true. To see the second line, we apply (6.2) with
-r. This yields

||CL

arn
Z:

logN.@<logN+N—1

m 1 m m 1
log— < -+4log— <1 mn +1log— =1 -.
N n~ N N Ogn_2+0gn_ +p7+ogn Jr‘Z]

Proof (of Theorem 6.2.4).

“1)” © Assume that (C,|| - ||c) is complete and || Pn| = o(N). Obviously the map N — Py|c
is a semigroup of cone maps. Remembering the computation rule v) of Lemma 3.1.2 we see that
Corollary 6.1.6 is applicable. This gives us scalars 3 < 1, C' > 0 such that || Zy|c| < CN?. Now let
a € C. Then, for each N € N,

2C
[ 221 1 Pyial|, < 221 1| Pysalle < 221 ic(29)8 W “lalle-

7=0

Since C is complete, the limit Z;io 2177 P,;a exists in C, in particular this limit exists w.r.t. pointwise
convergence. Invoking Lemma 6.2.6 yields €a < E;io 2179 2,;a. Since C is solidly normed, we have

2C

%a e C and ||<5a||c S m

lalle-
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“i)” Assume that the Cesaro-means operator leaves C invariant and is bounded. Invoking
Lemma 6.2.6 yields @ya < ljgg—_]\l, - %a, for N > 4. Since C is replication closed and <-monotone,
we obtain || Zn|| = o(N).

“iii)” : Assume that (C, || -||c) is complete, Hardy-monotone and |7y | = o(1). Obviously the map
N — N - An|c is a semigroup of cone maps. Due to ||#y]| = o(1) and C being Hardy-monotone,
it follows that the semigroup of cone maps (N - Jy)nen satisfies (6.1). Thus Corollary 6.1.6 gives
us scalars 3 < 1, C > 0 such that |[N - #y|c|| < CNP. Now let a € C. Then, for each N € N,
we[0,8—1),

2C

N > N
|| 221—1-]'11) . %jch < Z2l+jw . H%]-GHC < Z2C(2j)w+ﬁ—1 < w

=0 =0 =0

lalle-

Since C is complete, the limit Z;io 217w . A ia exists in C, in particular this limit exists w.r.t.
pointwise convergence. Invoking Lemma 6.2.7 yields Z,a < E;’io 2143w 374, and since C is solidly
normed, we find

2C
.@wa e C and ||.@wCLHC S W . HCL”C

“iv)”:  Assume that there exists w € (0,1] such that for each w’ € [0, w] the operator 2, leaves
C invariant and is bounded. Invoking Lemma 6.2.7 yields ##ya < ﬁ - YDpa, for N > 4. Note that
Doa < Dyra, in particular Zpa < Zya. Since C is <-monotone, we obtain ||y || = o(1). O
Proof (of Proposition 6.2.5).

“1)” :  The assertion follows from Theorem 6.2.4, i) and ii).

“ii)” : The assumptions in Theorem 6.2.4, iii) and iv) are satisfied and we obtain

| oyl =0(1) & (Fwe (0,1],Vu' € [0,w]: Duw(C)CC A |[[Dw] <x). (6.4)

As mentioned above, Zya < Zya for all a € ¢§. Thus (6.4) implies the right side in ii). The other
implication is obtained via Lemma 6.2.7. O

6.3 An interpolation theorem

Our aim in this section is to prove the following theorem.

6.3.1 Theorem. Let (C,| - ||lc) be a replication closed normed cone in c. Consider the following

statements.
) [ Znlell = o(N) and || #N|c|| = o(1).
ii) There exists p > 1 such that the following statements hold
e C is a subcone of X .

e For every cone map f : Céo — cg' satisfying

. C C
Jer,ea > 0,Ya € {11 |m €N}, VR EN:  (f(a)), < min {21 Nall, == - lla]lf}, (6.5)
ne

it holds that the domain of the pointwise extension f contains C and f maps C boundedly
into itself.

iii) There exists p > 1 such that the following statements hold.
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: P
e C is a subcone of L .

e Every cone map f:C — cf satisfying (6.5), maps C boundedly into itself.
The following statements hold:
> If C is complete, solidly normed and Hardy-monotone, then i) implies ii).
> ii) always implies iii).
> If C is <-monotone, then iii) implies 1).

Observe that the statement in item iii) is a weak-type interpolation property. In fact, (6.5) means
that f is || - [l1-]| - [|{"~bounded and [ - ||} - [ ~bounded.

Having available the machinery developed so far, the proof of Theorem 6.3.1 is not anymore difficult.
We use Theorem 6.2.4 and, for the implication “i) = ii)”, the following elementary fact.

6.3.2 Lemma. Let ci,c2 >0, w € (0,1], and set ¢ := max{cy, 2}. Then
Vm,neN: mi o ii'w—l < (€1 - Gl ) + 2 Duliym)
m,n o omin Cln’c2n“’ ‘ 1] s a [1,m] T €2 Zwliim]),-
=

Proof.

> The case that m < n is immediate from:

e = 1 (€Lm),, < @ (€rm), + 2(Zulipm)-

> Assume that n < m. Then we estimate the sum by an integral to obtain

n—1 n—1

1 =~ ., 1 o _
c2nTuZJw 1202771)2]11) 1+c2(@w]1[1,m])n§02n—w i 2Lz + 3 (Puljpm),,
j=1 j=1

= cy e (n — 1)w + co (@U’]l[lﬂn])n <cé +eo ('@w]l[lﬂn])n

=1 (Cgﬂ[l,m])n + ¢ (-@wﬂ[l,m])n'

O

Proof (of Theorem 6.3.1).
“i) =1ii)” :  Assume that i) holds under the assumption that C is complete, solid and Hardy-
monotone. Then Theorem 6.2.4 tells us that ¥ maps C boundedly into itself, and that 2. maps C

boundedly into itself for all sufficiently large p. For such p, in particular C C L% . Let f be a cone map
as in ii). By Lemma 6.3.2 the assumption (6.5) implies that

Vae{]l[l)m] |m€N}: f(a)§é1-<€a+02-@%a

Both sides of the inequality are cone maps, and hence it holds for all a € céo. Passing to the pointwise
extension yields ~
‘v’aEcé: f(a)gél-%a—l—@-.@%a (6.6)
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From (6.6) it is obvious that f maps C boundedly into itself.
“ii) = iii)”:  Assume that ii) holds, and let f be a cone map as in iii). Set g := f}& . Applying ii)
00

with g yields that § maps C boundedly into itself. We show that f = §| o Let a € C, and decompose

Mz

j—aj1) Ly + Z —aj+1) - 1p )
j:l j=N+1

=:aN =:pN

Since bN < a, and aV € ¢, we have a™, bV € C C L% and
fa) = g(a™) + FM). (6.7)

Also we have b "25° 0 uniformly, and ¥ > b¥+! > 0, for each N. By the monotone convergence
theorem, it follows that [|b™]]F Noge 0, and now (6.5) implies

VYneN: lim (f(b™)), = 0.

N—oo

“iii) = 1)”:  Finally we assume that iii) holds under the assumption that C is <-monotone. We

check that € and 2. (for every p > 1) satisfy (6.5) for every sequence a € cé.
p

1 1
(¢a), = -~ > a; < . lall1,

1 < 1 1
1
aj=—> v ta; < — - all},

1 1
j=1 j=1 nr ;=1 ne
> /j\ra I /ji\s~ 1
p Uy P
(230, =2 ()" F =72 ()" w=gla
j=n j=n
> j l(1 1 > 1
v 1y
=X () S = i e sl
i=n J ne =, n

Hence, we may apply iii) with ‘5| ¢ and, since C C L%, also with 21 By means of Theorem 6.2.4

» |C ’
the statement i) follows. O
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