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Abstract

The focus of this thesis is the research on joint-macro models that are appropriate and
convenient for the debt strategy and risk management analysis of a Government. The
main requirements on such a model are an appropriate modelling and forecasting of the
term-structure dynamics as well as diagnostic tools to describe the interactions to relevant
macroeconomic factors. Leveraging on a series of working papers published by the Bank of
Canada the extended Nelson-Siegel model suggested by Dichold and Li (20006) is introduced
as well as various developments on its model specification. In this regards, the Svensson
model is introduced as well. The approach used to include macroeconomic factors in a
term-structure modelling framework is based on the work from Bolder and Liu (2007) and
Diebold et al. (2006).

Finally, in an euro-area environment of interest rates and macroeconomic factors, the mod-
els are examined in terms of their ability to capture the dynamics of the term-structure
of interest rates, jointly describe the interactions between macroeconomic factors and the
term-structure curve, and forecast interest rates.
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1. Introduction

Numerous working papers introduce interest rate term-structure modelling frameworks that
incorporate macroeconomic factors. However, the underlying motives of the researchers for
modelling the term-structure of interest rates are various as well, inter alia, pricing of fi-
nancial instruments such as bonds and options, analysing the dynamic interactions among
the macro economy and the term-structure of interest rates, or forecast simulation of in-
terest rates for risk management purposes. The main focus of this paper is the research
on joint-macro models that are appropriate and convenient for the debt strategy and risk
management analysis of a Government. The main requirements on such a model are an
appropriate modelling and forecasting of the term-structure dynamics as well as diagnos-
tic tools to describe the interactions to relevant macroeconomic factors. Overall, finance
literature indicates valuable benefits of incorporating macroeconomic information in term-
structure models, although the majority of the papers have not focused on the practical
usage of the models in terms of debt strategy and risk management analysis of a Govern-
ment.

Fortunately, the Bank of Canada has published several working papers from 1999 to 2011
dealing with practical debt and risk-management problems of a Government with David
Bolder as main author. The main studies that have influenced the course of our research
are ( ) ( ) and ( ).
In particular, ( ) selects alternative non-macro term-structure models from the
literature in order to identify a model that provides a reasonable description of interest rate
dynamics for risk management purposes. In this regards, he also picks up the extended
Nelson-Siegel model suggested by ( ) and introduces two additional
generalisations. Examining the selected models in terms of their forecast performance,
their ability to capture deviations from the expectations hypothesis and their predictions
in a simplified portfolio optimisation exercise, ( ) concludes that the extended
Nelson-Siegel model framework provides the most appealing modelling approach under the
defined criteria.
In ( ), the scope is extended by the investigation in models that provide
a joint description of the macro economy and the term-structure of interest rates. Again
they pick up the Nelson-Siegel motivated approaches from ( ) and incorporate
macroeconomic factors in the model framework. As competitive models, they take up the
concept from ( ), who introduce a no-arbitrage joint-macro model
concluding that the forecasting performance improves when no-arbitrage restrictions are
imposed and macroeconomic variables are included. The models are examined by various
out-of-sample forecasting tests. Similar to ( ), they conclude that the

( ) motivated approaches provide the most appealing modelling alternative from
a practical risk management perspective.
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1. Introduction

Finally, ( ) provide a comprehensive overview on the debt strategy
and risk management model developed by the Bank of Canada. They outline and describe
the main elements of the Canadian debt-strategy model including the set of implemented
stochastic joint-macro models and diagnostic tools to examine the joint dynamics of macroe-
conomic variables and the term-structure of interest rates. As stochastic models they have
implemented not less than five joint-macro models in their debt strategy analysis. Three
models are approaches that follow the extended Nelson-Siegel model suggested by
( ). Omne uses the original mapping, the other two are generalisations using an
alternative mapping, in particular exponential spline and Fourier-series motivated map-
pings. Moreover, a no-arbitrage observed-affine model is implemented. However,
( ) outline that there is a reasonable amount of empirical evidence that em-
pirical models, such as the extended Nelson-Siegel model, outperform no-arbitrage models
in terms of out-of-sample forecasting.

Leveraging on the results of the working papers published by the Bank of Canada we focus
our research on the extended Nelson-Siegel model suggested by ( ) and
follow various developments on its model specification introduced in finance literature.

In this regards, we introduce the Svensson model as well which is an extension of the Nelson-
Siegel model and a popular term-structure model among central banks. The investigation
on the Svensson model is motivated from the insights of ( ), who examines
several variations of the Nelson-Siegel model and concludes that more sophisticated models,
such as the Svensson model, achieve better in-sample fit and out-of-sample forecasts of the
term-structure of interest rates.

Moreover, we investigate in alternative estimation methodologies. This is motivated due
the lack of theoretical foundation of the pre-specification of model parameters within the

two-step estimation approach suggested by ( ).
In this regards, we explore the non-linear model specification of the Nelson-Siegel model
following ( ) and ( ), and consequently apply a heuristic

optimisation approach, the Differential Evolution.

In addition, we include the developments on the extended Nelson-Siegel model introduced
by ( ), who reformulate the model into a state-space representation and
introduce an one-step estimation approach using the Kalman filter.

The approach we use to include macroeconomic factors in a term-structure modelling frame-
work is based on the work from ( ) and ( ). In this
general specifications we examine the ability of the Nelson-Siegel and Svensson models
to capture the dynamics of the term-structure in our data sample and compare their in-
sample fit. Another important facet enabled in this model framework is the analysis of the
dynamic interactions between macroeconomic factors and the term-structure. We follow
( ) and ( ), and apply the impulse response function
as diagnostic tool to investigate the effects of changes in key variables on other variables
in the Nelson-Siegel model.
Finally, we examine the out-of-sample forecast ability of the models in different settings.
We set the original extended Nelson-Siegel model suggested by ( ) as
benchmark and compare it to the introduced model variations.
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1. Introduction

The data analyses and the graphical presentations of the results are performed in R a free
software environment for statistical computing and graphics’.

'R Core Team (2018).
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2. The extended Nelson-Siegel model
introduced by Diebold and Li (2006)

Originally the work of Nelson and Siegel (1987) focuses entirely on the problem of cap-
turing the shapes occurring in yield curves by introducing a parametrically parsimonious
model. Dichold and Li (2006) extend the Nelson-Siegel model in order to describe the
term-structure dynamics of interest rates over time. We recap some basic expressions to
formulate the extended Nelson-Siegel model. Therefore we combine the structure of Bolder
(2006) and Dicbold and Li (2006) using the notation from the former.

Let P(t,T) denote the discount bond price at time t and maturity 7 =T — ¢ with ¢t < T,
and z(t,T) its continuously compounded zero-coupon rate having the relationship

P(t,T) = e *DI=D - with t < T. (2.1)
The instantaneous forward rate is defined as
ft,T)= lim f(t,T,T"), withT <T, (2.2)
T'—=T
and inserting the continuously compounded forward interest rate
1 P(t,T)
t,T,T') = 1 ’ 2.
1017 = g (5 ) 23
an alternative expression of the instantaneous forward rate can be derived
PT(ta T)
t,T)= ————"2. 24

Using (2.1) and transforming equation (2.4) a direct link between the instantaneous forward
rate and the zero coupon rate can be derived

1 T
2(4,7) = 7 /t £(t, u)du. (2.5)
Nelson and Siegel (1987) propose in their work a specific functional form of the instanta-
neous forward rate
F(t,T) = zo + z1e T L oA\ (T — t)e M), (2.6)

with the parameters z; € R, = 0,1,2 and \; € R. Using the relationship between f(¢,T)
and z(t,T") we can derive following expression of the zero coupon rate suggested by Dicbold
and Li (2006)

1 _ e—)xt(T—t) 1 _ e—)\t(T—t)
T) = - @ - T ) 9.
Z(t, ) To + 21 ( )\t(T—t) ) +x2< )\t(T—t) e ( 7)
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2. The extended Nelson-Siegel model introduced by ( )

Figure 2.1.: Nelson-Siegel factor loadings
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The formula in (2.7) differs from the classical Nelson-Siegel approach which depends only
on the tenor 7 = T — t and has the following form

1 —e N7 A
Z(T) =3g+ ] ——— — Toe 7. (28)

Obviously the original Nelson-Siegel factorisation in (2.8) matches the factorisation of the
extended model (2.7) with &9 = zg, 1 = 21 + 22 and 9 = .

( ) outline the benefit of the extension of the Nelson-Siegel model
based on the fact that the original Nelson-Siegel factorisation has a similar monotonically
behavior. This raises difficulties in the estimation of the coefficients z;,7 = 0,1,2 and
subsequently complicate intuitive interpretations. We will see in later sections that the
non-linear model specification of the extended Nelson-Siegel model still implies numerical
problems in estimating robust values for the parameters z;, i = 0,1, 2.

However, ( ) introduce revealing observations on the characteristics
of the coefficients x1, o and x3 in the extended Nelson-Siegel model. Apparently, the
parameter )\; sets the exponential decay rate of the respective functions, hereinafter referred
to as factor loadings,

1— e—)\t‘r 1— e—/\t‘r

fo(r) =1, fa(r) = Ty»fz(T) = s

— e M, (2.9)
Figure 2.1 plots the functions f;,7 = 0, 1,2 with different values for the decay parameter
A¢+ over the tenor 7 = T — ¢t of 30 years. It illustrates that small values of A; produce slow
decay whereas large values imply fast decay of the function values. The decay parameter
A+ also governs the tenor value where fo achieves its maximum. Furthermore, Figure 2.1
reveals that fp has a consistent impact over all tenors, f; has a strong effect at short tenors
which decreases at longer tenors and fs has an over-proportional impact on the middle
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2. The extended Nelson-Siegel model introduced by Dichold and Li (20006)

range of the tenors. Leveraging on the insights of characteristics of the functions, Diebold
and Li (2006) derive the effects on the shape of the term-structure caused by changes in
the coefficients x;,7 = 0, 1, 2 as follows:

e 1o is the long-term factor, changes create parallel shifts up or down of the term-
structure curve.

e 1, is the short-term factor, changes create a steepening or flattening of the term-
structure curve.

e 15 is the medium-term factor, changes create a decreasing or increasing of the curva-
ture of the term-structure curve.

The very useful insight made by Dicbold and i (2006) is that the coefficients may be
interpreted as the state variables level I;, slope s;, and curvature ¢;. They relate this
important result to other finance literature, such as Litterman and Scheinkman (1991),
which indicate that the dynamics of term-structure curves can be described by only a few
latent state factors.

Consequently, Dicbold and Li (20006) re-interpret the classical Nelson-Siegel model as a
dynamic model describing the dynamics of the term-structure of interest rates over time.
In particular, equation (2.7) is reformulated by time-varying state factors ly, sy, ¢; and
decay parameter Ay,

1 —e N7 L —e N7
=1 _ - eMT) 2.10
Zt(T) t + St ( )\tT > + ¢t < )\tT e > ( )

The parameters can be estimated simultaneously at one point in time ¢ using non-linear
least squares or other non-linear optimisation techniques. However, Dichold and Li (2006)
suggest to fix \; at a pre-specified value over all ¢ and subsequently apply ordinary least
squares to estimate [;, s; and ¢;. As a consequence one obtain a time series of estimated
state variables over time. The dynamics of the obtained time-series of the state vector
{X:¢} = (It, 8¢, ¢¢)' can be modeled by univariate autoregressive models (AR) respectively
multivariate vector autoregression models (VAR). Obviously, the suggested estimation ap-
proach is clearly separated in two steps and therefore it is also referred to as two-step
estimation approach in the finance literature.

Bolder (2006) picks up the concept of the extended Nelson-Siegel model and introduce
to the common factor loadings in (2.9) two generalizations using exponential-spline and
Fourier-series basis functions. He finds that the generalisations are competitive to the
original setting of the extended Nelson-Siegel model, especially in terms of forecasting the
term-structure of interest rates. Nevertheless, in Bolder and Liu (2007) they outline that
if they wish to select a single model, their first choice would be the extended Nelson-Siegel
model as suggested by Diebold and Li (20006).

Concerning this statement and the subsequent introduction of the re-formulation from
Diebold et al. (2006) and the Svensson model where both are building up on the basis
functions in (2.9) we confine ourselves on the common factor loadings.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3. Variations of the extended Nelson-Siegel
model and estimation methodologies

Initially, we have investigated on the enhancement of the extended Nelson-Siegel model by
macroeconomic information and the incorporation of such a joint-macro model into debt
strategy and risk-management analysis. However, the knowledge gained from this work and
additional finance literature has indicated a benefit of investigating in further variations
within the Nelson-Siegel class of term-structure models.

Fortunately, ( ) collects the main models within the Nelson-Siegel class of
the term-structure models, such as the Svensson model, elaborates their characteristics
and examines their ability in terms of forecasting the term-structure of interest rates. In
general, the variations of the extended three-factor Nelson-Siegel model can be outlined by
the inclusion of additional slope or curvature factors as well as additional decay parameters
Ai. The studies from ( ) indicate that more flexible model variations achieve
better in-sample fit of the term-structure of interest rates and more importantly improve the
out-of-sample forecast performance as well. The best forecast results have been achieved
with four-factor models, in particular the ( ) and the

( ) model, which include an additional factor to the three-factor Nelson-Siegel model.
Additionally, ( ) states that the Bank of International (BIS) has evaluated
in 2005 that a large part of the central banks use either the Nelson-Siegel model or the
Svensson model. Therefore, we confine ourselves on introducing the Svensson model.

Moreover, we have delved into further estimation methodologies applied in the class of
Nelson-Siegel term-structure models.

At first we introduce the two-step estimation approach as suggested by

( ). In this regards, we set pre-specified A values in the Nelson-Siegel and Svensson
model specifications and apply ordinary least squares in order to estimate the state factors.
However, concerning the lack of a theoretical foundation for the pre-specification of the
A parameters we extend the two-step estimation approach by a non-linear optimisation
approach. The application of non-linear estimation approaches permits the estimation of
the state variables I, s; and ¢; and the decay parameter \; simultaneously at one point in
time t. Consistent with finance literature we have faced numerical problems in estimating
robust parameters. In this regards, ( ) have analysed the calibration of
the Nelson-Siegel and Svensson model in detail and introduce an alternative optimisation
heuristic, the Differential Evolution (DE). We summarise the identified obstacles in the
model specifications of the Nelson-Siegel and Svensson model following ( )
and introduce the Differential Evolution method in our model framework.

Furthermore, we introduce the developments from ( ), who reformulate
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

the extended Nelson-Siegel model into its state-space representation and suggest a one-step
estimation approach.

In the remaining part of this section we introduce the Svensson model. Moreover, we es-
tablish the extended estimation methodology by the two step estimation approach with
pre-specified and variable decay parameters. Subsequently, we introduce the one-step esti-
mation approach suggested by ( ).

3.1. Svensson four-factor model

As outlined above the ( ) model is with the extended Nelson-Siegel model one
of the popular term-structure models among central banks. It is a more sophisticated model
as it is extended by an additional curvature factor ¢7 including a second decay parameter
22,

1-— 67/\%.” 1 1— eiA%.Ti Al
) = [, . o — | e MT
alm) =l L +s < AL T ) e AT ‘ "

fo

-~

fi f2

3

Figure 3.1 presents the factor loadings of the Svensson model with different values of the
decay parameters \i over tenor 7. ( ) highlights numerical difficulties in the
estimation of the state variables X; = (I3, s¢, cf, ¢2)’ using non-linear optimisation methods.
Especially, in the case when the decay parameters assume similar values and the model
reduces to the three-factor Nelson-Siegel model - right plot of Figure 3.1. Then optimisation
methods have problems to individually estimate the curvature state variables ¢} and c?.

( ) approaches this problem by introducing an adjusted second curvature
loading,
1-— 67)‘%'” 2.02
— — e N 3.2
f3 ( )\% T ( )

We have experimented with this adjustment in our model framework but have not identified
significant superior results in terms of in-sample fit and out-of-sample forecasting to the
original Svensson model. In addition, we have not found a further application of this
model adjustment in the finance literature. Therefore, we focus in this paper on the results
achieved with the original Svensson model.

3.2. Estimation methodologies

Various estimation methodologies have been introduced in the framework of the Nelson-
Siegel class of term-structure models by finance literature. The most straightforward ap-
proach, suggested in ( ), is to initially fix A\; over all ¢ and subsequently
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

Figure 3.1.: Svensson factor loadings
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apply ordinary least squares regression in order to estimate the state variables. In numeri-
cally more challenging approaches, the state factors and the decay parameters are estimated
simultaneously, at one point in time ¢, using non-linear least squares or other non-linear
optimisation techniques.

In both approaches, the dynamics of the obtained time series of the state variables are
described subsequently by autoregressive or vector-autoregressive models. Therefore, this
estimation approach is clearly separated in two steps. ( ) highlight
that the information on the uncertainty associated to the observed interest rates is not
acknowledged in the second step estimating the dynamics of the state factors. In this
regards, they reformulate the extended Nelson-Siegel framework into a state-space model
and introduce a one-step estimation approach.

In the remaining section we introduce the estimation procedures suggested in finance lit-
erature in detail and describe their implementation in our model framework.

3.2.1. Two-step estimation approach with fixed decay parameters

( ) suggest in the first introduction of the extended Nelson-Siegel model
the two-step estimation approach. They propose to initially fix A; over all ¢ and subse-
quently apply ordinary least squares regression in order to estimate the state variables [,
s¢ and ¢;. In the Nelson-Siegel model specification, they outline that the fixed \; parameter
is commonly determined in a way that the factor loading fs of the curvature ¢; achieves
its maximum between two- or three-year tenors. We follow this approach and initially set
A = 0.5978 for all . Therefore, the linked curvature factor loading fo achieves its maximum
at a three year tenor!.

In the Svensson model we need to fix two decay parameters, namely A} and A?. In finance
literature we have not found any indication on plausible pre-specified values for the decay

In contrast, ( ) pre-specify A over all ¢ in the way that the curvature factor loading
reaches its maximum at 30 months.
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

parameters in the Svensson model. However, based on the basic assumption of
( ) and own observations on the results of the more advanced estimation techniques
we have pre-specified the decay parameters as follows,

Al =1.8023, A2 =10.5978. (3.3)

The parametrisation can be interpreted in the way that the curvature factor loading fs
achieve its maximum at 1 year tenor, whereas the curvature factor loading f3 achieve its
maximum at 3 years tenor. In this regards, we would like to highlight that similar to
the suggestion in ( ) for the Nelson-Siegel specification the assumption
on the pre-specified values of the decay parameters is not based on robust theoretical
foundation. However, we have experienced that the results of the Svensson model with
fixed decay parameters are competitive to the other model specifications in terms of the
in-sample fit and out-of-sample forecasting of the term-structure of interest rates.

Given pre-specified values of the decay parameters, we can calculate the values of the
factor loadings for both model specifications and subsequently apply ordinary least squares
at each point in time ¢ obtaining time series of the state variables. In our model framework
the ordinary least squares is applied using the R-function 1m() from the standard package
stats of R?.

In the in-sample fit and out-of-sample forecast analysis the two-step estimation approach
with fixed decay parameters will be referred to as 2-step fix method.

3.2.2. Two-step estimation approach with variable decay parameters

In literature there are different non-linear estimation approaches introduced for the Nelson-
Siegel and Svensson model all facing numerical challenges in the estimation of the model
parameters. ( ) outlines that the non-linear specification of the models seems
to cause numerical difficulties for optimisation methods in identifying robust estimates,
which might result in extreme values of the state variables. However, an estimation method
has to fit not only the term-structure of interest rates well, but also has to identify robust
parameters over time to allow a reasonable modelling of their evolution with the final
objective to generate plausible interest rate forecasts.

( ) analyse the calibration of the Nelson-Siegel and Svensson model in detail
identifying the specifications of the models that imply the numerical difficulties for non-
linear optimisation methods. They argue that the optimisation problem in the Nelson-Siegel
and Svensson model is not convex and has multiple local optima, thereby repeating stan-
dard optimisation techniques with various randomly drawn starting values the estimated
state variables vary widely from one estimation run to another. Moreover, they identify
multicollinearity among the factor loadings of the Nelson-Siegel and the Svensson model for
many different ranges of the decay parameters. This causes difficulties in uniquely identi-
fying parameter estimations which can result in extreme values of the state variables. The
multicollinearity inherent in the Svensson model specification is most evident examining
the factor loadings in the case that A} and A\? are (roughly) equal - see right plot of Figure

’ (2018).
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

3.1. These characteristics in the Nelson-Siegel and Svensson model specifications have been

identified by ( ) as well. In both studies, the multicollinearity problem is ap-
proached by imposing restrictions on the ranges of the decay parameter values. Moreover,
( ) test an optimisation heuristic, in particular the Differential Evolution

(DE), concluding that the DE method is more appropriate than a traditional optimisation
technique based on the gradient?.

Consequently, we extend the two step estimation approach by the Differential Evolution

(DE) method based on the studies from ( ). The DE method is implemented
in our model framework using the R-package NMOF described in ( ) that
accompanies the book ( ). Consistent with the underlying literature we

have experienced numerical difficulties with the more flexible estimation approach. The
numerical problems have caused the occurrence of extreme values in the time series of the
decay parameters and the state variables. In our model framework, extreme values in the
estimated time series of the state factors cause difficulties in their economical interpretation
and in the modelling of their dynamics and interactions. As outlined above, the collinearity
problem has been approached in ( ) and ( ) by imposing
restrictions on the value ranges of the decay parameters.

In particular, ( ) imposes general range restrictions on the decay parame-
ters Al of all examined models by limiting the curvature factor loadings to achieve their
maximum only for tenors between one and five years. On the contrary, ( )
determines general value ranges for i on which the factor loadings should result in accept-
able correlations. We have combined and adapted the described limitations increasing the
tenor range for the curvature hump due to longer maturities in our data sample?, and due
to the subsequent application on the Svensson model. Therefore, we define the following
general restrictions on the decay parameters: the curvature factor loadings of both models
- i.e. fo and f3 - are allowed to achieve their maximum for the tenors from 0.75 years to 7
years. The respective value ranges of the decay parameters are [0.2561, 2.3753].

The specific collinearity problem inherent in the Svensson model when A} and \? are
(roughly) equal has been approached by additional restrictions on the decay parameters.
In particular, ( ) limits A? in the way that the maximum of its curvature factor
loading f3 is at least twelve months shorter than the tenor value of the maximum of the
first curvature factor loading f2. On the other hand, ( ) impose limitations
on the Svensson model by segregating the value ranges of the two decay parameters \:. In
particular, they define the following restrictions in their DE parametrisation:

0< A <25, 25<M\ <55 (3.4)

This set up aims to limit the correlation among the factor loadings to an acceptable mag-
nitude. As we have implemented the DE method we follow the approach from
( ). Translating their methodology into our model framework we receive the following

3In contrast, ( ) uses non-linear least squares.
“Up to 30 years instead of 10 years in ( )
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

parametrisation for A:°:

0.4 <A, 018< )\ <04 (3.5)

However, we have refined the parametrisation, considering the general restrictions already
imposed above, as follows: )} is allowed to vary over the values which maximises the curva-
ture factor loading from 0.75 year to 3 years and A? respectively to maximise its curvature
loading from 3 years to 7 years. This limitation implies the following DE parametrisation:

0.5987 < Al < 2.3753, 0.2561 < A\? < 0.5987. (3.6)

The role of the decay parameters A} and A\? in the Svensson model are interchangeable in
terms of the curvature factor loadings as already highlighted by ( )S.

We have observed that the restrictions have a marginal impact on the goodness of the
in-sample fit in comparison to parametrisations with unrestricted decay parameters. But
on the other hand a significant positive effect on the robustness of the estimated state
variables and consequently on the out-of-sample forecasting performance of the models.
Investigations on different restrictions on the decay parameter have strengthened the asser-
tions of the positive effect of the approach’. However, only marginal differences have been
observed among the restriction variations therefore we have carried on our studies with
the described limitations. Nevertheless, this has been a first try to impose restrictions on
the decay parameters based on the work of ( ), ( ) and own
observations. Further investigation might be rewarding.

The explicit usage of the DE-method in R is comprehensively described in

( ) and ( ). The implemented DE method permits the specification of
lower and upper boundaries for the model parameters to be estimated. Therefore, we
can easily implement the limitations as defined above. In addition, the implemented DE-
method requires the Nelson-Siegel and Svensson models as functions having the model
parameters as arguments, and the objective function which has to be minimized. The
first step is done straightforward in R by defining the model specification in the equations
(2.10) and (3.1) as functions. As we will compare the in-sample fit of the models in terms
of the root-mean-squared error over the term-structure of interest rates we have defined
this measure as objective function in the DE-method. The measure is defined in equation
(5.1).

The two-step estimation approach with variable decay parameters will be referred to as
2-step var method.

5In their model framework the curvature loading is defined as follows: (% —e /A ).

50n the other hand, the A} affects the slope factor loading fi as well. Therefore, we have experimented
with reversed restrictions on the A! parameters. However, we have not identified significant differences
in the general performance of the models in terms of in-sample fit and out-of-sample forecasting. As a
consequence we present solely the results of the defined A-parametrisation.

"E.g. restrictions on X value ranges that have been obtained by deriving confidence intervals from the time

series of \i obtained by unrestricted model parametrisations.
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

3.2.3. One-step estimation approach

( ) reformulate the extended Nelson-Siegel model with the main goal
to integrate macroeconomic factors and to analyse the dynamic interactions between the
macro economy and the term-structure of interest rates. In this regards, they introduce
a state-space representation of the extended Nelson-Siegel model. To estimate the model
they suggest the Kalman filter which allows the simultaneous fitting of the observed inter-
est rates and the estimation of the underlying dynamics of the state variables. Therefore,
this estimation approach is referred to as one-step estimation approach. The estimates of
the model parameters are calculated using the log-likelihood of the observed interest rates
derived by the Kalman filter. Moreover, the Kalman filter delivers optimal filtered and
smoothed dynamics of the state variables. ( ) concludes that they clearly
prefer the one-step estimation approach to the two-step estimation approach. They argue
that the Kalman filter uses information from the observed interest rates in the estimation
of all parameters which produces correct inference via standard theory. In contrast, they
outline that the two-step estimation approach suffers from the fact that the parameter esti-
mation and signal extraction uncertainty associated with the first step is not acknowledged
in the second step.

In this regards, we would like to highlight that while ( ) prefer the one-
step estimation approach, Bolder adhere to the two-step estimation approach in
( ) and ( ). In particular, in ( ) it is stated that

they have experimented with the Kalman-filter approach but obtained superior results with
the two-step estimation method with respect to their purpose.

The state space representation of the extended Nelson-Siegel model as suggested by
( ) is defined as follows. The dynamics of the state variables {X;} = (Iy, s¢, ¢t)’
are described in the state equation,

L — ail a2 ais lt—1— ne(lt)
S —fs | = @21 a2 a3 | - | se—1—ps |+ | m(se) | s (3.7)
Ct — He azy a3 as3 Ct—1 — Hec ne(ce)

for t = 1,...,T. The measurement equation links the observed interest rates z; with the

unobservable state variables,

1— st 1— —ATy Y
z(m1) L= o e , er(71)
A 1 =2 e hm t €t(m2)
— )\TQ )\7'2 . St , (38)
: : : ¢
z(7n) 1 L= e N oAy € ()
ATN ATN
for t =1,...,T. The state-space representation is straightforward formulated in vector/-
matrix notation,
(X —p) = A(Xeoy — ) + 16, me ~ N(0,Q), (3.9)
z=AX;+ €, € NN(O,H) (310)
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

The white noise state (H) and measurement (Q) disturbances are assumed to be orthogonal
to each other and to the initial state vector. In addition, the covariance matrix H is assumed
to be diagonal whereas the covariance matrix () is assumed to be non-diagonal.
The log-likelihood of the state space representation in (3.8) - (3.10) is given by

0(0) =log p(zo,...,27|0) =

(T+1)N

T
D — log(2m) Z log [Fyji—1| + 62|t_1Ftﬁ1_1€t|t—1)a (3.11)
t=0

l\D\H

where 0 = {A, 1, Q, H, \} is the set of parameters to be estimated. Fy,_; = E[€t|t—1€£‘t,1]
is the conditional covariance matrix of the prediction errors e;;_1 = 2 — 2,1, where zy;_;
is the vector of interest rate forecasts given information up to time ¢ — 1 and z; are the
observed interest rates at time t.

In general, the implementation of the Kalman filter algorithm in programming language
is straightforward given a state space model. However, by recursively iterating over a big
data sample of observed interest rates the numerical stability and speed of the implemented
Kalman filter is important. ( ) reviews five alternative R-packages supporting
state-space estimation via Kalman filtering. In this paper, the features of the packages are
introduced and their abilities in terms of speed and parameter estimation using maximum-
likelihood estimation is examined. We have reviewed the five packages and have found
two packages most appropriate for our purposes, FKF ( ( ) and dlm
( ( )), whereby the later accompanies the book ( ). Both packages
provide functions for performing Kalman filtering on a given state-space model and initial
values, and returning the respective value of the log-likelihood function. The state-space
representations supported by the packages are various, however, the relevant set-up for our
purpose can be generalized as follows,

St = AStfl + ug, U~ N(O, Q), (3.12)

=CSi+uv, vy NN(O,H), (313)

where S; is the state vector, A the transition matrix, C' the measurement matrix and y; the
observations. Defining the latent state vector as mean-adjusted state variables S; = X; —

it becomes obvious that the transition matrices A in equation (3.9) and (3.12) are ident.
Moreover, inserting the state vector into the measurement equation (3.10) we get,

—Ap =y =AS +v, v ~N(0 H). (3.14)

Consequently, we need to use the mean-adjusted interest rates as observations y; = z; — A
in order to reformulate the state-space presentation in (3.9)-(3.10) that it is supported by
the R set-up.

Given the state-space equation and initial values, the R-packages dlm and FKF pro-
vide Kalman filter functions and the respective log-likelihood calculations. Therefore, we
only need to combine the mle() function of the standard stats4 package of R and the
log-likelihood results of the Kalman filter functions in order to find the minimum of the

14
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3. Variations of the extended Nelson-Siegel model and estimation methodologies

negative log-likelihood function. The mle () function uses the standard function optim()
from stats package that provides several optimisation methods for performing minimisa-
tion. In particular, we have applied the BFGS-method which is a quasi-Newton method
based on the well-known Broyden-Fletcher-Goldfarb-Shanno algorithm®. In certain model
specifications we have experienced extreme or negative values in the decay parameters
during the optimisation run causing the termination of the maximum likelihood estima-
tion. Therefore, we have used additionally for these cases the L-BFGS-B-method which
is a limited memory modification of the BFGS algorithm allowing box constraints on the
parameters to be estimated?.

In order to assess the adequateness of our state-space model specification in R we have
applied it on the yield dataset from Dichold et al. (2006). In this regards, there is a detailed
description for the implementation of the one-step Kalman filter estimation suggested by
Diebold et al. (2006) for MATLAB!Y. In order to identify plausible starting values of the
parameters to be estimated the two-step estimation approach is applied as suggested by
Diebold and Li (2006). Applying our model set-up in R on the yield data from Dicbold
et al. (2006) we obtain identical results in terms of parameter estimates and in-sample fit
of the yields.

In general, we have achieved consistent results with both packages in terms of parameter
estimates and log-likelihood values. Both packages can be used to receive smoothed time
series of the state vector as well. However, the Kalman filter in dlm provides robust
numerical stability as a form of square root filter is used which propagates factors of the
singular value decompositions as outlined by Tusell (2011). On the contrary, the package
FKF provides a fast and flexible implementation of the Kalman filter that significantly
outperforms the other package in terms of speed. In addition, in comparison to the other
packages it allows intercept vectors in the state-space representation. Using this feature we
can reformulate the state space presentation of the extended Nelson-Siegel model following
de Pooter (2007),

Xe=pu+AXi 1 +up, up NN(O,Q), (315)

Zt = CXt + Vg, Vg ~~ N(O, H), (316)

where p is interpreted as intercept vector. In this set-up we do not need to adjust the
interest rates by the mean. However, comparing the results to the original state space rep-
resentation we have identified no significant difference in terms of calculated log-likelihood
values and obtained smoothed state vector estimates.

The above described approach can be easily applied on the Svensson model. Therefore,
only the state-space model have to be adapted by adding the additional curvature factor c?
to the state vector as well as including the additional factor loading fo to the measurement
matrix.

Hereinafter, the one-step estimation approach will be referred to as 1-step method.

8https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

Shttps://en.wikipedia.org/wiki/Limited-memory_BFGS

Oyt tps://wuw.mathworks . com/help/econ/examples/using-the-kalman-filter-to-estimate-and-
forecast-the-diebold-1li-model.html

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm
https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://www.mathworks.com/help/econ/examples/using-the-kalman-filter-to-estimate-and-forecast-the-diebold-li-model.html
https://www.mathworks.com/help/econ/examples/using-the-kalman-filter-to-estimate-and-forecast-the-diebold-li-model.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3. Variations of the extended Nelson-Siegel model and estimation methodologies

3.2.4. One-step-two-step estimation approach

Recap that we have introduced further estimation methodologies due to the lack of the-
oretical background on the pre-specification of the decay parameters within the two-step
estimation approach suggested by Diebold et al. (2006). Moreover, as outlined in previous
section 3.2.3, Bolder and Liu (2007) prefer the two-step estimation approach, therefore,
we combine the one-step and two-step estimation approach. In particular, we use the esti-
mates of decay parameters obtained by the one-step estimation approach for subsequently
applying the two-step estimation approach with fixed decay parameters as described in
section 3.2.1.

This approach will be referred to as 1-2-step method.
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4. Extension of the Nelson-Siegel Class of
term-structure models with
macroeconomic factors

Main focus of the work has been the research of joint-macro term-structure models that
are appropriate and convenient for debt-strategy and risk management analysis of a Gov-
ernment. The research of the finance literature has brought us to working papers of the
Bank of Canada driven by David Bolder as outlined in section 1. Several papers examine
alternative term-structure models from a debt-strategy and risk management analysis per-
spective. Based on the preference of David Bolder on models motivated by the

( ) approach we have focused our analysis on the extended Nelson-Siegel model
and close further developments.
In this section we describe the used macroeconomic data and two approaches for incor-
porating macroeconomic factors into the extended Nelson-Siegel model that are suggested
by ( ) and ( ). The different frameworks are moti-
vated by the preferences of the authors in regards to the used estimation approach. As we
have outlined in previous section 3.2.3, while ( ) adhere to the two-step
estimation approach, ( ) reformulate the extended Nelson-Siegel model
into state-space representation and introduce a one-step estimation approach. The main
objective of their work has been the incorporation of macroeconomic factors in order to
formulate a joint-macro model.

4.1. Macroeconomic data

The macroeconomic factors mostly used in joint macroeconomic and term-structure mod-
elling are inflation, economic growth factors, and monetary policy instruments.

( ) use manufacturing capacity utilisation as level for real economic activity, the
federal funds rate as monetary policy instrument and the annual price inflation as inflation
rate. ( ) use output gap, annual inflation and a monetary policy rate
and extend the model framework in ( ) by including the growth in
potential output and total consumer price index as exogenous factors. Reviewing the set
of macroeconomic factors in the European Economic Area we select the annual inflation
¢ and output gap o; rate of the Economic and Monetary Union of the European Union
(EMU). The monetary policy instrument in our model framework is set by the European
overnight rate m; (EONIA) which is driven by the European Central Bank (ECB) policy
ratel.

'"EONIA (Euro OverNight Index Average) is the interest rate at which banks of sound financial standing in
the European Union (EU) and European Free Trade Area (EFTA) countries lend funds in the interbank
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4. Extension of the Nelson-Siegel Class of term-structure models with macroeconomic factors

Figure 4.1.: Macroeconomic factors
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Figure 4.1 displays the data sample of the macroeconomic variables. The inflation rates
are on a monthly basis, but the output gap rate is on a yearly basis. As a consequence
we need to interpolate the output gap rate to derive values on a monthly basis?. The
overnight rate EONIA is on daily basis, therefore we use the average within a month
in our model framework. The right plot in 4.1 demonstrates that the EONIA rate is
driven by the ECB policy rate. It is therefore reasonable to use it as the monetary policy
instrument in our approach. In this regards it has to be noted that the methodology
on the EONTA rate has been changed by ECB. Since October 2019 the euro short-term
rate (€STR), which reflects the wholesale euro unsecured overnight borrowing costs of
banks located in the euro area, and the new EONIA are published on a daily basis. It
is recommended by the working group on euro risk-free rates that market participants
gradually replace the EONIA with €STR making the latter to their standard reference
rate?. The macroeconomic data has been made available for this research by the Austrian
Treasury (Osterreichische Bundesfinanzierungsagentur)?.

4.2. Joint-macro term-structure model following

(2007)

The extended Nelson-Siegel model suggested by ( ) is easily formulated
as joint-macro model. The time series of the state variables X; obtained in the first step
of the two-step estimation approach is enlarged with the macroeconomic variables inflation
iy, output gap o, and monetary policy instrument m; ,

{Xt} = (lt7 Sty Ct, ita Ot, mt)/'

money market in euro - see https://www.emmi-benchmarks.eu/euribor-eonia-org/about-eonia.html.
2A linear approach is used.
3For more details see https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/
euro_short-term_rate/html/eurostr_overview.en.html.
“https://www.oebfa.at/en/
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4. Extension of the Nelson-Siegel Class of term-structure models with macroeconomic factors

Obviously, in this approach there is no direct link between the macroeconomic factors and
the interest rates. Instead, the macroeconomic variables assist in the description of the
dynamics of the state variables by applying a stochastic process on the enlarged time series
{X,;}°. The straightforward approach to model the dynamics and interactions of the state
variables and macroeconomic factors is to use a vector autoregression model (VAR).

This approach is easily applied on the Svensson model by enlarging the respective time
series of the estimated state vectors,

{Xt} = (lta St, Ctl> C?a ita Ot, mt),-

In the examination of the joint-macro models ( ) have identified that
constant-parameter assumption on the VAR specifications is not ideal. They argue that
facing different economic regimes in the macroeconomic and interest rates data, unadjusted
parametrisation of the VAR models using the entire data over all regimes would be likely
unreasonable. The main concern is that the forward looking description of the interest
rates does not reflect the current economic regime at the end of the data but rather a
weighted average of the economic regimes occurring in the data. In this regards,

( ) approach this problem by incorporating time-varying parameters in the VAR
models. In particular, the intercept vectors are linked to exogenously imposed economic
regimes®. Depending on the current regime in the macroeconomic factors the intercept
vector of the VAR specification changes. ( ) concludes that permitting
model parameters to vary-over-time improves the forecast performance of a term-structure
model.

In order to investigate the effects of time-varying parameters in the VAR specification we
will apply a simplified approach in the forecast analysis.

4.3. Joint-macro term-structure model following

The main objective in ( ) has been a formulation of a joint-macro model
that provides characterisation of the dynamic interactions among macroeconomic key fig-
ures and the term-structure of interest rates. Therefore, they have reformulated the ex-
tended Nelson-Siegel model into a state-space model as described in the previous section
3.2.3. In order to characterise the interlinks among the state variable and the macro econ-
omy they included three macroeconomic factors - the set of macro variables is outlined in
4.1. The incorporation of the macro variables into the Nelson-Siegel state space model is
again straightforward by enlarging the state vector {X;} = (Is, 5¢, ¢t, it, 07, m¢)" in equations
(3.7)-(3.10) and appropriately adapting the dimensions of the respective matrices and of

°In contrast, the joint macroeconomic and term-structure model in ( ) links the interest
rates and macroeconomic factors directly. However, as we have outlined in section 1, ( )
examines and compares this model to joint-macro models motivated by the extended Nelson-Siegel model
and concluded superiority of the Nelson-Siegel approach in terms of out-of-sample forecasting.

5The regimes used by ( ) are identified by ( ) in the Canadian inflation and
output gap rate.
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4. Extension of the Nelson-Siegel Class of term-structure models with macroeconomic factors

Figure 4.2.: Swap Rates
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the mean vector. The measurement matrix is enlarged by three additional columns insert-
ing zero values. Therefore, the macroeconomic variables have no direct link to the observed
interest rates similar to the set-up defined by Bolder and Liu (2007).

However, the application of the Kalman filter on the extended state-space representation
including macroeconomic factors is not straightforward. The state variables in (3.7) -
(3.10), such as in this case of the level I;, slope s; and curvature ¢, are in general not
observable and derived in a state-space model based on initial values of the states and
given observations, in our case interest rates. The unobserved state variables are linked
to the observed interest rates by the measurement equations in (3.8) and (3.10) and are
iteratively updated by the Kalman filter given the observations.

The macroeconomic variables on the other hand are observed variables providing infor-
mation on the current macro economy regime. The state-space model implemented in R,
as introduced in section 3.2.3, assumes that the state variables are unobserved variables
that have to be filtered or smoothed given the observed interest rates. We have not found
a straightforward solution to incorporate the macroeconomic variables as observed state
variables. Therefore, we leave this extension of the state-space model open for other re-
search work. Nevertheless, the estimated state variables and model parameters estimated
in the non-macro setting of the state-space model will be used for joint-macro framework
as suggested by Bolder and Liu (2007) and described in the previous section.

4.4. Interest rate data

The Nelson-Siegel model is generally applied on yield curves or zero-coupon rates derived
from Government bond prices as suggested in the researched finance literature. In contrast,
we apply the model on end-of-month swap rates with tenors 7; € 7 = {i, %, 1,2,5,10,20,30}
in years. The data sample of the swap rates starts in January 1999 and ends in August
2017. Figure 4.2 plots the evolution of the term-structure of the swap rates and the average
swap rates curve over the time period. Inspection of the left plot reveals that the term-
structure of the swap rates assumes a variety of shapes over time, including mainly steep
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4. Extension of the Nelson-Siegel Class of term-structure models with macroeconomic factors

or flat upwarded curves and rarely humped or inverted curves. The right plot illustrates
that the average swap rates curve has an increasing and concave shape. The swap rates
data has been made available for this research by the Austrian Treasury.
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5. In-sample fit

In this section we examine the extended Nelson-Siegel and Svensson models in terms of
their ability to reproduce the dynamics of the term-structure of interest rates within our
data. In order the compare the goodness of the in-sample fit we define several measures
that are commonly used in finance literature. Moreover, we investigate the dynamics of
the estimated state variables. We expect to identify the characterisations of the individual
state factors introduced in ( ).

Moreover, ( ) and ( ) use diagnostic tools to
analyse the dynamic interactions among the term-structure of interest rates and the macro
economy. We follow this approach and apply the impulse response function in the VAR
specifications of the models.

5.1. Overall in-sample fit and dynamics in the term-structure

In the examination of the overall in-sample fit, we compare descriptive statistics applied
on the residuals between the actual swap rates sw; and the fitted swap rates sw; obtained
by our implemented models. In order to measure the ability of the models to fit the term-
structure we use the root-mean-square error calculated over the term-structure at a specific
point in time ¢,

Y mer(SWi(T) — Swt(ﬂ'))z'

RMSEC'I.LT’U@ —
e Bt

Descriptive statistics of RMSE{"" over time ¢ summarise the overall fit of the models
to the term-structure. Moreover, we include measures to investigate the in-sample fit of
the models at specific tenors of the term-structure, namely, the root-mean-square error
(RMSE) on the individual tenors over time,

(5.1)

RMSE, = \/ Tilonn) o) (52)

with #7T as the number of time points in our data sample, and the mean of the residuals
at the individual tenors over time,

Mean,, = #1T ;(sh}t(n) — swy(7;)). (5.3)

Table 5.1 presents descriptive statistics of RMSE{f*"™¢. Comparing the values associated
to the Nelson-Siegel respectively to the Svensson model it is obvious that the latter is
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5. In-sample fit

Table 5.1.: In-sample fit over term-structure curve: We present the goodness of in-sample fit in
terms of the overall fit to the term-structure curve. The table shows descriptive statistics of the
root-mean-square error over the term-structure. The values are in percent.

Nelson-Siegel Mean Median Std. Dev. Min. Max.
2-step fix 0.0752 0.0682 0.0386 0.0274 0.2730
2-step var 0.0640 0.0568 0.0324 0.0194 0.2055
1-step 0.0910 0.0825 0.0433 0.0262 0.2939
1-2-step 0.0734 0.0630 0.0399 0.0195 0.2668
Svensson Mean Median Std. Dev. Min. Max.
2-step fix A 0.0548 0.0454 0.0328 0.0147 0.1944
2-step var 0.0469 0.0379 0.0324 0.0095 0.1801
1-step 0.0836 0.0665 0.0556 0.0179 0.3375
1-2-step 0.0571 0.0457 0.0387 0.0116 0.2315

marginal superior over all descriptive statistics of RMSE{f“"™¢. The figures on the individ-
ual model specifications reveal that the best in-sample fit is achieved by the 2-step var
method in both models. These observations are consistent with the results of

( ) indicating that more flexible model specifications achieve a better goodness of the
in-sample fit. However, the improvements by the more flexible estimation methodology
are not significant and the 2-step fix method is overall competitive. Interestingly, the
1-step method is outperformed by the other estimation approaches in terms of overall fit
of the term-structure. Recap that the 1-2-step approach uses the estimates of the decay
parameters obtained by the one-step estimation. Therefore, the results indicate that the
smoothed state variables differ from the state variables obtained by the 1-2-step estima-
tion approach. This might reflect the fact that the 1-step method uses information from
the observed interest rates within the Kalman filter as outlined by ( ).

Table 5.2 presents the root-mean-square error at individual tenors RMSE;,, allowing a
more detailed analysis of the model’s in-sample fit per individual tenor. It reveals that
the Svensson model slightly outperforms the Nelson-Siegel model on the majority of the
tenors. Moreover, one can see that the 1-step method is competitive or even superior to
the other model specifications at most of the maturities, especially in the Svensson model
set-up. But, on the contrary, it is inferior on the 2 and 30 years tenors which most likely
cause the weaker overall in-sample fit observed in Table 5.1.

Until now, our analysis has not provided any insights if the models underestimate or over-
estimate the swap rates observed in our data. Therefore, we investigate the mean of the
residuals per tenor, Mean,,. Positive values indicate that the swap rates are overestimated
at tenor 7; and vice versa.

Figure 5.1 presents the measure over the tenors for the Nelson-Siegel and Svensson model
estimated by the different estimation methodologies. It reveals that among the two-step
estimated model specifications there are no significant differences in regard to the sign and
magnitude of the measure Mean,, over the tenors. Starting with the underestimation of
the short term tenors 3M and 6M by the models, the sign of the Mean,, measure changes
over the maturity. In summary, the models underestimate the swap rate at the tenors
3M, 6M, 2Y, 10Y and 20Y, and overestimate the swap rates at the tenors 1Y, 5Y and
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5. In-sample fit

Table 5.2.: In-sample fit over tenors: We present the goodness of in-sample fit in terms of the fit over
the tenors. The table shows the root-mean-square error per tenor 7;. The values are in percent.

Nelson-Siegel ‘ Svensson
2-step 1-step ‘ 2-step 1-step
Tenor fix var 1-step  2-step ‘ fix var 1-step  2-step

3 months 0.0722 0.0420 0.0949 0.0828 | 0.0165 0.0226 0.0031  0.0366
6 months 0.0204 0.0292 0.0000 0.0194 | 0.0247 0.0391 0.0140 0.0175
1 year 0.1264 0.0830 0.1179 0.1354 | 0.0706 0.0629 0.0223 0.0965
2 years 0.1176 0.1142 0.1739 0.1065 | 0.1007 0.0686 0.2315 0.1117
5 years 0.0780 0.0821 0.0000 0.0624 | 0.0710 0.0605 0.0000 0.0651
10 years 0.0630 0.0387 0.0439 0.0588 | 0.0430 0.0346 0.0374 0.0276
20 years 0.0742 0.0791 0.0000 0.0710 | 0.0758 0.0729 0.0002 0.0752
30 years 0.0779 0.0633 0.1617 0.0806 | 0.0632 0.0712 0.1577 0.0624

30Y. Moreover, the plot strengthens the observations on the 1-step estimation approach.
While, both models are inferior at the 2 years and 30 years tenors, they outperform the
two-step estimation specifications at the short tenors and from tenors 5 to 20 years.

In the following we analyse the ability of the models to capture the dynamics and various
shapes of the term-structure within our data in more detail. Therefore, figure 5.2 presents
the evolution of RMSE{"""¢ over time t associated to the Nelson-Siegel and Svensson
specifications. At first the plot strengthens the observations that the more sophisticated
Svensson model outperforms the Nelson-Siegel model. Over a large part of the data the
Svensson model is clearly superior to the Nelson-Siegel model. Among the different estima-
tion methodologies the 2-step var approach achieves not surprisingly over the entire data
the best in-sample fit over the term-structure. We will observe in a subsequent analysis
that the superiority in the in-sample fit is connected with less robust dynamics of the state
variables.

A detailed analysis on the evolution of RMSE; over time resulted from the 1-step and
1-2-step methods brings interesting insights. At first it strengthens the observations from
the tables that the 1-step approach is outperformed by the other approaches in terms of
the goodness of in-sample fit. Only at the end of our data it gets competitive. Moreover,
in both models the 1-2-step method gets superior at the latest 5-years of our data only
slightly beaten by the 2-step var approach. The results of the 1-2-step is therefore
interesting as it improves the in-sample fit of the two-step estimation approach with pre-
specified decay parameters as suggested by ( ). This indicates that the
information on the decay parameters obtained by the one-step estimation approach has
a beneficial impact on the models. Going into the detail of the estimation results of the
1-step estimation approach, the decay parameter of the Nelson-Siegel model is estimated
by A = 0.4803. The linked curvature factor loading achieves its maximum at the 3.7 years
tenor. In the Svensson model the decay parameters are estimated by the 1-step method
as follows: A' = 0.9953 and A2 = 0.4819. The A-values can be interpreted in the way
that the curvature factor loading f» achieve its maximum at 1.8 years tenor, whereas the
curvature factor loading f3 achieve its maximum at 3.7 years tenor. The differences of the
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5. In-sample fit

Figure 5.1.: In-sample fit over tenors
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estimates of the decay parameters to the pre-specified values, as well as the observations
on the in-sample fit analysis indicate that the values of the decay parameters may contain
beneficial information on the shape of the term-structure of the interest rates.

Coming back to the bigger picture on the in-sample fit of the term-structure, the most
general observation in Figure 5.2 linked to all models is the substantial volatility on the
goodness of in-sample fit over time. All model specifications have particular difficulties to
fit the term-structure in the time period from 2008 to 2012 within our data. Reviewing the
swap rates data sample in the left plot of Figure 4.2 one can see that the term-structure
becomes very flat in 2008 and 2009 followed by a massive decrease of the short tenor swap
rates. These extraordinary dynamics may be linked on a very basic way to the global
financial crises 2007-08 and the subsequent European debt crisis’.

However, the dynamics in the term-structure during this period obviously cause difficulties
to our implemented models.

In this regards, figure 5.3 presents various shapes of the term-structure and the average
swap rate curve appearing in our data sample. It shows that the models are overall able to
reproduce the average swap rate curve and the variety of shapes of the term-structure. The
plot in the second row and column presents a typical shape of the term-structure appearing
in the time period around 2009. Consistent with the results in Dicbold and Li (2006) it
reveals that the models have difficulties fitting the term-structure when it is dispersed by
multiple interior minima and maxima. However, overall the models perform a reasonable
job describing the dynamics of the term-structure in our data.

!See e.g. https://www.ecb.europa.eu/mopo/decisions/html/index.en.html, https://en.wikipedia.
org/wiki/Financial_crisis_of_2007-08 and https://en.wikipedia.org/wiki/European_debt_
crisis.
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5. In-sample fit

Figure 5.2.: In-sample fit over the term-structure over time
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Recapitulating the examination of the models in terms of the in-sample fit, we can conclude
that the more sophisticated Svensson model slightly outperforms the Nelson-Siegel model.
The Svensson model is superior at the majority of the data sample including time periods
with dispersed term-structure curve. Introducing more flexible estimation methodologies
allowing the decay parameters to vary over time has improved the in-sample fit of the
models. However, over the whole data sample the improvement of the in-sample fit is only
marginal. Therefore, considering the in-sample fit performance of the models we can outline
that the more straightforward two-step estimation approach with fixed decay parameters
is competitive to the complex and numerical expensive non-linear estimation techniques.
The results of the one-step estimation approach are somehow two folded. On the one hand it
is significantly superior over several tenors considering the root-mean-square error. On the
other hand it is inferior at the tenors of 2 years and 30 years. However, we have identified
that the estimation of the decay parameters by the one-step estimation approach has a
beneficial impact on the models. In particular, a combined approach of the one-step and
two-step estimation methods does a reasonable job in terms of in-sample fit. Considering
also the lack of theoretical background on the pre-specification of decay parameters in the
two-step estimation approach suggested by Diebold and Li (2006), the one-step estimation
approaches are reasonable methods within the estimation methodologies.

5.2. Dynamics of the state variables

In this section we analyse the dynamics of the estimated state variables with the objective
to identify their characterisations introduced in Diebold and Li (2006), and to observe
differences in the dynamics resulting from the individual estimation methodologies.
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5. In-sample fit

Figure 5.3.: In-sample fit on the average swap rate curve and selected swap rate curves
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5. In-sample fit

Figure 5.4.: Nelson-Siegel model - dynamics of the state variables
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Recap that in the two-step estimation approaches the state variables are obtained using,
either ordinary least squares after pre-specification of the decay parameters, or Differential
evolution estimating the decay parameters simultaneously. On the other hand, the Kalman
filter in the one-step estimation approach provides smoothed state variables based on the
information of the observed swap rates in our data.

Figure 5.4 presents the dynamics of the state variables of the Nelson-Siegel model obtained
by the different estimation methodologies. The level factors are obviously most persistent
and identical to each other. In comparison to the dynamics of the swap rates in the left
plot of figure 4.2 one can see that the decrease of the level factors is similar to the declining
of the general level of the swap rates. This observation is consistent with Diebold and Li
(2006) that the parallel shifts in the term-structure are reflected in the dynamics of the
level factors.

The slope factors seem also to be quite robust over the entire data with few exceptions in
the time period from 2009 to 2012. The interpretation of the values associated to the slope
factors can be done reviewing the dynamics of the swap rates in Figure 4.2 as well. In
particular, flat swap rate curves imply low negative slope values sy, whereas high negative
slope values occur during time periods with steep swap rate curves. Again, this is consistent
with the results in Diebold and Li (2006) that the slope factor describes the steepening or
flattening of the term-structure.

On the other hand, the dynamics of the curvature factors are exposed to substantial volatil-
ity over time. In particular, the numerical instability in the non-linear model specification
of the Nelson-Siegel model is evident observing the dynamics of the curvature factors ob-
tained by the two-step estimation approach with variable decay parameters. The dynamics
are extraordinary, especially in the time period from 2009 to 2012. Overall, it is hardly
possible to observe the characterisation of the curvature factor defined in Diebold and L
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5. In-sample fit

Figure 5.5.: Svensson model - dynamics of the state variables
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(2006) by comparison to the dynamics of the swap rate curves.

To strengthen the assertions on the characteristics of the state variables in the Nelson-
Siegel model, Dichold and Li (2006) define empirical versions of the level l;, slope 3 and
curvature ¢ of a term-structure curve. The empirical versions are derived from the rates of
the term-structure at different tenors, the empirical level is defined as the 10-year interest
rate. Moreover, the empirical slope is defined as the 10-years minus the 3-months interest
rates, and the empirical curvature as twice the 2-year interest rates minus the sum of the
3-month and 10-year interest rates. Calculating the correlation between the estimated
Nelson-Siegel parameters and the empirical versions we get high correlation values close to
+ 1 consistent with the results from Dicbold and Li (20006).

Firgue 5.5 presents the dynamics of the state variables of the Svensson model obtained by
the different estimation methodologies. The insights drawn from this figure are comparable
to the Nelson-Siegel model.

Therefore, we can conclude for both models that the level and slope factors are robust and
mostly consistent among the different estimation methods.

On the other hand, the dynamics of the curvature factors are exposed to significant volatility
and it is hardly possible to identify their characterisation by analysing the dynamics of
the swap rates. Moreover, the less robust dynamics of the curvature factors obtained
by the 2-step var approach indicate the numerical difficulties caused by the non-linear
specifications of the models. Nevertheless, in order to present the positive impact of the
restrictions on the A-parametrization introduced in section 3.2.2, Figure 5.6 presents the
dynamics of the state variables in the Svensson model obtained by the two-step estimation
approach with unrestricted decay parameters. Obviously the volatility and magnitudes
in the state variables are substantially greater, especially in the curvature factors. But
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5. In-sample fit

Figure 5.6.: Svensson model - dynamics of the state variables including two-step estimation
approach with unrestricted decay parameters
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also the dynamics of the slope factor face extreme values multiple times. Therefore, we
can conclude the beneficial impact of the imposed restrictions on the decay parameters
suggested by de Pooter (2007) and Gilli et al. (2010).

5.3. Dynamic interactions among state variables and
macroeconomic factors

One of the main motives for the incorporation of macroeconomic variables into a term-
structure modelling framework is to analyse the dynamic interactions among the term-
structure of interest rates and the macro economy. In this regards, Dichold et al. (20006)
and Bolder and Deeley (2011) use as a diagnostic tool the impulse response function. The
impulse response function allows us to analyse the effects of standard shocks on a state vari-
able to other variables. In order to perform this analyses we follow Bolder and Liu (2007)
and enlarge the estimated time series of the state variables by the macroeconomic factors
and apply a VAR model. In this section and subsequently in the out-of-sample forecast
analysis we use the R-package vars accompanying article Pfaff (2008b) and the respective
book Pfaff (2008a). This package delivers functions for estimating vector autoregressive
models (VAR) and performing various diagnostics, such as the impulse response function
and forecast error variance decomposition. In order to compare the results with Diebold
et al. (2000) and Bolder and Decley (2011) we focus on the Nelson-Siegel model.

Figure 5.7 presents the orthogonal impulse responses among the state variables and macroe-
conomic factors. Starting with the macroeconomic variables we analyse the bottom right-
hand 3x3 matrix.
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5. In-sample fit

Figure 5.7.: Impulse response function
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5. In-sample fit

Overall, one can see that a positive shock on the output gap is followed by a positive
response of inflation and the EONIA as overnight rate. While the output gap rate and
overnight rate display negative responses to a standard shock on the inflation. Moreover,
we observe only marginal impact on the output gap rate and inflation rate after a change in
the overnight rate. The results are overall very similar to ( ) though
the responding variables need longer to fall back to their initial value in our analysis.

( ) have examined the dynamic interactions of the macroeconomic variables
in their model framework to monetary policy macroeconomic models and find a general
consistency. Therefore, we assume that the set-up of our model framework and the selected
macroeconomic variables are reasonable.

Now, we are interested on the dynamic interactions between the state variables of the
Nelson-Siegel model and the macro economy. The 3x3 matrix in the bottom left-hand
corner presents the responses of the state variables resulted from standard shocks on the
macroeconomic factors. In this regards, remind the charaterisations of the state factors
described in section 2 and examined in our data in previous section 5.2. The level factor
displays only modest responses to shocks on output gap rate and overnight rate. On the
other hand, the inflation rate has a long lasting negative effect on the level factor which
might reflect the steady decrease on the overall level of the swap rates which is highly
correlated with the level factor.

The slope factor shows a positive response to a shock on the output gap rate which reflects
a flattening of the term-structure. The argumentation in ( ) seems
reasonable also for our results. In fact, the increase in the output gap leads to an increase
in the overnight rate as well, as both are highly correlated with the short-term tenors of
the term-structure this leads to an increase of the short term tenors and a flattening of the
curve.

In this regards, the negative response of the slope factor to a shock on the inflation rate
can be argued again similarly to ( ). Changes in the inflation rate
are followed by negative responses in the output gap and overnight rate which leads to
a steepening of the term-structure. The negative response of the slope factor reflects the
steepening of the term-structure.

On the other hand, the marginal negative response of the slope factor to a positive shock
on the overnight rate is quite counterintuitive.

The response of the curvature factor to shocks on the macroeconomic variables is more
difficult to interpret. In general, the curvature factor displays a positive response to a
shock on the output gap and a negative response to a shock on the inflation rate. A shock
on the overnight rate produces no substantial response on the curvature factor.

While ( ) observe that the curvature factor shows only marginal responses
to shocks on the macro variables, we have identified respective interactions to the macro
economy similar to the results in ( ).

The top right-hand 3x3 matrix displays the responses of the macro economy following stan-
dard shocks on the state variables of the Nelson-Siegel model. A shock to the level factor
causes overall positive responses to the macroeconomic variables. Especially the overnight
rate shows a persistent response which is consistent with the result of ( ),
while ( ) has identified marginal impact of the level factor to the
macro economy. Shocks on the slope factor have generally less impact on the macro econ-
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5. In-sample fit

omy except on the overnight rate equivalent with Bolder and Deeley (2011). A positive
shock on the slope factor reflects a flattening of the term-structure curve. Therefore, the
positive response of the overnight which leads to an increase of the short-term rates of the
term-structure and a flattening of the curve is reasonable. The responses to a shock on the
curvature factor allow no clear intuitive interpretation.

In the top left-hand 3x3 we examine the interactions among the state variables. The slope
and curvature factors return back to their initial value in a short period after the shock on
the level factor. The negative response of the slope factor indicates the initially steepening
of the term-structure after a positive shock on the level factor.

A shock on the slope factor generates a marginal but persistent increase in the level factor
and a negative response of the curvature factor. Finally, a curvature shock produces a
marginal but persistent increase in the level factor and an oscillating response of the slope
factor around the initial value with marginal magnitudes.

Overall we have find in the examination of the impulse response function reasonable dy-
namics among the macroeconomic factors consistent with Dichold et al. (2006) and Bolder
and Deeley (2011). This indicates an appropriate selection and inclusion of macroeconomic
information in our model framework. Moreover, the results indicate strong evidence of
dynamic interactions among the macro economy and the state variables. Though not all
observations in the dynamic interactions can be intuitively interpreted the impulse response
function provides a useful tool to analyse the dynamics among the model components.
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6. Out-of-sample forecasting

The main motive for the introduction of the extended Nelson-Siegel model by

( ) and subsequent extensions in other finance literature has been the formalisation
of a term-structure model that does a reasonable job in describing and forecasting the
term-structure of interest rates.
In this section we focus on the latter and examine the introduced models and its speci-
fications in terms of their ability to forecast the term-structure of the swap rates within
our data. In finance literature, the out-of-sample forecasting capability of term-structure
models has been assessed in several aspects. We will partially follow the forecast analysis
of ( ) whose results have motivated this research to focus on the ex-
tended Nelson-Siegel model and close variations. Inter alia, they compare the joint-macro
term-structure models in terms of their forecast performance of the entire term-structure
of interest rates and on individual tenors. As general benchmark they compare the models
to the random walk assumption which postulates that the interest rates are martingales,
i.e. that the conditional expectation of future interest rates for all forecasting horizons is
the current term-structure curve. As we have introduced the extended Nelson-Siegel model
as base model we use the original model approach suggested by ( ) as
benchmark and compare it to the introduced alternative model variations.
In the following, we introduce the forecast procedures for the models. Subsequently we
present the results of the analysis on the forecast ability of the models. Based on the
insights we will introduce an approach motivated by ( ) in order to take
into account different economic regimes occurring within our data.

6.1. Forecasting procedures

In our model framework the forecasting of the swap rates require forecasts of the state
variables.

Following ( ) we model the state variables enlarged by the macroeco-
nomic factors with VAR models. Therefore, we use the R-package vars supplementing the
article ( ) and the book ( ). The package delivers several functions

to model time series by vector autoregressive models (VAR) as well as diagnostic tools to
analyse VAR specifications and to identify plausible lag selection of the models. We have
identified that the forecast performance of the models is overall robust using plausible VAR
specifications with different time lags. In particular, the main characterisations in terms of
forecasting performances among the model specifications of the Nelson-Siegel and Svensson
model remains the same using different lags in the VAR models, therefore we present here
the results obtained by VAR models with two time lags.

In finance literature, the majority of the forecast analyses use initial estimation periods of
10 to 15 years. We follow this approach and start the out-of-sample forecasts in our data
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6. Out-of-sample forecasting

at January 2009, this means we have ten years and 120 observations to initially estimate
the VAR models. The estimated VAR specifications are used to predict the state variables
for the forecast horizons of 1, 3, 6, 12 and 24 months. Finally, the forecasts of the state
variables are inserted in the model formulations (2.10) or (3.1) with the respective A-values.
After each forecast step, we add one month to the underlying data period for estimation and
forecast the swap rates for the defined forecast horizons as described above. The progress
is done iteratively until the end of the entire data is reached. In the following, certain
specifics in the forecast procedures induced by the different estimation methodologies are
described.

The forecast procedure for the model specifications with two-step estimation approaches
is quite straightforward. We use the information of the obtained state variables until the
point in time ¢ and forecast their values with the VAR model for the forecast horizons.
Subsequently we insert the forecasts of the state variables into equation (2.10) or (3.1)
with the respective decay parameters. For the approach with fixed decay parameters these
are the A parametrisations defined in section 3.2.1.

For the approach with variable decay parameters ( ) suggests out of alterna-
tive choices to use the median of the \! estimates known up to time ¢. This is explained by
the observation that the median of the time-series of decay parameters estimates provide
more stable results than the alternatives using the mean or the latest decay parameter
estimate.

However, we have identified that this approach is not overall competitive in our model
framework and therefore we have used the most recent estimates at time ¢ of the decay
parameters as well. As a consequence the decay parameters are updated at each iterative
step forecasting the swap rates. Hereinafter, the approaches are referred to as 2-step
var-m using the median and 2-step var-1 using the latest decay parameter estimate.

In terms of the one-step estimation approaches the out-of-sample forecasting is more sophis-
ticated. If one would straightforward use the smoothed state variables estimated with the
one-step estimation approach one would take into account information of observed interest
rates of the entire data sample actually not known at the time of the out-of-sample forecast.
Therefore, one need to perform the one-step estimation approach on the sub-data sample
up to time ¢, estimate a VAR model on the obtained smoothed state variables and proceed
as normal to forecast the swap rates over the forecast horizon. In the 1-2-step method
we have to apply the VAR model on the dynamics of state variables which are derived by
ordinary least squares given the A-values estimated by the 1-step estimation approach on
the sub-sample. For both approaches the decay parameters for the calculation of the swap
rate forecasts are the ones estimated by the one-step estimation. At each forecast step the
values of decay parameters are iteratively updated.

6.2. Out-of-sample forecast results

In order to compare the forecast ability of the models we follow ( ) and
examine the models in terms of their forecast performance of the term-structure and the
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6. Out-of-sample forecasting

interest rates at the individual tenors. The measures are already defined by equations (5.1)-
(5.3) and we only need to insert the forecast errors, namely e; i +(7) = sw(1;) — swi(T;).
Table 6.1 presents the out-of-sample forecast performance of the models in terms of the
goodness of the overall term-structure forecasts. The model specifications outperforming
the original extended Nelson-Siegel model 2-step fix are highlighted. A variety of obser-
vations can be made from the table. At first, we note that no combination of model and
estimation methodology extraordinarily outperforms the original dynamic Nelson-Siegel
model as suggested by ( ) and extended by macroeconomic factors. The
Svensson model remains in the forecast analysis in general the marginal superior model in
describing the term-structure of the swap rates. However, we find that the slight superi-
ority of the Svensson model is not linked to a beneficial characterisation in the dynamics
of the four state factors allowing better forecasts, but rather to the marginal better fit of
the term-structure as identified in the in-sample fit analysis in section 5.1. Examining the
various model specifications one can see that the results of the more flexible models with
variable decay parameters are over the forecast horizons not competitive to the 2-step fix
method. Especially, the 2-step var-m approach is not competitive and even produces in-
ferior results in the Nelson-Siegel model at short forecast horizons. In the Svensson model
the results of the flexible model specifications are more robust but overall not competi-
tive to the other variations. Interestingly, both the 2-step var-m and the 2-step var-1
specifications outperform the other methods at the 24-month forecast horizon.

The estimation methods based on the one-step approach using the Kalman filter are over
all forecast horizons competitive to the original extended Nelson-Siegel model. The stable
but not superior results of the 1-step method indicate that the smoothed state variables
obtained by the Kalman filter do not have substantial beneficial properties improving the
forecast performance of the models.

On the other hand, the results of the 1-2-step method indicate that the combination of
using estimates of the decay parameters and subsequently applying ordinary least squares
provide reasonable results. While the 2-step fix approach assumes the pre-specified
values of the decay parameters to be constant over time, the 1-2-step method use in each
forecast step the latest information on the decay parameters slightly improving the forecast
performance in the Nelson-Siegel model. This indicates that the estimates of the decay
parameters may contain beneficial information on the current shape of the term-structure
in the data.

In this regards, figure 6.1 presents the evolution of the decay parameters within the models
estimated by the 1-step and the 2-step var estimation approaches. Both plots reveal
that the one-step estimation approach gives varying but robust estimates of A over the
forecast period. While the A\ values of the flexible two-step approach display a substantial
volatility in the Nelson-Siegel model, especially in the time period from 2009 to 2012. In the
Svensson model, the time-series of the A-values estimated by the flexible 2-step approach
are more stable with several extreme values. In general, the deviation to the pre-specified
A-parametrisations and the varying dynamics indicate that the decay parameters reflect
certain characteristics of the term-structure curve as well. But in terms of the 2-step
var method it also displays the numerical instability of the decay parameters due to the
non-linear specification of the models as described in section 3.2.2. ( ) has
suggested to use the median of the estimated A-values based on observations of achieving
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6. Out-of-sample forecasting

Table 6.1.: Out-of-sample term-structure curve forecasts: We present the goodness of forecast
performance in terms of the overall fit to the term-structure curve. The table shows descriptive statistics
of the root-mean-square error over the term-structure. The values are in percent.

Nelson-Siegel Svensson
Mean Median SD Min Max ‘ Mean Median SD Min Max
One-month forecast
2-step fix 0.1741 0.1558  0.0772 0.0690 0.4996 | 0.1639 0.1446 0.0778 0.0624 0.4921
2-step var-1 0.1763 0.1608  0.0888 0.0512 0.5095 | 0.1799 0.1632  0.0844 0.0626 0.5131
2-step var-m  0.2718 0.2399  0.1531 0.0788 0.7369 | 0.1904 0.1715 0.0973 0.0539 0.5218
1-step 0.1819 0.1629  0.0857 0.0557 0.5593 | 0.1837 0.1594  0.0903 0.0562 0.5599
1-2-step 0.1709 0.1508 0.0794 0.0620 0.4998 | 0.1664 0.1419 0.0793 0.0517 0.4944
Three-month forecast
2-step fix 0.3321 0.3038  0.1469 0.0827 0.8883 | 0.3260 0.2940 0.1539 0.0799 0.8846
2-step var-1 0.3536 0.3422  0.1715 0.0786 0.9079 | 0.3653 0.3308 0.1660 0.0820 0.9416
2-step var-m  0.3895 0.3489  0.1899 0.1207 0.9155 | 0.3608 0.3536  0.1648 0.0816 0.8899
1-step 0.3325 0.3262  0.1496 0.0833 0.9112 | 0.3365 0.3213 0.1552 0.0773  0.9006
1-2-step 0.3307 0.3033 0.1481 0.0803 0.8912 | 0.3277 0.3057 0.1530 0.0874 0.9007
Six-month forecast
2-step fix 0.5730 0.5354  0.3020 0.1128 1.6052 | 0.5701 0.5338 0.3148 0.0986 1.7051
2-step var-1 0.6229 0.5470  0.3586 0.1593 2.0562 | 0.6352 0.5457 0.3349 0.1151 1.9393
2-step var-m  0.6210 0.5826  0.3188 0.1050 1.6049 | 0.6227 0.5730 0.3279 0.1111 1.8933
1-step 0.5653 0.5230 0.3133 0.1116 1.5939 | 0.5664 0.5398 0.3252 0.0832 1.6822
1-2-step 0.5725 0.5380 0.3034 0.1148 1.6096 | 0.5743 0.5427  0.3069 0.1281 1.7187
Twelve-month forecast
2-step fix 0.9853 0.7642 0.6650 0.1594 4.0735 | 0.9712 0.7504 0.6775 0.1671 4.0995
2-step var-1 1.0433 1.0204 0.6837 0.1707 4.1432 | 1.0641 0.8645 0.6735 0.1836 4.2936
2-step var-m  1.0227 0.8720  0.6507 0.1870 3.9519 | 1.0509 0.8428 0.6690 0.2174 4.2770
1-step 0.9830 0.7656 0.6784 0.1257 4.1357 | 0.9701 0.7595 0.6713 0.1633 3.8773
1-2-step 0.9846 0.7611 0.6661 0.1592 4.0768 | 0.9745 0.7568 0.6744 0.2079 4.2351
24-month forecast
2-step fix 1.6266 1.4808 0.8016 0.3084 3.5452 | 1.6559 1.5623  0.8755 0.1935 3.4938
2-step var-1 1.5616 1.4614 0.7551 0.2776 3.6837 | 1.5479 1.4832 0.7186 0.3563 3.0830
2-step var-m  1.5802 1.4157 0.7207 0.4090 3.4416 | 1.5472 1.4873 0.7075 0.3620 3.0757
1-step 1.6451 1.5809 0.8195 0.3230 3.4853 | 1.7286 1.7765  0.8872 0.2164 3.3778
1-2-step 1.6255 1.4785 0.8032 0.3063 3.5394 | 1.6151 1.4979 0.8282 0.2436 3.4804
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6. Out-of-sample forecasting

Figure 6.1.: Dynamics of the estimated decay parameters

Nelson-Siegel

Svensson

! v & i 1
2.0 — v v
! \ 20{ % ! vy
1 L — 1-step P 1] | —
15 ! 1 = = 2-step var " _ }'g
’ 11 Iy 15 i :
i o :
v o I — 1-ste
) Ly u - et
1.01 v Iy } ———e_ -step var
W ‘l I1|" 1.0 .
1 \ \ I
'In - - — —
0.5] \ ve S 0.5 Sl st
I ¥
2010 2012 2014 2016 2018 2010 2012 2014 2016 2018
Date Date

more stable results in comparison to alternative choices. Considering the results of our out-
of-sample forecast analysis we find that both approaches using either the median or the
current value of the A estimates are not sufficient to perform stable forecasts in our data.
Moreover, an adequate approach to use the estimated decay parameters in the forecasting
procedures seems dependent on the underlying data. Therefore, we clearly prefer the two-
step estimation approach with fixed decay parameters and the one-step approaches.

With regards to the comparison of the 2-step fix and 1-step method, remind that
Diebold et al. (2006) prefer the latter as it uses information from the observed interest
rates for the estimation of the parameters and the smoothing of the state variables. On the
other hand, Bolder adhere to the two step estimation approach in Bolder (2006) and Bolder
and Liu (2007). He states in Bolder and Liu (2007) that they have experimented with the
Kalman filter approach but have obtained superior results with the two-step estimation
method with respect to their purpose. Based on our results we find similar to Bolder and
Liu (2007) that the two-step estimation approach is more stable over all forecast horizons
and therefore preferable for forecast activities. Moreover, the results indicate that the
pre-specified A values, in particular for the Nelson-Siegel model suggested by Diebold and
L1 (2006), already provide reasonable parametrisation of the decay parameters. On the
other hand we have identified beneficial information in estimated decay parameters slightly
improving the forecast ability of the models by combining the one-step and the two-step
estimation approach. Therefore, we find it plausible to apply the one-step estimation
approach in order to obtain information on reasonable values for the decay parameters.

Overall, the most general insight in Table 6.1 is that the forecast performance of all mod-
els substantially deteriorates increasing the forecast horizons. In this regards, Figure 6.2
presents the mean on the forecast errors at the individual tenor for the forecast horizons
of one and twelve months. The left plot indicates that the general characterisations of the
models in terms of term-structure fit remain unchanged to the observation in the in-sample
fit analysis. Nevertheless, increasing the forecast horizon to twelve months one can see
that the models are substantially overestimating the swap rates over the forecast period.
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6. Out-of-sample forecasting

Figure 6.2.: Out-of sample forecasts over tenor
One-month forecast horizon Twelve-month forecast horizon

0 10 20 30 0 10 20 30
Tenor Tenor
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Reviewing the dynamics of the swap rates (figure 4.2) and the macro economy (figure 4.1),
one can see that in the time period our out-of-sample forecast analysis has started a dras-
tically collapse of the swap rates and the macro economy occurred. In addition, the swap
rates have not returned to their historical average level but have even decreased further-
more over the out-of-sample forecasting period. Figure 6.3 displays the evolution of the
root-mean-square error of the model forecasts of the term-structure at a point in time for
a twelve-month forecast horizon. It reveals that all models have significant difficulties to
forecast the term-structure in the time period after the substantial decrease in the interest
rates in 2009, and again in the time period around 2015 after a further decrease of the swap
rates. A detailed investigation of these time periods have revealed that the bad forecast
performance of the models is related to a substantial overestimating of the swap rates. This
observation is most likely explained by the inherent mean-reversion characteristics of the
VAR models which drive the state variables and consequently the swap rates to return to
their long term mean.

Bolder and Liu (2007) have made the same observations in their out-of-sample forecast
analysis. They have identified as well that the models estimated on historical data have
difficulties to model extraordinary decreases in interest rates and consequently overestimate
interest rates over a longer time period.

They relate this problem to changes in the interest rates linked to different economic regimes
in their data and that the constant-parameter assumption in the VAR specifications is not
ideal. In particular, they outline that the estimation of a term-structure model using the
entire data over all inherent economic regimes and the subsequent forecast simulation for
risk management purposes would be hardly reasonable. The forecast simulation would not
be an appropriate forward-looking description of the current economic regime occurring in
the latest period of the data but a rather weighted average of different inherent economic
regimes. In order to approach this problem they introduce time-varying parameters in the
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6. Out-of-sample forecasting

Figure 6.3.: Out-of sample forecasts over time - twelve month forecast horizon
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VAR specifications of the state variable dynamics. In particular, they impose exogenously
different economic regimes identified in their data and link the intercept vectors of the
VAR specifications to these regimes'. Therefore, depending on the economic regime within
a time period of the data sample the intercept vectors of the VAR models change. As a
result, Bolder and Liu (2007) have observed substantial improvements in the out-of-sample
forecast ability of the models permitting certain parameters of the VAR specification to
vary-over-time.

In the following we apply a simplified approach motivated by the suggestion of Bolder
and Lin (2007). Recapping the results of the in-sample fit and out-of-sample forecast
analysis so far, we have identified in the swap rates data the time period from 2008-
2012 where all models have difficulties to describe the occurring term-structure curves of
the swap rates. Moreover, after a massive decrease of the short-term rates the overall
interest rates level further decreases and does not return to its long term value. We have
linked the extraordinary dynamics in a straightforward manner to the global financial
crisis 2007-08 and the European sovereign debt crisis. ECB has responded to the crises by
introducing several non-standard monetary policy measures?. The dynamics of the swap
rates indicates that the ECB’s monetary policy decisions induce a very low interest rates
environment not returning to its long term average level. Within the decisions of non-
standard policy measures, a main key event has been the ”"whatever it takes” speech by
former ECB President Mario Draghi, who has stated at the Global Investment Conference
in London 26 July 2020: “Within our mandate, the ECB is ready to do whatever it takes

'The economic regimes in the Canadian macroeconomic factors imposed by Bolder and Liu (2007) have
been identified in Demers (2003).
2https://www.ecb.europa.eu/mopo/decisions/html/index.en.html
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6. Out-of-sample forecasting

Table 6.2.: Out-of-sample term-structure curve forecasts (2nd regime): We present the goodness
of forecast performance in terms of the overall fit to the term-structure curve. The table shows descriptive
statistics of the root-mean-square error over the term-structure. The values are in percent.

Nelson-Siegel ‘ Svensson
Mean Median SD Min Max ‘ Mean Median SD Min Max
One-month forecast
2-step fix 0.1546 0.1542  0.0689 0.0717 0.3354 | 0.1551 0.1349 0.0899 0.0548 0.4526
2-step var-1 0.1406 0.1204 0.0729 0.0519 0.3036 | 0.1510 0.1287 0.0892 0.0410 0.3604
2-step var-m  0.1738  0.1449 0.0911 0.0797 0.3715 | 0.1832 0.1574 0.0838 0.0823 0.4075
1-step 0.1548 0.1425 0.0709 0.0583 0.3762 | 0.1723 0.1491 0.1038 0.0597 0.4338
1-2-step 0.1468 0.1418 0.0733 0.0533 0.3269 | 0.1515 0.1340 0.0927 0.0456 0.5195
Three-month forecast
2-step fix 0.2580 0.2196  0.1500 0.0697 0.7239 | 0.2504 0.2267 0.1338 0.0800 0.6999
2-step var-1 0.2393 0.2314 0.1262 0.0452 0.6243 | 0.2362 0.2007 0.1287 0.0707 0.5852
2-step var-m  0.2447 0.1966 0.1422 0.0868 0.6354 | 0.2565 0.2142 0.1086 0.1267 0.5761
1-step 0.2674 0.2238 0.1619 0.0761 0.7915 | 0.2492 0.2282 0.1526 0.0834 0.9070
1-2-step 0.2530 0.2151 0.1511 0.0633 0.7130 | 0.2357 0.2624 0.1151 0.0825 0.4526
Six-month forecast
2-step fix 0.4062 0.3070  0.3421 0.1335 1.7705 | 0.3757 0.3012 0.2546 0.1153 1.2737
2-step var-1 0.3775 0.3533 0.2495 0.0454 1.1237 0.4228 0.3419 0.3321  0.0801 1.4748
2-step var-m  0.3780 0.3124 0.2429 0.1246 1.1512 0.4158 0.3242 0.3284 0.0826 1.4470
1-step 0.4111 0.3361  0.2951 0.1337 1.1486 | 0.4805 0.3719 0.4706 0.1164 2.5351
1-2-step 0.4019 0.2975 0.3465 0.1256 1.7951 | 0.3501 0.3009 0.2082 0.1112 1.0077
Twelve-month forecast
2-step fix 0.7168 0.3850 1.1586 0.1118 5.7078 0.7841 0.3780 1.3180 0.1141 6.4846
2-step var-1 0.7366 0.6162 0.5656  0.1403 2.8601 0.9936 0.5991 1.1691 0.1218 4.5950
2-step var-m  0.7558 0.6387 0.6108 0.1816 3.1982 | 0.9829 0.5842  1.1795 0.1298 4.5961
1-step 0.7211 0.4775 0.7387 0.1163 2.7139 | 1.7166 0.4999 2.9233 0.0855 13.00048
1-2-step 0.7235 0.3813 1.2174 0.1051 6.0022 0.8003 0.4940 0.7479 0.1109 3.0773

to preserve the euro. And believe me, it will be enough.”?

In order to investigate the effects of considering different economic regimes within our data
we follow ( ) in a straightforward manner. In particular, we impose
exogenously as economic regime the time period after the ”"whatever it takes” statement.
We extend the out-of-sample forecast analysis on the sub-sample from August 2012 to the
end of our data. We start with the forecasts at September 2014 using 25 observations
to estimate the VAR specifications of the state variables. This is in comparison to the
previous forecast analysis a very short time period to estimate the VAR models, however,
we find it still interesting how the models perform. Table 6.2 presents the out-of-sample
forecast performance of the models in terms of the goodness of the overall term-structure
forecasts limited on the time period of the identified economic regime in our data. The
24-month forecast horizon has been neglected due to the short forecast period. Overall the
table reveals that all models achieve a better forecast performance especially at the longer

Shttps://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en. html
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6. Out-of-sample forecasting

Figure 6.4.: Out-of sample forecasts over time - twelve month forecast horizon
Twelve-month forecast horizon
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forecast horizons. The main characterisations among the different model specifications
in terms of the forecast ability remain. The 2-step fix and 1-2-step methods achieve
the most stable forecast performance over all forecast horizons. Although the more flexible
estimation methodology with variable decay parameters improve substantially and becomes
competitive in the shorter forecast horizons. This is very likely associated to less volatility in
the dynamics of the estimated decay parameters over the shorter forecast period displayed
in figure 6.1.

Nevertheless, the maximum values in the twelve-month forecast horizon reveal extreme
values. Figure 6.4 shows the evolution of the root mean square error of the model forecasts
over the term-structure at a point in time for a twelve-month forecast horizon in the
identified economic regime. It reveals in the first phase of the forecast period inferior
forecast performances of all models which is mostly likely related to the short estimation
period of the VAR specifications. However, this phase is followed by a robust and good
forecast performance of almost all models.
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7. Conclusion

The research has started with a review of finance literature on joint-macro models that
describe the dynamics of the macro economy and the term-structure of interest rates.
With the objective to identify a term-structure model that is reasonable for application in
a debt-strategy and risk management model framework of a Government this has been a
challenging task as the majority of the papers did not focus on this aspect. Fortunately,
the Bank of Canada has published numerous working papers investigating term-structure
models and their usage for debt strategy and risk management problems of a Government.
Leveraging on the results from ( ), ( ) and
( ), we have focused on the extended Nelson-Siegel model suggested by
(2006).
The extended Nelson-Siegel model is a dynamic model describing the dynamics of the term-
structure of interest rates by three latent state variables. Associated to their characteristics
the state variables are known as level, slope and curvature factors.
The examination of the extended Nelson-Siegel model and further finance literature has
indicated that the inclusion of further developments on the model might be rewarding. The
introduction of the Svensson model has been motivated by the results of ( ),
who has achieved better in-sample fit and out-of-sample forecasts of the term-structure of
interest rates by more sophisticated models.
The investigation on further estimation methodologies has been triggered by the lack of a
theoretical foundation of the pre-specification of the A-parametrisation in the Nelson-Siegel
model as suggested by ( ). In this regards, we have introduced three
additional estimation methods. The most flexible approach uses Differential Evolution and
permits the estimation of the state variables and decay parameters simultaneously at one
point in time. We have described the non-linear specifications of the models causing the
numerical difficulties of estimating robust state variables. Consequently, we have followed
( ) and ( ) by imposing restriction on the \-values to approach
the multicollinearity problem in the models and obtain robust state variables.
Moreover, we have included the developments of ( ), who reformulate the
extended Nelson-Siegel model into state-space representation and introduce an one-step es-
timation approach using the Kalman filter. The Kalman-filter allows the estimation of the
model parameters, including the decay parameters, and the derivation of smoothed state
variables in one-step considering the information in the observed interest rates. Therefore,
( ) prefer the one-step estimation approach as the two-estimation ap-
proach lacks from omitting the information on the uncertainty fitting the observed interest
rates associated in the first step.
Utilising the decay parameter estimates we apply the two-step estimation approach with
the estimated A-values and define a combined estimation approach by the one-step-two step
estimation approach.
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7. Conclusion

In order to incorporate macroeconomic factors in the model frameworks of the Nelson-
Siegel and Svensson models we have followed ( ). The approach is
straightforward by enlarging the times series of the estimated state variables level I;, slope
s¢ and curvature ¢; with selected macroeconomic variables. Following the finance literature
we have selected as macroeconomic factors the annual inflation and output gap rate of
the Economic and Monetary Union of the European Union (EMU). The monetary policy
instrument in our model framework is set by the Euro Overnight Index Average (EONIA).

Consequently, the joint-macro models are examined in terms of their in-sample fit and
out-of-sample forecast abilities.

In the in-sample fit analysis we have examined the ability of the models to describe the
dynamics of the term-structure of the swap rates inherent in our data. We have observed
that the more sophisticated Svensson model slightly outperforms the Nelson-Siegel model
in terms of fitting the term-structure of the interest rates. Also the more flexible estimation
methodology including variable decay parameters marginal improve the in-sample fit of the
models. However, the more straightforward two-step estimation approach with fixed decay
parameters is competitive. In particular, all model specifications perform a reasonable
job describing the dynamics of the term-structure in our data. Although, the one-step
estimation approach achieve less robust and stable goodness of in-sample fit due to inferior
fits at the tenors of 2 and 30 years. However, we have identified that the estimation of
the decay parameters by the one-step estimation approach has a beneficial impact on the
in-sample fit of the models. In particular, a combined approach of the one-step and two-
step estimation approach does a reasonable job in terms of in-sample fit. Considering
also the lack of theoretical background on the pre-specification of decay parameters in the
two-step estimation approach suggested by ( ), the one-step estimation
approaches are reasonable methods within the estimation methodologies.

Analysing the dynamics of the state variables we have observed that the level and slope
factors are robust and mostly consistent among the different model specifications. More-
over, we have identified their characterisations as described by ( ). On
the other hand, we have observed significant volatility in the dynamics of the curvature
factors and find it hardly possible to identify characterisation by analysing the dynamics
of the swap rates. Moreover, the less robust dynamics of the curvature factors obtained
by the 2-step var approach indicate the numerical difficulties caused by the non-linear
specifications of the models. Nevertheless, we have presented the positive impact of the
restrictions on the A-parametrisation suggested by ( ) and ( ).
In order to analyse the dynamic interactions among the term-structure of interest rates
and the macro economy we have applied the impulse response function. We have find rea-
sonable dynamics among the macroeconomic factors consistent with ( )
and ( ) indicating an appropriate selection and inclusion of macroe-
conomic information in our model framework. Moreover, we have identified substantial
dynamic interactions among the macro economy and the state variables. Though not all
observations in the dynamic interactions can be easily interpreted the impulse response
function have provided useful insights on the dynamics among the model components.
Finally, we have examined the models in terms of their out-of-sample forecast ability. We
have observed that no combination of model and estimation methodology extraordinar-
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7. Conclusion

ily outperforms the original dynamic Nelson-Siegel model as suggested by
( ). The Svensson model remains in the forecast analysis in general the marginal su-
perior model in describing the term-structure of the swap rates. However, we find that
the slight superiority of the Svensson model is not linked to a beneficial characterisation in
the dynamics of the four state factors allowing better forecasts, but rather to the marginal
better fit of the term-structure as identified in the in-sample fit analysis. In terms of the
different estimation approaches we find that the more flexible methods with variable de-
cay parameters are for both models not competitive due to less robust and stable forecast
performance over the forecast horizons. The estimation methods based on the one-step
approach using the Kalman filter are over all forecast horizons competitive to the origi-
nal extended Nelson-Siegel model. The stable but not superior results indicate that the
smoothed state variables obtained by the Kalman filter do not have substantial beneficial
properties improving the forecast performance of the models.
On the other hand, the combined approach 1-2-step using estimates of the decay param-
eters and subsequently applying ordinary least squares provide reasonable and partially
superior results. Overall we find that the two-step estimation approach is preferable as
providing more stable forecast results over all forecast horizons. This is consistent with
( ), who states that they have experimented with the Kalman filter
approach but have obtained superior results with the two-step estimation method with
respect to their purpose. Moreover, the pre-specification of the A values, in particular for
the Nelson-Siegel model suggested by ( ), already provides good results
in our analysis. Still, we find it reasonable to include the one-step estimation approach
in the model framework as we have identified beneficial information in estimated decay
parameters.

Overall, the research of the literature and our analyses indicate that the extended Nelson-
Siegel model, introduced by ( ) and applied by ( )
in the Canadian debt-strategy model, is a reasonable starting point for jointly describing
the dynamics of the term-structure of interest rate and the dynamics of macroeconomic
factors. ( ) describe the application of the extended Nelson-Siegel model in
a macro-financial framework for the Austrian perimeter. In particular, the model is used
to describe and forecast the euro-area term-structure of interest rates and the Austria yield
curve with the aim to enable risk management and debt-strategy analyses.

However, the research in our paper can be extended in numerous ways to further investigate
on term-structure models and their application in a debt-strategy and risk management

model framework of a Government. In particular, ( ) outlines that
not less than five stochastic models are used in the Canadian debt-strategy model, inter
alia, to mitigate model risk. In this regards, ( ) examine several

combining techniques of term-structure forecasts calculated by different models finding that
this averaging generally assists in mitigating model risk.

Moreover, the reformulation of the model in ( ) has been a fundamental
development that have implied further relevant evolvements of the extended Nelson-Siegel
model. Even though ( ) outline that there is reasonable amount
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7. Conclusion

of empirical evidence that empirical models outperform no-arbitrage models in terms of
out-of-sample forecasting there are potential benefits also researching in this direction. In
particular, Christensen et al. (2011) derive the class of arbitrage-free Nelson-Siegel models
and show that the arbitrage free models can provide reasonable in-sample fit and out-of-
sample forecasts as well.
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A. R-code

A.1. Additional R-packages

## Additional Packages

# Graphical presentation of data analyses
library (ggplot2)

# Data transformation for graphical presentation
library (reshape2)

# Arrangements of plots within in one graphic
library (gridExtra)

# Time-indexed time series

library (xts)

# Colorisation of graphics

library (colorRamps)

# Combining plots in one graph with regards to legends
library (patchwork)

## Packages cited in the paper

# Differential Evolution for 2-step var method

library (NMOF)

# Estimating VAR models and applying related diagnostic tools

library (vars)

# Fast Kalman Filter for applying the Kalman filter, calculating the respective
likelihood function

library (FKF)

# Applying the Kalman filter, calculating the respective likelihood function

library (dlm)

# Standard R-package providing maximum likelihood estimation

library (stats4)

A.2. Basic functions

The following code includes: (2.9), (2.10), (3.1), (5.1), (5.2), (5.3)

## Factor loadings
# Arguments:
# - 1 ... lambda value (decay parameter)
# - tau ... tenor
slope_loading <- function(l,tau){
(1 - exp(-1 * tau))/(1 * tau)
¥
curvature_loading <- function(l,tau){
(1 - exp(-1 * tau))/(1 * tau) - exp(-1 * tau)

}

## Nelson-Siegel and Svensson model

# Arguments:

# - tenor ... vector of tenors 0.25 years, 0.5 years, ..., 30 years

# - param ... vector of parameters

# - Nelson-Siegel = c(level, slope, curvature, lambda)

# - Svensson = c(level, slope, curvaturel, curvature2, lambdal, lambda2)
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A. R-code

## Output: term-structure curve
nelson_siegel_model <- function(param,tenor){

}

param[1:3] %x*J rbind(rep(1l,times=length(tenor)),
slope_loading (param[4], tenor),
curvature_loading (param[4] , tenor))

svensson_model <- function(param, tenor){

}

param[1:4] %*’, rbind(rep(l,times=length(tenor)),
slope_loading (param([5], tenor),
curvature_loading(param[5], tenor),
curvature_loading (param[6], tenor))

## Measures to examine the in-sample fit and the out of sample forecast

#
#

RMSE (root-mean-square error) over term-structure curve
Argument: x ... vector of residuals

RMSE_fun <- function(x){

=)

#
#
#
#
#

sqrt (sum((x~2))/length(x))

descriptive statistics of the RMSE over term-structure curve
Arguments:

abilities

# list_residuals ... list of residuals per model specifications
# str_type ... string of names of model specifications
# str_date_start/end ... time period on which the descriptive statistics are

calculated

table_termstructure <- function(list_residuals,str_type, str_date_start

}
#

str_date_end = NULL){
if ( !length(str_date_start ) ){
str_date_start <- index(list_residuals[[1]]) [1]
}
if ( !length(str_date_end ) ){
str_date_end <- last(index(list_residuals[[1]]))
}
print (str_date_start)
print (str_date_end)
for ( i in str_type){
# residuals
res <- list_residuals[[i]][pasteO(str_date_start,"/",str_date_end)]
# RMSE over term-structure
temp <- apply(res,1, function(x) RMSE_fun(x))
# descriptive statistics
if (i == str_typel1]){

= NULL,

df _residual <- cbind(mean(temp) ,median(temp),sd(temp) ,min(temp) ,max (temp))

} else {
df _residual <- rbind(df_residual,

cbind (mean (temp) ,median (temp) ,sd(temp) ,min(temp),

max (temp)))
}
}

colnames (df _residual) <- c("Mean","Median","Std. Dev.","Min.","Max.")
rownames (df _residual) <- str_type
round (df _residual ,4)

RMSE and Mean per individual tenors

table_tenor <- function(list_residuals,str_type, str_date_start = NULL,

= NULL){
if ( !length(str_date_start ) ){

str_date_start <- index(list_residuals[[1]]) [1]
}
if ( !length(str_date_end ) ){

str_date_end <- last(index(list_residuals[[1]]))
}
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A. R-code

print (str_date_start)
print (str_date_end)
residuals_statistics <- 1list ()
residuals_statistics[["Mean"]] <- residuals_statistics[["RMSE"]] <- NULL
for ( k in str_type){
res <- list_residuals[[k]][pasteO(str_date_start,"/",str_date_end)]
residuals_statistics[["Mean"]] <- cbind(residuals_statistics[["Mean"]],
round (apply (res, 2, mean) ,4))
residuals_statistics [["RMSE"]] <- cbind(residuals_statistics [["RMSE"]],
round (apply(res, 2, function(x) RMSE_fun
(x)),4))
}
colnames (residuals_statistics[["Mean"]]) <- colnames(residuals_statistics [["RMSE"
11) <- str_type
residuals_statistics

A.3. Factor loadings

The following code includes: Figure 2.1, Figure 3.1

HHBRARHBRAHHARAHBERAHBEAHHH

## Graphical presentation of the factor loadings

# set lambda-values

lambdas <- c(0.6, 0.12) # NelsonSiegel or

# lambdas <- list(vl = c(1.8, 0.3), v2 = c(0.6, 0.6)) # for Svensson

tau_graphic <- c¢(1/365,1/4,1/2,1,2,5,10,15,20,25,30)

# storage of plots

list_plots <- 1list ()

for ( i in 1:2){

# Nelson-Siegel
data_temp <- data.frame(tau_graphic,
rep(1l,length(tau_graphic)),
slope_loading(lambdas[i], tau_graphic),
curvature_loading(lambdas[il,tau_graphic))
colnames (data_temp) <- c("Tenor","fO","f1","f2")
# Svensson
# data_temp <- data.frame(tau_graphic,
# rep(1,length(tau_graphic)),
# slope_loading(lambdas [[i]][1], tau_graphic),
# curvature_loading (lambdas [[i]][1], tau_graphic),
# curvature_loading(lambdas [[i]][2], tau_graphic))
# colnames (data_temp) <- c("Tenor","fO","f1","f2","£f3")
data_temp <- melt(data_temp,"Tenor")
list_plots[[i]] <- ggplot(data = data_temp, aes(x = Tenor,y = value, col =

variable, linetype = variable))+
geom_line (size=1.2)+
labs(y = "",x="Tenor (in years)",

# Nelson-Siegel or

title=substitute (paste("Nelson-Siegel functions with ",lambdalt]," = ",
value) ,list (value=lambdas[i])))+

scale_color_manual (labels = c(expression(£f[0],£f[1],£[2])),values = rep("black",
times=3) )+

scale_linetype_manual (labels = c(expression(£[0],£f[1],£f[2])),values = c(1,2,3))+

# Svensson

# title=substitute (paste("Svensson functions: ",lambdal[t]~1," = ",valuel,
and ", lambdal[t]~2," = ",value2),list(valuel=lambdas[[i]][1],value2=1ambdas
[[i11[21)))+

# scale_color_manual (labels = c(expression(f[0],f[1],£f[2],£[3])),values = rep("
black",times=4))+
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# scale_linetype_manual (labels = c(expression(£f[0],f[1],£f[2],£[3])),values = c

(1,2,3,4))+
theme_bw () +
theme (legend.title=element_blank (),
legend.key.width = unit(3,"line"),

axis.title = element_text(size = 22,face="plain"),
axis.text = element_text(size = 22,face="plain",color="black"),
legend.text = element_text(size = 22,face="plain"),

plot.title = element_text(size = 24,face="plain"),
# c(x,y) zwischen O und 1

#legend. justification = c(0.8,0.8),
legend.position = c(0.8,0.7),

plot.margin = unit(c(0,0.5,0,0),"cn")
)
}
grid.arrange (arrangeGrob(list_plots [[1]]+theme (legend.position = "none"),list_plots
[[2]1],ncol=2))
A.4. Data presentation
The following code includes: Figure 4.1, Figure 4.2
HHHHARHHBRAHHRER RS
## Data presentation
## Swap rates data
# swap rates stored in xts object
head(xts_swap_rates, n = 4)
# 3M 6M 1Y 2Y 5Y 10Y 20Y 30Y
# 1999-01-31 2.995 2.925 2.860 3.015 3.446 4.024 4.58 4.75
# 1999-02-28 3.070 3.030 3.080 3.252 3.762 4.332 4.91 5.09
# 1999-03-31 2.845 2.825 2.845 3.030 3.592 4.390 4.97 5.14
# 1999-04-30 2.546 2.555 2.615 2.836 3.457 4.307 4.87 5.02
tail (xts_swap_rates, n = 4)
# 3M 6M 1Y 2Y 5Y 10Y 20Y 30Y
# 2017-05-31 -0.3601 -0.358 -0.34700 -0.165 0.163 0.779 1.355 1.450
# 2017-06-30 -0.3586 -0.350 -0.33130 -0.130 0.267 0.895 1.444 1.531
# 2017-07-31 -0.3591 -0.351 -0.33900 -0.153 0.280 0.950 1.522 1.614
# 2017-08-31 -0.3573 -0.352 -0.34900 -0.188 0.162 0.791 1.371 1.470
# tenors of swap rates in years
tau_swap_rates <- c(1/4,1/2,1,2,5,10,20,30)
# 2D swap rates data presentation
swaprates_long <- xts_swap_rates
swaprates_long <- cbind("Date" = index(swaprates_long),as.data.frame(swaprates_long)
)
swaprates_long <- melt(swaprates_long, "Date")
ggplot (data = swaprates_long, aes(x = Date, y = value , col = variable))+
geom_line (size=1)+
labs(y = "Percent (%)",x="Date" ,title="")+
theme_bw () +
theme_bw () +
theme (legend.title=element_blank (),
legend.key.width = unit(2.5,"cm"),
axis.title = element_text(size = 32,face="plain",color="black"),
axis.text = element_text(size = 28,face="plain",color="black"),
legend.text = element_text(size = 29,face="plain",color="black"),

plot.title = element_text(size = 32,face="plain",color="black"),

legend.position = ¢(0.88,0.75),
plot.margin = unit(c(0,0.1,0,0),"cmn")
)

# Average Swap Rate Curve
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A. R-code

swap_rates_mean <- apply(xts_swap_rates,2 ,mean )

swap_rates_mean_long <- melt(swap_rates_mean, id.vars

swap_rates_mean_long <- cbind("Tenor" = tau_swap_rates
swap_rates_mean_long))

ggplot (data = swap_rates_mean_long, aes(x = Tenor, y = value))+

geom_line (size=1)+

labs(y = "Percent (%)",x="Tenor (in years)" ,title="")+

theme_bw () +

theme (legend.title=element_blank(),
axis.title = element_text(size = 32,face="plain",color="black"),
axis.text = element_text(size = 28,face="plain",color="black"),
legend.text = element_text(size = 29,face="plain",color="black"),

plot.title = element_text(size = 32,face="plain",color="black"),

plot.margin = unit(c(0,0.1,0,0),"cm"

## Macroeconomic data
# macroeconomic factors stored in xts object
head (xts_macro, n = 4)

= names (swap_rates_mean))

, as.data.frame (

0,

# Inflation_Eurozone Outputgap_Eurozone EONIA_average ECB_Policy_Rate
# 1999-01-31 0.8 -0.4092192 3.137000 3.0
# 1999-02-28 0.7 -0.3684849 3.118000 3.0
# 1999-03-31 0.9 -0.3233863 2.925217 3.0
# 1999-04-30 1.1 -0.2797425 2.709545 2.5
tail(xts_macro, n = 4)
# Inflation_Eurozone Outputgap_Eurozone EONIA_average ECB_Policy_Rate
# 2017-05-31 1.4 -0.7388219 -0.3585217 -0.4
# 2017-06-30 1.3 -0.6960000 -0.3586818 -0.4
# 2017-07-31 1.3 -0.6660192 -0.3594762 -0.4
# 2017-08-31 1.5 -0.6360384 -0.3558261 -0.4
# Graphical presentation of macroeconomic factors
data_temp <- cbind("Date" = index(xts_macro), as.data.frame(xts_macro[,c("
Inflation_Eurozone", "Outputgap_Eurozone", "EONIA_average")]))
colnames (data_temp) [-1] <- c("Inflation","Output gap","EONIA")
data_temp <- melt(data_temp, "Date")
ggplot (data = data_temp,aes(x = Date,y = value,linetype = variable))+
geom_line(size=1.1)+
labs(y = "%",x="Date",title="")+
scale_linetype_manual (values=c(1,2,4))+
theme_bw () +
theme (legend.title=element_blank(),
legend.key.width = unit(1.2,"cn"),
legend.text.align = O,
axis.title.x = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 22,face="plain",color="black"),
axis.title.y = element_text(size = 22,face="plain",color="black",angle =
vjust = 0.5,hjust = 0),
legend.text = element_text(size = 20,face="plain",color="black"),

plot.title = element_text(size = 24,face="plain",color="black"),

legend.position = ¢c(0.8,0.85),
plot.margin = unit(c(0,0.1,0,0),"cm"

# EONIA & ECB Policy Rate

data_temp <- cbind("Date" = index(xts_macro), as.data.frame(xts_macrol[,c("

EONIA_average","ECB_Policy_Rate")1))
colnames (data_temp) [-1] <- c("EONIA","ECB policy rate"
data_temp <- melt(data_temp,"Date")

ggplot (data = data_temp,aes(x = Date,y = value,linetyp
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A. R-code

geom_line(size=1.2)+

labs(y = "",x="Date",title="")+

scale_linetype_manual (values=c(1,2))+

theme_bw () +

theme (legend.title=element_blank(),
legend.key.width = unit(1.1,"cm"),
legend.text.align = O,

axis.title.x = element_text(size = 22,face="plain",color="black"),

axis.text = element_text(size = 22,face="plain",color="black"),

axis.title.y = element_text(size = 22,face="plain",color="black",angle = 0,
vjust = 0.5,hjust = 0),

legend.text = element_text(size = 20,face="plain",color="black"),

plot.title = element_text(size = 24,face="plain",color="black"),
legend.position = ¢(0.8,0.9),
plot.margin = unit(c(0,0.1,0,0),"cn")

A.5. Estimation methodologies

A.5.1. 2-step fix

HEHHSHHSHH SR BB BB H B LU BB HB BB HH S HH GBS R B HHEH

## Estimation methodologies - 2-step-fix

## set lambda values

# Nelson Siegel model

lambdaO <- 0.5978 #(maximum of curvature factor at 3Y)
# Svensson model

lambdaO1 <- 1.8023 #(maximum of curvature factor at 1Y)
lambda02 <- 0.5978 #(maximum of curvature factor at 3Y)

n_obs <- dim(xts_swap_rates) [1]
d_obs <- dim(xts_swap_rates) [2]
##H#HHH#
# derive state variables by ordinary least squares
X <- NULL
for ( i in 1:n_obs){
# term-structure curve at point in time i (t)
data_temp <- as.data.frame(cbind("curve" = as.numeric(xts_swap_rates([i]),"tau" =
tau_swap_rates))
## ordinary least squares - Nelson Siegel
# temp <- 1Im(curve ~ slope_loading( lambdaO , tau ) + curvature_loading(lambdaO,
tau) ,
# data = data_temp)
## ordinary least squares - Svensson
temp<-lm(curve slope_loading(lambda0Ol,tau)+curvature_loading(lambdaOl,tau)+
curvature_loading (lambda02,tau) ,data=data_temp)
# get estimated coefficients
X <- rbind(X,temp$coefficients)

}

# store time series - Nelson-Siegel

# list_ts_state_variables_NS <- 1list ()

# list_ts_state_variables_NS[["2stepfix"]] <- xts(cbind(X,rep(lambdal,times=n_obs)),
index (xts_swap_rates))

# colnames (list_ts_state_variables_NS[["2stepfix"]]) <- c("Level","Slope","Curvature

", "Lambda")

# Svensson

list_ts_state_variables_Sven <- list()

list_ts_state_variables_Sven[["2stepfix"]] <- xts(cbind(X,rep(lambdall,times=n_obs),
rep(lambda02 ,times=n_obs)),index (xts_swap_rates))

colnames (list_ts_state_variables_Sven[["2stepfix"]]) <- c("Level","Slope","
Curvaturel", "Curvature2","Lambdal", "Lambda2")
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A. R-code

A.5.2. 2-step var

HARRBBHHHHHHHH BB BB BB RARRRR RS SRRRRRRR RS H#
## Estimation methodologies - 2-step-var using Differntial Evolution (DE)
# Parameters set by NMOF docs and own obervations

# data
data <-

list(yM = xts_swap_rates, # swap
tm = tau_swap_rates, # tenors of

# model = nelson_siegel_model, #
model = svensson_model,

ww = 0.1,

## Restrictions, Nelson Siegel

# restricted based on NMOF docs
min = c(0, -15,-30, 0.2561),

max = c(15, 30, 30, 2.3753)) #
Svensson

restr. based on 2-step est. ts
min = ¢c( 0,-10,-10,-10, 0.5987
max = c(15, 5, 5, 5, 2.3753

c( 0,-15,-30,-30, O,
c(15, 30, 30, 30, 10,

min = o),

max =

HOH H K H HH

# objective function
OF <- function(param, data) {
y <- data$model (param, data$tm)
residuals <- y - data$yM
# maxdiff <- max(abs(maxdiff))
rmse <- RMSE_fun(residuals)
if (is.na(rmse))
rmse <- 1lel0
rmse
¥
# penalty function
penalty <- function(mP,
minV <- data$min
maxV <- data$max
ww <- data$ww
## if larger than maxV,
A <- mP - as.vector (maxV)
A <- A + abs(A)
## if smaller than minV,
B <- as.vector(minV) - mP
B <- B + abs(B)
## beta 1 + beta2 > 0
C <- wwx((mP[1L, 1 + mP[2L, 1)
A <- ww * colSums(A + B) - C
A
¥
# algorithmus
algo <-
list(nP = 200,
nG = 1000L,
F = 0.5, ## step size
CR = 0.99, ## prob.
## Restrictions - Nelson-Siegel
# restricted based on NMOF doc
min = c(0, -15,-30, 0.2561),
max = c(15, 30, 30, 2.3753),
# Svensson
# restr. based on 2-step est. t
# min = ¢( 0,-10,-10,-10,

## number
## number of

>

>

)

S

0.5987,

rates as basis data
swap rates data

or

svensson_modell

# unrestricted based on NMOF docs

# min =

max

0.
0.

unrestricted V2 based on NMOF docs

10))

abs (mP[1L,

of crossover

0.2561),

el ©,=15,=-80, 0),
= c(15, 30, 30, 10))

# unrestr.
2561), # min =
5987)) # max =

el ©,=10,=10,=10 ,
c(15, 5, 5,

data) { # mP matrix of Parameters

element in A is positiv

element in B is positiv

1 + mP[2L, 1))

of populations
generations

# unrestricted based on NMOF docs
c( 0,-15,-30, 0),
c(15, 30, 30, 10),

# min =
# max =

# unrestr.

# min = ¢( 0,-10,-10,-10,

95

vl based 2-step est.

0,

vl based 2-step est.

0,

ts
0),

5,10,10))

ts
0),
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A. R-code

max = c(15, 5, 5, 5, 2.3753, 0.5987), # max = c(15, 5, 5, 5,10,10),
unrestricted V2 based on NMOF docs

min = ¢( 0,-15,-30,-30, 0, 0),

# max = c(15, 30, 30, 30, 10, 10),

pen = penalty,

repair = NULL,

H H H

loopOF = TRUE, ## loop over popuation - yes
loopPen = FALSE, ## loop over penalty - no
loopRepair = TRUE, ## loop over popuation - yes

printBar = FALSE)

X <- NULL
for ( i in as.character (index(xts_swap_rates))){
data$yM <- xts_swap_rates[i]
sol <- DEopt(OF = OF, algo = algo, data = data)
X <- rbind(X,sol$xbest)
}
# store time series
list_ts_state_variables_NS[["2stepvar"]] <- xts(X,index(xts_swap_rates))

colnames (list_ts_state_variables_NS[["2stepvar"]]) <- c("Level","Slope","Curvature",
"Lambda")
# list_ts_state_variables_Sven[["2stepvar_unr"]] <- xts(X,index(xts_swap_rates))
# colnames (list_ts_state_variables_Sven[["2stepvar_unr"]]) <- c("Level","Slope","
Curvaturel", "Curvature2",'"Lambdal", "Lambda2")

A.5.3. 1-step fix

HUBHHBHR AR R AR BB R AR R AR AR AR AR RSB R AR BB R RSB H SR RS

## Estimation methodologies - 1-step

## preparation for one-step estimation method defined as function
## Nelson-Siegel

# Initial values based on two-step estimation approach
prep_lstep_NS <- function(lambdaO, xts_swap_rates_temp){

## Two step estimation method

X <- NULL
for (i in 1:n_obs){
data_temp <- as.data.frame(cbind("curve" = as.numeric(xts_swap_rates_templ[i]),
"tau" = tau_swap_rates))
temp <- Im(curve ~ slope_loading(lambdaO,tau )+curvature_loading(lambdaO,tau),

data = data_temp)
X <- rbind (X,
temp$coefficients)

}

X <- cbind(X,rep(lambdal,times=n_obs))

X <- xts(X,index(xts_swap_rates_temp))

colnames (X) <- c("Level","Slope","Curvature", "Lambda")

## 1. In order to identify plausible starting values of the parameters to be

estimated the information of the two-step estimation approach is used.

# VAR

VAR2step <- VAR(X[,c("Level","Slope","Curvature")], 1, "const") # Nelson-Siegel
# Residuals of estimated yields 2-step

C <- matrix(c(rep(1l, d_obs),

slope_loading (lambdaO,tau_swap_rates),

curvature_loading(lambdaO, tau_swap_rates)), ncol = 3, nrow = d_obs)
est_yields <- t(C %*% t(X[,c("Level","Slope","Curvature")]))
residuals <- est_yields - as.data.frame(xts_swap_rates_temp)
## 2. General initial values preparation - initialize the starting values and mean

adjusted yields and factors (X_t)
mu0 <- apply(X[,c("Level","Slope","Curvature")],2,function(x) mean(x))
A0 <- Bcoef (VAR2step) [,-4]
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A. R-code

}

#it
#it
dt
ct
y-
#
Ss

}
##

Q0 <- summary (VAR2step)
Q0 <- QO0$covres
BO <- matrix (0, ncol = 3, nrow

diag(B0O) <- sqrt(diag(QO0))

HO <- cov(residuals)

DO <- matrix (0, ncol = d_obs,
diag(DO) <- sqrt(diag(HO))

x0 <- as.numeric(X[1,c("Level"
z0 <- x0 - muO

PO <- cov(X[,c("Level","Slope"

## Vector parametrization of
AO_v <- as.vector (A0)

names (AO_v) <- pasteO("a", 1:9)
BO_v <- as.vector (BO)

= 3)
nrow = d_obs)
,"Slope","Curvature")])

,"Curvature")])

initial values

# for BO only lower triangle Matrix

BO_v <- BO_v[c(1:3, 5:6, 9)]

names (BO_v) <- pasteO("b", 1:6)

DO_v <- diag(DO)

names (DO_v) <- pasteO("d",1:8)

names (mu0) <- pasteO("m", 1:3)

names (lambda0) <- "lambda"

## Initial values in 1list

list_initial_values <-
as.list (lambda0))

1ist("PO" = PO, "x0" = x0,

3. Kalman Filter and MLE
FKF Package
<- matrix(0,3,1)
= matrix(0,d_obs,1)
t <- t(xts_swap_rates_temp)
State space model FKF
_FKF_LL_1st_NS <-

bl,b2,b3,b4,b5,b6,
d1, d2, d3, d4, d5, d6, d7, ds,
ml, m2, m3,
lambda) {
Tt <- matrix(c(al,a2,a3,ad4,ab,a6,a7,a8,a9), ncol = 3, nrow = 3)
Ht <- matrix(c(bl,b2,b3,0,b4,b5,0,0,b6), ncol = 3, nrow = 3)
HHt <- Ht %*% t(Ht)
Zt <- matrix(c(rep(1l, d_obs),
slope_loading(lambda, tau_swap_rates),
curvature_loading(lambda, tau_swap_rates)), ncol
a0 <- x0 - c(ml1, m2, m3)
muO_yields <- matrix(Zt %*% c(ml, m2, m3), nrow = d_obs, ncol =
y_t_deflated = y_t - muO_yields
Gt <- diag(c(d1, d2, d3, d4, d5, d6, d7, d8))
GGt <- Gt %x} t(Gt)
#print (lambda)
SS_FKF <- fkf(a0 = a0, PO = PO, dt = dt, ct = ct, Tt = Tt, Zt
GGt = GGt, yt = y_t_deflated, check.input = T)

- SS_FKF$logLik

MLE - FKF

"initial_values" =

function(al,a2,a3,ad4,ab,a6,a7,a8,a9,

list_initial_values)

n_obs)

3, nrow

HHt

lambda0 <- as.numeric(list_ts_state_variables_NS§$ ‘2stepfix ‘[1,c("Lambda")])

xt

s_swap_rates_temp <-

xts_swap_rates

n_obs <- dim(xts_swap_rates_temp) [1]
d_obs <- dim(xts_swap_rates_temp) [2]

initial_values <- prep_1lstep_NS(lambdaO,
initial_values$initial_values

1i
PO

st_initial_values <-
<- initial_values$PO

xts_swap_rates_temp)

o7

c(as.list(AO_v),as.list(BO_v),as.list(DO_v),as.list (mu0),

d_obs)

HHt ,
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A. R-code

x0 <- initial_values$x0
library (stats4)
## Maximum Likelihood estimation using algorithm BFGS

NS_MLE_BFGS_fkf<-mle(SS_FKF_LL_1lst_NS,start=list_initial_values ,method="BFGS")

## LU version of BFGS
## fkf with lower and upper values
lower _NS <- c(-Inf, -Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,
-Inf, -Inf,-Inf,-Inf,-Inf,-Inf,
-Inf, -Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,
-Inf, -Inf,-Inf,
0.01)
upper_NS <- c(Inf, Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,
Inf, Inf,Inf,Inf,Inf,Inf,
Inf, Inf,Inf,Inf,Inf,Inf,Inf,Inf,
Inf, Inf,Inf,
3)
names (lower_NS) <- names (upper_NS) <- names(list_initial_values)

## Maximum Likelihood estimation using algorithm Limited-memory-BFGS

NS_MLE_LU_BFGS_fkf<-mle(SS_FKF_LL_lst_NS,start=list_initial_values ,method="L-BFGS-B"

, lower = lower_NS, upper = upper_NS)

## dlm package

H##HHH

library (dlm)

## State space model dlm

SS_DLM_LL_1st_NS <- function(al,a2,a3,a4,ab,a6,a7,a8,a9,
b1l,b2,b3,b4,b5,b6,
di, 42, d43, d4, d5, d6, d7, d8,
ml, m2, m3,
lambda) {

GG <- matrix(c(al,a2,a3,a4,ab5,a6,a7,a8,a9), ncol = 3, nrow = 3)

W <- matrix(c(b1,b2,b3,0,b4,b5,0,0,b6), ncol = 3, nrow = 3)
W <= W %% t(W)
FF <- matrix(c(rep(1l, d_obs),

slope_loading (lambda,tau_swap_rates),

curvature_loading(lambda, tau_swap_rates)), ncol

mO0 <- x0 - c(ml, m2, m3)

3,

nrow

muO_yields <- matrix(t(FF %*% c(ml, m2, m3)),ncol=d_obs,nrow=n_obs,byrow=T)

y_t_deflated = xts_swap_rates_temp - muO_yields
V <- diag(c(dl, d2, d3, d4, d5, d6, d7, d8))

V <=V %x% £ (V)

#print (lambda)

SS_dlm <- dlm(FF = FF, GG = GG, V =V, W = W, mO = m0, CO = PO)

dlmLL(y_t_deflated, SS_dlm)
¥

## not working due to negative/extreme lambda value as starting values in one

iteration

d_obs)

# NS_MLE_BFGS_dlm<-mle(SS_DLM_LL_1st_NS,start=1list_initial_values ,method="BFGS")

## LU version of BFGS

NS_MLE_LU_BFGS_dlm<-mle (SS_DLM_LL_1st_NS,start=1list_initial_values ,method="L-BFGS-B"

,lower = lower_NS,upper = upper_NS)

HH#HHH

list_KF_coef_NS <- 1list("FKF" = coef (NS_MLE_BFGS_fkf),
"FKF_LU" = coef (NS_MLE_LU_BFGS_fkf),
"dlm_LU" = coef (NS_MLE_LU_BFGS_dlm))

## Derive smoothed state variables
H####
# Estimated coefficients, smoothing by dlm package
# state space set-up
SS_DLM_NS <- function(params){
GG <- matrix(c(params[1:9]), ncol = 3, nrow = 3)
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A. R-code

W <- matrix(c(params[10:12] ,0,params[13:14],0,0,params [15]), ncol = 3, nrow = 3)
W <= W %*% t(W)
FF <- matrix(c(rep(l, d_obs),
slope_loading (params [27],tau_swap_rates),
curvature_loading (params [27], tau_swap_rates)),ncol=3,nrow=d_obs)
m0 <- x0 - params [24:26]
V <- diag(c(params [16:23]))
V <=V %% £ (V)
SS_dlm <- dlm(FF = FF, GG = GG, V =V, W =W, mO = mO, CO = PO)
SS_dlm
}
# define state space model by estimated parameters
SS_presentations_dlm <- list ()
for ( i in names(list_KF_coef_NS)){
SS_presentations_dlm[[i]] <- SS_DLM_NS(list_KF_coef_NS[[ill)
¥

# smooth dynamics of state variables
list_est_smoothed_states_NS <- 1list ()
for ( i in names(list_KF_coef_NS)){
muO_yields <- matrix(t(FF(SS_presentations_dlm[[i]]) %*% list_KF_coef_NS[[i]][c("
mi","m2","m3")]), ncol = d_obs, nrow = n_obs, byrow = T)
y_t_deflated = xts_swap_rates - muO_yields

list_est_smoothed_states_NS[[i]] <- dlmSmooth(y_t_deflated,SS_presentations_dlml[[i

11)$s[-1,] + matrix(list_KF_coef_NS[[i]][c("m1","m2","m3")],ncol = 3, nrow =
n_obs, byrow = T)
list_est_smoothed_states_NS[[i]] <- cbind(list_est_smoothed_states_NS[[il],
rep(list_KF_coef _NS[[i]][c("lambda")] ,224))

colnames (list_est_smoothed_states_NS[[i]])<-c("Level","Slope","Curvature","Lambda")

list_est_smoothed_states_NS[[i]]<-xts(list_est_smoothed_states_NS[[i]], index(
xts_swap_rates))

¥
## used for DA
list_ts_state_variables_NS[["1step"]] <- list_est_smoothed_states_NS$dlm_LU

###H#H#

## Svensson

###HHH#

prep_lstep_Sven <- function(lambdaOl,lambda02, xts_swap_rates_temp){
## Two step estimation method

X <- NULL
for (i in 1:n_obs){
data_temp <- as.data.frame(cbind("curve" = as.numeric(xts_swap_rates_templ[i]),
"tau" = tau_swap_rates))
temp <- Im(curve ~ slope_loading( lambdaOl , tau ) + curvature_loading(lambdaO1l,

tau) + curvature_loading(lambda02, tau),
data = data_temp)
X <- rbind (X,
temp$coefficients)
}
X <- cbind(X,rep(lambda0Ol,times=n_obs) ,rep(lambdall,times=n_obs))
X <- xts(X,index(xts_swap_rates_temp))
colnames (X) <- c("Level","Slope","Curvaturel", "Curvature2","Lambdal","Lambda2")

## 1. In order to identify plausible starting values of the parameters to be
estimated the information of the two-step estimation approach is used.

# VAR

VAR2step <- VAR(X[,c("Level","Slope","Curvaturel","Curvature2")], 1, "const")

# residuals

C <- matrix(c(rep(1, d_obs),
slope_loading (lambdaOl,tau_swap_rates),
curvature_loading(lambdaOl, tau_swap_rates),
curvature_loading(lambda02, tau_swap_rates)),ncol=4,nrow=d_obs)
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A. R-code

#

}

##
##
dt
ct

y-

S8

est_yields <- t(C %*% t(X[,c("Level","Slope","Curvaturel","Curvature2")]))
residuals <- est_yields - as.data.frame(xts_swap_rates_temp)

# 2. General initial values preparation - initialize the starting values and mean
adjusted yields and factors (X_t) according to Diebold & Li

muO<-apply (X[,c("Level","Slope","Curvaturel","Curvature2")],2,function(x) mean(x))

A0 <- Bcoef (VAR2step) [,-5]

Q0 <- summary (VAR2step)

QO <- QO0$covres

BO <- matrix (0, ncol = 4, nrow = 4)

diag(BO) <- sqrt(diag(QO0))

HO <- cov(residuals)

DO <- matrix (0, ncol = d_obs, nrow = d_obs)

diag(DO) <- sqrt(diag(HO))

x0 <- as.numeric(X[1,c("Level","Slope","Curvaturel","Curvature2")])
z0 <- x0 - muO

PO <- cov(X[,c("Level","Slope","Curvaturel","Curvature2")])

## Vector parametrization of initial values
AO_v <- as.vector (AO)

names (AO_v) <- pasteO("a", 1:16)
BO_v <- as.vector (BO)

# for BO only lower triangle Matrix
BO_v <- BO_v[c(1:4, 6:8, 11:12, 16)]
names (BO_v) <- pasteO("b", 1:10)
DO_v <- diag(DO)

names (DO_v) <- pasteO("d",1:8)

names (mu0) <- pasteO("m", 1:4)
#lambdaO <- log(lambdaO)

names (lambdaOl1) <- "lambdal"

names (lambda02) <- "lambda2"

list_initial_values <- c(as.list(AO_v),as.list(BO_v),as.list(DO_v),as.list(mu0),
as.list (lambdaO01),as.list(lambda02))

list ("PO" = PO, "xO" = x0, "initial_values" = c(as.list(AO_v),as.list(BO_v),
as.list(DO_v),as.list(mu0),as.list (lambda0l) ,as.list(lambda02)))

3. Kalman Filter and MLE
FKF Package
<- matrix(0,4,1)
= matrix(0,d_obs,1)
t <- t(xts_swap_rates)

_FKF_LL_l1st_Sven<-function(al,a2,a3,a4,ab,a6,a7,a8,a9,al0,all,a12,al13,al4,al5,al6,
bl,b2,b3,bd,b5,b6,b7,b8,b9,bl10,
di, d2, d3, d4, d5, d6, d7, d8,
ml, m2, m3,m4,
lambdal,lambda?2) {
Tt<-matrix(c(al,a2,a3,ad4,ab,a6,a7,a8,a9,al0,all,al2,al13,al4,al15,a16) ,ncol=4,nrow
=4)
Ht <- matrix(c(bl,b2,b3,b4,0,b5,b6,b7,0,0,b8,b9,0,0,0,b10), ncol = 4, nrow = 4)
HHt <- Ht %*% t(Ht)
Zt <- matrix(c(rep(l, d_obs),
slope_loading(lambdal,tau_swap_rates),
curvature_loading(lambdal, tau_swap_rates),
curvature_loading(lambda2, tau_swap_rates)),ncol=4, nrow=d_obs)
a0 <- x0 - c(ml, m2, m3, m4)
muO_yields <- matrix(Zt %*% c(ml, m2, m3, m4), nrow = d_obs, ncol = n_obs)
y_t_deflated = y_t - muO_yields
Gt <- diag(c(dl, d2, d3, d4, d5, d6, d7, d8))
GGt <- Gt %x% t(Gt)
# print (lambdal)
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A. R-code

# print (lambda2)

SS_FKF <- fkf(a0 = a0, PO = PO, dt = dt, ct = ct, Tt = Tt, Zt = Zt, HHt = HHt, GGt
= GGt, yt = y_t_deflated, check.input = T)

- SS_FKF$logLik
}

lambdaOl<-as.numeric(list_ts_state_variables_Sven$ ‘2stepfix ‘[1,c("Lambdal")]) #(1Y)
lambda02<-as.numeric (list_ts_state_variables_Sven$ ‘2stepfix ‘[1,c("Lambda2")]) #(3Y)
xts_swap_rates_temp <- xts_swap_rates

n_obs <- dim(xts_swap_rates_temp) [1]

d_obs <- dim(xts_swap_rates_temp) [2]

initial_values <- prep_1lstep_Sven(lambdaOl,lambda02, xts_swap_rates_temp)
list_initial_values <- initial_values$initial_values

PO <- initial_values$PO

x0 <- initial_values$x0

MLE_BFGS_fkf_Sven<-mle(SS_FKF_LL_lst_Sven,start=1ist_initial_values ,method="BFGS")

## LU version of BFGS
lower_Sven<-c(-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,
-Inf,-Inf,
-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,
-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,-Inf,
-Inf,-Inf,-Inf,-Inf,
0.01,0.01)
upper_Sven<-c(Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,
Inf ,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,Inf,
Inf ,Inf,Inf,Inf,Inf,Inf,Inf,Inf,
Inf ,Inf,Inf,Inf,
3,3)
names (lower_Sven) <- names (upper_Sven) <- names(list_initial_values)

MLE_LU_BFGS_fkf_Sven<-mle(SS_FKF_LL_1lst_Sven,start=1list_initial_values ,method="
L-BFGS-B",lower = lower_Sven ,upper = upper_Sven)

## dlm package
SS_DLM_LL_1st_Sven<-function(al,a2,a3,a4,a5,a6,a7,a8,a9,al10,all,al2,al3,ald4,al5,al6,
b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,
di, d2, 43, d4, d5, d6, d7, d8,
ml, m2, m3,m4,
lambdal , lambda2) {
GG<-matrix(c(al,a2,a3,a4,ab,a6,a7,a8,a9,a10,al1,al12,a13,a14,a15,a16),ncol=4,nrow
=4)
W <- matrix(c(bl,b2,b3,b4,0,b5,b6,b7,0,0,b8,09,0,0,0,b10), ncol = 4, nrow = 4)
W <= W %% t(W)
FF <- matrix(c(rep(1l, d_obs),
slope_loading(lambdal,tau_swap_rates),
curvature_loading(lambdal, tau_swap_rates),
curvature_loading(lambda2, tau_swap_rates)),ncol=4,nrow=d_obs)
m0 <- x0 - c(ml, m2, m3, m4)
muO_yields<-matrix (t(FF %*% c(ml, m2, m3, m4)),ncol=d_obs,nrow=n_obs,byrow=T)
y_t_deflated = xts_swap_rates_temp - muO_yields
V <- diag(c(d1l, d2, 43, d4, d5, d6, 47, d8))
V <=V %x% t(V)
#print (c(lambdal ,lambda2))
SS_dlm <- dlm(FF = FF, GG = GG, V = V, W = W, mO = mO, CO = PO)
dlmLL(y_t_deflated, SS_dlm)
}
## BFGS
## not working due to negative/extreme lambda value as starting values in one
iteration
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A. R-code

# MLE_BFGS_dlm_Sven<-mle(SS_DLM_LL_1lst_Sven,start=list_initial_values ,method="BFGS")

## L-BFGS-B

MLE_LU_BFGS_dlm_Sven<-mle(SS_DLM_LL_1lst_Sven,start=1list_initial_values ,method="
L-BFGS-B",lower = lower_Sven ,upper = upper_Sven)

list_KF_coef_Sven <- 1list("FKF" = coef (MLE_BFGS_fkf_Sven),
"FKF_LU" = coef (MLE_LU_BFGS_fkf_Sven),
"dlm_LU" = coef (MLE_LU_BFGS_dlm_Sven))
#EH#H

## Derive smoothed state variables
# Estimated coefficients, smoothing by dlm package
# state space set-up
SS_DLM_Sven <- function(params){
GG <- matrix(c(params[1:16]), ncol = 4, nrow = 4)
W<-matrix (c(params[17:20] ,0,params[21:23],0,0, params [24:25],0,0,0, params [26]) ,ncol
=4 ,nrow=4)
W <= W %% t(W)
FF <- matrix(c(rep(l1, d_obs),
slope_loading (params [39],tau_swap_rates),
curvature_loading (params [39], tau_swap_rates),
curvature_loading (params [40], tau_swap_rates)),ncol=4,nrow=d_obs)
m0 <- x0 - params [35:38]
V <- diag(c(params [27:34]))
V <=V %*% t(V)
SS_dlm <- dlm(FF = FF, GG = GG, V =V, W = W, mO = mO, CO = PO)
SS_dlm
}
## state space model by estimated parameters
SS_presentations_dlm_Sven <- 1list ()
for ( i in names(list_KF_coef_Sven)){
SS_presentations_dlm_Sven[[i]] <- SS_DLM_Sven(list_KF_coef_Sven[[i]])
}
## derive smoothed state variables
list_est_smoothed_states_Sven <- list()
for ( i in names(list_KF_coef_Sven)){
muO_yields <- matrix(t(FF(SS_presentations_dlm_Sven[[i]]) %x* list_KF_coef_Sven[[i
11 [c("m1","m2","m3","m4")]), ncol = d_obs, nrow = n_obs, byrow = T)
y_t_deflated = xts_swap_rates - muO_yields

list_est_smoothed_states_Sven[[i]] <- dlmSmooth(y_t_deflated,
SS_presentations_dlm_Sven[[i]])$s[-1,] + matrix(list_KF_coef_Sven[[i]][c("m1",
"m2","m3","m4")] ,ncol = 4, nrow = n_obs, byrow = T)
list_est_smoothed_states_Sven[[i]] <- cbind(list_est_smoothed_states_Sven[[i]],
rep(list_KF_coef_Sven[[i]] [c("lambdal")],224),
rep(list_KF_coef_Sven[[i]][c("lambda2")],224))
colnames (list_est_smoothed_states_Sven[[i]]) <- c("Level","Slope","Curvaturel","
Curvature2","Lambdal","Lambda2")
list_est_smoothed_states_Sven[[i]] <- xts(list_est_smoothed_states_Sven[[i]],
index (xts_swap_rates))
¥
## used for DA
list_ts_state_variables_Sven[["1step"]] <- list_est_smoothed_states_Sven[["dlm_LU"]]

A.5.4. 1-2-step fix

HABHBRAHHBHBRARBRARHABRARBRBRARRARBHBRARBRHRRH

## Estimation methodologies - 1-2-step-fix

## set lambda values as estimated by one-step estimation approach

# Nelson Siegel model

lambda0 <- as.numeric(list_ts_state_variables_NS[["1step"]][1,"Lambda"])
# Svensson model
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A. R-code

lambda0l <- as.numeric(list_ts_state_variables_Sven[["1step"]][1,"Lambdal"])
lambda02 <- as.numeric(list_ts_state_variables_Sven[["1step"]][1,"Lambda2"])
n_obs <- dim(xts_swap_rates) [1]
d_obs <- dim(xts_swap_rates) [2]
HH##H#
# derive state variables by ordinary least squares
X <- NULL
for (i in 1:mn_obs){
# term-structure curve at point in time i (t)

data_temp <- as.data.frame(cbind("curve" = as.numeric(xts_swap_rates[i]),
"tau" = tau_swap_rates))
## ordinary least squares - Nelson Siegel

temp<-1lm(curve slope_loading(lambdaO,tau)+curvature_loading(lambdaO,tau) ,data =
data_temp)
## ordinary least squares - Svensson
# temp<-1lm(curve~slope_loading(lambdaOl,tau)+curvature_loading(lambdaOl,tau)+
curvature_loading (lambda02, tau),
# data = data_temp)
# get estimated coefficients
X <- rbind(X,temp$coefficients)
}
# store time series - Nelson-Siegel
list_ts_state_variables_NS[["12step"]] <- xts(cbind(X,rep(lambdal,times=n_obs)),
index (xts_swap_rates))
colnames (list_ts_state_variables_NS[["12step"]]) <- c("Level","Slope","Curvature", "
Lambda")
# Svensson
# list_ts_state_variables_Sven[["12step"]] <- xts(cbind(X,rep(lambdall,times=n_obs),
rep (lambda02,times=n_obs)) ,index (xts_swap_rates))
# colnames(list_ts_state_variables_Sven[["12step"]]) <- c("Level","Slope","
Curvaturel", "Curvature2","Lambdal", "Lambda2")

A.6. In-sample fit

A.6.1. In-sample fit results
The following code includes: Table 5.1, Table 5.2, Figure 5.1, Figure 5.2, Figure 5.3

HHHHH
## Overall in-sample fit and dynamics in the term-structure
# calculation of estimated yields by various model specifications
estimated_yields <- list ()
# Nelson-Siegel/Svensson - fix decay parameters
str_temp <- c("2stepfix", "12step", "1step")
for ( i in str_temp){
# Nelson-Siegel
estimated_yields [[pasteO("NS_",i)]]< list_ts_state_variables_NS[[ill[,c("Level","
Slope","Curvature")] %#*% rbind(rep(1l,d_obs),slope_loading(as.numeric(
list_ts_state_variables_NS[[i]][1,"Lambda"]),tau_swap_rates),
curvature_loading(as.numeric(list_ts_state_variables_NS[[i]][1,"Lambda"]l),
tau_swap_rates))
estimated_yields[[pasteO("NS_",i)]]<-xts(estimated_yields[[pasteO("NS_",i)]], index
(xts_swap_rates))
# Svensson
estimated_yields [[paste0O("Sven_",i)]] <- list_ts_state_variables_Sven[[i]][,c("
Level","Slope","Curvaturel", "Curvature2")] Y%’ rbind(rep(l, d_obs),
slope_loading (as.numeric(list_ts_state_variables_Sven[[i]][1,"Lambdal"]),
tau_swap_rates) ,curvature_loading(as.numeric(list_ts_state_variables_Sven[[i
11[1,"Lambdal"]) ,tau_swap_rates),curvature_loading(as.numeric(
list_ts_state_variables_Sven[[i]][1,"Lambda2"]) ,tau_swap_rates))
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A. R-code

estimated_yields [[paste0("Sven_",i)]] <- xts(estimated_yields[[paste0("Sven_",i)
]]1, index(xts_swap_rates))

}
# Nelson-Siegel/svensson - var decay parameters
str_temp <- "2stepvar"

estimated_yields [[pasteO("NS_",str_temp)]] <- NULL
estimated_yields [[pasteO("Sven_",str_temp)]] <- NULL
for ( i in 1:dim(xts_swap_rates) [1]){
# Nelson-Siegel
estimated_yields [[paste0O("NS_",str_temp)]] <- rbind(estimated_yields[[pasteO("NS_"
,str_temp)]] ,nelson_siegel_model (as.numeric(list_ts_state_variables_NS[[
str_temp]][i,]),tau_swap_rates))
# Svensson
estimated_yields[[paste0("Sven_",str_temp)]] <- rbind(estimated_yields[[pasteO ("
Sven_",str_temp)]],svensson_model (as.numeric(list_ts_state_variables_Sven[[
str_templ][i,]),tau_swap_rates))
}
estimated_yields [[pasteO("NS_",str_temp)]] <- xts(estimated_yields[[pasteO("NS_",
str_temp)]], index(xts_swap_rates))
estimated_yields[[paste0("Sven_",str_temp)]] <- xts(estimated_yields[[pasteO("Sven_"
,str_temp)]], index(xts_swap_rates))
## calculation of residuals
str_temp <- c("NS_2stepfix", "NS_2stepvar", "NS_1step", "NS_12step", "Sven_2stepfix"
"Sven_2stepvar", "Sven_1step", "Sven_12step")
residuals <- list ()
for ( i in str_temp){
residuals [[i]] <- estimated_yields[[i]] - xts_swap_rates

}

## calculation of measure to examine the in-sample fit of the models
# table - RMSE over term-structure curve - change 2-step var in DA
table_termstructure(residuals, names(residuals))

# [1] "1999-01-31"

# [1] "2017-08-31"

# Mean Median Std. Dev. Min. Max.
# NS_2stepfix 0.0752 0.0682 0.0386 0.0274 0.2730
# NS_2stepvar 0.0640 0.0568 0.0324 0.0194 0.2055
#

# table - RMSE per individual tenors

table_tenor (residuals, names(residuals))

# $RMSE

# NS_2stepfix NS_2stepvar NS_1lstep NS_12step Sven_2stepfix Sven_2stepvar Sven_lstep
Sven_12step

# 3M 0.0722 0.0420 0.0949 0.0828 0.0165 0.0226 0.0031
0.0366

# 6M 0.0204 0.0292 0.0000 0.0194 0.0247 0.0391 0.0140
0.0175

#

# figure - mean per individual tenors

str_labels_plot <- c("X2.step.fix","X2.step.var","X1l.step","X1l.step.2.step")
colours <- blue2yellow(n = 5)[c(1,2,3,4)]
names (colours) <- c("X2.step.fix","X2.step.var","X1l.step.2.step","X1.step")

str_labels <- c("2-step fix", "2-step var","l-step","1-2-step")
names (str_labels) <- str_labels_plot
# data

data_temp <- table_tenor(residuals, names(residuals))$Mean

# Nelson-Siegel

data_temp_fit_ns <- data_templ[,1:4]

colnames (data_temp_fit_ns) <- c("X2.step.fix","X2.step.var","X1l.step","
X1.step.2.step")

data_temp_fit_ns <- as.data.frame(cbind("Tenor" = tau_swap_rates,data_temp_fit_ns))
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A. R-code

data_temp_fit_ns <- melt(data_temp_fit_ns, "Tenor")

data_temp_fit_ns <- cbind(data_temp_fit_ns,"Model" = rep("Nelson-Siegel",dim(
data_temp_fit_ns) [1]))

colnames (data_temp_fit_ns) [2] <- "Method"

# Svensson

data_temp_fit_sven <- data_temp[,5:8]

colnames (data_temp_fit_sven) <- c("X2.step.fix","X2.step.var","X1l.step","
X1.step.2.step")

data_temp_fit_sven <- as.data.frame(cbind("Tenor" = tau_swap_rates,
data_temp_fit_sven))

data_temp_fit_sven <- melt(data_temp_fit_sven, "Tenor")

data_temp_fit_sven <- cbind(data_temp_fit_sven, "Model" = rep("Svensson",dim(

data_temp_fit_sven) [1]))
colnames (data_temp_fit_sven) [2] <- "Method"
# Combine
data_temp <- rbind(data_temp_fit_ns,data_temp_fit_sven)
# Plot

ggplot (data = data_temp,aes(x = Tenor,y = value,linetype = Model, col = Method))+

geom_line(size=1.2)+

labs(y = "Mean",x="Tenor (in years)",title="")+
# scale_linetype_manual (labels = str_models_temp,values=c(1,2,4,5,6,7))+
scale_color_manual (labels = str_labels, values = colours)+

guides (color = guide_legend(order = 2), linetype = guide_legend(order = 1)) +

theme_bw () +
theme (legend.title=element_text(size = 22,face="plain",color="black"),
legend.spacing.x = unit(0.1,"cm"),
legend.margin = margin(0, 0, O, 0, "cm"),
legend.key.width = unit(1,"cm"
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 21,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),
plot.title = element_text(size = 20,face="plain",color="black"),
legend.position = "right",
plot.margin = unit(c(0,0.1,0,0),"cm"
)
# figure - RSME over term-structure evolved over time

rmse_swapratecurve <- NULL
for ( j in 1:length(residuals)){

rmse_swapratecurve <- cbind(rmse_swapratecurve ,apply(residuals[[j]],1,RMSE_fun))

}

data_temp <- cbind("Date" = index(xts_swap_rates),as.data.frame(rmse_swapratecurve))

colnames (data_temp) [-1] <- names(residuals)

# Nelson-Siegel

data_temp_fit_ns <- data_temp[,1:5]

colnames (data_temp_fit_ns)[-1] <- c("X2.step.fix","X2.step.var","X1l.step",
X1.step.2.step")

data_temp_fit_ns <- melt(data_temp_fit_ns, "Date")

data_temp_fit_ns <- cbind(data_temp_fit_ns,"Model" = rep("Nelson-Siegel",dim(
data_temp_fit_ns) [1]))

colnames (data_temp_fit_ns) [2] <- "Method"

# Svensson

data_temp_fit_sven <- data_temp[,c(1,6:9)]

colnames (data_temp_fit_sven)[-1] <- c("X2.step.fix","X2.step.var","X1.step","
X1.step.2.step")

data_temp_fit_sven <- melt(data_temp_fit_sven, "Date")

data_temp_fit_sven <- cbind(data_temp_fit_sven, "Model" = rep("Svensson",dim(
data_temp_fit_sven) [1]))

colnames (data_temp_fit_sven) [2] <- "Method"

data_temp <- rbind(data_temp_fit_ns,data_temp_fit_sven)

ggplot (data = data_temp,aes(x = Date,y = value,linetype = Model, col = Method))+
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A. R-code

geom_line(size=1.2)+

labs(y = "RMSE",x="Date",title="")+
# scale_linetype_manual (labels = str_models_temp,values=c(1,2,4,5,6,7))+
scale_color_manual (labels = str_labels, values = colours)+

guides (color = guide_legend(order = 2), linetype = guide_legend(order = 1)) +
theme_bw () +
theme (legend.title=element_text (size = 22,face="plain",color="black"),
legend.spacing.x = unit(0.1,"cm"),
legend.margin = margin(0, O, 0, O, "cm"),
legend.key.width = unit(1,"cm"
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 21,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),

plot.title = element_text(size = 20,face="plain",color="black"),
legend.position = ¢(0.12,0.72),
plot.margin = unit(c(0,0.1,0,0),"cm"

# figure - shapes of the term-structure and average shape of the term-structure
# time points

# - Average swap rate curve

# - 01/2002 & 06/2005 & 08/2008 & 10/2011 & 01/2017

time_stamps <- c("2002-01","2005-06","2008-08","2011-10","2017-01")
Sys.setlocale("LC_TIME","English")

time_string <- format(as.Date(paste(time_stamps,"01",sep= "-"),"%Y-%m-%d"),"%b, %Y")
k <- 1
list_plots <- NULL
str_temp <- c("NS_2stepfix", "NS_2stepvar", "NS_1istep", "NS_12step", "Sven_2stepfix"
"Sven_2stepvar", "Sven_1step", "Sven_12step")
for ( i in time_stamps){
data_temp_act <- data.frame("Tenor" = tau_swap_rates,"Actual" = as.numeric(
xts_swap_rates[i,]))
data_temp_act <- melt(data_temp_act, "Tenor")

data_temp_ns <- NULL
# Nelson-Siegel
for ( j in str_temp[1:4]1){
data_temp_ns <- cbind(data_temp_ns,as.numeric(estimated_yields[[j]]1[i,]))

}

colnames (data_temp_ns) <- c("X2.step.fix","X2.step.var","X1l.step","X1.step.2.step"
)

data_temp_ns <- data.frame("Tenor" = tau_swap_rates,data_temp_ns)

data_temp_ns <- melt(data_temp_ns, "Tenor")

data_temp_ns <- cbind(data_temp_ns,"Model" = rep("Nelson-Siegel",dim(data_temp_ns)
[11))

colnames (data_temp_ns) [2] <- "Method"
data_temp_sven <- NULL
# Svensson
for ( j in str_temp[5:8]){
data_temp_sven <- cbind(data_temp_sven,as.numeric(estimated_yields[[j]]1[i,]))
}
colnames (data_temp_sven) <- c("X2.step.fix","X2.step.var","X1l.step","
X1.step.2.step")

data_temp_sven <- data.frame("Tenor" = tau_swap_rates,data_temp_sven)

data_temp_sven <- melt(data_temp_sven, "Tenor")

data_temp_sven <- cbind(data_temp_sven, "Model" = rep("Svensson",dim(data_temp_sven
) [11))

colnames (data_temp_sven) [2] <- "Method"
data_temp <- rbind(data_temp_ns,data_temp_sven)

list_plots[[i]] <- ggplot() +

geom_line (data = data_temp, mapping = aes(x = Tenor,y = value, linetype = Model,
color = Method), size = 1.2) +
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A. R-code

geom_point (data = data_temp_act, mapping = aes(x = Tenor,y = value, shape =
variable), size = 2) +

scale_color_manual (labels = str_labels, values = colours)+

labs(y = "",x="Date",title=time_string[k], shape = "") +

guides (shape = guide_legend(order = 1),color = guide_legend(order = 3,
, linetype = guide_legend(order = 2)) +
theme_bw () +
theme (legend.title=element_text (size = 17,face="plain",color="black"),
legend.key.width = unit(1.2,"cn"),
legend.text.align = 0,

axis.title = element_text(size = 18,face="plain",color="black"),
axis.text = element_text(size = 18,face="plain",color="black"),
legend.text = element_text(size = 15,face="plain",color="black")

plot.title = element_text(size = 19,face="plain",color="black"),
#legend.position = c(0.68,0.43),
legend.position = "none",
plot.margin = unit(c(0,0.1,0,0),"cn"
)
k <- k + 1
}

## average

data_temp_act <- data.frame("Tenor" = tau_swap_rates,"Actual" = apply(xts_

,2,mean))
data_temp_act <- melt(data_temp_act, "Tenor")
data_temp_ns <- NULL
# Nelson-Siegel
for ( j in str_temp[1:4]1){
data_temp_ns <- cbind(data_temp_ns,apply(estimated_yields[[j]],2,mean))
}

ncol = 2)

s>

swap_rates

colnames (data_temp_ns) <- c("X2.step.fix","X2.step.var","X1l.step","X1l.step.2.step")

data_temp_ns <- data.frame("Tenor" = tau_swap_rates,data_temp_ns)

data_temp_ns <- melt(data_temp_ns, "Tenor")

data_temp_ns <- cbind(data_temp_ns,"Model" = rep("Nelson-Siegel",dim(data_
[11)»

colnames (data_temp_ns) [2] <- "Method"
data_temp_sven <- NULL

# Svensson

for ( j in str_temp[5:8]){

temp_ns)

data_temp_sven <- cbind(data_temp_sven,apply(estimated_yields([[j]],2,mean))

}

colnames (data_temp_sven) <- c("X2.step.fix","X2.step.var","X1l.step","X1l.step.2.step"
)

data_temp_sven <- data.frame("Tenor" = tau_swap_rates,data_temp_sven)

data_temp_sven <- melt(data_temp_sven, "Tenor")

data_temp_sven <- cbind(data_temp_sven, "Model" = rep("Svensson",dim(data_temp_sven)
[115)

colnames (data_temp_sven) [2] <- "Method"
data_temp <- rbind(data_temp_ns,data_temp_sven)

list_plots[["average"]] <- ggplot() +
geom_line (data = data_temp, mapping = aes(x = Tenor,y = value, linetype
color = Method), size = 1.2) +

= Model,

geom_point (data = data_temp_act, mapping = aes(x = Tenor,y = value, shape =
variable), size = 2) +

scale_color_manual (labels = str_labels, values = colours)+

labs(y = "",x="Date",title="Average swap rate curve", shape = "") +

guides (shape = guide_legend(order = 1),color = guide_legend(order = 3, ncol = 2),

linetype = guide_legend(order = 2)) +
theme_bw () +
theme (legend.title=element_text (size

17,face="plain",color="black"),

legend.key.width = unit(1.2,"cn"),
legend.text.align = O,
axis.title = element_text(size = 18,face="plain",color="black"),
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A. R-code

axis.text = element_text(size = 18,face="plain",color="black"),
legend.text = element_text(size = 15,face="plain",color="black"),
plot.title = element_text(size = 19,face="plain",color="black"),
#legend.position = c(0.68,0.43),

legend.position = "none",

plot.margin = unit(c(0,0.1,0,0),"cn")
)

grid.arrange (arrangeGrob(list_plots[["average"]],list_plots[["2002-01"]]+theme (
legend.position = c(0.68,0.43)),
list_plots[["2005-06"]1],1list_plots[["2008-08"]],
list_plots[["2011-10"]],1list_plots[["2017-01"]],ncol=2))

A.6.2. Dynamics of the state variables

The following code includes: Figure 5.4, Figure 5.5, Figure 5.6

H#H###

## Dynamics of the state variables

# Nelson-Siegel

list_models_in_sample <- list_ts_state_variables_NS[1:4]

str_temp <- names(list_models_in_sample) <- c("2.step.fix","2.step.var","1l.step","1
.step.2.step")
state_var <- c("Level","Slope","Curvature")

data_temp <- NULL
date_vector <- index(xts_swap_rates)
n <- length(date_vector)
for (i in 1:3){
for ( j in str_temp){
data_temp <- rbind(data_temp,data.frame("Date" = date_vector,"StateVariable" =
rep(state_var[i],n),"Method" = rep(j, n),"value" = as.numeric(
list_models_in_sample[[jI]1[,i]1)))
}
¥
str_labels_plot <- c("2.step.fix","2.step.var","1.step","1.step.2.step")
colours <- blue2yellow(n = 5)[c(1,2,4)]
names (colours) <- state_var
str_labels <- c("2-step fix","2-step var","l-step", "1-2-step")
names (str_labels) <- str_labels_plot
ggplot (data = data_temp,aes(x = Date,y = value,linetype = Method, color =
StateVariable))+
geom_line(size=1.2) +

labs(y = "",x="Date",title="")+
scale_linetype_manual (labels = str_labels,values= c(1,4,2,5))+
scale_color_manual (values = colours)+

theme_bw () +

theme (legend.title=element_text (size = 22,face="plain",color="black"),
legend.key.width = unit(1.5,"cn"),
legend.text.align = 0,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 22,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),
plot.title = element_text(size = 24,face="plain",color="black"),
legend.position = "right",

plot.margin = unit(c(0,0.1,0,0),"cn")

# Svensson model with 2 step var restricted
list_models_in_sample <- list_ts_state_variables_Sven[c(1,3:5)]

str_temp <- names(list_models_in_sample) <- c("2.step.fix","2.step.var","1.step","1
.step.2.step")
state_var <- c("Level","Slope","Curvaturel","Curvature2")
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A. R-code

41 data_temp <- NULL

42 date_vector <- index(xts_swap_rates)
43 n <- length(date_vector)

44 for (i in 1:4){

45 for ( j in str_temp){

46 data_temp <- rbind(data_temp ,data.frame("Date" = date_vector,"StateVariable" =
rep(state_var[i],n),"Method" = rep(j, n),"value" = as.numeric(
list_models_in_sample [[jI11[,i1)))

47 }

48 )

49 str_labels_plot <- c("2.step.fix","2.step.var","l.step","1l.step.2.step")
50 colours <- blue2yellow(n = 5)[c(1,2,4,5)]
51 names(colours) <- state_var

52 str_labels <- c("2-step fix","2-step var","l1-step", "1-2-step")
53 mnames(str_labels) <- str_labels_plot
54

55 ggplot(data = data_temp,aes(x = Date,y = value,linetype = Method, color =
StateVariable))+

56 geom_line (size=1.2) +

57 labs(y = "",x="Date",title="")+

58 scale_linetype_manual (labels = str_labels,values= c(1,4,2,5))+

59 scale_color_manual (values = colours)+

60 theme_bw () +

61 theme (legend.title=element_text (size = 22,face="plain",color="black"),
62 legend.key.width = unit(1.5,"cn"),

63 legend.text.align = O,

64 axis.title = element_text(size = 22,face="plain",color="black"),
65 axis.text = element_text(size = 22,face="plain",color="black"),
66 legend.text = element_text(size = 21,face="plain",color="black"),
67 plot.title = element_text(size = 24,face="plain",color="black"),
68 legend.position = "right",

69 plot.margin = unit(c(0,0.1,0,0),"cn")

70 ) +

71 guides (linetype = guide_legend (order=1),

72 color = guide_legend(order=2))

73

74 # Svensson model with 2 step var unrestricted
75 list_models_in_sample <- list_ts_state_variables_Sven[c(1:2,4:5)]

76 str_temp <- names(list_models_in_sample) <- c("2.step.fix","2.step.var","1l.step","1
.step.2.step")
77 state_var <- c("Level","Slope","Curvaturel","Curvature2")

78 data_temp <- NULL

79 date_vector <- index(xts_swap_rates)
80 n <- length(date_vector)

81 for (i in 1:4){

82 for ( j in str_temp){

83 data_temp <- rbind(data_temp ,data.frame("Date" = date_vector,"StateVariable" =
rep(state_var[i] ,n),"Method" = rep(j, n),"value" = as.numeric(
list_models_in_sample[[jI1]1[,1i]1)))

84 }

85

86 str_labels_plot <- c("2.step.fix","2.step.var","l.step","l.step.2.step")
87 colours <- blue2yellow(n = 5)[c(1,2,4,5)]
88 names(colours) <- state_var

89 str_labels <- c("2-step fix","2-step var unr","l1-step", "1-2-step")
90 names(str_labels) <- str_labels_plot
91

92 ggplot(data = data_temp,aes(x = Date,y = value,linetype = Method, color =
StateVariable))+

93 geom_line (size=1.2) +

94 labs(y = "",x="Date",title="")+

95 scale_linetype_manual (labels = str_labels,values= c(1,4,2,5))+
96 scale_color_manual (values = colours)+
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A. R-code

theme_bw () +

theme (legend.title=element_text (size = 22,face="plain",color="black"),
legend.key.width = unit(1.5,"cm"),
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 22,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),
plot.title = element_text(size = 24,face="plain",color="black"),
legend.position = "right",

plot.margin = unit(c(0,0.1,0,0),"cm"
)+
guides (linetype = guide_legend(order=1),
color = guide_legend(order=2))

A.6.3. Impulse response function

The following code includes: Figure 5.7

##H#H

## IRF

#EHEH

## Nelson Siegel

## 2-step fix

# State variables including Macroeconomic factors

xts_ns_macro <- cbind(list_ts_state_variables_NS$ ‘2stepfix ‘[,c("Level","Slope","
Curvature")],xts_macro[,c("Inflation_Eurozone","Outputgap_Eurozone", "
EONIA_average")])

# estimate var

colnames (xts_ns_macro) <- c("Level","Slope","Curvature","Inflation","Outputgap","
EONIA"M)
var_xts <- VAR(y = xts_ns_macro, p = 2, type = "const")

# irf function
# normal
state_variables <- c("Level","Slope","Curvature","Outputgap","Inflation","EONIA")
k <- 1; i1 <- "Level"; j <- "Slope"
runs_irf <- 100
stepsahead <- 59
var_temp <- var_xts
list_plots <- list ()
for ( i in state_variables){
for ( j in state_variables){

irf_temp <- irf(x = var_temp,impulse = i, response = j, n.ahead = stepsahead,ci
= 0.9, runs = runs_irf)
data_temp <- data.frame("steps" = 1:(stepsahead+1)/12,
"irf" = irf_temp$irf[[i]],
"CI_L" = irf_temp$Lower [[i]],
"CI_U" = irf_temp$Upper [[i]])

colnames (data_temp) <- c("steps","irf","CI_L","CI_U")
data_temp <- melt(data_temp,"steps")

.y 1ab = nn
if (j == "Level"){
y_lab = paste(i, "impulse")
}
x_lab = nn
if (i == "Level"){
x_lab = paste(j, "response")
}
list_plots[[k]] <- ggplot(data = data_temp, mapping = aes(x = steps, y = value,
color = variable, linetype = variable)) +
geom_hline (yintercept = 0, linetype = 1, color = "black", size = 1) +
geom_line(size = 1.2) +
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A. R-code

labs(y = y_lab, x = "", title = x_lab) +
scale_linetype_manual (values=c(1,2,2))+
scale_color_manual (values=c("blue","orange","orange"))+
scale_x_continuous (limits = c(0,5), expand = c(0,0)) +

y1lim(-0.3,0.3) +
theme_bw () +
theme (legend.title=element_blank (),

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 24,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),
plot.title = element_text(size = 24,face="plain",color="black", hjust =
0.5),
legend.position = "none",
plot.margin = unit(c(0,0.2,0,0),"cn")
)
k <- k + 1

}
}

plots_irf_const_2step <- list_plots

grid.arrange (arrangeGrob (

plots_irf_const_2step[[1]],plots_irf_const_2step[[2]],plots_irf_const_2step[[3]],
plots_irf_const_2step[[4]],plots_irf_const_2step[[5]],plots_irf_const_2step
[[6]1],plots_irf_const_2step[[7]],plots_irf_const_2step[[8]],
plots_irf_const_2step [[9]] ,plots_irf_const_2step[[10]],plots_irf_const_2step
[[11]] ,plots_irf_const_2step [[12]],

plots_irf_const_2step[[13]],plots_irf_const_2step[[14]] ,plots_irf_const_2step
[[15]] ,plots_irf_const_2step[[16]],plots_irf_const_2step [[17]],
plots_irf_const_2step[[18]],plots_irf_const_2step[[19]],plots_irf_const_2step
[[20]] ,plots_irf_const_2step[[21]] ,plots_irf_const_2step[[22]],
plots_irf_const_2step[[23]],plots_irf_const_2step[[24]],

plots_irf_const_2step[[25]],plots_irf_const_2step[[26]],plots_irf_const_2step
[[27]] ,plots_irf_const_2step[[28]],plots_irf_const_2step[[29]],
plots_irf_const_2step [[30]],plots_irf_const_2step[[31]],plots_irf_const_2step
[[32]],plots_irf_const_2step[[33]],plots_irf_const_2step[[34]],
plots_irf_const_2step[[35]],plots_irf_const_2step[[36]],

ncol=6))

A.7. Out-of-sample forecasting

A.7.1. Forecast procedures - 1-step fix and 1-2-step fix preparation

HARHHRAHHHHB AR AR BH AR A RH BB AR HA R ARHBRA SR RHHHH

## Out of sample forecasting - one step forecasting preparation

## Forecasting one-step estimation methods

## time period for forecasting starting 2009-01 / 2014-09 (2nd regime)
fc_dates<-as.character (index(xts_swap_rates["2009-01/"]))

# 2nd regime: xts_swap_rates["2014-09/"]..

## SS presentations for Nelson-Siegel and Svensson model by dlm

# see estimation_methods_1step

HHHHH

# dlm

SS_DLM_LL_1st_NS <- ... defined in estimation_methods_1step
SS_DLM_LL_1st_Sven <- ... defined in estimation_methods_1step
SS_DLM_NS <- ... defined in estimation_methods_1step
SS_DLM_Sven <- ... defined in estimation_methods_1step

# as well as lower/upper bounds defined in estimation_methods_1step
## Estimating the coefficients starting with 2009-01 / 2014-09 (2nd regime)

HH#HH
# Nelson-Siegel
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A. R-code

1
N
£

}

#
#
1

ambda0 <- as.numeric(list_ts_state_variables_NS$ ‘2stepfix ‘[1,c("Lambda")])
S_est_coef_fc_dlm <- list ()
or (i in fc_dates){

start_time <- Sys.time ()

# date starting with the forecast

fc_date_temp <- i

# data for model estimation

xts_swap_rates_temp <- xts_swap_rates[paste0("/",fc_date_temp)]

# 2nd regime: ...paste0("2012-08/",fc_date_temp)]

n_obs <- dim(xts_swap_rates_temp) [1]

# data preparation - initial values

initial_values <- prep_1step_NS(lambdaO, xts_swap_rates_temp)
list_initial_values <- initial_values$initial_values

PO <- initial_values$PO

x0 <- initial_values$x0

# dlm
NS_est_coef_fc_dlm[[fc_date_temp]]<-mle(SS_DLM_LL_1lst_NS,start=list_initial_values

,method="L-BFGS-B",lower=lower_NS ,upper = upper_NS)

NS_est_coef_fc_dlm[[fc_date_templ]] <- coef(NS_est_coef_fc_dlm[[fc_date_templ])
# use information on lambda value as initial value

lambda0 <- NS_est_coef_fc_dlm[[fc_date_temp]]["lambda"]

# Estimating the smoothed state variables
smoothing by dlm package
ambda0 <- as.numeric(list_ts_state_variables_NS$ ‘2stepfix ‘[1,c("Lambda")])

NS_est_smoothed_par_dlm_fc <- list()

£

}

#

or (i in fc_dates){

# date

start_time <- Sys.time ()

fc_date_temp <- i

xts_swap_rates_temp <- xts_swap_rates[paste0("/",fc_date_temp)]
# 2nd regime: ...paste0("2012-08/",fc_date_temp)]

n_obs <- dim(xts_swap_rates_temp) [1]

# data preparation

initial_values <- prep_1lstep_NS(lambdaO, xts_swap_rates_temp)
PO <- initial_values$PO

x0 <- initial_values$x0

# dlm

SS_presentations_dlm_temp <- SS_DLM_NS(NS_est_coef_fc_dlm[[il])

muO_yields <- matrix(t(FF(SS_presentations_dlm_temp) %*’% NS_est_coef_fc_dlm[[i]][c
("m1","m2","m3")]) ,ncol=d_obs ,nrow=n_obs ,byrow=T)
y_t_deflated = xts_swap_rates_temp - muO_yields

NS_est_smoothed_par_dlm_fc[[i]]<-dlmSmooth(y_t_deflated,SS_presentations_dlm_temp)

NS_est_smoothed_par_dlm_fc[[i]]<-NS_est_smoothed_par_dlm_fc[[ill$s[-1,]l+matrix(
NS_est_coef_fc_dlm[[i]][c("m1","m2","m3")],ncol=3,nrow=n_obs ,byrow=T)

NS_est_smoothed_par_dlm_fc[[i]]<-cbind (NS_est_smoothed_par_dlm_fc[[i]],rep(
NS_est_coef_fc_dlm[[i]]["lambda"],n_obs))

NS_est_smoothed_par_dlm_fc[[i]]<-xts(NS_est_smoothed_par_dlm_fc[[i]], index(
Xts_swap_rates_temp))

colnames (NS_est_smoothed_par_dlm_fc[[i]])<-c("Level","Slope","Curvature","Lambda")

# use information on lambda value as initial value

lambdaO <- NS_est_coef_fc_dlm[[fc_date_templ]["lambda"]

# dynamics of state variables by one-step-two-step estimation approach

NS_est_smoothed_par_dlm_12step_fc <- 1list ()
df _swap_rates <- as.matrix(as.data.frame(xts_swap_rates))

#
£

2nd regime: ...xts_swap_rates["2012-08/",]1))
or (i in fc_dates){
fc_date_temp <- i
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A. R-code

xts_swap_rates_temp <- xts_swap_rates[paste0("/",fc_date_temp)]
# 2nd regime: ...paste0("2012-08/",fc_date_temp)]

n_obs <- dim(xts_swap_rates_temp) [1]

lambda0 <- NS_est_coef_fc_dlm[[i]l]["lambda"]

X <- NULL
for ( j in 1:n_obs){
data_temp <- as.data.frame(cbind("curve" = df_swap_rates[j,],"tau" =

tau_swap_rates))
temp <- 1lm(curve ~ slope_loading(lambdaO,tau)+curvature_loading(lambdaO,tau),
data=data_temp)
X <- rbind(X,temp$coefficients)
}
NS_est_smoothed_par_dlm_12step_fc[[i]l]l<-cbind(X,rep(lambdal,n_obs))
colnames (NS_est_smoothed_par_dlm_12step_fc[[i]])<-c("Level","Slope","Curvature",6"
Lambda")
NS_est_smoothed_par_dlm_12step_fc[[i]] <- xts(NS_est_smoothed_par_dlm_12step_fc[[i
1] ,index(xts_swap_rates_temp))

}

####H#

# Svensson

###H#H

lambdaOl<-as.numeric(list_ts_state_variables_Sven$ ‘2stepfix ‘[1,c("Lambdal")]) #(1Y)
lambda02<-as.numeric (list_ts_state_variables_Sven$ ‘2stepfix ‘[1,c("Lambda2")]) #(3Y)

Sven_est_coef_fc_dlm <- 1list ()
for ( i in fc_dates){
start_time <- Sys.time ()
# date starting with the forecast
fc_date_temp <- i
# data for model estimation
xts_swap_rates_temp <- xts_swap_rates[paste0("/",fc_date_temp)]
#2nd regime: ...paste0("2012-08/",fc_date_temp)]
n_obs <- dim(xts_swap_rates_temp) [1]
# data preparation
initial_values <- prep_lstep_Sven(lambdaOl,lambda02, xts_swap_rates_temp)
list_initial_values <- initial_values$initial_values
PO <- initial_values$PO
x0 <- initial_values$x0
# dlm
Sven_est_coef_fc_dlm[[fc_date_temp]] <- mle(SS_DLM_LL_lst_Sven,start=
list_initial_values ,method="L-BFGS-B",lower = lower_Sven ,upper = upper_Sven)
Sven_est_coef_fc_dlm[[fc_date_templ] <- coef(Sven_est_coef_fc_dlm[[fc_date_templ])
# use information on lambda valuea as initial values
lambda0l <- Sven_est_coef_fc_dlm[[fc_date_templ]["lambdal"]
lambda02 <- Sven_est_coef_fc_dlm[[fc_date_templ]["lambda2"]
}

## Estimating the smoothed state variables
# smoothing by dlm package
lambdaOl<-as.numeric (list_ts_state_variables_Sven$ ‘2stepfix ‘[1,c("lambdal")]) #(1Y)
lambda02<-as.numeric(list_ts_state_variables_Sven$ ‘2stepfix ‘[1,c("lambda2")]) #(3Y)
Sven_est_smoothed_par_dlm_fc <- list()
for ( i in fc_dates){
# date
start_time <- Sys.time ()
fc_date_temp <- i
# data for model estimation
xts_swap_rates_temp <- xts_swap_rates[pasteO("/",fc_date_temp)]
# 2nd regime: ...paste0("2012-08/",fc_date_temp)]
n_obs <- dim(xts_swap_rates_temp) [1]
# data preparation
initial_values <- prep_1step_Sven(lambdaOl,lambda02, xts_swap_rates_temp)
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A. R-code

PO <- initial_values$PO
x0 <- initial_values$x0
# dlm
SS_presentations_dlm_temp <- SS_DLM_Sven(Sven_est_coef_fc_dlm[[i]])
muO_yields <- matrix(t(FF(SS_presentations_dlm_temp) 7%*’% Sven_est_coef_fc_dlm[[i
11 [c("m1","m2","m3","m4")]), ncol = d_obs, nrow = n_obs, byrow = T)
y_t_deflated = xts_swap_rates_temp - muO_yields

Sven_est_smoothed_par_dlm_fc[[i]]<-dlmSmooth(y_t_deflated,
SS_presentations_dlm_temp)

Sven_est_smoothed_par_dlm_fc[[i]] <- Sven_est_smoothed_par_dlm_fc[[i]]l$s[-1,]+
matrix (Sven_est_coef_fc_dlm[[i]][c("ml1","m2","m3","m4")] ,ncol=4,nrow=n_obs,
byrow=T)

Sven_est_smoothed_par_dlm_fc[[i]] <- cbind(Sven_est_smoothed_par_dlm_fc[[i]],rep(
Sven_est_coef_fc_dlm[[i]l]l["lambdal"],n_obs),rep(Sven_est_coef_fc_dlm[[il]["
lambda2"],n_obs))

Sven_est_smoothed_par_dlm_fc[[i]] <- xts(Sven_est_smoothed_par_dlm_fc[[i]], index(
xts_swap_rates_temp))

colnames (Sven_est_smoothed_par_dlm_fc[[i]]) <- c("Level","Slope","Curvaturel",b"
Curvature2","Lambdal","Lambda2")

# use information on lambda value as initial values

lambda0l <- Sven_est_coef_fc_dlm[[fc_date_templ]["lambdal"]

lambda02 <- Sven_est_coef_fc_dlm[[fc_date_templ]["lambda2"]

}

## dynamics of state variables by one-step-two-step estimation approach
Sven_est_smoothed_par_dlm_12step_fc <- list ()
df _swap_rates <- as.matrix(as.data.frame(xts_swap_rates))
# 2nd regime: ...xts_swap_rates["2012-08/",]1))
for ( i in fc_dates){
fc_date_temp <- i
xts_swap_rates_temp <- xts_swap_rates[paste0("/",fc_date_temp)]
#2nd regime: ...paste0("2012-08/",fc_date_temp)]
n_obs <- dim(xts_swap_rates_temp) [1]
lambdal <- Sven_est_coef_fc_dlm[[i]J]["lambdal"]
lambda2 <- Sven_est_coef_fc_dlm[[i]]["lambda2"]
X <- NULL
for ( j in 1:n_obs){
data_temp<-as.data.frame(cbind("curve"=df_swap_rates[j,],"tau"=tau_swap_rates))

temp <- Im(curve ~ slope_loading(lambdal,tau)+curvature_loading(lambdal, tau)+
curvature_loading(lambda2,tau), data = data_temp)
X <- rbind(X,temp$coefficients)
}
Sven_est_smoothed_par_dlm_12step_fc[[i]]l<-cbind(X,rep(lambdal ,n_obs) ,rep(lambda2,
n_obs))
colnames (Sven_est_smoothed_par_dlm_12step_fc[[i]]) <- c("Level","Slope","
Curvaturel","Curvature2","Lambdal","Lambda2")

Sven_est_smoothed_par_dlm_12step_fc[[i]]<-xts(Sven_est_smoothed_par_dlm_12step_fc
[[i]],index(xts_swap_rates_temp))

}

#Hu#d#
# evolution of the Lambda values
temp <- NULL
templ <- NULL
for (i in names (NS_est_coef_fc_dlm)){
temp <- rbind(temp,NS_est_coef_fc_dlm[[i]l]["lambda"])
templ <- rbind(templ,Sven_est_coef_fc_dlm[[i]][c("lambdal","lambda2")])
}
NS_est_lambda <- xts(temp, as.Date(names(NS_est_coef_fc_dlm)))
colnames (NS_est_lambda) <- c("Lambda")
Sven_est_lambda <- xts(templ, as.Date(names(NS_est_coef_fc_dlm)))
colnames (Sven_est_lambda) <- c("Lambdal","Lambda2")
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A. R-code

A.7.2. Forecast procedures - VAR models

HHBAAHBARABRARHBAAHBRABHARBHBARHBRARHBRAHBERH

##
##

Out of sample forecasting

VAR models forecasting state variables - swap rates - calculation residuals

HHBAAHBAHHHAARHBRBHBEABH AR AR BARSHBAARHBR AR BERS

##
##
##
##
##

##
#

VAR_forecasting_out_sample_endogen_two_step <- function (sample, P,

}
#

Forecasting functions

Out of sample Forecasting with endogenous macroeconomic factors
forecast horizon: 1, 3, 6, 12, 24 months

p .. lag of VAR specification

type .. type of VAR specification "const" or "none" - including resp.
an intercept vector

dt_start .. start of forecast

function for methods: 2-step fix, 2-step var, 1-2-step

h <- c(1,3,6,12,24) # forecast horizon

h_max <- max(h)

index <- as.character (index(sample))

index.start <- which(dt_start == substr(index, 1,7))

for ( i in index[index.start:(length(index)-1)]1){
xts.temp.forecasting <- as.matrix(sample[paste0("/",i)])
# VAR model
var.fitted <- VAR(xts.temp.forecasting, p ,type = type)
phi <- Bcoef(var.fitted)
alpha <- phil[,dim(phi) [2]]
phi <- phil[,-dim(phi) [2]]
# Forecasting over forecast horizon
xts.temp.forecasting <- tail(xts.temp.forecasting,p)
for ( k in 1:h_max){

type,

excluding

dt_start){

temp.forecast<-alpha+phi’*/as.numeric(t(tail(xts.temp.forecasting ,p)[p:1,]1))
xts.temp.forecasting <- rbind(xts.temp.forecasting, t(temp.forecast))

}
if ( substr(i, 1,7) == dt_start ){

forecast <- as.vector (t(xts.temp.forecastingl[p+h,]))
} elsed{

forecast <- rbind(forecast, as.vector(t(xts.temp.forecastingl[p+h,])))

}
}
colnames (forecast) <- rep(colnames(sample), times = 1length(h))
list_forecast <- 1list ()
for ( i in 1:length(h)){
temp <- dim(sample) [2]
temp_index <- index[-(1:(index.start+h[i]-1))]

list_forecast[[paste(h[i])]] <- xts(forecast[l:length(temp_index) ,((temp*i-temp

+1) : (temp*i))],as.Date(temp_index))

# remove forecasts of the macroeconomic factors as not relevant for the interest

rates forecasts
n_col <- dim(list_forecast[[paste(h[i])]1]) [2]

list_forecast[[paste(h[i])]] <- list_forecast[[paste(h[i])]][,-seq(n_col,

-1, length = 3)]
}

list_forecast

function for method: 1-step

VAR_forecasting_out_sample_endogen_one_step <- function(list_sample, p,

str_params, dt_start){
h <- ¢c(1,3,6,12,24) # forecast horizon
h_max <- max(h)
for ( i in names(list_sample)){
xts.temp.forecasting <- as.matrix(list_sample[[i]][,str_params])
# VAR model
var.fitted <- VAR(xts.temp.forecasting, p ,type = type)
phi <- Bcoef(var.fitted)
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A. R-code

alpha <- phil,dim(phi) [2]]
phi <- phil,-dim(phi) [2]]
# forecasting over forecast horizon
xts.temp.forecasting <- tail(xts.temp.forecasting,p)
for ( k in 1:h_max){
temp.forecast<-alpha+phi’*/as.numeric(t(tail(xts.temp.forecasting ,p)[p:1,1))
xts.temp.forecasting <- rbind(xts.temp.forecasting, t(temp.forecast))
}
if ( substr(i, 1,7) == dt_start ){
forecast <- as.vector(t(xts.temp.forecasting[p+h,]))
} elsed{
forecast <- rbind(forecast,as.vector(t(xts.temp.forecastingl[p+h,])))
}
}
colnames (forecast) <- rep(str_params, times = length(h))
list_forecast <- 1list()
for ( i in 1:length(h)){
temp <- length(str_params)
temp_index <- fc_dates[-(1:(h[i]))]
list_forecast [[paste(h[i])]] <- xts(forecast[l:length(temp_index) ,((temp*i-temp
+1) : (temp*i))],as.Date(temp_index))
# remove forecasts of the macroeconomic factors not relevant for the interest
rates forecasts
n_col <- dim(list_forecast[[paste(h[il)]1]1) [2]
list_forecast [[paste(h[i])]]<-1list_forecast[[paste(h[i])]][,-seq(n_col,by=-1,

length=3)]
}
list_forecast
¥
HitHi#

## Out-of-sample forecasting of NS parameters with macro endogenous
## Total DataSample / Sub DataSample

type = "const"
list_forecast_out_sample <- list ()
dt_start <- "2009-01"
# 2nd regime: dt_start <- "2014-09"
fc_dates <- index(xts_swap_rates["2009-01/"1])
# 2nd regime: fc_dates <- index(xts_swap_rates["2014-09/"])
p <- 2
# two step estimation approaches with fixed decay parameters
str_methods <- c("NS_2stepfix","Sven_2stepfix")
list_ts_state_variables_2step <- list("NS_2stepfix" = list_ts_state_variables_NS$ ‘2
stepfix ‘,"Sven_2stepfix" = list_ts_state_variables_Sven$ ‘2stepfix ‘)
for ( i in str_methods){
## colums with lambda values

if ( dim(list_ts_state_variables_2step[[i]]) [2] == 4 ){
n_col <- -4 # Nelson-Siegel
} else {
n_col <- c(-5,-6) # Svensson
}
sample <- merge(list_ts_state_variables_2step[[i]J][,n_col],xts_all[,c("
Inflation_Eurozone", "Outputgap_Eurozone", "EONIA_average")]l)
# 2nd regime: ... variables_2step[[i]]["2012-08/",n_col],xts_all["2012-08/",c("

Inflation_Eurozone", .
list_temp <- VAR_forecasting_out_sample_endogen_two_step(sample,p,type,dt_start)
names (list_temp) <- paste(paste(paste(paste(i, paste("h", names(list_temp), sep=""
)’ sep = u_ll)’ "VAR", sep="_"),p,sep="“),"_Makro", sep="")
# add the respective lambda values
for ( j in names(list_temp)){
temp <- xts(list_ts_state_variables_2step[[i]][fc_dates[1:dim(list_temp[[j1])
[1]11,-n_col],index(list_temp[[j1]))
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A. R-code

list_temp[[j]] <- merge(list_temp[[jl],temp)
}
list_forecast_out_sample <- c(list_forecast_out_sample,list_temp)
}
# two step estimation approaches with variable decay parameters
str_methods <- c("NS_2stepvar","Sven_2stepvar")
list_ts_state_variables_2step <- list("NS_2stepvar" = list_ts_state_variables_NS§$ ‘2
stepvar ‘,"Sven_2stepvar" = list_ts_state_variables_Sven$ ‘2stepvar ‘)
for ( i in str_methods){
## colums with lambda values
if ( dim(list_ts_state_variables_2step[[i]]) [2] == 4 ){
n_col <- -4 # Nelson-Siegel
} else {
n_col = c(-5,-6) # Svensson
}
sample <- merge(list_ts_state_variables_2step[[i]][,n_col]l,xts_alll[,c("
Inflation_Eurozone", "Outputgap_Eurozone", "EONIA_average")])
# 2nd regime: ... variables_2step[[i1i]]1["2012-08/",n_col],xts_all["2012-08/",c("
Inflation_Eurozone", .
list_temp <- VAR_forecasting_out_sample_endogen_two_step(sample,p,type,dt_start)
names (list_temp) <- paste(paste(paste(paste(i, paste("h", names(list_temp), sep=""
), sep = "_"), "VAR", sep="_"),p,sep=""),"_Makro", sep="")
# add the respective lambda values
list_temp_m_1 <- 1list()
for ( j in names(list_temp)){
# last decay parameters
temp <- xts(list_ts_state_variables_2step[[i]l][fc_dates[1:dim(list_temp[[j]])
[11],-n_col]l,index(list_temp[[j1]))
list_temp_m_1[[paste0(j,"_1")]1] <- merge(list_temp[[jl],temp)
# median of decay parameter
n_row <- dim(list_temp[[j11) [1]
list_temp_m_1[[paste0(j,"_m")]] <- NULL
for ( k in 1:n_row){
temp <- xts(t(apply(list_ts_state_variables_2step[[i]][pasteO("/",fc_dates[k])
,-n_coll,2,median)),index(list_temp[[j1]) [k1)
# 2nd regime ... variables_2step[[i]][paste0("2012-08/",fc_dates[k]),
list_temp_m_1[[paste0(j,"_m")]] <- rbind(list_temp_m_1[[paste0(j,"_m")]],merge
(list_temp[[j11[k,],temp))
}
colnames (list_temp_m_1[[paste0(j,"_m")]]) <- colnames(list_temp_m_1l[[pasteO(j,"
~1"11)
}
list_forecast_out_sample <- c(list_forecast_out_sample,list_temp_m_1)
}
# one step estimation approaches
str_methods <- c("NS_1step","NS_12step","Sven_1step","Sven_12step")
list_ts_state_variables_1lstep <-

list ("NS_1step" = NS_est_smoothed_par_dlm_fc,
# 2nd regime: NS_est_smoothed_par_dlm_fc_2nd_reg
"NS_12step" = NS_est_smoothed_par_dlm_12step_fc,
# 2nd regime: NS_est_smoothed_par_dlm_12step_fc_2nd_reg
"Sven_1lstep" = Sven_est_smoothed_par_dlm_fc,
# 2nd regime: Sven_est_smoothed_par_dlm_fc_2nd_reg
"Sven_12step" = Sven_est_smoothed_par_dlm_12step_£fc)

#2nd regime: Sven_est_smoothed_par_dlm_12step_fc_2nd_reg
for ( i in str_methods){

list_sample <- list_ts_state_variables_1step[[i]]
## colums with lambda values
if ( dim(list_sample[[1]]) [2] == 4 ){

n_col <- -4 # Nelson-Siegel
} else {

n_col = c(-5,-6) # Svensson

}
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A. R-code

for ( j in names(list_sample)){
list_sample[[j]] <- merge(list_sample[[j]][,n_coll,xts_all[paste0("/",j),c("
Inflation_Eurozone", "Outputgap_Eurozone", "EONIA_average")])
# 2nd regime: ...list_sample[[j]]["2012-08/",n_col]l,xts_all[paste0("2012-08/",3),
c("Inflation_Eurozone",...
}
str_params_temp <- colnames(list_samplel[[j]])
list_temp <- VAR_forecasting_out_sample_endogen_one_step(list_sample,p,type,
str_params_temp ,dt_start)
names (list_temp) <- paste(paste(paste(paste(i, paste("h", names(list_temp), sep=""
)’ sep = u_u)’ HVAR"’ sep="_"),p,sep="“),"_Makro", sep="“)
# add the respective lambda values
temp <- NULL
for ( j in names(list_ts_state_variables_1step[[i]])){
temp <- rbind(temp,list_ts_state_variables_1step[[i]J]J[[j]]1[1,-n_coll)
}
for ( j in names(list_temp)){
n_row = dim(list_temp[[j11) [1]
list_temp[[jl]<-merge(list_temp[[j]],xts(temp[l:n_row,],index(list_temp[[j1])))
}
list_forecast_out_sample <- c(list_forecast_out_sample,list_temp)
}
## Computation of Swap Rates Forecasts and Residuals to actual Swap Rates
list_forecast_out_sample_residuals <- 1list ()
for ( i in names(list_forecast_out_sample)){
# calculate swap rates and residuals
list_forecast_out_sample_residuals[[i]] <- NULL
if ( grepl("NS", i)){ # Nelson-Siegel
for ( j in as.character(index(list_forecast_out_sample[[i]]))){
list_forecast_out_sample_residuals[[i]]<-rbind(
list_forecast_out_sample_residuals[[i]],nelson_siegel_model (as.numeric (
list_forecast_out_sample[[i]][j,]),tau_swap_rates))
}
} else { # Svensson
for ( j in as.character(index(list_forecast_out_sample[[i]]))){
list_forecast_out_sample_residuals[[i]] <- rbind(
list_forecast_out_sample_residuals[[i]],svensson_model (as.numeric (
list_forecast_out_sample[[i]]1[j,]),tau_swap_rates))
}
}
list_forecast_out_sample_residuals[[i]] <- xts(list_forecast_out_sample_residuals
[[i]], index(list_forecast_out_sample[[i]]))
list_forecast_out_sample_residuals[[i]] <- list_forecast_out_sample_residuals[[i]]
- xts_swap_rates[index(list_forecast_out_sample[[i]]),]

A.7.3. Out-of-sample results

The following code includes: Table 6.1, Figure 6.1, Figure 6.2, Figure 6.3, Table 6.2, Figure
6.4

HEH#HHRBHRS

## Out-of-sample forecast results

####HH#

## Total Datasample

str_models <- NULL

for (i in C("hl_","h3_","h6_","h12","24")){

for ( j in c("NS_2stepfix","NS_2stepvar","NS_1istep","NS_12step","Sven_2stepfix","
Sven_2stepvar","Sven_1step","Sven_12step")){
str_models <- c(str_models ,names(list_forecast_out_sample_residuals) [grepl(i,

names (list_forecast_out_sample_residuals)) & grepl(j, names(
list_forecast_out_sample_residuals))])
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A. R-code

}
}
## Out-of-sample term-structure curve forecasts
table_termstructure(list_forecast_out_sample_residuals, str_models)
# [1] "2009-02-28"

# [1] "2017-08-31"

# Mean Median Std. Dev. Min. Max.
# NS_2stepfix_h1_VAR2_Makro 0.1741 0.1558 0.0772 0.0690 0.4996
# NS_2stepvar_h1l_VAR2_Makro_1 0.1763 0.1608 0.0888 0.0512 0.5095
# NS_2stepvar_hl_VAR2_Makro_m 0.2718 0.2399 0.1531 0.0788 0.7369
# NS_1step_h1_VAR2_Makro 0.1819 0.1629 0.0857 0.0557 0.5593
# NS_12step_h1_VAR2_Makro 0.1709 0.1508 0.0794 0.0620 0.4998
# Sven_2stepfix_h1_VAR2_Makro 0.1639 0.1446 0.0778 0.0624 0.4921
#

## Dynamics of the estimated decay parameters

fc_dates <- as.character (index(xts_swap_rates["2009-01/"]))

lambdas <- cbind(fc_dates,as.data.frame(merge(NS_est_lambda,
list_ts_state_variables_NS$ ‘2stepvar ‘[fc_dates,"Lambda"],Sven_est_lambda,

list_ts_state_variables_Sven$ ‘2stepvar ‘[fc_dates,c("Lambdal","Lambda2")])))

## Nelson-Siegel

data_temp <- rbind(cbind(melt(data.frame("Date"=fc_dates,"Lambda" = as.data.frame (
NS_est_lambda) [,1]) ,"Date"), "Method" = rep("l.step",times = length(fc_dates))),
cbind (melt (data.frame ("Date"=fc_dates,as.data.frame(list_ts_state_variables_NS$
‘2stepvar ‘[fc_dates ,"Lambda"])),"Date"), "Method" = rep("2.step",times = length(

fc_dates))))

str_lab <- expression(lambda)

names (str_lab) <- "Lambda"

colours <- blue2yellow(n = 3)[1]
str_lab_method <- c("l-step","2-step var")
names (str_lab_method) <- c("1.step","2.step")

plot_ns_both <- ggplot(data = data_temp,aes(x = Date,y = value, color = variable,
linetype = Method))+
geom_line(size=1.2)+

labs(y = "",x="Date",title="Nelson-Siegel")+
scale_linetype_manual (labels = str_lab_method,values=c(1,2))+
scale_color_manual (labels = str_lab,values = colours)+

theme_bw () +

theme (legend.title=element_blank (),
legend.key.width = unit(1.5,"cm"),
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 22,face="plain",color="black"),
legend.text = element_text(size = 20,face="plain",color="black"),

plot.title = element_text(size = 24,face="plain",color="black"),
legend.position = ¢(0.8,0.8),
plot.margin = unit(c(0,0.7,0,0),"cn")
)
## Svensson
data_temp <- rbind(cbind(melt(data.frame("Date"=fc_dates,as.data.frame (
Sven_est_lambda)),"Date"), "Method" = rep("1l.step",times = length(fc_dates))),
cbind (melt (data.frame ("Date"=fc_dates ,as.data.frame(list_ts_state_variables_Sven
$ ‘2stepvar ‘[fc_dates ,c("Lambdal","Lambda2")])),"Date"), "Method" = rep("2.step",
times = length(fc_dates))))

str_lab <- expression(lambda”1, lambda~2)
names (str_lab) <- c("Lambdal","Lambda2")
colours <- blue2yellow(n = 5)[c(1,3)]
str_lab_method <- c("l-step","2-step var")
names (str_lab_method) <- c("1.step","2.step")
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A. R-code

ggplot (data = data_temp,aes(x = Date,y = value, color = variable, linetype = Method)

)+
geom_line(size=1.2)+
labs(y = "",x="Date",title="Svensson")+
scale_linetype_manual (labels = str_lab_method,values=c(1,2))+
scale_color_manual (labels = str_lab,values = colours)+

theme_bw () +

theme (legend.title=element_blank (),
legend.key.width = unit(1.5,"cn"),
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 22,face="plain",color="black"),
legend.text = element_text(size = 20,face="plain",color="black"),

plot.title = element_text(size = 24,face="plain",color="black"),
legend.position = ¢(0.8,0.6),
plot.margin = unit(c(0,0.7,0,0),"cn")

HA#RRHH

## Out-of sample forecasts graphs

str_temp <- str_models[grepl("h12",str_models)] # and str_temp <- str_models[grepl ("
hi_",str_models)]

## Out-of sample forecasts over tenor

data_temp <- table_tenor(list_forecast_out_sample_residuals,str_temp)$Mean

data_temp <- cbind("Tenor" = tau_swap_rates,as.data.frame(data_temp))

# Nelson-Siegel

data_temp_fit_ns <- data_temp[,c(1,2,3,4,5,6)]

colnames (data_temp_fit_ns)[-1] <- c("X2.step.fix","X2.step.var.1l","X2.step.var.m","
X1.step","X1l.step.2.step")

data_temp_fit_ns <- melt(data_temp_fit_ns, "Tenor")

data_temp_fit_ns <- cbind(data_temp_fit_ns,"Model" = rep("Nelson-Siegel",dim(
data_temp_fit_ns) [1]))

colnames (data_temp_fit_ns) [2] <- "Method"

# Svensson

data_temp_fit_sven <- data_temp[,c(1,7,8,9,10,11)]

colnames (data_temp_fit_sven) [-1] <- c("X2.step.fix","X2.step.var.l","X2.step.var.m",
"X1.step","X1l.step.2.step")

data_temp_fit_sven <- melt(data_temp_fit_sven, "Tenor")

data_temp_fit_sven <- cbind(data_temp_fit_sven, "Model" = rep("Svensson",dim(
data_temp_fit_sven) [1]))

colnames (data_temp_fit_sven) [2] <- "Method"

data_temp <- rbind(data_temp_fit_ns,data_temp_fit_sven)

## Beschriftung der modelle in Legende verallgemeinert.

str_labels_plot <- c("X2.step.fix","X2.step.var.l","X2.step.var.m","X1.step","
X1.step.2.step")

colours <- blue2yellow(n = 5)

names (colours) <- str_labels_plot

str_labels <- c("2-step fix", "2-step var-1","2-step var-m","l-step","1-2-step")

names (str_labels) <- str_labels_plot

ggplot (data = data_temp,aes(x = Tenor,y = value,linetype = Model, col = Method))+
geom_line(size=1.2)+

labs(y = "",x="Tenor",title="0One-month forecast horizon")+
# scale_linetype_manual (labels = str_models_temp,values=c(1,2,4,5,6,7))+
scale_color_manual (labels = str_labels, values = colours)+

guides (color = guide_legend(order = 2), linetype = guide_legend(order = 1)) +
theme_bw () +
theme (legend.title=element_text (size = 22,face="plain",color="black"),
legend.spacing.x = unit(0.1,"cm"),
legend.margin = margin(0, 0, O, O, "cm"),
legend.key.width = unit(1,"cm"
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A. R-code

116 legend.text.align = O,

117 axis.title = element_text(size = 22,face="plain",color="black"),
118 axis.text = element_text(size = 21,face="plain",color="black"),
119 legend.text = element_text(size = 21,face="plain",color="black"),
120 plot.title = element_text(size = 20,face="plain",color="black"),
121 #legend.position = ¢c(0.8,0.3),

122 legend.position = "none",

123 plot.margin = unit(c(0,0.1,0,0),"cn")

124 )

125 Mean_over_tenor_hl <- Mean_over_tenor

126 #Mean_over_tenor_hl2 <- Mean_over_tenor

127 ## Combine two mean over tenor plots

128 combined <- Mean_over_tenor_hl + Mean_over_tenor_hi12 & theme(legend.position = "

bottom")
129 combined <- combined + plot_layout(guides = "collect")
130
131 ## Out-of sample forecasts over time - twelve month forecast horizon

132 rmse_swapratecurve <- NULL

133 for ( j in str_temp){

134 rmse_swapratecurve <- cbind(rmse_swapratecurve ,apply (

list_forecast_out_sample_residuals[[j]],1,RMSE_fun))

135 }

136 data_temp <- cbind("Date" = index(list_forecast_out_sample_residuals[[str_temp[1]]])
,as.data.frame (rmse_swapratecurve))

137 colnames(data_temp) [-1] <- c("X2.step.fix.NS","X2.step.var.1.NS","X2.step.var.m.NS",
"X1.step.NS","X1.step.2.step.NS","X2.step.fix.Sven","X2.step.var.1.Sven","
X2.step.var.m.Sven","X1.step.Sven","X1.step.2.step.Sven")

138 # Nelson-Siegel

139 data_temp_fit_ns <- data_temp[,c(1,2,3,4,5,6)]

140 colnames (data_temp_fit_ns)[-1] <- c("X2.step.fix","X2.step.var.l","X2.step.var.m","
X1.step","X1l.step.2.step")

141 data_temp_fit_ns <- melt(data_temp_fit_ns, "Date")

142 data_temp_fit_ns <- cbind(data_temp_fit_ns, "Model" = rep("Nelson-Siegel",dim(
data_temp_fit_ns) [1]))

143 colnames(data_temp_fit_ns) [2] <- "Method"

144 # Svensson

145 data_temp_fit_sven <- data_temp[,c(1,7,8,9,10,11)]

146 colnames (data_temp_fit_sven)[-1] <- c("X2.step.fix","X2.step.var.m","X2.step.var.1l",
"X1.step","X1l.step.2.step")

147 data_temp_fit_sven <- melt(data_temp_fit_sven, "Date")

148 data_temp_fit_sven <- cbind(data_temp_fit_sven, "Model" = rep("Svensson",dim(
data_temp_fit_sven) [1]))

149 colnames(data_temp_fit_sven) [2] <- "Method"

150 data_temp <- rbind(data_temp_fit_ns,data_temp_fit_sven)

151

152 ## Beschriftung der modelle in Legende verallgemeinert.

153 str_labels_plot <- c("X2.step.fix","X2.step.var.l","X2.step.var.m","X1.step","
X1.step.2.step")

154 colours <- blue2yellow(n = 5)

155 mnames(colours) <- str_labels_plot

156 str_labels <- c("2-step fix","2-step var-1", "2-step var-m","l-step","1-2-step")
157 mnames(str_labels) <- str_labels_plot
158

159 ggplot(data = data_temp,aes(x = Date,y = value,linetype = Model, col = Method))+
160 geom_line(size=1.2)+

161 labs(y = "RMSE",x="Date",title="Twelve-month forecast horizon")+
162 # scale_linetype_manual (labels = str_models_temp,values=c(1,2,4,5,6,7))+
163 scale_color_manual (labels = str_labels, values = colours)+
164 guides (color = guide_legend(order = 2), linetype = guide_legend(order = 1)) +
165 theme_bw () +
166 theme (legend.title=element_text (size = 22,face="plain",color="black"),
167 legend.spacing.x = unit(0.1,"cm"),
168 legend.margin = margin(0, 0, O, O, "cm"),
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A. R-code

legend.key.width = unit(1,"cm"),
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 21,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),

plot.title = element_text(size = 20,face="plain",color="black"),
legend.position = ¢(0.9,0.72),

#legend.position = "none",

plot.margin = unit(c(0,0.6,0,0),"cn")

## Sub Datasample
str_models <- NULL
for (i in c("h1_","h3_","h6_","h12")){
for ( j in c("NS_2stepfix","NS_2stepvar","NS_1istep","NS_12step","Sven_2stepfix","
Sven_2stepvar","Sven_1step","Sven_12step")){
str_models <- c(str_models,names(list_forecast_out_sample_2nd_reg_residuals) [
grepl (i, names(list_forecast_out_sample_2nd_reg_residuals)) & grepl(j, names
(list_forecast_out_sample_2nd_reg_residuals))])
}
}
## Out-of-sample term-structure curve forecasts
table_termstructure(list_forecast_out_sample_2nd_reg_residuals, str_models)
# [1] "2014-10-31"

# [1] "2017-08-31"

# Mean Median Std. Dev. Min. Max .
# NS_2stepfix_h1l_VAR2_Makro 0.1546 0.1542 0.0689 0.0717 0.3354
# NS_2stepvar_h1l_VAR2_Makro_1 0.1406 0.1204 0.0729 0.0519 0.3036
# NS_2stepvar_h1l_VAR2_Makro_m 0.1738 0.1449 0.0911 0.0797 0.3715
# NS_1step_h1l_VAR2_Makro 0.1548 0.1425 0.0709 0.0583 0.3762
# NS_12step_h1_VAR2_Makro 0.1468 0.1418 0.0733 0.0536 0.3271
# Sven_2stepfix_h1_VAR2_Makro 0.1551 0.1349 0.0899 0.0548 0.4526
#

HHdHHEH

## Out-of sample forecasts graphs
str_temp <- str_models[grepl("h12",str_models)] # and str_temp <- str_models[grepl ("
hi_",str_models)]

# Out-of sample forecasts over time - twelve month forecast horizon

###H#H

rmse_swapratecurve <- NULL

for ( j in str_temp){

rmse_swapratecurve <- cbind(rmse_swapratecurve ,apply (
list_forecast_out_sample_2nd_reg_residuals[[j]],1,RMSE_fun))

}

data_temp <- cbind("Date" = index(list_forecast_out_sample_2nd_reg_residuals[[
str_temp[1]1]]),as.data.frame(rmse_swapratecurve))

colnames (data_temp) [-1] <- c("X2.step.fix.NS","X2.step.var.1l.NS","X2.step.var.m.NS",
"X1.step.NS","X1.step.2.step.NS","X2.step.fix.Sven","X2.step.var.1.Sven","
X2.step.var.m.Sven","X1.step.Sven","X1.step.2.step.Sven")

# Nelson-Siegel

data_temp_fit_ns <- data_temp[,c(1,2,3,4,5,6)]

colnames (data_temp_fit_ns)[-1] <- c("X2.step.fix","X2.step.var.1","X2.step.var.m","
X1.step","X1l.step.2.step")

data_temp_fit_ns <- melt(data_temp_fit_ns, "Date")

data_temp_fit_ns <- cbind(data_temp_fit_ns,"Model" = rep("Nelson-Siegel",dim(
data_temp_fit_ns) [1]))

colnames (data_temp_fit_ns) [2] <- "Method"

# Svensson

data_temp_fit_sven <- data_temp[,c(1,7,8,9,10,11)]

colnames (data_temp_fit_sven)[-1] <- c("X2.step.fix","X2.step.var.m","X2.step.var.1l",
"X1.step","X1l.step.2.step")

data_temp_fit_sven <- melt(data_temp_fit_sven, "Date")
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A. R-code

data_temp_fit_sven <- cbind(data_temp_fit_sven,b "Model" = rep("Svensson",dim(
data_temp_fit_sven) [1]))

colnames (data_temp_fit_sven) [2] <- "Method"

data_temp <- rbind(data_temp_fit_ns,data_temp_fit_sven)

## Beschriftung der modelle in Legende verallgemeinert.

str_labels_plot <- c("X2.step.fix","X2.step.var.l","X2.step.var.m","X1.step","
X1.step.2.step")

colours <- blue2yellow(n = 5)

names (colours) <- str_labels_plot

str_labels <- c("2-step fix","2-step var-1", "2-step var-m","l-step","1-2-step")

names (str_labels) <- str_labels_plot

ggplot (data = data_temp,aes(x = Date,y = value,linetype = Model, col = Method))+
geom_line(size=1.2)+

labs(y = "RMSE",x="Date",title="Twelve-month forecast horizon")+
# scale_linetype_manual (labels = str_models_temp,values=c(1,2,4,5,6,7))+
scale_color_manual (labels = str_labels, values = colours)+

guides (color = guide_legend(order = 2), linetype = guide_legend(order = 1)) +
theme_bw () +
theme (legend.title=element_text (size = 22,face="plain",color="black"),
legend.spacing.x = unit(0.1,"cm"),
legend.margin = margin(0, 0, O, O, "cm"),
legend.key.width = unit(1,"cm"),
legend.text.align = O,

axis.title = element_text(size = 22,face="plain",color="black"),
axis.text = element_text(size = 21,face="plain",color="black"),
legend.text = element_text(size = 21,face="plain",color="black"),

plot.title = element_text(size = 20,face="plain",color="black"),
legend.position = ¢(0.9,0.72),

#legend.position = "none",

plot.margin = unit(c(0,0.6,0,0),"cn")
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