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Zusammenfassung

Das Ziel der vorliegenden Diplomarbeit ist die Herleitung eines verschärften
Resultats über das asymptotische Verhalten der Enden von Gauss’schen Wahr-
scheinlichkeitsmaßen. Wir zeigen, dass der Satz von Schilder, welcher ein ge-
feiertes Resultat aus der Theorie der großen Abweichungen darstellt, in einem
Kontext gilt, wo skalierte, Banachraum-wertige Brown’sche Bewegung für unbe-
schränkte Zeiten und bezüglich einer Topologie betrachtet wird, welche durch
eine Hölder-ähnliche Norm induziert wird. Wir beschäftigen uns somit mit
einem Gebiet der Wahrscheinlichkeitstheorie, welches unter anderem in der
Versicherungsmathematik eine große Tradition hat.

Nach einer kurzen Einführung im Kapitel 1 befassen wir uns in Kapitel 2 mit
gewichteten Hölder-Räumen. Diese erlauben die Betrachtung von unbeschränkten
Zeiten, verallgemeinerten Stetigkeitsmodulen sowie Bildräumen, welche von
translationsinvarianten semi-Metriken induziert werden. Nachdem wir Wavelet-
artige Reihendarstellungen und Approximationsresultate herleiten, zeigen wir
unter welchen Bedingungen die betrachteten Räume separabel oder vollständig
sind.

In Kapitel 3 zeigen wir eine verallgemeinerte Version von Ciesielskis Isomorphis-
mus, welcher sich mit Abbildungen zwischen Funktionen- und Folgenräumen
beschäftigt, wobei die betrachteten Folgen durch Differenzen zweiter Ordnung
von Funktionswerten auf der Menge der dyadisch rationalen Zahlen gegeben
sind. Ferner zeigen wir die Äquivalenz von verallgemeinerten Normen, welche
durch Differenzen erster und zweiter Ordnung charakterisiert sind.

Schließlich beginnt Kapitel 4 mit grundlegenden Darstellungen zu Gaussmaßen
auf lokalkonvexen topologischen Vektorräumen. In diesem Kontext betrachten
wir das Konzept von Brownscher Bewegung, welche Werte in reellen separablen
Banachräumen annimmt. Ein kurzer Ausflug über die Studie von Pfadeigen-
schaften dieser stochastischen Prozesse führt uns zuletzt zum angestrebten Satz
von Schilder. Als Korollar erhalten wir außerdem eine Version des Satzes von
Strassen. Zu guter Letzt skizzieren wir eine Methode zur Varianzreduktion von
statistischen Schätzern als Anwendung im Risikomanagement.

Schlagworte: Abstrakter Wienerraum, Ciesielskis Isomorphismus, gewichteter
Hölder-Raum, pseudo-quasi-Norm, Faber–Schauder System, Satz von Schilder.
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Abstract

The aim of this thesis is to derive a strenghtened topological statement about
asymptotic tail estimates of Gaussian probability measures. We show that
Schilder’s theorem, a celebrated result in the theory of large deviations, holds
in the setting where scaled, Banach-space-valued Brownian motion runs on an
unbounded time domain and with respect to a topology which is induced by a
Hölder-like norm. We are thus studying an area of probability theory that has a
long tradition especially in insurance mathematics.

After a short introduction in Chapter 1, we study the notion of weighted Hölder
spaces in Chapter 2. These allow for unbounded time domains, generalized
moduli of continuity, as well as image spaces whose topologies are induced by
translation-invariant semi-metrics. After providing wavelet-like representation
and approximation results, we show under which conditions the considered
spaces are complete or separable.

In Chapter 3, we provide a generalization of Ciesieski’s isomorphism, which
deals with maps between function- and sequence spaces, where the sequences
are essentially given by second order differences of functions evaluated on the
set of dyadic rationals. Moreover, we establish equivalence between generalized
norms that incorporate these second order differences, and those that encode
first order differences.

Finally, Chapter 4 begins with a primer on Gaussian measures on locally convex
topological vector spaces. In this context, we revisit the concept of Brownian
motion which assumes values in real separable Banach spaces. A brief study
of path properties of these stochastic processes finally leads to the generalized
version of Schilder’s theorem. As a corollary, we further obtain a variant of
Strassen’s theorem in Hölder norm. Finally, we outline a variance reduction
method for statistical estimation problems as a potential application in risk
management.

Keywords: Abstract Wiener Space, Ciesielski’s isomorphism, weighted Hölder
space, pseudo-quasi-norm, Faber–Schauder system, Schilder’s theorem.
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2.5. Little weighted Hölder spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. An extension of Ciesielski’s isomorphism 42

3.1. Isomorphism in weighted Hölder spaces . . . . . . . . . . . . . . . . . . . . 44
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1. Introduction

The theory of large deviations is concerned with the asymptotic tail behavior of probability
distributions. Its most classical usage is found within the discipline of insurance mathematics,
where Harald Cramér and Filip Lund were the driving forces behind the development of ruin
theory. Moreover, the first thorough formalization is due to S.R.S. Varadhan, see [Var66].
Let us consider an illustrative example. For a sequence (Xi)i∈N of R-valued random

variables on some probability space (Ω,F ,P) that are independent and identically distributed
with mean µ and finite variance σ2 > 0, we can study the asymptotic behavior of the sample
mean Xn =

∑n
i=1Xi/n, as n grows large.

The law of large numbers states that the sample mean converges in probability and
almost surely to µ. Moreover, according to the classical central limit theorem, the law of√
n(Xn − µ) converges in distribution to the normal distribution with mean 0 and variance

σ2. Therefore, we have our first asymptotic tail estimate of the following form: for each
x ∈ R, it holds that

lim
n→∞

P
(√

n(Xn − µ) > x
)

= 1− lim
n→∞

P
(√

n(Xn − µ) ≤ x
)

= 1− Φ
(x

σ

)

, (1.1)

where Φ denotes the cumulative distribution function of the standard normal distribution.
As a special case, if L(X1) = N (µ, σ2), then L(Xn) = N (µ, σ2/n), and consequently
L(√n(Xn−µ)) = N (0, σ2). However, the central limit theorem may fail to provide accurate
tail estimates as long as n is not large enough, especially if the distribution of the random
variables (Xi)i∈N exhibits heavy tails. Moreover, the Equation (1.1) does not provide us
with any information on the rate of convergence.

Cramér’s theorem provides a solution to this issue. It states that, for any x > E[X1], we
have

lim
n→∞

1

n
logP

(

Xn > x
)

= −Λ∗(x), (1.2)

where Λ∗ denotes the Legendre transform of the logarithmic moment generating function Λ,
i.e.

Λ(t) = logE[exp (tX1)] and Λ∗(x) = sup
t∈R

(tx− Λ(t)).

Equation (1.2) gives rise to a first tail estimate of the form

P
(

Xn > x
)

≈ e−nΛ∗(x), x > E[X1],

and we say that the distributions of the sequence (Xn)n∈N of sample means satisfies a large
deviation principle with (good) rate function Λ∗.

1
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2

In a more general context, one might replace the sample means Xn by
√
ε-scaled Brownian

motion (
√
εB)ε>0 and look for an asymptotic tail estimate of the probability of these paths

assuming values in some measurable set F of continuous functions, i.e. study the asymptotic
behavior of P({√εB ∈ F}) as ε ց 0. This is exactly the context of Schilder’s theorem,
and we will move on to extend this remarkable result, allowing for stronger topologies on
path space as compared to the classical context. As it turns out, we will mostly rely on a
pathwise characterization, which we will also motivate below.
Let us also remark that Brownian motion is a classical stochastic process that has a

prominent role in financial- and actuarial mathematics. For example, it is being used for:

(a) Diffusion approximation of risk processes in actuarial mathematics;

(b) Modeling of the random dynamical evolution of the term structure of interest rates;

(c) Modeling of asset prices in financial markets and pricing of financial derivatives.

The study of stochastic processes allows for a great deal of flexibility, and depending on
the context of application, many different settings are possible. To consider a simple case,
let (Ω,F ,F,P) denote a filtered probability probability space, T = [0, 1] denote the unit
time interval, and let X: T × Ω → R be a stochastic process that is F-adapted. In this
context, many useful properties can be assumed. If the paths X(ω) : T ∋ t 7→ Xt(ω), where
ω ∈ Ω, are assumed to be continuous almost surely, then we can already conclude that they
are bounded, because X(ω) would be almost surely a continuous function that maps the
compact set T to R.
A classical stochastic process that has been studied in this context is Brownian motion,

which has already been mentioned above. We denote this process by B: T × Ω → R, with
the usual defining properties. We will briefly revisit one way of constructing such a process,
that has been attributed to Paul Lévy, see [Lév37], and Zbigniew Ciesielski, see [Cie61].
The Haar functions are given as the family (Hn)n∈N0 of real-valued functions on the unit
interval, such that H0 ≡ 1 and

H2k+l(t) :=











√
2k for 2l

2k+1 ,≤ t < 2l+1
2k+1 ,

−
√
2k for 2l+1

2k+1 ≤ t < 2l+2
2k+1 ,

0 otherwise,

(1.3)

where n = 2k + l and k ∈ N as well as 0 ≤ l ≤ 2k − 1. It is a classical result that
(Hn)n∈N0 constitutes a complete orthonormal system of the Hilbert space L2

(

[0, 1]
)

, see for
instance [Aya19]. The Schauder functions (Kn)n∈N0 are then defined as the primitives of
the Haar functions, i.e

Kn(t) :=

∫ t

0
Hn(s) ds, t ∈ [0, 1], n ∈ N0. (1.4)

Let (Ω,F ,P) be a probability space, and (Xn)n∈N0 be an independent sequence of N (0, 1)
distributed random elements on this space. Then the stochastic process B: T × Ω → R

given by

B(t) :=
∞
∑

n=0

XnKn(t), t ∈ [0, 1] (1.5)
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3

is continuous and most notable, a Brownian motion. Here, the series converges almost
surely in the space C := C

(

[0, 1];R
)

of continuous functions with respect to the uniform
norm ‖f‖∞ := supt∈[0,1] |f(t)|, see [HIPP14, Theorem 2.5].
There is however a pitfall associated with this construction. That is, we can only treat

a process where the time index runs in the unit interval, or by a slight generalization in
compact subsets K ⊂ R+. Clearly, if we want to study dynamical systems for arbitrary
times, this construction does not yield a fruitful approach.
On the other hand, one of the strengths is the pathwise characterization of stochastic

processes. Moreover, due to the very specific structure of (1.5), we can actually describe
continuous objects with discrete characterizations. Let us elaborate on this point. To this
end, choose α ∈ (0, 1) and define Cα ⊂ C as the space of real-valued Hölder continuous
functions on the unit interval that vanish at zero, i.e. f ∈ C such that f(0) = 0 and

‖f‖α := sup
0≤s<t≤1

|f(t)− f(s)|
(t− s)α

< ∞. (1.6)

Further, let Cα
0 ⊂ Cα denote the so called little Hölder space of those f ∈ Cα that further

satisfy

lim
δց0

sup
s,t∈[0,1]
0<t−s≤δ

|f(t)− f(s)|
(t− s)α

= 0. (1.7)

Let l∞ = l∞
(

N0,R
)

denote the Banach space of real-valued, bounded sequences endowed
with the norm ‖x‖∞ := supn∈N0

|xn|, and further l∞0 := l∞0
(

N0,R
)

⊂ l∞ denote the subspace
of real-valued null sequences, i.e. those x ∈ l∞ that satisfy limn→∞ xn = 0. A classical result
attributed to Ciesielski, see [Cie60], shows that the pairs of spaces

(

Cα, l∞
)

and
(

Cα
0 , l

∞
0

)

are isomorphic, respectively. To see this, let (cn(α))n∈N0 denote the sequence defined by
c0(α) = 1 as well as cn(α) = 2k(α−1/2)+α−1, for n ≥ 1. The map Tα: Cα → l∞ given by

f 7→
(

cn(α)

∫ 1

0
Hn(s) df(s)

)

n∈N0

(1.8)

is an isomorphism, bounded in operator norm, and the inverse
(

Tα
)−1

is explicitly given by

x 7→
∞
∑

n=0

xn
cn(α)

Kn, (1.9)

where an analogous result holds for the restriction Tα
0 := Tα

↾Cα
0
: Cα

0 → l∞0 .

Given that paths of Brownian motion are almost surely elements of Cα
0 , for 0 < α < 1/2,

see [HIPP14, Theorem 2.6], we can study properties of the paths by inferring from the
discrete sequence Tα

0

(

B(ω)
)

. This technique has been successfully used in many instances,
some of which we want to revisit briefly.

(a) In [BBK92], the isomorphism Tα
0 has been used to prove results in large deviations

theory for Brownian motion on the unit interval, with respect to the Hölder seminorm.
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4

(b) In [AIP13], the above result has been extended from the case of real-valued Brownian
motion to the case of Brownian motion taking values in some separable Hilbert space.

(c) In [GIP16], the simple structure of the Schauder functions has been used to study
pathwise stochastic integration that goes beyond Young integration.

However, as highlighted before, all of the above results restrict themselves to the case of
the respective processes being defined on the unit time interval (or some compact subset
K ⊂ R+), and it is not trivial to extend them to the case where time runs in unbounded
domains, think of T = R+ or even T = R for example. Just consider that continuous paths
on unbounded domains need not be bounded any more. More strikingly, the most important
stochastic process, Brownian motion, when defined on T = R+, almost surely exceeds any
given level a ∈ R, see [Sch20, Example 4.97]. This begs the question whether it is possible
to derive similar results as above for the case of unbounded domains. In [Str11, Chapter
8], a hint for this question has been provided. Since we know that real-valued Brownian
motion (Bt)t∈R+ satisfies

lim
t→∞

Bt

t
= 0 almost surely, (1.10)

we can see Brownian paths as elements of the separable Banach space C0 := C0
(

[0,∞),R
)

of

continuous, real-valued functions f that satisfy limt→∞
f(t)
t = 0 as well as f(0) = 0, when

endowed with the norm ‖f‖ := supt∈R+

|f(t)|
1+t . This approach extends the notion of the

uniform norm. Topologies that are induced by Hölder norms are, however, stronger than
those induced by uniform norms and thus allow for more delicate results.

It is therefore our aim to derive a characterization of paths that are defined on unbounded
domains, which encodes information about Hölder continuity, and to study the application
to the theory of large deviations. More precisely, we will consider Brownian motion that
assumes values in real separable Banach spaces. In this context, we will study abstract
Wiener spaces with Gaussian measures on path space of Hölder continuous maps. In these
spaces, we will derive versions of Schilder’s and Strassen’s theorems.

That being said, let us briefly state our main findings. Definitions 2.47 and 2.58 provide
us with the path spaces of interest, which we call (little) weighted Hölder spaces. These
allow for the time domain T = R, for generalized moduli of continuity as well as for
image spaces that are endowed with pseudo-quasi-norms, see also Definition 2.10. In
Theorem 2.61 we provide the essential approximation result of Hölder continuous functions
with respect to wavelet-like series decompositions. Corollaries 2.67 and 2.70 establish
sufficient conditions under which these path spaces are separable. In Theorems 3.6 and 3.12
we extend Ciesielski’s isomorphism theorem to this setting, and show that we have another
pseudo-quasi-norm equivalence in the sequence space that encodes first order differences of
function values, see Proposition 3.17. After revisiting some path properties of Brownian
motion and absolutely continuous functions, we collect all our findings in Theorem 4.22.
Making use of the result [BBK92, Theorem 2.4], we finally obtain our main finding in the
form of Theorem 4.27.
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2. Generalized normed spaces of continuous

functions on the real line

The theory of Schauder bases in Banach spaces is rich and diverse. It poses a generalization of
the concept of Hamel bases, which are limited to finite linear combinations, thus allowing for
a more involved treatment of general Banach spaces. The characterization is straightforward.
Let (X, ‖ · ‖) be a Banach space over the field K ∈ {R,C}. A sequence (en)n∈N of elements
in X is then called a Schauder basis, if for every x ∈ X, there exists a unique sequence
(an(x))n∈N of scalars in K, such that x can be written as

x =

∞
∑

n=1

an(x)en, (2.1)

where the series on the right-hand side of Equation (2.1) converges with respect to the norm
‖ · ‖. Note that usually, we do need to specify the order of convergence, as Schauder bases in
general are conditional bases, i.e. rearrangements can lead to different limits of the sequence
of partial sums. We can thus lift the problem of representing an element x ∈ X through a
sequence (en)n∈N by distinguishing between conditional and unconditional Schauder bases,
depending on the type of convergence of the series stated in Equation (2.1).
Notably, all Banach spaces that contain a Schauder basis are necessarily separable, but

not all separable Banach spaces admit a Schauder basis. This classical result is due to the
Swedish mathematician Per Enflo, see [Enf73], and builds on previous works of Banach,
Mazur and Grothendieck.

2.1. Faber–Schauder systems

In what follows, let X be a vector space over a field K ∈ {R,C}. For each δ ∈ (0, 1), let
Z+ δ denote the set Z+ δ := {x+ δ : x ∈ Z}. We moreover convene that R+ = [0,∞). Later
on, X will be endowed with some topology T that we will use to characterize convergence
of the objects in X, but for now we do not need to specify any. We will state a sequence of
real-valued functions which will later be proven to structurally resemble a Schauder basis
on a very specific space. In line with [Aya19, Chapter 3], let us define the Faber–Schauder
system of the second kind, as well as the Faber–Schauder coefficients, both corresponding
conceptually to the sequences (en)n∈N and (an(·))n∈N in Equation (2.1).

Definition 2.1 (Faber–Schauder system). Let θ, τ : R → [0, 1] denote the hat functions
given by (t ∈ R)

θ(t) :=max
{

0, 1− |t|
}

,

τ(t) :=max
{

0,
1

2
−
∣

∣

∣
t− 1

2

∣

∣

∣

}

.
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2.1. FABER–SCHAUDER SYSTEMS 6

The sequence of functions MFS
2 :=

{

θl(·) : l ∈ Z
}

∪
{

τj,k(·) : (j, k) ∈ N0×Z
}

given by (t ∈ R)

θl(t) := θ(t− l), (2.2)

τj,k(t) := 2−j/2τ(2jt− k), (2.3)

is called the Faber–Schauder system of the second kind.

Definition 2.2 (Faber–Schauder coefficients). For a map f : R → X, let the sequence
MFSC

2 (f) :=
{

al(f) : l ∈ Z
}

∪
{

bj,k(f) : (j, k) ∈ N0×Z
}

of X-valued coefficients be given by

al(f) := f(l), (2.4)

as well as

bj,k(f) := 2j/2
(

2f
(

2k+1
2j+1

)

− f
(

2k+2
2j+1

)

− f
(

2k
2j+1

)

)

. (2.5)

We call MFSC
2 (f) the Faber–Schauder coefficients with respect to f .

Remark 2.3. Note that, for each f : R → X, the sequence MFSC
2 (f) actually consists of

elements of X, not K. Moreover, the family MFS
2 consists of R-valued functions, regardless

of the vector space X at hand. In short, the definitions above are not completely consistent
with the definition that characterizes Schauder bases. However, since we will be considering
more general spaces than just complete normed vector spaces, it does not pose a problem
to us at this point.

Remark 2.4. From the defining Equations (2.4) and (2.5) is is clear that the Faber–Schauder
coefficients linearly depend on the function f . Moreover, for each (j, k) ∈ N0 × Z, we have
that bj,k(f) = 0 if f is of affine form on the interval [k/2j , (k + 1)/2j ].

Remark 2.5. Note how the maps and coefficients presented in the Definitions 2.1 and 2.2
encode only local behaviour of the respective function f : R → X. Most notably, the
coefficients bj,k(f) ∈ MFSC

2 (f) defined in Equation (2.5) encode information about second
order differences over intervals of length at most 1.
We could also fix an integer J ∈ Z and consider

MFS
2 (J) :=

{

θl,J(·) : l ∈ Z
}

∪
{

τj,k(·) : (j, k) ∈ Z≥J × Z
}

,

where θl,J(t) = θl(2
J t) for t ∈ R, as well as

MFSC
2 (f, J) :=

{

al(f) : l ∈ Z
}

∪
{

bj,k(f) : (j, k) ∈ Z≥J × Z
}

.

Then, the maps and coefficients presented in MFS
2 (J) and MFSC

2 (f, J) would encode local
behavior about second order differences over intervals of length at most 2J .
Clearly, the Definitions 2.1 and 2.2 are just special cases of this construction, where we

assume that J = 0.
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2.2. A DYADIC DECOMPOSITION 7

2.2. A dyadic decomposition

For f : R → X and m ∈ N0, let fm, f̃m: R → X be given by (t ∈ R)

fm(t) :=
∑

l∈Z

al(f)θl(t) +
m
∑

j=0

∑

k∈Z

bj,k(f)τj,k(t), (2.6)

f̃m(t) := fm(γm(t)), (2.7)

where the time localization map γm: R → R is given by

γm(t) = max{−m,min{m, t}} =











m for m ≤ t,

t for −m ≤ t < m,

−m otherwise.

(2.8)

Remark 2.6. Note that in Equation (2.6), for each t ∈ R, we are actually looking at the
sum of at most finitely many non-zero elements, because for each t ∈ R there are at most
two integers l1,2 such that θl1,2(t) 6= 0, and for each j ∈ N0 there is at most one integer k
such that τj,k(t) 6= 0.

The proofs of the following two Propositions 2.7 and 2.9 as well as Lemma 2.8 are very
simple in nature, relying essentially on induction arguments.

Proposition 2.7. For each m ∈ N0, the function fm: R → X, defined in (2.6), is the
piecewise linear interpolation of f on D(m+1) ⊂ R, the set of dyadic rationals of order up
to m+ 1, which is given by

D(m+1) :=
{

j
2m+1 : j ∈ Z

}

.

Proof. We prove the statement by induction.
Initial case. Let m = 0 and t ∈ Z. Then, due to the simple structure of the elements

of MFS
2 we have τ0,k(t) = 0 for all k ∈ Z, as well as θl(l) = 1 for all l ∈ Z and θl(t) 6= 0 if

and only if l = t, which yields

f0(t) = at(f)θt(t) = at(f) = f(t).

For δ ∈ (0, 1) and t ∈ Z+ δ, there are exactly three integers l1,2, k ∈ Z such that θli(t) 6= 0
for i ∈ {1, 2}, as well as τ0,k(t) 6= 0,

l1 = ⌊t⌋, l2 = ⌈t⌉, k = ⌊t⌋.

If t ∈ Z+ 1/2, we have τ0,k(t) = 1/2 as well as θli(t) = 1/2 for i ∈ {1, 2}, hence

f0(t) = al1(f)θl1(t) + al2(f)θl2(t) + b0,k(f)τ0,k(t)

=
1

2

(

f(⌊t⌋) + f(⌈t⌉) + 2f(⌊t⌋+ 1/2)− f(⌈t⌉)− f(⌊t⌋)
)

= f(⌊t⌋+ 1/2) = f(t).
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2.2. A DYADIC DECOMPOSITION 8

Let r ∈ (0, 1/2) and t ∈ Z+ r. Then we have

θ⌊t⌋(t) = 1− r, θ⌈t⌉(t) = r, τ0,⌊t⌋(t) = r,

hence

f0(t) = (1− r)f(⌊t⌋) + rf(⌈t⌉) + r(2f(⌊t⌋+ 1/2)− f(⌈t⌉)− f(⌊t⌋))
= f(⌊t⌋) + t−⌊t⌋

(⌊t⌋+1/2)−⌊t⌋

(

f(⌊t⌋+ 1/2)− f(⌊t⌋)
)

.

Similarly, if r ∈ (1/2, 1) and t ∈ Z+ r, then

θ⌊t⌋(t) = 1− r, θ⌈t⌉(t) = r, τ0,⌊t⌋(t) = 1− r,

hence

f0(t) = (1− r)f(⌊t⌋) + rf(⌈t⌉) + (1− r)(2f(⌊t⌋+ 1/2)− f(⌈t⌉)− f(⌊t⌋))
= f(⌊t⌋+ 1/2) + t−(⌊t⌋+1/2)

⌈t⌉−(⌊t⌋+1/2)

(

f(⌈t⌉)− f(⌊t⌋+ 1/2)
)

.

This shows that f0 is the linear interpolation of f on the set D(1) of dyadic rationals up to
order 1.
Induction step. Given m ∈ N, we can write fm+1(·) as

fm+1(·) = fm(·) +
∑

k∈Z

bm+1,k(f)τm+1,k(·).

Let t ∈ D(m+2) \ D(m+1) be a dyadic rational of the form

t = p
2m+2 , p ∈ Z,

where we assume that p/2 6∈ Z, because otherwise we would have fm+1(t) = fm(t) due
to the fact that τm+1,k(t) = 0 for all t ∈ D(m+1) and k ∈ Z. The two neighboring dyadic
rationals of order m+ 1 are

tl =
⌊p/2⌋
2m+1 , tu = ⌈p/2⌉

2m+1 .

Moreover, there is exactly one k ∈ Z such that τm+1,k(t) 6= 0, k = ⌊p/2⌋. Moreover, we have

τm+1,k(t) = 2−
m+1

2
−1.

Given that fm is the linear interpolation of f on the set D(m+1) of dyadic rationals up to
order m+ 1, we make use of the observation that

fm(t) = f(tl) +
t−tl
tu−tl

(f(tu)− f(tl)),

which yields

fm+1(t) = f(tl) +
t−tl
tu−tl

(f(tu)− f(tl)) + bm+1,k(f)2
−m+1

2
−1

= f
(

⌊p/2⌋
2m+1

)

+
(p
2 −

⌊p
2

⌋)

(

f
(

⌈p/2⌉
2m+1

)

− f
(

⌊p/2⌋
2m+1

))

+ f
(

⌊p/2⌋+1/2
2m+1

)

− 1
2f

(

⌈p/2⌉
2m+1

)

− 1
2f

(

⌊p/2⌋
2m+1

)

= f
(

⌊p/2⌋+1/2
2m+1

)

= f
( p
2m+2

)

= f(t).
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2.2. A DYADIC DECOMPOSITION 9

Let t ∈ (tl, 2
−(m+2)p), then we have

τm+1,⌊p/2⌋(t) = 2m
(

t− ⌊p/2⌋
2m+1

)

,

hence

fm+1(t) = fm(t) + bm+1,⌊p/2⌋(f)τm+1,⌊p/2⌋(t)

= f
(

⌊p/2⌋
2m+1

)

+ 2m+1
(

t− ⌊p/2⌋
2m+1

)(

f
(

⌈p/2⌉
2m+1

)

− f
(

⌊p/2⌋
2m+1

))

+ 2m
(

t− ⌊p/2⌋
2m+1

)(

2f
(

⌊p/2⌋+1/2
2m+1

)

− f
(

⌈p/2⌉
2m+1

)

− f
(

⌊p/2⌋
2m+1

))

= f
(

p−1
2m+2

)

+
t− p−1

2m+2
p

2m+2−
p−1

2m+2

(

f
(

p
2m+2

)

− f
(

p−1
2m+2

))

.

Similarly, given t ∈ (2−(m+2)p, tu), we have

τm+1,⌊p/2⌋(t) =
(

1− 2m+2
(

t− p/2
2m+1

))

,

hence

fm+1(t) = fm(t) + bm+1,⌊p/2⌋(f)τm+1,⌊p/2⌋(t)

= f
(

⌊p/2⌋
2m+1

)

+ 2m+1
(

t− ⌊p/2⌋
2m+1

)(

f
(

⌈p/2⌉
2m+1

)

− f
(

⌊p/2⌋
2m+1

))

+
(

1− 2m+2
(

t− p/2
2m+1

))

·
(

f
(

⌊p/2⌋+1/2
2m+1

)

− 1
2f

(

⌈p/2⌉
2m+1

)

− 1
2f

(

⌊p/2⌋
2m+1

))

= f
(

p
2m+2

)

+
t− p

2m+2
p+1

2m+2−
p

2m+2

(

f
(

p+1
2m+2

)

− f
(

p
2m+2

))

,

which concludes our proof.

Lemma 2.8. Let f : R → X and m ∈ N0 be given. Then the function f̃m: R → X, given
by Equation (2.7) satisfies

f̃m(t) =











f(m) for t ≥ m,

fm(t) for t ∈ (−m,m),

f(−m) for t ≤ −m.

Proof. We just have to observe that, for all t ≥ m, we have

f̃m(t) = fm(γm(t)) = fm(m) = f(m),

where the analogous argument holds for the case t ≤ −m. If t ∈ (−m,m), then γm(t) = t.

Our goal is to prove a representation theorem, which allows us to identify a map f : R → X
with the series

f(·) =
∑

l∈Z

al(f)θl(·) +
∑

(j,k)∈N0×Z

bj,k(f)τj,k(·), (2.9)
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2.2. A DYADIC DECOMPOSITION 10

The exact type of convergence of the series will be investigated in detail later. Our next
result deals with the uniqueness of the coefficients in series representations of functions f
with respect to MFS

2 . As it turns out, any representation of the form as in Equation (2.9),
that admits pointwise evaluation on the set D of dyadic rationals given by

D :=
⋃

m∈N0

D(m)

already has its coefficients uniquely determined.

Proposition 2.9. Let f : R → X be a map. Then for every representation of the form

f(·) =
∑

l∈Z

alθl(·) +
∑

(j,k)∈N0×Z

bj,kτj,k(·), (2.10)

for some X-valued coefficients (al)l∈Z and (bj,k)(j,k)∈N0×Z, which is valid with respect to
pointwise evaluation on the set of dyadic rationals D ⊂ R, we have that

al = al(f), bj,k = bj,k(f),

where the X-valued coefficients al(f) and bj,k(f) are the Faber–Schauder coefficients with
respect to f , given in Definition 2.2.

Proof. We prove the statement by successively evaluating the series in Equation (2.10) on
dyadic rationals of increasing order.
Initial case. Let t ∈ Z, then τj,k(t) = 0 for all (j, k) ∈ N0 × Z. Further, we have

θl(t) 6= 0 if and only if l = t, in which case θt(t) = 1. Evaluating the right-hand side of
Equation (2.10) at point t yields now

f(t) = alθt(t) = at,

hence at = f(t) = at(f) for arbitrary t ∈ Z, where the last equality follows from the defining
Equation (2.4). Next, assume that t ∈ Z+1/2. Then there are exactly two integers l1,2 ∈ Z

as well as one integer k ∈ Z such that θli(t) 6= 0 for i ∈ {1, 2} and τ0,k(t) 6= 0, namely

l1 = ⌊t⌋, l2⌈t⌉, k = ⌊t⌋.

Evaluating again the right-hand side of Equation (2.10) at point t yields

f(t) = al1θl1(t) + al2θl2(t) + b0,kτ0,k(t)

= al1(f)θl1(t) + al2(f)θl2(t) + b0,kτ0,k(t).

On the other hand, we know from the proof of Proposition 2.7 that for the chosen t we have

f(t) = f0(t) = al1(f)θl1(t) + al2(f)θl2(t) + b0,k(f)τ0,k(t),

hence b0,k = b0,k(f) for all k ∈ Z, as for each k ∈ Z we can find a t ∈ Z + 1/2 such that
k = ⌊t⌋ and repeat the above argument.
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2.3. PSEUDO-QUASI-NORMED SPACES 11

Induction step. Let m ∈ N and t be a dyadic rational of the form

t = p
2m+2 , p ∈ Z,

where we assume that p/2 6∈ Z. Then there is at most one k ∈ Z such that τm+1,k(t) 6= 0,
namely k = ⌊p/2⌋. Evaluating once more the right-hand side of Equation (2.10) at t yields

f(t) = al1θl1(t) + al2θl2(t) +
m+1
∑

j=0

bj,⌊2jt⌋τj,⌊2jt⌋(t)

= al1(f)θl1(t) + al2(f)θl2(t) +
m
∑

j=0

bj,⌊2jt⌋(f)τj,⌊2jt⌋(t)

+ bm+1,⌊2m+1t⌋τm+1,⌊2m+1t⌋(t).

At the same time, again making use of the ideas displayed in the proof of Proposition 2.7,
we have

f(t) = fm+1(t) = al1(f)θl1(t) + al2(f)θl2(t) +

m+1
∑

j=0

bj,⌊2jt⌋(f)τj,⌊2jt⌋(t),

hence bm+1,k = bm+1,k(f) for all k ∈ Z.

2.3. Pseudo-quasi-normed spaces

Until now, we did not need to specify any topology on our vector space X. We did not
treat the convergence of the series given in Equation (2.9), as pointwise evaluations of this
series representation on the set D amounts to summing up finitely many non-zero elements.
Now, we will specify exactly the notion of distance that is required to allow for an effective
topological study of convergence of the series given in Equation (2.9), if we want to allow
for evaluations on R \ D. As before, let X be a vector space over a field K ∈ {R,C}. We
define the notion of a pseudo-quasi-norm. The following definition follows the exposition
in [AM15, Section 8.1].

Definition 2.10 (Pseudo-quasi-norm). Let ‖ · ‖: X → R be a map that satisfies the
following three conditions:

(a) (nondegeneracy) ‖x‖ = 0 if and only if x = 0, for all x ∈ X;

(b) (quasi-subadditivity) There exists a constant Cqs ∈ [1,∞) such that

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥
≤ Cqs

n
∑

i=1

‖xi‖, n ∈ N, x1, . . . , xn ∈ X; (2.11)

(c) (pseudo-homogeneity) There exists a non-decreasing function

φ: [0,∞) → [0,∞)
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2.3. PSEUDO-QUASI-NORMED SPACES 12

that satisfies φ(λ) = 0 ⇐⇒ λ = 0, as well as

‖λx‖ ≤ φ(|λ|)‖x‖, x ∈ X, λ ∈ K, (2.12)

and such that

lim
λց0

φ(λ) = 0. (2.13)

We call the map ‖ · ‖ a pseudo-quasi-norm on the vector space X. Furthermore, we call each
φ that satisfies the requirements of Definition 2.10(c) a pseudo-homogeneity function (in
short, a pseudo-homogeneity) of ‖ · ‖. If (X, ‖ · ‖) is complete, then we call it a pseudo-quasi-
Banach space. If the quasi-subadditivity condition (2.11) holds with Cqs = 1, we call ‖ · ‖ a
pseudo-norm, and if the pseudo-homogeneity condition (2.12) is satisfied with equality and
φ(λ) = λ, we call ‖ · ‖ a quasi-norm.

Remark 2.11. In Definition 2.10, we mention the concept of completeness. This however
assumes that the space is endowed with some topological structure, such that we can discuss
convergence of Cauchy sequences. In fact, every pseudo-quasi-norm induces a topology on
its space, see Proposition 2.25 below.

Remark 2.12. Every norm on X satisfies the requirements of Definition 2.10 with Cqs = 1
and φ(λ) = λ for λ ∈ K. However, it is important to note that a pseudo-quasi-norm that
satisfies 2.10(b) with Cqs = 1 as well as 2.10(c) with φ(λ) = λ for λ ∈ K in general does not
need to be a norm. The reason for this is that in (2.12), equality does not need to hold.

Remark 2.13. From the defining property (2.12) we can deduce that φ(1) ≥ 1 in the case
that X does not only contain the zero vector. This can be seen as follows. Let x ∈ X such
that ‖x‖ 6= 0. Then it holds that

‖x‖ = ‖1 · x‖ ≤ φ(1)‖x‖.
Dividing by ‖x‖ verifies the claim. Moreover, we can deduce the non-negativity of ‖ · ‖ from
the properties stated in Definition 2.10 as follows: For each x ∈ X we have

0 = ‖0‖ = ‖x− x‖ = ‖x+ (−x)‖ ≤ Cqs

(

‖x‖+ ‖ − x‖
)

≤ Cqs(1 + φ(1))‖x‖,
which implies ‖x‖ ≥ 0.

Remark 2.14. Let C1 ∈ (0,∞) and θ ∈ (0, 1]. Assume the pseudo-homogeneity φ to be
of the form φ(λ) = C1λ

θ. Then Definition 2.10 perfectly fits within the notion of a θ-
pseudo-quasi-norm, as defined in [AM15, Definition 8.2]. Note however that the exposition
in [AM15, Section 8.1] requires condition (2.11) to hold for n = 2, not for all n ∈ N.
Therefore, our concept of a pseudo-quasi-normed vector space can be considered a special
case of [AM15, Definition 8.2] if φ(λ) = C1λ

θ, and otherwise, one needs to compare both
concepts with care.

Example 2.15 (Lp-space for 0 < p < 1). For further details and proofs of the statements
below see [Kö83, Sections 15.9 & 15.10] as well as [Rud91, Section 1.47]. Let Lp denote the
space of all λ-measurable f : [0, 1] → K, where K ∈ {R,C}, such that

‖f‖p :=
∫ 1

0
|f(t)|p λ(dt) < ∞,
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2.3. PSEUDO-QUASI-NORMED SPACES 13

where we identify functions that are equal λ-almost everywhere, and λ denotes the Lebesgue–
Borel measure on ([0, 1],B([0, 1])). This space is a complete topological vector space (see
also Proposition 2.25 below) with respect to the pseudo-norm ‖ · ‖p. It is metrizable and
thus Hausdorff, and the invariant metric is given by

d(f, g) =

∫ 1

0
|f(t)− g(t)|p λ(dt).

Moreover, it holds that

‖δf‖p = φ(|δ|)‖f‖p, δ ∈ R,

where φ(δ) = δp. On the other hand, the ε-balls Uε(0) of the form as given below in
Equation (2.18), are not convex. In fact, the only convex neighborhood of the origin is the
whole space Lp, and the only convex sets in Lp are the empty set and Lp itself.

Example 2.16. In line with the argument given right after [AM15, Definition 8.2], let
(X, ‖ · ‖) denote a pseudo-quasi-normed vector space over a field K ∈ {R,C} with a pseudo-
homogeneity function φ according to Definition 2.10. Consider a map ‖ · ‖⋆ : X → [0,∞)
that is equivalent to ‖ · ‖ in the sense that there exist some constants K1,K2 > 0 such that

K1‖x‖ ≤ ‖x‖⋆ ≤ K2‖x‖, x ∈ X.

One can easily verify that ‖ · ‖⋆ is non-degenerate. Moreover, we have for each x ∈ X and
λ ∈ K:

‖λx‖⋆ ≤ K2‖λx‖ = K2φ(|λ|)‖x‖ ≤ K2

K1
φ(|λ|)‖x‖⋆.

Therefore, upon defining φ⋆(λ) = K2φ(λ)/K1, we can conclude that ‖ · ‖⋆ satisfies the
pseudo-homogeneity property 2.10(c) with φ⋆. Similarly, for each n ∈ N and x1, . . . , xn ∈ X,
it holds that

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

⋆
≤ K2

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥
≤ K2Cqs

n
∑

i=1

‖xi‖ ≤ K2

K1
Cqs

n
∑

i=1

‖xi‖⋆,

and so the quasi-subadditivity condition 2.10(b) is satisfied as well. All of the above now
implies that ‖ · ‖⋆ is a pseudo-quasi-norm on X. Note that if ‖ · ‖ is a quasi-norm, i.e.
φ(λ) = λ, then φ⋆(λ) 6= λ in general. Consequently, this procedure shows how one can
obtain a genuine pseudo-quasi-norm on a quasi-normed space.

In Chapter 3, it will become useful to deduce convergence of a series from its absolute
convergence. This follows from the

Proposition 2.17. Let (X, ‖ · ‖) denote a pseudo-quasi-normed space over a field K ∈
{R,C}. Consider a sequence (xn)n∈N in X. Then

(a) If (xn)n∈N converges in X, then it is a Cauchy sequence.
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2.3. PSEUDO-QUASI-NORMED SPACES 14

(b) If X is complete and
∑∞

n=1 xn is absolutely convergent, i.e.

∞
∑

n=1

‖xn‖ = lim
m→∞

m
∑

n=1

‖xn‖ < ∞,

then the series converges.

Proof. We will show both statements (a) and (b) separately.

(a) For a proof in the case that X is a metric space, see [KF75, Section 7.1]. Let x ∈ X
denote the limit of (xn)n∈N, in other words,

lim
n→∞

‖x− xn‖ = 0.

For each ε > 0, we can find an N ∈ N such that, for all n ≥ N , it holds that

‖x− xn‖ ≤ ε

Cqs(1 + φ(1))
.

This however implies that for each m ≥ N , we have

‖xm − xn‖ ≤ Cqs(‖xm − x‖+ ‖x− xn‖)
≤ Cqs(φ(1)‖x− xm‖+ ‖x− xn‖) ≤ ε,

and therefore, (xn)n∈N is a Cauchy sequence.

(b) For a proof in the case that X = C, see [Rud76, Theorem 3.55]. Either by Part (a) or
by the classical results that convergent sequences in metric spaces are indeed Cauchy
sequences, we know that the sequence of partial sums of the absolutely convergent
series, given by

(

m
∑

n=1

‖xn‖
)

m∈N
(2.14)

is a Cauchy sequence in R+. Consequently, for each ε > 0, we can find an N ∈ N such
that, for m,n ≥ N , where we assume without loss of generality that n > m, we have

n
∑

i=m+1

‖xi‖ ≤ ε

Cqs
.

Now it holds that

∥

∥

∥

n
∑

i=m+1

xi

∥

∥

∥
≤ Cqs

n
∑

i=m+1

‖xi‖ ≤ ε.

As we assume X to be complete, it follows that
∑∞

n=1 xn converges.

This concludes our proof.
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2.3. PSEUDO-QUASI-NORMED SPACES 15

Remark 2.18. Strictly speaking, the classical notion of an operator norm is defined for
normed spaces, but we will extend this notion as follows: For two pseudo-quasi-normed
spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2) as well as a linear map T : X1 → X2, we set for X1 6= {0}:

‖T‖op := sup
x∈X1\{0}

‖T (x)‖2
‖x‖1

, (2.15)

and ‖T‖op = 0 otherwise. Clearly, for two norms ‖ · ‖1,2, this definition coincides with the
classical one.
The following proposition should not come as a surprise.

Proposition 2.19. Let V denote the set

V := {T : X1 → X2 linear : ‖T‖op < ∞}, (2.16)

and ‖ · ‖op be given by (2.15). Further, let K(2), C
(2)
qs and φ(2) denote the field, subadditivity

constant and pseudo-homogeneity on (X2, ‖ · ‖2). Then, (V, ‖ · ‖op) is a pseudo-quasi-normed

vector space over K(2) that inherits C
(2)
qs and φ(2) from ‖ · ‖2.

Proof. For a proof in the case that X1 and X2 are normed spaces, see [Rud91, Theorem
4.1]. We first show that (V, ‖ · ‖op) is actually a vector space. For all T1, T2 ∈ V as well as
λ ∈ K(2), we have that T := T1 + λT2 is a linear map from X1 to X2. Moreover, one can
easily see that

‖T‖op ≤ C(2)
qs (‖T1‖op + φ(2)(|λ|)‖T2‖op) < ∞.

Now it remains to verify the properties of Definition 2.10. Let T ∈ V . If T ≡ 0, then
T (x) = 0 for each x ∈ X1 and consequently, making use of the non-degeneracy of ‖ · ‖2, it
holds that ‖T (x)‖2 = 0 for each x ∈ X1 \ {0}, which implies that ‖T‖op = 0. On the other
hand, ‖T‖op = 0 implies that ‖T (x)‖2 = 0 for each x ∈ X1 \ {0}, and again making use of
the nondegeneracy of ‖ · ‖2, we see that T (x) = 0 for each x ∈ X1 \ {0}, which then implies
that T ≡ 0. Therefore, ‖ · ‖op is nondegenerate.

For n ∈ N as well as T1, . . . , Tn ∈ V , we have that

∥

∥

∥

n
∑

i=1

Ti

∥

∥

∥

op
= sup

x∈X1\{0}

∥

∥(
∑n

i=1 Ti)(x)
∥

∥

2

‖x‖1
= sup

x∈X1\{0}

∥

∥

∑n
i=1 Ti(x)

∥

∥

2

‖x‖1

≤ sup
x∈X1\{0}

C(2)
qs

n
∑

i=1

‖Ti(x)‖2
‖x‖1

≤ C(2)
qs

n
∑

i=1

sup
x∈X1\{0}

‖Ti(x)‖2
‖x‖1

= C(2)
qs

n
∑

i=1

‖Ti‖op.

Therefore, ‖ · ‖op satisfies the quasi-subadditivity property.
Finally, let λ ∈ K(2) and T ∈ V . It follows that

‖λT‖op = sup
x∈X1\{0}

‖(λT )(x)‖2
‖x‖1

= sup
x∈X1\{0}

‖λT (x)‖2
‖x‖1

≤ sup
x∈X1\{0}

φ(2)(|λ|)‖T (x)‖2‖x‖1
= φ(2)(|λ|)‖T‖op.
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2.3. PSEUDO-QUASI-NORMED SPACES 16

Therefore, ‖ · ‖op also satisfies the pseudo-homogeneity property. This concludes our
proof.

Let us also investigate if the completeness can be preserved under certain mappings
between pseudo-quasi-normed spaces.

Proposition 2.20. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) denote two pseudo-quasi-normed spaces
over a field K ∈ {R,C}. Assume that there exists a map T : X → Y that is linear and
bijective, such that both T and T−1 are bounded in operator pseudo-quasi-norm. Then, if
one of the two spaces is complete, so is the other one.

Proof. Without loss of generality, we assume that (X, ‖ · ‖X) is complete. Let (yn)n∈N
denote a Cauchy sequence in Y , and set xn := T−1(yn) for n ∈ N. For each ε > 0, there
exists an N ∈ N such that, for all m,n ≥ N , we have

‖T−1‖op‖ym − yn‖Y ≤ ε,

which yields that

‖xm − xn‖X = ‖T−1(ym)− T−1(yn)‖X ≤ ‖T−1‖op‖ym − yn‖Y ≤ ε.

Therefore, the sequence (xn)n∈N is a Cauchy sequence in X, and since this vector space is
assumed to be complete, we can deduce that there exists an x ∈ X such that limn→∞ ‖x−
xn‖X = 0, and therefore, upon setting y := T (x) ∈ Y ,

lim
n→∞

‖y − yn‖Y = lim
n→∞

‖T (x)− T (xn)‖Y = lim
n→∞

‖T (x− xn)‖Y
≤ lim sup

n→∞
‖T‖op‖x− xn‖X = 0.

Therefore, we can conclude that (yn)n∈N converges to y in Y with respect to ‖ · ‖Y , which
concludes our proof.

Before we can investigate continuity properties of functions that map into pseudo-quasi-
normed spaces, let us first describe some basic topological properties. Let us begin with
the

Definition 2.21. Let X denote a non-empty set, and consider T ⊂ P(X). We then call T
a topology on X, if the following holds:

(a) ∅ ∈ T and X ∈ T ;

(b) If O1 ∈ T and O2 ∈ T , then O1 ∩O2 ∈ T ;

(c) For each index set I and Oi ∈ T , i ∈ I we have
⋃

i∈I Oi ∈ T .

Every pseudo-quasi-norm induces a topology on its space. In Definition 2.22, we will
first provide the construction and then prove in Proposition 2.25 that the defined object is
indeed a topology.
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2.3. PSEUDO-QUASI-NORMED SPACES 17

Definition 2.22 (Topology induced by ‖ · ‖). Let (X, ‖ · ‖) denote a pseudo-quasi-normed
space. We set

T ‖·‖ := {O ⊂ X : O open}, (2.17)

where we call a set O ⊂ X open, if for each x ∈ O, there exists an ε > 0, such that
Uε(x) ⊂ O, where we set, for each x ∈ X and ε > 0:

Uε(x) := {y ∈ X : ‖x− y‖ < ε}. (2.18)

Note that y ∈ Uε(x) implies ‖y‖ ≤ Cqs(φ(1)ε+ ‖x‖). Moreover, as ‖x− y‖ ≤ φ(1)‖y−x‖
we cannot expect the sets Uε(0) to be symmetric in the sense that y ∈ Uε(0) would imply
−y ∈ Uε(0). However, it would be desirable for vector addition and scalar multiplication to
be continuous operations. Therefore, let us state the

Definition 2.23. Let X denote a vector space over a field K ∈ {R,C} endowed with a
topology T . We then call (X, T ) a topological vector space, if the maps

(i) + : (X ×X, T ⊗ T ) → (X, T ), where (x, y) 7→ x+ y;

(ii) · : (K×X, T K ⊗ T ) → (X, T ), where (λ, x) 7→ λ · x;
are continuous. Here, T K denotes the Euclidean topology on K and we consider the
respective product topologies on the product spaces X ×X and K×X.

Remark 2.24. Note that Definition 2.23 does not require singletons {x} to be closed,
or equivalently, {x}c = X \ {x} to be open. See [Rud91, Definition 1.6] for a classical
definition that requires this additional assumption. Together with the properties stated in
Definition 2.23, it would make (X, T ) Hausdorff, see [Rud91, Theorem 1.12]. This means
that distinct points can be separated by disjoint neighborhoods. In many cases the space X
will be Hausdorff, for instance when it is endowed with a metric.

We will now collect the crucial topological results in the

Proposition 2.25. Let (X, ‖ · ‖) denote a pseudo-quasi-normed vector space over a field
K ∈ {R,C}. Moreover, let T ‖·‖ denote the set defined in (2.17). Then (X, T ‖·‖) constitutes
a topological vector space such that every singleton is a closed set.

Proof. First, we argue that T ‖·‖ is indeed a topology on X. Clearly, we have that ∅ ∈ T ‖·‖

as well as X ∈ T ‖·‖. Moreover, for O1 ∈ T ‖·‖ and O2 ∈ T ‖·‖, let us distinguish two cases. If
O1 ∩ O2 = ∅, then the intersection is clearly also contained in T ‖·‖. On the other hand,
if the intersection is not the empty set, pick x ∈ O1 ∩ O2. As O1 and O2 are open sets,
there exist ε1 > 0 and ε2 > 0 such that Uε1(x) ⊂ O1 and Uε2(x) ⊂ O2. If we now consider
ε := min{ε1, ε2} > 0, then Uε(x) ⊂ Uε1(x) ∩ Uε2(x) ⊂ O1 ∩ O2. Finally, if I denotes an
index set and Oi ∈ T ‖·‖ for i ∈ I, let x ∈ ⋃

i∈I Oi. Then there exists an i ∈ I such that
x ∈ Oi. As Oi is open, there exists an ε > 0 such that Uε(x) ⊂ Oi ⊂

⋃

i∈I Oi. Therefore,

we have shown that T ‖·‖ is indeed a topology on X.
Next, we will show that (X, T ‖·‖) is a topological vector space. Note that for all

(x1, x2), (y1, y2) ∈ X ×X and (λ1, x1), (λ2, x2) ∈ K×X, we have

‖(x1 + x2)− (y1 + y2)‖ ≤ Cqs

(

‖x1 − y1‖+ ‖x2 − y2‖
)

,
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2.3. PSEUDO-QUASI-NORMED SPACES 18

as well as

‖λ1x1 − λ2x2‖ ≤ Cqs

(

φ(|λ1|)‖x1 − x2‖+ φ(|λ1 − λ2|)‖x2‖
)

.

This implies for ε > 0 that Uε(x1) + Uε(x2) ⊂ U2Cqsε(x1 + x2) as well as U
K
ε (λ1) · Uε(x1) ⊂

Uh(x1,λ1,ε)(λ1 · x1), where

h(x, λ, ε) = Cqsmax{ε, φ(ε)}(φ(|λ|) + Cqs(φ(1)ε+ ‖x‖)).

Therefore, we can choose δ1 = ε/(2Cqs) as well as δ2 such that h(x1, λ1, δ2) ≤ ε (note that
we can always find such a δ2 due to (2.13)) in order to argue continuity of vector addition
and scalar multiplication.
Finally, for x ∈ X, we want to show that {x} is closed. Equivalently, we show that

X \ {x} is open. Pick y ∈ {x}c, and set ε := ‖y − x‖. Then x /∈ Uε(y). Consequently,
Uε(y) ⊂ {x}c, and we conclude that every singleton is closed.

Remark 2.26. Let us revisit now Remark 2.24 in the context of Proposition 2.25. Pseudo-
quasi-normed spaces are topological vector spaces such that singletons are closed. Conse-
quently, by [Rud91, Theorem 1.12], these spaces are Hausdorff, which means that distinct
points can be separated by disjoint neighborhoods. Therefore, limits of convergent sequences
are unique.
Moreover, by Proposition 2.25, we have that (X, T ‖·‖) is a first-countable space, which

means that every point has a neighborhood basis that is countable. To see this, let x ∈ X,
and consider the sets U1/n(x) for n ∈ N. These are all elements of T ‖·‖ that contain x, thus
they are neighborhoods of x. By Definition 2.22, for every neighborhood U of x, there exists
an n ∈ N, such that x ∈ U1/m(x) ⊂ U for every integer m ≥ n.

Remark 2.27. As we have seen above, addition is a continuous operation. This however
implies that translations on the space are continuous. Therefore, the topology is invariant
under translation, and a linear map is continuous if and only if it is continuous at any given
point, see [Rud91, Theorem 1.17]. Moreover, we can see any neighborhood of a point as a
translated version of a neighborhood of the origin.

Remark 2.28. We can extend the quasi-subadditivity 2.10(b) to countable sums by the
following argument: if

∑∞
i=1 xi is a series that converges with respect to the topology

induced by ‖ · ‖, then we have

∥

∥

∥

∞
∑

i=1

xi

∥

∥

∥
= lim

n→∞

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥
≤ Cqs lim

n→∞

n
∑

i=1

‖xi‖ = Cqs

∞
∑

i=1

‖xi‖,

where the right-most expression can be infinite.

In light of Proposition 2.25 and similarly as in Proposition 2.20, let us discuss mappings
of dense sets between pseudo-quasi-normed spaces.

Proposition 2.29. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) denote two pseudo-quasi-normed spaces
over a field K ∈ {R,C}. Assume that there exists a map T : X → Y that is bijective, such
that both T and T−1 are continuous. Then, if one of the two spaces is separable, so is the
other one.
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2.3. PSEUDO-QUASI-NORMED SPACES 19

Proof. Without loss of generality, let us assume that (X, ‖ · ‖X) is separable. Let EX denote
a countable dense subset of X. We set EY := {y = T (x) ∈ Y : x ∈ EX} and argue that EY

is dense in Y .
For each y ∈ Y and neighborhood V ∈ U(y) in the neighborhood filter of y, we set

x := T−1(y) and U := T−1(V ). Since T−1 is continuous by assumption, we have that
U ∈ U(x). As EX is dense in X, there exists some x∗ ∈ EX such that x∗ ∈ U . Upon setting
y∗ := T (x∗), it holds that y∗ ∈ V . Consequently, EY is dense in Y , which concludes our
proof.

Proposition 2.30. Let (X, ‖ · ‖) denote a pseudo-quasi-normed vector space over a field
K. Then ‖ · ‖ induces a translation invariant and pseudo-homogeneous semimetric d
on X. Moreover, d induces a topology T d on X that is equivalent to the topology T ‖·‖.
Consequently, (X, T d) is a topological vector space.

Proof. First, we have to show that ‖ · ‖ induces a map d: X ×X → R that is nonnegative,
nondegenerate, symmetric and satisfies a relaxed triangle inequality as well as a pseudo-
homogeneous scaling property. To see this, set

d(x, y) :=
1

2
(‖x− y‖+ ‖y − x‖), x, y ∈ X. (2.19)

For each pair (x, y) it immediately follows that d(x, y) ≥ 0 because ‖ · ‖ is nonnegative.
Similarly, one can easily show that d is nondegenerate because ‖ · ‖ is. The symmetry
of d follows from the fact that the addition of real numbers is a commutative operation.
Moreover, d satisfies the Cqs-relaxed triangle inequality: for all x, y, z ∈ X, we have

d(x, z) =
1

2
(‖x− z‖+ ‖z − x‖)

=
1

2
(‖x− y + y − z‖+ ‖z − y + y − x‖)

≤ Cqs
1

2
(‖x− y‖+ ‖y − z‖+ ‖z − y‖+ ‖y − x‖)

= Cqs(d(x, y) + d(y, z)).

Next, d is translation invariant: for all x, y, z ∈ X, we have

d(x+ z, y + z) =
1

2
(‖x+ z − y − z‖+ ‖y + z − x− z‖)

=
1

2
(‖x− y‖+ ‖y − x‖) = d(x, y).

Although d is not homogeneous, it is pseudo-homogeneous: for x, y ∈ X and λ ∈ K, we have

d(λx, λy) =
1

2
(‖λx− λy‖+ ‖λy − λx‖)

≤ 1

2
(φ(|λ|)‖x− y‖+ φ(|λ|)‖y − x‖) = φ(|λ|)d(x, y).

This verifies our first claim.
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2.3. PSEUDO-QUASI-NORMED SPACES 20

The semimetric d induces a topology T d on X as follows: For each ε > 0 and x ∈ X, we
denote the ε-ball with center x and with respect to d to be the set

Ud
ε (x) := {y ∈ X : d(x, y) < ε}. (2.20)

Similarly as in (2.17), we set

T d := {O ⊂ X : O open}, (2.21)

where we call a set O ⊂ X open (with respect to d), if for each x ∈ O, there exists an
ε > 0, such that Ud

ε (x) ⊂ O. Recall that Proposition 2.25 tells us that T ‖·‖ is a topology on
X. Rather than arguing that T d satisfies the defining properties of a topology as given by
Definition 2.21, we will show that T d = T ‖·‖, which will then yield the stronger implication
that, by Proposition 2.25, (X, T d) is not just a vector space endowed with a topology, but
even a topological vector space, see Definition 2.23.
Let x, y ∈ X. On the one hand, it holds that (recall φ(1) ≥ 1)

‖x− y‖ =
1

2
(‖x− y‖+ ‖x− y‖)

≤ 1

2
(‖x− y‖+ φ(1)‖y − x‖) ≤ φ(1)d(x, y).

On the other hand, in a similar manner we have that

d(x, y) =
1

2
(‖x− y‖+ ‖y − x‖)

≤ 1

2
(‖x− y‖+ φ(1)‖x− y‖) = (1 + φ(1))‖x− y‖.

In order to see that T d ⊂ T ‖·‖, let O ∈ T d. This implies for each x ∈ O the existence of an

ε > 0 such that Ud
ε (x) ⊂ O. For ε̃ := ε/(1 + φ(1)), it follows that U

‖·‖
ε̃ (x) ⊂ Ud

ε (x), hence

O ∈ T ‖·‖. Let O ∈ T ‖·‖ and x ∈ O. Then there exists an ε > 0 such that U
‖·‖
ε (x) ⊂ O.

For ε := ε/φ(1), it follows that Ud
ε̃ (x) ⊂ U

‖·‖
ε (x), hence O ∈ T d. Consequently, we have

T d = T ‖·‖, which concludes our proof.

Remark 2.31. Let C1 ∈ (0,∞) and θ ∈ (0, 1]. Set φ(λ) = Cλθ. Assume φ to be a pseudo-
homogeneity for some pseudo-quasi-norm ‖·‖ on a vector spaceX. Then, according to [AM15,
Theorem 8.3] the space (X, T ‖·‖) is metrizable and therefore Hausdorff. However, it is in
general not locally convex, as we would need a condition of the form Cqs(φ(λ)+φ(1−λ)) ≤ 1
for all λ ∈ (0, 1) to hold, see Example 2.15.

The semimetric d: X×X → R+ induces a uniform structure U according to Definition 2.32
on X ×X, which is a remarkable fact that we want to show in Proposition 2.33. Below,
we denote by U ◦ V the composition of two subsets of a set X × X which is given by
U ◦ V = {(x, z) : ∃ y ∈ X : (x, y) ∈ U ∧ (y, z) ∈ V }. We follow the exposition in [Bou95,
Chapter II].

Definition 2.32 (Uniform structure). Let X denote a nonempty set. We then call a set U
of subsets of X ×X a uniform structure or uniformity on X, if the following conditions are
satisfied:
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2.3. PSEUDO-QUASI-NORMED SPACES 21

(a) Every set belonging to U contains the diagonal ∆ = {(x, x) : x ∈ X};

(b) Every subset of X ×X which contains a set of U belongs to U;

(c) Every finite intersection of sets of U belongs to U;

(d) If V ∈ U then V −1 = {(y, x) : (x, y) ∈ V } ∈ U;

(e) For each V ∈ U there exists some W ∈ U such that W ◦W ⊂ V .

We call the elements U of U entourages of the uniformity U on X and (X,U) a uniform
space. Moreover, we call a set B ⊂ U a fundamental system or base of the uniformity U, if
every entourage of U contains a set that belongs to B.

Proposition 2.33. Let (X, ‖ · ‖) denote a pseudo-quasi-normed vector space over a field
K. Then the semimetric d that is induced by ‖ · ‖ according to Proposition 2.30 induces a
uniform structure on X.

Proof. For each ε > 0, let Uε ⊂ X ×X denote the set

Uε := {(x, y) ∈ X ×X : d(x, y) < ε}. (2.22)

Moreover, we set

U := {U ⊂ X ×X : ∃ ε > 0: Uε ⊂ U}. (2.23)

We will now show that U is a uniformity of X and that the set B := {Uε : ε > 0} is a
fundamental system of U. Let us verify all defining properties of a uniformity according to
Definition 2.32:

(a) Let U ∈ U. By (2.23) there exists an ε > 0 such that Uε ⊂ U . By Definition 2.10(a),
the pseudo-quasi-norm ‖ · ‖ is nondegenerate, which implies by (2.19) that d(x, x) = 0
for all x ∈ X. Consequently, the diagonal ∆ is contained in Uε and thus ∆ ⊂ Uε ⊂ U .

(b) Let V ⊂ X ×X such that U ⊂ V for some U ∈ U. By (2.23) there exists an ε > 0
such that Uε ⊂ U . Consequently, we have that Uε ⊂ V and thus V ∈ U.

(c) We will show the statement for the intersection of two sets, from which the general
statement will follow directly. Let U, V ∈ U. By (2.23) there exist δ, ε > 0 such that
Uδ ⊂ U and Uε ⊂ V . If we define η = min{δ, ε}, then Uη ⊂ U ∩ V and consequently
U ∩ V ∈ U.

(d) Let U ∈ U. By (2.23) there exists an ε > 0 such that Uε ⊂ U . As the semimetric d is
symmetric, we know that for any (x, y) ∈ Uε we also have (y, x) ∈ Uε. Consequently,
it holds that Uε ⊂ U−1 and thus U−1 ∈ U.

(e) Let U ∈ U. By (2.23) there exists an ε > 0 such that Uε ⊂ U . Set δ := ε/(2Cqs).
Then Uδ ∈ U. By the Cqs-relaxed triangle inequality of the semimetric d, we know
that for all (x, z) ∈ Uδ ◦ Uδ, if we choose y ∈ X such that (x, y) ∈ Uδ and (y, z) ∈ Uδ,
then it holds that d(x, z) < ε and consequently Uδ ◦ Uδ ⊂ Uε ⊂ U .
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2.3. PSEUDO-QUASI-NORMED SPACES 22

Finally, the set B is clearly a fundamental system of U by (2.23) and Definition 2.32.

Let us finally point out that the study of bounded linear operators also allows us to derive
topological properties of uniform structures. We will derive two version of this statement,
one that based on direct estimates of pseudo-quasi-norms, and another one that takes the
more general point of view of uniform structures.

Proposition 2.34. Let T : X1 → X2 denote a map between two pseudo-quasi-normed
vector spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2) over fields K1,K2 ∈ {R,C} with K1 ⊂ K2. Further,
assume that T is K1-linear as well as bounded in operator pseudo-quasi-norm, see (2.15).
Then, T is in fact uniformly continuous as a map T : (X1, T ‖·‖1) → (X2, T ‖·‖2).

Proof. The proof is absolutely classical, and directly carries over from the setting of linear
maps between normed spaces. The case T ≡ 0 is a trivial one. Therefore, assume that
T 6≡ 0. Let ε > 0, and set δ := ε/‖T‖op. For each x, y ∈ X1 such that ‖x− y‖1 ≤ δ it then
follows that

‖T (x)− T (y)‖2 = ‖T (x− y)‖2 ≤ ‖T‖op‖x− y‖1 ≤ ε, (2.24)

which implies that T is uniformly continuous.

The following definition originates from [Bou95, Section 2.1].

Definition 2.35 (Uniform continuity on uniform spaces). Let T denote a map between
two uniform spaces (X1,U1) and (X2,U2). We then call T uniformly continuous, if for every
entourage V ∈ U2, there exists an entourage U ∈ U1, such that

(x, y) ∈ U =⇒ (T (x), T (y)) ∈ V.

Corollary 2.36. In the context of Proposition 2.34 and Defintion 2.35, the map T is
uniformly continuous as a map between the uniform spaces

T : (X1,U1) → (X2,U2).

Here, the uniformities U1 and U2 are given as in (2.23) and (2.22) by means of the respective
semimetrics on X1 and X2 according to Proposition 2.30 and Proposition 2.33.

Proof. Let V ∈ U2. Then there exists an ε > 0 such that U
(2)
ε ⊂ V , where U

(2)
ε = {(x, y) ∈

X2 × X2 : d2(x, y) < ε}. Upon recalling the estimate (2.24) of Proposition 2.34, let us

fix δ := ε/‖T‖op. The set U
(1)
δ is contained in U1 by definition. Furthermore, for all

(x, y) ∈ U
(1)
δ , it holds that

d2(T (x), T (y)) =
1

2

(

‖T (x)− T (y)‖2 + ‖T (y)− T (x)‖2
)

≤ ‖T‖op
2

(

‖x− y‖1 + ‖y − x‖1
)

= ‖T‖op d1(x, y) < ε.

Consequently, it holds that (T (x), T (y)) ∈ U
(2)
ε ⊂ V . In line with Definition 2.35, we have

thus shown that T is uniformly continuous.
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2.4. WEIGHTED HÖLDER SPACES 23

2.4. Weighted Hölder spaces

We denote by C = C(R;X) the space of continuous maps f : R → X. It is our aim to further
quantify the modulus of continuity of maps f ∈ C. Therefore, we arrive at the

Definition 2.37 (Modulus of continuity). Let ̺: (0,∞) → (0,∞) denote a non-decreasing
map that satisfies

lim
δց0

̺(δ) = 0. (2.25)

We then call ̺ a modulus of continuity.

Example 2.38. For 0 < α < ∞, consider the map ̺(δ) = δα for δ > 0. We then call ̺ the
α-Hölder modulus of continuity. It will play a crucial role in Chapter 4.

Not all maps ̺ will be suitable for every setting that we are to consider below. The
right choice of modulus essentially depends on the structure of the pseudo-quasi-normed
space. More importantly, we need to impose very specific relations between ̺ and the
pseudo-homogeneity φ that comes with ‖ · ‖. Therefore, let us further state the

Definition 2.39 (φ-admissible modulus of continuity). In the context of Definition 2.37,
let (X, ‖ · ‖) denote a pseudo-quasi-normed space with a pseudo-homogeneity φ of ‖ · ‖.
Assume that the following holds:

(a) There exists a positive real constant Cφ such that

φ
(δ

ε

)̺(ε)

̺(δ)
≤ Cφ, 0 < δ ≤ ε ≤ 1. (2.26)

(b) We have that ̺ dominates φ at 0, i.e.

lim
δց0

φ(δ)

̺(δ)
= 0. (2.27)

We then call ̺ a φ-admissible modulus of continuity for the pseudo-quasi-norm ‖ · ‖ with
pseudo-homogeneity φ. If the context allows, we will call ̺ an admissible modulus of
continuity, and assume that (2.26) and (2.27) holds for a fixed pseudo-homogeneity φ.

Remark 2.40. Condition (2.26) will first be needed in Proposition 2.54, whereas condi-
tion (2.27) will make its first appearance in Corollary 2.67, see also Remark 2.69. In
Chapter 3, we will make the additional assumptions (3.1), (3.2) and (3.3). These are not
needed at this point though.

Example 2.41. Let 0 < α < β ≤ 1, and set φ(λ) := λβ for λ ≥ 0 as well as ̺(δ) := δα for
δ > 0. Then ̺ is a φ-admissible modulus of continuity for every pseudo-quasi-norm ‖ · ‖
endowed with the pseudo-homogeneity φ, and (2.26) holds with Cφ = 1.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.4. WEIGHTED HÖLDER SPACES 24

Since the domain of functions f ∈ C, being the whole of R, is not bounded, it is possible
that these become unbounded even under moderate growth conditions. Therefore, we
restrict to subspaces of C where we can control the behaviour of the functions for large
times. To motivate this thought, let (X, ‖ · ‖) be a normed vector space over R or C. Note
that we neither assume the space to be complete (hence a Banach space) nor separable
(hence containing a countable, dense subset). Since the domain is not bounded, we cannot
expect f to be of finite uniform norm, i.e. describing f in terms of

‖f‖∞ := sup
t∈R

‖f(t)‖

would restrict the space {f ∈ C : ‖f‖∞ < ∞} to bounded functions. On the other hand,
describing f through the family {‖ · ‖n : n ∈ N} of semi-norms given by

‖f‖n := sup
t∈R
|t|≤n

‖f(t)‖

might be an interesting approach, but the topology generated by this family would make
the space {f ∈ C : ‖f‖n < ∞ ∀ n ∈ N} potentially Fréchet, not Banach. However, if we
control the growth of f by some weight function w, see Definition 2.42, and assume that
the weighted term

‖f(t)‖
w(t)

, t ∈ R,

is uniformly bounded from above or even vanishes, as |t| → ∞, we obtain reasonable
normed spaces that allow for moderate growth of the functions. For this, we need to specify
the weight function w.

Definition 2.42 (Weight function). A continuous function w: R → (0,∞) is called a weight
function, if there exists a real constant C ≥ 1 such that

sup
s,t∈R

|t−s|≤1

w(t)

w(s)
≤ C. (2.28)

We call a weight function w non-decreasing, if both maps R+ ∋ t 7→ w(t) and R+ ∋ t 7→
w(−t) are non-decreasing.

Remark 2.43. Condition (2.28) implies that w does not change too much on small time
intervals, i.e. for s, t ∈ R such that |t− s| ≤ 1, we always have the estimate w(t) ≤ Cw(s).

Example 2.44. Let β ∈ R and w1, w2: R → (0,∞) be given by

w1(t) := eβ|t|, w2(t) := (1 + |t|)β , t ∈ R. (2.29)

Let us show that they are indeed weight functions.
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1. First of all, upon recalling the reverse triangle inequality

−|t− s| ≤ |t| − |s| ≤ |t− s|, (2.30)

note that for all s, t in R, we have

w1(t)

w1(s)
= eβ(|t|−|s|) ≤ e|β||t−s|,

Hence, an admissible constant for w1 such that (2.28) is satisfied is given by C1 =
C(w1) := e|β|.

2. Moreover, note that inequality (2.30) together with |t − s| ≤ 1 implies |s| ≤ 1 + |t|
and |t| ≤ 1 + |s|, which yields the estimate

( 1 + |t|
1 + |s|

)β
≤

(2 + |s|
1 + |s|

)β
≤ 2β ,

in the case that β is positive, and

( 1 + |t|
1 + |s|

)β
=

(1 + |s|
1 + |t|

)−β
≤

(2 + |t|
1 + |t|

)−β
≤ 2−β ,

in the case that β is negative. Hence an admissible constant for w2 such that (2.28) is
satisfied is given by C2 = C(w2) := 2|β|.

Remark 2.45. The idea of incorporating time-dependent weights w in this thesis comes
from [DS89, Section 1.3]. There, the authors endow the norm on path space of Brownian
motion with the weight w(t) = 1+t, for t ∈ R+. Inspired by the exposition in [HL15, Chapter
2], we chose to move for a more general formulation in Defintion 2.42 that also allows us to
consider – amongst others – weight functions of the form w(t) = (1 + |t|)β for t ∈ R and
0 < β < 1.

In what follows, we will need to be able to compare the growth behaviour of different
weight functions. Therefore, let us state the

Definition 2.46. Let w1 and w2 denote two weight functions according to Definition 2.42.
We then say that w1 dominates w2, if there exists a positive real constant C∗ such that

sup
t∈R

w2(t)

w1(t)
≤ C∗. (2.31)

We further say that w1 and w2 are equivalent, w1 ∼ w2, if w1 and w2 dominate each other.

The weighted Hölder space that we are about to define will be the prime object of our
interest. We will be treating paths that are elements of this space. These exhibit certain
local continuity and global growth properties, that are controlled by admissible moduli of
continuity ̺ as well as weight functions w.
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2.4. WEIGHTED HÖLDER SPACES 26

Definition 2.47 (Weighted Hölder space). Let X be a vector space over a field K ∈
{R,C}, endowed with a pseudo-quasi-norm ‖ · ‖ and a pseudo-homogeneity φ according to
Definition 2.10. Further, let two weight functions w1 and w2 according to Definition 2.42 as
well as a φ-admissible modulus of continuity ̺ according to Definition 2.39 be given. Let
‖ · ‖̺,w1,2 : C → R+ = R+ ∪ {∞} denote the map

f 7→ ‖f‖̺,w1,2
:= sup

t∈R

‖f(t)‖
w1(t)

+ sup
s,t∈R

0<|t−s|≤1

‖f(t)− f(s)‖
̺(|t− s|) w2(t)

. (2.32)

We call C̺,w1,2
:= {f ∈ C : ‖f‖̺,w1,2 < ∞} endowed with ‖ · ‖̺,w1,2 weighted Hölder space. If

w1 = w2 = w, then we simply write (C̺,w, ‖ · ‖̺,w).

Remark 2.48. The weighted Hölder space is a pseudo-quasi-normed space. To see this,
choose f1, f2 ∈ C̺,w1,2 and λ ∈ K. Upon defining g = f1 + λf2, we immediately see that
g ∈ C, as linear combinations preserve continuity. Moreover, we have

‖g‖̺,w1,2 ≤ Cqsmax{1, φ(|λ|)}
(

‖f1‖̺,w1,2 + ‖f2‖̺,w1,2

)

< ∞.

Therefore, C̺,w1,2 is a vector space over the field K. The defining properties of a pseudo-
quasi-norm, as stated in Definition 2.10, can be verified by hand, where the constant Cqs

in 2.10(b) and the function φ in 2.10(c) are directly inherited from ‖ · ‖ on the image space
X. Moreover, one can also show that the weighted Hölder space is a normed vector space,
as long as ‖ · ‖ is a norm on the vector space X.

Remark 2.49. In Equation (2.32), we have chosen to evaluate w2 at the point t. This might
seem somewhat arbitrary, as we might have chosen to evaluate w2 at s, |s| ∨ |t| or at |s| ∧ |t|.
However, condition (2.28) guarantees that all of these choices will give us the same function
space, as the pseudo-quasi-norms ‖ · ‖̺,w1,2 , where we alter the evaluation of w2 to be on t,
s, |s| ∨ |t| or |s| ∧ |t|, are all equivalent in the sense of classical norm equivalence, see also
Example 2.16.

Next, we state another technical result. The proof is very classical and can be used for
many different settings, where one is having uniform convergence of (Hölder) continuous
functions.

Lemma 2.50. In the context of Definition 2.47, assume the image space X of the functions
f ∈ C̺,w1,2 to be a pseudo-quasi-Banach space. Then so is (C̺,w1,2 , ‖ · ‖̺,w1,2).

Proof. According to Remark 2.48, we are only left to argue completeness of the space. Let
(fn)n∈N denote a Cauchy sequence in C̺,w1,2 , i.e. for each ε > 0, there exists an M ∈ N such
that, for all m,n ≥ M , we have that

‖fm − fn‖̺,w1,2 ≤ ε.

For each t ∈ R, this implies in particular

‖fm(t)− fn(t)‖ ≤ εw1(t),
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and as w1 takes values in (0,∞), we conclude that the X-valued sequence (fn(t))n∈N is in
fact a Cauchy sequence. As X is assumed to be complete, the sequence converges to some
element in X with respect to ‖ · ‖. Define now the map f : R → X by

f(t) := lim
n→∞

fn(t),

which by the above argumentation is pointwise well defined.
We need to verify two properties, i.e. limn→∞ ‖fn − f‖̺,w1,2 = 0 and f ∈ C̺,w1,2 . For ε

and M as above, let n ≥ M . We then have, for each t ∈ R:

‖f(t)− fn(t)‖
w1(t)

= lim
m→∞

‖fm(t)− fn(t)‖
w1(t)

≤ lim sup
m→∞

‖fm − fn‖̺,w1,2 ≤ 2ε.

Similarly, for s, t ∈ R such that 0 < |t− s| ≤ 1 we have

‖(f(t)− fn(t))− (f(s)− fn(s))‖
̺(|t− s|) w2(t)

= lim
m→∞

‖(fm(t)− fn(t))− (fm(s)− fn(s))‖
̺(|t− s|) w2(t)

≤ lim sup
m→∞

‖fm − fn‖̺,w1,2 ≤ ε,

and therefore ‖f − fn‖̺,w1,2 ≤ ε, hence limn→∞ ‖f − fn‖̺,w1,2 = 0. Upon setting n = M we
also get ‖f − fM‖̺,w1,2 ≤ ε and thus we have

‖f‖̺,w1,2 ≤ Cqs(‖f − fM‖̺,w1,2 + ‖fM‖̺,w1,2) < ∞.

This implies that f ∈ C̺,w1,2 , as ‖f‖̺,w1,2 < ∞ and f is continuous, being the limit of
continuous functions, uniformly over compact sets. Here, we implicitly use the fact that the
continuous weight functions are bounded over compact sets. This concludes our proof.

Next, we will be taking a closer look at the approximating functions fm and f̃m defined
in (2.6) and (2.7). Our goal is to understand in what sense these converge to function series
in a reasonable way, as m → ∞. Apart from the pseudo-quasi-norm ‖ · ‖̺,w1,2 , let us define

two other specific notions of generalized norms. Let ‖ · ‖w1 : C → R+ be given by

‖f‖w1
:= sup

t∈R

‖f(t)‖
w1(t)

. (2.33)

For each q ∈ (0, 1], let ‖ · ‖w2|̺;q: C → R+ be given by

‖f‖̺|w2;q := sup
s,t∈R

0<|t−s|≤q

‖f(t)− f(s)‖
̺(|t− s|) w2(t)

. (2.34)

Moreover, set

‖ · ‖̺|w2
:= ‖ · ‖̺|w2;1.
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The notation for these different notions of generalized norms is intentionally chosen,

‖ · ‖w1 , ‖ · ‖̺|w2;q, ‖ · ‖̺|w2
, ‖ · ‖̺,w1,2 ,

where the usage of the vertical bar ”|” is to indicate that we are looking at the second
(Hölder) part of ‖ · ‖̺,w1,2 , and the sole usage of w1 indicates that we are looking at the first
weighted part of ‖ · ‖̺,w1,2 .

Remark 2.51. The map ‖ · ‖w1 again constitutes a pseudo-quasi-norm on the vector space
C̺,w1,2 . On the other hand, the maps ‖ · ‖̺|w2;q for q ∈ (0, 1] lack the nondegeneracy
property 2.10(a), because constant functions are mapped to 0. One can think of ‖ · ‖̺|w2;q as
being a generalized semi-norm. If we restricted the space C̺,w1,2 to those functions that satisfy
f(0) = 0, then ‖ · ‖̺|w2;q would satisfy all the defining properties of a pseudo-quasi-norm.

We will now state our first approximation result.

Proposition 2.52. Let f ∈ C satisfy ‖f‖̺|w2
< ∞, for an admissible modulus of continuity

̺ according to Definition 2.39 and a weight function w2. Further, let (fm)m∈N0 be the
sequence defined by (2.6), and w1 be a weight function that dominates w2. Then we have

‖f − fm‖w1 = O(̺(2−(m+1))), m ∈ N0.

Proof. Let m ∈ N0 and, without loss of generality, choose t ∈ R \ Dm+1, because otherwise
fm(t) = f(t), hence ‖f(t)− fm(t)‖ = 0. Let tl, tu denote the neighboring dyadic rationals
of order m+ 1 such that tl < t < tu. Then we have by Proposition 2.7

‖f(t)− fm(t)‖ =
∥

∥f(t)−
(

f(tl) +
t−tl
tu−tl

(f(tu)− f(tl)
)
∥

∥

=
∥

∥(f(t)− f(tl)) +
(

− t−tl
tu−tl

(f(tu)− f(tl)
)∥

∥

≤ Cqs

(

‖f(t)− f(tl)‖+ φ
(

t−tl
tu−tl

)

‖f(tu)− f(tl)‖
)

≤ Cqs

(

‖f(t)− f(tl)‖+ φ(1)‖f(tu)− f(tl)‖
)

.

(2.35)

Making use of (2.28), (2.31) as well as the fact that φ(1) ≥ 1, a division by w1(t) yields the
upper bound

‖f(t)− fm(t)‖
w1(t)

≤ CqsC
∗̺(|t− tl|)

‖f(t)− f(tl)‖
̺(|t− tl|) w2(t)

+ CqsCC∗φ(1)̺(|tu − tl|)
‖f(tu)− f(tl)‖

̺(|tu − tl|) w2(tl)

≤ 2CqsCC∗φ(1)‖f‖̺|w2;2−(m+1)̺(2−(m+1))

≤ 2CqsCC∗φ(1)‖f‖̺|w2
̺(2−(m+1)),

(2.36)

which concludes our proof.

Remark 2.53. Note that we are very generous in (2.36), giving away the fact that the
increments are very small, in estimating

‖f‖̺|w2;2−(m+1) ≤ ‖f‖̺|w2
.

This sharper bound will be used in the proofs of Proposition 2.54 and Corollary 2.55.
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Let C̺|w,0 denote the set of all f ∈ C that satisfy

‖f‖̺|w < ∞, lim
qց0

‖f‖̺|w,q = 0. (2.37)

The next proposition deals with an approximation of elements f ∈ C̺|w,0.

Proposition 2.54. Let f ∈ C satisfy ‖f‖̺|w < ∞, for an admissible modulus of continuity
̺ according to Definition 2.39 and a weight function w. Further, let (fm)m∈N0 be the
sequence defined by (2.6). Then we have

‖f − fm‖̺|w = O(‖f‖̺|w;2−(m+1)), m ∈ N0.

Proof. Let m ∈ N0 and choose s, t ∈ R \ D(m+1). Assume 2−(m+1) < |t − s| ≤ 1 and let
tl < t < tu as well as sl < s < su be the neighboring dyadic rationals of order m+ 1. First
of all, we have

‖(f(t)− fm(t))− (f(s)− fm(s))‖ ≤ Cqs(‖f(t)− fm(t)‖+ φ(1)‖f(s)− fm(s)‖),

hence, making use of (2.36), we obtain

‖(f(t)− fm(t))− (f(s)− fm(s))‖
̺(|t− s|) w(t)

≤ Cqs

{‖f(t)− fm(t)‖
̺(|t− s|) w(t) + Cφ(1)

‖f(s)− fm(s)‖
̺(|t− s|) w(s)

}

≤ 4C2
qsC

2φ(1)2‖f‖̺|w;2−(m+1) .

Next, let m ∈ N0 and choose s, t ∈ R \ D(m+1). Assume 0 < |t− s| ≤ 2−(m+1) and that s
and t belong to the same dyadic interval of order m+1, i.e. dl < s, t < du for the neighboring
dyadic rationals dl, du of order m+ 1. We then estimate

‖(f(t)− fm(t))− (f(s)− fm(s))‖ ≤ Cqs(‖f(t)− f(s)‖+ φ(1)‖fm(t)− fm(s)‖).

The first summand allows the direct estimate

‖f(t)− f(s)‖
̺(|t− s|) w(t) ≤ ‖f‖̺|w;2−(m+1) ,

whereas estimating the latter part yields by Proposition 2.7 up to the constant φ(1)

‖fm(t)− fm(s)‖ = ‖ t−s
du−dl

(

f(du)− f(dl)
)

‖ ≤ φ
( |t−s|
du−dl

)

‖f(du)− f(dl)‖,

hence

‖fm(t)− fm(s)‖
̺(|t− s|) w(t) ≤ Cφ

( |t−s|
du−dl

)̺(du − dl)

̺(|t− s|) ‖f‖̺|w;2−(m+1)

≤ CCφ‖f‖̺|w;2−(m+1) ,
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making use of (2.26). In the case that s and t (assuming w.l.o.g. that s < t) do not belong
to the same dyadic interval of order m + 1, i.e. dl < s < d < t < du for the neighboring
dyadic rationals dl, d, du of order m+ 1, we again estimate

‖(f(t)− fm(t))− (f(s)− fm(s))‖ ≤ Cqs(‖f(t)− f(s)‖+ ‖fm(t)− fm(s)‖).

The first part allows the same estimate as above, whereas in the second part we add the
term f(d):

‖fm(t)− fm(s)‖ = ‖(fm(t)− f(d)) + (f(d)− fm(s))‖
≤ Cqs(‖fm(t)− f(d)‖+ ‖f(d)− fm(s)‖).

In the same manner as above, we have

‖fm(t)− f(d)‖ ≤ φ
(

t−d
du−d

)

‖f(du)− f(d)‖,

hence

‖fm(t)− f(d)‖
̺(|t− s|) w(t) ≤ Cφ

(

t−d
du−d

)̺(du − d)

̺(t− d)
‖f‖̺|w;2−(m+1)

≤ CCφ‖f‖̺|w;2−(m+1) .

For the last term, we apply the same line of reasoning, using a neat trick of rewriting
the linear interpolation with respect to the lower boundary point in terms of the upper
boundary point, i.e.

fm(s) = f(d)− d−s
d−dl

(f(d)− f(dl)).

This yields

‖f(d)− fm(s)‖ ≤ φ
(

d−s
d−dl

)

‖f(d)− f(dl)‖,

hence

‖f(d)− fm(s)‖
̺(|t− s|) w(t) ≤ Cφ

(

d−s
d−dl

)̺(d− dl)

̺(d− s)
‖f‖̺|w;2−(m+1)

≤ CCφ‖f‖̺|w;2−(m+1) .

Combining the above yields

sup
s,t∈R\D(m+1)

0<|t−s|≤1

‖(f(t)− fm(t))− (f(s)− fm(s))‖
̺(|t− s|) w(t) = O(‖f‖̺|w;2−(m+1)).

If s, t ∈ D(m+1), then we have fm(t) = f(t) as well as fm(s) = f(s), hence this case is of
no interest for the convergence.

This leaves us with finding an estimate for the case that either t or s is a dyadic rational
of order up to m + 1. To this end, assume without loss of generality that s ∈ D(m+1)
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and t ∈ R \ D(m+1) as well as 0 < |t − s| ≤ 1 and s < t. Let tl < t < tu denote the two
neighboring dyadic rationals of order m+ 1. Then we have that

s ≤ tl < t < tu,

which is the crucial observation. The case tl < s < t is not possible, because s ∈ D(m+1),
and when tl and tu are the neighboring dyadic rationals of order m+ 1, then tl < s < tu
fails to hold, since in this case s and tu would be neighboring t; the case tl = s is possible
and hence not excluded. Now we can write

‖(f(t)− fm(t))− (f(s)− fm(s))‖ = ‖(f(t)− fm(t))− (f(s)− f(s))‖
= ‖f(t)− fm(t)‖ ≤ Cqs

(

‖f(t)− f(tl)‖+ φ
(

t−tl
tu−tl

)

‖f(tu)− f(tl)‖
)

.

The first part allows the weighted estimate

‖f(t)− f(tl)‖
̺(|t− s|) w(t) ≤ C

‖f(t)− f(tl)‖
̺(t− tl) w(tl)

≤ C‖f‖̺|w;2−(m+1) ,

whereas the second part allows the weighted estimate

φ
(

t−tl
tu−tl

)‖f(tu)− f(tl)‖
̺(|t− s|) w(t) ≤ Cφ

(

t−tl
tu−tl

)̺(tu − tl)

̺(t− tl)

‖f(tu)− f(tl)‖
̺(tu − tl) w(tl)

≤ CCφ‖f‖̺|w;2−(m+1) .

Collecting all of the above estimates, we have

‖f − fm‖̺|w = O(‖f‖̺|w;2−(m+1)), (2.38)

which concludes the proof.

As a consequence of Propositions 2.52 and 2.54 as well as Remark 2.53 we obtain the

Corollary 2.55. Let f ∈ C satisfy ‖f‖̺|w2
< ∞, for an admissible modulus of continuity

̺ and a weight function w2. Further, let (fm)m∈N0 be the sequence defined by (2.6), and
w1 be a weight function that dominates w2. We then have

‖f − fm‖̺,w1,2 = O(‖f‖̺|w2;2−(m+1)), m ∈ N0. (2.39)

Proof. First, note that in line with Remark 2.53 the last line in the estimate (2.36) can be
replaced by another upper bound, which is

‖f − fm‖w1 ≤ 2CqsCC∗φ(1)̺(1)‖f‖̺|w2;2−(m+1) .

But together with Proposition 2.54, this already implies the assertion.

Remark 2.56. Note that the statement (2.39) implies the first strong approximation property:
In the context of Corollary 2.55, if f additionally satisfies

lim
m→∞

‖f‖̺|w2;2−(m+1) = 0,

then Corollary 2.55 yields the convergence statement

lim
m→∞

‖f − fm‖̺,w1,2 = 0.
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Remark 2.57. For the sake of clarity, let us note that Corollary 2.55 implies that as long as
f ∈ C̺,w1,2 , we immediately have that fm ∈ C̺,w1,2 for all m ∈ N0. This can be directly seen
through (2.39) and the fact that ‖ · ‖̺,w1,2 satisfies the quasi-subadditivity property (2.11),
yielding

‖fm‖̺,w1,2 ≤ Cqs(‖f‖̺,w1,2 + ‖f − fm‖̺,w1,2)

= Cqs‖f‖̺,w1,2 +O(‖f‖̺|w2;2−(m+1)) < ∞.

2.5. Little weighted Hölder spaces

We are finally ready to prove the most important mode of the convergence, which will be
the content of Theorem 2.61. The motivation behind this is that we want to consider spaces
which are separable. In order to accomplish this, we will need to pass to a subspace of the
weighted Hölder space, which will be defined as follows.

Definition 2.58 (Little weighted Hölder space). In the context of Definition 2.47, let
C̺,w1,2,0 ⊂ C̺,w1,2 denote the subset of all f ∈ C̺,w1,2 that further satisfy the following
conditions:

(a) f grows slower than w1, i.e.

lim
|t|→∞

‖f(t)‖
w1(t)

= 0; (2.40)

(b) weighted Hölder constants vanish uniformly for small time increments, i.e.

lim
qց0

‖f‖̺|w2,q = 0; (2.41)

(c) weighted Hölder constants vanish uniformly for distant times, i.e.

lim
n→∞

sup
s,t∈R\[−n,n]
0<|t−s|≤1

‖f(t)− f(s)‖
̺(|t− s|) w2(t)

= 0. (2.42)

We call (C̺,w1,2,0, ‖ · ‖̺,w1,2) little weighted Hölder space.

Lemma 2.59. In the context of Definition 2.58, assume the image space X of the functions
f ∈ C̺,w1,2,0 to be a pseudo-quasi-Banach space. Then so is (C̺,w1,2,0, ‖ · ‖̺,w1,2).

Proof. One can easily verify that (C̺,w1,2,0, ‖·‖̺,w1,2) is indeed a pseudo-quasi-normed vector
space. Therefore, we will only argue that it is also complete. First of all, observe that
C̺,w1,2,0 ⊂ C̺,w1,2 and that, by Lemma 2.50, (C̺,w1,2 , ‖ · ‖̺,w1,2) is indeed complete as long
as X is.
Let (fn)n∈N ∈ C̺,w1,2,0 denote a Cauchy sequence. Then it is obviously also a Cauchy

sequence in (C̺,w1,2 , ‖ · ‖̺,w1,2). By Lemma 2.50, there exists an f ∈ C̺,w1,2 such that

lim
n→∞

‖f − fn‖̺,w1,2 = 0.
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If we can show that actually f ∈ C̺,w1,2,0, we are done.
Let ε > 0. Then there exists some N ∈ N such that, for all n ≥ N we have

‖f − fn‖̺,w1,2 ≤ ε

2Cqs
.

As fN satisfies (2.40), there exists some m > 0 such that, for all t ∈ R \ [−m,m] it holds
that

‖fN (t)‖
w1(t)

≤ ε

2Cqs
.

This however implies already that f satisfies (2.40), because

‖f(t)‖
w1(t)

≤ Cqs

w1(t)

(

‖fN (t)‖+ ‖f(t)− fN (t)‖
)

≤ Cqs

(‖fN (t)‖
w1(t)

+ ‖f − fN‖̺,w1,2

)

≤ ε.

Next, fN also satisfies (2.41), so there exists some q∗ ∈ (0, 1) such that for all q ∈ (0, q∗)
we have

sup
s,t∈R

0<t−s≤q

‖fN (t)− fN (s)‖
̺(|t− s|) w2(t)

≤ ε

2Cqs
.

This implies that f satisfies (2.41), because

sup
s,t∈R

0<t−s≤q

‖f(t)− f(s)‖
̺(|t− s|) w2(t)

≤ Cqs

(

sup
s,t∈R

0<t−s≤q

‖fN (t)− fN (s)‖
̺(|t− s|) w2(t)

+ ‖f − fN‖̺,w1,2

)

≤ ε.

Finally, fN also satisfies (2.42), so there exists some M > 0 such that, for all m ≥ M , we
have

sup
s,t∈R\[−m,m]

0<t−s≤1

‖fN (t)− fN (s)‖
̺(|t− s|) w2(t)

≤ ε

2Cqs
.

Consequently, it holds that

sup
s,t∈R\[−m,m]

0<t−s≤1

‖f(t)− f(s)‖
̺(|t− s|) w2(t)

≤ Cqs

(

sup
s,t∈R\[−m,m]

0<t−s≤1

‖fN (t)− fN (s)‖
̺(|t− s|) w2(t)

+ ‖f − fN‖̺,w1,2

)

≤ ε.

Therefore, f ∈ C̺,w1,2,0 and we are done.

Remark 2.60. Let us briefly comment on the terminology that we have chosen in Defini-
tion 2.58. Let α ∈ (0, 1) and Mα be the vector space of all f : [0, 1] → R such that

‖f‖α := sup
0≤s<t≤1

|f(t)− f(s)|
(t− s)α

< ∞.
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The semi-normed space (Mα, ‖ · ‖α) is classically termed Hölder space, but it lacks the
important property of being separable. Therefore, the little Hölder space is introduced as
the subset Mα,0 ⊂ Mα of functions that additionally satisfy

lim
δց0

sup
0≤s<t≤1
0<t−s≤δ

|f(t)− f(s)|
(t− s)α

= 0. (2.43)

This space is classically shown to be separable by Ciesielski’s isomorphism, see [Cie60].
Alternatively, one can show that polynomials with rational coefficients are dense. The
generalization of the arguments behind these statements will be provided below. Note that
condition (2.43) corresponds to the property (2.41). However, since we are dealing with
unbounded domains, we have to consider weight functions as introduced in Definition 2.42
and additionally require that apart from (2.41), the conditions (2.40) and (2.42) also hold.

We are finally able to formulate and prove the

Theorem 2.61. Let f ∈ C̺,w1,2,0. Assume that w1 is non-decreasing and dominating w2 in

the sense of Definition 2.46. Further, let (f̃m)m∈N0 be the sequence defined in (2.7). Then

lim
m→∞

‖f − f̃m‖̺,w1,2 = 0,

where the order of convergence depends on (2.40), (2.41) and (2.42), see the estimates (2.44)
as well as (2.45).

Proof. Let us first recall that

‖f − f̃m‖̺,w1,2 = ‖f − f̃m‖w1 + ‖f − f̃m‖̺|w2
.

For the first part, ‖f − f̃m‖w1 , let m ∈ N and t ∈ (−m,m), then f̃m(t) = fm(t), and by
Proposition 2.52 as well as Remark 2.53, we have

‖f(t)− f̃m(t)‖
w1(t)

=
‖f(t)− fm(t)‖

w1(t)
≤ 2CqsCC∗φ(1)̺(1)‖f‖̺|w2;2−(m+1) .

If t ≥ m, then f̃m(t) = f(m), hence

‖f(t)− f̃m(t)‖
w1(t)

≤ Cqs
‖f(t)‖
w1(t)

+ φ(1)Cqs
‖f(m)‖
w1(t)

≤ Cqs
‖f(t)‖
w1(t)

+ φ(1)Cqs
‖f(m)‖
w1(m)

≤ 2Cqsφ(1) sup
t≥m

‖f(t)‖
w1(t)

.

The case t ≤ −m can be argued in a similar way. Pulling all of these estimates together, we
have, up to a constant

‖f − f̃m‖w1 . max
{

‖f‖̺|w2;2−(m+1) , sup
t∈R
|t|≥m

‖f(t)‖
w1(t)

}

, (2.44)
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which vanishes, as m → ∞.
Now we will estimate ‖f − fm‖̺|w2

. We will treat the cases −m < s < t < m, as well as
−m < s < m ≤ t and m ≤ s < t separately. Note that we always implicitly assume, without
loss of generality, that 0 < t− s ≤ 1. First of all, let −m < s < t < m, then f̃m(t) = fm(t)
and f̃m(s) = fm(s), hence

‖(f(t)− f̃m(t))− (f(s)− f̃m(s))‖
̺(t− s) w2(t)

=
‖(f(t)− fm(t))− (f(s)− fm(s))‖

̺(t− s) w2(t)

≤ ‖f − fm‖̺|w2
= O(‖f‖̺|w2;2−(m+1)),

where the last equality readily follows from (2.38), because the assumptions of Proposi-
tion 2.54 are met. For m ≤ s < t, we can use the fact that f̃m(t) = f̃m(s) = f(m) to
obtain

‖(f(t)− f̃m(t))− (f(s)− f̃m(s))‖
̺(t− s) w2(t)

=
‖f(t)− f(s)‖
̺(t− s) w2(t)

≤ sup
m≤s<t<∞
0<t−s≤1

‖f(t)− f(s)‖
̺(t− s) w2(t)

,

which, by (2.42), vanishes as m → ∞. Next, assume that s < m ≤ t, then we have to
distinguish two cases. Let 2−(m+1) < t − s ≤ 1. Then it follows that, for the two dyadic
rationals sl, su of order m+ 1 neighboring s, the inequality sl ≤ s ≤ su < t holds. We first
make the observation that

‖(f(t)− f̃m(t))− (f(s)− f̃m(s))‖
≤ Cqs‖f(t)− f(m)‖+ Cqsφ(1)‖f(s)− fm(s)‖.

The first summand, upon being weighted by ̺(t− s)w2(t), satisfies the upper bound

Cqs
‖f(t)− f(m)‖
̺(t− s) w2(t)

≤ Cqs sup
m≤s<t<∞
0<t−s≤1

‖f(t)− f(s)‖
̺(t− s) w2(t)

.

The second part can be rewritten as follows:

‖f(s)− fm(s)‖ ≤ Cqs

(

‖f(s)− f(sl)‖+ φ
(

s−sl
su−sl

)

‖f(su)− f(sl)‖
)

≤ Cqs‖f(s)− f(sl)‖+ Cqsφ(1)‖f(su)− f(sl)‖.

Making use of the fact that s− sl ≤ su − sl < t− s, we obtain the upper bound

‖f(s)− fm(s)‖
̺(t− s) w2(t)

≤ CqsC(1 + φ(1))‖f‖̺|w2,2−(m+1) .

Now we are left to treat the case when 0 < t−s ≤ 2−(m+1). We first make the observation
that

‖(f(t)− f̃m(t))− (f(s)− f̃m(s))‖ ≤ Cqs‖f(t)− f(s)‖+ Cqsφ(1)‖f(m)− fm(s)‖.
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The first part allows a straightforward weighted upper bound

‖f(t)− f(s)‖
̺(t− s) w2(t)

≤ Cqs‖f‖̺|w2,2−(m+1) ,

whereas for the second part we argue differently. If s ∈ D(m+1), then fm(s) = f(s) and
consequently ‖f(m)− fm(s)‖ = ‖f(m)− f(s)‖. This yields

‖f(m)− fm(s)‖
̺(t− s) w2(t)

≤ C
‖f(m)− f(s)‖
̺(m− s) w2(m)

≤ C‖f‖̺|w2,2−(m+1) .

If s 6∈ D(m+1), we consider the neighboring dyadic rationals sl, su of order m+ 1. Because
t − s ≤ 2−(m+1) we thus have sl < s < su = m ≤ t, the case su < m would yield a
contradiction. Recall that we can write

fm(s) = f(m)− m−s
m−sl

(

f(m)− f(sl)
)

.

But then

‖f(m)− fm(s)‖ ≤ φ
(

m−s
m−sl

)

‖f(m)− f(sl)‖,

and we finally arrive at

‖f(m)− fm(s)‖
̺(t− s) w2(t)

≤ φ
(

m−s
m−sl

)̺(m− sl)

̺(m− s)

‖f(m)− f(sl)‖
̺(m− sl) w2(m)

≤ Cφ‖f‖̺|w2,2−(m+1) .

In pulling all of these estimates together, we obtain, up to a constant,

‖f − f̃m‖̺|w2
. max

{

‖f‖̺|w2,2−(m+1) , sup
s,t∈R\[−m,m]
0<|t−s|≤1

‖f(t)− f(s)‖
̺(|t− s|)w2(t)

}

, (2.45)

which vanishes, as m → ∞.

Remark 2.62. For the sake of clarity, let us note that Theorem 2.61 implies that as long
as f ∈ C̺,w1,2 , we immediately have that f̃m ∈ C̺,w1,2 for all m ∈ N0. This can be directly
seen through the estimates (2.44) and (2.45) as well as the fact that ‖ · ‖̺,w1,2 satisfies the
quasi-subadditivity property (2.11), yielding

‖f̃m‖̺,w1,2 ≤ Cqs(‖f‖̺,w1,2 + ‖f − f̃m‖̺,w1,2) < ∞.

Remark 2.63. Note that Theorem 2.61 essentially relies on the assumption that w1 is non-
decreasing. In Corollary 2.67 below, we will also require that lim|t|→∞w1(t) = ∞. These

assumptions are necessary due to the form of the functions f̃m. One could try to choose
different functions, in order to loosen these two requirements. An interesting approach
might be to consider g̃m which equals fm on [−m,m], vanishes outside of [−m− 1,m+ 1],
and is smooth between the points (m, fm(m)), (m+ 1, 0) and (−m, fm(−m)), (−m− 1, 0)
respectively. This might be accomplished by means of applying an appropriate mollifier
to fm. However, it would require a more involved treatment of the Theorem 2.61, as the
current setup essentially relies on linearity arguments, not integral estimates.
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Remark 2.64. As already hinted, the family MFS
2 given in Definition 2.1 does not constitute

a Schauder basis in C̺,w1,2,0. However, if the image space X of the functions in C̺,w1,2,0 is
separable, then we will conclude separability of the respective little weighted Hölder space,
see Corollaries 2.67 and 2.70. This result will come in handy when dealing with Brownian
motion on a real separable Banach space.

Before we state and prove Corollary 2.67, let us first provide the

Lemma 2.65. For s, t ∈ R and l ∈ Z as well as (j, k) ∈ N0 × Z, we have

|θl(t)− θl(s)| ≤ |t− s| ∧ 1,

|τj,k(t)− τj,k(s)| ≤ 2j/2|t− s| ∧ 2−j/2−1,

where θl and τj,k are the elements of the Faber–Schauder system MFS
2 , as given in Defini-

tion 2.1.

Proof. We will show the claim by means of integral estimates.
Recall the definition of θl, see (2.2). From this, we immediately see that, if |t− s| > 1,

the best upper bound is

|θl(t)− θl(s)| ≤ |θl(l)− θl(l − 1)| = |θl(l)| = 1.

Note that for each l ∈ Z and t ∈ [l − 1, l + 1], we can write

θl(t) =

∫ t

l−1
Kl(s) ds,

where Kl denotes the step function

Kl = 1[l−1,l) − 1[l,l+1).

But this implies that, for 0 < |t− s| ≤ 1, we actually have

|θl(t)− θl(s)| ≤
∫ |s|∨|t|

|s|∧|t|
|Kl(s)| ds ≤ |t− s|.

In a similar manner, recall the definition of τj,k, see (2.3). If |t− s| > 2−j−1, then

|τj,k(t)− τj,k(s)| ≤ τj,k(
2k+1
2j+1 )− τj,k(

k
2j
)| = |τj,k(2k+1

2j+1 )| = 2−j/2−1.

Note that for each (j, k) ∈ N0 × Z and t ∈ supp(τj,k) we can write

τj,k(t) =

∫ t

k
2j

Hj,k(s) ds,

where Hj,k denotes the step function

Hj,k(s) = 2j/2H(2js− k),

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.5. LITTLE WEIGHTED HÖLDER SPACES 38

and H denotes the Haar mother wavelet

H = 1[0,1/2) − 1[1/2,1).

But this implies that, for 0 < |t− s| ≤ 2−j−1, we actually have

|τj,k(t)− τj,k(s)| ≤
∫ |s|∨|t|

|s|∧|t|
|Hj,k(s)| ds ≤ 2j/2|t− s|,

which concludes our proof.

Remark 2.66. Lemma 2.65 shows that the Faber–Schauder system of the second kind MFS
2

consists of Lipschitz-continuous maps, which will be of importance in Chapter 4.

Corollary 2.67. In the setting of Theorem 2.61, assume that the image space X of the
functions f ∈ C̺,w1,2,0 is a separable pseudo-quasi-normed space, that lim|t|→∞w1(t) = ∞
holds and that ̺ is φ-admissible according to Definition 2.39. Then (C̺,w1,2,0, ‖ · ‖̺,w1,2) is
also separable, i.e. there exists a countable dense subset E ⊂ C̺,w1,2,0.

Proof. Let EX be a countable dense subset in (X, ‖ · ‖). Further, let ε > 0 and f ∈ C̺,w1,2,0.
According to Theorem 2.61, we can find an M ∈ N0, such that for all m ∈ N0 that satisfy
m ≥ M , we have

‖f − f̃m‖̺,w1,2 ≤ ε

2Cqs
.

Let m ≥ M be a fixed integer, and set, for some X-valued coefficients al and bj,k, which we
will specify below, the function gm: R → X by

gm(t) :=
∑

l∈Z

alθl(γm(t)) +

m
∑

j=0

∑

k∈Z

bj,kτj,k(γm(t)), t ∈ R.

Note the similarities between gm and f̃m. Moreover, almost all θl(γm(·)) and τj,k(γm(·)) are
zero, hence, only finitely many coefficients al and bj,k need to be specified. Further, if we
choose the coefficients of gm close enough to those of f̃m such that ‖f̃m−gm‖̺,w1,2 ≤ ε/(2Cqs)
holds, we obtain that

‖f − gm‖̺,w1,2 ≤ Cqs

(

‖f − f̃m‖̺,w1,2 + ‖f̃m − gm‖̺,w1,2

)

≤ Cqs

( ε

2Cqs
+ ‖f̃m − gm‖̺,w1,2

)

≤ ε.

Note that the distance between f̃m and gm can be estimated pointwise:

‖f̃m(t)− gm(t)‖

=
∥

∥

∥

∑

l∈Z

(al(f)− al)θl(γm(t)) +

m
∑

j=0

∑

k∈Z

(bj,k(f)− bj,k)τj,k(γm(t))
∥

∥

∥

≤ Cqs

(

φ(1)
m
∑

l=−m

‖al(f)− al‖+
m
∑

j=0

φ
(

2−
j
2
−1

)

2jm−1
∑

k=−2jm

‖bj,k(f)− bj,k‖
)

,
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and further

‖(f̃m(t)− gm(t))− (f̃m(s)− gm(s))‖
=

∥

∥

∥

∑

l∈Z

(al(f)− al)(θl(γm(t))− θl(γm(s)))

+
m
∑

j=0

∑

k∈Z

(bj,k(f)− bj,k)(τj,k(γm(t))− τj,k(γm(s)))
∥

∥

∥

≤ φ(|t− s|)Cqs

(

m
∑

l=−m

‖al(f)− al‖+
m
∑

j=0

2jm−1
∑

k=−2jm

‖2 j
2 (bj,k(f)− bj,k)‖

)

.

Because EX is dense in X, we can choose finitely many coefficients {al : l ∈ {−m, . . . ,m}}
as well as {bj,k : j ∈ {0, . . . ,m}, k ∈ {−2jm, . . . 2jm − 1}} in EX and close enough to the
respective coefficients al(f) and bj,k(f) with respect to ‖ · ‖ such that, upon defining the
two upper bounds

c1 :=
1

4C2
qsφ(1)c(m)

inf
t∈R
|t|≤m

w1(t), c2 :=
1

4C2
qsc(m)

̺(1)

Cφ
inf
t∈R
|t|≤m

w2(t),

where

c(m) := (2m+ 1) + 4m(2m − 1),

we get the estimates

max
{

max
l∈Z
|l|≤m

‖al(f)− al‖, max
j=0,...,m

k=−2jm,...,2jm−1

‖bj,k(f)− bj,k‖
}

≤ c1ε,

max
{

max
l∈Z
|l|≤m

‖al(f)− al‖, max
j=0,...,m

k=−2jm,...,2jm−1

‖2 j
2 (bj,k(f)− bj,k)‖

}

≤ c2ε,

which finally yields ‖f̃m − gm‖̺,w1,2 ≤ ε/(2Cqs), hence ‖f − gm‖̺,w1,2 ≤ ε. This implies that
the countable set of all functions gm of the form

gm(t) :=
∑

l∈Z

alθl(γm(t)) +

m
∑

j=0

∑

k∈Z

bj,kτj,k(γm(t)), t ∈ R, (2.46)

where m ∈ N0, and with coefficients al and bj,k in EX , is dense in (C̺,w1,2,0, ‖ · ‖̺,w1,2).

Remark 2.68. In the above proof, we have chosen the coefficients al and bj,k to be elements
of the countable, dense subset EX of X. However, we then argued that we can push the
expressions

‖al(f)− al‖, ‖2j/2(bj,k(f)− bj,k)‖
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2.5. LITTLE WEIGHTED HÖLDER SPACES 40

arbitrarily close to 0 by choosing appropriate elements of EX . As the given pseudo-quasi-
norm is not absolutely homogeneous, we will briefly elaborate on this point. Due to the
pseudo-homogeneity property 2.10(c) of ‖ · ‖ we have

‖2j/2(bj,k(f)− bj,k)‖ ≤ φ(2j/2)‖bj,k(f)− bj,k‖.

Therefore, we have to choose bj,k closer to bj,k(f) such that the scalar factor φ(2j/2) is
accounted for. But this we can do, as EX is dense in X.

Remark 2.69. To be precise, we need to provide justification why the functions gm defined
in (2.46) are actually elements of C̺,w1,2,0. Fix some m ∈ N. Then gm is constant on
(−∞,−m] and [m,∞), equalling gm(−m) and gm(m) respectively. Hence

lim
|t|→∞

‖gm(t)‖
w1(t)

= lim
|t|→∞

‖gm(±m)‖
w1(t)

= 0,

as we require w1 to explode asymptotically. Moreover, differences gm(t)− gm(s) are zero if
|t| ≥ m, |s| ≥ m and 0 < |t− s| ≤ 1, therefore condition (2.42) holds automatically. In the
case that −m < s, t < m, we recall the formula

gm(t)− gm(s) =
m
∑

l=−m

al(θl(t)− θl(s)) +
m
∑

j=0

2jm−1
∑

k=−2jm

bj,k(τj,k(t)− τj,k(s)). (2.47)

As we are dealing with the sum of finitely many elements here, and ‖ · ‖ satisfies the
properties (2.11) and (2.12), we can make use of the statement of Lemma 2.65 to conclude
that the condition

lim
δց0

sup
s,t∈[−m,m]
0<t−s≤δ

‖gm(t)− gm(s)‖
̺(t− s) w2(t)

= 0,

follows, as soon as we can show that actually

lim
δց0

φ(δ)

̺(δ)
= 0.

But this is precisely the condition (2.27). On the other hand, if s < m ≤ t, then we have
to replace θl(t) by θl(m) and τj,k(t) by τj,k(m) in Equation (2.47). By a similar line of
reasoning, the problem boils down to showing that indeed

lim
δց0

sup
s<m≤t
0<t−s≤δ

φ(m− s)

̺(t− s)
= 0.

But this is trivially satisfied, as φ is assumed to be non-decreasing. The case s ≤ −m < t can
be treated in the same way. Finally, we can also show that ‖gm‖̺,w1,2 < ∞ by additionally
making use of the bound (2.26).

In the next corollary, we will further expand on the approximation property of the
functions gm defined in Equation (2.46). The following statement will be of particular
interest when studying abstract Wiener spaces.
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Corollary 2.70. In the context of Theorem 2.61, assume that the image space (X, ‖ · ‖)
of the functions f ∈ C̺,w1,2,0 is a pseudo-quasi-normed space, and that lim|t|→∞w1(t) = ∞
holds. Further, let (Y, T ) denote a separable topological space, such that there exists a
continuous map i: Y → X with the property that i(Y ) := {x = i(y) ∈ X : y ∈ Y } is dense
in X. Then (C̺,w1,2,0, ‖ · ‖̺,w1,2) is also separable.

Proof. Let EY denote a countable dense subset in Y . For each x ∈ X and ε > 0, since i(Y )
is dense in X, there exists some y ∈ Y such that

‖x− i(y)‖ ≤ ε

2Cqs
.

Since i is continuous in y, there exists a neighborhood U ∈ U(y) in the neighborhood filter
of y such that

i(U) ⊂ U ε
2Cqs

(i(y)).

As U is a neighborhood of y, there exists an open set O in the topology T such that
y ∈ O ⊂ U and consequently

i(y) ∈ i(O) ⊂ i(U) ⊂ U ε
2Cqs

(i(y)).

Since EY is a dense subset in Y , we can find a y∗ ∈ EY such that y∗ ∈ O, hence

i(y∗) ∈ i(O) ⊂ i(U) ⊂ U ε
2Cqs

(i(y)),

and consequently ‖i(y)− i(y∗)‖ ≤ ε
2Cqs

. All of the above now yields

‖x− i(y∗)‖ ≤ Cqs

(

‖x− i(y)‖+ ‖i(y)− i(y∗)‖
)

≤ ε.

Therefore, EX := i(EY ) is a countable dense subset in X. The claim now follows by
Corollary 2.67.

Remark 2.71. In the context of Corollary 2.70, if (Y, T ) would be a topological vector
space, and i linear as well as continuous, then we know how a countable dense subset of
(C̺,w1,2,0, ‖ · ‖̺,w1,2) looks like. For each m ∈ N0, consider maps gYm: R → Y given by

gYm(t) =
∑

l∈Z

aYl θl(γm(t)) +
m
∑

j=0

∑

k∈Z

bYj,kτj,k(γm(t)),

with coefficients aYl and bYj,k in EY . The corresponding countable dense subset is given by
functions gm: R → X of the form

gm(t) = i(gYm(t)) =
∑

l∈Z

i(aYl )θl(γm(t)) +
m
∑

j=0

∑

k∈Z

i(bYj,k)τj,k(γm(t)).
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3. An extension of Ciesielski’s isomorphism

For an n-dimensional vector space over a field K, the choice of a basis induces a K-linear
isomorphism onto Kn, and the study of linear maps between finite-dimensional vector
spaces is reduced to the study of matrices with entries from K. If the n-dimensional vector
space is over the real or complex numbers and has an inner product, then the choice of an
orthonormal basis leads to an isomorphism that preserves the inner product, provided we
choose the standard Euclidean inner product on Kn. All these subjects are studied in linear
algebra.
For infinite-dimensional separable Hilbert spaces over a field K ∈ {R,C}, the choice of

a complete orthonormal system induces a K-linear isomorphism onto the sequence space
l2K, consisting of all sequences x = (xn)n∈N in K, that means elements of KN, such that the
norm ‖x‖2, given by the square root of the series

∑

n∈N |xn|2, is finite. Note that (l2K, ‖ · ‖2)
is a separable Hilbert space itself and that the isomorphism preserves the inner product
and, therefore, the corresponding norm.
The notion of Ciesielski’s isomorphism refers to closely related K-linear isomorphisms,

defined on (generalized) Banach spaces over K ∈ {R,C} of certain continuous functions,
defined on (subintervals of) the real line. Such an isomorphism arises from Faber–Schauder
systems and identifies a function with a (double-indexed) sequence of numbers in K, the
possible sequences form a suitable (generalized) Banach space, too. Since the notion of
orthogonality is missing, one can’t expect to preserve the norm, but the isomorphism should
still be a homeomorphism, i.e. continuous with continuous inverse.

Homeomorphic maps induce one-to-one correspondences between neighborhoods as well
as open and closed sets. Consequently, one is free to choose either one of the homeomorphic
spaces as domain of topological study. In view of the previous paragraph, convergence in
sequence space implies convergence in function space, and vice versa. Let us also highlight
that homeomorphisms preserve the whole topological structure, meaning all topological
invariants. These include, but are not limited to:

(a) Separability as well as the axioms of first and second countability;

(b) The separation axioms T0 (Kolmogorov), T1 (Fréchet) and T2 (Hausdorff);

(c) Connectedness;

(d) Compactness and sequential compactness;

(e) Metrizability and local metrizability.

A very classical homeomorphism can be constructed on open subsets of n-dimensional
Euclidean space. For an open subset U ⊂ Rn and a map f : U → Rn that is injective and

42
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continuous, it can be shown that U and V := f(U) are homeomorphic under f . The proof
goes back to L.E.J. Brouwer, see [Bro11].

The goal of this chapter now is to further investigate the representation

f(·) =
∑

l∈Z

al(f)θl(·) +
∑

(j,k)∈N0×Z

bj,k(f)τj,k(·).

More precisely, we will be looking at the map, that assigns each f ∈ C̺,w1,2 to the (double
indexed) sequence of coefficients MFSC

2 as given in Definition 2.2. To this end, let (X, ‖ · ‖)
be a pseudo-quasi-normed vector space over a field K ∈ {R,C}, and f : R → X. Set
N∗ := {−1} ∪ N0, and consider the linear map T defined on the space C of continuous
functions and given by

T : C → XN∗×Z,

f 7→ (xfj,k)(j,k)∈N∗×Z,

where xf−1,l := al(f) for l ∈ Z, and xfj,k := bj,k(f) for (j, k) ∈ N0 × Z.
In this section, we will need to require additional relational properties for the pseudo-

homogeneity φ as defined in 2.10(c) and the φ-admissible modulus of continuity ̺ as given
by Definition 2.39. Therefore, let us make the

Assumption 3.1. For Chapter 3, we assume that there exists a map

χ: (0,∞) → R+

that is non-decreasing, such that the following conditions hold:

(a) The map ̺ is χ-submultiplicative on the set of powers of 1/2, i.e.,

̺(2−m) ≤ χ(2n−m)̺(2−n), m, n ∈ N0; (3.1)

(b) Dyadic summability of χ:

∞
∑

j=0

χ(2−j) < ∞; (3.2)

(c) The map χ exhibits a φ-controlled growth condition outside of the unit interval, i.e.

∞
∑

j=1

φ(2−j)χ(2j) < ∞. (3.3)

Example 3.2. Let us provide an example for when (3.1), (3.2) and (3.3) are satisfied. Fix
some 0 < α < β < ∞ and set φ(λ) := λβ for λ ≥ 0 as well as ̺(δ) := δα for δ > 0. Upon
defining χ(δ) = δα for δ > 0, we immediately see that (3.1) holds, even with equality. The
next trivial observation to be made is that

∞
∑

j=0

χ(2−j) =

∞
∑

j=0

2−αj =
2α

2α − 1
< ∞,
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and therefore (3.2) holds. On the other hand, we see that

∞
∑

j=1

φ(2−j)χ(2j) =

∞
∑

j=1

2−(β−α)j =
1

2β−α − 1
< ∞,

which yields (3.3).

3.1. Isomorphism in weighted Hölder spaces

In this section, we want to show that for each f ∈ C̺,w1,2 , the sequence xf = T (f) also has
some very specific properties. We will now define the right subspace of XN∗×Z, such that
the map T becomes an isomorphism.

Definition 3.3 (Weighted Hölder sequence space). Let X be a vector space over a field
K ∈ {R,C}, endowed with a pseudo-quasi-norm ‖ · ‖ and pseudo-homogeneity φ according
to Definition 2.10. Further, let two weight functions w1 and w2 according to Definition 2.42
as well as a φ-admissible modulus of continuity ̺ according to Definition 2.39 be given. Let
‖ · ‖̺,w1,2 : X

N∗×Z → R+ = R+ ∪ {∞} denote the map

x 7→ ‖x‖̺,w1,2
:= sup

l∈Z

‖x−1,l‖
w1(l)

+ sup
(j,k)∈N0×Z

‖2− j
2xj,k‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) . (3.4)

We call ℓ̺,w1,2
:= {x ∈ XN∗×Z : ‖x‖̺,w1,2 < ∞} endowed with ‖ · ‖̺,w1,2 weighted Hölder

sequence space.

Remark 3.4. Note that we used the notation ‖ · ‖̺,w1,2 on both the function space C̺,w1,2 as
well as the sequence space ℓ̺,w1,2 . This should not lead to any confusions, as the argument
that we plug in will be either a function or a sequence, hence it should be clear from the
context whether we refer to (2.32) or (3.4).

Remark 3.5. Let us show that the weighted Hölder sequence space is a pseudo-quasi-normed
space. In line with Remark 2.48, choose x1, x2 ∈ ℓ̺,w1,2 and λ ∈ K. Upon defining
y = x1 + λx2, we have

‖y‖̺,w1,2 ≤ Cqsmax{1, φ(|λ|)}
(

‖x1‖̺,w1,2 + ‖x2‖̺,w1,2

)

< ∞.

Therefore, ℓ̺,w1,2 is a vector space over the field K. The defining properties of a pseudo-
quasi-norm, as stated in Definition 2.10, can be verified by hand, where the constant Cqs

in 2.10(b) and the function φ in 2.10(c) are directly inherited from ‖ · ‖ on the image space
X. Moreover, one can also show that the weighted Hölder sequence space is a normed
vector space, as long as ‖ · ‖ is a norm on the vector space X.

The main result of this section is the

Theorem 3.6. In the context of Definition 3.3, recalling Assumption 3.1, let w1, w2 be two
weight functions that are equivalent in the sense of Definition 2.46.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.1. ISOMORPHISM IN WEIGHTED HÖLDER SPACES 45

(a) For each f ∈ C̺,w1,2 we have that xf ∈ ℓ̺,w1,2. In other words

T : C̺,w1,2 → ℓ̺,w1,2 .

Furthermore, T is an isomorphism, and the inverse map T−1: ℓ̺,w1,2 → C̺,w1,2 is
explicitly given by

x 7→ fx :
(

R ∋ t 7→
∑

l∈Z

x−1,lθl(t) +
∑

(j,k)∈N0×Z

xj,kθj,k(t)
)

, (3.5)

where the series converges pointwise with respect to ‖ · ‖ and is thus well defined.

(b) The operator pseudo-quasi-norms of T and T−1 as given in Remark 2.18 satisfy the
upper bounds:

‖T‖op ≤ Cqs(1 + Cφ(1)) and ‖T−1‖op ≤ Ψ,

where the constant Ψ is given by

Ψ := CqsC
(

2φ(1) + C∗φ(12)̺(1)C̺ + 4C∗ 1

̺(1)
Cφ + 2Cφ,̺

)

, (3.6)

with

C̺ :=

∞
∑

j=0

χ(2−j−1) and Cφ,̺ := sup
j0∈N0

∞
∑

j=0

φ(2j2−j0 ∧ 2−1)
̺(2−j−1)

̺(2−j0−1)
.

The constants C̺, Cφ,̺ and consequently also Φ are real valued due to Assumption 3.1.

(c) The pseudo-quasi-norms ‖ · ‖̺,w1,2 on the spaces C̺,w1,2 and ℓ̺,w1,2 are T -equivalent,
i.e. there exist real constants K,K ′ > 0, such that, for all f ∈ C̺,w1,2, we have

K‖T (f)‖̺,w1,2 ≤ ‖f‖̺,w1,2 ≤ K ′‖T (f)‖̺,w1,2 . (3.7)

(d) ℓ̺,w1,2 is complete.

(e) The linear isomorphisms T and T−1 are homeomorphisms as maps between the
vector spaces C̺,w1,2 and ℓ̺,w1,2 endowed with the topologies induced by the respective
pseudo-quasi-norms according to Proposition 2.25.

(f) The linear isomorphisms T and T−1 are uniformly continuous as maps between the
vector spaces C̺,w1,2 and ℓ̺,w1,2 endowed with the uniformities induced by the respective
semimetrics according to Proposition 2.30 and Proposition 2.33.

Remark 3.7. Below, we will revisit the statement of Theorem 3.6(c) and further expand
it to a setting where the image space X of the functions f ∈ C̺,w1,2 can be a metric space
without a vector space structure, see Proposition 3.17 and Remark 3.18. The basic idea
behind the proofs of 3.6(a) and 3.6(b) originates from [HIPP14]. See [HIPP14, Theorem 2.2]
for the proof in the case that X = R and the domain of the functions is the unit interval.
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We will first collect some preliminary results in the form of Proposition 3.8 and Proposi-
tion 3.9 before formulating the proof of Theorem 3.6 on page 49.

Proposition 3.8. In the setting of Theorem 3.6, let f ∈ C̺,w1,2 . Then we have xf ∈ ℓ̺,w1,2 .

Proof. Upon recalling Definition 2.2 as well as (2.32) and (3.4), this easily follows from the
definitions of the spaces C̺,w1,2 and ℓ̺,w1,2 , as for l ∈ Z, we have

‖xf−1,l‖
w1(l)

=
‖al(f)‖
w1(l)

=
‖f(l)‖
w1(l)

≤ ‖f‖w1 .

Moreover, for each (j, k) ∈ N0 × Z, we have

‖2− j
2xfj,k‖ = ‖2− j

2 bj,k(f)‖ =
∥

∥2f
(

2k+1
2j+1

)

− f
(

2k+2
2j+1

)

− f
(

2k
2j+1

)∥

∥

≤ Cqs

(

∥

∥f
(

2k+1
2j+1

)

− f
(

2k
2j+1

)∥

∥+ φ(1)
∥

∥f
(

2k+2
2j+1

)

− f
(

2k+1
2j+1

)∥

∥

)

,

hence

‖2− j
2xfj,k‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) ≤ Cqs(1 + Cφ(1))‖f‖̺|w2;2−j−1 ,

which proves our claim.

Proposition 3.9. In the setting of Theorem 3.6, let x ∈ ℓ̺,w1,2. Then fx = T−1(x) ∈
C̺,w1,2.

Proof. First of all, let t ∈ R. For each j ∈ N0, we denote by k(j, t) the unique integer, such
that τj,k(j,t)(t) 6= 0, if it exists, and ignore the respective element in the series below otherwise.
The first observation to be made is that in line with Definition 2.1, (2.12), (2.28), (3.1)
and (3.4), we actually have

∞
∑

j=0

‖xj,k(j,t)τj,k(j,t)(t)‖ ≤ φ
(

1
2

)

∞
∑

j=0

‖2−j/2xj,k(j,t)‖

≤ Cφ
(

1
2

)

w2(t)‖x‖̺,w1,2

∞
∑

j=0

̺
(

2−j−1
)

≤ Cφ
(

1
2

)

w2(t)‖x‖̺,w1,2̺(1)
∞
∑

j=0

χ
(

2−j−1
)

,

(3.8)

which by (3.2) is finite. This implies in particular, that the sequence of partial sums

(fx(t))m = x−1,⌊t⌋θ⌊t⌋(t) + x−1,⌈t⌉θ⌈t⌉(t) +
m
∑

j=0

xj,k(j,t)τj,k(j,t)(t)
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3.1. ISOMORPHISM IN WEIGHTED HÖLDER SPACES 47

converges absolutely, as m → ∞. Since X is assumed to be complete, we can deduce
convergence of the X-valued series fx(t), due to Proposition 2.17(b), and therefore the
following chain of inequalities is justified by (3.8) as well as Definition 2.46:

‖fx(t)‖ =
∥

∥

∥
x−1,⌊t⌋θ⌊t⌋(t) + x−1,⌈t⌉θ⌈t⌉(t) +

∞
∑

j=0

xj,k(j,t)τj,k(j,t)(t)
∥

∥

∥

≤ Cqs

(

φ(1)‖x−1,⌊t⌋‖+ φ(1)‖x−1,⌈t⌉‖+
∞
∑

j=0

‖xj,k(j,t)τj,k(j,t)(t)‖
)

≤ CqsC‖x‖̺,w1,2

(

2φ(1) + C∗φ(12)̺(1)
∞
∑

j=0

χ
(

2−j−1
)

)

w1(t).

(3.9)

But this implies that

‖fx(t)‖
w1(t)

≤ CqsC‖x‖̺,w1,2

(

2φ(1) + C∗φ(12)̺(1)
∞
∑

j=0

χ
(

2−j−1
)

)

< ∞. (3.10)

Next on, let s, t ∈ R such that 0 < |t−s| ≤ 1, and define for each j ∈ N0 the unique integers
k(j, s) and k(j, t), such that τj,k(j,s)(s) 6= 0 and τj,k(j,t)(t) 6= 0, if they exist. Moreover, there
exist at most 4 integers li : i ∈ {1, 2, 3, 4} such that θli(s) and θli(t) do not vanish. We then
observe that, making use of Lemma 2.65, and similar as above:

∞
∑

j=0
k∈{k(j,t),k(j,s)}

‖xj,k(τj,k(t)− τj,k(s))‖

≤
∞
∑

j=0
k∈{k(j,t),k(j,s)}

φ(2j |t− s| ∧ 2−1)‖2−j/2xj,k‖

≤ 2C‖x‖̺,w1,2w2(t)̺(|t− s|)
∞
∑

j=0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|) .

Choose j0 to be the unique integer such that

2−j0−1 < |t− s| ≤ 2−j0 .

Then, making use of (3.1) and (3.2), we have

∞
∑

j=j0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|) ≤ φ(2−1)

∞
∑

j=j0

̺(2−j−1)

̺(2−j0−1)

≤ φ(2−1)

∞
∑

j=j0

χ(2j0−j) = φ(2−1)

∞
∑

j=0

χ(2−j) < ∞.
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In a similar manner, making use of (3.1) and (3.3), we have

j0−1
∑

j=0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|) ≤
j0−1
∑

j=0

φ(2j−j0)
̺(2−j−1)

̺(2−j0−1)

≤
j0−1
∑

j=0

φ(2j−j0)χ(2j0−j) =

j0−1
∑

j=0

φ(2−j−1)χ(2j+1)

≤
∞
∑

j=1

φ(2−j)χ(2j) < ∞.

As above, this implies the absolute convergence and thus convergence of the sequence of
partial sums

(fx(t)− fx(s))m =
∑

l∈{l1,...,l4}

x−1,l(θl(t)− θl(s))

+
m
∑

j=0
k∈{k(j,t),k(j,s)}

xj,k(τj,k(t)− τj,k(s)),

as m → ∞. Therefore the following chain of inequalities is justified:

‖fx(t)− fx(s)‖ =
∥

∥

∥

∑

l∈{l1,...,l4}

x−1,l(θl(t)− θl(s))

+
∞
∑

j=0
k∈{k(j,t),k(j,s)}

xj,k(τj,k(t)− τj,k(s))
∥

∥

∥

≤ Cqs

(

∑

l∈{l1,...,l4}

φ
(

|t− s|
)

‖x−1,l‖

+

∞
∑

j=0
k∈{k(j,t),k(j,s)}

φ
(

2j |t− s| ∧ 2−1
)

‖2− j
2xj,k‖

)

≤
(

4C∗ 1

̺(1)
Cφ + 2

∞
∑

j=0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|)
)

× CqsC‖x‖̺,w1,2̺(|t− s|)w2(t).

(3.11)

Moreover, we have the estimate

‖fx(t)− fx(s)‖
̺(|t− s|)w2(t)

≤ CqsC
(

4C∗ 1

̺(1)
Cφ

+ 2
∞
∑

j=0

φ
(

2j |t− s| ∧ 2−1
) ̺(2−j−1)

̺(|t− s|)
)

‖x‖̺,w1,2 < ∞,
(3.12)

where the right-hand side is uniformly bounded over all 0 < |t − s| ≤ 1 by the above
argumentation. Finally, the inequalities (3.10) and (3.12) prove our claim.
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3.1. ISOMORPHISM IN WEIGHTED HÖLDER SPACES 49

Proof of Theorem 3.6.

(a) By Proposition 3.8 and 3.9, both T : f 7→ xf and G : x 7→ fx are well defined maps
between C̺,w1,2 and ℓ̺,w1,2 . The convergence of the series (3.5) follows from the
estimate (3.9). Both T and G are linear by construction. Moreover, given f and g
such that T (f) = T (g), we immediately conclude that f = g due to the uniqueness
of coefficients in the respective expansions of f and g, see Proposition 2.9. For any
x ∈ ℓ̺,w1,2 , we have fx = G(x) ∈ C̺,w1,2 , hence T (fx) = x, again by the uniqueness of
the coefficients. We conclude that T is linear and bijective, hence an isomorphism.
Moreover, given that T (G(x)) = x as well as G(T (f)) = f , we can conclude that
G = T−1.

(b) The estimates in Proposition 3.8 imply that, for each f ∈ C̺,w1,2 ,

‖xf‖̺,w1,2 ≤ ‖f‖w1 + Cqs(1 + Cφ(1))‖f‖̺|w2

≤ Cqs(1 + Cφ(1))‖f‖̺,w1,2 ,

because all three constants C, Cqs and φ(1) are larger or equal to 1. But then (recall
that T (f) = xf )

‖T‖op = sup
f∈C̺,w1,2\{0}

‖T (f)‖̺,w1,2

‖f‖̺,w1,2

≤ Cqs(1 + Cφ(1)).

The statement for ‖T−1‖op is a direct consequence of the estimates (3.10) and (3.12).

(c) This direct follows from 3.6(b). We have that K = 1/(Cqs(1 + Cφ(1))), and K ′ = Ψ,
which is defined in (3.6).

(d) By Lemma 2.50, we know that C̺,w1,2 is complete. According to 3.6(a) and 3.6(b),
the assumptions of Proposition 2.20 are satisfied, which yields the assertion.

(e) By 3.6(b), both T and T−1 are bounded with respect to ‖ · ‖op and bounded by
construction. By Proposition 2.34 they are uniformly continuous and thus continuous.

(f) This is a direct consequence of 3.6(b) and Corollary 2.36.

This concludes our proof.

Remark 3.10. Let us briefly comment on the statement that T (f) = T (g) implies f = g, as
it is not trivial. Consider f, g ∈ C̺,w1,2 such that they both allow the expansion

f(·) = g(·) =
∑

l∈Z

alθl(·) +
∑

(j,k)∈N0×Z

bj,kτj,k(·),

with convergence either in the sense of Propositions 2.52, 2.54, Corollary 2.55 or Theorem 2.61.
According to Proposition 2.7, we know that the continuous functions f and g are equal on
the set D of dyadic rationals. This set is dense in R. Therefore, for each t ∈ R, we can find
a sequence (dn)n∈N ∈ D of dyadic rationals such that limn→∞ dn = t, and consequently

f(t) = lim
n→∞

f(dn) = lim
n→∞

g(dn) = g(t),

which implies f = g on all of R.
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3.2. ISOMORPHISM IN LITTLE WEIGHTED HÖLDER SPACES 50

3.2. Isomorphism in little weighted Hölder spaces

Our next goal is to derive similar results as in Section 3.1, but we will be focused on the little
weighted Hölder function space C̺,w1,2,0. To this end, we first need to define the analogue of
the little weighted Hölder space for sequence spaces, see also Definition 2.58.

Definition 3.11 (Little weighted Hölder sequence space). In the context of Definition 3.3,
let ℓ̺,w1,2,0 ⊂ ℓ̺,w1,2 denote the subset of all x ∈ ℓ̺,w1,2 that further satisfy the following
conditions:

(a) The sequence (x−1,l)l∈Z is a null sequence upon being weighted by (w1(l))l∈Z compo-
nentwise, i.e.

lim
|l|→∞

‖x−1,l‖
w1(l)

= 0; (3.13)

(b) Upon being weighted and scaled, the sequence x vanishes uniformly in (j, k) ∈ N0 ×Z

as j → ∞, i.e.

lim
J→∞

sup
(j,k)∈N≥J×Z

‖2− j
2xj,k‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) = 0; (3.14)

(c) Upon being weighted and scaled, the sequence x vanishes uniformly in (j, k) ∈ N0 ×Z

as k → ∞, i.e.

lim
K→∞

sup
(j,k)∈N0×Z

|k|≥2jK

‖2− j
2xj,k‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) = 0. (3.15)

We call (ℓ̺,w1,2,0, ‖ · ‖̺,w1,2) little weighted Hölder sequence space.

The main result of this section is the

Theorem 3.12. In the context of Theorem 3.6, let T0 denote the restriction of T to
C̺,w1,2,0. Then

(a) For each f ∈ C̺,w1,2,0 we have that T0(f) = xf ∈ ℓ̺,w1,2,0. In other words

T0: C̺,w1,2,0 → ℓ̺,w1,2,0.

Furthermore, T0 is an isomorphism, and the inverse T−1
0 : ℓ̺,w1,2,0 → C̺,w1,2,0 is given

by (3.5), where the series converges pointwise with respect to ‖ · ‖ and is thus well
defined.

(b) The operator pseudo-quasi-norms of T0 and T−1
0 satisfy the upper bounds:

‖T0‖op ≤ Cqs(1 + Cφ(1)), ‖T−1
0 ‖op ≤ Ψ,

where the constant Ψ is defined in (3.6).
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3.2. ISOMORPHISM IN LITTLE WEIGHTED HÖLDER SPACES 51

(c) The pseudo-quasi-norms ‖ · ‖̺,w1,2 on the spaces C̺,w1,2,0 and ℓ̺,w1,2,0 are equivalent,
i.e. there exist real constants K,K ′ > 0, such that, for all f ∈ C̺,w1,2,0, we have

K‖T0(f)‖̺,w1,2 ≤ ‖f‖̺,w1,2 ≤ K ′‖T0(f)‖̺,w1,2 . (3.16)

(d) ℓ̺,w1,2,0 is complete.

(e) The linear isomorphisms T0 and T−1
0 are homeomorphisms as maps between the vector

spaces C̺,w1,2,0 and ℓ̺,w1,2,0 endowed with the topologies induced by the respective
pseudo-quasi-norms according to Proposition 2.25.

(f) The linear isomorphisms T0 and T−1
0 are uniformly continuous as maps between

the vector spaces C̺,w1,2,0 and ℓ̺,w1,2,0 endowed with the uniformities induced by the
respective semimetrics according to Proposition 2.30 and Proposition 2.33.

(g) If additionally, we have that X is separable and w1 is nondecreasing such that
w1(t) → ∞, as |t| → ∞, then ℓ̺,w1,2,0 is separable as well.

Remark 3.13. The basic idea behind the proof of 3.12(a) and 3.12(b) originates from [HIPP14].
See [HIPP14, Theorem 2.3] and [AIP13, Theorem 1] for the proof in the case that X = R

or X is a real Hilbert space, and the domain of the functions is the unit interval. Let us
also remark that the assumptions of Theorem 3.12(g) are actually too restrictive. However,
in the chosen setting, they allow to draw a direct connection to separability properties of
the little weighted Hölder spaces C̺,w1,2,0 in line with Corollary 2.67. We will also provide a
much simpler and much more direct proof under milder conditions below in Proposition 3.16.

We will first collect some preliminary results in the form of Proposition 3.14 and Proposi-
tion 3.15 before formulating the proof of Theorem 3.12 on page 55.

Proposition 3.14. In the context of Theorem 3.12, let f ∈ C̺,w1,2,0. Then T0(f) = xf ∈
ℓ̺,w1,2,0.

Proof. Similar as in Proposition 3.8, we have for each l ∈ Z

‖xf−1,l‖
w1(l)

=
‖al(f)‖
w1(l)

=
‖f(l)‖
w1(l)

,

therefore, by making use of (2.40), it follows that

lim
|l|→∞

‖xf−1,l‖
w1(l)

= lim
|t|→∞

‖f(t)‖
w1(t)

= 0.

Next, given the estimate

‖2− j
2xfj,k‖ = ‖2− j

2 bj,k(f)‖ = ‖2f
(

2k+1
2j+1

)

− f
(

2k+2
2j+1

)

− f
(

2k
2j+1

)

‖

≤ Cqs

(

‖f
(

2k+1
2j+1

)

− f
(

2k
2j+1

)

‖+ φ(1)‖f
(

2k+2
2j+1

)

− f
(

2k+1
2j+1

)

‖
)

,
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which for (j, k) ∈ N≥J × Z for J ∈ N, implies on the one hand that

‖2− j
2xfj,k‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) ≤ Cqs(1 + Cφ(1))‖f‖̺|w2;2−J−1 ,

and for (j, k) ∈ N0 × Z such that |k| ≥ 2jK for some K ∈ N on the other hand

‖2− j
2xfj,k‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) ≤ Cqs(1 + Cφ(1)) sup
s,t∈R\[−K+1,K−1]

0<|t−s|≤1

‖f(t)− f(s)‖
̺(|t− s|)w2(t)

.

By (2.41) and (2.42), we can conclude that both (3.14) and (3.15) hold.

Proposition 3.15. In the setting of Theorem 3.12, let x ∈ ℓ̺,w1,2,0. Then fx = T−1
0 (x) ∈

C̺,w1,2,0.

Proof. We start with the estimate (3.9) from Proposition 3.9, in particular

‖fx(t)‖ =
∥

∥x−1,⌊t⌋θ⌊t⌋(t) + x−1,⌈t⌉θ⌈t⌉(t) +

∞
∑

j=0

xj,k(j,t)τj,k(j,t)(t)
∥

∥

≤ Cqs

(

φ(1)‖x−1,⌊t⌋‖+ φ(1)‖x−1,⌈t⌉‖+ φ(12)
∞
∑

j=0

‖2−j/2xj,k(j,t)‖
)

.

The first two summands inside the bracket satisfy, upon division by w1(t), the upper bounds

C
‖x−1,m‖
w1(m)

, m ∈
{

⌊t⌋, ⌈t⌉
}

.

The last element of the sum, when weighted by w1(t), satisfies the upper bound

CC∗
∞
∑

j=0

̺
(

2−j−1
) ‖2−j/2xj,k(j,t)‖
̺
(

2−j−1
)

w2

(2k(j,t)+1
2j+1

)

≤ CC∗̺(1)
∞
∑

j=0

χ
(

2−j−1
)

sup
(j,k)∈N0×Z

|k|≥⌊2j |t|⌋−1

‖2−j/2xj,k‖
̺
(

2−j−1
)

w2

(

2k+1
2j+1

) .

By (3.13) and (3.15) as well as (3.2), these upper bounds converge to 0, as |t| → ∞.
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In order to show (2.41), we make use of the estimate (3.11), in particular:

‖fx(t)− fx(s)‖ =
∥

∥

∑

l∈{l1,...,l4}

x−1,l(θl(t)− θl(s))

+
∞
∑

j=0
k∈{k(j,t),k(j,s)}

xj,k(τj,k(t)− τj,k(s))
∥

∥

≤ Cqs

(

∑

l∈{l1,...,l4}

φ
(

|t− s|
)

‖x−1,l‖

+
∞
∑

j=0
k∈{k(j,t),k(j,s)}

φ
(

2j |t− s| ∧ 2−1
)

‖2− j
2xj,k‖

)

The first four summands, upon dividing by ̺(|t− s|)w2(t), allow for the upper bound

CC∗φ(|t− s|)
̺(|t− s|) supl∈Z

‖x−1,l‖
w1(l)

.

The last term, being an infinite series, allows the upper bound, when divided by ̺(|t−s|)w2(t):

2C

∞
∑

j=0

φ
(

2j |t− s| ∧ 2−1
) ̺(2−j−1)

̺(|t− s|) supu≥j
k∈Z

‖2−u/2xu,k‖
̺(2−u−1)w2(

2k+1
2u+1 )

.

For the sake of notational simplicity, let us define the monotonically decreasing sequence
(h(j))j∈N0 by

h(j) = sup
u≥j
k∈Z

‖2−u/2xu,k‖
̺(2−u−1)w2(

2k+1
2u+1 )

and note that, by (3.14), h(j) → 0, as j → ∞. Let us split the series into two parts. Given
s, t ∈ R such that 0 < |t− s| ≤ 1, choose j0 to be the unique integer such that

2−j0−1 < |t− s| ≤ 2−j0 .

Then, making use of (3.1) and (3.3), we have

∞
∑

j=j0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|)h(j) ≤ φ(12)
∞
∑

j=j0

̺(2−j−1)

̺(2−j0−1)
h(j0)

≤ φ(12)
∞
∑

j=j0

χ(2j0−j)h(j0) = φ(12)
∞
∑

j=0

χ(2−j)h(j0).

Making use of (3.2) as well as the fact that h is a null sequence, we conclude that the last
expression above vanishes, as j0 → ∞. In a similar manner, making use of (3.1) and (3.3),
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we have

j0−1
∑

j=0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|)h(j) ≤
j0−1
∑

j=0

φ(2j−j0)
̺(2−j−1)

̺(2−j0−1)
h(j)

≤
j0−1
∑

j=0

φ(2j−j0)χ(2j0−j)h(j) =

j0−1
∑

j=0

φ(2−j−1)χ(2j+1)h(j0 − j − 1)

=

∞
∑

j=1

φ(2−j)χ(2j)h(j0 − j)1j≤j0 .

In order to show that the last expression above vanishes, as j0 → ∞, let us take a closer
look at

∞
∑

j=1

φ(2−j)χ(2j)h(j0 − j)1j≤j0 . (3.17)

On the one hand, we know that (3.3) holds. Therefore, the sequence

(

φ(2−j)χ(2j)
)

j∈N

induces a finite measure on N that we denote µ. Moreover, let us consider a sequence of
functions (fj0)j0∈N given by

fj0 : N → R+ : j 7→ h(j0 − j)1j≤j0 .

It follows that (fj0)j0∈N is uniformly bounded from above by h(0) and pointwise it holds
that

lim
j0→∞

fj0(j) = lim
j0→∞

h(j0 − j)1j≤j0 = lim
l→∞

h(l) = 0.

Upon observing that (3.17) can be written as

∫

N

fj0(j) µ(dj), (3.18)

we can apply the dominated convergence theorem to conclude that (3.17) vanishes, as
j0 → ∞.
This was the most involved line of arguments. We are finally left with showing (2.42),

which goes as follows: Let n ∈ N0 and s, t ∈ R \ [−n, n] such that 0 < |t− s| ≤ 1 be given.
Let us recycle some of the above ideas. First, we have the same estimate

‖fx(t)− fx(s)‖ ≤ Cqs

(

∑

l∈{l1,...,l4}

φ
(

|t− s|
)

‖x−1,l‖

+
∞
∑

j=0
k∈{k(j,t),k(j,s)}

φ
(

2j |t− s| ∧ 2−1
)

‖2− j
2xj,k‖

)

.
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The first sum admits, similarly as above, the weighted upper bound

CC∗ sup
l∈Z

|l|≥n−1

‖x−1,l‖
w1(l)

φ(|t− s|)
̺(|t− s|) ≤ CC∗ Cφ

̺(1)
sup
l∈Z

|l|≥n−1

‖x−1,l‖
w1(l)

.

Clearly, by (3.13), the right-hand side goes to 0, as n → ∞. The last term now admits the
weighted upper bound

2C
∞
∑

j=0

φ(2j |t− s| ∧ 2−1)
̺(2−j−1)

̺(|t− s|) sup
u∈N0

|k|≥2un−1

‖2−u/2xu,k‖
̺(2−u−1)w2(

2k+1
2u+1 )

,

which consists of a series that is dominated from above by (3.2) and (3.3), uniformly over
all 0 < |t− s| ≤ 1, and a sequence that by (3.15) converges to 0, as n → ∞.

This concludes our proof.

Proof of Theorem 3.12. This can be shown exactly as in the proof of Theorem 3.12 on
page 49, upon noting that by Proposition 3.14 and Proposition 3.15, both T0 : f 7→ xf

and G : x 7→ fx are well defined maps between C̺,w1,2,0 and ℓ̺,w1,2,0. Point (g) follows
from 3.12(e), Corollary 2.67 and Proposition 2.29.

Proposition 3.16. In the context of Definition 3.11, assume the pseudo-quasi-normed
space X to be separable. Then so is the little weighted Hölder sequence space ℓ̺,w1,2,0.

Proof. Let EX denote a countable dense subset in X, and M be the set of double indexed
sequences x ∈ EN∗×Z

X with at most finitely many nonzero entries. The first observation to
be made is that M is a countable set.

Next, for each x ∈ ℓ̺,w1,2,0 and ε > 0, according to (3.13), (3.14) and (3.15), we can find
a pair (J,K) ∈ N×N such that, for all (j, k) ∈ N∗×Z with j ≥ J or |k| ≥ K, the respective
scaled entries in the sequence norm (3.4) are bounded from above by ε. As the set EX

is dense in X, we can find for each (j, k) ∈ N∗ × Z with j < J and |k| < K an element
x∗j,k ∈ EX , such that it approximates the elements xj,k arbitrarily close in the respective
scaled norm parts of (3.4). To be precise, we choose for each (j, k) ∈ N∗ × Z with j < J
and |k| < K an element x∗j,k ∈ EX such that, for all j = −1 and |k| < K:

‖x−1,l − x∗−1,l‖
w1(l)

≤ ε,

and for all j ∈ {0, 1, . . . J − 1} and |k| < K:

‖2− j
2 (xj,k − x∗j,k)‖

̺
(

2−j−1
)

w2

(

2k+1
2j+1

) ≤ ε.

Consequently, if we consider the sequence x∗ that is composed of the finitely many x∗j,k ∈ EX

chosen above, and is set to zero otherwise, we have that x∗ ∈ M and ‖x − x∗‖̺,w1,2 ≤ ε,
which concludes our proof.
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3.3. First order differences and metric space setting

The ideas of the following line of reasoning are not new. In fact, they have been applied in
the context of Besov spaces in [Ros09] as well as [LPT20]. The idea goes as follows: In the
context of Theorem 3.6, according to point (c), we have for each f ∈ C̺,w1,2 equivalence of
the norms ‖f‖̺,w1,2 ∼ ‖f‖̺,w1,2;(2), given by

‖f‖̺,w1,2
:= sup

t∈R

‖f(t)‖
w1(t)

+ sup
s,t∈R

0<t−s≤1

‖f(t)− f(s)‖
̺(t− s)w2(t)

, (3.19)

and

‖f‖̺,w1,2;(2) := sup
l∈Z

‖f(l)‖
w1(l)

+ sup
(j,k)∈N0×Z

∥

∥2f
(

2k+1
2j+1

)

− f
(

2k+2
2j+1

)

− f
(

2k
2j+1

)∥

∥

̺
(

2−(j+1)
)

w2

(

2k+1
2j+1

) . (3.20)

It is important to note that there is a canonical counterpart of (3.19) for the metric space
valued setting, by identifying ‖f(t)‖ = ‖f(t)−f(0)‖ with d(f(t), f(0)) and ‖f(t)−f(s)‖ with
d(f(t), f(s)). However, for (3.20) this is not the case, because the second order differences
appearing do not have a canonical generalization to metric spaces, due to the fact that
these need not be endowed with a vector space structure. Luckily, we can draw from the
ideas of [Ros09, Theorem 1], and try to show that we actually have the equivalence of three
norms ‖f‖̺,w1,2 ∼ ‖f‖̺,w1,2;(1) ∼ ‖f‖̺,w1,2;(2), where

‖f‖̺,w1,2;(1) := sup
l∈Z

‖f(l)‖
w1(l)

+ sup
(j,k)∈N0×Z

∥

∥f
(

k+1
2j

)

− f
(

k
2j

)∥

∥

̺
(

2−j
)

w2

(

2k+1
2j+1

) . (3.21)

We will now try to verify that indeed, for any f ∈ C̺,w1,2 , the equivalence ‖f‖̺,w1,2;(1) ∼
‖f‖̺,w1,2;(2) holds. Then, we will draw from the observation that the first order differences
appearing in (3.21) do in fact have a canonical generalization to the metric space setting.
Finally, by means of a suitably chosen result in the spirit of Kuratowski’s embedding,
see [Kur35], we will extend the equivalence ‖f‖̺,w1,2 ∼ ‖f‖̺,w1,2;(1) to the setting of
functions on metric spaces.
Recall that each f ∈ C̺,w1,2 admits the expansion

f(t) =
∑

l∈Z

al(f)θl(t) +
∑

(j,k)∈N0×Z

bj,k(f)τj,k(t),

and that the estimates of Lemma 2.65 as well as Assumption (3.3) hold. Pick some
(n, r) ∈ N0 × Z. Then, by making use of the quasi-subadditivity property (2.11), we have

∥

∥f
(

r+1
2n

)

− f
(

r
2n

)∥

∥ ≤ Cqs

(

∑

l∈Z

‖al(f)(θl
(

r+1
2n

)

− θl
(

r
2n

)

)‖

+
n−1
∑

j=0

∑

k∈Z

‖bj,k(f)(τj,k
(

r+1
2n

)

− τj,k
(

r
2n

)

)‖
)

.
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Note that we are summing over j ∈ {0, 1, . . . , n− 1}, as evaluations of τj,k for j ≥ n just
equal 0. In particular, we are applying the quasi-subadditivity property to a finite sum,
therefore we do not need to worry about convergence issues.
We will first focus our attention on the second part, the sum over j. Note that for each

(j, n, r) ∈ N2
0 × Z, there exists at most one k = k(j,n,r) ∈ Z, such that

0 6=
∣

∣τj,k(j,n,r)

(

r+1
2n

)

− τj,k(j,n,r)

(

r
2n

)
∣

∣ ≤ 2j/2−n,

in which case, we actually can make the crucial observation that

∣

∣

2r+1
2n+1 − 2k(j,n,r)+1

2j+1

∣

∣ ≤ 1.

The idea behind the following estimates originates from [Ros09]:

sup
r∈Z

∑n−1
j=0 ‖2−j/2bj,k(j,n,r)

‖φ(2j−n)

̺
(

2−n
)

w2

(

2r+1
2n+1

) =
n−1
∑

j=0

φ(2j−n)

̺(2−n)
sup
r∈Z

‖2−j/2bj,k(j,n,r)
‖

w2

(

2r+1
2n+1

)

≤ C

n−1
∑

j=0

φ(2j−n)

̺(2−n)
sup
r∈Z

‖2−j/2bj,k(j,n,r)
‖

w2

(2k(j,n,r)+1

2j+1

)

≤ C

n−1
∑

j=0

φ(2j−n)

̺(2−n)
sup
k∈Z

‖2−j/2bj,k‖
w2

(

2k+1
2j+1

)

≤ C‖f‖̺,w1,2;(2)

n−1
∑

j=0

φ(2j−n)
̺(2−j−1)

̺(2−n)
≤ C‖f‖̺,w1,2;(2)

n−1
∑

j=0

φ(2j−n)χ(2n−j−1)

≤ C‖f‖̺,w1,2;(2)

n−1
∑

j=0

φ(2−j−1)χ(2j) ≤ C‖f‖̺,w1,2;(2)

∞
∑

j=1

φ(2−j)χ(2j).

Recall that, by (3.3), we have

∞
∑

j=1

φ(2−j)χ(2j) < ∞.

All of the above now yields

sup
(n,r)∈N0×Z

∑n
j=0 ‖2−j/2bj,k(j,n,r)

‖φ(2j−n)

̺
(

2−n
)

w2

(

2r+1
2n+1

) ≤ C‖f‖̺,w1,2;(2) sup
n∈N0

n
∑

j=0

φ(2−j−1)χ(2j)

≤ C‖f‖̺,w1,2;(2)

∞
∑

j=1

φ(2−j)χ(2j) . ‖f‖̺,w1,2;(2).

Now we are still left with finding an estimate for

sup
r∈Z

∑

l∈Z ‖al(f)(θl
(

r+1
2n

)

− θl
(

r
2n

)

)‖
̺
(

2−n
)

w2

(

2r+1
2n+1

) .

Similarly as above, for each (n, r) ∈ N0 × Z, there exist at most two nonnegative integers
l1 < l2 such that

0 6=
∣

∣θli
(

r+1
2n

)

− θli
(

r
2n

)∣

∣ ≤ 2−n, i ∈ {1, 2},
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in which case we actually also have the crucial observation that

l1 ≤ 2r+1
2n+1 ≤ l2.

Making use of (2.26), we have

sup
(n,r)∈N0×Z

∑

l∈Z ‖al(f)(θl
(

r+1
2n

)

− θl
(

r
2n

)

)‖
̺
(

2−n
)

w2

(

2r+1
2n+1

) ≤ sup
n∈N0

2
φ(2−n)

̺(2−n)
CC∗ sup

l∈Z

‖al(f)‖
w1(l)

≤ 2CC∗

̺(1)
‖f‖̺,w1,2;(2) sup

n∈N0

φ
(

2−n

1

) ̺(1)

̺
(

2−n
) ≤ 2CC∗Cφ

̺(1)
‖f‖̺,w1,2;(2).

To sum up, in pulling all of the above estimates together we have shown that for f ∈ C̺,w1,2

it holds that ‖f‖̺,w1,2;(1) . ‖f‖̺,w1,2;(2). But the other direction

‖f‖̺,w1,2;(2) ≤ CqsC(1 + φ(1))‖f‖̺,w1,2;(1)

readily follows from making use of the quasi-subadditivity (2.11) as well as the bounded
growth condition (2.28) of the weights. Therefore, we have proven the

Proposition 3.17. In the context of Theorem 3.6 each f ∈ C̺,w1,2 satisfies the equivalence
property

‖f‖̺,w1,2 ∼ ‖f‖̺,w1,2;(1) ∼ ‖f‖̺,w1,2;(2). (3.22)

Remark 3.18. How can we use Proposition 3.17 for an extension of the norm equivalence
to metric spaces? We have to note that the setting of Proposition 3.17 contains the case
where f takes values in a Banach space. Assume now that our image space is actually a
metric space (Y, d). According to Kuratowski’s embedding, see [Kur35], there exists a map

Φ: (Y, d) → (Cb(Y ), ‖ · ‖∞)

into the space of all bounded, continuous and real-valued maps, endowed with the uniform
norm, such that Φ is an isometry. Since (Cb(Y ), ‖ · ‖∞) is a Banach space, we can use
the machinery of Proposition 3.17 to conclude that, for each f ∈ C̺,w1,2,d, where C̺,w1,2,d

denotes the metric space valued version of the space C̺,w1,2 , we have

sup
t∈R

d(0, f(t))

w1(t)
+ sup

s,t∈R
0<t−s≤1

d(f(t), f(s))

̺(t− s)w2(t)

= sup
t∈R

‖Φ(f(t))‖∞
w1(t)

+ sup
s,t∈R

0<t−s≤1

‖Φ(f(t))− Φ(f(s))‖∞
̺(t− s)w2(t)

∼ sup
l∈Z

‖Φ(f(l))‖∞
w1(l)

+ sup
(j,k)∈N0×Z

∥

∥Φ
(

f
(

k+1
2j

))

− Φ
(

f
(

k
2j

))
∥

∥

∞

̺
(

2−j
)

w2

(

2k+1
2j+1

)

= sup
l∈Z

d(0, f(l))

w1(l)
+ sup

(j,k)∈N0×Z

d
(

f
(

k+1
2j

)

, f
(

k
2j

))

̺
(

2−j
)

w2

(

2k+1
2j+1

) .

This concludes our section on metric space valued functions.
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4. Large deviations in weighted Hölder

spaces for Banach-space-valued

Brownian motion on the half-line

4.1. Infinite-dimensional Gaussian distributions

The aim of this section is to establish some basic ideas about Gaussian measures on
topological vector spaces. We will revisit some concepts from [Bog98, Chapter 2 and
Appendix A] with the intention to familiarize ourselves to a more general notion of Brownian
motion, which will complement the setting of the following sections, where we will consider
stochastic processes with values in real separable Banach spaces.
Let X denote a vector space over R. We begin with some basic terminology.

(a) We call a map p: X → R+ a seminorm, if for all λ ∈ R and x, y ∈ X it holds
that p(λx) = |λ|p(x) (absolute homogeneity) as well as p(x + y) ≤ p(x) + p(y)
(subadditivity).

(b) Let A denote a non-empty set. We call the family P = (pα)α∈A of seminorms on X
point-separating, if for each x ∈ X \ {0}, there exists an α ∈ A such that pα(x) > 0.

(c) We call X a locally convex topological vector space, if the topology on X is generated
by a family P of point-separating seminorms. In this case, a neighborhood basis of
any point x ∈ X is given by sets of the form

{

y ∈ X : pαi
(x− y) < ε, i = 1, . . . , n

}

,

where ε > 0 and α1, . . . , αn ∈ A with n ∈ N.

(d) Let (X, T ) denote a locally convex topological vector space. We then denote X∗ the
topological dual, i.e. the space of continuous linear functionals on X. Similarly, we
denote X ′ the algebraic dual, i.e. the space on linear functionals on X.

(e) Let E(X) denote the smallest σ-algebra that makes all elements of X∗ measurable.

(f) Let F denote a set of functions on X. We neither assume them to be linear, nor
continuous. We then denote E(X,F ) the smallest σ-algebra that makes all elements
of F measurable. In general, we only have E(X) ⊂ B(X), where B(X) denotes the
Borel σ-algebra. However, in many cases we actually have equality, especially if X is
a separable Fréchet space.

(g) By the previous point, it clearly holds that E(X) = E(X,X∗).
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(h) Let µ denote a measure on (X, E(X)), and choose h ∈ X. We denote µh to be the
pushforward measure under the map X ∋ x 7→ x+ h. This implies for A ∈ E(X) that
µh(A) = µ(A− h). Note that µ does not need to be a probability measure.

(i) Let µ denote a measure on (X, E(X)). Then E(X)µ denotes the Lebesgue completion
of E(X). This means that A ∈ E(X)µ if there exist B1, B2 ∈ E(X) such that
B1 ⊂ A ⊂ B2 and

µ(B2 \B1) = 0.

Definition 4.1 (Gaussian measure). Let X denote a locally convex topological vector space
over R. We call a probability measure γ on (X, E(X)) Gaussian, if one of the following two
equivalent conditions holds:

(a) For each f ∈ X∗, there exists an a ∈ R and σ ≥ 0, such that for all F ∈ B(R), we
have in the case σ > 0:

γ({f ∈ F}) =
∫

F

1√
2πσ2

e−
(x−a)2

2σ2 λ(dx),

and in the case σ = 0:

γ({f ∈ F}) = δa(F ),

where δa denotes the Dirac point mass at a, and λ denote the Lebesgue–Borel measure.

(b) There exist a linear functional L ∈ (X∗)′ and a positive semidefinite symmetric bilinear
form q on X∗, such that for each f ∈ X∗, we have

∫

X
eif(x) γ(dx) = eiL(f)−

1
2 q(f,f).

If we have for each f ∈ X∗ that a = 0, or equivalently, L ≡ 0, we call γ a centered Gaussian
measure. Moreover, if (Ω,F ,P) denotes a probability space, and ξ is a random vector, i.e. a
measurable map ξ: (Ω,F) → (X, E(X)), then we call ξ Gaussian, if it induces a Gaussian
measure on (X, E(X)). We call ξ a Gaussian random variable, if it is a Gaussian random
vector with image space (R,B(R)).

Remark 4.2. Note that condition 4.1(a) is a statement about the pushforward-measures
γ ◦ f−1 on (R,B(R)), while the equivalent condition 4.1(b) is a statement about the Fourier
transform of the measure γ on (X, E(X)). The fact that these two conditions are equivalent
is not a triviality, for a proof see [Bog98, Theorem 2.2.4]. Moreover, the special case of a
centered Gaussian measure originates from the defining requirement that for all F ∈ E(X),
we have γ(F ) = γ(−F ), see [Bog98, Corollary 2.2.5]. In 4.1(a), we call γ degenerate if there
exists an f ∈ X∗ that is not the zero functional, such that the corresponding σ satisfies
σ = 0, and nondegenerate otherwise.
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Definition 4.3 (Mean and covariance operator). Let X denote a locally convex topological
vector space over R. Consider a probability measure γ on (X, E(X)) and assume that
X∗ ⊂ L2(γ) holds. Then, the mean of γ is given as the element aγ in the algebraic dual of
X∗, i.e. aγ ∈ (X∗)′, such that

aγ(f) =

∫

X
f(x) γ(dx), f ∈ X∗.

Moreover, the covariance operator Rγ : X
∗ → (X∗)′ of γ is given by

Rγ(f)(g) =

∫

X

(

f(x)− aγ(f)
)(

g(x)− aγ(g)
)

γ(dx), f, g ∈ X∗,

where we call the quadratic form f 7→ Rγ(f)(f) the covariance of γ.

Definition 4.4 (Abstract Cameron–Martin space). Let X denote a locally convex topolog-
ical vector space over R and consider a Gaussian measure γ on (X, E(X)). The abstract
Cameron–Martin space H(γ) ⊂ X is then given by

H(γ) :=
{

h ∈ X : ‖h‖H(γ) < ∞
}

,

where

‖h‖H(γ) := sup
{

f(h) : f ∈ X∗, Rγ(f)(f) ≤ 1
}

.

Now we move on to processes.

Definition 4.5 (Gaussian random process). Let T be a nonempty set. Consider a family
(ξt)t∈T of random vectors. It is then called a Gaussian random process, if for each n ∈ N

and t1, . . . , tn ∈ T as well as f1, . . . , fn ∈ X∗, we have that (f1(ξt1), . . . , fn(ξtn)) induces a
Gaussian measure on (Rn,B(Rn)) in the sense of Definition 4.1.

The Gaussian random process ξ induces a Gaussian measure γξ on RT , the space of
functions f : T → R, endowed with the topology of pointwise convergence, see [Bog98,
Proposition 2.3.9]. This topology is induced by the family (δt)t∈T of seminorms mapping
RT ∋ x 7→ δt(x) := |x(t)|. The function q for this measure γξ from Definition 4.1(b) is
uniquely determined by the covariance function K: T × T → R given by

K(s, t) = E
[

(ξs − E[ξs])(ξt − E[ξt])
]

.

It then holds that K(s, t) = q(δs, δt).

Example 4.6. Let T denote a nonempty set, and consider X = RT . Let L and q denote a
linear and positive semidefinite bilinear form on (RT )∗, respectively, and consider the map
F : (RT )∗ → C given by

f 7→ eiL(f)−
1
2 q(f,f),

see also Definition 4.1(b). By [Bog98, Proposition 2.3.9], it holds that F is the Fourier
transform of some Gaussian measure γ on X. We will now consider some specific examples
of processes that can be constructed from these measures on suitably chosen subsets of X
of full measure, by choosing T = R+, L ≡ 0 as well as different covariance functions K, see
also [Bog98, Examples 2.3.11 and 2.3.15].
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(a) Brownian motion: Choose

K(s, t) = min{s, t}, 0 ≤ s ≤ t < ∞.

(b) Fractional Brownian motion: Choose α ∈ (0, 1] and set

K(s, t) = 1
2

(

s2α + t2α − (t− s)2α
)

, 0 ≤ s ≤ t < ∞.

(c) Stationary Ornstein–Uhlenbeck process: Choose

K(s, t) = e−(t−s), 0 ≤ s ≤ t < ∞.

(d) Fractional Ornstein–Uhlenbeck process: Choose α ∈ (0, 1] and set

K(s, t) = e−(t−s)2α , 0 ≤ s ≤ t < ∞.

One of the overarching concepts that we will be dealing with is the notion of abstract
Wiener spaces. For the remainder of this chapter, we denote by M1(E) the set of probability
measures on (E,B(E)), for a given real separable Banach space E. We follow the expositions
in [BBK92] as well as [Str11, Chapter 8]. Let us state the

Definition 4.7 (Abstract Wiener space). Let H denote a real separable Hilbert space, E
denote a real separable Banach space and W be a probability measure on (E,B(E)). The
triple (H,E,W) is called an abstract Wiener space, if

• H is continuously embedded as a dense subspace of E;

• For every w∗ in the topological dual E∗, we have
∫

E
ei〈w

∗,w〉 W(dw) = e−
1
2‖hw∗‖2H , (4.1)

where 〈·, ·〉 denotes the dual pairing of (E∗, E) and hw∗ ∈ H is the unique element
such that (hw∗ , h)H = 〈w∗, h〉 for all h ∈ H.

Note that the Equation (4.1) is a statement about the Fourier transform of the probability
measure W . The existence and uniqueness of hw∗ is obtained by means of the Fréchet–Riesz
representation theorem, see [Sch20, Theorem 14.16]. Moreover, Equation (4.1) implies that
W is a centered and nondegenerate Gaussian measure on E. In contrast to Definition 4.1,
we write W instead of γ, because Gaussian measures on abstract Wiener spaces are also
referred to as Wiener measures, in honor of the mathematician Norbert Wiener, who made
significant contributions to the theory.
If W denotes a centered and nondegenerate Gaussian measure on E in the sense of

Definition 4.1, where E denotes a real separable Banach space, then, according to [Str11,
Theorem 8.2.5], there exists a unique real, separable Hilbert space H, such that (H,E,W)
becomes an abstract Wiener space. We call H the corresponding Cameron–Martin space,
see also Definition 4.4.

In what follows, let H denote a real, separable Hilbert space.
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Definition 4.8 (absolute continuity). A map h: R+ → H is called absolutely continuous,
if for each ε > 0, there exists a δ > 0, such that, for all n ∈ N and 0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤
. . . ≤ an ≤ bn < ∞ with

∑n
i=1(bi − ai) < δ, it follows that

n
∑

i=1

‖h(bi)− h(ai)‖H < ε.

Every Lipschitz-continuous map is absolutely continuous. Moreover, every absolutely
continuous map is uniformly continuous and thus continuous. But more strikingly, it is
differentiable λ-almost everywhere. In fact, we have the following theorem, which also holds
if the image space is more generally a reflexive Banach space (see [AGS08, Remark 1.1.3]):

Theorem 4.9. Let h: R+ → H be an absolutely continuous map, and λ denote the Lebesgue–
Borel measure on (R+,B(R+)). Then h is differentiable λ-almost everywhere with H-valued
density ḣ. Moreover, for any two points a < b in R+, we have

h(b)− h(a) =

∫ b

a
ḣ(s) λ(ds).

Note that Theorem 4.9 can actually be generalized to the case where the image space of
h: R+ → X is a metric space, see [AGS08, Section 1.1].
Upon having treated the basic framework, we are ready to state the

Definition 4.10 (Classical Cameron–Martin space). See [Str11, Section 8.6.1]. Let H1(H)
denote the vector space of maps h: R+ → H that satisfy h(0) = 0 ∈ H, that are absolutely
continuous, and admit a square-integrable density ḣ. Endowed with the norm

‖h‖H1(H) := ‖ḣ‖L2(R+,H) =
(

∫

R+

‖ḣ(s)‖2H λ(ds)
)1/2

,

H1(H) actually constitutes a Hilbert space. We call (H1(H), ‖ · ‖H1(H)) the classical
Cameron–Martin space.

Remark 4.11. The connection between the Definitions 4.4 and 4.10 is established in [Bog98,
Lemma 2.3.14] for the case of real-valued Gaussian random processes on the unit time
interval.

Lemma 4.12. The Cameron–Martin space as given in Definition 4.10 is a real separable
Hilbert space.

Proof. According to [Rud91, Definition 12.1], we first have to show that H1(H) is a vector
space over R that carries an inner product, i.e. a positive definite and symmetric map
〈·, ·〉H1(H): H

1(H)×H1(H) → R that is linear in its first argument, which induces a norm
that makes the space complete.
The vector space structure is easy to see. For g, h ∈ H1(H), we set

〈g, h〉H1(H) :=

∫

R+

〈ġ(s), ḣ(s)〉H λ(ds),
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4.1. INFINITE-DIMENSIONAL GAUSSIAN DISTRIBUTIONS 64

where 〈·, ·〉H : H × H → R denotes the inner product on the Hilbert space H. It is
straightforward to verify the symmetry and linearity in the first argument of 〈·, ·〉H1(H).
Moreover, we have that 〈·, ·〉H1(H) is well defined, which can be seen by means of applying
the Cauchy–Schwarz inequality twice.

We focus on showing positive definiteness. We have to show that 〈h, h〉H1(H) = 0 if h = 0

and 〈h, h〉H1(H) > 0 if h 6= 0. If h = 0, then ḣ ≡ 0, and therefore 〈h, h〉H1(H) = 0 due to
the fact that the inner product 〈·, ·〉H is indeed positive definite. On the other hand, if we
assume that h 6= 0, then there exists at least one t ∈ R+ such that h(t) 6= 0. Let us now
write

〈h, h〉H1(H) =

∫

R+

〈ḣ(s), ḣ(s)〉H λ(ds)

=

∫

{ḣ=0}
〈ḣ(s), ḣ(s)〉H λ(ds) +

∫

{ḣ 6=0}
〈ḣ(s), ḣ(s)〉H λ(ds)

=

∫

{ḣ 6=0}
〈ḣ(s), ḣ(s)〉H λ(ds).

Since on the set {ḣ 6= 0} it holds that 〈ḣ(s), ḣ(s)〉H > 0, we just have to verify that
λ({ḣ 6= 0}) > 0. Let us assume that this is not the case, i.e. we assume that λ({ḣ 6= 0}) = 0.
But then, upon recalling that h(0) = 0 holds, we have for the above t ∈ R+ where h(t) 6= 0:

h(t) =

∫ t

0
ḣ(s) λ(ds) = 0,

which yields a contradiction to the assumption h 6= 0 and implies that, 〈h, h〉H1(H) > 0.
In order to show completeness of the space H1(H), note that L2(R+;H) is complete.

If (hn)n∈N denotes a Cauchy sequence in H1(H), then (ḣn)n∈N is a Cauchy sequence in
L2(R+;H), and thus converges to some g ∈ L2(R+;H). If we now consider h := R+ ∋ t 7→
∫ t
0 g(s) λ(ds), then h ∈ H1(H) with ‖hn − h‖H1(H) = ‖ḣn − g‖L2(R+;H) → 0, as n → ∞.
Finally, we show that H1(H) is separable. According to [Str11, Section 8.3.2], the family

{ḣj,k : (j, k) ∈ N2
0} of functions given by ḣ0,k = 1[k,k+1) and

ḣj,k = 2(j−1)/2(1[k21−j ,(2k+1)2−j) − 1[(2k+1)2−j ,(k+1)21−j))

is an orthonormal basis in L2(R+;R). As we assume H to be separable, there exists an
orthonormal basis (en)n∈N0 in H. Upon defining hj,k : R+ ∋ t 7→

∫ t
0 ḣj,k(s) λ(ds), it follows

that the family {hj,kei : (i, j, k) ∈ N3
0} is an orthonormal basis in H1(H). Consequently,

H1(H) is separable.

Let Θ(E) denote the space of all continuous θ: R+ → E that satisfy θ(0) = 0 as well as

lim
t→∞

‖θ(t)‖E
t

= 0.

Endowed with the norm ‖θ‖Θ(E) := supt∈R+
‖θ(t)‖E/(1 + t) the space Θ(E) constitutes a

separable Banach space, and it can be further shown that H1(H) is continuously embedded
into Θ(E) as a dense subspace, which can be shown similarly as in [Str11, Section 8.1].
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4.2. CAMERON–MARTIN AND WEIGHTED HÖLDER SPACES 65

According to [Str11, Theorem 8.6.1], there exists a unique probability measure W(E) ∈
M1(Θ(E)) such that (H1(H),Θ(E),W(E)) constitutes an abstract Wiener space.

Let us revisit in this general context the notion of a Brownian motion.

Definition 4.13 (W-Brownian motion). Let (H,E,W) denote an abstract Wiener space as
given in Definition 4.7. Consider a filtered probability space (Ω,F ,F,P) and a measurable
map B: R+ × Ω → E. We then call B a W-Brownian motion, if

1. B is F-progressively measurable, i.e. for all T ∈ R+, the restricted map B↾[0,T ]×Ω
is

B([0, T ])⊗FT -measurable;

2. B0(ω) = 0 and B·(ω) ∈ C(R+;E), P-almost surely;

3. L(B1) = W, and for all 0 ≤ s < t < ∞, the increment Bt −Bs is independent of Fs

and has distribution L(Bt −Bs) = L(√t− sB1).

The existence of W-Brownian motion B is established in [Str11, Theorem 8.6.6], and it is
moreover shown that we can see W(E) as the pushforward measure of P under B on Θ(E).
Furthermore, one can employ a generalized version of Fernique’s theorem in Banach spaces,
see [Bog98, Theorem 2.8.5] or [Str11, Theorem 8.2.1], together with Kolmogorov–Chentsov’s
continuity theorem (see [Sch20, Theorem 2.98] for a version for stochastic processes with
values in Polish spaces), in order to show that there exists a modification B̃ of W-Brownian
motion B such that all paths are locally uniformly Hölder continuous for every exponent
α ∈ (0, 1/2). We will write B instead of B̃ and consider this modification from now on.
The Brownian time inversion invariance property is given in [Str11, Exercise 8.6.8 (ii)].

This implies that, if we consider the map I: Θ(E) → C(R+;E) given by

I(θ)(t) =

{

0 for t = 0,

tθ(1t ) otherwise,

then I is actually an involuntory isometry from Θ(E) onto itself, and the pushforward
measure of W(E) under I coincides with W(E). Let us set B(ω) ≡ 0, if I(B(ω)) is not
locally uniformly Hölder continuous for all exponents α ∈ (0, 1/2), and further X := I(B).

4.2. The classical Cameron–Martin space and the

weighted Hölder spaces

We will now define the appropriate weight functions and admissible moduli of continuity,
which will allow us to apply our findings from Chapters 2 and 3 to the study of path space
of Brownian motion. For α > 0 and β ≥ 0, consider the modulus of continuity

̺α: (0,∞) → (0,∞) : δ 7→ δα,

as well as the weight function

wβ : R+ → (0,∞) : t 7→ max{1, tβ}.

Recall the definition of little weighted Hölder spaces in the context of this chapter:
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Definition 4.14 (Little weighted Hölder space). Let α > 0 and β, γ ≥ 0 be given. We
denote by Mα,β,γ the vector space of all maps f : R+ → E such that f(0) = 0 and

‖f‖α,β,γ := sup
t∈R+

‖f(t)‖E
wβ(t)

+ sup
s,t∈R+

0<t−s≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

< ∞,

where ‖ · ‖E denotes the norm on the separable Banach space E over K ∈ {R,C}. Further,
we denote by Mα,β,γ

0 ⊂ Mα,β,γ the subset of all maps f ∈ Mα,β,γ that satisfy the following
conditions:

lim
t→∞

‖f(t)‖E
wβ(t)

= 0,

lim
δց0

sup
s,t∈R+

0<t−s≤δ

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

= 0,

lim
n→∞

sup
s,t∈R+\[0,n]
0<t−s≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

= 0.

We call the space (Mα,β,γ
0 , ‖ · ‖α,β,γ) little weighted Hölder space.

Remark 4.15. According to Remark 2.48, Lemma 2.50 as well as Lemma 2.59, it follows
that both Mα,β,γ and Mα,β,γ

0 are Banach spaces over K, because E is. Moreover, in line

with Corollary 2.67, we have that Mα,β,γ
0 is separable, as long as β ≥ γ and β > 0.

Next, we will show that under suitable assumptions, the classical Cameron–Martin space
H1(H) as defined in 4.10 is continuously embedded into the spaces Mα,β,γ

0 as a dense subset.

Proposition 4.16. Let E denote a separable Banach space over K ∈ {R,C}, and H be a
separable Hilbert space over K that is continuously embedded into E as a dense subset.

(a) If α ∈ (0, 1/2], β ≥ 1/2 and γ ≥ 0, then for each h ∈ H1(H) as well as δ > 0, we
have

sup
t∈R+

‖h(t)‖H
wβ(t)

+ sup
s,t∈R+

0<t−s≤δ

‖h(t)− h(s)‖H
̺α(t− s) wγ(t)

≤ (1 + δ1/2−α)‖h‖H1(H) < ∞, (4.2)

and consequently, H1(H) is continuously embedded into Mα,β,γ as a subset.

(b) If α ∈ (0, 1/2), β > 1/2 and γ > 0, then H1(H) is continuously embedded into

Mα,β,γ
0 as a subset.

(c) In the context of part (b), if in addition γ ≤ β holds, then H1(H) is dense in Mα,β,γ
0 .

Remark 4.17. Note that, in contrast to Theorem 4.18 below, part (a) of Proposition 4.16
allows for α = 1/2, β = 1/2 and γ = 0.
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Proof. We begin the proof with some observations. For h ∈ H1(H), upon applying the
Cauchy–Schwarz inequality, we get, for each s, t ∈ R+ such that s ≤ t,

‖h(t)− h(s)‖H ≤
∫ t

s
‖ḣ(s)‖H λ(ds)

≤
(

∫ t

s
|1|2 λ(ds)

)1/2(
∫ t

s
‖ḣ(s)‖2H λ(ds)

)1/2

≤
√
t− s

(

∫

R+

‖ḣ(s)‖2H λ(ds)
)1/2

=
√
t− s‖h‖H1(H),

see also [Str11, Section 8.1.2]. Moreover, recall that we assume H to be continuously
embedded into E as a subset. Therefore, the canonical embedding, which is a linear map
between the Banach spaces H and E, is bounded in operator norm, hence

‖h‖E ≤ Ce‖h‖H , h ∈ H, (4.3)

where Ce denotes the operator norm of the canonical embedding.

(a) For each t ∈ R+ (set s = 0), we have

‖h(t)‖H
wβ(t) ‖h‖H1(H)

=
‖h(t)− h(0)‖H
wβ(t) ‖h‖H1(H)

≤
{

t1/2 ≤ 1 for t ∈ [0, 1],

t1/2−β ≤ 1 for t > 1.
(4.4)

On the other hand, we get for each δ > 0 and s, t ∈ R+ such that 0 < t− s ≤ δ

‖h(t)− h(s)‖H
̺α(t− s) wγ(t) ‖h‖H1(H)

≤
{

(t− s)1/2−α ≤ δ1/2−α for t ∈ (0, 1],

(t− s)1/2−αt−γ ≤ δ1/2−α for t > 1.
(4.5)

The estimates (4.4) and (4.5) now imply (4.2), and the continuity of the canonical
embedding of H1(H) into Mα,β,γ follows from (4.2) and (4.3), as we now have

sup
t∈R+

‖h(t)‖E
wβ(t)

+ sup
s,t∈R+

0<t−s≤δ

‖h(t)− h(s)‖E
̺α(t− s) wγ(t)

≤ Ce(1 + δ1/2−α)‖h‖H1(H) < ∞.

(b) The inequalities (4.4) and (4.5) actually point towards some further properties, which
we will collect now. For each h ∈ H1(H), we have

lim
t→∞

‖h(t)‖H
wβ(t)

≤ lim
t→∞

t1/2−β‖h‖H1(H) = 0,

hence the weighted expression vanishes as time goes to infinity. Moreover,

lim
δց0

sup
s,t∈R+

0<t−s≤δ

‖h(t)− h(s)‖H
̺α(t− s) wγ(t)

≤ lim
δց0

sup
s,t∈R+

0<t−s≤δ

(t− s)1/2−α‖h‖H1(H)

≤ lim
δց0

δ1/2−α‖h‖H1(H) = 0,
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hence the Hölder constants vanish uniformly for small time increments. Now fix a
parameter δ > 0 and conclude that

lim
n→∞

sup
s,t∈R+\[0,n]
0<t−s≤δ

‖h(t)− h(s)‖H
̺α(t− s) wγ(t)

≤ lim
n→∞

sup
s,t∈R+\[0,n]
0<t−s≤δ

(t− s)1/2−αt−γ‖h‖H1(H)

≤ lim
n→∞

δ1/2−αn−γ‖h‖H1(H) = 0,

hence the Hölder constants vanish uniformly for distant times (just set δ = 1). Together
with the estimate (4.3) and part (a), we obtain that H1(H) is continuously embedded

into Mα,β,γ
0 .

(c) Let us state some very specific functions that are elements of the Cameron–Martin
space H1(H). Recall the definition of the time change γm: R+ → R+ for m ∈ N given
by t 7→ min{t,m}. Further, recall the sequence {θl : l ∈ N} defined in Equation (2.2).
Starting from the map θ: R ∋ t → max{0, 1−|t|}, we set, for each l ∈ N, θl(t) := θ(t−l),
and for each m ∈ N, θl,m(t) := θl(γm(t)). But according to Lemma 2.65, θl is Lipschitz-
continuous for each l ∈ N and thus also θl,m for each (l,m) ∈ N2. Hence, these maps
are absolutely continuous, and admissible densities are given by

θ̇l,m =











1(l−1,l) − 1(l,l+1) for l < m,

1(l−1,l) for l = m,

0 otherwise,

which are clearly elements of L2(R+,R). Consequently, the functions θl,i,m := θl,mei,
where (l,m, i) ∈ N3 and (ei)i∈N denotes an orthonormal basis in the real separable
Hilbert space H, are all elements of (H1(H), ‖ · ‖H1(H)).

Next, recall the sequence {τj,k : (j, k) ∈ N2
0} defined in (2.3). Starting from the map

τ : R ∋ t → max{0, 1/2−|t−1/2|}, we set, for each (j, k) ∈ N2
0, τj,k(t) := 2−j/2τ(2jt−k),

and for each m ∈ N, τj,k,m(t) := τj,k(γm(t)). According to Lemma 2.65, we know
that τj,k is Lipschitz-continuous, for each (j, k) ∈ N2

0 and thus also τj,k,m for each
(j, k,m) ∈ N2

0 × N, and admissible densities are given by

τ̇j,k,m =

{

2−j/2
(

1( 2k

2j+1 ,
2k+1

2j+1 )
− 1( 2k+1

2j+1 ,
2k+2

2j+1 )

)

for (j, k,m) ∈ N2
0 × N, k ≤ 2jm− 1,

0 for (j, k,m) ∈ N2
0 × N, k ≥ 2jm,

which are clearly elements of L2(R+,R). Again, as before, the functions τj,k,i,m :=
τj,k,mei, where (j, k,m, i) ∈ N2

0 × N2 and (ei)i∈N denotes an orthonormal basis in the
separable Hilbert space H, are all elements of (H1(H), ‖ · ‖H1(H)).

Due to the fact that the Cameron–Martin space H1(H) is a vector space, all finite
linear combinations of the maps discussed above are also contained in it. Most notably,
if we fix (m,N) ∈ N0×N and consider Q-valued sequences {al,i : (l, i) ∈ {1, 2, . . . ,m}×
{1, 2, . . . , N}} and {bj,k,i : (j, k, i) ∈ {0, 1, . . . ,m}×N0×{1, 2, . . . , N}, k ≤ 2jm− 1}},
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the the maps fm,N : R+ → H given by

fm,N =
m
∑

l=1

N
∑

i=1

al,iθl,i,m +
m
∑

j=0

2jm−1
∑

k=0

N
∑

i=1

bj,k,iτj,k,i,m

=

m
∑

l=1

(

N
∑

i=1

al,iei

)

θl,m +

m
∑

j=0

2jm−1
∑

k=0

(

N
∑

i=1

bj,k,iei

)

τj,k,m

(4.6)

are elements of (H1(H), ‖ · ‖H1(H)). Moreover, if we set

EX :=
{

N
∑

i=1

aiei : ai ∈ Q, N ∈ N

}

,

then EX is a countable and dense subset of X, and according to the proof of Corol-
lary 2.67, maps of the form (4.6) with coefficients in EX are dense in the little weighted

Hölder space Mα,β,γ
0 , if γ ≤ β. This fact, combined with part (b), yields the density

of H1(H) in Mα,β,γ
0 .

This concludes our proof.

4.3. Path properties of Banach-space-valued Brownian motion

Theorem 4.18. Let (Ω,F ,F,P) denote a filtered probability space. Further, let (H,E,W)
denote an abstract Wiener space and B = (Bt)t∈R+ a W-Brownian motion. Let (H1(H),
‖ · ‖H1(H)) denote the Cameron–Martin space given in Definition 4.10. Then, for each
α ∈ (0, 1/2), β > 1/2 and γ > 0, it holds that

(a) Paths of B satisfy almost surely

sup
t∈R+

‖Bt‖E
wβ(t)

+ sup
s,t∈R+

0<t−s≤1

‖Bt −Bs‖E
̺α(t− s) wγ(t)

< ∞. (4.7)

(b) Paths of B are almost surely in Mα,β,γ
0 .

Proof. Let us begin the proof with some initial remarks.
For a map f : R+ → E, we set

‖f‖α,γ := sup
s,t∈R+

0<t−s≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

, ‖f‖β := sup
t∈R+

‖f(t)‖E
wβ(t)

.

Clearly, it follows that ‖f‖α,β,γ = ‖f‖β + ‖f‖α,γ . Note that, for each f : R+ → E, we can
actually write

‖f‖α,γ ≤ 2max
{

sup
0≤s<t≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

, sup
1≤s<t<∞
0<t−s≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

}

,
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4.3. PATH PROPERTIES OF BANACH-SPACE-VALUED BROWNIAN MOTION 70

because, due to the subadditivity property of the norm ‖ · ‖E , where it suffices to consider
the case s < 2n < t, with 0 < t− s ≤ 1, for some n ∈ N0, we have the estimate

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

≤ ‖f(t)− f(2n)‖E
̺α(t− 2n) wγ(t)

+
‖f(2n)− f(s)‖E
̺α(2n − s) wγ(2n)

.

Moreover, upon applying the exact same logic, we actually obtain the estimate ‖f‖α,γ ≤
2‖f‖∗, where we set

‖f‖∗ := max
{

sup
0≤s<t≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

, sup
n∈N0

sup
2n≤s<t≤2n+1

0<t−s≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

}

,

see also [Pic11, Remark 2.1].

(a) The restriction α ∈ (0, 1/2) is motivated by [Str11, Corollary 4.3.3] as well as [Sch20,
Theorem 2.98].

For each α ∈ (0, 1/2), let Cα;i: Ω → R+, where i ∈ {1, 2}, denote the random
constants from the uniform α-Hölder continuity of B and X = I(B) on the unit
interval, respectively. For simplicity, we set Cα := max{Cα;1, Cα;2}. This yields

max
{

sup
0≤s<t≤1

‖Bt −Bs‖E
̺α(t− s)

, sup
0≤s<t≤1

‖Xt −Xs‖E
̺α(t− s)

}

≤ Cα.

Let n ∈ N0, and 2n ≤ s < t ≤ 2n+1 such that 0 < t − s ≤ 1. Choose further
α′ = max{α, 1/2(1− γ)}, and let C̃ = max{Cα;2, Cα′;2} denote the maximum of the
two random constants that come from the uniform α- and α′-Hölder continuity of X
on [0, 1]. In line with the arguments found in [Pic11], we can then write almost surely

‖Bt −Bs‖E = ‖t X1/t − s X1/s‖E
≤ t ‖X1/t −X1/s‖E + (t− s) ‖X1/s‖E
= t ‖X1/t −X1/s‖E + (t− s) ‖X1/s −X0‖E
≤ 2n+1Cα′;2

∣

∣

1
t − 1

s

∣

∣

α′

+ (t− s)Cα;2

∣

∣

1
s − 0

∣

∣

α

≤ C̃
(

2n+1
(

t−s
ts

)α′

+ (t− s)
(

1
s

)α)
.

(4.8)

A division by ̺α(t− s) wγ(t) yields the almost sure estimate

‖Bt −Bs‖E
̺α(t− s) wγ(t)

≤ C̃
(

2n+1(t− s)α
′−α 1

tα
′+γsα

′ + (t− s)1−α 1
tγsα

)

≤ C̃
(

2−n(2α′+γ−1)+1 + 2−n(α+γ)
)

≤ 3C̃.

All of the above estimates finally imply the almost sure upper bound

‖B‖α,γ ≤ 2‖B‖∗ ≤ 2max
{

Cα;1, 3C̃
}

.
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Next, we want to show that ‖B‖β < ∞ holds pathwise. Since t 7→ ‖Bt‖E/wβ(t) is
continuous, we just have to verify that

lim sup
tր∞

‖Bt‖E
wβ(t)

< ∞

holds for every path. To this end, let us note that for all t ∈ R+ such that t ≥ 1 and
α̃ ∈ [1− β, 1/2) if β < 1 or α̃ ∈ (0, 1/2) otherwise, we have

‖Bt‖E
wβ(t)

=
‖t X1/t‖E
wβ(t)

= t1−β−α̃ ‖X1/t −X0‖E
(

1
t − 0

)α̃
≤ Cα̃;2.

(b) Choose β̃ ∈ (1/2, β). By part (a), we know that

sup
t∈R+

‖Bt‖E
wβ̃(t)

= C1 < ∞,

for some random variable C1: Ω → R+. For t ≥ 1, we estimate

‖Bt‖E
wβ(t)

= tβ̃−β ‖Bt‖E
wβ̃(t)

≤ tβ̃−β C1.

But due to β̃ < β, the right-hand side vanishes, as t → ∞.

Next, choose α̃ ∈ (α, 1/2). By part (a), we know that, almost surely,

sup
s,t∈R+

0<t−s≤1

‖Bt −Bs‖E
̺α̃(t− s) wγ(t)

= C2 < ∞,

for some random variable C2: Ω → R+ ∪ {+∞} that almost surely takes values in R+.
For δ ∈ (0, 1] as well as s, t ∈ R+ such that 0 < t− s ≤ δ, we estimate, almost surely

‖Bt −Bs‖E
̺α(t− s) wγ(t)

= (t− s)α̃−α ‖Bt −Bs‖E
̺α̃(t− s) wγ(t)

≤ (t− s)α̃−α C2.

But due to α̃ > α, the right-hand side vanishes almost surely, as δ ց 0.

Finally, choose γ̃ ∈ (0, γ). By part (a), we know that, almost surely,

sup
s,t∈R+

0<t−s≤1

‖Bt −Bs‖E
̺α(t− s) wγ̃(t)

= C3 < ∞,

for some random variable C3: Ω → R+ ∪ {+∞} that almost surely takes values in R+.
For n ≥ 1 as well as s, t ∈ R+ \ [0, n] such that 0 < t − s ≤ 1, we estimate, almost
surely

‖Bt −Bs‖E
̺α(t− s) wγ(t)

= tγ̃−γ ‖Bt −Bs‖E
̺α(t− s) wγ̃(t)

≤ tγ̃−γ C3 ≤ nγ̃−γ C3,

where the last inequality follows due to γ̃ < γ. Now the right-hand side vanishes
almost surely, as n → ∞.
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This concludes our proof.

Remark 4.19. We did not use any arguments that involved the filtration on the underlying
filtered probability space so far, only path properties which hold almost surely. Therefore,
all of the above results in this chapter can be extended by a symmetry argument to the
setting of two-sided Brownian motion.

Remark 4.20. For each α ∈ (0, 1/2), β ∈ (1/2, 1] and γ ∈ (0, β], we have that both Mα,β,γ

and Mα,β,γ
0 are Borel measurable subsets of Θ(E). To see this, note that due to the

continuity of the functions in the (little) weighted Hölder spaces Mα,β,γ and Mα,β,γ
0 , we

have that the suprema which appear in Definition 4.14 can all be reduced to suprema
where s and t are elements of the countable set Q+ of nonnegative rationals. Consequently,
‖ · ‖α,β,γ is a measurable map, and thus Mα,β,γ is a measurable subset of Θ(E). Finally,
the defining limits in Definition 4.14 which describe the little weighted Hölder space do also
preserve measurability, and thus Mα,β,γ

0 is also a Borel set.

4.4. Hölderian Wiener spaces as abstract Wiener spaces

In this section, it is our aim to identify the little weighted Hölder spaces as the appropriate
real separable Banach spaces, with which we can construct abstract Wiener spaces. To this
end, we will make use of a result found in [BBK92, Theorem 2.4]:

Theorem 4.21. Let W1 and W2 denote real separable Banach spaces, and H be a real
separable Hilbert space such that H →֒ W1 →֒ W2, both embeddings being continuous. Let
µ denote a probability measure on W2 such that (H,W2, µ) is an abstract Wiener space.
Further, assume that µ∗(W1) = 1, where µ∗ denotes the outer measure on (W2,B(W2)),
and let H be densely embedded in W1. If ν denotes the trace measure of µ on W1, then
(H,W1, ν) is an abstract Wiener space.

Now we are ready to formulate and prove the

Theorem 4.22. Let (H,E,W) denote an abstract Wiener space and (H1(H), ‖ ·‖H1(H)) be
the Cameron–Martin space given in Definition 4.10. Then, for each α ∈ (0, 1/2), β ∈ (1/2, 1]

and γ ∈ (0, β], the trace of W(E) on the little weighted Hölder space Mα,β,γ
0 ⊂ Θ(E) is a

probability measure, called Wα,β,γ, such that the triple

(H1(H),Mα,β,γ
0 ,Wα,β,γ)

constitutes an abstract Wiener space according to Definition 4.7.

Proof. Let us begin the proof by stating a classical example of an abstract Wiener space.
As already mentioned above, there exists an unique probability measure

W(E) ∈ M1(Θ(E))

such that (H1(H),Θ(E),W(E)) constitutes an abstract Wiener space. Moreover, we can
identify W(E) with the Borel measure induced by W-Brownian motion B on Θ(E).
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In the context and terminology of Theorem 4.21, let (H,W2, µ) be given by the abstract
Wiener space (H1(H),Θ(E),W(E)). Moreover, let W1 denote the real separable Banach

space Mα,β,γ
0 . Under the restriction β ≤ 1, the continuity of the canonical embedding

Mα,β,γ
0 →֒ Θ(E) simply follows from the observation

1

1 + t
≤ 1

wβ(t)
, t ≥ 0.

By Proposition 4.16, we also know that H1(H) is densely and continuously embedded

into Mα,β,γ
0 . Moreover, we have that W(E)(Mα,β,γ

0 ) = 1 by Theorem 4.18 and Remark 4.20,

because W-Brownian paths are almost surely elements of the Borel set Mα,β,γ
0 . Therefore,

we can conclude by Theorem 4.21 that the triple

(H1(H),Mα,β,γ
0 ,W(E))

constitutes an abstract Wiener space, which concludes our proof.

Remark 4.23. Due to Remark 4.15, Proposition 4.16 and Theorem 4.18 we can deduce that
for each α ∈ (0, 1/2), β ∈ (1/2, 1] and γ ∈ (0, β], the little weighted Hölder space Mα,β,γ

0 is
a complete and separable normed space, hence it is a Polish space. Moreover, the classical
Cameron–Martin space H1(H) is continuously embedded as a dense subspace, and almost
all W-Brownian paths are elements therein. Consequently, if we consider the space M∞

0

given by

M∞
0 :=

⋂

α∈(0,1/2)

⋂

β∈(1/2,1]

⋂

γ∈(0,β]

Mα,β,γ
0 , (4.9)

almost all W-Brownian paths and all Cameron–Martin paths are actually elements of
M∞

0 . The spaces Mα,β,γ
0 also carry a monotonic structure in the following sense: for fixed

β ∈ (1/2, 1] and γ ∈ (0, β], if 0 < α1 < α2 < 1/2, then Mα2,β,γ
0 ⊂ Mα1,β,γ

0 . Moreover,

α ∈ (0, 1/2), 1/2 < β1 < β2 ≤ 1 and γ ∈ (0, β1] implies Mα,β1,γ
0 ⊂ Mα,β2,γ

0 . Similarly,

α ∈ (0, 1/2), β ∈ (1/2, 1] and 0 < γ1 < γ2 ≤ β implies Mα,β,γ1
0 ⊂ Mα,β,γ2

0 . Consequently,
we can write (4.9) as an intersection over countably many parameters (α, β, γ), all for which

the corresponding Borel sets Mα,β,γ
0 are of full W(E)-measure. Therefore, we have that

M∞
0 is a Borel set with W(E)(M∞

0 ) = 1.

4.5. Schilder’s and Strassen’s theorem in weighted Hölder norms

For a topological space (Y, T ) and F ⊂ Y , we denote by F ◦ and F the interior and closure
of F , respectively, i.e.

F ◦ =
⋃

G⊂F
G∈T

G, F =
⋂

F⊂C
Y \C∈T

C.

Moreover, we convene that the infimum over the empty set is +∞.
Let us state some initial definitions.
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Definition 4.24 (Rate function). Let Y denote a Hausdorff topological space. We then
call the map I: Y → R+ a rate function, if it is lower semicontinuous, i.e. if for all a ≥ 0,
the level sets ΨI(a) := {y ∈ Y : I(y) ≤ a} are closed subsets of Y . We call I a good rate
function, if for all a ≥ 0, the level sets ΨI(a) are compact subsets of Y .

Definition 4.25 (Large deviation principle). A family (µε)ε>0 of probability measures
on (Y,B(Y )), where B(Y ) denotes the Borel σ-field over Y , satisfies the large deviation
principle with (good) rate function I, if for all F ∈ B(Y ), we have

− inf
x∈F ◦

I(x) ≤ lim inf
εց0

ε logµε(F ) ≤ lim sup
εց0

ε logµε(F ) ≤ − inf
x∈F

I(x). (4.10)

Let us state a first abstract large deviations theorem, which can be found in [Str11,
Theorem 8.4.1], [BBK92, Theorem 2.3] as well as [DS89, Theorem 3.4.5]. Below, the property
of the rate function being a good rate function follows from [DS89, Theorem 3.4.12].

Theorem 4.26. Let (H,E,W) denote an abstract Wiener space. Further, for ε > 0, let
Wε denote the pushforward measure of W under the map E ∋ f 7→ √

εf . Then (Wε)ε>0

satisfies the large deviation principle with good rate function IW : E → R+ given by

IW(f) =

{

1
2‖f‖2H for f ∈ H,

∞ otherwise.

By Theorem 4.22 and Theorem 4.26, we finally arrive at the

Theorem 4.27. Let (Ω,F ,F,P) denote a filtered probability space. Further, let (H,E,W)
denote an abstract Wiener space and B = (Bt)t∈R+ a W-Brownian motion. Let (H1(H),
‖ · ‖H1(H)) denote the Cameron–Martin space given in Definition 4.10 and α ∈ (0, 1/2),

β ∈ (1/2, 1] and γ ∈ (0, β] be given. If Wα,β,γ denotes the Borel measure induced by B on

Mα,β,γ
0 according to Theorem 4.22 and, for each ε > 0, Wα,β,γ

ε is the pushforward measure

of Wα,β,γ under the map Mα,β,γ
0 ∋ f 7→ √

εf , then (Wα,β,γ
ε )ε>0 satisfies the large deviation

principle with good rate function IWα,β,γ : Mα,β,γ
0 → R+ given by

IWα,β,γ (f) =

{

1
2‖f‖2H1(H) for f ∈ H1(H),

∞ otherwise.

As a corollary to Theorem 4.27 that directly follows from [Str11, Corollary 8.4.3], we also
get the result

Corollary 4.28. In the context of Theorem 4.27, assume that E 6= {0} and let C denote
the positive real constant implicitly given by C−1 = inf{‖h‖H1(H) : ‖h‖α,β,γ = 1}. Then

lim
R→∞

1

R2
logP(‖B‖α,β,γ ≥ R) = − 1

2C2
. (4.11)

Moreover, this yields

E

[

exp
(1

2
α2‖B‖2α,β,γ

)]

< ∞ if and only if α < C−1. (4.12)
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Another useful Lemma that comes from Fernique’s theorem, see [Str11, Theorem 8.2.1]
and [Str11, Exercise 8.2.16] yields that, for any n ∈ N,

E
[

‖B‖2nα,β,γ
]

≤ (72)nn! E
[

‖B‖2α,β,γ
]n
(

e
1
2 +

∞
∑

m=0

( e

3

)2m
)

.

Another notable result that follows from Theorem 4.27 for our setting is Strassen’s law of
the iterated logarithm. The following formulation follows from [Str11, Theorem 8.4.4]. For
another classical treatment that also weakens the assumption of Gaussianity, see [Che94].
Below, we call as subset G of a topological Hausdorff space Y to be relatively compact, if
its closure is compact. We further call a sequence (xn)n∈N in Y relatively compact, if the
set G = {xn : n ∈ N} is.

Theorem 4.29. In the context of Theorem 4.27, let (Xm)m∈N denote a sequence of in-
dependent W-Brownian motions on (Ω,F ,F,P). For each n ∈ N, let Sn denote the
sequence of partial sums given by Sn =

∑n
m=1Xm, and let Λn denote the constant

Λn =
√

2n log (log (n ∨ 3)). We rescale Sn to S̃n := Sn/Λn. Then, P-almost surely, the

sequence (S̃n)n∈N is relatively compact in Mα,β,γ
0 , and the closed unit ball B1(0) in H1(H)

coincides with the set of accumulation points of (S̃n)n∈N. Equivalently, P-almost surely, we
have

lim
n→∞

‖S̃n −B1(0)‖α,β,γ = 0, (4.13)

∀ h ∈ B1(0) : lim inf
n→∞

‖S̃n − h‖α,β,γ = 0. (4.14)

Remark 4.30. Note that the topology on Mα,β,γ
0 is stronger than the one on Θ(E). Therefore,

the bounds stated in (4.10) can be sharper than in the classical formulation of Schilder’s
theorem on Θ(E). Moreover, recall the definition of continuity in the context of topological
spaces: a map f : (X, T X) → (Y, T Y ) is continuous, if for each O ∈ T Y , we have that

f−1(O) ∈ T X . Consequently, there are more continuous maps φ on Mα,β,γ
0 than there are on

Θ(E). As a corollary to this remark, we state a well known theorem due to S.R.S. Varadhan,
see also [DZ10, Theorem 4.3.1].

Theorem 4.31 (Varadhan’s lemma). Consider a family (Zε)ε>0 of Y -valued random
variables on some probability space (Ω,F ,P), where Y denotes a topological Hausdorff space.
Assume that the induced family of probability measures (µε)ε>0 satisfies the large deviation
principle with good rate function I: Y → R+, and let φ: Y → R be a continuous function.
Assume further that either of the following conditions holds:

(a) Tail condition:

lim
M→∞

lim sup
εց0

ε logE
[

eφ(Zε)/ε1{φ(Zε)≥M}

]

= −∞; (4.15)

(b) Exponential moment condition: there exists some γ > 1 such that

lim sup
εց0

ε logE
[

eγφ(Zε)/ε
]

< ∞. (4.16)
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Then we have

lim
εց0

ε logE
[

eφ(Zε)/ε
]

= sup
x∈E

{

φ(x)− I(x)
}

. (4.17)

The proof of the following result can be found in [DZ10, Theorem 4.2.1].

Theorem 4.32 (Contraction principle). Consider two topological Hausdorff spaces X
and Y . Assume further that there is a family (Zε)ε>0 of X-valued random variables on
some probability space (Ω,F ,P), such that the corresponding induced family of probability
measures (µε)ε>0 satisfies the large deviation principle with good rate function I: X → R+.
Let f : X → Y denote a continuous function. For each y ∈ Y , set

I ′(y) := inf
x∈f−1({y})

I(x),

where we convene that the infimum over the empty set is +∞. Then, the following holds:

(a) I ′: Y → [0,∞] is a good rate function on Y ;

(b) The family (µε ◦ f−1)ε>0 of probability measures on Y that are induced by f satisfies
the large deviation principle with good rate function I

′

.

Remark 4.33. Coming back to the setting of Theorem 4.27, consider the spaces Mβ and
Mα,γ of continuous functions f : R+ → E such that f(0) = 0 and ‖f‖β < ∞ as well as
‖f‖α,γ < ∞ holds, respectively. Here, we set

‖f‖β := sup
t∈R+

‖f(t)‖E
wβ(t)

,

‖f‖α,γ := sup
s,t∈R+

0<t−s≤1

‖f(t)− f(s)‖E
̺α(t− s) wγ(t)

,

where ‖ ·‖E denotes the norm on the real separable Banach space E. We immediately obtain
that ‖f‖β ≤ ‖f‖α,β,γ as well as ‖f‖α,γ ≤ ‖f‖α,β,γ . Moreover, under the assumption that
β ≤ 1, which is part of Theorem 4.27 we further have that ‖f‖Θ(E) ≤ ‖f‖β . Consequently,
the canonical embeddings

Mα,β,γ
0 →֒ Mβ , Mα,β,γ

0 →֒ Mα,γ , Mα,β,γ
0 →֒ Θ(E), Mβ →֒ Θ(E)

are bounded linear operators between these Banach spaces, which implies that they are
continuous. An application of the contraction principle as stated in Theorem 4.32 allows us
to transfer large deviation principles onto these spaces by making use of Theorem 4.27.

4.6. An application to importance sampling

The following ideas originate from [GR08], [GHS99] as well as [Pha07].
Consider a probability space (Ω,F ,P) endowed with a filtration F = (Ft)t∈R+ . Let

B = (Bt)t∈R+ denote a real-valued (F,P)-Brownian motion on (Ω,F ,P). Let us mention
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right from the start that we could also consider more generally d-dimensional Brownian
motion, which would allow the treatment of Hölder-path dependent basket options below.
In the context of Theorem 4.18(b), let G: Mα,β,γ

0 → R+ denote a continuous function.
We also call G(B) a random payoff. We are interested in computing an estimator of the
expected payoff of Brownian motion, i.e.

E[G(B)] =

∫

Ω
G(B(ω)) dP(ω). (4.18)

For each h ∈ H1(R), we perform a change of measure as follows: Let Zh denote the
stochastic exponential

Zh := E
(

∫ ·

0
ḣ(t) dBt

)

= exp
(

∫ ·

0
ḣ(t) dBt −

1

2

∫ ·

0
ḣ2(t) dt

)

.

By [Sch20, Theorem 6.46], we know that the stochastic exponential Zh is a strictly positive
continuous local martingale. Moreover, as elements of the Cameron–Martin space have
square-integrable densities, we have

E

[

exp
(1

2

[

∫ ·

0
ḣ(t) dBt

]

∞

)]

= exp
(1

2

∫ ∞

0
ḣ2(t) dt

)

< ∞,

we can apply Novikov’s criterion (see [Sch20, Theorem 7.84]) in order to conclude that
Zh is a uniformly integrable martingale. By Doobs L1-convergence theorem (see [Sch20,
Theorem 7.48]), we have that Zh

∞ is the limit of (Zh
t )t∈R+ in L1 and Zh

∞ closes the martingale
Zh. Upon setting dQh/dP = Zh

∞, we can apply Girsanov’s theorem, see [Sch20, Theorem
7.33] in order to show that Bh := B−h is indeed an (F,Qh)-Brownian motion on (Ω,F ,Qh).
Moreover, the problem (4.18) can now be rewritten as

EP[G(B)] = EQh [G(B)(Zh
∞)−1] =

∫

Ω
G(B(ω))

dP

dQh
(ω) dQh(ω).

If we now consider the modified payoff H(B) = G(B)(Zh
∞)−1, then we have that the

P-expectation of G(B) and the Qh-expectation of H(B) are identical. Therefore, we can
tackle the computation of the expectation given in Equation 4.18 by means of obtaining an
estimator for

EQh [H(B)] =

∫

Ω
H(B(ω)) dQh(ω).

only that now we can make use of the additional degree of freedom in the form of the
function h in order to choose the optimal such function that minimizes the variance of H(B)
under Qh, which is given by

EP[G
2(B)(Zh

∞)−1]− EP[G(B)]2.

As the second term in the difference does not depend on h, we will solely focus on the
first term, which is the second moment and can be written as

EP

[

exp
(

2F (B)−
∫ ∞

0
ḣ(t) dBt +

1

2

∫ ∞

0
ḣ2(t) dt

)]

, (4.19)
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where we set F = logG. Note that the image space of F is {−∞}∪R. Finding a minimizer
h ∈ H1(R) of the expression (4.19) is in general intractable if one employs Monte-Carlo
methods to estimate the expectation. Therefore, we consider a small-noise approximation
for each h ∈ H1(R) of the form

L(h) := lim
εց0

ε logEP

[

exp
(1

ε

(

2F (
√
εB)−

∫ ∞

0

√
εḣ(t) dBt +

1

2

∫ ∞

0
ḣ2(t) dt

))]

, (4.20)

which corresponds to approximating (4.19) by exp (L(h)). Moreover, we can recover (4.19)
from exp (L(h)) by simply fixing ε = 1 in (4.20). Finally, we consider the optimization
problem

inf
h∈H1(R)

L(h). (4.21)

In order to find the optimal h, we can employ the machinery of Varadhan’s lemma, see
Theorem 4.31. Consider for each h ∈ H1

bv(R), where H
1
bv(R) denotes the set of all h ∈ H1(R)

such that the density ḣ is of bounded variation, the function Fh which is given on Mα,β,γ
0

by

f 7→ Fh(f) := 2F (f)−
∫ ∞

0
ḣ(t) df(t) +

1

2

∫ ∞

0
ḣ2(t) dt.

Here the restrictive assumption of h having a density of bounded variation comes into play,
as we now can identify the first integral as a Stieltjes integral. As F can assume −∞, we
cannot apply Varadhan’s lemma directly. However, we can employ a modified version that
allows for this case, see [GR08, Lemma 7.5]. Let us assume now that F satisfies some
sufficient properties such that Fh is pointwise well defined and we can apply the discussed
modified version of Theorem 4.31. This yields:

L(h) = lim sup
εց0

ε logEP

[

exp
(1

ε
Fh(

√
εB)

)]

= sup
f∈Mα,β,γ

0

(

Fh(f)− IWα,β,γ (f)
)

. (4.22)

Since Fh is well defined, and we know that for the good rate function IWα,β,γ it holds that
IWα,β,γ (f) = +∞, if f ∈ Mα,β,γ

0 \H1(R), we further have

sup
f∈Mα,β,γ

0

(

Fh(f)− IWα,β,γ (f)
)

= sup
f∈H1(R)

(

Fh(f)− IWα,β,γ (f)
)

= sup
f∈H1(R)

(

2F (f) +
1

2

∫ ∞

0

(

ḟ(t)− ḣ(t)
)2

dt−
∫ ∞

0
ḟ2(t) dt

)

≥ sup
f∈H1(R)

(

2F (f)−
∫ ∞

0
ḟ2(t) dt

)

.

We can now try to find an optimal shift h ∈ H1
bv(R) as follows:

(a) Assume that the following optimization problem has a (unique) solution:

sup
f∈H1(R)

(

2F (f)−
∫ ∞

0
ḟ2(t) dt

)

,

which we denote by h∗. Note that this optimization problem is of Euler–Lagrange
type.
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(b) If the density of h∗ is of bounded variation, then (4.22) yields

L(h∗) = sup
f∈H1(R)

(

2F (f) +
1

2

∫ ∞

0

(

ḟ(t)− ḣ∗(t)
)2

dt−
∫ ∞

0
ḟ2(t) dt

)

.

(c) Finally, if we can verify that indeed h ∈ H1
bv, and that the following condition holds:

L(h∗) = 2F (h∗)−
∫ ∞

0
(ḣ∗(t))2 dt,

then we have found a solution to the optimization problem (4.21). The reason for this
is the following: for each h ∈ H1

bv(R), we have

L(h) = sup
f∈H1(R)

(

2F (f) +
1

2

∫ ∞

0

(

ḟ(t)− ḣ(t)
)2

dt−
∫ ∞

0
ḟ2(t) dt

)

≥ sup
f∈H1(R)

(

2F (f)−
∫ ∞

0
ḟ2(t) dt

)

.

Consequently, it holds that

inf
h∈H1

bv(R)
L(h) ≥ 2F (h∗)−

∫ ∞

0

(

ḣ∗(t)
)2

dt,

and since the last expression equals L(h∗) by the previous point, we have found a
solution.
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A. Open questions and ideas

Many of the concepts that we have touched upon could be pursued further. Below, we will
collect some unfinished tasks and ideas for the future.

(A) Constructing fractional Brownian motion on locally convex topological vector spaces:
The classical idea is the Lévy–Ciesielski construction, see [Lév37] and [Cie61]. A nice
explanation of this construction can further be found in [McK69, Section 1.2]. For a
generalization to Brownian motion on a Hilbert space, see [AIP13, Proposition 1 and
Proposition 2]. Another very fine paper that might be studied in this context is given
by [LLQ02].

The ideas of this thesis should be applicable to the study of fractional Brownian motion
with Hurst parameterH ∈ (0, 1). The results from Chapter 2 and Chapter 3 in principle
allow the treatment of locally convex topological vector spaces, where the topology
is induced by a family of seminorms. We could then extend the notion of weighted
Hölder spaces to this setting, because every seminorm satisfies the subadditivity
property (2.11) with Cqs = 1 as well as the pseudo-homogeneity property 2.10(c) with
φ(λ) = λ. The concept of admissible moduli of continuity as stated in Definition 2.39,
as well as the assumptions of Chapter 3 are then naturally satisfied for ̺(δ) = δα,
where 0 < α ≤ 1. A thorough treatment of Gaussian measures on locally convex vector
spaces, very much in the spirit of the introductory section of Chapter 4 might then
lead to all the necessary requirements for us to be able to write fractional Brownian
motion as a decomposition with respect to the Faber–Schauder system of the second
kind, where now the coefficients of the series would actually be elements of a locally
convex topological vector space X. Some relevant theory for this can be found for
instance in [Kue73].

(B) Extension to Besov spaces: The original motivation behind this thesis was to study
Hölder regularity of Brownian motion. However, Hölder norms are actually a special
case of Besov norms. In [LPT20], the more involved Besov-version of Proposition 3.17
was proven by means of atomic decompositions for functions on the unit interval
that assume values in Banach spaces. However, it might be possible to prove the
Besov-version of Proposition 3.17 in a more direct way, only making use of the fine
properties of the Faber–Schauder system of the second kind as given in Definition 2.1.
This might then lead to a better understanding of the construction of stochastic
processes whose paths do not exhibit Hölder regularity, but Besov regularity, very
much in the spirit of the previous point.

(C) Finding norms in M∞
0 : For an R-valued (F,P)-Brownian motion B = (Bt)t∈[0,1] on

some filtered probability space (Ω,F ,F,P), we can argue by means of the Kolmogorov–

80
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Chentsov continuity theorem that, for each α ∈ (0, 1/2), almost surely

sup
0≤s<t≤1

|Bt −Bs|
(t− s)α

= Cα < ∞. (A.1)

The problem is that the random positive constant Cα explicitly depends on the index
α itself. If we were to look for a bound of (A.1) uniformly over all α ∈ (0, 1/2) – see
also the space M∞

0 defined in (4.9) – this would require a deeper understanding of
the random map α 7→ Cα.

One way to approach this problem in a pathwise manner is by making use of the fact
that, according to Lévy’s modulus of continuity theorem, almost surely,

sup
0≤s<t≤1

|Bt −Bs|
h(t− s)

= C < ∞, (A.2)

for some random positive constant C, where h(δ) =
√

δ log(1/δ) for δ > 0. Take some
ε ∈ (0, 1/2) close to 0, then, for each α ∈ [ε, 1/2), almost surely, for each δ ∈ (0, 1],

h(δ)

δα
= δ1/2−α

√

log(1/δ) ≤ δ1/2−ε
√

log(1/δ) ≤ C(ε) < ∞,

where the upper bound C(ε) does not depend on δ. The fact that the above expression
and therefore the deterministic positive constant C(ε) do not explode for small enough
δ can be verified by means of applying L’Hôpital’s rule. Finally, we can conclude that,
again almost surely

sup
α∈[ε,1/2)

sup
0≤s<t≤1

|Bt −Bs|
(t− s)α

≤ C(ε) sup
0≤s<t≤1

|Bt −Bs|
h(t− s)

≤ C(ε)C < ∞.

This approach however does not work well for considering all α ∈ (0, 1/2) because it
is not clear whether h(δ)δ−α is uniformly bounded over all (δ, α) ∈ (0, 1]× (0, 1/2),
especially for small α. Most notably, the statement (A.2) is mostly concerned with
the behavior for δ = t− s ≈ 0, which is where

√

log(1/δ) explodes.
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