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Abstract

The estimation of a probability density function of a random variable X, given
a sample x1, . . . , xn, is a task with major interest for statisticians. There are
several approaches to achieve this task, resulting in different possible tech-
niques for practitioners. A big shortcoming of many of these techniques is the
dependency on parameters that determine the actual estimation. Logarithmic
concave density estimation has the potential to free practitioners from such
parametric requirements and thus opens the door to automatic density esti-
mation. In this thesis we will give an overview of logarithmic concave densities,
and make use of this theory to solve a specific problem in a use case in the
semiconductor industry. To handle the tasks in this use case we will mainly
focus on two applications of logarithmic concave density estimators: the re-
placement of density estimators in tail index estimation with the smoother
log-concave density estimator and a statistical test that has the detection of
the presence of mixtures as target. For the latter application, we will suggest
an additional parameter, which improves the performance of the algorithm
under the H0 with only little additional computation time. Furthermore we
will implement those applications in a procedure that has the rating of densi-
ties from testing-parameters in the semiconductor industry as target. We will
test this procedure using real data, conclude our findings and give an outlook
about possible further development.
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List of Symbols

N . . . natural numbers (including 0)
N

⇤ . . . natural numbers without 0
R
+ . . . positive real numbers (> 0)

R
+
0 . . . non-negative real numbers (� 0)

b·c . . . floor function: bxc := maxy2N:yx y
d·e . . . ceiling function: dxe := miny2N:y�x y
lim
z!x+

. . . one-sided limit (z decreases to x from above)

lim
z!x−

. . . one-sided limit (z increases to x from below)

v . . . vectors can mostly be identified as lower-case, bold symbols
M . . . matrices can mostly be identified as upper-case, bold symbols
X . . . random variable (upper-case characters)
x1, . . . , xn . . . sample (realizations) of the random variable X
x(1), . . . , x(n) . . . order statistics of the sample x1, . . . , xn

Fd . . . class of log-concave densities on R
d

f, g . . . density functions (“PDF” - typically lower-case symbols)
F,G . . . distribution functions (“CDF” - typically upper-case symbols)

f̂n . . . log-concave density estimator

ψ̂n . . . log of the log-concave density estimator (log f̂n = ψ̂n)

F̂n . . . log-concave distribution estimator (F̂n(x) =
R x

�1 f̂n(y)dy)

Fn . . . empirical distribution function of a sample x1, . . . , xn

f ⇤ g · · · convolution of two functions (f ⇤ g) (x) :=
R1
�1 f(y) · g(x� y)dy

supp (f) · · · support of a function: {x 2 D|f(x) 6= 0}

1
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1. Introduction

In the development processes of high quality products in nearly every industry
segment, frequent testing of these products is necessary. Consequently the arising
amount of data is tremendous. The detailed analysis of such data can be done by
highly skilled engineers but this comes with an obvious disadvantage: the rating
of several hundred or even thousands of data-samples from testing-parameters
can be very monotone and thus error-prone. Therefore it is self-evident that an
automatic procedure, that covers such tasks, would help. Even a tool that needs
manual reevaluation for some parameters after the automatic rating may help,
since a lot of working time could be saved by such a digital assistant doing routine
checks of newly available datasets. A reevaluation by an engineer would then only
be necessary if some deviation from the expected outcome occurs. Obviously, such
a transfer of monotone work from highly skilled engineers to digital tools, that
assist them, gives an economic motivation for companies. The main target of this
thesis is the development of such a tool.

This thesis is developed in cooperation with Infineon Austria [21], more precisely
the product engineering team of the business line “Power Integration & Supply”
within the division “Automotive”, located at the development center in Graz, Aus-
tria. Employees of the team have the duty to assess large amounts of data and
thus it would be advantageous to have the possibility to get an overview of newly
available datasets quickly. Therefore every part of the procedure we are developing
should be executable in an acceptable amount of time on common personal com-
puter systems. This fact motivates us to keep an eye on the necessary computation
time of the algorithms we will use.

The target of the overall procedure is the rating of univariate densities that come
from testing-processes of semiconductor products in different stages of develop-
ment. Thus we are not able to make a lot of assumptions on the properties of the
data, that work as input for the algorithm. At least we can exclude some data from
further analysis since it is not in the scope of interest for the task: some datasets
contain information about properties of the testing-machines or categorical data,
which we can skip and leave unrated. The data we are focusing on is, as mentioned
always univariate, and mainly continuous, even if some actually discrete samples

2
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can nevertheless occur due to e.g. the resolution of the saved values1. We will
assume such samples as continuous as long as a minimum of unique values (can
be specified by the operator) appears. To give a visual idea of how such samples
can look like, we simulate an example in Figure 1.1.
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(a) Data with precise values.
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(b) Data with rounded values (probably
due to machine-inaccuracy).

Figure 1.1.: Probability plots of an artificial example and its rounded version.

The target distribution for all samples is the normal distribution, N (µ, σ2) with
sometimes known µ and unknown σ. The location µ is sometimes known since
such technical parameters are distributed around some target value and should
only differ from it due to natural inaccuracies of the components that appear in
the production process. Nevertheless we will not make use of this additional infor-
mation if it is available since we want to create a procedure that works generally
the same way, no matter if µ is available or not.

A possible violation of the target distribution is a mixture distribution, that proba-
bly results in a multimodal distribution in the overall sample. This can for example
happen when the process of testing a large amount of technical devices is allocated
to two (or more) separate testing-machines, on which the measured values differ
in general (precisely, the values would also differ for the exact same device). We
will try to identify such violations by performing a statistical test, that we will
describe and analyze in Chapter 4.

1Of course no machine is perfectly accurate but for some actually accurate enough measure-
ments, the values are rounded or truncated after a specific decimal place when saving them.
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For unimodal densities, and thus most of our samples, we are mainly interested
in the tailing behavior. This has a specific reason: most of the measured testing-
parameters have some lower or upper limit that is necessary for the performance
of the product or quality restrictions by the customer. When some tested device
violates such a limit, it has to be discarded. It is possible that this happens only for
a few devices in early samples but when the development of this product goes on
and production-quantities increase, more devices might get discarded and the yield-
loss can become severe. Such problems can be discovered early by the detection
of heavy tails of a parameter’s distribution. Therefore it is self-evident that such
violations are worth being detected as early as possible. Since it is possible that
there is only a lower or an upper limit, we are interested in a separate evaluation
of the lower and upper tail’s behavior. We will tackle this task with tail index
estimation in Chapter 5.

Note that even if we will sometimes call the rating process “classification”, the
task is not in the scope of mathematical classification in a strict sense such that
every sample has an unknown class and the assignment to a class by the algorithm
can either be correct or not. It is about assigning classes to data that give an
overview of the data and detect severe violations of the assumptions but there is
no predefined set of classes that necessarily has to be assigned. Thus it is not a
standard problem that can easily be solved by one single straight-forward method,
which is the reason why we develop a completely new tool and procedure.

The algorithm will be called “NN 2.0” since a machine learning algorithm, which is
called “NN”1, with a similar target is currently used by some members of the team.
In the development of this predecessor of NN 2.0, different approaches were taken:
naive Bayes, k-nearest-neighbor (kNN) and random forest algorithms were used
and reached accuracies between 48 % and 87 % of correctly classified densities
in some testing-dataset. Finally a random forest algorithm was chosen and fed
with approximately 1000 densities to train the algorithm. Nevertheless such an
algorithm works as a black-box model and is always dependent on the quality and
variety of the training-dataset. Moreover it always has a subjective component as it
depends on a manually classified training-dataset. This gives motivation to tackle
the task of automatic density classification once more and try other approaches
with new possible procedures and algorithms.

It is self-evident that we prefer nonparametric procedures for a task that should
work as automatic as possible. We decide to investigate the possibilities of using

1This name comes from the fact that workpackages are assigned to a dummy variable “NN
- nomen nominandum” in a work management system when too heavy workload does not allow
allocation to a real employee. Since such tools should save working time and let skilled employees
do other tasks, the team decided to choose this name for such a digital assistant.
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the logarithmic concave density estimator to achieve automatic density estimation
and consequently classification of the given data with respect to shape and viola-
tions from the normal distribution. Logarithmic concave density estimation is a
topic that gathered a lot of attention in the past few years and is thus a reason-
able choice for us to be the theoretical origin of this thesis. Besides of theoretical
properties that were under investigation e.g. in [6], [23] and [31], we will focus on
possible applications and mainly use techniques proposed in [43] and [25].

In the following two chapters we will introduce the term of logarithmic concave
densities and the logarithmic concave density estimator, including their proper-
ties and some examples. These chapters will be focused on theory, whilst we will
discuss two applications, that will be the main part of the overall procedure in
Chapter 4 and Chapter 5. The final algorithm that is developed will be presented
in Chapter 6, which includes the application to real datasets to test the proce-
dure. Finally we will conclude our findings and discuss shortcomings and possible
extensions of the algorithm in Chapter 7.
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2. Logarithmic Concave Densities

In this chapter, we introduce some definitions and theorems in the field of logarith-
mic concave densities. Not every result that is presented in this section has direct
impact on the content of later chapters, but some can be seen as essential parts
of the field of logarithmic concave densities (e.g. Theorem 2.8) and can therefore
be seen as mandatory to get an overview of the topic. Other results will be used
in later chapters and therefore might even be seen as fundamental for this thesis
(e.g. Theorem 2.7 for Chapter 5 and Theorem 2.12 for Chapter 4). An analogous
review of logarithmic concave densities can for example be seen in [35], from where
we will mainly use the notation.

First of all, we want to start with the most obvious definitions one can think of
when considering the title of this chapter.

Definition 2.1. A function φ : R
d ! R is called concave if

φ (αx+ (1� α)y) � αφ (x) + (1� α)φ (y)

holds for every α 2 [0; 1] and x, y 2 R
d.

Note that we could also claim alpha 2 (0; 1), because for α = 0 or α = 1, the left-
and right-hand-side are obviously equal.

Definition 2.2. A density function f : R
d ! [0;1) is called logarithmic concave

(log-concave) if it is of the form

f(x) = exp (φ(x)) (2.1)

for some concave function φ : R
d ! [�1;1).

Equivalently f can be described as log-concave through f(x) = exp (�ψ(x)) for
some convex function ψ (for example as in [36]).
The convention log 0 := �1 is used and therefore exp (�1) = 0 is well-defined.

A different definition of log-concavity is provided through the following corollary.
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Corollary 2.3. A density function f : R
d ! [0;1) is log-concave if and only if

f(αx1 + (1� α)x2) � [f(x1)]
α [f(x2)]

1�α (2.2)

holds for every x1, x2 2 R
d and every α 2 [0; 1].

Proof. The correctness of the corollary follows from the concavity of the function
φ = log f .
Let x1, x2 2 R

d and α 2 [0; 1].

log(f(αx1 + (1� α)x2)) � α log(f(x1)) + (1� α) log(f(x2))

, log(f(αx1 + (1� α)x2)) � log
�
(f(x1))

α · (f(x2))
1�α
�

Due to the monotonicity of the function exp (·), the inequality is fulfilled. ⌅

Definition 2.4. The class of upper semi-continuous log-concave densities on R
d

with respect to the d-dimensional Lebesgue measure is denoted by Fd, d 2 N
⇤.

Upper semi-continuity for Fd is not claimed throughout the whole literature. But it
makes things easier as mentioned by [35]: we do not need to worry about densities
that differ on a set of zero Lebesgue measure. This is also reasonable for our
task, since we are basically assuming samples to come from standard probability
distributions.

2.1. Distribution Families in F1

For the unskilled reader, the property of log-concavity might seem quite unneces-
sary in first. Therefore we want to discuss the natural appearance of log-concavity
by proving it in several common probability distributions. Due to the application
on univariate densities, which we are focusing on in this thesis, we will only con-
sider the case of univariate random variables. Nevertheless, we want to mention
that analogous results do exist for several multivariate distributions as well. For
other overviews, see for example [2] or [36].

Concavity is easily provable for sufficiently smooth functions using the second
derivative. We will recap the corresponding basic theorem but need the following
lemma in advance to prove it afterwards.

Lemma 2.5. A real function f : D ! R (D ✓ R) is concave if and only if

f(z)� f(x)

z � x
� f(y)� f(z)

y � z

for every x < z < y 2 D.
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Proof. Let α 2 (0; 1), x < y 2 D and set z := αx+ (1� α)y.
Then the following inequalities are equivalent:

f(αx+ (1� α)y
| {z }

=z

) � αf(x) + (1� α)f(y)

f(z) � αf(x) + (1� α)f(y)

(y � x)f(z) � α(y � x)f(x) + (1� α)(y � x)f(y)

(y � x)f(z) � (αy � αx) f(x) + [(1� α)y � (1� α)x] f(y)

(y � x)f(z) �

2

4y � (αx+ (1� α)y)
| {z }

=z

3

5 f(x) +

2

4αx+ (1� α)y
| {z }

=z

�x

3

5 f(y)

0 � (y � z)f(x) + (z � x)f(y)� (y�z + z
| {z }

=0

�x)f(z)

0 � (z � x)(f(y)� f(z))� (y � z)(f(z)� f(x))

f(z)� f(x)

z � x
� f(y)� f(z)

y � z
.

Since the first inequality is the definition of concavity of f , the equivalency of the
lemma is proven. ⌅

We are now able to introduce the mentioned theorem that provides an easy way
to prove concavity of smooth functions.

Theorem 2.6. A real, twice differentiable function f : D ! R (D ✓ R) is concave
if and only if f 00(x)  0 for every x 2 D.

Proof.
“):”
Let f : D ! R be concave and twice differentiable and choose x < y 2 D.
Then f 0(x) = lim

z!x+

f(z)�f(x)
z�x

and f 0(y) = lim
z!y−

f(y)�f(z)
y�z

. But from Lemma 2.5, we

know that
f(z)� f(x)

z � x
� f(y)� f(z)

y � z

holds for every z 2 (x; y). Therefore we know that x < y ) f 0(x) � f 0(y), which
means that the function f 0 is monotonically decreasing , f 00  0.
“(”
Choose x < z < y 2 D. Because of the mean value theorem, there exist ξ1 2 (x; z)
and ξ2 2 (z; y), such that

f(z)� f(x)

z � x
= f 0(ξ1) and

f(y)� f(z)

y � z
= f 0(ξ2).
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We know that f 00(x)  0 and therefore f 0 is a monotonically decreasing function.
Since ξ1 < ξ2 by construction, we know that f 0(ξ1) � f 0(ξ2), which leads to the
concavity of f through Lemma 2.5. ⌅

Now we are able to analyze several interesting standard distribution families with
respect to log-concavity. The list below is by far not complete, but we will refer
to these distributions later, especially in Chapter 5.

Theorem 2.7. Let f be the density function of a given probability distribution.

(a) Normal Distribution N(µ, σ2):

f : R ! R
+
0 , x 7! 1p

2πσ2
exp

⇣

� (x�µ)2

2σ2

⌘

(µ 2 R and σ2 2 R
+) is log-concave.

(b) Generalized Pareto Distribution:

f : [µ;1) ! R
+
0 , x 7! 1

σ

⇣

1 + γ(x�µ)
σ

⌘�(1+ 1
γ
)

if γ > 0,

f :
h

µ;µ� σ
γ

⌘

! R
+
0 , x 7! 1

σ

⇣

1 + γ(x�µ)
σ

⌘�(1+ 1
γ
)

if γ < 0 and

f : [µ;1) ! R
+
0 , x 7! 1

σ
e�

x−µ
σ if γ = 0

(µ 2 R, σ 2 R
+)

is log-concave for γ 2 [�1; 0].

(c) Gumbel Distribution:

f : R ! R
+
0 , x 7! 1

σ
exp

⇣

�x�µ

σ
� e�

x−µ
σ

⌘

(µ 2 R and σ 2 R
+) is log-concave.

(d) Frechet Distribution:

f : R ! R
+
0 , x 7!

(

α
σ

�
x�m
σ

��α�1
e�(

x−m
σ
)
−α

x > m
0 x  m

(m 2 R, σ,α 2 R
+)

is not log-concave.

(e) Reversed Weibull Distribution:

f : R ! R
+
0 , x 7!

(

α
σ

�
x�m
σ

�α�1
e�(

x−m
σ
)
α

x > m
0 x  m

(m 2 R, σ 2 R
+α 2 R

+)

is log-concave for α � 1.

Proof. To prove the statements, we make use of Theorem 2.6 by checking the
second derivative of the function log f .
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(a) [log f(x)]00 = � 1
σ2  0 ) log f is concave ) f is log-concave.

(b) If γ 6= 0, then

[log f(x)]00 = γ(γ + 1)
| {z }

0 for γ2[�1;0]

1

σ2
�
1 + γx

σ

�2

| {z }
>0

.

If γ = 0, then
[log f(x)]00 = 0.

Therefore, f is log-concave for γ 2 [�1; 0].

(c) [log f(x)]00 = � 1
σ2 · e

�x−µ
σ  0 ) log f is concave ) f is log-concave.

(d) For x > m:

[log f(x)]00 = (x�m)�2 · (1 + α)� α

σ2
· (1 + α) ·

✓
x�m

σ

◆�α�2

= (1 + α) · (x�m)�2

| {z }
>0

·

 

1� α ·

✓
x�m

σ

◆�α
!

.

To check whether [log f(x)]00  0 or not, we analyze the sign of

1� α ·

✓
x�m

σ

◆�α

. (2.3)

Actually (2.3) is non-positive only for some x:

α

✓
x�m

σ

◆�α

� 1

, x  m+ (α)
1
α · σ.

Therefore, the density is only log-concave on
⇣

m;m+ σ · (α)
1
α

i

and thus f

is not log-concave in general.

(e) Analogous to the Frechet-distribution:

[log f(x)]00 = (1� α)
| {z }

0 for α�1

· (x�m)�2

| {z }
>0

·

✓

1 + α ·

✓
x�m

σ

◆α◆

| {z }
>0

.

This time, the sign of the last expression is clear for every x > m since
α ·
�
x�m
σ

�α
> 0.

This leads to the desired result: f is log-concave if α � 1. ⌅
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Of course, the densities mentioned in Theorem 2.7 are by far not the complete set
of densities in F1. Some other exemplary elements of F1, according to [35], are the
logistic density, β(a, b)-densities with a, b � 1 and Γ(α,λ)-densities with α � 1.
These and many other examples can easily be verified analogous to Theorem 2.7.

To give an idea of how graphs of log-concave distributions look like, we present
two of the above densities in Figure 2.1. The normal distribution is log-concave for
every parametrization, which can easily be verified by the obvious concavity of the
graph of log f . For the Frechet distribution, we deduced an area of log-concavity
for some x in the proof of Theorem 2.7 (d). For our exemplary parametrization

(m = 1, σ = 2, α = 1
2
), we know that local log-concavity occurs for x  m+(α)

1
α ·

σ = 1 +
�
1
2

�2
· 2 = 1.5. This fact can be seen in Figure 2.1d.

Note that Theorem 2.7 (b) and (c) to (e) give results for the two distribution
families used in extreme value theory, since the Generalized Extreme Value Distri-
bution (GEVD) is a combination of the Gumbel-, the Frechet- and the Reversed
Weibull-distribution. We will discuss this fact in detail in Chapter 5.

2.2. Properties of F1

As already mentioned earlier, we will focus on univariate densities and therefore
the class F1. Nevertheless, we will present some results which hold for the higher
dimensional case as well to give an insight in the wide range of desirable properties
of densities in Fd. For some key results in the literature we will present a theorem
and just refer to the original proof when we do not need the result in later sections.
For results where a deeper insight in the proof is advantageous, we will present
the proof after the theorem.

The following statement, first published in [20] can be seen as an alternative char-
acterization of log-concave densities on R. Due to this characterization, according
to [44], “log-concave densities are sometimes referred to as strongly unimodal.”

Theorem 2.8. Let f be a density function on R. Then f 2 F1 if and only if the
convolution f ⇤ g is unimodal for every unimodal density g.

Proof. See [20]. ⌅
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(a) Normal Distribution with µ = 0 and
σ = 5: density function.

−20 −10 0 10 20

−
1

0
−

8
−

6
−

4

x

lo
g

 f
(x

)

(b) Normal Distribution with µ = 0 and
σ = 5: log density function.
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(c) Frechet Distribution with m = 1, σ =
2 and α = 1

2 : density function.
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(d) Frechet Distribution with m = 1, σ =
2 and α = 1

2 : log density function.

Figure 2.1.: Two exemplary distributions to illustrate the graphs of log-concave
densities.

For the multivariate case, a similar characterization is available. According to [35],
it is “convenient to think of log-concave densities as unimodal1 densities with expo-
nentially decaying tails.” The property of exponentially decaying tails is justified
by the following theorem.

1Unimodality is meant in the sense of the upper level sets being convex.
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Theorem 2.9. For any f 2 Fd, d 2 N
⇤, there exists α > 0, β 2 R such that

f(x)  e�α||x||+β for all x 2 R
d

Proof. See [6]. ⌅

The class of log-concave distributions is closed under convolution. The following
theorem by [27] can be used to easily see this fact.

Theorem 2.10. Let d = d1 + d2 for d1, d2 2 N, and let f : R
d ! [0;1) be

log-concave. Then

x 7!
Z

Rd2

f (x, y) dy

is log-concave on R
d1.

Proof. See [27]. ⌅

Of course, this result can be used in different ways but it is also worth mentioning
it by itself. Nevertheless we are interested in the behavior of log-concave densities
under convolution because it plays a key role in the smoothing of log-concave
densities by ensuring that a log-concave function is still log-concave after applying
possible smoothing procedures.

Corollary 2.11. If f and g are log-concave densities on R
d with d 2 N, then their

convolution f ⇤ g is a log-concave density on R
d.

Proof. Since f and g are log-concave, it is easy to show that the function (x, y) 7!
f (x� y) g (y) is also log-concave. Applying Theorem 2.10 leads to the desired
result. ⌅

The next theorem was published in [43], where it is fundamental for a statistical
test, that has the detection of the presence of mixtures as target. We will introduce
this test, implement it in R and apply it to several artificial and real datasets in
Chapter 4.

Theorem 2.12. Let fi, i 2 {1, . . . ,m} be log-concave densities on R
d and 0  pi 

1 for i = 1, . . . ,m with
Pm

i=1 pi = 1. Then on any compact set G ✓ \m
i=1supp (fi)

the representation

f(x) :=
mX

i=1

pifi(x) = exp
�
φ(x) + c ||x||2

�
(2.4)

holds for a concave function φ on R
d and a constant c � 0.
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Proof. (from [43]) Let φi = log fi for any i 2 {1, . . .m} and M := maxG eφi . Set
xα := αx1 + (1� α)x2 and φi,α := αφi(x1) + (1� α)φi(x2) for any x1, x2 2 G and
α 2 (0; 1). Note that φi(xα) 6= φi,α for non-linear φ.

Next, we define F (t) := et �M t2

2
on (�1; logM ]. Since F 00(t) = et �M  0 on

(�1; logM ], the function D (·) is concave by Theorem 2.6.

By assumption, fi is log-concave and therefore φ is concave, thus

fi(xα) � eφi,α

= F (φi,α) +M
φi,α

2

� αF (φi(x1)) + (1� α)F (φi(x2)) +M
φ2
i,α

2

= αfi(x1) + (1� α)fi(x2)�Mα(1� α)
(φi(x1)� φi(x2))

2

2
.

By theorem 41D in [30], φi is Lipschitz with some constant Li. Therefore we can
continue the above inequality chain:

� αfi(x1) + (1� α)fi(x2)� L2
iMα(1� α)

||x1 � x2||
2

2

= α

 

fi(x1)� L2
iM

||x1||
2

2

!

+ (1� α)

 

fi(x2)� L2
iM

||x2||
2

2

!

+ L2
iM

||xα||
2

2

, fi(xα)�L2
iM

||xα||
2

2
� α

 

fi(x1)� L2
iM

||x1||
2

2

!

+(1�α)

 

fi(x2)� L2
iM

||x2||
2

2

!

.

Thus we proved that fi(x) = ψi(x) + bi ||x||
2 for a concave function ψi = fi �

L2
iM

||·||2

2
on G and bi =

L2
iM

2
� 0. Since this calculations hold for any i 2 {1, . . .m},

also
Pm

i=1 pifi(x) = ψ(x) + b ||x||2 on G for a concave function ψ =
Pm

i=1 piψi and
b =

Pm

i=1 pibi � 0.

Now we just need to show that

log
�
ψ(x) + b ||x||2

�
� c ||x||2 =: φ(x)

is concave for some c � 0. The concavity of ψ implies the existence of 0  D 
b
�
||x||2

�

α
�b ||xα||

2 with ψ(xα)+b ||xα||
2 � ψα+b

�
||x||2

�

α
�D � minG

�
ψ(x) + b ||x||2

�
,

where
�
||x||2

�

α
:= α ||x1||

2 + (1� α) ||x2||
2. Thus

log
�
ψ(xα) + b ||xα||

2� � log
�
ψα + b

�
||x||2

�

α
�D

�

� log
�
ψα + b

�
||x||2

�

α

�
� D

minG

�
ψ(x) + b ||x||2

�

�
�
log
�
ψ(x) + b ||x||2

��

α
� c

�
||x||2

�

α
+ c ||xα||

2 ,
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where c := b

minG(ψ(x)+b||x||2)
< 1. The second-to-last inequality follows from the

fact that log (y �D) � log (y)� D
m

for y � 0 and y �D � m > 0.

The resulting inequality describes the concavity of the function φ and thus the
proof is complete. ⌅

2.3. Statistical Tests on Logarithmic Concavity

There are several tests for log-concavity proposed in the literature. We will sketch
one of these concepts as described in [1]. This concept focuses on positive-valued,
univariate random variables but analogous tests based on multivariate samples are
available as well, for example in [7]. Note that samples in our use case are not
necessarily positive so we will use a different way of testing, which we will describe
in the end of this section. The following framework is nevertheless worth to be
mentioned and is presented in analogy to some of the theorems in the previous
section, which were also presented but will not all be used in the overall algorithm
that is developed in Chapter 6.

Note that random variables in this chapter are assumed to be positive-valued.
Therefore we assume F (0) = 0 for distribution functions in this section. As this
concept comes from reliability theory, we recap the following additional defini-
tions:

Definition 2.13. Let X1, . . . , Xn be independent identically distributed (i.i.d.)
random variables with density function f on R with support supp(f) = [a; b] ⇢ R

and F its distribution function (= CDF - Cumulative Density Function). More-
over, let X(1), . . . , X(n) be the order statistics of X1, . . . , Xn.

• S : [a; b] ! [0; 1] , x 7! 1� F (x) is called the survival function.

• h : [a; b) ! R
+
0 , x 7! f(x)

S(x)
is called the hazard function.

• Di := (n � i + 1)(X(i) � X(i�1)), i = 1, . . . , n (take X(0) ⌘ 0) are the nor-
malized spacings of the order statistics.

The following theorem provides the main idea of testing on log-concavity in relia-
bility theory:

Theorem 2.14. For a density function f and the corresponding survival function
S and hazard function h, the following statements hold:

f is log-concave ) h is non-decreasing , S is log-concave
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Proof. “f is log-concave ) h is non-decreasing”
Choose two points x1, x2 2 supp(f) with x1 < x2. Note that by definition

S(x) = 1�
Z x

0

f(y)dy =

Z 1

x

f(y)dy =

Z 1

0

f(x+ u)du

and thus

f(x2)S(x1)� f(x1)S(x2) =

Z 1

0

2

4f(x1 + u)f(x2)� f(x1)f(x2 + u)
| {z }

�0

3

5 du � 0.

(2.5)
The inequality f(x1+u)f(x2)� f(x1)f(x2+u) � 0 is true since f(x1+u)f(x2) �
f(x1)f(x2 + u) due to Corollary 2.3: we can apply the corollary twice to the two
outer points x1 and x2 + u. When we choose α = x1�x2

x1�x2�u
, we get

f (x1 + u) � (f(x1))
x1−x2

x1−x2−u · (f(x2 + u)
−u

x1−x2−u

but when we choose α = �u
x1�x2�u

, we get

f (x2) � (f(x1))
−u

x1−x2−u · (f(x2 + u))
x1−x2

x1−x2−u .

Multiplying the two equations, leads to the desired result.

The inequality in (2.5) gives

f(x2)S(x1)� f(x1)S(x2) � 0

f(x2)S(x1) � f(x1)S(x2)

f(x2)

S(x2)
� f(x1)

S(x1)

h(x2) � h(x1),

which describes the property of h being non-decreasing since x1 < x2.

“h is non-decreasing , S is log-concave”
Note that

[logS(x)]0 = �f(x)

S(x)
= �h(x).

The function h being non-decreasing is equivalent to �h0(x)  0 and thus equiva-
lent to [logS(x)]00  0. ⌅
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Theorem 2.14 provides an idea of testing on log-concavity of a density function.
Since log-concavity is a necessary condition for h being non-decreasing and thus
S being log-concave, it is reasonable to construct tests on increasing hazard rates
or concavity of logS.

Such tests for instance are based on the normalized spacings of the order statistics
as described in Definition 2.13. This is due to the downward trend that these
values follow under the assumption of log-concavity.

Theorem 2.15. Let D1, . . . , Dn be the normalized spacing of the order statistics
of X1, . . . , Xn from a distribution with density function f .

Under the assumption of f being log-concave,

P (Di  Dj) <
1

2
< P (Di > Dj)

holds for all 1  i < j  n.

Proof. (from [1]) The main trick, first suggested by [28], is to transform X to the
random variable Z = s(X) := � logS(X), where S denotes the survival function
of X. By construction, s(x) is differentiable and by Theorem 2.14 convex and
strictly increasing (h(x)  0 by definition and thus (� logS)0 = h(x) � 0). Due
to the monotonicity of the logarithm, Z(i) = s(X(i)) for all i 2 {1, . . . , n}.

First, we prove that Z ⇠ Exp(λ = 1) (Z is obviously i.i.d. as well as X). Therefore
we formulate the distribution function of the random variable Z:

FZ(z) = P (Z  z)

= P (� logS(X)  z)

= P
�
S(X) � e�z

�

= P
�
1� F (X) � e�z

�

= P
�
X  F�1(1� e�z)

�

= 1� e�z.

Thus Z is exponentially distributed with shape parameter λ = 1.

Second, we prove that for the normalized spacings of the order statistics B1, . . . , Bn

of the random variable Z, B ⇠ Exp(λ = 1) holds as well. Therefore, recap that
the joint density function of the order statistics of the random variable Z with
density function g can be expressed by

gO(z
(O)
1 , . . . , z(O)

n ) = n!
nY

i=1

g(z
(O)
i )1h

0z
(O)
1 ···z

(O)
n

i(z
(O)
1 , . . . , z(O)

n ).
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Using the transformation

z
(O)
1 =

b1
n

z
(O)
2 =

b1
n

+
b2

n� 1
...

z(O)
n =

b1
n

+
b2

n� 1
+ · · ·+ dn

gives the joint density function of B:

gB(b1, . . . , bn) = e�
Pn

i=1 bi

nY

i=1

1[bi�0](b1, . . . , bn)

and thus, B ⇠ Exp(λ = 1).

Now we have all we need to prove the theorem. Since B ⇠ Exp(λ = 1), it
follows from the memorylessness of the exponential distribution that for any i < j,
P (Bi > Bj) = 1

2
= P (Bi < Bj). But since s(x) is convex, for any i < j with

Bi > Bj implies that Di > Dj but not vice versa. Therefore P (Di > Dj) >
P (Bi > Bj) =

1
2
. ⌅

So we can summarize that the downward trend of the Di’s as described in Theorem
2.15 is in favor of log-concavity of the density function f . On this fact, one can
set up many different test statistics, which catch the behavior of the Di’s in terms
of monotonicity as mentioned above. We will mention three test statistics, that
were also mentioned in [1].

1. Proschan and Pyke [28]

Pn =
X

i<j

1(Di>Dj),

2. Epstein [15]

En =
n�1X

i=1

iX

j=1

Dj
P

k Dk

, and

3. Bickel and Doksum [10]

Bn =
nX

i=1

i · log

✓

1� Ri

n+ 1

◆

,

where Ri denotes the rank of Di among all D1, . . . , Dn.
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The previous framework of testing is an interesting approach, but it is not generally
applicable for the scope of this thesis, since we are not only focusing on positive-
valued random variables. Thus, we will choose a more intuitive approach to test
if procedures with the assumption of log-concavity are applicable. The main idea
of this test comes from [7]. For a given sample x1, . . . , xn from any density f , we
can easily compute the log-concave density estimator, as we will present it in the
next chapter. Sampling from this estimated density gives us the sample y1, . . . , yn.
The basic idea is now, that if f is log-concave, x1, . . . , xn and y1, . . . , yn should
“look similar”. If f is significantly not log-concave, the samples should also differ
significantly. To test, whether the samples come from the same distribution or
not, we apply the two-sample Kolmogorov-Smirnov test.
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3. Logarithmic Concave Density

Estimation

In continuation to the last chapter, where we introduced the class F1 itself, we
will now focus on the estimation of density functions, from which an independent
identically distributed (i.i.d.) sample x1, . . . , xn of size n is available. The task
of density estimation can be seen as one of major interest for statisticians. For
example the book “Density Estimation for Statistics and Data Analysis” [39] can
be seen as “an ideal reference for practitioners” [9] and is cited over 25000 times
(July, 2020) according to Google Scholar [18]. This fact should give a feeling for
the importance of the overall topic of density estimation in general.

First we will give an overview of parametric density estimation techniques, and
then introduce the log-concave density estimator. Afterwards we will discuss the
computation of the log-concave density estimator and introduce a smoothing pro-
cedure suggested in [11]. Finally we will compare this non-parametric density
estimator with the ones defined in the beginning to motivate its use in the next
chapters. We will mainly use the same notation and approach as in [35] but com-
bine it with theorems from [33], [11] and [32].

3.1. Parametric Density Estimation Techniques

One of the most “straight-forward” and intuitive ways to estimate densities, is to
simply illustrate the available observations graphically. Probably the most used
illustration technique in this sense are histograms and they generally work as
follows: the observations are assigned to bins and the weights of these bins are
illustrated as bars over the range of assigned observations to this bin. The height
of the bins can either be defined by the absolute or relative number of observations
in this bin or in a way that the area under such a bar is determined by the relative
appearance of observations in this bin throughout the whole set of observations.
Since we want to estimate densities, we focus on the second alternative because

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

then the area of all bars sums up to 1, in analogy to densities having the property
R

R
f(x)dx = 1.

Even if histograms are widely used to get a first impression of observed data, they
come with a variety of shortcomings. First of all, despite of their low level of
complexity, they are parametric. To create a histogram, one has to determine
the properties of the bins, which are precisely the number of bins and the size of
each bin. Assuming the bins to be of equal width, one needs to determine two
parameters:

(i) the number of bins, m and

(ii) the width of each bin, h.

To determine these two parameters, a wide class of rules can be applied. We will
mention just two general cases. First, a basic “rule of thumb” is Sturges’ rule

[41]:

• Choose the number of bins as m = 1 + dlog2(n)e with n being the number
of observations and d·e the ceiling function.

• Afterwards, choose the width of the bins equidistantly between the smallest
and the largest observation: h =

x(n)�x(1)

m
.

Contrary to the above rule, that is focused on the choice of m, another alternative
is to determine the width of the bins first and afterwards the number of bins
accordingly. This concept is applied in Scott’s rule [38]:

• Choose the width of each bin as h = 3.5·s
3pn

with s being the empirical standard
deviation of the sample.

• Then the number of bins is determined by m ⇡ x(n)�x(1)

h
.

To show the impact of the choice of the parameters, we draw a N(0, 1)-sample
of size 50, apply the two rules above and compare the results. In Figure 3.1, the
resulting histograms are shown. We see that the histograms are quite different
since the first one even lets suggest the presence of two modes.

In addition to the shortcoming of being a parametric procedure, we can detect
another disadvantage of histograms in Figure 3.1. The discrete bars of a histogram
are not very likely to give satisfying results (because of its discreteness) when one
needs to use the estimated density as a function in some further analysis, e.g. see
Chapter 5.
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(a) Histogram using Sturges’ rule.
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(b) Histogram using Scott’s rule.

Figure 3.1.: Comparison of two different rules for determining the parameters of a
histogram for a N(0, 1)-sample of size 50 and the theoretical density
(red).

To fix this problem we obviously need techniques that fit a continuous density
function to a given sample. A widely used but nevertheless parametric procedure
is kernel density estimation.

Definition 3.1. Given a sample x1, . . . , xn of n i.i.d. observations from a contin-
uous probability distribution with density function f , we call

f̂K
n (x) =

1

nh

nX

i=1

K

✓
x� xi

h

◆

the kernel density estimator with bandwidth h 2 R
+ and kernel function K :

R ! R
+
0 .

For the kernel function K,

Z 1

�1
K(x)dx = 1 and

Z 1

�1
K2(x)dx < 1

must hold.

The definition itself already gives a feeling how the estimator works. When we
want to estimate the value of the density function at a specific point x0, other
points should have an impact on this estimation according to their distance from
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x0. We could say that we add n kernel functions, that have their centers at each
observation and a radius where they are significantly large enough. This radius of
the kernel function is determined by the bandwidth h.

One of the most frequently used kernel functions is the “Gaussian kernel”

KG(x) =
1p
2π

· e�
x2

2 ,

which is also the default kernel in R [29] when using the function density().

It is easy to see, that the bandwidth h is in place of the standard deviation of
a N(µ, σ2)-density when KG is used in Definition 3.1. Therefore we can think of
the bandwidth as the standard deviation of every kernel function, that is assigned
to the observations. Naturally the value of h strongly correlates with the number
of peaks that fK

n has. Thus, even if we get a smooth and continuous density
estimation, we are still highly dependent on the choice of the kernel function K
and especially the bandwidth h.

For the bandwidth, there are also some “rules of thumb” available. One of them is
“Scott’s rule” [37]:

h =

✓
4

3

◆ 1
5

· s · n� 1
5

where s is the empirical standard deviation of the sample.

Figure 3.2 and Figure 3.3 show the kernel density estimators with different kernels
and bandwidths for the same data as in Figure 3.1. We see that the dependency
from parameters can lead to massive failure in estimation. For example mulimodal-
ity can be detected misleadingly when one reviews such an estimation or the other
way around, modes could become invisible due to a too large bandwidth. All
of this should motivate the introduction of a nonparametric density estimation
technique, which we are focusing on in this thesis.

Note: the kernel density estimator does not necessarily need to be as smooth as
in Figure 3.2. In Figure 3.3, kernel density estimation is applied to the same
data with the same bandwidths but using a non-smooth kernel: the “rectangular
kernel”:

KR(x) =

⇢
1
2

for |x|  1
0 else

.
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(a) Bandwidth: h ⇡ 0.512 (Scott’s rule).
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Figure 3.2.: Kernel density estimators with Gaussian kernel and different band-
widths (true density in red).
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Figure 3.3.: Kernel density estimators with rectangular kernel and different band-
widths (true density in red).

3.2. The Logarithmic Concave Maximum

Likelihood Estimator

“To free practitioners from restrictive parametric [. . . ] assumptions” [35], we now
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want to introduce a non-parametric method as a solution to the problems, that
occurred with parametric procedures in the last section. Thus, we now want to
consider a sample of i.i.d. observations x1, . . . , xn from a distribution with log-
concave density f . As we saw in Chapter 2, the assumption of f being log-concave
is not a tremendous shortcoming. Theorem 2.7 gave an insight in the variety of
the class F1, which of course consists of even more probability distribution families
than the ones we mentioned.

Mainly, we want to make use of the log-concavity in the context of maximum like-
lihood estimation. In general, we want to maximize the log-likelihood function

Z

log fdFn =

Z

φdFn (3.1)

where Fn is the empirical distribution function of the sample and φ a concave
function as described in Definition 2.2. A big shortcoming of the maximization
problem “max (3.1)” subject to f 2 F1, is the restriction of f being a density
(
R
f = 1).

According to [11] and first introduced in [40], Theorem 3.1, we add a Lagrange
term to (3.1), leading to the following log-likelihood function:

L(φ) :=

Z

φ dFn �
Z

eφ(x) dx

An intuitive explanation, that the maximization of L (·) actually results in a func-
tion, satisfying

R
eφ(x)dx = 1 is given in the proof of Theorem 3.5. Thus the

maximization problem is free of the restriction of f being a density function.

We are now able to formulate the estimator as solution of a maximization problem
over the (convex) set of all concave functions.

Definition 3.2. Consider a sample of n i.i.d. observations x1, . . . , xn from a
distribution with log-concave density function. Then we call

f̂n := eψ̂n

with

ψ̂n := argmax
φ is concave

Z

φ dFn �
Z

eφ(x) dx (3.2)

the log-concave density estimator of the sample x1, . . . , xn.
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Note: the log-concave density estimator f̂n is sometimes referred to as “log-concave
projection”, see [35].

The most obvious questions in terms of user-friendliness and overall usability of
this density estimation technique are the questions of existence and uniqueness of
the maximizer ψ̂n. The following two theorems, taken from [33] (including their
proofs) give answers to these questions. Moreover, Theorem 3.3 provides a handy
characterization of how (unsmoothed) log-concave density estimators look like.

Theorem 3.3. Let ψ̂n be a solution of (3.2) and x(1), . . . , x(n) the order statistics
of the underlying sample x1, . . . , xn. Then

ψ̂n is continuous and piecewise linear on
⇥
x(1); x(n)

⇤
and

ψ̂n(x) = �1 for x 2 R \
�
x(1); x(n)

�
.

Proof. (from [33]) Fix any concave function φ : R ! [�1;1) with L(φ) <
1. Now define a piecewise linear function φ̄ : R ! [�1;1), such that 8i 2
{1, . . . , n} : φ̄(xi) = φ(xi). Moreover, φ̄ should be linear between successive obser-
vations and φ̄ ⌘ �1 on R \

�
x(1); x(n)

�
. By definition of concavity, φ(x) � φ̄(x)

and thus
L(φ)  L(φ̄)

holds for all x 2 R with strict inequality unless φ ⌘ ψ̂n. Therefore, maximizers of
L must have a form such as φ̄. ⌅

We will use the following representation of such maximizers ψ̂n, which is a direct
implication of the last representation theorem.

Corollary 3.4. Let ψ̂n be a solution of (3.2). Then, ψ̂n is fully represented by the

vector ψ̂n =
⇣

ψ̂n(xi)
⌘n

i=1
.

Proof. Obviously the representation holds due to the piecewise linearity described
in Theorem 3.3. ⌅

Now we are able to formulate and prove the following theorem that justifies the
framework of log-concave density estimation and the concept of log-concave pro-
jections.

Theorem 3.5. A solution of (3.2) exists and is unique.
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Proof. (from [33]) Due to Theorem 3.3, we are able to only consider such concave
functions as mentioned in the theorem for proving the existence of a solution.
Moreover, it suffices to only consider functions with

R
eφ(x)dx = 1: if φ = φ0 + t

with expφ0 being a probability density (
R
eφ0 = 1) and some number t 6= 0, it

follows from the definition of L:

L(φ) =

Z

φ0 dFn �
Z

eφ0(x) dx

| {z }

=L(φ0)

+

Z

t dFn

| {z }
=t

+(1� et)

Z

eφ0(x) dx

| {z }
=1

< L(φ0).

The last inequality holds since t + 1 � et < 0 , t + 1 < et, which is true (think
of t + 1 and et graphically) for all t 6= 0. Thus, a maximizer of L (·) must fulfill
R
eφ(x)dx = 1.

We represent such functions with vectors as described in Corollary 3.4. Thus, since
L (·) is continuous for the existence of a maximizer it suffices to show that

L(φ) ! �1
✓

,
Z

φ dFn ! �1
◆

whenever ||φ||2 ! 1. ||·||2 represents the L2-norm on R
n: ||x||2 :=

pPn

i=1 x
2
i .

So let
⇣

φ(k)
⌘1

k=1
be a sequence of such vectors with

�
�
�

�
�
�φ

(k)
�
�
�

�
�
�
2
! 1 and φ

(k)
i ! γi 2

[�1;1] , 8i = 1, . . . , n as k ! 1.

• Suppose first that 8i 2 {1, . . . , n} : γi < 1. Then 9i 2 {1, . . . , n} : γi = �1
since

�
�
�

�
�
�φ

(k)
�
�
�

�
�
�
2
! 1. Then L(φ(k)) = 1

n

Pn

i=1 φ
(k)
i � 1 ! �1 as k ! 1.

• Suppose now that 9j 2 {1, . . . , n} : γj = 1. Keep this index now fixed:
γj = 1 and j > 1 (for the case j = 1, the proof works analogously but we
claim j > 1 due to easier indexing). Due to the piecewise linearity of φ

1 �
Z xj

xj−1

exp
�
φ(k)(x)

�
dx

= (xj � xj�1) exp(φ
(k)
j )

1� exp(�δk)

δk

� (xj � xj�1) exp(φ
(k)
j )(1 + δk)

�1,

where δk := φ
(k)
j � φ

(k)
j�1. The latter inequality is a consequence of

1� e�x

x
� 1

1 + x
for x > 0.
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Thus δk is bounded from below by (xj � xj�1) exp(φ
(k)
j ) � 1. Consequently

γj entails that

�φ
(k)
j � φ

(k)
j�1 = �2φ

(k)
j + δk

� �2φ
(k)
j + (xj � xj�1) exp(φ

(k)
j )� 1

! 1.

The last expression tends to infinity since exp(x) � 2x ! 1 for x ! 1.

(Analogously, if j = 1, then �φ
(k)
1 � φ

(k)
2 tends to infinity.)

These considerations show that L(φ(k)) ! �1.

Thus, we proved the existence of a solution but not its uniqueness. Therefore,
observe that L (·) is strictly convex in the sense that

L (αφ1 + (1� α)φ2) < αL (φ1) + (1� α)L (φ2)

for any α 2 (0; 1) and two different (on an area with non-zero Lebesgue measure)
concave functions φ1,φ2 : R ! [�1,1) such that

R
expφi < 1. This is a

consequence of the strict convexity of the exponential function exp (·) ⌅

Another interesting question is the goodness of fit of the log-concave density esti-
mator compared to the actual density. Therefore we present a theorem from [14],
that should give an idea, that the log-concave density estimator actually estimates
log-concave densities in a satisfying way.

Theorem 3.6. Let f0 be a density function on R with
R1
�1 f0(x)| log(f0(x))|dx <

1 and x1, . . . , xn a sample from f0. Then the log-concave density estimator f̂n 2
F1 minimizes the Kullback-Leibler divergence

d2KL (f0, f) :=

Z 1

�1
f0(x) log

✓
f0(x)

f(x)

◆

dx

over all f 2 F1.

Proof. See [14]. ⌅

Note, that for log-concave densities f0 the theorem provides that the Kullback-
Leibler divergence (which is positive by definition) can even converge to zero as
the sample size increases. This statement also justifies the approach for testing on
log-concavity of a density we made at the end of Section 2.3, because samples from
log-concave densities result in comparably good log-concave density estimators.
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A wide variety of results on the consistency and asymptotic behavior of the log-
concave density estimator exists, including results for the fit of a non-log-concave
density. For further results, see for example [14], [6] or [3].

3.3. Computation of Log-Concave Density

Estimators

Now we will focus on the actual computation of the log-concave density estimator in
practice. First, we want to reformulate the optimization problem (3.2) to classify
the optimization problem and to make clear which kind of problem has to be
solved.

According to Theorem 3.3 and Corollary 3.4 we can use the transformed objective
function

L̃(ψ1, . . . ,ψn
| {z }

ψ

) :=
1

n

nX

i=1

ψi �
n�1X

k=1


�
x(k+1) � x(k)

�
Z 1

0

e(1�t)ψk+tψk+1dt

�

(3.3)

instead of the original log-likelihood function (3.2). This function needs to be
maximized over the set of concave functions. Since the new, transformed likelihood
function (3.3) is now defined for vectors, we need to reformulate the condition of
some ψ being concave to a condition for the corresponding vector ψ. The property
of concavity for a piecewise linear function as ours is, is easy to imagine: the slope
of the function from x(1) to x(2) needs to be non-negative and the slopes of the
following sections must not be larger than each one before. The non-negativity of
the first slope is clear since ψ(x) = �1 for x  x(1). In fact the restrictions to
the slopes mean that

ψ3 � ψ2

x(3) � x(2)

 ψ2 � ψ1

x(2) � x(1)

...
ψn � ψn�1

x(n) � x(n�1)

 ψn�1 � ψn�2

x(n�1) � x(n�2)

are the constraints for our maximization problem.

To present the maximization problem in a brief way, we define

δk := x(k+1) � x(k), k = 1 . . . , n� 1
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and

V :=

0

B
B
B
@

a1 b1 c1 0 · · · 0

0 a2 b2 c2
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 an�2 bn�2 cn�2

1

C
C
C
A

2 R
(n�2)⇥n.

with ak :=
1
δk

, bk := � 1
δk+1

� 1
δk

and ck :=
1

δk+1
for k = 1, . . . , n� 2.

Note that δk > 0 is assumed for every k 2 {1, . . . , n� 1} for simplicity and there-
fore 1

δk
is well-defined1.

Now we can define the optimization problem, one has to solve for calculating the
log-concave density estimator, in a proper way:

Corollary 3.7. The function ψ̂n is a solution to the maximization problem (3.2)
if and only if the corresponding vector ψ̂n (according to corollary 3.4) is a solution
of the following optimization problem:

max
ψ2Rn

L̃(ψ)

s.t. V ψ  0
(3.4)

Proof. Follows directly from the derivation in this section. ⌅

There are different approaches in the literature to solve the optimization problem
in (3.4). An overview and comparison of possible algorithms is presented in [32],
where the main part is about the “Iterative Convex Minorant Algorithm” (ICMA),
which is first described in detail in [22]. We will use the ICMA in Chapter 4, but
for now we want to sketch the “Active Set Algorithm”, as described in [12]. This
algorithm is also used in the R-package “logcondens” [13], which we will use to
compute the log-concave density estimator2.

The main component of the algorithm is the set of “active”3 constraints of a vector
ψ 2 R

n:
A(ψ) := {j 2 {1, . . . , n� 2} |V j,· ·ψ � 0} .

1If δk = 0 , xj = xj+1 for some j 2 {1, . . . , n� 1} would occur in the sample, one could
simply give the observations that appear more frequently a higher weight in (3.3). This is possible
since there is an implicit weighting in the factor 1

n
in the first part of the function and 1 for every

summand in the second part.
2This package is only capable of computing the log-concave density estimator for univariate

densities. For multivariate densities the package “LogConcDEAD” [5] is available.
3Obviously eponymous for the algorithm.
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Thus for feasible ψ 2 R
n (V ψ  0) the “inactive” constraints correspond to the

knots where the function changes slope. Using Newton methods, it is then easy
to compute a maximizer of L̃ (·) subject to V j,·ψ = 0 for all j 2 A for some fixed

A = A
⇣

ψ̃
⌘

.

The algorithm works iterative. We start with a feasible vector ψ 2 R
n as first

candidate and then maximize L̃ (·) as described above. This maximizer is then the
new candidate function if it is feasible. If not, we change the candidate function
as far as possible along the line segment joining our current feasible point to the
maximizer while still remaining feasible. Since this new point has a larger active
set than the last one, it is reasonable to use the active set of this new vector for
the optimization in the next iteration.

3.4. Smoothing Procedure

The nice property of log-concave density estimators, mentioned in Theorem 3.3,
can probably be seen as unnatural for continuous densities due to the sharp peaks
at the knots where the logarithm of the density changes slope. When one is asked
to think of a density function, it is very likely that the upcoming function is
smoother compared to the ones we get via log-concave density estimation. Thus
in [11] a smoothing procedure for log-concave density estimators is proposed.

Definition 3.8. Let f̂n be the log-concave density estimator of a sample as de-
scribed in Definition 3.2. Then

f̂ ⇤
n (x) :=

Z 1

�1
φγ (x� y) f̂n (y) dy

is called the smoothed log-concave density estimator. The function φγ is the
density function of a normal distribution N (µ, σ2) with µ = 0 and σ = γ.

Note that the smoothed log-concave density estimator can be written as convo-
lution φγ ⇤ f̂n. Since both functions are log-concave (f̂n per definition and φγ

according to Theorem 2.7) and the class of log-concave densities is closed under
convolution as described in Corollary 2.11, the smoothed log-concave density esti-
mator is log-concave as well.

One could see the requirement of the parameter γ as a problem. In fact, γ plays
a similar role as the bandwidth h for the kernel density estimator. In Section 4 of
[13], a rule for the choice of the optimal bandwidth γ is proposed. The automatic
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application of this choice, nevertheless makes the computation of the smoothed
log-concave density estimator a non-parametric procedure.

Figure 3.4 shows the resulting log-concave density estimator and its smoothed
version for the data from Section 3.1. The dashed vertical lines indicate the ob-
servations where the slope of log f̂n changes.
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Figure 3.4.: Log-concave density estimator: raw and smoothed version.

3.5. Comparison to other Density Estimation

Techniques

First of all we want to recall the example and the parametric density estimation
techniques in Section 3.1. There we considered a small sample (n = 50) of a
standard normal distribution and applied parametric procedures to estimate the
density of the sample. We now want to compare the histogram and the kernel
density estimator (using Scott’s rule) with the log-concave density estimator and
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its smoothed version. All four estimators and the real density are plotted for com-
parison in Figure 3.5. It is by no means clear which of these estimators describes
the sample best. We just want to point out , that the log-concave density esti-
mator is the only fully automatic one and leads to a satisfying result but comes
with the shortcoming, that unimodality has to be guaranteed or at least has to be
assumable.

x
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Figure 3.5.: Comparison of different density estimators.

In the abstract of [19], the log-concave density estimator was described as “the most
efficient [. . . ], at least for large samples”. Therefore, we want to apply some density
estimation techniques to larger samples (n = 300) from different distributions. In
Figure 3.6 we see the results for the two variants (smoothed and unsmoothed) of
the log-concave density estimator and the kernel density estimator (Scott’s rule).
We can conclude that both, the log-concave density estimator and the kernel den-
sity estimator work quite well in these exemplary cases. Nevertheless we see the
sometimes bumpy behavior of the kernel density estimator for example on the
upper tail of the Γ (1, 2)-sample. Another interesting fact that can be seen in Fig-
ure 3.6, is that distributions with sharp peaks as the exponential distribution are
estimated very well with the (unsmoothed) log-concave density estimator.
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Figure 3.6.: Density estimation for samples (sample sizes n = 300 each) from dif-
ferent distributions. 34
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4. Detecting the Presence of

Mixtures

The goal of this chapter is to fix a problem that can easily occur in the type of
data we observe. One can think of a machine that tests electrical components
and due to time-efficiency it does not test each device after the other, but it tests
some devices simultaneously. It is possible that the results on each of the sockets,
where the devices are tested, follow a clean normal distribution, but the sockets
themselves differ from each other. Thus, when we look at measured data of an
electrical test, it is possible that a mixture of two or more distributions occurs in
the overall distribution. In this chapter we focus on a test first introduced in [45]
that has the detection of the presence of such mixtures as objective.

Note that the presence of mixtures is strongly correlated with the number of modes.
For the human eye, the best chance to detect mixtures of distributions, is when the
mixture components are different enough, that the overall distribution obviously
has two or more modes. For example a sample, drawn from the mixture 1

2
N(0, 1)+

1
2
N(4, 1) is very likely to result in a density with two modes. Figure 4.1 shows

the (kernel-)density and the probability plot of such a sample. For our task (see
Chapter 1) it seems very likely that multimodality would be detected manually in
this case and thus should also be detected by an automatic procedure.

4.1. An Overview of the Test

The description of the algorithm, we want to use, can be seen in detail in [43]
and our implementation in R is presented in Section A.2. Nevertheless we want
to sketch the procedure briefly in this section. The origin of the test is described
in Theorem 2.12, which provides a characterization of a function that consists of
a mixture of m log-concave densities. Obviously a single log-concave density (no
mixtures) corresponds with a density of the form (2.4) with c = 0. Thus our
objective is to test whether c = 0 (the null-model) or c > 0 (presence of mixtures).
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(a) Density plot.
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Figure 4.1.: Exemplary sample drawn from the mixture 1
2
N(0, 1) + 1

2
N(4, 1).

Similar to the log-concave density estimator, which we discussed in Chapter 3, we
are now interested in the solution of the optimization problem

max
φ is concave

1

n

nX

i=1

φ (xi)�
Z x(n)

x(1)

exp
�
φ (x) + c · x2

�
dx (4.1)

where c � 0 is a fixed number.

In fact in [43] it is shown, that problem (4.1) has a solution φ̂n, for which f̂n :=

exp
⇣

φ̂n + c · x2
⌘

is exactly the maximum likelihood estimator of (2.4). This fact

is obviously very helpful1 but nevertheless brings out the difficulty for the con-
struction of such a test: we are interested in the value of the parameter c but we
can compute the function in which we are interested in only for a fixed value of
c � 02. We want to handle this problem by using a grid of different equidistant
values of c. Afterwards we compare the goodness of fit of the different estimations
in comparison to the null-model (c = 0).

For fixed c, the function x 7! φ̂n(x)+ c ·x2 is piecewise parabolic with parabolas of
curvature c. For large values of c the function will therefore have deep dips between
the observations (knots), whereas for small values of c the function will only have
shallow dips. For the null-model (c = 0) the function is perfectly concave. The

1Additionally it is even shown that the solution φ̂n is piecewise linear in analogy to Corol-
lary 3.4.

2The estimated functions are computed using the Iterative Minorant Algorithm, see [22].

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

idea is now to measure the distance of the piecewise derivative of φ̂n(x) + c · x2

from the class of monotonically decreasing functions (remember Chapter 3, where
we reformulated the optimization problem using only the slopes of the piecewise
defined function). The target function T (·) to measure the distance of any function
g from the class of decreasing functions Mon will be dω (d,Mon) := inf

m2Mon
||(g �

m)ω||1
1. The function ω is a weight function, where we will use the estimation of

the null-model f̂ 0
n. The reference to assess the level of significance to the evaluated

target function is then obtained via Monte Carlo sampling of new samples from
the null-model.

To give an idea, how c effects the outcome of the maximum likelihood estimation,
examples of estimations for different values of c are given in Figure 4.2 for an
underlying unimodal density and in Figure 4.3 for multimodal cases.
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Figure 4.2.: Impact of c 2 C for a sample from a unimodal density (N(0, 1)) with
C = {0; 1; 2; 3; 4; 5}

The procedure was originally implemented in Matlab, as described in [43]. The
code is available from the author upon request and is in our case only used to
compare the results of our own implementation with the original Matlab code.
We implement the procedure in R to achieve compatibility with other tools and
functions that we will use, see Chapter 6. The implementation in R can be seen
in Section A.2.

In the following sections, we will discuss some properties of the procedure and

1|| · ||∞ is the supremum norm with ||f ||∞ := sup
x∈D

|f(x)|.
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Figure 4.3.: Impact of c for samples from multimodal densities.

introduce the parameters that have to be chosen by the user and their impact on
the result. The following parameters are under investigation:

• B describes the number of samples that were taken into account for deter-
mining the significance of the result through Monte Carlo resampling. See
Section 4.2.

• BIN.DIST describes the distance between two neighboring bins in the bin-
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ning procedure that is made in advance of the actual algorithm for simplifi-
cation. See Section 4.3.

• C describes the grid for the values of c where the density is estimated. It
consists of nc values from 0 to cmax. See Section 4.4.

4.2. The Monte Carlo Sample Size B

The parameter B determines the number of repetitions in the algorithm to simulate
the (not analytically calculable) p-value. To save computation time when running
the code a few times in a row, we want to choose the value for B as small as possible,
but large enough to get satisfying results. To get an insight in the impact of the
choice of the parameter B on the result, we generate four exemplary sets of data
and test with different values of B.

Figure 4.4a shows the results of simulation runs for 4 exemplary samples with
different values of B1. The results show that the choice of B does not seem to
affect the result very much. Even small numbers of B lead to a satisfying result.
We toggle B = 99 (results in 100 simulation runs, including the original sample)
to be the absolute minimum because of the way how the result is calculated. As
the p-value is calculated by simple division, a smaller number for B leads to a
more discrete p-value. B = 99 is a quite natural number to be the minimal choice
for the parameter, as it results in an integer percentage. Nevertheless, we choose
B = 199 to be our standard level for this parameter. With respect to the result in
Figure 4.4a, this choice seems to be quite intuitive, as the results do not change
that much for higher values of B.

Figure 4.4b shows the influence of the parameter B on the computation time. The
result is not very surprising as the relationship is linear due to the fact that a
higher value of B results in more iterations of the same sub-procedure2.

1The other parameters are kept on the level suggested by [43] (C.NR = 11, C.MAX = 3
and BIN.DIST = 0.1).

2The computation time is evaluated within R with the function microbenchmark() and 10
repetitions of the algorithm. The values in Figure 4.4b show the mean of the different results
from all 10 repetitions.
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(a) Influence of B on the result of the al-
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(b) Influence of B on the computation
time in seconds.

Figure 4.4.: A few simulation runs with different values of B.

4.3. Binning Procedure

To keep computation time low, the raw data is simplified in advance to the actual
algorithm: the observations are assigned to bins, that are arranged equidistantly
on the range of the data. The parameter BIN.DIST that has to be chosen, is the
distance in terms of empirical standard deviations that the bins should have from
each other. In Section 4 of [43], the author determines this constraining binning
procedure to have a low impact on the quality of the outcome of the algorithm.
We will try to justify this proposition as we run simulations for several cases of
provided data and parameters for the essential parameter BIN.DIST. A value of
0.1 for BIN.DIST is suggested in [43]. Therefore we try to get an insight of
the dependencies between the outcome, the parameter BIN.DIST and the sample
size of the raw data1 by trying larger and smaller values for BIN.DIST than the
suggested value.

The results of these simulations are given in Figure 4.5. All simulation runs are
made with the suggested choices for C.NR (= 11), C.MAX (= 3) and B (=
199). Each plot contains 10 repetitions with newly sampled data, evaluated for
a predefined set of values for BIN.DIST : {0.01; 0.02; 0.05; 0.1; 0.2; 0.5}. The four

1The idea of a dependency between the sample size of the raw data and the outcome of the
procedure came up while other computations were made and is something that should be taken
into account when the algorithm is applied to real data with high sample sizes.
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different plots show the result for different types of samples. In Figure 4.5a and
4.5b, we simulate samples of size n = 500. In Figure 4.5a the sample is drawn
from a standard normal distribution (N(0, 1)). In Figure 4.5b a mixture of two
normal distributions is used (1

2
N(0, 1) + 1

2
N(3, 1)). In Figure 4.5c and 4.5d, we

simulate samples of larger sizes (n = 2000) from the same distributions.
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2N(3,1)) - samples
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(c) 10 simulation runs with 2000 N(0,1) -
samples each.
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Figure 4.5.: A few simulation runs with different values of BIN.DIST.
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The results show that the calculated p-values are influenced by the choice of the
parameter BIN.DIST, especially in case of a sample from a single distribution,
see Figures 4.5a and 4.5c. In [43], this parameter “was not found to affect the
solution much”. This statement suggests that the resulting p-value stays the same
for different values of the parameter. But as we can see, this is not precisely
correct. Nevertheless we see the expected result when we compare the plots for
the unimodal and the bimodal underlying data. Thus we will use the binning
procedure in advance, because it is necessary to shrink computation time at least
a little bit1.

Under the assumption of the null hypothesis, the numerically non-biased p-value
should follow a uniform distribution: p ⇠ U(0, 1). To test if the calculated p-value
approximately does so, we run the test on two different levels of BIN.DIST a
thousand times each. The results are presented as percentiles for each of the two
settings in Table 4.1. For every single test, a sample of size 2000 from a standard
normal distribution is used2.

BIN.DIST Percentiles
1% 5% 10% 25% 50% 75% 90% 95% 99%

0.1 0.005 0.005 0.005 0.005 0.01 0.195 0.57 0.695 0.82
0.05 0.005 0.005 0.005 0.04 0.21 0.525 0.79 0.865 0.895

Table 4.1.: Quantitative overview of resulted p-values for 1000 simulation runs with
N(0, 1)-samples of size 2000 each.

A major shortcoming of the procedure in its current form can be seen in Table 4.1.
The p-value does not seem to follow a uniform distribution. A look into the origin of
these computations, show that the bad results are caused by the multiscale manner
of the code: the discreteness of the C-grid causes highly biased maximization over
the parameter c in every of the B + 1 Monte Carlo samples. In the following
section we will present an extension of the algorithm that should improve the
non-satisfying results (p-value⌧ U(0, 1)) from Table 4.1.

1Simulation runs with a sufficiently fine grid (BIN.DIST⇡0.0001 ) to keep the calculated
p-value stable resulted in an increase of computation time by a factor between 10 and 100.

2For each computation C.NR = 11, C.MAX = 3 and B = 199 is chosen.
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4.4. Determining the Optimal C-grid

As described in Section 4.1, the true value of c is not known and therefore the
calculations are done for several values of c. The algorithm provides the possibility
to choose the number of tested values nc (equivalent to C.NR in the R-code in
Section A.2) and the largest of these values cmax (equivalent to C.MAX in the
R-code in Section A.2). The set C is then created as a equidistant grid from c = 0
to c = cmax. Of course a finer and larger grid would lead to a better result as the
possibility to hit a value near to ctrue is higher, but nc has a direct impact on the
computation time and should therefore be kept low.

We want to observe what “kind of grid” is suitable for satisfying results and low
computation time. Therefore we run the procedure 100 times for different kinds
of grids. We vary the parameters nc and cmax and therefore get grids that differ
in range and density of the observed values of c. Figure 4.6 shows the resulting
p-values of all 100 simulation runs as boxplots. The used samples of size 2000 each
in all 100 cases come from a mixture 1

2
N(0, 1) + 1

2
N(µ2, 1).

The results of this small simulation study show that wider grids improve the result
under the null hypothesis (see Figure 4.6a). The value of cmax seems to have a
bigger impact on the overall results than the number of observed c values nc. We
observe very good results for mixtures of densities with distance of three standard
deviations (and above).

The unsatisfying result of the distribution of the p-values under the H0 as described
in the end of Section 4.3 and as seen in Figure 4.6a seems to be one of the biggest
shortcomings of the algorithm. We will now try to improve the results and present
a small extension of the procedure.

The output of the algorithm (p-value) is based on the formula

p =

✓

#

⇢

max
c2C

✓
Tn(c)�m(c)

s(c)

◆

 max
c2C

✓
T ⇤i
n (c)�m(c)

s(c)

◆

, 1  i  B

�

+ 1

◆

/(B+1)

(4.2)
where T ⇤i

n (c) is the value of the target function for the i-th Monte Carlo sample
and m(c) and s(c) the mean and standard deviation of all T ⇤i

n (c) (see Section 3
in [43]). To simplify the calculation, one can easily skip the standardization and
only calculate

p =

✓

#

⇢

max
c2C

(Tn(c))  max
c2C

(T ⇤i
n (c)), 1  i  B

�

+ 1

◆

/(B + 1). (4.3)
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(a) µ2 = 0 (b) µ2 = 1

(c) µ2 = 2 (d) µ2 = 3

Figure 4.6.: Results of 100 simulation runs with 1
2
N(0, 1) + 1

2
N(µ2, 1) samples of

size 2000 under varying c grids.

A big bias of the true p-value comes from the simplification of using only a grid
of c values and not a theoretically optimal maximization over a steady function.
The optimal solution would be to use a very fine and very wide grid (cmax and nc

very large). But another solution seems to work as well. The biggest shortcoming
of a “bad” c-grid is the biased maximum of Tn(c) (for the original data). Of course
the other maximization(s) in (4.3) affect the result as well but as we compare a
fixed value on the left hand side with B different values on the right hand side, a
deviation on the left hand side from the true maximum has a much higher impact
on the p-value.
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Therefore we introduce a new variable cboost which works as a multiplier for the
number of observed c-values for the fitting based on real data. The set C for
fitting densities based on real data is now created with nc · cboost equidistant points
from 0 to cmax. The set C⇤ (for the Monte Carlo samples) is still created with nc

equidistant points from 0 to cmax. Thus we get a cboost times finer grid for the left
hand side in (4.3), which results in less deviation of the estimated maximum from
the real maximum.

To show how well this small extension works, we perform some simulations and
compare the results for the old version with (cboost = 10) and without the extension
(equivalent to cboost = 1). 1000 unimodal densities (N(0, 1)) and 1000 mixtures
(1
2
N(0, 1)+ 1

2
N(3, 1)) are created and tested. The result is presented in Figure 4.7

and Table 4.2, which shows some percentiles of the results for the unimodal dis-
tributions analogous to Table 4.1 in Section 4.3 to check the distribution of the
p-value under the null hypothesis.

0 200 400 600 800 1000
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p
−
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(a) Results of 1000 simulated unimodal
(N(0, 1)) densities with U (0, 1) refer-
ence line.
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(b) Results of 1000 simulated bimodal
(12N(0, 1) + 1

2N(3, 1)) densities.

Figure 4.7.: Comparison between results of the algorithm with (red) and without
(blue) extension of a finer c-grid for real data. The boosting parameter
cboost = 10 is chosen.

From Figure 4.7 we can conclude, that the distribution under the H0 looks much
better now. Theoretically it should follow the dashed line but most important is
the fact that we do not expect that much of false positive results that would have
occurred without the extension since the number of very low p-values under the H0

is much smaller now. Moreover we see an improvement of the results for samples
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Percentiles
1% 5% 10% 25% 50% 75% 90% 95% 99%
0.02 0.08 0.13 0.27 0.56 0.90 0.99 1.00 1.00

Table 4.2.: Quantitative overview of resulting p-values for 1000 simulation runs
with a sample of size 2000 each from a standard normal distribution
with the extension of a finer c-grid for real data fitting.

from mixtures as well, see Figure 4.7b. Thus we highly recommend the use of the
parameter cboost as it solves a problem but comes with no major disadvantage.

In the following computations we will use the parameter-set cmax = 3, nc = 4 and
cboost = 10 as the standard parametrization to determine the grids C and C⇤.

4.5. Application to Artificial Data

We will now present the results of a small simulation study, that should give
an insight in how well the procedure performs. Mainly we are interested in the
performance on samples that come from mixtures with equal relative size (formally
p1 = p2 = 1

2
in Theorem 2.12) and different centers. Additionally we are also

interested in the behavior of the procedure for samples from mixtures with differing
relative sizes.

The following set of parameters is used:

• BIN.DIST = 0.1

• B = 199

• cmax = 3

• nc = 4

• cboost = 10

In Figure 4.8, we see the results for 1000 different
�
1
2
N (0, 1) + 1

2
N (µ2, 1)

�
-samples

of size 2000 for several µ2 � 0. The points and the solid line describe the median
of the resulting p-values and the two dashed lines the lower and upper quartile.
Table 4.3 gives an overview of the relative number of samples that resulted in a
p-value lower or equal the three mostly used levels of significance (α).
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Figure 4.8.: Median and lower & upper quartile of 1000 1
2
N (0, 1) + 1

2
N (µ2, 1)-

samples of size 2000.

Relative number of cases  α

α µ2 = 0 µ2 = 1 µ2 = 2 µ2 = 3 µ2 = 4 µ2 = 5
0.1 20% 22% 25% 91% 98% 100%
0.05 11% 15% 20% 82% 94% 96%
0.01 1% 3% 9% 54% 88% 94%

Table 4.3.: Relative number of samples that resulted in a p-value lower or equal
than the given levels of significance on the left.

In Figure 4.9, we see the results for 1000 different ((1� p2) ·N (0, 1) + p2 ·N (3, 1))-
samples of size 2000 for several p2 2 (0; 1). The points and the solid line describe
the median of the resulting p-values and the two dashed lines the lower and up-
per quartile. Table 4.4 gives an overview of the relative number of samples that
resulted in a p-value lower or equal the three mostly used levels of significance.

From the simulations described above we can conclude that for p1 = p2 a distance
of ⇡ 3 between the two mixture components is needed to detect the presence of
mixing with the described test significantly sure enough. This fact is a good rule
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of thumb for our use case when one thinks of the required distance between two
equally sized components to detect mixing. Even if the components would not
have equal size, the algorithm shows satisfying results as we can conclude from
Figure 4.9 and Table 4.4. The presence of mixture seems detectable quite good
even with proportions much more unequal than p1 = p2.

0.1 0.2 0.3 0.4 0.5

0
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Relative size of the second component

p
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v
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Figure 4.9.: Median and lower & upper quartile of 1000 (1� p2) · N (0, 1) + p2 ·
N (3, 1)-samples of size 2000.

Relative number of cases  α

α p2 = 0.05 p2 = 0.1 p2 = 0.2 p2 = 0.3 p2 = 0.4 p2 = 0.5
0.1 22% 50% 73% 87% 90% 91%
0.05 16% 30% 41% 49% 64% 82%
0.01 7% 10% 18% 27% 46% 54%

Table 4.4.: Relative number of samples that resulted in a p-value lower or equal
than the given levels of significance on the left.
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5. Logarithmic Concave Densities

in Extreme Value Theory

Extreme value theory generally consists of two approaches of catching the charac-
teristics of the tails of a distribution. The first one is to investigate the properties
of the maxima of several samples from a distribution. This approach and the con-
nection to the class F1 is investigated in [24], from where we will now sketch the
main idea. The fundamental result in this theory comes from [17] and [16]:

Theorem 5.1. Let X1, . . . , Xn be independent and identically distributed random
variables with distribution function F and define Mn := max {X1, . . . , Xn}. If
sequences (an)

1
n=1 > 0 and (bn)

1
n=1 2 R exist, such that

lim
n!1

P

✓
Mn � bn

an
 x

◆

= F (x)

then the distribution function F is in the Gumbel-, Weibull- or Frechet-family.

Proof. See [17] or [16]. ⌅

And we continue with the corresponding definition for which Theorem 5.1 is the
building block.

Definition 5.2. The probability family with distribution function

F : D ! [0; 1] , x 7!

8

<

:

exp
⇣

�
�
1 + γ x�µ

σ

�� 1
γ

⌘

for γ 6= 0

exp
⇣

�e�
x−µ
σ

⌘

for γ = 0

is called the Generalized Extreme Value Distribution (GEVD) with shape
parameter γ and

D =

8

>><

>>:

h

µ� σ
γ
;1
⌘

for γ > 0
h

�1;µ� σ
γ

⌘

for γ < 0

[0;1) for γ = 0

.
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Note, that the definition of the GEVD for γ = 0 is reasonable since

(1 + γ · z)�
1
γ ! ez as γ ! 0.

We can observe, that Theorem 5.1 justifies Definition 5.2 in the following way:

• For γ = 0 and y = x�µ

σ
we get

the distribution function F (y) = exp (�e�y) and
the density function f(x) = 1

σ
exp (�y � e�y),

which belong to the Gumbel Distribution.

• For γ > 0, y =
�
1 + γ x�µ

σ

�
and γ = 1

α
, we get

the distribution function F (y) = exp (�y�α) and
the density function f(y) = αy�α�1 exp (�y�α),
which belong to the Frechet Distribution (with σ = 1 and m = 0).

• For γ < 0, y = �
�
1 + γ x�µ

σ

�
and γ = � 1

α
, we get

the distribution function F (y) = exp (� (�y)α) and
the density functionf(y) = α (�y)α�1 exp (� (�y)α), which belong to the
Reversed Weibull Distribution (with σ = 1 and m = 1).

When we compare the parametrization of the GEVD (γ) with the three distribu-
tions above and the findings from Theorem 2.7, we can easily deduce:

Corollary 5.3. The GEVD is log-concave for γ 2 [�1; 0].

Proof. The GEVD is not log-concave for γ > 0 since the Frechet-distribution is
not log-concave (see Theorem 2.7 (d)).

The GEVD is log-concave for γ = 0 since the Gumbel-distribution is log-concave
(see Theorem 2.7 (c)).

The GEVD is log-concave for γ 2 [�1; 0) since the reversed-Weibull-distribution
is log-concave for α � 1 (recap γ = � 1

α
) according to Theorem 2.7 (e). ⌅

The second approach to catch the characteristics of the tails of a distribution is
to estimate the tail itself. This approach is widely known as the “Point Over
Threshold” (POT) method. The idea is, that if the i.i.d. sample x1, . . . , xn of
a random variable X is given, one can choose a relatively high threshold u 2
⇥
x(1); x(n)

⇤
and define the so called “exceedances” x(n)�u, x(n�1)�u, . . . , x(n�kn+1)�

u1. Note that the choice of the threshold u is by no means trivial and is a whole field
of interest by itself, see for example [42]. Analogous to the fundamental theorem

1kn describes the smallest natural number for which x(n−kn) < u.
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in the first approach, described above in Theorem 5.1, the following Balkema-
De Haan-Pickands theorem (see [4] and [26]) gives a statement on the asymptotic
distribution of the exceedances.

Theorem 5.4. Let X be a random variable with distribution function F . The
distribution function of the exceedances is given by Fu(y) := P (X � u  y|X > u).
As u ! 1, we get

Fu(y) ! Gµ,σ,γ(y)

where Gµ,σ,γ denotes the distribution function of the Generalized Pareto Dis-
tribution (GPD)

Gµ,σ,γ : D ! [0; 1] , y 7!
(

1�
�
1 + γ x�µ

σ

�� 1
γ for γ 6= 0

1� e�
x−µ
σ for γ = 0

with shape parameter γ and

D =

8

><

>:

[µ;1) for γ > 0
h

µ;µ� σ
γ

⌘

for γ < 0

[µ;1) for γ = 0

.

Proof. See [4] and [26]. ⌅

Note, that we already verified log-concavity for some parametrizations (γ 2 [�1; 0])
of the GPD in Theorem 2.7. Thus, both distribution families occurring in extreme
value theory - the GPD and the GEVD - are log-concave for the same values of
their shape parameters.

5.1. Density Estimators in Tail Index Estimation

Our goal is now, to detect the shape of the tail of a density, given a sample
x1, . . . , xn from this density function. To quantify the shape of the tail, we are
interested in the shape parameter of the GPD γ, which we will from now on call
“tail index”. Therefore, we want to make use of the concept of tail index estimation,
especially the approach by [26] from where we define the “Pickands estimator”1:

γ̂k
P ick(H) :=

1

log (2)
log

0

@
H�1

⇣
n�rk(H)+1

n

⌘

�H�1
⇣

n�2rk(H)+1
n

⌘

H�1
⇣

n�2rk(H)+1
n

⌘

�H�1
⇣

n�4rk(H)+1
n

⌘

1

A (5.1)

1The original form in our notation would be γ̂k
Pick(Fn)
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for k = 4, . . . , n and H 2
n

Fn, F̂n

o
1, where

rk(H) :=

⇢
bk
4
c if H = Fn

k
4

if H = F̂n

.

The actual notation we used in (5.1) comes from [25]. This paper describes the
main idea of how to use the log-concave density estimator in the framework of
tail index estimation. We simply replace the usually used empirical distribution
function (H = Fn) with the log-concave distribution estimator (H = F̂n). There-
fore, we obviously get a much smoother estimation with γ̂k

P ick(F̂n), than with
γ̂k
P ick(Fn).

To illustrate the difference of these estimators we draw a sample of size 100 from
a GPD with µ = 0, σ = 1 and γ = 0. Figure 5.1 shows the so-called “Hill-plots”2

of the different estimation approaches. One fact that we see, that is actually clear
by construction, is that the original estimator using the empirical distribution
function is equal for four consecutive values of k. Besides of this fact, we can
easily see the big advantage of the extension of (5.1): the new estimator is much
smoother than before.
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Figure 5.1.: Pickands estimator for a GPD (µ = 0, σ = 1, γ = 0)-sample (n = 100).

1
Fn denotes the empirical distribution function based on the sample and F̂n the log-concave

distribution function coming from the log-concave density estimator.
2Hill plots show the result of γ̂k

Pick(H) in dependence of k.
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We want to point out another advantage of the smooth tail index estimator, be-
cause it plays a role in many samples in our practical application. It is possible
and even very likely, that the precision of a machine that measures e.g. electrical
values, is not good enough to catch the behavior of data that would actually be
continuous but appears discrete due to rounding errors of the machine. The prob-
ability plots of an artificial example are given in Figure 5.2, but analogous data
appears in real datasets as well.

data

P
ro

b
a

b
ili

ty
 i
n

 %

0 1 2 3

0
.1

5
0

8
0

9
0

9
5

9
9

9
9

.9

Quantile: qgpd

(a) Data with precise values.
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(b) Data with rounded values.

Figure 5.2.: Probability plots of a GPD
�
µ = 0, σ = 1

2
, γ = 0

�
-sample of size 1000

for the original and rounded data.

One can guess that the discreteness of the rounded data can be problematic and
in fact, we see that the estimator γ̂k

P ick(Fn) is not stable under such a rounding
process. Figure 5.3 compares the Hill plots for both settings (actual and rounded
data) from above.

The most obvious shortcoming already has been shown in Theorem 2.7. The GPD
is only log-concave for γ 2 [�1; 0]. Thus, the replacement of Fn by F̂n is only
possible if one can assume γ 2 [�1; 0]. Nevertheless the results of γ̂k

P ick(F̂n) can
be outside of [�1; 0]. The recommended way of dealing with such estimates, if it
is known that γ 2 [�1; 0], is “a truncation of the result to the closest boundary
value”, according to [25]. For our purpose, we will perform a quick test on log-
concavity of the underlying data to make sure if the smoothed estimator γ̂k

P ick(F̂n)
can be used. The exact procedure is described in Chapter 6.

All previous and future computations are made with slightly adapted functions
from the R-package smoothtail, see [34] and [13].
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Figure 5.3.: Hill plots of a GPD
�
µ = 0, σ = 1

2
, γ = 0

�
-sample of size 1000 for the

original and rounded data.

5.2. Tail Index Estimation in an Automatic

Procedure

The use of tail index estimators in an automatic manner is a bit problematic as
they lead to a variety of possible values, more precisely one for every k = 4, . . . , n.
A common way to choose the “correct” k is to use Hill plots, see Figure 5.3.
The common suggestion, is to use γ̂k

P ick for a value of k for which the function
k 7! γ̂k

P ick(H) is as constant as possible. This approach is obviously hard to
implement in an automatic procedure. In literature, several other approaches
exist. For example in [8], theoretical and practical approaches are described and
unfortunately they do not come to the same result in general. That is what
motivates us to work out a solution that works especially for the type of problem
we want to solve.

In Chapter 1 we sketched the goal of the algorithm, which is about the assignment
to a class or a category that gives an idea of how the density looks like and what
possible problems could occur in future production processes. Therefore we are not
interested in the value of the tail index itself but we are mainly interested whether
the tails of the density are heavier than the ones from a normal distribution or not.
So we want to develop some rule that focuses on the separation between weaker
and heavier tails.
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We will simply use the mean of the computed estimations, precisely

1

m� 3
·

mX

k=4

γ̂k
P ick(F̂n), (5.2)

where m ⇡ 5
6
· n1. We will call (5.2) the “average tail index” even if it is not the

mean tail index over every k = 4, . . . , n.

We can then apply this technique to both sides of the sample to get separate tail
indices for the lower and upper tail of the sample. The boundaries for the average
tail index that classifies the tail of a sample to be heavy or weak are simulated
with artificial data. The results of these simulations are shown in Figure 5.4.
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Figure 5.4.: Average tail index for simulated data in five different exemplary classes
(1000 samples for every class with n = 2000 each) using γ̂k

P ick(F̂n).

1The factor 5
6 was found to give the best results out of several other factors. Nevertheless

one could try to use other factors between 1
2 and 1 to prevent an estimated tail index from one

end of the sample’s range to be too heavily violated from the other side’s tail.
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We can conclude that we get a good separation property of the average tail index
at least for artificial data. Moreover we get an insight in the range of results of
the average tail index for the main class, the normal distribution, from which we
can deduce boundaries for this class. Table 5.1 gives an overview of these results
and thus we decide to choose the boundaries of the class of normal distributions to
be �0.55 and �0.35 with a smooth allocation to heavier or weaker classes beyond
these boundaries. Even if tighter bounds would be possible with only little danger
of misclassification, as we can see in Table 5.1, we choose those to be sure and keep
Figure 5.4 in mind, where we can see that the most severe class to misclassify, the
heavy tailed distributions, are still far enough away.

Percentiles
min 1% 5% 25% 50% 75% 95% 99% max

-0.541 -0.536 -0.516 -0.487 -0.467 -0.447 -0.419 -0.398 -0.363

Table 5.1.: Quantitative overview of the average tail index of 1000 N (0, 1)-samples
of size n = 2000 each.

To increase understandability of the calculated values, we add a transformed tail
index to the result of the procedure. This transformation is a function R !
{�3,�2,�1, 0, 1, 2, 3}, that assigns an easily understandable number to the data.
A value of 0 is assigned for a normal distributed tail, positive numbers for heavier
tails and negative numbers for weaker tails or data with an underlying density with
finite endpoint. The transformation of a calculated average tail index γ works as
follows:

γ 7!

8

>>>>>>>><

>>>>>>>>:

3 if γ 2 (�0.15;1)
2 if γ 2 (�0.3;�0.15]
1 if γ 2 (�0.35;�0.3]
0 if γ 2 [�0.55;�0.35]
�1 if γ 2 [�0.65;�0.55)
�2 if γ 2 [�0.8;�0.65)
�3 if γ 2 (�1;�0.8)

. (5.3)

The transformed tail index is the basis of the assignment to the final classification.
For values of 2 and 3, we declare the corresponding tail to be “heavy”, for values
of �2 and �3 to be “weak”. An absolute value of 1 can be seen as semi-normal or
slightly violated normal distribution and 0 is the desired case of a normal distri-
bution. Examples of these cases can be seen in the next chapter.

To motivate the use of the smooth estimator γ̂k
P ick(F̂n) over the primary version

γ̂k
P ick(Fn) when it is possible, we will consider Figure 5.5, which shows artificial

exemplary densities and their left and right tail index in analogy to Figure 5.4.
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Figure 5.5.: Average tail index for simulated data in five different exemplary classes
(1000 samples for every class with n = 2000 each) using γ̂k

P ick(Fn).

We can conclude that the tail indices in every of the observed exemplary cases
have a higher variance than the smooth analogon. In fact, when we look at the
empirical values in Table 5.2, the locations of each class are nearly the same while
the standard deviation is about twice as large.

H = F̂ H = Fn

left tail right tail left tail right tail
“normal” -0.47 (0.03) -0.47 (0.029) -0.47 (0.041) -0.47 (0.04)

“heavy tail - left” -0.11 (0.019) -0.53 (0.028) -0.08 (0.04) -0.51 (0.038)
“heavy tail - right” -0.53 (0.027) -0.1 (0.019) -0.51 (0.038) -0.08 (0.04)
“heavy tails - both” -0.16 (0.02) -0.16 (0.022) -0.13 (0.041) -0.13 (0.042)

“truncated (weak) data” -0.6 (0.026) -0.6 (0.025) -0.61 (0.04) -0.61 (0.04)

Table 5.2.: Average tail index of simulated densities from Figure 5.4 and Figure 5.5
as means (and standard deviations) from all 1000 simulations.
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6. NN 2.0 - An Algorithm for the

Classification of Densities

We will now introduce the overall classification algorithm “NN 2.0”, that is the
main target of this thesis as described in Chapter 1. In the following enumeration
we will describe the workflow of the procedure (sketched in Figure 6.4), that is
implemented in R, see Section A.1 for the code. The input of the procedure is a
univariate data-sample, which consists of some measured testing-parameter for all
tested devices.

1. First of all, the suitability of the data is tested since many parameters in
an overall dataset are of an informational type. Thus the user is asked to
specify a minimal number of unique values that the sample should contain
to avoid the (probably not even possible) classification of informational or
categorical data. An example to this class could be a binary variable, see
Figure 6.1a, or a variable that is obviously discrete, see Figure 6.1b.

data

P
ro

b
a

b
ili

ty
 i
n

 %

0.0 0.2 0.4 0.6 0.8 1.0

0
.1

1
5

2
0

4
0

6
0

8
0

9
5

9
9

9
9

.9

Quantile: qnorm

(a) Probability plot of an exemplary bi-
nary variable from real data.
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(b) Probability plot of an exemplary
discrete variable from real data.

Figure 6.1.: Data of two exemplary variables from a real dataset that should be
assigned to the class “categorical and informational data”.
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2. Another special case that appears quite often is shifted data that results in
an extreme mixture or clustering (not in a strict mathematical sense). For
example when a tested device causes a severe error of the testing program
or of a machine, it is quite likely that all devices that are tested afterwards
will result in completely different values and thus most likely a shift in the
density, see Figure 6.2. We hope to detect these cases by searching for
large enough “gaps” in terms of standard deviations. The difference between
each point and its subsequent point is then compared with the empirical
standard deviation of the sample multiplied by a user-specified number (⇡
0.5 suggested). To prevent from the detection of single outliers in this step,
a minimum number of observations is required on both sides of an occurring
gap. The number of required observations on each side relative to the sample-
size is once more specified by the user (⇡ 0.01 suggested). This procedure
should only filter the data for such extreme examples and is not grounded on
any mathematical theory. Nevertheless this can work as a fast way of finding
extreme mixtures and such clustered data as presented in Figure 6.2, which
would cause numerical problems in the next steps.
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Figure 6.2.: Exemplary variables from a real dataset that should be assigned to
the class “clustering”.

3. To guarantee all following procedures to work numerically, we scan each
sample for extreme outliers. This is simply done by detecting values that are
far enough away from the mean value of the sample. The necessary distance
is measured using the MAD (Mean Absolute Deviation) from the mean (not
the median). Strangely the distance from the mean works out better here
than the more frequently used distance from the median. A distance of
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15 times the MAD is suggested but the choice is up to the user. We only
want to detect extreme outliers in this step, for which an example is given
in Figure 6.3, where the two points on the right are ⇡ 25 times the MAD
away from the mean value of the sample. The detected values are excluded
in the following computations but the outlying devices are flagged and also
exported to the user for informational purpose.
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Figure 6.3.: Exemplary variable from a real dataset that should illustrate which
type of extreme outliers should be detected.

4. Afterwards basically a test for log-concavity of the sample is performed,
which was mentioned in the end of Chapter 2. For data that was declared
not to be log-concave, the test on the presence of mixture, discussed in
Chapter 4 can be performed. This decision is up to the user because the
execution of this test causes a lot of computation time but it can help to
detect the presence of mixtures. No matter if the test on the presence of
mixtures is used or not, the result of the test on log-concavity will be used
to determine whether to use Fn or F̂n in the next step.

5. Finally the main part of the procedure, the estimation of the tail index
of unimodal densities and in addition the shape of the tail, described in
Chapter 5, is performed. Depending on the result of the previously performed
test on log-concavity, we will either use the empirical distribution function
Fn or the log-concave distribution estimator F̂n to compute Pickands tail
index estimator.
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The workflow of the previous enumeration is sketched in Figure 6.4 to give a simple
overview of the procedure.

Data
Grouping
variable

Discrete?

Minimal
number of

unique values

“Categorical
or infoma-

tional data”

Obvious
clustering?

Cluster
detection
proporties

“Clustering”

Detection
of extreme
outliers.

Outlier
detection
properties

Is sample
log-concave?

Mixture-test
from Walther

Tail index
estimation

Classification

Yes

No

Yes

No

Result

Fn or F̂n

Figure 6.4.: Workflow of the classification algorithm “NN 2.0”.
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To give an insight in the range of different classes and to illustrate how represen-
tatives of some classes look like, exemplary densities and their desired assignment
are presented in Figure 6.5. Note that not every density that is under investigation
is as clearly assignable as these examples.
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(a) Class “normal”.
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(b) Class “weak tails (both)”.
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(c) Class “heavy left tail”.
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(d) Class “weak left tail”.

Figure 6.5.: Exemplary variables from real datasets to illustrate the assignment.

In addition, the algorithm provides the useful possibility to group data by a discrete
variable in advance of the actual computation. Therefore a lot of problems that
could occur can be solved easily. Consider the following example: when devices
are tested on two or more machines simultaneously, it is very likely that results
on these machines will be slightly different even if one would measure the same
devices on both machines. Thus the overall dataset would consist of some shifted
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densities that appear as mixtures for nearly every test as long as the data is not
grouped by the proper variable. This case was also mentioned in the beginning
of Chapter 4 to motivate the described test. When the user guesses the grouping
variable correctly, a lot of computation time can be saved by skipping this test
on the presence of mixtures and more importantly additional information can be
gained by separate classification of the components of a mixture.

6.1. Application of NN 2.0 to Real Data

We will now apply the algorithm to four different datasets. The name of the prod-
uct or the phase of development are not mentioned due to data privacy restrictions
but the chosen datasets can be seen as representative and are all large enough to
apply our algorithm.

1. The variables in the first dataset, “dataset A” are classified manually by the
author in advance to check the result of the algorithm. The dataset consists
of 1391 testing-parameters and 1956 tested devices. The accuracy of the
result in comparison to the human classification can be seen in Table 6.1.
For detailed results, see Table A.1.

Class Correct Not correct Accuracy in %
Categorical or informational 261 0 100.00%
Clustering 47 30 61.04%
Mixture 162 182 47.09%
Normal 372 35 91.40%
Heavy left 9 23 28.13%
Heavy right 11 9 55.00%
Heavy tails (both) 2 23 8.00%
Weak left & heavy right 4 25 13.79%
Heavy left & weak right 9 32 21.95%
Weak left 15 21 41.67%
Weak right 9 13 40.91%
Weak tails (both) 18 79 18.56%
Overall Accuracy 919 472 66.07%

Table 6.1.: Accuracy of NN 2.0 relatively to manual classification for dataset A.

Especially for some (important) classes with heavy tails, the performance of
the algorithm is not very satisfying when we look at the results. We will give
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two examples for misclassified densities, that can be seen as representatives
for many other misclassified densities in the overall dataset.

Figure 6.6a shows the probability plot of the first example. This density is
classified as “heavy left & weak right” in the manually done classification.
The algorithm rated the left tail as heavy and the right tail as normal but
the computed average right tail index was �0.62, which is very close to the
assignment as weak (< �0.65). Such cases occur quite often and are not
a big problem since the assigned class can nevertheless be seen as a good
rating even if it is no exact match with the previously assigned class.

The second example, presented in Figure 6.6b, gives a reason for the far too
often assigned class “normal”1. The density was rated as “weak tails” in the
human classification but were assigned to the class “normal”. In fact one can
argue, that the tails are weaker than the ones from a normal distribution but
this difference is only very small and thus the classification is once more not
as bad as it seems in Table 6.1.
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(a) Density with “heavy left & weak
right” in the human assignment and
“heavy left” in the algorithm.
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(b) Density with “weak tails” in the hu-
man assignment and “normal” in the
algorithm.

Figure 6.6.: Exemplary variables from dataset A, that shows two misclassifications.

Moreover we want to mention that many misclassifications of mixture den-
sities happened due to the fact that the test presented in Chapter 4 is not
able to detect mixtures with only little differences of the components, as ob-

1About 49% of the wrong assignments were wrong assignments of the class “normal”.
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served in Section 4.8. Such densities are then most probably getting assigned
to some class with weak tails (see Table A.1).

2. To avoid a subjective assignment in the manually done classification, the
second exemplary dataset, “dataset B” is classified by a colleague in the
product engineering team. The dataset was not rated with the same classes
as in the first example. Therefore we compare the manually done assignment
with the output of NN 2.0 mainly by the presence of heavy tails. Thus we
only differentiate between the classes “categorical or informational data”,
“clustering”, “normal or weak” and “heavy tail” (at least one side).

In analogy to Table 6.1 we present the accuracy of this procedure in Ta-
ble 6.2. The dataset consists of 2623 testing-parameters and 3682 devices.
The detailed results can once more be seen in the appendix in Table A.3.

Class Correct Not correct Accuracy
Categorical or informational 491 22 95.71%
Clustering 74 56 56.92%
Normal or weak 1519 195 88.62%
Heavy tail 152 114 57.14%
Overall accuracy 2236 387 85.25%

Table 6.2.: Accuracy of NN 2.0 relatively to manual classification for dataset B.

The overall accuracy can be seen as satisfying since a lot of misclassifications
are still densities with uncertain assignment. Consider the density, presented
in Figure 6.7.

The density is assigned to the class “normal”, what can either be seen as
correct or not depending on how strict the differentiation between the classes
should be. To have the possibility to assign such densities neither to the
class “normal” nor to some class with heavy or weak tails, we introduce a
new class “semi-normal” for densities that are not perfectly normal but also
not explicitly heavy or weak on one side. We will track such densities also
with the transformation given in (5.3) and assign the class “semi-normal”
when the absolute value of the transformed left and right tail index is 1.

3. In the previous examples, we saw that in some cases it is hard to assign a
density to one single class. Thus we will present a third example where we
apply the algorithm to “dataset C”. Afterwards the assignment is controlled
by a colleague of the team who defines whether the classification is “OK”
or “not OK”. The result is given in Table 6.3. The dataset consists of 2575
testing-parameters and 522 devices.
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Figure 6.7.: Testing-parameter from dataset B with assignment “normal” and
“semi-normal” in future computations.

Class OK not OK OK in %
Categorical of informational 501 0 100.00%
Clustering or extreme mixture 248 163 60.34%
Mixture 57 10 85.07%
Normal 983 66 93.71%
Semi-normal 92 7 92.93%
Heavy left 19 32 37.25%
Heavy right 69 29 70.41%
Heavy tails (both) 9 2 81.82%
Weak left & heavy right 22 2 91.67%
Heavy left & weak right 0 0 -
Weak left 71 37 65.74%
Weak right 65 45 59.09%
Weak tails (both) 46 0 100.00%
P

2182 393 84.74%

Table 6.3.: Quality of NN 2.0 output.

What is conspicuous about the result, is the bad performance for the class
“clustering or extreme mixture”. A possible explanation is the smaller size of
each sample compared to previous examples because the gap-finding proce-
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dure could then probably detect even a small amount of outliers as a cluster.

Another thing that comes in mind is the bad performance of classes with
heavy tails, especially the classes “heavy left” and “heavy right”. But in fact
when we think of possible applications, such misclassifications are not that
fatal since testing-parameters get flagged, might get further investigation and
will then nevertheless be treated properly.

4. The fourth example we will present, is an application that is a little different
than the previous three. We will now analyze the outcome of the same test
and the same product over time. The problem with the testing-parameter
was the extreme tailing, that occurred in early samples as presented in an
exemplary density in Figure 6.8a.

We have data for this test for several months available. We will not focus
on the assigned class but we will make use of the continuity of the presented
average tail index. As we can see in Figure 6.8b, the occurrence of extreme
tailing disappeared in later samples. In fact, the product was redesigned and
after this redesign the problem at least seemed to be not that big as before
and happened only under special conditions. This fact can be recognized
using the average tail index and shows a possible application of the algorithm
or at least of some parts of it.
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(a) Testing-parameter with extreme
heavy right tail at an early develop-
ment phase.
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(b) Evolution of the right tail index before
and after a redesign that solved the
heavy tail in some samples.

Figure 6.8.: A heavy tailed distribution and the evolution of the right average tail
index of this testing-parameter over time.
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7. Conclusion

In this thesis, we attempted to make use of log-concave density estimation in
a real-life application and the development of a density classification tool. The
main components of this tool were discussed in Chapter 4 and Chapter 5 and
their qualitative possibilities were tested in Chapter 6. The application to real
data showed satisfying results when we think of the advantageous objectiveness
of the procedure. The accuracy is comparable with other techniques that were
currently used by the team as described in Chapter 1. Nevertheless, there is room
for improvement and further research we will also sketch below.

The algorithm to detect the presence of mixtures worked out quite well but comes
with the big shortcoming of a high computation time. Some densities that consist
of extremely different components (large difference in location) can be detected by
searching for large “gaps” in the data as described in the second step of the overall
algorithm. The way we did this detection of gaps was quite heuristic and could
likely be improved by using other procedures and approaches. In addition to this,
we implemented the possibility to group the data by a categorical variable. This
can also be used to detect mixtures if the reason of the presence of mixtures is
known or can be guessed. Note that calculations for the same data and different
possible categorical variables, for which the data is grouped by in advance, are
still faster than the application of the mixture-test on the whole dataset in most
cases.

The second big part of the procedure can probably be summarized best with
the term “applied tail index estimation”. The used techniques worked out well
to quantify the shape of each tail of a density. Note that we made use of only
a small amount of the information that comes with each calculated value. The
transformation of the tail index and the assignment to predefined classes, for which
the creation of the boundaries happened heuristically, is something that matched
with our predefined target but could be adapted in future work.

Overall we can conclude that the algorithm is by no means meant to replace the
high-quality work of experienced engineers as the examples in Chapter 6 may sug-
gest. The developed tool and possible modifications have a wide field of other
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applications. We mainly mentioned the straight forward possibility to free engi-
neers from a monotone and error-prone task. Another application was already
sketched in the fourth example, presented in Section 6.1. The big advantage of the
developed procedure over machine learning algorithms and manually done classi-
fication is the objectiveness and the flexibility of the procedure. Such an objective
procedure, that rates densities the same way every time allows the tracking of
changes of testing-parameters over time, as we sketched in the example. Another
possible application is the development of a benchmark, that quantifies the quality
of a product in terms of producibility, for which NN 2.0 could be the basis.

A few possible extensions or modifications of the algorithm can be seen as origin
of further development:

• The assignment to classes happens through heuristically defined boundaries
of the average tail indices on the left and right side separately. This could be
adapted by rating the left and right tail index together. But the algorithm
does not necessarily need to be limited by a procedure that results in discrete
classification. One can probably find ways to make use of the continuity of
the tail index and to present the results in an easy and still meaningful way.

• The extension of such an algorithm to multivariate data was not in the scope
of this thesis but could be a promising approach to get a better insight in
the data since many of the observed testing parameters can be assigned to
test-groups. Testing-parameters from the same test group are likely to have
dependent distributions and could thus be investigated together.

• Recap that the algorithm NN 2.0 obviously has a predecessor we mentioned
in Chapter 1, which is based on a random forest algorithm. The features
which were mainly used are quantiles and descriptive indices as skewness
and kurtosis. The tail index could be a promising addition to the set of used
features.
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A. Appendix

A.1. R-Code of NN 2.0

In this section we present the R-code of the classification algorithm NN 2.0 as described in
Chapter 6. The functions require the package logcondens, see [13] and make use of the function
mixing.test.walther(), for which the R-code is presented in Section A.2.

Listing A.1: Main function NN2.0().

require(logcondens)
# NN2.0() calculates raw results (unclassified and untransformed tail index)
# DATA... input as matrix: rows = tested devices
# cols = testing�parameters
# MIN.DISCRETE... minimum number of unique values for columns being non�discrete
# OUTLIER.REMOVAL... how many times the MAD does outliers have to be away
# CLUSTERING.DISTANCE.SD... "gap"�finding: necessary distance in terms of
# empirical standard deviations
# CLSUETRING.PROPORTION.POINTS.SD... "gap"�finding: necessary proportion of obs.
# on each side of a gap
# MIXTURE.TEST... perform mixture�test be performed for non�log�concave samples?
NN2.0 <� function(DATA, MIN.DISCRETE=10, OUTLIER.REMOVAL=15,

CLUSTERING.DISTANCE.SD=0.5,
CLUSTERING.PROPORTION.POINTS.SD=0.01,
MIXTURE.TEST=FALSE, GROUP.BY=NULL)

{
nr.devices <� dim(DATA)[1]; nr.cols <� dim(DATA)[2];
if(!is.null(GROUP.BY)){

grouping.var.index <� which(colnames(DATA)==GROUP.BY)
grouping.levels <� unique(DATA[,grouping.var.index])
nr.levels <� length(grouping.levels)
n <� nr.levels ∗ nr.cols

}
else{

nr.levels <� 1
n <� nr.cols

}
result.logcon.test <� rep(NA,n)
iui <� 1:nr.cols # indices under investigation
data.list <� list(n) # value NA for categorical/informational data

# step one: categorical or informational data
ind <� iui
for(k in ind){
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dat <� DATA[,k]
if( (!is.numeric(dat)) | (length(unique(dat))<MIN.DISCRETE) ){

iui <� iui[�which(iui==k)] # index not under investigation anymore
for(j in 1:nr.levels){

data.list[[(k�1)∗nr.levels+j]] <� "categorical�or�informational�data"
}

}
}
print(paste(length(iui), "�densities�under�further�investigation�(",

nr.cols�length(iui), "�columns�unconsidered)")) # step one done

# step two: identify clustering and extreme mixtures
ind <� iui
for(k in ind){

dat <� DATA[,k]
na.indices <� which(is.na(dat)); dat <� na.omit(dat);
# detect possible large enough gaps:
gaps <� which(diff( sort((dat�mean(dat))/sd(dat)) )>=CLUSTERING.DISTANCE.SD)
# chack if detected gaps have enough points on each side:
if(length(gaps)>0){

for(j in 1:length(gaps)){
n.dat <� length(dat)
clustering <� gaps[j] >= n.dat∗CLUSTERING.PROPORTION.POINTS.SD &

gaps[j] <= n.dat∗(1�CLUSTERING.PROPORTION.POINTS.SD)
if(clustering){break}

}
}
else{clustering <� FALSE}
if(clustering){

iui <� iui[�which(iui==k)] # index not under investigation anymore
for(j in 1:nr.levels){

# save result "clustering" to data.list
data.list[[(k�1)∗nr.levels+j]] <� list(data=na.omit(dat),

excluded=na.indices,
na=na.indices,
outliers=numeric(),
classification=
"clustering�or�extreme�mixture")

}
}

}
print("Cluster�flagging�done!")

# step three: outliers and NAs:
ind <� iui
nr.sd <� OUTLIER.REMOVAL
for(k in ind){

dat <� DATA[,k]
na.indices <� which(is.na(DATA[,k]))
if(is.null(GROUP.BY)){

dist <� OUTLIER.REMOVAL∗mean(abs(dat�mean(dat,na.rm=TRUE)),na.rm=TRUE)
outlier.indices <� numeric()
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outlier.indices <� which(dat<(mean(dat,na.rm=TRUE)�dist) |
dat>(mean(dat,na.rm=TRUE)+dist))

exclude <� c(na.indices, outlier.indices)
if(length(exclude)==0){

dat <� DATA[,k]
}
else{

dat <� DATA[�exclude,k]
}

# na.indices and outlier.indices showing the index in the overall
# dataset even if grouped by some discrete var
data.list[[k]] <� list(data=dat,

excluded=c(na.indices, outlier.indices),
na=na.indices,
outliers=outlier.indices)

}
if(!is.null(GROUP.BY)){

outlier.indices <� numeric()
for(j in 1:nr.levels){

dat <� DATA[which(DATA[,grouping.var.index]==grouping.levels[j]),k]
na.indices.subgroup <� na.indices[which(na.indices %in%

which(DATA[,grouping.var.index]==grouping.levels[j])) ]
dist <� OUTLIER.REMOVAL∗mean(abs(dat�mean(dat,na.rm=TRUE)),na.rm=TRUE)
outlier.indices.subgroup <� numeric()
outlier.indices.subgroup <� which(dat<(mean(dat,na.rm=TRUE)�dist) |

dat>(mean(dat,na.rm=TRUE)+dist))
# adding subgroup outliers to outliers (with overall index)
outlier.indices <� c(outlier.indices,

which(DATA[,grouping.var.index]==
grouping.levels[j])

[outlier.indices.subgroup]
)

if(length(outlier.indices.subgroup)==0){
save <� list(data=na.omit(tmp),

excluded=c(na.indices.subgroup,which(
DATA[,grouping.var.index]==grouping.levels[j])
[outlier.indices.subgroup]),

na=na.indices.subgroup,
outliers=which(DATA[,grouping.var.index]

==
grouping.levels[j])

[outlier.indices.subgroup])
data.list[[(k�1)∗nr.levels+j]] <� save

}
else{

save <� list(data=na.omit(tmp[�outlier.indices.subgroup]),
excluded=c(na.indices.subgroup,which(

DATA[,grouping.var.index]==grouping.levels[j])
[outlier.indices.subgroup]),

na=na.indices.subgroup,
outliers=which(DATA[,grouping.var.index]

==
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grouping.levels[j])
[outlier.indices.subgroup])

data.list[[(k�1)∗nr.levels+j]] <� save
}

}
}

}
print("Outlier�flagging�done!")

print("Tail�Index�Estimation�(TIE)")
# step four: Tail Index Estimation
ind <� iui
perc <� 0 # show progress
k.perc <� 5/6 ∗ 100 # only use 5/6 of the tail index estimations
for(k in ind){

if(is.null(GROUP.BY)){
if(which(ind==k) >= perc/100 ∗ length(ind)){

print(paste("TIE:�approximately�", perc, "�%�done"))
perc <� perc+1

}
dat <� data.list[[k]]$data
# calculate LCDE:
LCD.est <� try(logcondens::logConDens(dat, xgrid = NULL, smoothed=FALSE,

print=FALSE, gam=NULL, xs=NULL),
silent=TRUE)

if(is(LCD.est)=="try�error"){
data.list[[(k�1)∗nr.levels+j]]$TI <� c(NA,NA)
next

}
end <� round(length(dat)∗k.perc/100)
ks.set <� round(seq(from=4, to=end, length.out=round(end�3)))
samp <� rlogcon2(n=length(dat), LCD=LCD.est)
p <� suppressWarnings(ks.test(dat,samp)$p.value)
result.logcon.test[k] <� p
if(p <= 0.05){

data.list[[k]]$TI <� TI.calculation.both(LCD=LCD.est, ks=ks.set,
method="order")

}
else{

data.list[[k]]$TI <� TI.calculation.both(LCD=LCD.est, ks=ks.set,
method="LCD")

}
}
if(!is.null(GROUP.BY)){

if(which(ind==k) >= perc/100 ∗ length(ind)){
print(paste("TIE:�approximately�", perc, "�%�done"))
perc <� perc+1

}
for(j in 1:nr.levels)
{

dat <� data.list[[(k�1)∗nr.levels+j]]$data
# calculate LCDE:
LCD.est <� try(logcondens::logConDens(dat, xgrid=NULL, smoothed=FALSE,
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print=FALSE, gam=NULL, xs=NULL),
silent=TRUE)

if(is(LCD.est)=="try�error"){
data.list[[(k�1)∗nr.levels+j]]$TI <� c(NA,NA)
next

}
end <� round(length(dat)∗k.perc/100)
ks.set <� round(seq(from=4, to=end, length.out=round(end�3)))
samp <� rlogcon2(n=length(dat), LCD=LCD.est)
p <� suppressWarnings(ks.test(dat,samp)$p.value)
result.logcon.test[k] <� p
if(p <= 0.05){

data.list[[(k�1)∗nr.levels+j]]$TI <� TI.calculation.both(LCD=LCD.est,
ks=ks.set, method="order")

}
else{

data.list[[(k�1)∗nr.levels+j]]$TI <� TI.calculation.both(LCD=LCD.est,
ks=ks.set, method="LCD")

}
}

}
}
print("Tail�Index�Estimation�done!")

# Step five (optional) Mixture Detection
perc <� 0
if(MIXTURE.TEST){

# only samples which were declared as non�log�concave are tested:
ind <� which(result.logcon.test<=0.05)
for(k in ind){

if(which(ind==k) >= perc/100 ∗ length(ind)){
print(paste("Testing�on�the�presence�of�mixtures:�approximately�",

perc, "�%�done"))
perc <� perc+1

}
dat <� data.list[[k]]$data
data.list[[k]]$MIXTURE <� mixing.test.walther(DATA=dat, BIN.DIST=0.1,

C.MAX=3, C.NR=4, C.BOOST=10,
B=199, show.progress=FALSE)

}
}

return(data.list)
}

Listing A.2: Function TI.assessment() (transformation of average tail indices and assignment
to classes).

# TI.assessment() transformes the computed tail indices and classifies them
# DATA.LIST... output of NN2.0()
# weak.boundaries... boundaries for the transformed tail indices �1, �2 and �3
# heavy.boundaries... boundaries for the transformed tail indices 1, 2 and 3
TI.assessment <� function(DATA.LIST, weak.boundaries=c(�0.55,�0.65,�0.8),
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heavy.boundaries=c(�0.35,�0.3,�0.15))
{

n <� length(DATA.LIST)
assessment <� matrix(NA, nrow=3, ncol=n)
rownames(assessment) <� c("class�name",

"left�TI�(transformed)", "right�TI�(transformed)")
for(k in 1:n){

if(!is.list(DATA.LIST[[k]]))
{

assessment[,k] <� c("no�TI�assessment", NA, NA) # class cat./inf. data
}
else
{

if(any(names(DATA.LIST[[k]])=="classification"))
{

if(DATA.LIST[[k]]$classification=="clustering�or�extreme�mixture")
{

assessment[,k] <� c("no�TI�assessment", NA, NA) # class clustering
next
}

}
if(any(is.nan(DATA.LIST[[k]]$TI),is.na(DATA.LIST[[k]]$TI)))
{

# Very rare case: when tail index was not computable
assessment[,k] <� c("Special�Case", NA, NA)
next

}
left <� DATA.LIST[[k]]$TI[1] # left tail index
right <� DATA.LIST[[k]]$TI[2] # right tail index
# transformed TI
trafo.left <� 0
trafo.right <� 0
if(left < weak.boundaries[1]){

trafo.left <� �1
if(left < weak.boundaries[2]){

trafo.left <� �2
if(left < weak.boundaries[3]){

trafo.left <� �3
}

}
}
if(left > heavy.boundaries[1]){

trafo.left <� 1
if(left > heavy.boundaries[2]){

trafo.left <� 2
if(left > heavy.boundaries[3]){

trafo.left <� 3
}

}
}
if(right < weak.boundaries[1]){

trafo.right <� �1
if(right < weak.boundaries[2]){
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trafo.right <� �2
if(right < weak.boundaries[3]){

trafo.right <� �3
}

}
}
if(right > heavy.boundaries[1]){

trafo.right <� 1
if(right > heavy.boundaries[2]){

trafo.right <� 2
if(right > heavy.boundaries[3]){

trafo.right <� 3
}

}
}
assessment[2,k] <� trafo.left
assessment[3,k] <� trafo.right
if(abs(trafo.left)+abs(trafo.right) <= 1){

assessment[1,k] <� "normal"
}
if(abs(trafo.left)==1 & abs(trafo.right)==1){

assessment[1,k] <� "semi�normal"
}

if(trafo.left <= �2 & trafo.right <= �2){
assessment[1,k] <� "weak�tails�(both�sides)"

}
if(trafo.left >= 2 & trafo.right >= 2){

assessment[1,k] <� "heavy�tails�(both�sides)"
}
if(trafo.left <= �2 & trafo.right >= 2){

assessment[1,k] <� "weak�left�&�heavy�right"
}
if(trafo.left <= �2 & abs(trafo.right) <= 1){

assessment[1,k] <� "weak�left"
}
if(abs(trafo.left) <= 1 & trafo.right >= 2){

assessment[1,k] <� "heavy�right"
}
if(trafo.left >= 2 & trafo.right <= �2){

assessment[1,k] <� "heavy�left�&�weak�right"
}
if(trafo.left >= 2 & abs(trafo.right) <= 1){

assessment[1,k] <� "heavy�left"
}
if(abs(trafo.left) <= 1 & trafo.right <= �2){

assessment[1,k] <� "weak�right"
}

}
}
return(assessment)

}
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Listing A.3: Auxiliary functions for NN 2.0.

# Auxiliary functions and modifications

# rlogcon2()... draws a sample of size n from a given log�concave density (LCD)
# �> modification of logcondens::rlogcon() but with LCD as input instead of samp
# �> saves computation time if LCD is already computed
# n... sample size that should be drawn
# LCD... object of class ’dlc’ (see logcondens�package)
rlogcon2 <� function(n, LCD)
{

U <� runif(n)
X <� logcondens::quantilesLogConDens(U, LCD)[, "quantile"]
return(X)

}

# TI.calculation.both() calculates the average tail index of both sides
# with just one LCDE and pickands esstimator
# �> modification of smoothtail::pickands()
# LCD... object of class ’dlc’ (see logcondens�package)
# ks... set of indices k for which the average tail index should be calculated
# method... either "order" or "LCD", depending on which distribution function
# estimator should be used
TI.calculation.both <� function(LCD, ks, method="order")
{

n <� LCD$n
x <� LCD$xn
v1 <� 1:length(ks) ∗ NA # v for left side
v2 <� 1:length(ks) ∗ NA # v for right side
if(method=="order"){

for (k in ks) {
k2 <� floor(k/4)
v1[k] <� (x[2 ∗ k2] � x[k2])/(x[4 ∗ k2] � x[2 ∗ k2])
v2[k] <� (x[n � k2 + 1] � x[n � 2 ∗ k2 + 1])/

(x[n � 2 ∗ k2 + 1] � x[n � 4 ∗ k2 + 1])
}
v1 <� suppressWarnings(log(v1)/log(2))
v2 <� suppressWarnings(log(v2)/log(2))

}

if(method=="LCD"){
for (k in ks) {

q1 <� logcondens::quantilesLogConDens((k/4�1)/n, LCD)[, "quantile"]
q2 <� logcondens::quantilesLogConDens((k/2�1)/n, LCD)[, "quantile"]
q3 <� logcondens::quantilesLogConDens((k�1)/n, LCD)[, "quantile"]
v1[k] <� (q2 � q1)/(q3 � q2)
q1 <� logcondens::quantilesLogConDens((n � k/4 + 1)/n, LCD)[, "quantile"]
q2 <� logcondens::quantilesLogConDens((n � k/2 + 1)/n, LCD)[, "quantile"]
q3 <� logcondens::quantilesLogConDens((n � k + 1)/n, LCD)[, "quantile"]
v2[k] <� (q1 � q2)/(q2 � q3)

}
v1 <� suppressWarnings(log(v1)/log(2))
v2 <� suppressWarnings(log(v2)/log(2))
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}
res <� c(mean(v1[v1!=Inf & v1!=�Inf], na.rm=TRUE),

mean(v2[v2!=Inf & v2!=�Inf], na.rm=TRUE))
return(res)

}

A.2. R-Code of the Test on the Presence of Mixtures

In this section we present the R-code of the test on the presence of mixtures, which we
investigated in Chapter 4. The code was originally implemented in Matlab, as described in
[43] and was transferred to R and only slightly modified.

Listing A.4: Main function mixing.test.walther().

# mixing.test.walther() calculates p�value of walther�test
# DATA... input data sample
# BIN.DIST... number of standard deviations for the binning procedure
# C.MAX... maximal value of c�grid
# C.NR... number of equidistant vakues in c�grid
# C.BOOST... multiplicator of size of c�grid for null model
# B... monte carlo sample size
# L1... technical parameter (approximation for log(0)), suggeston: �10
# show.progress... boolean variable determining if progress should be shown
mixing.test.walther <� function(DATA, BIN.DIST=1/10, C.MAX, C.NR, C.BOOST, B,

L1=�10, show.progress=FALSE)
{

nobs <� length(na.omit(DATA))
new.dat <� data.prep(DATA=DATA, BIN.DIST=BIN.DIST, L1=L1)
swork <� new.dat$SWORK; x <� new.dat$X; w <� new.dat$W; cw <� new.dat$CW;
n <� length(x);

swork <� ICMA(S=swork,X=x,C=0,CW=cw,L1=L1,show.progress=show.progress)
snull <� swork[(n�1):1]; s <� snull; xorig<�x

# test statistic(s) for original data
c.increment.origdat <� C.MAX/(C.BOOST∗C.NR�1)
res.origdat <� numeric(C.BOOST∗C.NR)
for(k in 1:(C.NR∗C.BOOST)){

c <� (k�1)∗c.increment.origdat
swork <� ICMA(S=swork,X=x,C=c,CW=cw,L1=�10,show.progress=show.progress)
s <� swork[(n�1):1]
s <� s+c∗(x[2:n]+x[1:(n�1)])
res.origdat[k] <� STATISTIC(SLOPE=s,X=x,L1=L1)

}

# simulate test statistic(s) by sampling from nullmodel
c.increment <� C.MAX/(C.NR�1)
res.mat <� matrix(NA, nrow=B, ncol=C.NR)
for(sim in 1:B){
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dat <� SAMPLE(X<�xorig,S=snull,M=nobs,L1=L1)
new.dat <� data.prep(DATA=dat, BIN.DIST=BIN.DIST, L1=L1)
swork <� new.dat$SWORK; x <� new.dat$X; w <� new.dat$W; cw <� new.dat$CW;
n <� length(x);
for(k in 1:C.NR){

c <� (k�1)∗c.increment
swork <� ICMA(S=swork,X=x,C=c,CW=cw,L1=�10,show.progress=show.progress)
s <� swork[(n�1):1]
s <� s+c∗(x[2:n]+x[1:(n�1)])
res.mat[sim,k] <� STATISTIC(SLOPE=s,X=x,L1=L1)

}
if(show.progress){

print(noquote(paste("simulation�run�", sim)))
}

}

# Extension to original code (no standardization)
maximum.origdat <� max(res.origdat)
nulldist <� 1:B
for(sim in 1:B){nulldist[sim] <� max(res.mat[sim,2:C.NR])}
p_value <� (sum(nulldist>maximum.origdat)+1)/(B+1)
return(p_value)

}

# data.prep() is an auxiliary function and prepares data for mixing.test.walther
data.prep <� function(DATA, BIN.DIST, L1)
{

dat <� na.omit(DATA)
scaled.dat <� sort((dat�mean(dat))/sd(dat))

# binning:
x <� c(scaled.dat[1]�var(scaled.dat)/10, scaled.dat)
n <� length(x) # n refers to the number of bins here
n.obs <� n�1 # number of observations is one less than number of bins
w <� rep(1, times=n) # default vector of weights
i <� 2; x.max <� x[n]; # initalization of while loop (x is already sorted)
while((x.max�x[i]) > BIN.DIST){

next.ind <� which(x>(x[i]+BIN.DIST))[1]
tmp.dist <� x[next.ind] � x[i]
if((next.ind�i)>1){

for(j in (i+1):(next.ind�1)){
w[i] <� w[i] + (x[next.ind]�x[j])/tmp.dist
w[next.ind] <� w[next.ind] + (x[j]�x[i])/tmp.dist

}
x <� x[�((i+1):(next.ind�1))]
w <� w[�((i+1):(next.ind�1))]

}
i <� i+1

}
n <� length(x)
x <� x[1:i];
w[i] <� w[i]+n�i; w<�w[1:i];
w <� w/n.obs
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n <� length(x)
cw <� cumsum(w[n:2]); cw <� cw[(n�1):1]∗diff(x)

# initial s:
# create swork, the default vector of slopes
# => fitting a normal distribution over data as initial guess
mu <� mean(x)
v <� var(x)
swork <� 0.5/v ∗ c((�2∗L1∗v�v∗log(2∗pi∗v)�(x[2]�mu)^2)/(x[2]�x[1]),

2∗mu � x[3:n] � x[2:(n�1)])
swork <� swork[(n�1):1]
return(list(SWORK=swork, X=x, W=w, CW=cw))

}

Listing A.5: Iterative Convex Minorant Algorithm (ICMA).

# ICMA() performs the Iterative Convex Minorant Algorithm
# S,X,C,CW... set of properties of the sample as output of data.prep()
# ETA,EPS... technical parameters of ICMA
# W.LOW... lower bound for weights
ICMA <� function(S, X, C, CW, L1, ETA=0.00001, EPS=0.01, W.LOW=0.001,

show.progress)
{

n <� length(X)
xx <� S
grad <� gradphi(S=S, X=X, C=C, CW=CW, L1=L1)
w.ICMA <� grgrphi(S=S, X=X, C=C, L1=L1)
w.ICMA[w.ICMA<W.LOW] <� W.LOW
t1 <� abs(sum(xx∗grad))
t2 <� abs(sum(grad))
t3 <� min(cumsum(grad[(n�1):1]))
ctr <� 0; gain <� 1;
while( (t1>ETA | t2>ETA | t3<(�ETA)) & ctr<100 & gain>ETA ){

oldphi <� phi(S=xx, X=X, C=C, CW=CW, L1=L1)
ytil <� MINLOWSET(G=(xx�grad/w.ICMA), W=w.ICMA)
if(phi(S=ytil,X=X,C=C,CW=CW,L1=L1) < oldphi+EPS∗sum(grad∗(ytil�xx))){

xx <� ytil
}
else{

lam <� 1; ss <� 0.5; z <� ytil; ctr2 <� 0;
t4 <� phi(S=z,X=X,C=C,CW=CW,L1=L1) < (phi(S=xx, X=X, C=C, CW=CW, L1=L1)+

(1�EPS)∗sum(grad∗(z�xx)))
t5 <� phi(S=z,X=X,C=C,CW=CW,L1=L1) > (phi(S=xx, X=X, C=C, CW=CW, L1=L1)+

EPS∗sum(grad∗(z�xx)))
while( (isTRUE(t4)|isTRUE(t5)) & ctr2<6){

if(isTRUE(t4)){
lam <� lam+ss

}
else{

lam <� lam�ss
}
z <� xx+lam∗(ytil�xx); ss <� ss/2;
t4 <� phi(S=z,X=X,C=C,CW=CW,L1=L1) < (phi(S=xx, X=X, C=C, CW=CW, L1=L1)+
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(1�EPS)∗sum(grad∗(z�xx)))
t5 <� phi(S=z,X=X,C=C,CW=CW,L1=L1) > (phi(S=xx, X=X, C=C, CW=CW, L1=L1)+

EPS∗sum(grad∗(z�xx)))
ctr2 <� ctr2+1

}
xx <� z

}
grad <� gradphi(S=xx,X=X,C=C,CW=CW,L1=L1)
w.ICMA <� grgrphi(S=xx, X=X, C=C, L1=L1)
w.ICMA[w.ICMA<W.LOW] <� W.LOW
t1 <� abs(sum(grad∗xx))
t2 <� abs(sum(grad))
t3 <� min(cumsum(grad[(n�1):1]))
ctr <� ctr+1; gain <� oldphi�phi(S=xx,X=X,C=C,CW=CW,L1=L1)

}
if(ctr>99 & show.progress){

print(noquote("Number�of�Iterations�in�ICMA�exceeded"))
}
return(xx)

}

Listing A.6: Auxiliary functions for mixing.test.walther() and ICMA().

# Auxiliary functions for ICMA() and thus mixing.test.walther()

# phi() is target function of optimization in paper
phi <� function(S, X, C, CW, L1)
{

n <� length(X)
S <� S[(n�1):1]
x1sq <� X[1]^2
a <� L1 + cumsum(c(0, S∗(X[2:n]�X[1:(n�1)])))
res <� (X[3]�X[2])∗exp(a[2]+C∗(X[2]^2�x1sq)) +

(X[n]�X[n�1])∗exp(a[n]+C∗(X[n]^2�x1sq)) +
sum((X[4:n]�X[2:(n�2)])∗exp(a[3:(n�1)]+C∗(X[3:(n�1)]^2�x1sq)));

return(0.5∗res�sum(S∗CW))
}

# gradphi() is the gradient of target function in paper
gradphi <� function(S, X, C, CW, L1)
{

n <� length(X)
S <� S[(n�1):1]
x1sq <� X[1]^2
a <� L1 + cumsum(c(0, S∗(X[2:n]�X[1:(n�1)])))
cumulative.res <� cumsum(c((X[n]�X[n�1])∗exp(a[n]+C∗(X[n]^2�x1sq)),

(X[n:4]�X[(n�2):2])∗exp(a[(n�1):3]+
C∗(X[(n�1):3]^2�x1sq)),

(X[3]�X[2])∗exp(a[2]+C∗(X[2]^2�x1sq))) )
res <� 0.5∗cumulative.res[(n�1):1]∗(X[2:n]�X[1:(n�1)]) � CW
return(res[(n�1):1])

}

# grgrphi() is diagonal of second derivative of target function in (5)
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grgrphi <� function(S, X, C, L1)
{

n <� length(X)
S <� S[(n�1):1]
x1sq <� X[1]^2
a <� L1 + cumsum(c(0, S∗(X[2:n]�X[1:(n�1)])))
cumulative.res <� cumsum(c((X[n]�X[n�1])∗exp(a[n]+C∗(X[n]^2�x1sq)),

(X[n:4]�X[(n�2):2])∗exp(a[(n�1):3]+
C∗(X[(n�1):3]^2�x1sq)),

(X[3]�X[2])∗exp(a[2]+C∗(X[2]^2�x1sq))) )
res <� 0.5∗cumulative.res[(n�1):1]∗(X[2:n]�X[1:(n�1)])^2
return(res[(n�1):1])

}

# MINLOWSET(): minimum lower set algorithm
MINLOWSET <� function(G, W)
{

n.tmp <� length(W)
g <� G
curr <� 1
while(curr < (n.tmp+0.5)){

h <� cumsum(g[curr:n.tmp]∗W[curr:n.tmp])/cumsum(W[curr:n.tmp])
ind <� which.min(h[(n.tmp�curr+1):1])
val <� (h[(n.tmp�curr+1):1])[ind]
ind <� n.tmp+1�ind
g[curr:ind] <� base::rep(val, times=(ind�curr+1))
curr <� ind +1

}
return(g)

}

# Test statistics
# SLOPES: slopes between points x_i and x_i+1 of log(f(x)) and NOT of the
# function phi(x) (notation "S" in previous functions!)
STATISTIC <� function(SLOPE, X, L1)
{

n <� length(X)
dpl <� numeric(n); dpl[1] <� L1;
for(i in 2:n){

dpl[i] <� dpl[i�1]+SLOPE[i�1]∗(X[i]�X[i�1])
}
f <� exp(dpl)
maxtoend <� 1:(n�1); ind <� 1:(n�1);
maxtoend[n�1] <� SLOPE[n�1]; ind[n�1]<�n;
for(i in (n�2):1){

maxtoend[i] <� maxtoend[i+1]; ind[i] <� ind[i+1];
if(SLOPE[i]>maxtoend[i+1]){maxtoend[i] <� SLOPE[i]; ind[i] <� i+1}

}
return(max((maxtoend�SLOPE)∗f[ind]∗f[1:(n�1)]/(f[ind]+f[1:(n�1)])))

}

# SAMPLE(): sampling from nullmodel
SAMPLE <� function(X, S, M, L1)
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{
n <� length(X)
cdf <� numeric(n); lfold <� L1+S[1]∗(X[2]�X[1]); sample <� 1:M;
for(i in 3:n){

lfcurr <� lfold+S[i�1]∗(X[i]�X[i�1])
cdf[i] <� cdf[i�1]+(X[i]�X[i�1])∗(exp(lfcurr)+exp(lfold))/2
lfold <� lfcurr

}
cdf <� cdf/(cdf[n])
for(i in 1:M){

tmp <� cdf�runif(1); tmp[tmp<0] <� 0;
ind <� which.min(tmp[n:1]); tmp <� tmp[n:1][ind];
ind <� n+1�ind
if(abs(S[ind])<0.00001){

tmp <� runif(1, X[ind], X[ind+1])
}
else{

if(S[ind]<0){
tmp <� rexp(1,1)/(�S[ind]∗(X[ind+1]�X[ind]))
tmp <� tmp�round(tmp�0.5)
tmp <� X[ind]+(X[ind+1]�X[ind])∗tmp

}
else{

tmp <� rexp(1,1)/(S[ind]∗(X[ind+1]�X[ind]))
tmp <� tmp�round(tmp�0.5)
tmp <� X[ind]+(X[ind+1]�X[ind])∗(1�tmp)

}
}
sample[i] <� tmp

}
return(sample)

}
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A.3. Detailed Simulation Results

In the following tables we present more detailed simulation results of the examples
in Section 6.1.

Class 0 C or M M N HL HR HT WH HW WL WR WT
P

0 261 0 0 0 0 0 0 0 0 0 0 0 261
C 3 47 11 7 1 0 0 1 0 2 4 1 77
M 0 14 148 70 1 2 2 1 0 23 32 51 344
N 0 10 11 372 3 1 0 0 0 8 2 0 407
HL 0 1 4 18 9 0 0 0 0 0 0 0 32
HR 0 1 0 8 0 11 0 0 0 0 0 0 20
HT 0 2 3 13 2 3 2 0 0 0 0 0 25
WH 0 0 3 12 0 6 0 4 0 4 0 0 29
HW 0 0 1 26 4 0 0 0 9 0 1 0 41
WL 0 0 1 20 0 0 0 0 0 15 0 0 36
WR 0 0 0 13 0 0 0 0 0 0 9 0 22
WT 0 2 10 44 0 0 0 0 0 4 19 18 97
P

264 77 192 603 20 23 4 6 9 56 67 70 1391

Table A.1.: Result of NN 2.0 for data A with the manual classification by row and
the algorithm’s classification by column (encoding in Table A.2).

Classification Code
Categorical or informational 0

Clustering C
Mixture M
Normal N

Heavy left HL
Heavy right HR

Heavy tails (both) HT
Weak left & heavy right WH
Heavy left & weak right HW

Weak left WL
Weak right WR

Weak tails (both) WT

Table A.2.: Encoding for different classes in DATA A.
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Class C
at

eg
or

ic
al

or
in

fo
rm

at
io

n
al

C
lu

st
er

in
g

N
or

m
al

or
w
ea

k
H

ea
vy

co
m

p
on

en
t

P

Categorical or informational 491 6 3 13 513
Clustering 0 74 44 12 130
Normal or weak 0 72 1519 123 1714
Heavy tail 0 8 106 152 266
P

491 160 1672 300 2623

Table A.3.: Result of NN 2.0 for data B with the manual classification by row and
the algorithm’s classification.
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