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Abstract

The Hermite-Biehler Theorem, in its simplest form, characterizes complex polynomials whose

zeros lie only in the lower half plane through the interesting property of its real and imaginary

part to have only real and interlacing zeros. The aim of this thesis is to give an analogue of

the Hermite-Biehler Theorem for matrix-valued entire functions. We will proceed by studying

Herglotz functions, especially those that are meromorphic on C and satisfy q(z) = q(z). It is

known that the poles and zeros of scalar Herglotz functions that are meromorphic on C are all

real, simple, and interlace, from which a product representation for functions of the aforemen-

tioned type can be deduced. Still, the more well-known representation for Herglotz functions is

the Herglotz-Nevanlinna integral representation, which is better established mostly due to the

fact that it holds not only for scalar meromorphic Herglotz functions, but rather for every scalar

and matrix-valued (or even operator-valued) Herglotz function. In this thesis, we will introduce

a generalized interlacing property which we use to prove a necessary and sufficient condition

for a matrix-valued function which is real and meromorphic on C to be Herglotz. We can then

apply this criterion to formulate a version of the Hermite-Biehler Theorem for matrix-valued

entire functions.
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Chapter 1

Preliminaries

We start with some standard theory that serves to motivate the results of later chapters. Proofs

for the theorems contained in this chapter can be found in [AD] and [L].

1.1 Reproducing kernel Hilbert spaces

First, we give a reminder on the topic of reproducing kernel Hilbert spaces. This is due to [AD,

Chapter 5].

1.1.1 Definition. A function K : Ω × Ω → C
n×n, where Ω is an arbitrary set, is called a

positive kernel if for every m ∈ N, points ω1, ..., ωm ∈ Ω, and vectors u1, ..., um ∈ C
n we have

m∑

j,k=1

u∗
jK(ωj , ωk)uk ≥ 0.

1.1.2 Remark. A positive kernel K always satisfies K(w, z) = K(z, w)∗. Observe that

for fixed z0 and arbitrary x ∈ C
n, Definition 1.1.1 reads as x∗K(z0, z0)x ≥ 0. In particular,

K(z0, z0) = K(z0, z0)∗. Applying the same definition again for two points w1 = z, w2 = w ∈ Ω

and u1 = x, u2 = ix ∈ C
n, we find that

x∗
[

K(z, z) +K(w,w) + i(K(z, w) −K(w, z))
]

x ≥ 0.

In particular, K(z, z)+K(w,w)+i(K(z, w)−K(w, z)) is self-adjoint, as is i(K(z, w)−K(w, z)).

If, on the other hand, we take u1 = u2 = x ∈ C
n, we conclude that

K(z, z) +K(w,w) +K(z, w) +K(w, z)

and K(z, w) +K(w, z) are self-adjoint too. So,

2K(z, w) = [K(z, w) +K(w, z)] + [K(z, w) −K(w, z)]

= [K(z, w)∗ +K(w, z)∗] − [K(z, w)∗ −K(w, z)∗] = 2K(w, z)∗.

1
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1.1.3 Lemma. Let K be a positive kernel on Ω, and let T : Ω → C
n×n be a function. Then

the kernel

L(z, w) := T (z)K(z, w)T (w)∗

is also positive on Ω.

Proof. This follows from

m∑

j,k=1

u∗
jL(ωj , ωk)uk =

m∑

j,k=1

(
T (ωj)

∗uj
)∗
K(ωj , ωk)

(
T (ωk)

∗uk
)

≥ 0.

1.1.4 Definition. Let H be a Hilbert space consisting of functions f : Ω → C
n. Then H is

called a reproducing kernel Hilbert space (RKHS for short) if there is an n × n-positive kernel

such that for every choice of ω ∈ Ω and u ∈ C
n,

(1) K( · , ω)u belongs 1 to H, and

(2)
(

f,K( · , ω)u
)

H
= u∗f(ω).

In this case, K is said to be the reproducing kernel of H.

1.1.5 Remark. If, in the above definition, K : Ω × Ω → C
n×n is a function that satisfies (1)

and (2), then K is already a positive kernel. This follows from

m∑

j,k=1

u∗
jK(ωj , ωk)uk =

( m∑

j=1

K(·, ωj)uj ,
m∑

j=1

K(·, ωj)uj

)

H

≥ 0.

1.1.6 Lemma ([KK, Proposition 2.5.2]). Let H be a RKHS with kernel K : Ω × Ω → C
n×n.

Then the linear span M of all functions K(·, w)u, where w ∈ Ω and u ∈ C
n, is dense in H.

Proof. Suppose M 6= H. Let g 6= 0 be orthogonal to M. Then u∗g(ω) =
(
g,K(·, ω)u

)

H
= 0 for

every u ∈ C
n yields g = 0, which contradicts our assumption.

1.1.7 Theorem. Let K : Ω × Ω → C
n×n be a positive kernel. Then there exists exactly one

RKHS of Cn-valued functions on Ω with K as its reproducing kernel.

Proof. This is found as Theorem 5.2 in [AD].

1 · marks the argument of a function. K( · , ω)u is to be understood as z 7→ K(z, ω)u.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1.1.8 Definition. The Hardy space Hn
2 is the space of vector-valued functions f : C+ → C

n

that are holomorphic in the upper half plane, such that

lim
ǫց0

∫

R

‖f(t+ iǫ)‖2 dλ(t) < +∞.

Hn
2 becomes a Hilbert space when equipped with the scalar product

(f, g)Hn
2

:= lim
ǫց0

∫

R

g(t+ iǫ)∗f(t+ iǫ) dλ(t).

Additionally, we define Hn
∞ to be the space of functions f : C+ → C

n that are holomorphic

in C+, and satisfy limǫց0 supt∈R ‖f(t + iǫ)‖ < +∞. Lastly, let Hn×n
∞ denote the space of

n× n-matrix-valued functions that belong to H∞ := H1
∞ entrywise.

1.1.9 Remark. Every function from Hn
2 or from Hn

∞ has boundary values almost everywhere

on R, or, put differently,

f(t) := lim
ǫց0

f(t+ iǫ)

exists λ-a.e. on R. So, instead of defining these spaces by a limit of integrals, we could, for

example, also put

(f, g)Hn
2

:=

∫

R

g(t)∗f(t) dλ(t).

In this sense, Hn
2 and Hn

∞ become subspaces of Ln2 and Ln∞, respectively. For details see Section

1 of Chapter 3 in [AD].

1.1.10 Remark. Not only is Hn
2 a Hilbert space, it is even an RKHS. Its reproducing kernel

is

K(z, w) =
iI

2π(z − w)
. (1.1)

This is derived from the equation

f(z) =
1

2πi

∫

R

f(t)

t− z
dλ(z) (1.2)

which holds for every f ∈ Hn
2 and each z ∈ C+. See ([AD], Example 5.9) and ([D], Chapter 1,

Theorem 12).

1.1.11 Lemma. Let P be the orthogonal projection from Ln2 to Hn
2 , and let f ∈ Hn×n

∞ as well

as ξ ∈ C
n and w ∈ C+. Then

P
[

f∗K(·, w)ξ
]

= K(·, w)f(w)∗ξ, (1.3)

where K(z, w) = iI
2π(z−w) is the reproducing kernel of Hn

2 .

3
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Proof. For α ∈ C+, η ∈ C
n and using Definition 1.1.4, (2), we get

(

K(·, α)η, P
[

f∗K(·, w)ξ
])

Hn
2

=
(

K(·, α)η, f∗K(·, w)ξ
)

Ln
2

=
(

fK(·, α)η,K(·, w)ξ
)

Ln
2

= ξ∗f(w)K(w,α)η =
(

K(·, α)η,K(·, w)f(w)∗ξ
)

Hn
2

.

By Lemma 1.1.6, the set of functions of the form K(·, α)η, where α ∈ C+ and η ∈ C
n, is dense

in Hn
2 . This proves (1.3).

1.2 The Schur class

1.2.1 Definition. The Schur class Sn is the set of n × n-matrix-valued functions s which are

holomorphic on C+ and satisfy 2

s(z)∗s(z) ≤ I, z ∈ C+,

where I denotes the n× n-identity matrix.

In the following, a few basic properties of Schur class functions are pointed out.

1.2.2 Lemma ([AD, Lemma 3.51]). Let s ∈ Sn and ξ, η ∈ C
n such that ‖ξ‖ = ‖η‖. If there is

a point ω ∈ C+ such that ξ = s(ω)η, then ξ = s(z)η and η = s(z)∗ξ for every z ∈ C+.

Proof. This is evident for η = 0, so w.l.o.g. we can assume ‖ξ‖ = ‖η‖ = 1. This leads to

|ξ∗s(z)η| ≤ ‖ξ‖ · ‖s(z)‖ · ‖η‖ ≤ 1 = ‖ξ‖2 = ξ∗s(ω)η.

The maximum principle applied to the function z 7→ ξ∗s(z)η provides us with ξ∗s(z)η = 1,

z ∈ C+. Now,

‖ξ − s(z)η‖2 = ‖ξ‖2

︸ ︷︷ ︸

=1

− ξ∗s(z)η
︸ ︷︷ ︸

=1

− η∗s(z)∗ξ
︸ ︷︷ ︸

=1

+ ‖s(z)η‖2

︸ ︷︷ ︸

≤‖s(z)‖2‖η‖2≤1

≤ 0,

so ξ = s(z)η. The other claim, η = s(z)∗ξ is obtained in the same way from looking at

‖η − s(z)∗ξ‖2.

1.2.3 Corollary ([AD, Corollary 3.52]). Let s ∈ Sn. Then s(z0)∗s(z0) < I at one point z0 ∈ C+

if and only if s(z)∗s(z) < I at every point z ∈ C+.

Proof. Suppose s(z0)∗s(z0) < I, but not s(z)∗s(z) < I for every z ∈ C+. Then there is z1 ∈ C+

and η ∈ C
n such that ‖s(z1)η‖ = ‖η‖. Let ξ = s(z1)η, then from Lemma 1.2.2 we get ξ = s(z)η

for every z ∈ C+. But this would mean ‖s(z0)η‖ = ‖ξ‖ = ‖η‖, which is a contradiction.

1.2.4 Corollary ([AD, Corollary 3.53]). Let s ∈ Sn such that det(I − s(z)) does not vanish

identically on C+. Then det(I − s(z)) 6= 0 for every z ∈ C+.
2For n × n-matrices C,D, by writing C ≤ D we mean that D − C is positive semidefinite.
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Proof. If there is z0 ∈ C+ such that det(I − s(z0)) = 0, pick a nonzero ξ ∈ C
n with ξ = s(z0)ξ.

By Lemma 1.2.2, ξ = s(z)ξ everywhere in the upper half plane, so det(I − s(z)) ≡ 0.

1.2.5 Theorem ([AD, Example 5.12]). Let s ∈ Sn. Then

Λ(z, w) := i
I − s(z)s(w)∗

z − w
(1.4)

is a positive kernel on C+.

Proof. For any function f from Hn×n
∞ , it is easy to see that multiplication of f with any Hn

2

function gives again an Hn
2 function, and that for the operator Mf on Hn

2 of multiplication by

f we have 3 ‖Mf‖ ≤ ‖f‖Hn×n
∞

. Now, for s ∈ Sn ⊆ Hn×n
∞ we have ‖M∗

s ‖ = ‖Ms‖ ≤ ‖s‖Hn×n
∞

≤ 1

and

(Ms)
∗K(·, w)ξ = s(w)∗K(·, w)ξ

which follows directly from (1.3). Then pick m ∈ N, points w1, ..., wm ∈ C+, and vectors

ξ1, ..., ξm ∈ C
n. The theorem is proven by

1

2π

m∑

j,k=1

i
ξ∗
j s(wj)s(wk)

∗ξk

wj − wk
=

m∑

j,k=1

[s(wj)
∗ξj ]

∗K(wj , wk)[s(wk)
∗ξk]

=
m∑

j,k=1

(

K(·, wk)s(wk)
∗ξk,K(·, wj)s(wj)

∗ξj
)

Hn
2

=
m∑

j,k=1

(

(Ms)
∗K(·, wk)ξk, (Ms)

∗K(·, wj)ξj
)

Hn
2

=
∥
∥
∥(Ms)

∗
m∑

j=1

K(·, wj)ξj
∥
∥
∥

2
≤
∥
∥
∥

m∑

j=1

K(·, wj)ξj
∥
∥
∥

2
=

1

2π

m∑

j,k=1

i
ξ∗
j ξk

wj − wk
.

1.3 Asymptotic growth of holomorphic functions

We give a short overview of basic concepts regarding the growth of holomorphic functions. To

gain a better understanding of this topic, see also [AD], [D] and [L].

1.3.1 Definition. Let f be a n × n-matrix-valued holomorphic function on C+. Then we say

that f is a function of bounded type if there exist functions g ∈ Hn×n
∞ and h ∈ H∞ such that

f = g/h. The set of all n× n-matrix-valued functions of bounded type is also called N n×n, the

Nevanlinna class. For n = 1, we will write N instead of N 1×1.

1.3.2 Lemma ([D, Chapter 1, Problem 21]). Whenever f, g ∈ N n×n, then f + g and fg belong

to N n×n as well.

3This turns out to be an equality, but that is not needed here.
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1.3.3 Lemma. For f ∈ N , the limit

hf := lim sup
τ→+∞

ln |f(iτ)|

τ
(1.5)

exists in R.

Proof. This follows from Theorems 9 and 10 from Chapter 1 of [D].

1.3.4 Definition. For f ∈ N , the number hf defined by (1.5) is called the mean type of f .

The following two definitions are needed for a fundamental representation theorem for func-

tions of bounded type.

1.3.5 Definition ([AD, Example 3.11]). A Blaschke product is a function of the form

b(z) =
n∏

j=1

γj
z − ωj
z − ωj

, n ∈ N ∪ {∞}, (1.6)

where all ωj lie in the upper half plane and meet the Blaschke condition

n∑

j=1

| Imωj |

1 + |ωj |2
< +∞.

The constants γj are chosen in a way that ensures convergence of the Blaschke product: Usually,

γj = 1 if |ωj | ≤ 1 and γj =
ωj

ωj
otherwise.

1.3.6 Definition. A function φ ∈ H∞ is called outer if there is a function k ∈ L1(R) and a

constant γ with |γ| = 1, such that

φ(z) = γ exp

(
i

π

∫

R

1 + tz

t− z
k(t) dλ(t)

)

, z ∈ C+. (1.7)

In this case, k(t) = − limǫց0
ln |φ(t+iǫ)|

1+|t|2
.

1.3.7 Theorem ([D, Chapter 1, Theorem 9]). Let f be holomorphic in C+ and suppose that 0

is not a limit point of zeros of f . Then f ∈ N if and only if there exist a Blaschke product b

and an outer function φ such that f(z) = e−ihf zb(z)φ(z) everywhere in C+.

We introduce another notion of growth for entire functions.

1.3.8 Definition ([R, Definition 6.16]). An entire function f is of exponential type if there

exist real constants m,M , where M > 0, such that

|f(z)| ≤ M exp(m|z|), z ∈ C. (1.8)

The greatest lower bound τf of numbers m for which there exists M > 0 satisfying (1.8) is called

the exponential type of f .
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The exponential type of f can also be calculated by

τf = lim sup
|z|→∞

ln |f(z)|

|z|
. (1.9)

The concepts of mean and exponential type are connected by the following theorem that was

found by Krĕın.

1.3.9 Theorem (Krĕın 1947). For an entire function f , the following are equivalent:

(i) f is of exponential type, and 4

∫

R

ln+(f(t))

1 + t2
dλ(t) < +∞.

(ii) f |C+ and f#|C+ both belong to N .

In this case, τf = max{hf , hf#}.

Proof. See [R, Theorems 6.17 and 6.18].

1.3.10 Theorem ([L, Chapter 1, Theorem 22 and Corollary]). Let f be entire and of exponential

type τf = 0, and let |f(z)| be bounded along some line. Then f is constant.

1.3.11 Theorem ([L, Chapter I, Theorem 20]). Let f : Ω → C be analytic on the domain

Ω ⊆ C. Suppose that f(z) has a limit at every point of the boundary ∂Ω of Ω, and that there

exists M > 0 such that

lim
z→ζ

|f(z)| ≤ M, ζ ∈ ∂Ω.

If f(z) is bounded in Ω, then |f(z)| ≤ M for all z ∈ Ω.

4ln+ is the positive part of ln, i.e., ln+(t) := max{0, ln(t)}.
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Chapter 2

Matrix-valued Herglotz functions

This chapter contains the standard theory of (matrix valued) Herglotz functions. These being

our central object of interest, proofs for the following theorems will be given. For readers not

familiar with linear relations in Hilbert spaces, an alternative (and elegant) proof of the integral

representation is provided in the appendix.

2.1 Elementary properties

2.1.1 Definition. Let f : Ω → C
n×n be analytic on the open set Ω ⊆ C. The reflection of f is

defined by f#(z) := f(z)∗ for z ∈ Ω := {z ∈ C : z ∈ Ω}.

f is called real if f(z) = f#(z) for all z ∈ Ω ∩ Ω.

2.1.2 Definition. Let Q : C \R → C
n×n be holomorphic and real. Then Q is called a Herglotz

function if ImQ(z) := Q(z)−Q(z)∗

2i ≥ 0 for all z ∈ C+ := {z ∈ C : Im z > 0}.

2.1.3 Remark.

1. The restriction to real Q is purely technical, as for a given holomorphic function Q̃ : Ω →

C
n×n with Ω ⊇ C+, we can also look at the real function Q defined by

Q(z) =

{

Q̃(z), z ∈ C+

Q̃(z)∗, z ∈ C−

Note that, in general, Q|C−
is not the analytic continuation of Q|C+ .

2. For Herglotz functions Q,R and scalar valued r, the functions Q+R and Q ◦ r as well as

−Q−1 are Herglotz as well.

3. Elementary examples of Herglotz functions are:

 Az +B, where A > 0 and B ∈ C
n×n;

 log z, if defined in a way that 0 < arg z < π for z ∈ C+;

 
∑n
j=1

Aj

zj−z with real zj and positive matrices Aj ;

 The resolvent (A− z)−1 of a self-adjoint matrix A.
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2.1.4 Lemma. Let q be a scalar Herglotz function and z0 ∈ C+ such that q(z0) ∈ R. Then q is

constant.

Proof. Define f(z) := exp(iq(z)), then

|f(z)| = exp(− Im q(z)) ≤ 1 = |f(z0)|,

which by the maximum principle means that f is constant, as is q.

2.1.5 Lemma. Let Q : C\R → C
n×n be a Herglotz function. Then ker(ImQ(z)) is independent

of z ∈ C+.

Proof. Select z0 ∈ C+ and ξ0 ∈ ker(ImQ(z)). Hence, the scalar Herglotz function g(z) :=

ξ∗
0Q(z)ξ0 takes on a real value at z0, and by Lemma 2.1.4 is constant. This implies

0 = ξ∗
0

(
ImQ(z)

)
ξ0 =

∥
∥
∥

(
ImQ(z)

) 1
2 ξ0

∥
∥
∥

2
,

which proves ξ0 ∈ ker(ImQ(z)) for all z ∈ C+.

2.1.6 Lemma. A matrix M with ImM > 0 is invertible.

Proof. Suppose not, and choose x ∈ kerM , x 6= 0. Then

0 6= 2ix∗[ImM ]x = 2i Im[x∗Mx] = x∗Mx− (Mx)∗x = 0,

which is a contradiction.

2.1.7 Lemma. Let Q be a Herglotz function such that detQ does not vanish identically. Then

detQ(z) 6= 0 for every z ∈ C \ R. In this case, −Q(z)−1 is also a Herglotz function.

Proof. At any point where Q(z) is invertible, we have

Im(−Q(z)−1) =
−Q(z)−1 + [Q(z)∗]−1

2i
= Q(z)−1 ImQ(z)[Q(z)−1]∗ ≥ 0.

Suppose that detQ(z) has a zero z0 in the upper half plane. Then the meromorphic function

−Q(z)−1 has a pole at z0. Let ξ ∈ C
n such that z 7→ −ξ∗Q(z)−1ξ has a pole at z0. This means

that for a small enough circle γ around z0,

1

2πi

∫

γ

[−ξ∗Q(z)−1ξ]′

−ξ∗Q(z)−1ξ
dz ≥ 1,

while at the same time 0 ≤ arg[−ξ∗Q(z)−1ξ] ≤ π, z ∈ γ, which is a contradiction.

2.1.8 Theorem. Let Q : C \ R → C
n×n be a Herglotz function. Then

K(z, w) :=
Q(z) −Q(w)∗

z − w
(2.1)

is a positive kernel on Ω = C+.
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Proof. Consider the function E(z) :=
[
Q(z)+iI

]
|C+ , which satisfies ImE(z) = ImQ(z)+I > 0.

By Lemma 2.1.6, E(z) is invertible for all z ∈ C+. Thus s(z) := E(z)−1E#(z) is a well-defined

and analytic matrix-valued function on C+. Setting

Λ(z, w) = i
I − s(z)s(w)∗

z − w
,

we have

E(z)Λ(z, w)E(w)∗ = E(z)

[

i
I − E(z)−1(Q(z) − iI)(Q(w)∗ + iI)

[
E(w)∗

]−1

z − w

]

E(w)∗

= E(z)

[

i
I −

(
I − 2iE(z)−1

)(
I + 2i

[
E(w)∗

]−1)

z − w

]

E(w)∗

= i
2i
(
E(w)∗ − E(z)

)
− 4I

z − w
= i

2i
(
Q(w)∗ −Q(z) − 2iI

)
− 4I

z − w
= 2K(z, w). (2.2)

Inserting z = w, we obtain

0 ≤ 2
ImQ(z)

Im z
= 2K(z, z) = 2E(z)Λ(z, z)E(z)∗ = E(z)

I − s(z)s(z)∗

Im z
E(z)∗.

Therefore, I − s(z)s(z)∗ ≥ 0 and further ‖s(z)‖ = ‖s(z)∗‖ ≤ 1, i.e., s ∈ Sn. Applying Theorem

1.2.5 yields positivity of the kernel Λ(z, w). By (2.2), K(z, w) is a positive kernel, too.

Much more involved is the theorem giving an integral representation for every Herglotz function.

It reads as follows:

Any Herglotz function Q : C \ R → C
n×n admits the following integral representation:

Q(z) = C +Dz +

∫

R

( 1

t− z
−

t

1 + t2

)

dΣ(t),

where C,D are self-adjoint with D ≥ 0, and Σ is a matrix-valued positive measure such that
∫

R

1
1+t2

dΣ(t) < +∞.

The standard proof is done without any additional theory and can be found in the appendix

(though only for the scalar case). We will go a different direction and extract the integral

representation from the operator model of a Herglotz function. This has the advantage of

proving an important result about being able to continue partially defined "Herglotz functions"

to all of C \ R. Note that this path of deriving the integral representation appears to be

fundamentally different from the standard proof. However, Theorem 2.1.8 plays an important

role in proving the operator representation of a Herglotz function. The proof of the latter,

however, hinges on the theory of Hardy spaces, for which many of the same techniques as in

the standard proof of the Herglotz integral representation are used. Still, the operator model

gives a very interesting angle of perspective.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.2 Defect families and Q-functions

This section is primarily taken from [KK]. Let H be a Hilbert space and T a linear relation on

H, i.e., a linear subspace T ≤ H × H. The following notation will be used:

2.2.1 Definition.

1. The domain domT := {x ∈ H : ∃y ∈ H (x; y) ∈ T};

2. The range ranT := {y ∈ H : ∃x ∈ H (x; y) ∈ T};

3. The kernel kerT := {x ∈ H : (x; 0) ∈ T};

4. The multi-valued part mulT := {y ∈ H : (0; y) ∈ T};

5. T∞ := {0} × mulT ;

6. Ts := T ⊖ T∞ = T ∩ T⊥
∞.

2.2.2 Lemma ([KK, Lemma 1.3.3]). Let T be a closed linear relation on H. Then

(i) Ts is an operator;

(ii) domTs = domT is dense in (mulT ∗)⊥;

(iii) ranTs ⊆ (mulT )⊥;

(iv) ranT = ranTs ⊕ mulT , where ⊕ denotes an orthogonal sum.

Proof.

(i): Choose x ∈ mulTs. Then (0;x) ∈ Ts ∩ T∞ = {(0; 0)}, so mulTs = {0}.

(ii): Clearly, domTs ⊆ domT . If, on the other hand, x ∈ domT , then there exists y ∈ H

such that (x; y) ∈ T . T is closed, so mulT is closed, too, and therefore H = mulT ⊕ (mulT )⊥.

Write y = y1 + y2, where y1 ∈ mulT and y2 ∈ (mulT )⊥. Now, (x; y2) = (x; y) − (0; y1) ∈ T is

orthogonal to T∞. This means that (x; y2) ∈ Ts, which shows x ∈ domTs.

Density of domT in (mulT ∗)⊥ follows from (mulT ∗)⊥ = ((domT )⊥)⊥ = domT .

(iii): Let y ∈ ranTs and u ∈ mulT . Taking x ∈ H such that (x; y) ∈ Ts ⊥ T∞ leads to

(y, u)H =
(
(x; y), (0, u)

)

H×H
= 0.

(iv): The inclusion ranTs ⊕ mulT ⊆ ranT holds because of ranTs,mulT ⊆ ranT . If y ∈ ranT ,

we find x ∈ H with (x; y) ∈ T = Ts⊕T∞. Hence, (x; y) = (x; y1) + (0; y2) leads to y = y1 + y2 ∈

ranTs ⊕ mulT .

2.2.3 Corollary ([KK, Korollar 1.3.7]). Let T be a self-adjoint linear relation on the Hilbert

space H. Then Ts : (mulT )⊥ → (mulT )⊥ is a densely defined and self-adjoint operator.

Proof. We apply Lemma 2.2.2. By (i), Ts is an operator. By (ii), Ts is densely defined in

(mulT ∗)⊥ = (mulT )⊥, and (iii) means that Ts has values in (mulT )⊥.

Let T ∗
s be the adjoint of Ts in (mulT )⊥. We first show T ∗

s ⊆ Ts. For (x; y) ∈ T ∗
s , we claim
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that (x, y) ∈ T ∗ = T , implying (x; y) ∈ Ts because of y ∈ (mulT )⊥. Let (u; v) ∈ T , (u; v) =

(u; v1) + (0; v2) with (u; v1) ∈ Ts, (0; v2) ∈ T∞. Now, (x, v)H = (x, v1)H = (y, u)H since (x; y)

belongs to T ∗
s . So, indeed, (x; y) ∈ T ∗.

The reverse inclusion holds because of Ts ⊆ T = T ∗ ⊆ T ∗
s .

2.2.4 Remark. Recall that for a linear relation T on a Hilbert space, the dimension of

[ran(T − λ)]⊥ is locally constant on1 r(T ) = {λ ∈ C ∪ ∞ : (T − λ)−1 ∈ Lb(ran(T − λ),H)}.

Since a symmetric linear relation S satisfies r(S) ⊆ C \R, dim [ran(T −λ)]⊥ can attain at most

two different values, depending only on λ belonging to the upper or lower half-plane. We call

those numbers the defect indices, i.e.,

n± = dim [ran(T ± i))]⊥. (2.3)

It is well known (see, for example, [B, Corollary 1.7.13]) that a closed and symmetric linear

relation S on H has a self-adjoint extension on H if and only if n+ = n−. However, even in the

case of inequality, a self-adjoint extension of S can be found in a bigger Hilbert space H′ ⊇ H.

2.2.5 Definition. Let T be a linear relation on H. The subspaces

Nλ := [ran(T − λ)]⊥, λ ∈ C, (2.4)

are called the defect spaces of T . The notation Nλ(T ) might be used in cases of ambiguity.

In the context of the following lemma, Nλ always refers to [ran(S − λ)]⊥, while Tµ,λ will be

defined with regard to a self-adjoint extension A of S.

2.2.6 Lemma ([KK, Proposition 2.1.5; Lemma 2.1.6]). Let S ⊆ S∗ be a symmetric linear

relation on a Hilbert space H, and let A = A∗ ⊇ S be a self-adjoint extension of S in H. For

λ, µ ∈ ρ(A), define

Tµ,λ := I + (λ− µ)(A− λ)−1. (2.5)

Then Tµ,λ is a bijective and continuous linear operator from H to H. For λ, µ, ν ∈ ρ(A),

Tν,λTµ,ν = Tµ,λ. Moreover, Tµ,λNµ = Nλ.

Proof. First, using the resolvent identity, the equality Tν,λTµ,ν = Tµ,λ is proven:

Tν,λTµ,ν =
(
I + (λ− ν)(A− λ)−1)(I + (ν − µ)(A− ν)−1)

= I + (λ− ν)(A− λ)−1 + (ν − µ)(A− ν)−1 + (ν − µ) (λ− ν)(A− λ)−1(A− ν)−1

︸ ︷︷ ︸

=(A−λ)−1−(A−ν)−1

= I + (λ− µ)(A− λ)−1 = Tµ,λ.

1Lb(X, Y ) stands for the set of bounded linear operators T : X → Y ;
By (T − ∞)−1 we understand T itself, so that ∞ ∈ r(T ) if and only if T is a bounded linear operator on its
domain.
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In particular, Tµ,λTλ,µ = Tµ,µ = I = Tλ,µTµ,λ, so Tµ,λ is bijective.

This leaves us with the proof of Tµ,λNµ = Nλ. Taking x ∈ Nµ, we have to verify that, for every

y ∈ ran(S − λ), Tµ,λx is orthogonal to y. Start by writing y = v − λu where (u; v) ∈ S ⊆ A.

Hence, (v − λu;u) ∈ (A− λ)−1, and further

(Tµ,λx, y) = (x, T ∗
µ,λy) =

(
x, T ∗(v − λu)

)
=
(
x, v − λu+ (λ− µ)u

)
= (x, v − µu) = 0.

So, Tµ,λNµ ⊆ Nλ. By symmetry, we also have Tλ,µNλ ⊆ Nµ. Applying Tµ,λ on both sides yields

the missing inclusion.

We are now on our way to establish the connection between Herglotz functions on one

side and self-adjoint extensions of symmetric linear relations on the other side. The following

definition is valid not only for finite defect indices (n, n). However, if the defect indices are

infinite, the pair (S,A) does not correspond to a matrix-valued Herglotz function, but rather

to an operator-valued.

2.2.7 Definition. Let S ⊆ S∗ a closed and symmetric linear relation on a Hilbert space H with

finite defect indices (n, n). Let A = A∗ ⊇ S be a selfadjoint extension of S. Pick µ0 ∈ ρ(A),

and let Γ : Cn → Nµ0 be an isomorphism. Setting

Γλ := Tµ0,λΓ =
(

I + (λ− µ)(A− λ)−1
)

Γ, λ ∈ ρ(A), (2.6)

the family (Γλ)λ∈ρ(A) is called a defect family of2 (S,A).

2.2.8 Remark. Setting λ = µ0, we get Γµ0 = Γ.

2.2.9 Corollary ([KK, Korollar 2.1.8]). Let (Γλ)λ∈ρ(A) be a defect family of (S,A), where S

has defect indices (n, n). The following statements hold:

(i) For each λ ∈ ρ(A), Γλ : Cn → Nλ is an isomorphism.

(ii) Γλ = Tµ,λΓµ for all λ, µ ∈ ρ(A).

(iii) Γλ depends analytically on λ ∈ ρ(A).

Proof.

(i): Clear from the definition of Γλ and Lemma 2.2.6.

(ii): Tµ,λΓµ = Tµ,λTµ0,µΓ = Tµ0,λΓ = Γλ.

(iii): Because of (ii), we have Γz+h = Tz,z+hΓz. Next,

Γz+h − Γz
h

=
1

h

((
I + h(A− (z + h))−1)Γz − Γz

)

= (A− (z + h))−1Γz.

Thus, the limit for h → 0 exists (and is equal to (A− z)−1Γz).

2The notation (S, A) will always refer to a self-adjoint extension A of a symmetric linear relation S.
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2.2.10 Definition. Let S be a closed and symmetric linear relation on H having defect indices

(n, n). Let A be a self-adjoint extension of S and (Γλ)λ∈ρ(A) a defect family of (S,A). A function

Q : ρ(A) → C
n×n is called a Q-function of (S,A, (Γλ)λ∈ρ(A)) if

Q(λ) −Q(µ)∗

λ− µ
= Γ∗

µΓλ, λ, µ ∈ ρ(A). (2.7)

2.2.11 Proposition ([KK, Proposition 2.1.13]). Under the assumptions of Definition 2.2.10,

the function

Q(λ) := (λ− µ0)Γ∗Γλ −
1

2
(µ0 − µ0)Γ∗Γ

is a Q-function of (S,A, (Γλ)λ∈ρ(A)). The Q-function is unique up to a self-adjoint constant

B = B∗ ∈ C
n×n.

Proof. We use Corollary 2.2.9, (ii), to calculate

Q(λ) = (λ− µ0)Γ∗Tµ0,λΓ −
1

2
(µ0 − µ0)Γ∗Γ.

Since T ∗
µ0,λ

= T
µ0,λ

, we obtain

Q(µ)∗ = (µ− µ0)Γ∗Tµ0,µΓ −
1

2
(µ0 − µ0)Γ∗Γ.

Now,

Q(λ) −Q(µ)∗ = Γ∗
[

(λ− µ0)Tµ0,λ − (µ− µ0)Tµ0,µ − (µ0 − µ0)I
]

Γ

= Γ∗
[

(λ− µ)I + (λ− µ0)(λ− µ0)(A− λ)−1 − (µ− µ0)(µ− µ0)(A− µ)−1
]

Γ.
(2.8)

The expression within the squared brackets evaluates to (λ− µ)Tµ0,µTµ0,λ:

Tµ0,µTµ0,λ =
[
I + (µ− µ0)(A− µ)−1][I + (λ− µ0)(A− λ)−1]

= I + (µ− µ0)(A− µ)−1 + (λ− µ0)(A− λ)−1 + (µ− µ0)(λ− µ0)(A− µ)−1(A− λ)−1.

After multiplicating the right side by λ− µ and applying the resolvent identity, we have

(λ− µ)I + (λ− µ)(λ− µ0)(A− λ)−1 + (λ− µ)(µ− µ0)(A− µ)−1

+ (µ− µ0)(λ− µ0)
[
(A− λ)−1 − (A− µ)−1]

= (λ− µ)I + (λ− µ0)(λ− µ0)(A− λ)−1 − (µ− µ0)(µ− µ0)(A− µ)−1.

This is exactly the expression within the squared brackets of (2.8), which implies

Q(λ) −Q(µ)∗ = (λ− µ)Γ∗Tµ0,µTµ0,λΓ = (λ− µ)Γ∗T ∗
µ0,µ

Tµ0,λΓ

= (λ− µ)(Tµ0,µΓ)∗(Tµ0,λΓ) = (λ− µ)Γ∗
µΓλ.
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This shows that Q is a Q-function of (S,A, (Γλ)λ∈ρ(A)).

Suppose that M is another Q-function of this triple. By definition,

M(λ) −M(µ0)∗

λ− µ0
= Γ∗Γλ,

which translates to3

M(λ) = (λ− µ0)Γ∗Γλ +M(µ)∗ = (λ− µ0)Γ∗Γλ + ReM(µ0) − i ImM(µ0)

= (λ− µ0)Γ∗Γλ + ReM(µ0) −
1

2
(µ0 − µ0)Γ∗Γ = Q(λ) + ReM(µ0).

Hence, Q and M differ only by the self-adjoint constant ReM(µ0).

2.3 Herglotz functions and extension theory

2.3.1 Lemma ([KK, Lemma 2.6.1]). Let Ω ⊆ C\R, n ∈ N, and Q : Ω → C
n×n continuous and

real, such that the kernel

K(z, w) :=







Q(z)−Q(w)∗

z−w , if z 6= w,

limζ→w
Q(ζ)−Q(w)∗

ζ−w , if z = w is a limit point of Ω,

I otherwise

(2.9)

is well-defined and positive on Ω.

Let H be the unique RKHS having K as its kernel and consider the following linear relation on

H:

S̃ :=

{( m∑

i=1

K(·, wi)xi;
m∑

i=1

wiK(·, wi)xi
)

∈ H × H :

m ∈ N, w1, ..., wm ∈ Ω, x1, ..., xm ∈ C
ns.t.

m∑

i=1

xi = 0

} (2.10)

Then the following statements hold:

(i) S̃ is symmetric.

(ii) If Ω has a limit point in C+, then S̃ has defect index n+ = 0. If Ω has a limit point in

C−, then n− = 0.

(iii) If Ω has a limit point both in C+ and in C−, then A := S̃ is self-adjoint.

Proof.

(i): It needs to be checked that whenever (f ; g), (u; v) ∈ S̃, then (f, v)H = (g, u)H. Suppose

that f has the form
∑m
i=1K(·, wi)xi, while u =

∑l
j=1K(·, tj)yj . We evaluate using Definition

3For a matrix B, we set Re B := 1
2
(B + B∗) and Im B := 1

2i
(B − B∗).
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1.1.4, (2):

(f, v)H =
( m∑

i=1

K(·, wi)xi,
l∑

j=1

tjK(·, tj)yj
)

H
=

m∑

i=1

l∑

j=1

(

K(·, wi)xi, tjK(·, tj)yj
)

H

=
m∑

i=1

l∑

j=1

tjx∗
iK(wi, tj)yj =

m∑

i=1

l∑

j=1

tjy
∗
jK(wi, tj)

∗xi =
m∑

i=1

l∑

j=1

tjy
∗
jK(tj , wi)xi.

The last equality holds because of Remark 1.1.2 (though it is also clear from the definition of

K). On the other hand,

(g, u)H =
( m∑

i=1

wiK(·, wi)xi,
l∑

j=1

K(·, tj)yj
)

H

=
m∑

i=1

l∑

j=1

(

wi(K(·, wi)xi,K(·, tj)yj
)

H
=

m∑

i=1

l∑

j=1

wiy
∗
jK(tj , wi)xi.

Noticing that (z − w)K(z, w) = Q(z) −Q(w) for all z, w ∈ Ω, we finally obtain

(f, v)H − (g, u)H =
m∑

i=1

l∑

j=1

(tj − wi)y
∗
jK(tj , wi)xi =

m∑

i=1

l∑

j=1

y∗
j [Q(tj) −Q(wi)

∗]xi

=
l∑

j=1

y∗
jQ(tj)

( m∑

i=1

xi

︸ ︷︷ ︸

=0

)

−
m∑

i=1

( l∑

j=1

yj

︸ ︷︷ ︸

=0

)∗
Q(wi)

∗xi = 0.

(ii): Let z0 ∈ Ω. We start by showing

ran(S̃ − z0) =
{

g =
m∑

i=1

K(·, wi)xi ∈ H : w1, ..., wm ∈ Ω, x1, ..., xm ∈ C
n, xi = 0 if wi = z0

}

.

(2.11)

Firstly, we convince ourselves that every element of ran(S̃ − z0) is of the indicated form. Let

f =
∑m
i=1K(·, wi)yi ∈ dom S̃. Then

(

f ;
∑m
i=1K(·, wi)(wi − z0)yi

)

∈ S̃ − z0, and thus xi :=

(wi − z0)yi vanishes for wi = z0.

Secondly, let g :=
∑m
i=1K(·, wi)xi, where w1, ..., wm ∈ Ω, x1, ..., xm ∈ C

n, and xi = 0 if wi = z0.

Set M = {i ∈ {1, ...,m} : wi 6= z0} and set yi := xi

wi−z0
for i ∈ M . Letting y0 := −

∑

i∈M yi, we

have
∑

i∈M∪{0} yi = 0. With w0 := z0, we define

f :=
∑

i∈M∪{0}

K(·, wi)yi.

Evidently, (f ; g) belongs to S̃ − z0, and therefore g ∈ ran(S̃ − z0).

For our next step, take a limit point z0 of Ω. Since the linear span of all functions of the form

K(·, w)u is dense in H is dense by Lemma 1.1.6, it suffices to show that every function of the
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form K(·, w)u can be approximated with functions from ran(S̃ − z0). Since this is trivial for

w 6= z0, our task reduces to the approximation of K(·, z0)u for every u ∈ C
n.

Recall that, in Hilbert spaces, convergence of xi to x is equivalent to convergence of ‖xi‖ to ‖x‖

and (xi, y) to (x, y) for every y from a dense subset. We continue by checking the latter with

the net K(·, w)u defined on the directed set Ω \ {z0}.

(
K(·, w)u,K(·, w)u

)

H
= u∗K(w,w)u → u∗K(z0, z0)u =

(
K(·, z0)u,K(·, z0)u

)

H
(2.12)

holds because Q was assumed to be continuous. What remains to be shown is that
(
K(·, w)u,K(·, z)u

)

H
converges to

(
K(·, z0)u,K(·, z)u

)

H
for every z ∈ Ω. If z 6= z0, then this

follows from the continuity of Q in the same way as (2.12). If z = z0, then we have

(
K(·, w)u,K(·, z0)u

)

H
= u∗K(z0, w)u → u∗K(z0, z0)u =

(
K(·, z0)u,K(·, z0)u

)

H
,

the limit existing because of the assumption that K is well-defined.

(iii): This follows immediately from (ii) because any closed and symmetric linear relation with

defect indices (0, 0) is already self-adjoint.

2.3.2 Theorem ([KK, Satz 2.7.1]). Let ∅ 6= Ω ⊆ C\R be open, and let Q : Ω → C
n×n such that

Q(z) = Q(z)∗ whenever z, z ∈ Ω. Then Q can be continued to a Herglotz function (on C \R) if

and only if the kernel

K(z, w) =

{
Q(z)−Q(w)∗

z−w , z 6= w,

Q′(z), z = w
(2.13)

is positive on Ω.

Proof. Suppose that K(z, w) is positive. Lemma 2.3.1 gives us an RKHS H of functions on C\R

with values in C
n×n, together with a symmetric relation S̃ on H. As mentioned in Remark 2.2.4,

we can construct a self-adjoint extension A′ of S̃ in a bigger Hilbert space H′ ⊇ H. For λ ∈ Ω,

let

Γλ :

{

C
n → H

x 7→ K(·, λ)x
(2.14)

If λ, µ ∈ Ω and x ∈ C
n, then by definition of S̃

(

K(·, λ)x−K(·, µ)x;λK(·, λ)x− µK(·, µ)x
)

∈ S̃

⇒
(

K(·, λ)x−K(·, µ)x; (λ− µ)K(·, µ)x
)

∈ S̃ − λ ⊆ A′ − λ

⇒
(

K(·, µ)x;K(·, λ)x−K(·, µ)x
)

∈ (λ− µ)(A′ − λ)−1

⇒
(

K(·, µ)x;K(·, λ)x
)

∈
[
I + (λ− µ)(A′ − λ)−1]. (2.15)
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Using the notation from Lemma 2.2.6, the last row takes the form

Tµ,λΓµ = Γλ. (2.16)

Let µ0 ∈ Ω. Because of (2.16), we can define a continuation of (Γλ)
λ∈Ω to C \ R by

Γλ := Tµ0,λΓµ0 , λ ∈ C \ R.

This also guarantees that the function λ 7→ Γλ is analytic on C \ R. Furthermore, equation

(2.16) stays valid for all λ, µ ∈ C \ R because of

Tµ,λΓµ = Tµ,λTµ0,µΓµ0 = Tµ0,λΓµ0 = Γλ.

Next, we get K(µ, λ) = Γ∗
µΓλ from

(
Γ∗
µΓλx, y

)

Cn =
(
K(·, λ)x,K(·, µ)y

)

H
= y∗K(µ, λ)x =

(
K(µ, λ)x, y

)

Cn .

Hence,

Q(λ)∗ = (λ− µ)Γ∗
µΓλ +Q(µ). (2.17)

For λ = µ, this reads as Q(µ)∗ = (µ− µ)Γ∗
µΓµ +Q(µ), so

Q(µ) = (µ− µ)Γ∗
µΓµ +Q(µ)∗.

We plug this into (2.17) to obtain

Q(λ)∗ = (λ− µ)Γ∗
µΓλ + (µ− µ)Γ∗

µΓµ +Q(µ)∗.

We continue by taking the adjoint on both sides and calculating

Q(λ) = (λ− µ)Γ∗
λΓµ + (µ− µ)Γ∗

µΓµ +Q(µ)

= Γ∗
µ

[

(λ− µ)T ∗
µ,λ + (µ− µ)I

]

Γµ +Q(µ)

= Γ∗
µ

[

(λ− µ)
(
I + (λ− µ)(A′ − λ)−1)+ (µ− µ)I

]

Γµ +Q(µ)

= (λ− µ)Γ∗
µTµ,λΓµ +Q(µ) = (λ− µ)Γ∗

µΓ
λ

+Q(µ).

Finally, Q can be continued analytically to C \ R by picking µ0 ∈ Ω and setting

Q̂(λ) := (λ− µ0)Γ∗
µ0

Γλ +Q(µ0).

It remains to be shown that the function we defined is Herglotz:

Q̂(λ) − Q̂(µ)∗ = (λ− µ0)Γ∗
µ0

Γλ +Q(µ0) − (µ− µ0)Γ∗
µΓµ0 −Q(µ0)∗
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Recall that

Q(µ0) −Q(µ0)∗ = (µ0 − µ0)K(µ0, µ0) = (µ0 − µ0)Γ∗
µ0

Γµ0 .

Therefore, doing the same calculation as in (2.8),

Q̂(λ) − Q̂(µ)∗ = Γ∗
µ0

[

(λ− µ0)Tµ0,λ − (µ− µ0)Tµ0,µ + (µ0 − µ0)I
]

Γµ0

= (λ− µ)Γ∗
µ0
Tµ0,µTµ0,λΓµ0 = (λ− µ)Γ∗

µΓλ. (2.18)

Setting λ = µ yields Q̂(µ) = Q̂(µ)∗, while from λ = µ we obtain

Im Q̂(λ) = (Imλ)Γ∗
λΓλ.

Thus, for λ ∈ C+ we get Im Q̂(λ) ≥ 0.

We are left with the task of proving that for any Herglotz function Q, the kernel K as defined

in (2.13) is positive on C \ R. From Theorem 2.1.8, we know that K(z, w) is positive on C+.

Using the same construction as in the first part of the proof, we know that Q̂ is a continuation

of Q to C \ R that satisfies Q̂(z) = Q̂(z)∗. Therefore Q̂ and Q coincide, and (2.18) reads as

K(λ, µ) = K(µ, λ) = Γ∗
λ
Γµ for every choice of λ, µ ∈ C\R. A straightforward calculation shows

that K(λ, µ) is a positive kernel even on C \ R:

m∑

j,k=1

u∗
jK(ωj , ωk)uk =

m∑

j,k=1

u∗
jΓ

∗
ωj

Γωk
uk =

m∑

j,k=1

(
Γωk

uk,Γωj
uj
)

H
=
( m∑

k=1

Γωk
uk,

m∑

j=1

Γωj
uj
)

H
≥ 0.

2.3.3 Theorem ([KK, Satz 2.6.2]). Let Q : C \ R → C
n×n a Herglotz function such that

ImQ(z0) > 0 for some z0 ∈ C+. Then there exists a Hilbert space H together with

- a symmetric linear relation S in H with defect indices (n, n),

- a self-adjoint extension A of S in H, and

- a defect family (Γλ)λ∈ρ(A),

such that Q is a Q-function of the triple (S,A, (Γλ)λ∈ρ(A)).

Proof. We know from Theorem 2.3.2 that the kernel

K(z, w) =

{
Q(z)−Q(w)∗

z−w , z 6= w,

Q′(z), z = w

is positive on Ω = C \ R. Lemma 2.3.1 gives us an RKHS H of functions on C \ R with values

in C
n×n, together with a symmetric relation S̃ on H. In addition, A := S̃ is a self-adjoint
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extension of S̃ in H because of Ω having limit points in both C+ and C−. For λ ∈ C \ R set

Γλ :

{

C
n → H

x 7→ K(·, λ)x

We show that, for every λ ∈ C\R, Γλ is injective. Because of Lemma 2.1.5 and ker(ImQ(z0)) =

{0}, even ker(ImQ(z)) = {0} for every z ∈ C+. Pick x ∈ C
n, x 6= 0, then

‖Γλx‖2
H =

(
K(·, λ)x,K(·, λ)x

)

H
= x∗K(λ, λ)x = x∗ ImQ(λ)

Imλ
x > 0.

Hence ker Γλ = {0}, and Γλ : Cn → Γλ(Cn) ⊆ H is bijective. Like in the previous theorem,

formula (2.15), we have

(

K(·, µ)x;K(·, λ)x
)

∈
[
I + (λ− µ)(S̃ − λ)−1] ⊆

[
I + (λ− µ)(A− λ)−1],

more precisely, Tµ,λΓµ = Γλ for all λ, µ ∈ C \ R.

This yields a canonical continuation of Γλ to all λ ∈ ρ(A): Take µ0 ∈ C \ R and set

Γλ := Tµ0,λΓµ0 , λ ∈ R ∩ ρ(A).

If we were to define this using λ0 instead of µ0, we would see that Tλ0,λΓλ0 = Tλ0,λTµ0,λ0Γµ0 =

Tµ0,λΓµ0 . The continuation of Γλ to λ ∈ R ∩ ρ(A) is thus well-defined and satisfies

Tµ,λΓµ = Tµ,λTµ0,µΓµ0 = Tµ0,λΓµ0 = Γλ.

We proceed by defining the linear relation

S := {(f ; g) ∈ A : g − µ0f ⊥ Γµ0(Cn)} (2.19)

which, as a restriction of A, is symmetric. In order for (Γλ)λ∈ρ(A) to be a defect family of

(S,A), the identity Γλ(Cn) = Nλ := [ran(S − λ)]⊥ needs to hold. For (f ; g) ∈ S we have

(g − µ0f ; f) ∈ (A− µ0)−1; letting x ∈ C
n and λ ∈ ρ(A),

0 =
(
g − µ0f,Γµ0x

)

H
=
(
g − µ0f, Tλ,µ0Γλx

)

H
=
(
T
λ,µ0

(g − µ0f),Γλx
)

H

=
(

g − µ0f + (µ0 − λ)f,Γλx
)

H
=
(
g − λf,Γλx

)

H
.

Hence ran(S − λ) ⊆
[
Γλ(Cn)

]⊥
. If, on the other hand, v ∈

[
Γλ(Cn)

]⊥
, take f := (A − λ)−1v.

Consequently, (f ; v + λf) ∈ A. However, (v + λf) − λf = v is orthogonal to
[
Γλ(Cn)

]⊥
, i.e.,

(f ; v + λf) ∈ S. Therefore, v ∈ ran(S − λ). We conclude ran(S − λ) =
[
Γλ(Cn)

]⊥
. Note

that Γλ(Cn) is of finite dimension and thus closed, so taking orthogonal complements yields

Nλ = Γλ(Cn). This proves that (Γλ)λ∈ρ(A) is a defect family of (S,A).

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Lastly,

(
Γ∗
µΓλx, y

)

Cn =
(
K(·, λ)x,K(·, µ)y

)

H
=
(
K(µ, λ)x, y

)

Cn =
(
K(λ, µ)x, y

)

Cn .

x, y ∈ C
n being arbitrary, this implies Γ∗

µΓλ = K(λ, µ) = Q(λ)−Q(µ)∗

λ−µ , i.e., Q is a Q-function of

(S,A, (Γλ)λ∈ρ(A)).

2.4 Integral representation

Let A be a self-adjoint linear relation in a Hilbert space H. By Corollary 2.2.3, A can be

decomposed into A∞ = {0} × mulA and a densely defined and self-adjoint operator As :

(mulA)⊥ → (mulA)⊥. Let Es(∆) be the spectral measure of As, then we call

E(∆) := Es(∆ ∩ R)P(mulA)⊥ + 1∆(∞)PmulA, ∆ ∈ B(R ∪ {∞}) (2.20)

the spectral measure of A.

2.4.1 Theorem ([KK, Satz 2.8.1]). Let Q be the Q-function of the triple (S,A, (Γλ)λ∈ρ(A)) and

let E be the spectral measure of A. Then

Q(z) = C +Dz +

∫

R

( 1

t− z
−

t

1 + t2

)

dΣ(t), (2.21)

where D = Γ∗
iE({∞})Γi and Σ is the matrix-valued positive measure4 given by

Σ(∆) =

∫

∆
(t2 + 1) d

[
Γ∗
iE(t)Γi

]
.

Proof. We prove this by showing that

M(z) := Γ∗
iE({∞})Γiz +

∫

R

( 1

t− z
−

t

1 + t2

)

(t2 + 1) d
[
Γ∗
iE(t)Γi

]

is another Q-function of (S,A, (Γλ)λ∈ρ(A)). Proposition 2.2.11 then states that the Q-functions

Q and M differ only by a self-adjoint constant. Observe

(M(z) −M(w)∗

z − w
x, y

)

Cn

=
(
Γ∗
iE({∞})Γix, y

)

Cn +
1

z − w

∫

R

( 1

t− z
−

1

t− w

)

(t2 + 1) d
(
Γ∗
iE(t)Γix, y

)

Cn

=
(
E({∞})Γix,E({∞})Γiy

)

H
+

∫

R

(t− i)(t+ i)

(t− z)(t− w)
d
(
Es(t)Γix,Γiy

)

H
.

4i.e. for every x ∈ C
n, ∆ 7→ x∗Σ(∆)x is a (scalar) positive measure. The integral being "< ∞" means that it

should be finite for every choice of x ∈ C
n.
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Let P be the orthogonal projection onto (mulA)⊥ and Is the identity on (mulA)⊥.

∫

R

(t− i)(t+ i)

(t− z)(t− w)
d
(
Es(t)Γix,Γiy

)

H
=

∫

R

(

1 +
w − i

t− w

)(

1 +
z − i

t− z

)

d
(
Es(t)PΓix, PΓiy

)

H

=
([
Is + (w − i)(As − w)−1][Is + (z − i)(As − i)−1]PΓix, PΓiy

)

H

=
([
P + (z − i)(As − i)−1]Γix,

[
P + (w − i)(As − w)−1]Γiy

)

H
.

Recall that E({∞}) is the orthogonal projection onto mulA, and with the notation from above

one can write E({∞}) = I − P .

(M(z) −M(w)∗

z − w
x, y

)

Cn
=
(
(I − P )Γix, (I − P )Γiy

)

H

+
([
P + (z − i)(As − i)−1]Γix,

[
P + (w − i)(As − w)−1]Γiy

)

H

=
([

(I − P ) + P + (z − i)(As − i)−1]Γix,
[
(I − P ) + P + (w − i)(As − w)−1]Γiy

)

H

=
(
Ti,zΓix, Ti,wΓiy

)

H
=
(
Γ∗
wΓzx, y

)

H
.

2.4.2 Theorem (Stieltjes inversion formula; [KK, Satz 2.3.6]). Let C = C∗, D = D∗ ≥ 0 ∈

C
n×n and let Σ be an n×n-matrix-valued positive measure such that

∫

R

1
1+t2

d
(
Σ(t)x, x

)
< +∞

for every x ∈ C
n. Let

Q(z) = C +Dz +

∫

R

( 1

t− z
−

t

1 + t2

)

dΣ(t). (2.22)

Then, for every two real numbers a < b,

1

π
lim
τց0

∫

[a,b]
ImQ(x+ iτ) dλ(x) = Σ

(
(a, b)

)
+

1

2

(

Σ({a}) + Σ({b})

)

.

Proof. Choose a, b ∈ R, a < b, and define

χ(t) =







1, t ∈ (a, b),
1
2 , t ∈ {a, b},

0, t /∈ [a, b].

Using this notation, we have

Σ
(
(a, b)

)
+

1

2

(

Σ({a}) + Σ({b})

)

=

∫

R

χ(t) dΣ(t).

Observing

ImQ(z) = Im z

(

D +

∫

R

1

|t− z|2
dΣ(t)

)

, (2.23)
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we calculate

1

π

∫

[a,b]
ImQ(x+ iτ) dλ(x) −

∫

R

χ(t)dΣ(t) =

=
1

π

∫

[a,b]
τ

(

D +

∫

R

1

|t− x− iτ |2
dΣ(t)

)

dλ(x) −
∫

R

χ(t) dΣ(t) =

=
1

π
D(b− a)τ +

1

π

∫

R

(∫

[a,b]

τ

(t− x)2 + τ2
dλ(x) − πχ(t)

)

dΣ(t) =

=
1

π
D(b− a)τ +

1

π

∫

R

Rτ (t)

1 + t2
dΣ(t),

where

Rτ (t) := (1 + t2)

(

arctan
(b− t

τ

)

− arctan
(a− t

τ

)

− πχ(t)

)

.

We claim that there exists a constant C such that for every t ∈ R and τ ∈ (0, 1) the inequality

|Rτ (t)| ≤ C holds. This is done by distinguishing the cases t < a − 1, a − 1 < t < b + 1 and

t > b+ 1.

For t ∈ [a− 1, b− 1], there exists a constant C1 > 0 satisfying |Rτ (t)| ≤ C1 just by boundedness

of arctan and continuity of 1 + t2 on the compact set [a− 1, b+ 1].

For t < a− 1, we apply the Mean Value Theorem and choose ξ ∈ (a−t
τ
, b−t
τ

) such that 5

Rτ (t) =
1 + t2

1 + ξ2

(a− t

τ
−
b− t

τ

)

≤
1 + t2

τ
(

1 + (a−t)2

τ2

)(b− a) =

= (1 + t2)
τ(b− a)

τ2 + (a− t)2
≤

1 + t2

(a− t)2
(b− a) ≤ C2.

Similar calculations provide a third constant C3 for t > b+1, which proves that Rτ (t) is bounded

for t ∈ R, 0 < τ < 1. Using again the Dominated Convergence Theorem, we obtain

lim
τց0

(
1

π
D(b− a)τ +

1

π

∫

R

Rτ (t)

1 + t2
dΣ(t)

)

=
1

π

∫

R

lim
τց0

Rτ (t)

1 + t2
dΣ(t) = 0,

completing the proof.

2.4.3 Theorem ([KK, Satz 2.4.2]; [GT, Theorem 5.4]). Let Q : C \ R → C
n×n be holomorphic

and real. Then Q is Herglotz if and only if it admits a representation of the form

Q(z) = C +Dz +

∫

R

( 1

t− z
−

t

1 + t2

)

dΣ(t), (2.24)

where C,D are self-adjoint with D ≥ 0, and Σ is a matrix-valued positive measure such that
∫

R

1
1+t2

dΣ(t) < +∞. Moreover,

(i) C = ReQ(i);

5Note that χ(t) = 0 because of t < c − 1.
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(ii) D = limτ→+∞
ImQ(iτ)

τ
;

(iii) Let −∞ < c < d < +∞, then

1

π
lim
τց0

∫ d

c
ImQ(x+ iτ) dλ(x) = Σ

(
(c, d)

)
+

1

2

(

Σ({c}) + Σ({d})

)

;

(iv) If all diagonal entries of Q vanish, then Q(z) ≡ C.

Proof. Suppose that Q admits the representation (2.24). We rewrite the integral in the following

way:

∫

R

( 1

t− z
−

t

1 + t2

)

dΣ(t) =

∫

R

1 + tz

(t− z)(1 + t2)
dΣ(t) =

∫

R

1 + tz

t− z
d

(
Σ(t)

1 + t2

)

. (2.25)

The integrand on the right is bounded in t for fixed nonreal z and analytic in z ∈ C \ R for

fixed t, while the measure is finite by assumption. Therefore, Q is analytic on C \ R. Clearly,

Q(z) = Q(z)∗. Lastly, for z ∈ C+,

ImQ(z) =
Q(z) −Q(z)∗

2i
= D Im z +

1

2i

∫

R

( 1

t− z
−

1

t− z

)

dΣ(t)

= D Im z + Im z

∫

R

1

|t− z|2
dΣ(t) ≥ 0,

so Q is Herglotz.

On the other hand, if Q is Herglotz, then Q̃(z) := Q(z) + Iz is Herglotz as well and satisfies

Im Q̃(z) = ImQ(z) + I Im z > 0. By Theorem 2.3.3, there exists a Hilbert space H as well as

a triple (S,A, (Γλ)λ∈ρ(A)), such that Q̃ is a Q-function of this triple. Theorem 2.4.1 then gives

the integral representation of Q̃:

Q̃(z) = C̃ + D̃z +

∫

R

( 1

t− z
−

t

1 + t2

)

dΣ̃(t).

Therefore, letting C := C̃, D := D̃ − I, and Σ := Σ̃, a representation for Q is obtained. We

check that D ≥ 0 by first proving (ii):

ImQ(iτ)

τ
= D +

∫

R

1

|t− iτ |2
dΣ(t)

τ→+∞
−−−−→ D

holds because of the Dominated Convergence Theorem. In particular, D ≥ 0 because it is the

limit of positive semidefinite matrices.

Checking (i) is left to the reader, while (iii) is precisely the statement of Theorem 2.4.2. To

show (iv), observe that if all diagonal entries of Q vanish, we obtain from (ii) that diagonal

entries of the positive definite matrix D also vanish, and thus D = 0. In a similar way, we see

that Σ vanishes by looking at (iii).

2.4.4 Corollary. Let Q be an n×n-matrix-valued real function that is meromorphic on C and
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holomorphic on C\R. Then Q is Herglotz if and only if Q allows for the follwing representation,

Q(z) = C +Dz +
∑

j∈Z

Aj
( 1

zj − z
−

zj
1 + z2

j

)

, (2.26)

where C,D,Aj are self-adjoint matrices, D,Aj ≥ 0, and zj ∈ R. In this case, the sum
∑

j∈Z

Aj

1+z2
j

converges.

Proof. From the assumptions on Q it follows that ImQ(x) = 0 for every real x. From (iii) in

the last theorem we conclude that for any finite interval (a, b) which does not contain a pole of

Q, we have

0 ≤ Σ
(
(a, b)

)
≤ Σ

(
(a, b)

)
+

1

2

(

Σ({a}) + Σ({b})
)

=
1

π

∫

[a,b]
ImQ(x) dλ(x) = 0.

This implies that Σ is discrete, which means that Q can be written in the form (2.26) with

Aj = Σ({zj}). In this case, aforementioned sum converges because of

N∑

j=−N

Aj
1 + z2

j

=

∫

[z−N ,zN ]

1

1 + t2
dΣ(t)

N→∞
−−−−→

∫

R

1

1 + t2
dΣ(t) < +∞.

2.4.5 Lemma. If Q is an n × n-matrix-valued Herglotz function, then Q ∈ N n×n. Moreover,

each entry Qkl of Q has mean type hQkl
= 0.

Proof. Let x ∈ C
n, then qx(z) := x∗Q(z)x is a scalar Herglotz function. The Möbius transform

ψ(z) := z−i
z+i maps C+ onto the unit disk. In particular, |(ψ ◦ qx)(z)| ≤ 1. Now, the following

representation of qx holds:

qx(z) = ψ−1(ψ ◦ qx)(z) =
i
(
1 + (ψ ◦ qx)(z)

)

1 − (ψ ◦ qx)(z)
.

Both numerator and denominator are bounded, i.e., qx ∈ N . Since x is arbitrary, we can easily

check that each entry of Q belongs to N to conclude Q ∈ N n×n.

For the second assertion, look at the integral representation (2.24) to obtain that |Qkl(iτ)| grows

at most linearly for τ → +∞.
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Chapter 3

The classical Hermite-Biehler

Theorem

Scalar Herglotz functions that can be continued to a meromorphic function on all of C exhibit

some intriguing properties, aside from the integral representation which holds for every Her-

glotz function. More precisely, the zeros and poles of a scalar meromorphic Herglotz function1

interlace. This fact is the key in the proof of the Hermite-Biehler theorem.

The following is largely due to the book of Levin, ([L], Chapter VII).

3.1 Product representation for scalar Herglotz functions

3.1.1 Definition. We say that the (real) zeros and poles of a function q are interlacing, if

between two successing real zeros of q, there is a pole of q, and between two successing real poles

of q, there is a zero of q.

3.1.2 Lemma. Let q 6≡ 0 be Herglotz, and assume that q is meromorphic on C and real. Then

the zeros and poles of q are real, simple, and interlace.

Proof. We know from Lemma 2.1.4 that all zeros of q have to be real. The same goes for poles

of q, by definition. For the zeros and poles of q to be simple and interlacing, we show that for

any finite interval (u, v), the number of zeros2 of q in (u, v) differs from the number of poles of q

in (u, v) by at most 1. So, let u, v ∈ R, u < v, and assume that neither u nor v is a zero or pole

of q. Setting m := u+v
2 , r := u−v

2 and γ(t) := m + r exp(it), t ∈ [0, 2π], the difference between

the numbers of zeros and poles of q in (u, v) will be counted by the logarithmic integral

1

2πi

∫

γ

q′(z)

q(z)
dz =

1

2πi

∫

γ|[0,π]

q′(z)

q(z)
dz +

1

2πi

∫

γ|[π,2π]

q′(z)

q(z)
dz.

1"Meromorphic Herglotz function" always refers to a Herglotz function that has a meromorphic (and real)
continuation to all of C. This is equivalent to the measure in the integral representation being discrete, see also
2.4.4.

2By multiplicity.
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Since Im q(z) ≥ 0 for Im z ≥ 0, and Im q(z) ≤ 0 for Im z ≤ 0, both of the summands can be

calculated by a suitable logarithm. Additionally, we have 0 ≤ arg q(z) ≤ π for Im z ≥ 0 and

−π ≤ Im z ≤ 0 for Im z ≤ 0, and this guarantees that the imaginary parts of both summands

have an absolute value of at most π. In total, | 1
2πi

∫

γ
q′(z)
q(z) dz| ≤ 1, which means that zeros and

poles of q are simple and interlacing.

The following two theorems are very similar and are based on ([L, Chapter VII, Theorem 1]).

3.1.3 Theorem. Let q be rational and real, but not constant. Then q is Herglotz if and only if

it can be written in the form

q(z) = c(b1 − z)α1

( k∏

j=1

aj − z

bj − z

)

(ak − z)−α2 , z ∈ C, (3.1)

where b1 < a1 < b2 < a2 < ... < bk < ak, c ∈ R, and α1, α2 ∈ {0, 1} such that (α1 = 0) ⇔ (c >

0).

Proof. Let q be Herglotz. Then we know from the last lemma that zeros and poles of q are

real, simple, and interlace. By rationality of q, this already gives the representation (3.1), and

we only need to check that (α1 = 1) ⇔ (c > 0). This is obtained by looking at representation

(2.26):

q(z) = a+ bz +
k∑

j=1

qj
bj − z

, (3.2)

which means that residues at poles are negative. So, if q has at least one pole, then either

α1 = 0 and c > 0 as q does not change sign left of the pole b1; or α1 = 1, which means that left

of b2, q changes its sign exactly one time, so c < 0. If there is no pole, then q(z) = c(a1 − z),

which leads to c < 0 as well as α1 = 1.

The sufficiency of (3.1) for q to be Herglotz is easily obtained from looking at the partial fraction

decomposition

q(z) = a+ bz +
q1

b1 − z
+

k∑

j=2

qj
bj − z

,

for which we have to show that b ≥ 0 and q1 ≥ 0 and 3 q2, ..., qk > 0. If b 6= 0, then α1 = 1 and

α2 = 0 for degree reasons. So, c < 0 and therefore

b = lim
τ→+∞

Im q(iτ)

τ
= −c > 0,

while from the condition (α1 = 0) ⇔ (c > 0) it follows that q1 = limz→b1(b1 − z)q(z) ≥ 0, and

3This is because b1 is not a pole if α1 = 1
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if q1 = 0, then α1 = 1, such that at least q2 > 0. Also, for each j ∈ {1, ..., k}, the function

rj(z) :=
bj − z

aj+1 − z
(bj+1 − z)q(z)

has no zeros or poles in [bj , bj+1], which under the assumption qj > 0 gives

sgn qj+1 = sgn

(

lim
z→bj+1

(bj+1 − z)q(z)

)

= sgn

(
aj+1 − bj+1

bj − bj+1
rj(bj+1)

)

= sgn qj = 1.

3.1.4 Theorem ([L, Chapter VII, Theorem 1]). Let q be meromorphic on C and holomorphic

on C \ R such that the set of (real) poles of q is bounded neither from below nor from above.

Then q is Herglotz if and only if

q(z) = c
a0 − z

b0 − z

∏

j∈Z\{0}

1 − z
aj

1 − z
bj

, (3.3)

where bj < aj < bj+1, j ∈ Z, a−1 < 0 < b1, and c > 0.

Proof. We start by proving the necessity of representation (3.3). Let

ψ(z) :=
a0 − z

b0 − z

∏

j∈Z\{0}

1 − z
aj

1 − z
bj

,

where aj are all the zeros of q and bj are all of its poles, which by Lemma 3.1.2 are all simple,

and interlace. Now, we show that ψ(z) converges uniformly on any compact subset of C not

containing any poles of ψ. First, from interlacing of aj and bj , it is easily seen that

∑

j∈Z\{0}

(
1

bj
−

1

aj

)

converges. From this follows the convergence of

∑

j∈Z

(1 − z
aj

1 − z
bj

− 1

)

= z
∑

j∈Z

( 1

bj
−

1

aj

)(
1 −

z

bj

)−1
,

which confirms that ψ converges uniformly on every compact subset of C \ {bj : j ∈ Z}.

Now, observe that if sgn aj = sgn bj ,

arg
(1 − z

aj

1 − z
bj

)

= arg
(z − aj
z − bj

)

and

0 <
∑

j∈Z

[

arg (z − aj) − arg (z − bj)
]

= argψ(z) <
∑

j∈Z

[

arg (z − bj+1) − arg (z − bj)
]

< π.
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So, g := q
ψ

is entire, and −π < arg g < π. We can now define a logarithm of g, which is entire

and maps C into the strip −π < Im z < π, and is therefore constant. This means that g(z) ≡ c,

and q being real and Herglotz implies c > 0.

The proof of sufficiency was done implicitly in the previous part of the proof.

Similar theorems apply for all meromorphic real functions. The remaining two cases shall be

listed here, but proofs will be left out.

3.1.5 Corollary. Let q be meromorphic on C and real, but not constant. Then q is Herglotz if

and only if it admits a representation of one of the following forms:

(A)

q(z) = c(b1 − z)α1

( k∏

j=1

aj − z

bj − z

)

(ak − z)−α2 , z ∈ C,

where k ∈ N, b1 < a1 < b2 < a2 < ... < bk < ak, c ∈ R, and α1, α2 ∈ {0, 1} such that

(α1 = 0) ⇔ (c > 0).

(B)

q(z) = c
a0 − z

b0 − z

∏

j∈Z\{0}

1 − z
aj

1 − z
bj

,

where bj < aj < bj+1, j ∈ Z, a−1 < 0 < b1, and c > 0.

(C)

q(z) = c(b1 − z)α1

( k∏

j=1

aj − z

bj − z

)( ∞∏

j=k+1

1 − z
aj

1 − z
bj

)

where b1 < a1 < b2 < a2 < ..., c ∈ R, and α1 ∈ {0, 1} such that (α1 = 0) ⇔ (c > 0).

(D)

q(z) = c
( ∞∏

j=k+1

1 − z
aj

1 − z
bj

)( k∏

j=1

aj − z

bj − z

)

(a1 − z)−α2

where a1 > b1 > a2 > b2 > ..., c ∈ R, and α2 ∈ {0, 1} such that (α2 = 0) ⇔ (c > 0).

�

Note that for (C) and (D), the infinite product has to be split into two parts - the infinite

one, containing factors of the form (1 − z
aj

)/(1 − z
bj

) to ensure convergence; and the finite ones,

which makes sure that if one of the zeros or poles happens to be zero, it will not be divided

through.
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3.2 The Hermite-Biehler Theorem for polynomials

For any entire function f , we use the notation

(Rf)(z) :=
f(z) + f#(z)

2

and

(If)(z) :=
f(z) − f#(z)

2i
.

We will call those functions the real and imaginary part of f , even though (Rf)(z) does not

coincide with Re f(z), and (If)(z) does not coincide with Im f(z)

3.2.1 Theorem. Let E be a polynomial, and A := RE, B := IE its real and imaginary part.

Suppose that neither A nor B vanish identically nor are they constant multiples of one another.

Then the following statements are equivalent:

(i) E(z) 6= 0 for all z in the upper half plane C+.

(ii) The zeros and poles of A
B

are all real, simple, and interlace. In addition, there is x0 ∈ R

such that (A
B

)′(x0) > 0.

Proof.

(i) ⇒ (ii): Let E(z) = α
∏m
j=1(z − zj), where Im zj ≤ 0, j = 1, ...,m. Set

ω(z) :=
E#(z)

E(z)
=
α

α

m∏

j=1

(z − zj)

(z − zj)
. (3.4)

Thus, if z ∈ C+, we have |z − zj | ≤ |z − zj |, j = 1, ...,m and therefore |ω(z)| ≤ 1. Note that

|ω(z)| = 1 does not occur, because that would imply that all zeros of E are real, contradicting

the condition that A is not a constant multiple of B. The Möbius transform i1+z
1−z takes the unit

disk to the upper half plane, which implies that

q(z) :=
A(z)

B(z)
= i

1 + ω(z)

1 − ω(z)
∈ C+, z ∈ C+. (3.5)

So, q is a meromorphic Herglotz function, and thus its zeros and poles interlace. But, since real

zeros of A and B do not coincide, it follows that zeros of q are precisely the zeros of A, while

poles of q are exactly the zeros of B. The second condition follows from

q′(x) = Re q′(x) = Re lim
ǫց0

q(x+ iǫ) − q(x)

iǫ
= lim

ǫց0
2 Im

q(x+ iǫ)

ǫ
≥ 0, x ∈ R. (3.6)

(ii) ⇒ (i): Again, let

q(z) =
A(z)

B(z)
= c(b1 − z)e1

[ k∏

j=1

(aj − z)

(bj − z)

]

(ak − z)−e2
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with b1 < a1 < b2 < a2 < ... and e1, e2 ∈ {0, 1} depending on whether the series of zeros

and poles of q "starts" and "ends" by a zero and/or by a pole. So, either q or −q is a Herglotz

function, which by (3.6) means that q′(x) has the same sign for each real x, which by assumption

is positive. This guarantees that −q is not Herglotz, so q has to be Herglotz. Therefore,

Im(q(z) + i) > 0, z ∈ C+, from which we obtain that E(z) = B(z)(q(z) + i) 6= 0, z ∈ C+.

3.3 The class HB

It was already seen in the last proof that the core part of the Hermite-Biehler theorem is a

simple Möbius transform and the fact that4 ω(z) = E#(z)
E(z) ∈ D, z ∈ C+, if E is a polynomial

whose zeros lie only in the lower half plane. However, this does not work anymore if E is

an arbitrary entire function. Then, even if E has no zeros in the upper half plane, it is far

from guaranteed that |ω(z)| < 1 for every z ∈ C+. In order to generalize the Hermite-Biehler

Theorem to a wider range of entire functions, this condition has to be treated separately. This

section was also taken directly from ([L, Chapter VII]).

3.3.1 Definition. An entire function E belongs to the class HB if it has no real zeros, and

|E#(z)| < |E(z)| for all z ∈ C+.

3.3.2 Theorem. Let E be entire and let A = RE and B = IE be its real and imaginary part.

Let A and B be represented in the following way:

A(z) = C exp(u(z))(a0 − z)r1
∏

j∈Z\{0}

(1 −
z

aj
) exp(Pj(

z

aj
)), (3.7)

B(z) = D exp(u(z))(b0 − z)r2
∏

j∈Z\{0}

(1 −
z

bj
) exp(Pj(

z

bj
)), (3.8)

where C,D ∈ R, u(z) and v(z) are real entire functions, u(0) = v(0) = 0, and aj as well as bj

are real with aj ≤ aj+1, bj ≤ bj+1, j ∈ Z. Moreover, aj 6= 0 6= bj for j 6= 0, and let Pj be the

j-th Taylor polynomial of ln 1
1−z , ensuring convergence. Then E belongs to HB if and only if

the following conditions are fulfilled:

(i) The zeros of A and B are simple and interlace, such that bj < aj < bj+1;

(ii) w(z) := u(z) − v(z) +
∑

j∈Z\{0}

[

Pj(
z
aj

) − Pj(
z
bj

)

]

= 0, z ∈ C;

(iii) sgnC = sgnD.

Proof. If E belongs to HB, we have that

ω(z) =
E#(z)

E(z)

maps the upper half plane to the unit disk, and by the Möbius transform i1+z
1−z , just as in

Theorem 3.2.1, we get that q(z) := A(z)
B(z) is a Herglotz function. Now, A and B cannot have

4
D is the open unit disk.
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common real roots, because E has no real roots. So, roots of A and B are simple and interlace,

proving (i). Now, recall the (Herglotz) function

ψ(z) :=
a0 − z

b0 − z

∏

j∈Z\{0}

1 − z
aj

1 − z
bj

from the proof of Theorem 3.1.4. Seeing that

q(z) =
C

D
exp(w(z))ψ(z),

just as in the aforementioned theorem, arg q(z)
ψ(z) ∈ (−π, π) where q(z)

ψ(z) = C
D

exp(w(z)) is an entire

function. So, w(z) is constant, i.e. w(z) ≡ 0, so (ii) holds. Now, Theorem 3.1.4 also implies
C
D
> 0, which means that (iii) holds. The other direction of the proof is done by the same

arguments.

3.3.3 Lemma ([L, Chapter V, Lemma 4]). Let (ak)k∈N be a sequence of complex numbers

satisfying
∑∞
k=1

∣
∣
∣ Im 1

ak

∣
∣
∣ < +∞. Then the product

χ(z) :=
∞∏

k=1

(

1 −
z

ak

)(

1 −
z

ak

)−1

converges uniformly on every compact set not containing any of the points ak, k ∈ N.

Proof. Writing

(

1 −
z

ak

)(

1 −
z

ak

)−1
=

(

1 −
z

ak
+

z

ak
−

z

ak

)(

1 −
z

ak

)−1
= 1 + z

(
1

ak
−

1

ak

)(

1 −
z

ak

)−1
,

the product converges compactly if and only if the series

∞∑

k=1

z

(
1

ak
−

1

ak

)(

1 −
z

ak

)−1
=
i

2

∞∑

k=1

z
(

1 −
z

ak

)−1(

Im
1

ak

)

converges absolutely. Since z
(

1 − z
ak

)−1
is bounded on every compact set that does not contain

any of the points ak, this is the case if and only if
∑∞
k=1

∣
∣
∣ Im 1

ak

∣
∣
∣ < +∞.

The proof of the following lemma is omitted.

3.3.4 Lemma ([L, Chapter V, Remark to Theorem 2]). Let Ω be an open set containing C+,

and let f : Ω → C be an analytic function of exponential type in C+ that is bounded on the real

axis. Let ak, k ∈ N, be the zeros of f in C+ (by multiplicity). Then
∑∞
k=1

∣
∣
∣ Im 1

ak

∣
∣
∣ < +∞.

3.3.5 Theorem ([L, Chapter VII, Theorem 6]). Let E be a function of class HB. Then E can

be represented as

E(z) = czmeu(z)−iνz
∞∏

k=1

(

1 −
z

ak

)

e
(RPk)( z

ak
)
, (3.9)
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where c ∈ C, u is a real entire function, ν ≥ 0, and Pk is the k-th Taylor polynomial of ln 1
1−z .

If, on the other hand, E is the entire function given by formula (3.9), then E belongs to HB.

Proof. We start by decomposing E into the product

E(z) = zmeg(z)
∞∏

k=1

(

1 −
z

ak

)

e
Pk( z

ak
)
.

Let ω(z) := E#(z)
E(z) , which is bounded by 1 in the upper half plane since E belongs to HB. By

Lemma 3.3.4, the zeros ak, k ∈ N, of E satisfy

∞∑

k=1

∣
∣
∣ Im

1

ak

∣
∣
∣ =

∞∑

k=1

∣
∣
∣ Im

1

ak

∣
∣
∣ < +∞,

since the zeros of ω coincide with the zeros of E#, which are given by ak, k ∈ N. Lemma 3.3.3

gives convergence of

χ(z) :=
∞∏

k=1

(

1 −
z

ak

)(

1 −
z

ak

)−1
.

Setting

χn(z) :=
n∏

k=1

(

1 −
z

ak

)(

1 −
z

ak

)−1

and

En(z) = zmeg(z)
n∏

k=1

(

1 −
z

ak

)

e
Pk( z

ak
)

as well as ωn := E
#
n

En
, we obtain

exp
(

− 2i
[

(Ig)(z) +
n∑

k=1

(IPk)(
z

ak
)
])

= ωn(z)χn(z).

Since the right side converges uniformly on any compact subset of C, the same goes for the

series
∑∞
k=1(IPk)(

z
ak

). Therefore,

v(z) := (Ig)(z) +
∞∑

k=1

(IPk)(
z

ak
)

is well defined and satisfies e−2iv(z) = limn→∞[ωn(z)χn(z)] = ω(z)χ(z). Observe that

|ω(x)χn(x)| = |ω(x)| ≤ 1, x ∈ R.
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Moreover,

(

1 −
z

ak

)(

1 −
z

ak

)−1
=
ak
ak

·
ak − z

ak − z

|z|→∞
−−−−→

ak
ak
.

We conclude that χn is bounded in C+. Hence, it follows from Theorem 1.3.11 that |ω(z)χn(z)| ≤

1 everywhere in C+. Passing to the limit, we have

|e−2iv(z)| = |ω(z)χ(z)| ≤ 1, z ∈ C+.

Therefore, Im v(z) ≤ 0 for every z ∈ C+, i.e., −v is Herglotz. Since v is entire and real, Theorem

2.4.3 implies that v(z) = −(νz + δ), where ν ≥ 0 and δ ∈ R. Thus,

E(z) = zmeu(z)−i(νz+δ)
∞∏

k=1

(

1 −
z

ak

)

e
(RPk)( z

ak
)
.

This proves representation (3.9) if we put c := e−iδ.

For the other implication of the proof, consider a function E with a representation of the form

(3.9). Then

ω(z) =
E#(z)

E(z)
=

c

cχ(z)
e2iνz

and thus E belongs to HB.
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Chapter 4

Generalized interlacing property

The integral representation for a scalar Herglotz function given by Theorem A.0.1 has the

straightforward matrix version in Theorem 2.4.3. In this chapter we give a matrix analogue of

the interlacing property that was studied for the scalar case in Section 3.1.

4.1 The n-interlacing property

In general, matrix-valued Herglotz functions that are meromorphic on C and real do not satisfy

the interlacing property from Section 3.1 (see Definition 3.1.1). Look, for example, at Q(z) :=

diag
(
q11(z), ..., qnn(z)

)
, where qjj are scalar meromorphic Herglotz functions. Then the pattern

of zeros and poles of1 detQ = q11 · · · qnn is simply an overlay of the patterns of zeros and poles

of qjj , j = 1, ..., n. Hence, the classical interlacing property is lost, but the distribution of zeros

and poles of detQ is still far from arbitrary. We start with a reformulation of the classical

interlacing property that allows to be taken to higher dimensions.

4.1.1 Definition. Let f 6≡ 0 be meromorphic on Ω ⊆ C and let f(z) =
∑∞
j=N aj(z− z0)j be its

unique Laurent series at z0 ∈ Ω, i.e. N ∈ Z and an 6= 0. We define θf (z0) := N . The function

θf :

{

Ω → Z

z 7→ θf (z)

will be called the divisor function of f .

If z is a zero of f , the number θf (z) indicates its multiplicity, and if z is a pole of f , its

multiplicity is given by −θf (z). If f has neither zero nor pole at z, then θf (z) = 0. Note that

for f 6≡ 0, the set of all z with θf (z) 6= 0 is discrete because of the Identity Theorem.

4.1.2 Lemma. Let f be meromorphic on Ω ⊇ R. Then the real zeros and poles of f are all

1While it is not immediately clear what should be understood by zeros and poles of Q, for a diagonal Herglotz
function it is quite reasonable to look at det Q.
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simple and interlace, if and only if for every choice of −∞ < a < b < ∞ the inequality

∣
∣
∣

∑

x∈(a,b)

θf (x)
∣
∣
∣ ≤ 1. (4.1)

holds.

�

This motivates the following definition.

4.1.3 Definition. Let θ : R → Z have discrete support, and let n ∈ N. Then θ is called

n-interlacing, if for every −∞ < a < b < ∞ we have

∣
∣
∣

∑

x∈(a,b)

θ(x)
∣
∣
∣ ≤ n. (4.2)

If f is a meromorphic function on some open set Ω ⊇ R, we say that f satisfies the n-interlacing

condition if all zeros and poles of f are real and the function θf |R is n-interlacing, that is, (4.2)

holds.

Observe that, if θ1, ..., θn are 1-interlacing functions, θ :=
∑n
j=1 θj is n-interlacing:

∣
∣
∣

∑

x∈(a,b)

θ(x)
∣
∣
∣ =

∣
∣
∣

∑

x∈(a,b)

n∑

j=1

θj(x)
∣
∣
∣ ≤

n∑

j=1

∣
∣
∣

∑

x∈(a,b)

θj(x)
∣
∣
∣ ≤ n. (4.3)

In fact, every n-interlacing function can be written as the sum of n functions that are 1-

interlacing, as will be seen in the following theorem, which is elementary but appears to be

new.

4.1.4 Theorem. Let θ : R → Z have discrete support and let n ∈ N. Then θ is n-interlacing if

and only if there exist 1-interlacing functions θ1, ..., θn such that θ =
∑n
j=1 θj.

Proof. If θ =
∑n
j=1 θj , where θj are 1-interlacing, then θ is n-interlacing by (4.3). We show that

if θ is n-interlacing, it can be written as the sum of n functions that are 1-interlacing.

Let

Θ(x) =

{ ∑

t∈[0,x) θ(t), x ≥ 0,

−
∑

t∈(x,0) θ(t), x < 0

Θ is a well-defined step function because of θ having discrete support. We use the notation

Θ(x−) for limtրx Θ(t) and Θ(x+) for limtցx Θ(t). For j ∈ Z, we define

θj(x) :=







1 if Θ(x+) > j ≥ Θ(x−),

−1 if Θ(x−) > j ≥ Θ(x+),

0 otherwise
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We show that each θj(x) is already 1-interlacing.

Firstly, suppose we are given x < y such that θj(x) = θj(y) = 1. Then Θ(x−) ≤ j < Θ(x+)

and Θ(y−) ≤ j < Θ(y+). In particular,

Θ(x+) > j ≥ Θ(y−).

Hence, t0 := inf{t > x : Θ(t+) ≤ j} is well-defined, and t0 ∈ (x, y). Moreover, Θ(t0−) >

j ≥ Θ(t0+) can be derived from the fact that Θ is a step function. Therefore, θj(t0) = −1.

Analogously, we see that between points x̃ < ỹ with θj(x̃) = θj(ỹ) = −1, there is t̃0 satisfying

θj(t̃0) = 1. We conclude that θj is 1-interlacing.

In the second step, we utilize the fact that θ is n-interlacing. Letting x < y, observe that

|Θ(y) − Θ(x)| =
∣
∣
∣

∑

t∈(x,y)

θ(t)
∣
∣
∣ ≤ n.

Writing j− := min{Θ(x) : x ∈ R} and j+ := max{Θ(x) : x ∈ R}, it follows that j+ − j− ≤ n.

However, from our definition of θj we can see that θj ≡ 0 if j ≥ j+ or j < j−, which means that

all but at most n of the functions θj vanish.

Thirdly, the definition of Θ yields

θ(x) = Θ(x+) − Θ(x−) =







∣
∣{j ∈ Z : Θ(x+) > j ≥ Θ(x−)}

∣
∣, Θ(x+) > Θ(x−),

−
∣
∣{j ∈ Z : Θ(x−) > j ≥ Θ(x+)}

∣
∣, Θ(x+) < Θ(x−),

0, Θ(x+) = Θ(x−)

=
∑

j∈Z

θj(x).

We already know that the number of non-vanishing θj is at most n. The proof is complete.

4.2 Necessity of the interlacing property

4.2.1 Lemma. Let Q be a n × n-matrix-valued Herglotz function. Then there exist scalar

Herglotz functions q1, ..., qn such that detQ(z) = q1(z) · · · qn(z). If Q is meromorphic on C, so

are q1, ..., qn.

Proof. The proof proceeds by induction on n. Since the assertion is evident for n = 1, only

the induction step is to be done. Suppose that the assertion holds for every n × n-matrix-

valued Herglotz function, and let Q be a (n+ 1) × (n+ 1)-matrix-valued Herglotz function. If

Q(z) ≡ C (with self-adjoint C), then there is nothing to be proven. The same goes for the

case that detQ ≡ 0. Otherwise, by Lemma 2.1.7, detQ(z) 6= 0 for all z ∈ C+. Letting Q(j)(z),

j = 1, ..., n, be the submatrix of Q(z) obtained by deleting the j-th row and column from Q,

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

we can write

−Q(z)−1 =











−
detQ(1)(z)

detQ(z) ∗ ∗ ∗

∗ −
detQ(2)(z)

detQ(z) ∗ ∗

∗ ∗
. . . ∗

∗ ∗ ∗ −
detQ(n)(z)

detQ(z)











Because −Q(z)−1 is Herglotz, all of its diagonal entries −
detQ(j)(z)

detQ(z) are scalar Herglotz functions.

Because we assumed Q(z) to not be constant, and because of Theorem 2.4.3, (iv), there exists

j0 such that q(z) := −
detQ(j0)(z)

detQ(z) is not identically zero. By Lemma 2.1.7, −q(z)−1 is also a

scalar Herglotz function, which implies the assertion by

detQ(z) = detQ(j0)(z)[−q(z)
−1] = q1(z) · · · qn(z)[−q(z)−1]. (4.4)

What does this result mean for zeros and poles of detQ? Of course, a result about interlacing

of zeros and poles can only exist in the case where Q is meromorphic on C, and therefore detQ(z)

can be written as a product of scalar Herglotz functions that are meromorphic on C. By Lemma

3.1.2, every scalar Herglotz function satisfies the 1-interlacing condition as in Definition 4.1.3.

In analogy to (4.3), this implies that detQ satisfies the n-interlacing condition.

However, detQ satisfying the n-interlacing condition is not enough for Q to be Herglotz. Think,

for example, of a 2×2 diagonal matrix with diagonal entries r1, r2 where −r1 and −r2 are scalar

Herglotz functions. Still, it turns out to be sharp in the sense that for every pattern of poles

and zeros that satisfy this generalized interlacing pattern, there is a Herglotz function having

said pattern of zeros and poles.

4.2.2 Example. Let θ be n-interlacing. Then there exists a matrix-valued Herglotz function Q

such that θ(x) = θdetQ(x), x ∈ R. Set, for example,

rj(z) = zθj(0)
∏

x∈R\{0}

(1 −
z

x
)θj(x), j = 1, ..., n,

where all θj’s are 1-interlacing and θ =
∑n
j=1 θj. Let qj(z) := ±rj(z), choosing for every j

the sign that makes qj a scalar Herglotz function. Then Q(z) := diag(q1(z), ..., qn(z)) is an

n× n-matrix-valued Herglotz function with detQ = q1 · · · qn.

4.2.3 Theorem. Let n ∈ N and let f be meromorphic on C. Then f satisfies the n-interlacing

condition if and only if there exist scalar Herglotz functions q1, ..., qn and an entire function g

such that

f(z) = exp(g(z))
n∏

j=1

qj(z), z ∈ C. (4.5)
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If, in addition, f |C+ ∈ N and f#(z)|C+ ∈ N , then g(z) = c− ihfz, z ∈ C, with some constant

c ∈ C.

Proof. By assumption, θf is n-interlacing as in Definition 4.1.3. Theorem 4.1.4 provides us with

1-interlacing functions θ1, ..., θn such that θf =
∑n
j=1 θn. Then, for every j ∈ {1, ..., n}, zeros

and poles of the function

rj(z) = zθj(0)
∏

x∈R\{0}

(1 −
z

x
)θj(x)

are simple and interlace. Note that the product converges just because of this interlacing

(compare to the proof of Theorem 3.1.4). So, f
r1···rn

is entire and does not have any zeros, and

therefore can be written as exp ◦g̃, with some entire function g̃. Observe that, for each j, either

rj or −rj is a scalar Herglotz function. Letting qj := ±rj such that qj is Herglotz for every j,

we get that f(z) = exp(g̃(z) + sπi)q1(z) · · · qn(z), where s is either 0 or 1. Representation (4.5)

then holds for g(z) := g̃(z) + sπi.

Suppose that, additionally, f |C+ and f#|C+ both belong to N . Then, by Theorem 1.3.7, f̂ :=

exp ◦g = f
q1···qn

can be represented by f̂(z) = ce−ihfzφ(z) with some complex constant c. The

Blaschke product does not occur because of f̂ having no zeros. Similarly, f̂#(z) = ceihf zφ#(z).

Therefore, both φ and φ# are outer in the upper half plane. In particular, they belong to H∞,

making φ a bounded entire function which is therefore constant.

4.2.4 Remark. Let n ∈ N and let f be meromorphic on C and real. In addition, let f |C+ ∈ N

with hf = 0, and suppose that f satisfies the n-interlacing property. Applying Theorem 4.2.3

yields the representation

f(z) = c
n∏

j=1

qj(z), z ∈ C, (4.6)

with some real constant c and scalar Herglotz functions qj that are meromorphic on C and real.

Depending only on whether c is positive or negative, we can assume w.l.o.g. that f =
∏n
j=1 qj

or f = −
∏n
j=1 qj . However, in regard of Lemma 4.2.1, we are only interested in the first case,

i.e. f =
∏n
j=1 qj , or rather c > 0. Unfortunately, there seems to be no straightforward condition

that determines the sign of c.

The relevancy of the next statement is that the functions q1, ..., qn can be chosen to be

meromorphic.

4.2.5 Theorem. Let f be meromorphic on C and real. Assume that f is not constant. For

n ∈ N, the following conditions are equivalent:

(i) There exist scalar Herglotz functions q1, ..., qn that are meromorphic on C and real, such

that f =
∏n
j=1 qj;

(ii) There exists a holomorphic logarithm u of f |C+ with Im u(z) ∈ (0, nπ) for every z ∈ C+.
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Proof. If f =
∏n
j=1 qj , then u :=

∑n
j=1 log qj is a logarithm of f with Im u(z) ∈ (0, nπ), z ∈ C+.

We show that (i) follows from (ii). Observe that f has no zeros or poles in C+ because of

f |C+ having a holomorphic logarithm. Consider now any finite interval (a, b) and assume that

neither a nor b is a pole of f . Set x0 := a+b
2 and r := a−b

2 . For ǫ > 0 define γǫ+(z) := x0 + reit

for t ∈ [ǫ, π − ǫ] and γǫ−(z) := x0 + reit for t ∈ [π + ǫ, 2π − ǫ]. Then

∑

x∈(a,b)

θf (x) =
1

2πi
lim
ǫ→0

(∫

γǫ
+

f ′(z)

f(z)
dz +

∫

γǫ
−

f ′(z)

f(z)
dz

)

. (4.7)

Observe that f = f# implies that u# is a holomorphic logarithm of f# satisfying Im g#(z) ∈

(−nπ, 0), z ∈ C−. Thus, the modulus of the imaginary parts of both integrals in (4.7) is bounded

by nπ. So, |
∑

x∈(a,b) θf (x)| ≤ n. Applying Theorem 4.2.3 yields scalar meromorphic Herglotz

function q1, ..., qn and an entire function g such that f(z) = exp(g(z))
∏n
j=1 qj(z), z ∈ C.

Again, each qj has a holomorphic logarithm in the upper half plane, which leads to g(z) =

2πik + u(z) −
∑n
j=1 log qj(z) with some k ∈ Z. Therefore, | Im g(z)| is bounded in C+. g being

real implies that | Im g(z)| is also bounded in C− and thus in all of C. By the Liouville Theorem,

g(z) ≡ c, where c is a real constant. If c ≥ 0, then f = (cq1)
∏n
j=2 qj , which is the desired

representation. This leaves the case where c < 0. First, we write f = −(−cq1)
∏n
j=2 qj , where

−cq1 is Herglotz. Then the function ũ(z) := iπ+log(−cq1)+
∑n
j=2 log qj is another holomorphic

logarithm of f and satisfies Im ũ(z) ∈ (π, (n + 1)π) for z in the upper half plane. Observing

that u(z) = 2rπi+ ũ(z) for some r ∈ Z, we get that (2r+1)π < Im u(z) < (2r+1+n)π. At the

same time, we know that 0 < Im u(z) < nπ. In total, we have that either Im u(z) ∈ (0, (n−1)π)

(if r < 0) or Im u(z) ∈ (π, nπ). In either case, from what was proven so far, we conclude that

there exist scalar Herglotz functions r1, ..., rn−1 such that either f =
∏n−1
j=1 rj or f = −

∏n−1
j=1 rj .

Putting either δ(z) ≡ 1 or δ(z) ≡ −1 leads to f = δ(z)
∏n−1
j=1 rj , which proves the theorem

because δ is, in both cases, a Herglotz function.

4.2.6 Corollary. Let f be meromorphic on C and real. The following conditions are equivalent:

(i) There exist scalar Herglotz functions q1, q2 that are meromorphic on C and real, such that

f = q1q2;

(ii) If f is not constant, then f(z) /∈ [0,+∞) for every z ∈ C+.

�

4.3 Sufficiency of the interlacing property

Corollary 4.2.3 gives some hope in characterizing meromorphic Herglotz functions through the

pattern of zeros and poles of its determinant. First, we give a short reminder on some topics of

linear algebra.
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4.3.1 Definition. Let M = (mij) ∈ C
n×n, and let k ∈ {1, ..., n} together with 1 ≤ i1 < ... <

ik ≤ n. We define the matrix M(i1,...,ik) by

M(i1,...,ik) :=










mi1i1 mi1i2 · · · mi1ik

mi2i1 mi2i2 · · · mi2ik
...

...
. . .

...

miki1 miki2 · · · mikik










.

A matrix X is called a principal submatrix of M if there exist indices i1, ..., ik such that X =

M(i1,...,ik).

The following criterion of Sylvester is well-known, but it should not be confused with the

principal minor criterion, which can only be used to check definiteness, but not semidefiniteness.

4.3.2 Theorem (Sylvester’s criterion). Let M be a Hermitian matrix. Then M is positive

semidefinite, if and only if for each principal submatrix2 M̃ of M we have det M̃ ≥ 0.

Proof. See ([M, Equations (7.6.9)-(7.6.12)]).

We are now ready for the main result of this chapter.

4.3.3 Theorem. Let Q be an n × n-matrix-valued function that is holomorphic on C \ R,

meromorphic on C, and real. Suppose that Q is of bounded type, and that for each entry Qkl of

Q we have lim supτ→+∞
|Qkl(iτ)|

τ
< +∞. Then the following statements are equivalent:

(i) Q is Herglotz;

(ii) All residues of Q as well as limτ→+∞

(

− ImQ(iτ)
τ

)

are nonpositive matrices, and for every

choice of 1 ≤ i1 < i2 ≤ n, f(z) := det[Q(i1,i2)(z)] is either constant, or it does not take on

nonnegative real values.

(iii) For every m ∈ {1, ..., n} and 1 ≤ i1 < ... < im ≤ n, f(z) := det[Q(i1,...,im)(z)] satisfies at

least one of the following properties:

a. f can be represented as the product of m scalar Herglotz functions that are meromor-

phic on C and real;

b. If f is not constant, it has a holomorphic logarithm u satisfying Im u(z) ∈ (0,mπ);

c. f satisfies the m-interlacing property, and if the set of poles of multiplicity m is

nonempty, then limz→z0

[
(z0 − z)mf(z)

]
> 0 for at least one of those poles z0,. In

addition, limτ→+∞
f(iτ)
(iτ)m ≥ 0.

If (i) − (iii) hold, then in (iii), all of a.− c. hold.

2This includes M itself.
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Proof. Every principal submatrix of Q is itself a Herglotz function. Applying Lemma 4.2.1 im-

plies that each principal submatrix can be represented as the product of scalar Herglotz functions

that are meromorphic on C. Also, residues at poles ofQ as well as the limit limτ→+∞

(

− ImQ(iτ)
τ

)

are nonpositive because of Corollary 2.4.4. This proves implications (i) ⇒ (ii) and (i) ⇒ (iii).

(ii) ⇒ (i):

It suffices to show that Q can be represented in the form

Q(z) = C +Dz +
∑

j∈Z

Aj

(
1

zj − z
−

zj
1 + z2

j

)

. (4.8)

with real zj . The assertion on the non-positivity of residues and −D = limτ→+∞

(

− ImQ(iτ)
τ

)

then proves the implication. This is done by showing that for any k, l ∈ {1, ..., n},

qkl(z) = ckl + dklz +
∑

j∈Z

Aklj

(
1

zj − z
−

zj
1 + z2

j

)

.

Of course, for k = l, we obtain this representation from the fact that every diagonal entry of

Q is a 1 × 1-principal submatrix of Q, and thus is a scalar Herglotz function. Consider the

function

Rkl(z) :=

(

Qkk(z) Qkl(z)

Qlk(z) Qll(z)

)

Since Rkl is a 2 × 2-principal submatrix of Q, Corollary 4.2.6 provides scalar Herglotz functions

r1, r2 satisfying detRkl(z) = r1(z)r2(z). Let zj0 ∈ R be a pole of Q. Using the notation from

Definition 4.1.1, 2θQkl
(zj0) = θQklQlk(zj0) because Qlk = Q#

kl, and therefore poles and zeros of

those functions have the same multiplicities. This leads to

θQkl
(zj0) =

1

2
θQklQlk

(zj0) =
1

2
θQkkQll−r1r2(zj0) ≤

≤
1

2
max{θQkk

(zj0) + θQll
(zj0), θr1(zj0) + θr2(zj0)} ≤ 1

because poles of the scalar Herglotz functions Qkk, Qll, r1, r2 are all simple. Since k, l are

arbitrary, this shows that all poles of Q are simple.

It is also easily seen that for the residue A
(k,l)
j0

of Rkl at zj0 , we have

detA
(k,l)
j0

= lim
z→z0

[(z − zj0)2 detRkl(z)] =

=

(

lim
z→z0

[

(z − zj0)r1(z)
])(

lim
z→z0

[

(z − zj0)r2(z)
])

≥ 0
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since residues of scalar Herglotz functions are always nonpositive. Writing

A
(k,l)
j0

=

(

Akkj0 Aklj0
Alkj0 Allj0

)

,

we have

|Aklj0 | =
∣
∣Aklj0A

lk
j0

∣
∣

1
2 ≤

(
Akkj0 A

ll
j0

) 1
2 .

Now Corollary 2.4.4 implies

∑

j∈Z

|Aklj |

1 + z2
j

≤
∑

j∈Z

(
Akkj

1 + z2
j

) 1
2
(

Allj
1 + z2

j

) 1
2

≤

(
∑

j∈Z

Akkj
1 + z2

j

) 1
2
(
∑

j∈Z

Allj
1 + z2

j

) 1
2

< +∞.

This ensures the convergence of

ψkl(z) :=
∑

j∈Z

Aklj

(
1

zj − z
−

zj
1 + z2

j

)

=
∑

j∈Z

Aklj
1 + zjz

(zj − z)(1 + z2
j )

on every compact subset of C not containing any of the points zj .

Therefore, gkl(z) := Qkl(z) − ψkl(z) is entire. From the assumption on Q we obtain that gkl is

of bounded type, as is glk = g#
kl. Moreover, hgkl

= 0 because of lim supτ→+∞
|Qkl(iτ)|

τ
< +∞.

We apply Krĕın’s Theorem (Theorem 1.3.9) to conclude that gkl is of exponential type τgkl
= 0.

Hence, the entire function g̃kl(z) := gkl(z)−gkl(0)
z

is of exponential type 0 as well. In addition

to that, it is bounded on the imaginary axis. By Theorem 1.3.10, g̃kl is constant. Therefore,

gkl(z) = ckl + dklz with some constants ckl, dkl, which proves representation (4.8).

(iii) ⇒ (i):

Step 1. For a meromorphic m×m-matrix-valued function X(z) that has a pole of multiplicity

one at z0, the residue of X at z0 can be calculated by

Res(X, z0) = lim
z→z0

(z − z0)X(z).

In particular,

det Res(X, z0) = lim
z→z0

det
(
(z − z0)X(z)

)
= lim

z→z0
(z − z0)m detX(z). (4.9)

Step 2. By Theorem 4.2.5, a. is equivalent to b. If one of those conditions holds, then there

exist scalar meromorphic Herglotz functions r1, ..., rm such that f(z) = detQ(i1,...,im)(z) =

r1(z) · · · rm(z). At any pole z0 of f we have

lim
z→zj

[
(zj − z)mf(z)

]
=
[

lim
z→z0

(z0 − z)r1(z)
]
· · ·
[

lim
z→z0

(z0 − z)rm(z)
]

≥ 0. (4.10)
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Condition c. is, by Theorem 4.2.3, only equivalent to f or −f being a product of m Herglotz

functions. However, if f does not have a pole of multiplicity m at z0, then limz→zj

[
(zj −

z)mf(z)
]

= 0. Otherwise, if z0 is a pole of multiplicity m of f , the assertion guarantees that

−f is not a product of m Herglotz functions, which means that f is. So, just as in (4.10),

limz→zj

[
(zj − z)mf(z)

]
> 0. In both cases, this limit is nonnegative if condition c. holds.

Hence, representation 4.8 is obtained in the same way as for the implication (ii) ⇒ (i). Only

negativity of the residues has to be checked.

Step 3. We prove that Aj ≥ 0 as well as D ≥ 0, which suffices for Q to be Herglotz. Let

−Aj be the residue of Q at the pole zj . By the Sylvester Criterion, Theorem 4.3.2, in order for

Aj to be positive semidefinite, we only need to show that all of its principal subdeterminants

(principal minors) are nonnegative. Let m ∈ {1, ..., n} and 1 ≤ i1 < i2 < ... < im ≤ n, and

(Aj)(i1,...,im) be the corresponding principal submatrix. So, by (4.9) and (4.10),

det[(Aj)(i1,...,im)] = lim
z→zj

[

(zj − z)m detQ(z)(i1,...,im)

]

= limz→zj

[

(zj − z)mf(z)
]

≥ 0.

So, indeed, Aj ≥ 0. It remains to verify that D ≥ 0 as well. Choose 1 ≤ i1 < ... < im ≤ n. Then

f satisfies one of a. − c. If it satisfies c., then detD(i1,...,im) = limτ→+∞
f(iτ)
(iτ)m ≥ 0. Otherwise,

a. is satisfied3. Therefore, f̃(z) := f(−1
z
) still satisfies a., which leads to detD(i1,...,im) =

limτ→+∞
f(iτ)
(iτ)m = limz→0

(

(−z)mf̃(z)
)

≥ 0.

4.3.4 Example. In the previous theorem, we considered matrix-valued functions that are mero-

morphic on C and real. The theorem does not hold when dropping this assumption. This is

shown by the simple counterexample

Q(z) =







(

z 2

z 1

)

, z ∈ C+,

(

z z

2 1

)

, z ∈ C−.

Q is real, but not Herglotz, since det(ImQ(z)) = −
∣
∣2−z

2i

∣
∣ < 0 for z ∈ C+. Nevertheless,

detQ(z) = −z is the product of the scalar Herglotz functions q1(z) := −1 and q2(z) := z

which are meromorphic on C and real. Moreover, diagonal entries of Q are scalar meromorphic

Herglotz functions.

So, in a sense, the subdeterminants of a non-meromorphic Q do not contain enough information

about non-diagonal entries of Q.

3Remember that a. and b. are equivalent, as was seen in Theorem 4.2.5.
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Chapter 5

Theorem of Hermite-Biehler for

matrix-valued entire functions

5.1 The classes LHBn and RHBn

The theory layed out in Section 1.2 allows us to prove a matrix-valued version of the Hermite-

Biehler theorem. Our first step is to define a matrix analogue to the class HB.

5.1.1 Definition. Let E : C → C
n×n be entire, and let detE(z) 6= 0 for every z ∈ C+. Then E

belongs to the left Hermite-Biehler class (LHBn) if and only if sE(z) := E(z)−1E#(z) belongs

to the Schur class Sn. Analogously, E belongs to the right Hermite-Biehler class (RHBn) if and

only if tE(z) := E#(z)E(z)−1 lies in the Schur class Sn.

Evidently, LHB1 = RHB1 = HB. Surprisingly, this still holds for every n > 1.

5.1.2 Lemma. Let n ∈ N. Then E belongs to LHBn if and only if it belongs to RHBn. In this

case sE = tE.

Proof. The function tE belongs to Sn if and only if, for every z ∈ C+, we have 0 ≤ I −

tE(z)∗tE(z) = I −
(
E(z)−1)∗E(z)E(z)∗E(z)−1. Multiplying with E(z)∗ from the left and with

E(z) from the right, this is equivalent to E(z)∗E(z)−E(z)E(z)∗ ≥ 0. This inequality also holds

for real x, i.e., R(x) := E(x)∗E(x) − E(x)E(x)∗ is a positive semidefinite matrix for every real

x. At the same time,

trR(x) = tr(E(x)∗E(x) − E(x)E(x)∗) = tr(E(x)∗E(x)) − tr(E(x)E(x)∗) = 0. (5.1)

Hence, R(x) = 0. Now consider the entire function S(z) := E(z)E#(z)−E#(z)E(z). For x ∈ R

we have S(x) = R(x) = 0, and the Identity Theorem shows that E(z)E#(z) = E#(z)E(z) for

every z ∈ C. This leads to sE = tE .

If, on the other hand, E belongs to LHBn, then ‖sE(z)‖ ≤ 1 for all z ∈ C+. Thus, ‖sE(z)∗‖ ≤ 1,

or, put differently, I − sE(z)sE(z)∗ ≥ 0. By multiplication with E(z) from the left and E(z)∗

from the right, we obtain E(z)E(z)∗ −E(z)∗E(z) ≥ 0. From this point, we can use an argument

analogous to (5.1) to verify that E(z) and E#(z) commute.
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The latter gives rise to the following definition.

5.1.3 Definition. The Hermite-Biehler class (HBn) is defined as the set of all entire func-

tions E : C → C
n×n such that detE(z) 6= 0 for every z ∈ C+, and s(z) := E(z)−1E#(z) =

E#(z)E(z)−1 belongs to the Schur class Sn.

5.2 The Hermite-Biehler Theorem for matrix-valued functions

5.2.1 Theorem. Let E : C → C
n×n be entire, and let A(z) := (RE)(z) = E(z)+E#(z)

2 ,

B(z) := (IE)(z) = E(z)−E#(z)
2i be its real and imaginary part. Then the following conditions are

equivalent:

(i) E ∈ HBn, and detB(z) 6≡ 0;

(ii) There is an open, nonempty set Ω ⊆ C+ such that detE(z) 6= 0 for all z ∈ Ω, and

Λ(z, w) := i
I − sE(z)sE(w)∗

z − w
(5.2)

is a positive kernel on Ω. Additionally, detB(z) 6= 0 for all z ∈ C+;

(iii) Q(z) := B(z)−1A(z), z ∈ C, is Herglotz and meromorphic on C, and detB(z) 6= 0 for all

z ∈ C+.

Proof.

(i) ⇒ (ii):

Except for invertibility of B, this was done in Theorem 1.2.5. However, Corollary 1.2.4 provides

us with the fact that 2iE(z)−1B(z) = I − s(z) is invertible at every point. Hence, B(z) is also

invertible everywhere in the upper half plane.

(ii) ⇒ (iii):

We put

K(z, w) :=
Q(z) −Q(w)∗

z − w

and show that K is also a positive kernel on Ω. Indeed, looking at

[B(z)−1E(z)]Λ(z, w)[B(w)−1E(w)]∗ = B(z)−1i
E(z)E(w)∗ − E#(z)

(
E#(w)

)∗

z − w

(
B(w)−1)∗

= 2
B(z)−1A(z) − (B(z)−1A(z))∗

z − w
= 2

Q(z) −Q(w)∗

z − w
= 2K(z, w).

By Lemma 1.1.3, K is positive. Moreover, Lemma 5.1.2 states that, for every z, E(z) and

E#(z) commute. In particular, A(z) and B(z) commute. Therefore,

Q(z) = B(z)−1A(z) = A(z)B(z)−1 = A(z)∗(B(z)−1)∗ = Q(z)∗.
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Hence, Q is real and meromorphic on C. The assertion now follows from Theorem 2.3.2 and

the Identity Theorem.

(iii) ⇒ (i):

Invertibility of E(z) follows from E(z) = B(z)(Q(z) + iI). Repeating the calculation from the

last step in the inverse order, we get

I − s(z)s(z)∗ =
1

4
[E(z)−1B(z)] ImQ(z)[E(z)−1B(z)]∗ ≥ 0.

So, ‖s(z)‖ = ‖s(z)∗‖ ≤ 1 for every z ∈ C+, which proves s ∈ Sn.

Theorem 5.2.1 can be combined nicely with Theorem 4.3.3 to obtain the following matrix-valued

version of the Hermite-Biehler Theorem.

5.2.2 Corollary (Hermite-Biehler, Version 1). Let E : C → C
n×n be entire, and let E|C+ belong

to N n×n. Let A := RE, B := IE be the real and imaginary part of E. Set Q(z) := B(z)−1A(z).

Then the following statements are equivalent:

(i) E ∈ HBn, and detB(z) 6≡ 0;

(ii) There is an open, nonempty set Ω ⊆ C+ such that detE(z) 6= 0 for all z ∈ Ω, and

Λ(z, w) := i
I − sE(z)sE(w)∗

z − w
(5.3)

is a positive kernel on Ω. Moreover, detB(z) 6= 0 for all z ∈ C+;

(iii) All of the following conditions hold:

- detB(z) 6= 0, z ∈ C+;

- for each entry Qkl of Q we have lim supτ→+∞
|Qkl(iτ)|

τ
< +∞;

- for every m ∈ {1, ..., n} and 1 ≤ i1 < ... < im ≤ n, f(z) := det[Q(i1,...,im)(z)] satisfies

the m-interlacing condition. If the set of poles of multiplicity m is nonempty, then

limz→z0

[
(z0 − z)mf(z)

]
> 0 for at least one of those poles z0;

- limτ→+∞
f(iτ)
(iτ)m ≥ 0.

�

5.2.3 Remark. One might ask whether it is really necessary to impose some kind of invert-

ibility for B in each of the equivalent statements. The answer seems to be that it depends on

the formulation that you want to achieve - for the latter, invertibility of B is indeed important.

However, in some cases, it follows automatically from the properties of E. Notably, we know

from Corollary 1.2.3 that for E ∈ HBn we have I − sE(z0)∗sE(z0) > 0 at one point z0 if and

only if I − sE(z)∗sE(z) > 0 at every z ∈ C+. Because of invertibility of E(z), it follows that
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E(z)E(z)∗ − E#(z)
(
E#(z)

)∗
> 0 at every z in the upper half plane. Now,

0 < E(z)E(z)∗ − E#(z)
(
E#(z)

)∗

=
(

A(z) + iB(z)
)(

A(z)∗ − iB(z)∗
)

−
(

A(z) − iB(z)
)(

A(z)∗ + iB(z)∗
)

= 2i
(

B(z)A(z)∗ −A(z)B(z)∗
)

. (5.4)

Assume that there is z0 ∈ C+ and ξ0 ∈ C
n such that B(z0)∗ξ0 = 0. Then we run into the

contradiction

0 6= ξ∗
0B(z)A(z)∗ξ0 − ξ∗

0A(z)B(z)∗ξ0 = 0,

which means that B(z) is invertible for every z ∈ C+.

5.2.4 Theorem (Hermite-Biehler, Version 2). Let E : C → C
n×n be entire such that E|C+ ∈

N n×n, and let A := RE, B := IE be its real and imaginary part. Assume detB(z) 6≡ 0, and

set Q(z) := B(z)−1A(z). Then the following statements are equivalent:

(i) There is an open and nonempty set Ω ⊆ C+ such that L(z, w) := i
E(z)E(w)∗−E#(z)

(
E#(w)

)∗

z−w

is a positive kernel on Ω;

(ii) The conditions below are all satisfied:

- Q has no poles in C \ R;

- for each entry Qkl of Q we have lim supτ→+∞
|Qkl(iτ)|

τ
< +∞;

- for every m ∈ {1, ..., n} and 1 ≤ i1 < ... < im ≤ n, f(z) := det[Q(i1,...,im)(z)] satisfies

the m-interlacing condition. If the set of poles of multiplicity m is nonempty, then

limz→z0

[
(z0 − z)mf(z)

]
> 0 for at least one of those poles z0;

- limτ→+∞
f(iτ)
(iτ)m ≥ 0.

Proof. Set MB := {z ∈ C : detB(z) 6= 0. By the identity theorem, C \ MB is discrete, and

therefore ΩB := Ω ∩MB is open and nonempty. (5.4) leads to

K(z, w) :=
B(z)−1A(z) −

(

B(w)−1A(w)
)∗

z − w
=

1

2
B(z)−1L(z, w)

(
B(w)−1)∗,

implying that K is a positive kernel on ΩB. By Theorem 2.3.2, the function B(z)−1A(z)

defined on ΩB can be continued to a Herglotz function Q. The Identity Theorem implies

Q(z) = B(z)−1A(z) for every z ∈ MB. Analogous as in Lemma 5.1.2, one can show that E(z)

always commutes with E#(z), and therefore A(z) commutes with B(z) at every z. By defining

Q(x) := B(x)−1A(x) = A(x)B(x)−1 for real x ∈ MB, Q becomes meromorphic on C. We can

now apply Theorem 4.3.3, proving the assertion. The other direction follows from inverting the

previous steps. Note that in Theorem 4.3.3, Q has to be holomorphic on C \R. This is ensured

by the requirement that Q has no nonreal poles (at any point where B(z) is not invertible).
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Appendix A

Direct proof of the Herglotz integral

representation

In order to derive Theorem 2.4.3, we branched out to the theory of linear relations. This was

necessary to prove Theorem 2.3.2. For readers that are interested only in the integral represen-

tation, we present the standard proof of the integral representation for scalar Herglotz functions.

Once this representation is established for scalar Herglotz functions, it can be generalized to

matrix-valued Herglotz functions Q : C \ R → C
n×n using the fact that, for every x ∈ C

n, the

function x∗Q(z)x is a scalar Herglotz function. See also [B, Theorem A.4.2].

A.1 Theorem. ([KA], Theorem 5.1); ([KK], Satz 2.3.6)

A function q : C \ R → C is Herglotz if and only if it admits a representation of the form

q(z) = a+ bz +

∫

R

( 1

t− z
−

t

1 + t2

)

dσ(t), z ∈ C \ R, (A.1)

where a, b ∈ R, b ≥ 0, and µ is a positive Borel measure with
∫

R

1
1+t2

dσ(t) < +∞. This

representation is unique.

Proof. Checking that formula (A.1) always gives a Herglotz function for all admissible a, b and

σ will be left as an exercise to the reader. In the following three steps, we prove that any

Herglotz function has a representation of the form (A.1).

Step 1. Let f be holomorphic on some open domain containing the unit disk. For every z in the

unit disk, using the Cauchy Integral Theorem and the Cauchy Integral Formula, we find that

f(z) =
1

2πi

∫

γ

(
f(ζ

ζ − z
−

f(ζ)

ζ − 1
z

)

dζ, (A.2)

where γ(t) := eit, t ∈ [0, 2π]. A straightforward calculation shows that, for |ζ| = 1,

1

ζ
Re

(
ζ + z

ζ − z

)

=
1

ζ − z
−

1

ζ − 1
z

.
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Inserting this into (A.2) yields

f(z) =
1

2πi

∫

γ
Re

(
ζ + z

ζ − z

)
f(z)

ζ
dζ =

1

2π

∫

[0,2π]
Re

(
eit + z

eit − z

)

f(eit) dλ(t).

Now look at the function

k(z) :=
1

2π

∫

[0,2π]

eit + z

eit − z
Re f(eit) dλ(t),

which is holomorphic on the unit disk and satisfies Re k(z) = Re f(z). Hence, k(z) = f(z)+ci for

every z in the unit disk, where c ∈ R. We observe that k(0) = Re f(0) and thus c = − Im f(0).

Therefore,

f(z) = i Im f(0) +
1

2π

∫

[0,2π]

eit + z

eit − z
Re f(eit) dλ(t). (A.3)

Step 2. Let f be holomorphic in the unit disk such that Re f(z) ≥ 0 for every z. Define for

each r ∈ [0, 1) the positive measure νr on [0, 2π) given by the density

dνr
dλ

(t) :=
1

2π
Re f(reit).

Letting γ(t) := eit for t ∈ [0, 2π), we further define the measure µr := νr ◦γ−1 on the unit circle

T = {z ∈ C : |z| = 1}. Using (A.3) for z 7→ f(rz) yields

∫

T

ζ + z

ζ − z
dµr(ζ) =

1

2π

∫

[0,2π)

eit + z

eit − z
Re f(reit) dt = f(rz) − i Im f(0). (A.4)

Putting z = 0 implies ‖µr‖ = Re f(0), and thus we can apply the theorem of Banach-Alaoglu

for r → 1. We obtain a subnet µrj
, j ∈ J , of µr which converges to some measure µ with respect

to the weak-∗ topology. In particular, it follows from (A.4) that

f(z) = i Im f(0) +

∫

T

ζ + z

ζ − z
dµ(ζ) (A.5)

for every z in the unit disk.

Step 3. Let β(z) := z−i
z+i which takes the upper half plane to the unit disk and the real line

to T \ {1}. Let g be holomorphic on C \ R such that Re g(z) ≥ 0 for every z ∈ C+. Setting

f(z) := g(β−1(z)) allows us to use (A.5), leading to

f(z) = i Im f(0) +

∫

T

ζ + z

ζ − z
dµ(ζ) = i Im f(0) + µ({1})

1 + z

1 − z
+

∫

R

β(t) + z

β(t) − z
d(µ ◦ β−1)(t).
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Some straightforward calculations yield

g(z) = f(β(z)) = i Im f(0) + µ({1})
1 + β(z)

1 − β(z)
+

∫

R

β(t) + β(z)

β(t) − β(z)
d(µ ◦ β−1)(t) =

=
1

i

(

− Im f(0) + µ({1})z +

∫

R

1 + tz

t− z
d(µ ◦ β−1)(z)

)

. (A.6)

We now define the measure σ given by

dσ

d(µ ◦ β−1)
(t) := 1 + t2.

Because of
∫

T
dµ < +∞, we have

∫

R
d(µ ◦ β−1) < +∞ and therefore

∫

R
(1 + t2)−1 dσ(t) < +∞.

Finally, by (A.6),

g(z) =
1

i

(

− Im f(0) + µ({1})z +

∫

R

1 + tz

(t− z)(1 + t2)
dσ(t)

)

=

=
1

i

(

− Im f(0) + µ({1})z +

∫

R

(
1

t− z
−

t

1 + t2

)

dσ(t)

)

.

The integral representation for a given Herglotz function q follows from putting g(z) := 1
i
q(z),

z ∈ C+.

Uniqueness of the parameters (a, b, σ) is proven in the same way as in Theorem 2.4.3.
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