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Abstract

We study the problem of hedging claims under a minimum variance criterion and with
respect to integer constraints. The model we use is a discrete time model where the price
states evolve as multinomial trees. The optimal hedging strategy is then derived by two
different approaches; first a Branch and Bound type algorithm is employed to obtain an
integer solution. In a second approach we rewrite the problem as a closest vector problem
and use this algorithm from lattice theory to compute an optimal strategy. We will present
the solutions for the classical binomial model and also for the trinomial model, which are the
most well known discrete time tree models. The outcome of these approaches are compared
with the naive idea of simply rounding the strategy to next integer to see if it is possible to
improve the solution. Finally we analyze the integer strategy in the binomial model in more
detail, where we inspect the limiting behaviour of the strategy numerically.
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Kurzfassung

Diese Arbeit befasst sich mit dem Problem des Hedges von verschiedenen Claims nach
dem Minimum-Varianz-Prinzip bei der zugleich eingefithrten Einschrankung auf die optimale
Strategie nur aus ganzzahligen Positionen zu bestehen (integer constraint). Wir betrachen
ein zeitdiskretes Modell, in dem sich die Preise nach einem multinomialen Baum entwick-
eln. Die optimale Integer-Strategie wird hierbei mit zwei verschiedenen Anséatzen erortert;
zunachst einem Algorithmus vom Branch and Bound Typ, einer Klasse von Algorithmen
aus dem Bereich des integer programming. In einem zweiten Ansatz wird das Problem auf
ein Closest-Vector-Problem zuriickgefiithrt und dieses wird mit aus der Gittertheorie bekan-
nten Algortihmen gelost. Wir betrachen diese Ansétze fiir praktisch relevante und bekannte
Modelle, das Binomialmodell und das Trinomialmodell, sowie Erweiterungen dieser beiden
Modelle. Wir vergleichen hierbei die Leistungen und Resultate der zwei vorgestellten Al-
gortihmen mit der naiven Herangehensweise, dem Runden der klassischen Strategie. Zu
guter Letzt analysieren wir die optimale Integer-Hedging-Strategie im Binomialmodell etwas
genauer und betrachten hierbei ob sich im Grenzfall eine Konvergenz zur klassischen Strategie
beobachten lasst.

i
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Chapter 1

Introduction

The work of Gerhold and Kriithner [17] tackles an interesting problem when it comes to
classical pricing and hedging theory. In the general no arbitrage sense, there are a lot of
simplifying assumptions on the financial market. The one particularly looked in is the one
that position sizes may be arbitrary real numbers, which is an often violated assumption
in practice. Real-life trading follows various rules, and it is often only possible to trade
an integer amount of some assets. Even if there are no such restrictions it can be more
reasonable to buy only integer amounts of assets due to fees or poor liquidity. Especially for
small inverstors this is often useful. But also for big players it is often practice to buy round
lots consiting of several hundreds of shares.

In this work we will follow the idea of Gerhold and Kriihner [17]. They impose a framework
for integer contraints and also present results which adapt the findings of the classical no
arbitrage theory to this framework. Furthermore they look at a toy example for hedging
under integer constraints, which only takes into account one timestep.

The main goal of this thesis is to extend the idea of the above mentioned toy example
and develop and solve a multi-time period version of the integer hedging problem, which in
this context has not been done yet. Thus, the structure of the thesis is as follows: in chapter
2 we will establish the framework in which we operate. We will look at the problem of
minimizing the hedging error when imposing integer contraints. Therefore we will revise this
so called minimum variance hedging (or variance oprimal hedging, cf. Follmer and Schied
[16]) theory and also state some useful results. In chapter 3 we will look at various approaches
for solving the problem developed in the preceding chapter. As we will see we face a classical
integer programming problem. One approach to solve this is the Branch and Bound (BB)
algorithm. Another idea to look at the problem, that is also considered in the Gerhold and
Kriithner [17] paper for the one step problem, is to rewrite it as an instance of the closest

vector problem and to solve the problem accordingly. We will revise the theory behind these
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integer programming approaches as well as some special characteristics regarding our specific
framework.

Chapter 4 focuses on the application side of the integer hedging problem. Here we study
common multi-period models, like the binomial model (or often called CRR model, after Cox,
Ross and Rubinstein [12]) and the trinomial model. Furthermore we will look at two other
models which account for more than one risky asset. The basis for them are the trinomial
and binomial model. We will analyse how the algortihm developed behave in each part of
the application and where they can be useful to implement.

Finally in chapter 5 we will look at the integer hedging problem in the binomial model
in more detail. The goal here is to analyze the limiting behaviour of the integer constraints
strategy in a sequence of binomial model. We will see that numerically, there is a converging
behaviour of the integer strategy to the classical strategy as the number of timsteps of the
model increases. This is an interesting point as it suggests that we can achieve a completeness

in the incomplete integer constraints model.
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Chapter 2
The integer constraints problem

In this chapter we want to establish a framework which will serve as a basis for the whole
thesis. To do so we will first impose general assumptions and recall the usual notations and
definitions necessary for our setting. Furthermore we will revise some important results on
variance optimal hedging, which we mostly take from Follmer and Schied [16]. As for the
notations we will mainly adopt the one from Gerhold and Krithner [17], from which we also
take some useful result.

After these preparation we will then present the general model for multi-period time hedging

under integer constraints in section 2.3.

2.1 General settings

The foundation of our analysis is the filtered probability space (2, F,F,P), with a filtra-
tion F = (F)er, T = {0,...,T}, T € N, for which it holds that Fr = F and F, = {0, Q}.

Furthermore we also fix the following assumption:

Assumption 2.1.1. Q is finite, F is the powerset of ), P[{w}] > 0 for any w € Q, and we

choose an enumeration wy, .. .,w, of its elements.

We consider a frictionless market model with d risky assets and denote their price process
by Sy = (S},...,58%), t € T. Furthermore the market contains a riskless asset, whose price
is given as S = (1 + ), t € T, and we denote the market price process by S = (S89,9).
Furthermore in general we assume for the risk-free rate r that r > —1 and for the risky asset
it holds that S; > 0 and S; is F;-measurable, Vt.

As usual we consider a trading strategy ¢; = (¢2,...,¢%) = (¢?, ¢;) € RH1 ¢ € T\{0}, as

a predictable and square integrable process, where ¢! denotes the number of shares of asset
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i held in time (¢t — 1,¢]. Furthermore the value process of the portfolio denoted by V;(¢) is

given as:
Vi(9) = ¢ - Sy = Z G5y
i=0

We will only consider selffinacing trading strategies, meaning that:

d d
> S =Y S
i=0 =0

Often it is much more convenient to work with the discounted processes:

5o Vi(9)

S, and Vy(9) = —
t

_ ot
S’
A simple yet very useful result is given by the following proposition:

Proposition 2.1.1. Let gz~5 be a trading strategy, then

t
& is selffinancing < Vt(@ = Vo(é) + Z <Z~5k . Aﬁk, where AS’k = §k — gk,l
k=1

Proof.
d d
(5 is selffinancing < Z PLS! = Z ¢§+15Z & ggt CHES &Hl - Sy
i=0 i=0
A~ ~ ~ A~ ~ t ~ A~ ~ A~
& Vi(d) = ¢+ Sy = Vo(d) + D (k- Sk — Gr1- k1)
—_——

k=1
f~ A
AR

& T3) = V(@) + 3 b - Ay

k=1

(2.1)

(2.2)

(2.3)

(2.4)

]

Remark. Note that since S = (1,5,..., 5% it follows that AS® = 0 and therefore this part
plays no role in the equation (2.4). Therefore it is sufficient to only define AS for the risky

assets and rewrite the (2.4) as ‘A/}(qg) =V + ZZ=1 O - AS,.

As the main focus of this thesis is interger hedging strategies we also want to adjust our

strategies to that:
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Definition 2.1.1. An integer strategy is a predictable process (@;)er (0} that takes values
in R x Z%. We will always assume that ¢ is selffinancing, so (2.2) holds.

Our definition of an integer strategy assumes, that the amount of shares in the riskless
asset can be any real number, which goes in line with the idea that it is usually possible
to hold any kind of amount in the bank account, or at least a value that is not necessarily
an integer amount or any kind of round lot. Furthermore defining the holdings in the bank
account like that facilitates the computation as it will help to find a selffinaning strategy via

the formula given of the value process given in equation (2.4).

Finally we recall one of the main concepts studied within the course of financial math-
ematics, namely arbitrage. Intuitively an arbitrage opportunity is a portfolio, which yields

positive profit without any kind of downside risk. This leads to the following definition:

Definition 2.1.2. A selffinacing trading strategy is called an arbitrage opportunity if the

value process for this strategy satisfies the following conditions:

Vo(¢) <0, Vy(p) >0 and P(Vp(p) >0)>0 (2.5)

Of course this concept can be easily transferred to our integer case, i.e. an integer strategy

@ is an arbitrage opportunity if it fullfills definition 2.1.2.

2.2 Hedging in incomplete markets

After having established the settings and notations of the market model we quickly want
to revise the idea of hedging. To do so we recall that a claim C' is an Fp-measurable random
variable with C' > 0. We will often write H for the discounted claim and use this notation
instead of C.

The main definition of hedging is to find a replicating strategy ¢, such that Vi (¢) = H.
The idea of hedging is closely related to the one of determining the fair price of a claim. Thus
it is a highly studied problem in the financial field.

Finding a perfect hedging strategy is only possible in a complete market model, i.e. a
market model where any claim can be attained in a way as described before. In reality
however, there are a lot of frictions in the market which prevents it from being complete.
Thus it is not possible to replicate claims. One example for such a market with frictions
is our integer hedging model. Through imposing integer constraints our market model is
incomplete, thus we need to find strategies to cope with this incompleteness. In this section

we will look at ideas to treat this issue.
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There are various different approaches to cope with hedging in incomplete markets, such
as finding superreplication strategies or using a quadratic criterion. In this thesis we will

look at this most common idea of finding a strategy which minimizes the hedging error.

2.2.1 Minimum variance hedging

For this section we consider a model which satisfies the standard no abritrage condition.
We consider a martingale measure P and a claim H € £?(P), so H is a square integrable
discounted claim. Furthermore the discounted price process S is also square integrable w.r.t.
P for all t € T. The goal of minimal variance hedging is then given by minimizing the

hedging error under the L?*(P)-norm, i.e. minimizing;

T
I(H = Vp)l3 = E[(H = Vr)*) = E[(H = Vo + > _ ¢ - AS,)’] (2.6)
t=0
Thus a minimum variance strategy, or variance optimal strategy can be characterized in the

following way:

Definition 2.2.1. A variance optimal strategy for a (discounted) claim H is a pair (V, ¢*)
such that

E(H—-Vy =Y ¢} -AS)’ ] <E[H-Vo— > ¢ AS,)’] (2.7)

t=0
holds, for any initial capital V{) € R and any admissible trading strategy ¢.

Remark. 1t can be shown that such an optimal strategy always exists for a fixed martingale
measure P. Under this martingale measure the minimum variance strategy is equivalent to
the so called locally risk minimizing strategy, whose existence can be shown by the discrete
time version of the Kunita Watanabe decomposition. Furthermore to derive such a strategy
a recursive scheme can be applied where one determines V; and ¢, by regressing Vi, on
AS. Since we are not particularily interested in the classical minimum variance case, but
only want to apply the general idea for our integer hedging problem, the interested reader is

referred to Follmer and Schied [16, chap. 10] for more details.

2.3 The multi period model

The model we primarily will work with is in general a multinomial lattice model. The

idea of this is basically derived by generalizing the binomial model of Cox et al. [12]. Lattice

6
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Figure 2.1: Evolution of a multinomial tree: [left: general case; right: the trinomial model
for the special case of equation 2.8.

models have been studied a lot in an financial context and have various nice properties. They
are easily applicable and are thus often used in real application. Besides that they allow for
valuation of all kinds of options and are also able to account for other problems that often
arrive in a financial context such as the volatility smiles or heavy tails (see for example Ya-
mada and Primbs [32]).

In our model, the price of each risky asset at each trading time ¢ € T\{0} evolves randomly
in L € N different directions, thus building a lattice that evolves with each time step as seen
in figure 2.1.

For our analysis it often will be useful to look at the less general model of Yamada and
Primbs [32], where the price process can take the L possible future values in the following

way:
Sy = ulld S, where l=1,...,L (2.8)

Here u > d > 0 usually relate to an up and down movement of the price. It is easy to
see that the Binomial model is a special case where L = 2. Another special case of the
above formulation is the trinomial model, where in each step the price has three possibilites
{@i,m,d} of moving. This model corresponds to the case of L = 3, i = u%, m = ud and
= d°.

The primarily goal will be to hedge a (discounted) Claim H according to the minimum

S

variance criterion introduced in section 2.2.1, where the integer constraints are imposed on
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the hedging strategy.

Therefore lets first look at said strategy ¢: from our definition we know that it should be a
predictable process. In each multinomial step the price of each risky asset S?, i € {1,...,d},
jumps according to L different points, thus in each timestep ¢ € T\{0}, ¢! takes L*~V) values.
Finally each of these ! should be an integer and so ¢; € Z or if we put it together, we

T_4

€ LA ++LTD (55

are searching for ¢' = (¢!, b, ... @)

If we look at the less general case of equation 2.8, the space, in which the ¢’ lives, changes,
so the number of components to estimate decrease. This is due to the fact that in each step
the price process evolves in a way, such that the price states jump only according to v and
N gM-N

d. Thus each price of the process at time ¢, has a form of Syu where N is the number

of ups and M is the maximum number of ups. This maximum number is clearly given as

L=1)  Therefore

M =t(L — 1), since in each time step the highest upward jump is given as ul
the number of different prices in each time step is given by ¢(L — 1) + 1. For each time
component ¢! of the strategy, this means that ¢! € Z{¢~DE=D+1 The number of values for
the full trading strategy ¢’ can thus be found by summing up the possibilities up to time
T — 1 . Doing this shows that the strategy we are searching for is in Z(F—DT(T—=1)/2+T

. ~ T_
In the following we will write ¢* € Z and refer to this as being either ZU=1) or being
7 (L=1)T(T—1)/24T

With the notation and derivation of the previous paragraph we can now state the key

problem that we will try to solve throughout this thesis:

inf [|H — Vr||3 = 1nf E[(H Vr)? (2.9)

€L

Considering the L different possible ways the price can develop in each step. We can
rewrite the general problem from equation 2.9 in 2 different ways:

1) rewrite as one sum:

LT

T
1nf |H — V7|5 = inf ZP (w;)( Z c,uj))2 (2.10)

@GZ

2) or we can rewrite it as multiple sums (cp. with the notation from figure 2.1):

inf ||~ Vil =

pEZL
L T ) , (2.11)
lnf Z Z P wﬂly :]n (w]h ’]n % - Z Sot(wjl,...,jn) : ASt(“hh:]n))
t=1

Z
ve Jji=1 Jn=1
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In the equation we have H = H — Vj, so it represents the discounted payoff of the claim
minus the starting capital Vf, which can be derived in a standard way by computing the
expectations under the risk neutral measure.

Using the notations from equation 2.11 and considering the structure of the strategy ¢ it
is clear that the individiual ¢; are not dependent on all the sums but only on the first ones.
Furthermore also the AS, are not dependent on all the sums, and thus to solve the problem

it will be necessary to find a good way to take these properties into account.
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Chapter 3
Approaches to solve the problem

The most simple and naive approach to solve the problem formulated in the previous
chapter would be to look at the problem without the integer restrictions and then simply
rounding the results of this relaxed problem to the next integer value. Since the multinomial
model for L > 3 is already an incomplete market model, one could also use the minimum
variance criterion to obtain an optimal strategy for the relaxed problem. The resulting task
of finding this optimum has already been studied a lot and can be solved by using the
dynamic programming idea developed by Bellman [5] (see also e.g. Fedotov and Mikhailov
[15], Yamada and Primbs [31] or Follmer and Schied [16] for pricing and hedging in incomplete
markets using the dynamic programming principle).

Since this naive approach might not give the best results, we also want to look at more
sophisticated ways of solving the interger hedging problem. Considering the nature of the
problem, the most obvious idea is to look at integer programming techniques. One of the most
well known methods for such kind of problems is the Branch and Bound (BB) algorithm,
orginated in the 1960’s by Land and Doig [21], which is able to solve a vast amount of
optimization problems. Another way to look at our problem is using lattice theory and
searching for the element of a given lattice which is closest to a vector, also known as closest
vector problem (CVP), which is a well known computational problem with many applications.
While there are probably more methods for finding an optimal integer hedging strategy, we

will follow these two ideas within this thesis.

3.1 Branch and Bound (BB) algorithm

Developed in the early 60’s these types of algorithms have already been studied a lot
throughout the history (see e.g. Lawler and Wood [22], Nemhauser and Wolsey [26]) and

more recently Morrison et al. [25] have given a sound survey of the advances regarding BB.
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In a financial context, the BB algorithm has been used to solve integer pricing and hedging

problems by Bonami and Lejeune [8].

3.1.1 Algorithm overview

Lets begin with the type of problem that should be solved by the algorithm:
min f(x) subject to x € X (3.1)

where X is a space of valid solutions, which in our case will be of course Z", but X can
also contain more constraints. The BB algorithm is a tree search algorithm which iteratively
builds trees acording to subproblems that are searched for solutions to the problem.

BB starts by solving the classical (relaxed) optimization problem without any (integer)
constraints on the solution space. Additionally a feasible solution & € X is stored globally;
this is called the incumbent solution, which can also be an initial target objective value of
the function to maximize. Now let z* be a solution to the relaxed problem, then we have the
following scenarios: if x* is already a feasible solution, i.e. it already only contains integer
values, and is better than the incumbent solution, i.e f(z*) < f(Z), then we have found
a solution to problem 3.1. Otherwise the algorithm creates subproblems Sy,...,S, C X
and tries to find a solution in each of these subproblems. The algorithm selects one of
these subproblems, S;, and explores it. If the algorithm finds a feasible solution, which
has better objective value than the actual optimal value z, then this solution will replace
Z as new incumbent solution. If the algorithm cannot find any better solution than the
incumbent, the subproblem is pruned and another subproblem is explored. If the selected
subproblem cannot be pruned, then child subproblems are created and stored in in the set
of the subproblems. The algorithm searches then through all of the subproblems, and once
it is done it returns the best incumbent solution.

Morrison et al. [25] provide pseudocode for the BB procedure as seen in algortihm 1.

From the Pseudocode and the brief overview, we see that there are three key factors
that influence the BB algorithm and the effectiveness and performance of it. First there is
the search strategy, i.e. the order in which the subproblems are searched. Second there are
branching rules, so which variable is chosen for branching, i.e how the children are generated
from a subproblem. And lastly the pruning rules, which indicate when the algorithm can stop
exploring a specific subproblem and thus explore the remaining and more relevant problems.

In the following section we will take at look at these issues for our specific case of integer
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Algorithm 1 Pseudocode for the BB procedure

1: Set L = X and initialize &

2: while L # () do

3 Select a subproblem S from L to explore

4 if a solution z with f(z) < f(z) can be found then Set & =z
5 if S cannot be pruned then

6: Partitions S agian in subproblems Sy, ..., S,

7 Insert Sy, ...,.S, into L

8 Remove S from L

9: return &

hedging.

3.1.2 Branching, searching and pruning

In this section we will look a bit closer into the details of the BB algorithm. As mentioned
previously there are three important factors that impair the runtime and performance of the
algorithm and we want to discuss them in a bit more detail. However since this is not the
core of the thesis we will only discuss the general ideas for each of the factors and refer to

Achterberg [1] or Morrison et al. [25] for more insight into these ideas.

1. Branching:

This part of the algorithm examines the problem of how new subproblems, also called
children, are created from the current problem considered. As choosing a proper node to
branch on, might have a big impact on the performance of the algortihm, this aspect has
been studied a lot. In general, there are two components of the branching strategy; one

is the selection of the branching variable and the other is creating the subproblems.

The selection component for the branching is done by picking a suitable variable regarding
a criterion, i.e. calculate a score for each possible variable to branch on and then choose
the variable with the highest score. In integer programming, the only possible variables to
branch on are integer variables that have a fractional value in the current relaxed problem.
After selecting a branching variable z;, it is common to create the new subproblems by
setting the bounds for z; as follows: Let Z; be the (fractional) value obtained from solving
the relaxed problem. Then one subproblem is such that z; > [Z;] and the other is such
that z; < |z;].

For the runtime of the algorithm the more important component is of course the selection

procedure. Thus there have been many ideas in this direction. In the following we will
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mention the most common ones.

One of the most traditional branching rules is the most infeasible or most fractional
branching rule. Here the variable selected is the one with the most fractional part, meaning
that its fractional part is closest to the value 0.5. The idea is to pick a variable, where
it is the least clear in which direction, namely up or down, the rounding is optimal. As
opposed to this rule another idea for branching is the least feasible or least fractional rule,
where the selected variable is closest to next integer number. However though these rules
are the most common, they do not prove to be very efficient, as Achterberg [1] has shown.
A more efficient rule has goes back to Benichou et al. [6]. The pseudocost branching
rule attempts to calculate the per unit change in the objective function, when using a
candidate variable to branch on, based on past experience in the tree. Of course this
branching method works not so well in the beginning, as there is no information about
past branching. Another more sophisticated way of branching is strong branching which
was developed by Applegate et al. [3]. Here the variable that produces the most change in
the objective function is selected. Obviously this branching strategy can affect the runtime
quite heavily as computing the value of the objective function can be time consuming.
Thus a mix of strong branching and hybrid branching has been proposed by Linderoth
and Savelsbergh [24].

Finally it is interesting to mention that Bonami and Lejeune [8], who used a Branch and
Bound algortihm in a financial context, worked out their own branching strategies for the
portfolio optimization case, showing that coming up with a good approach for the specific

problem can increase the performance drastically.

. Searching:

The searching component of the algorithm determines, how to proceed one after one with
the next subproblem to explore. As branching creates new subproblems, the set of these
increases and the algorithm has to check all of the created problems to find an optimal
solution. The strategy of how these subproblems are combed through can impact not only
the runtime of the algorithm, but sometimes it can also be handy to use a specific apprach

to save memory storage.

One very intuitive searching variant is the depth-first search (DFS). Here the idea is to
explore the subproblems in a hierarchical way, thus always exploring a child of the previous
subproblem. If there is a subproblem that has no child, meaning that it is pruned, then
the algorithm jumps back to most recent parent problem. However, if there is still an

unexplored subproblem left in this parent node, then it goes on to process this one.
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Otherwise it will again trace back to the next ancestor. The DFS strategy has various
advantages over other methods; first of all, by always considering a child of the ancestor as
next problem, it is not necessary to adjust the relaxation of the problem drastically, as the
child will have a similar structure. Often it might even be possible to reuse information
from the parent problem. Another advantage is its low cost of memory, which comes from
the fact that it is only necessary to trace the nodes in the path from the root started.
However there are also problems that can arive with DFS. The main disadvantage is that
depth-first can spend a large amount of time in exploring regions that are not close to
the problem. This can especially happen when the search tree is extremly unbalanced,
meaning that the optimal value can be found in a subproblem near the tree. In an unlucky

case, the search strategy can spend a long time exploring irrelevant paths.

As opposed to depth-first, there is the idea of breadth-first search (BrFS). In this case
problems are explored in such way that first all the problems with a fixed length to the
root are reviewed. If all of the problems in one level have been examined and if there are
new subproblems with a greater distance to the root, the algorithm continues by exploring
these. This type of searching strategy is not as memory efficient as the DF'S and in general

does not make good use of pruning rules and is thus not very often used in BB algorithms.

Another commonly used search stratey is the best-first search (BFS) strategy . In this case
the concept is to always choose the one node to explore, which is the best regarding some
kind of measure, i.e. minimizes the value of the measure. Typically such a measure-of-best
function considers a lower bound on the value of the best solution in the subproblem. The
advantages of the BF'S approach in comparison to other methods is clearly that it is not
tied to a specific region of the search tree and thus is often able to find good solutions
very fast. As a matter of fact Achterberg [1] showed that — given a constraint integer
program with a fixed branching rule — there always exists a best first type of search which
minimizes the number of nodes to be processed. However there are also disadvantage such
as storage problems for very big search trees, as well as employing a proper measure for

the strategy.
Finally it is important to mention that the best working ideas, DFS and BFS, both have

its advantages and disadvantages. Therefore more recently various approaches of mixing
these strategies in order to make use of the individual benefits have been developed. We

again refer to Achterberg [1] for more details on this issue.

. Pruning:

Besides searching and branching strategies there is a third factor that might influence
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the runtime of the algorithm, namely the pruning rules. These define how the algorithm
selects the problems which are to explore and the ones that are not. If not for the pruning
rules, the algorithm would have to go through every subproblem created by branching.
This could cause a lot of runtime as exploring suboptimal regions gives no valuable input.
These rules are often very closely related to a specific type of problem. Thus they might
substantially vary in each case. However there are some general rules which often come

into play for integer constraints problem.

The most common and intuitive pruning rule — besides having found a valid solution to
the constraint problem, which of course also prunes a branch — is introducing bounds on
the objective value. In general if a valid solution to the problem is found, i.e. in an integer
constraint case a solution, where the relevant elements are integers and all possible other
constraints are also satisfied, then the objective value might be saved and used as a lower
bound. If at any node, the relaxed problem alreday has a worse (i.e lower) objective value,

then the subproblem can be pruned and thus need not to be explored.

As mentioned there is a lot of variety in the pruning rules that are usually very problem
specific. However another idea that is closely related to pruning rules is the idea of cutting
planes (which was introduced by Gomory [18]). The cutting plane is an added constraint
to tighten the feasible region without affecting the integrality constraints. This approach

leads to a variant of the branch and bound algortihm, called branch and cut.

3.1.3 BB procedure for integer hedging

In this section we will have a closer look at the mode of operation of the BB algorithm

for our specific problem.

As already mentioned in section 2.3, we operate in a multinomial model, where we will
primarily look at the special case of equation 2.8. The goal is to minimize the hedging error

of a claim under the L?(P)-norm:

min ||[H — V7|3 s.t. ¢ € i
©

where d = (L —1)T(T —1)/2+T. For our algorithm we will use the classical idea for solving
interger constraint problems with the BB approach. This means that we will first solve the
relaxed problem without any integrality constraint and then choose a suitable (non-integer)
variable to branch on. In the following we will discuss the main features of the algorithm

regarding the 3 main components of the BB approach as discussed in the previous section.
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Figure 3.1: Mode of operation of the used BB algorithm. The blue node is the root node,
green nodes are the ones that are yet to be explored in detail, red nodes are the ones that
are pruned, yellow node is the current node. Numbers inside the node signify the order in
which the algorithm explores them.

A visualization of the algorithm can be found in figure 3.1.

1. Branching:

From the previous section we know that the most common rule to use for branching is
the most fractional rule, which selects the variable ¢; whose fractional part is the closest
to 0.5 to do the branching on. As Achterberg [1] has shown, this method is in general no
better than selecting a variable at random. Therefore our attempt for our BB algorithm

does exactly this, namely choosing a non integer variable to branch on at random.

After the variable is selected, the algortihm follows the classial approach where it creates
two new branches. First a branch is created where the selected variable ; is set to |p;]

and in the same step a branch is generated where ¢; is set to [p;]. For each branch the
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relaxed solution is again computed now under the restriction for ¢; and the procedure

start over again and thus the search tree is produced accordingly.

. Searching:

As discussed the most common searching strategies are depth-first searching (DFS), best-
first searching (BFS), where each of its strategies has its own advantages. For the time
being our algorithm follows a depth first strategy, where we pursue the rule that the first
explored subproblem after branching is the branch with |¢;]. From our standpoint of
view this is sufficient for the problems we discuss in this thesis. Furthermore the property
of using less memory is very helpful and as has been shown in Linderoth and Savelsbergh
[24] often integral solutions are found deep in the search tree, thus preferring a depth
search. Nevertheless it might be adequate to introduce a hybrid of both strategies, but

since our idea is not to optimize runtime we leave that for the time being.

. Pruning:

Lastly we discuss the pruning rules used in our implementation of the BB algorithm. Here
we follow the ideas of Bonami and Lejeune [8], which are the most intuitive and also widely
use rules for stopping the iterative search in a branch of the tree. Pruning of a node is

done when one of the following 3 criteria is met:
e the optimal solution of the sub-problem consist of integer variables (pruning by op-
timal integer feasibility)

e the optimal solution of the sub-problem is not better than the value of an already

(in another branch of the tree) found best integer solution (pruning by bounds)

e the optimal solution of the subproblem is infeasible, i.e. no solution exists (pruning

by infeasibility)

As we have already mentioned there might be improvements in the Branch and Bound

algorithm used for this thesis, but nevertheless it works perfectly well for our case. Details
about runtime and performance issues are discussed in the corresponding application sections

below.
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3.2 Closest Vector (CVP) algorithm

The closest vector problem is a well known lattice based problem that has been used in
various fields such as cryptography or number theory. It has been proven to be an NP-hard
problem and thus a lot of research has been centered on developing fast algorithms to solve
the problem. A survey with an profound introduction to the problem as well as state of the
art approaches to solve it can be found in Hanrot et al. [19]. Another nice approach for the
problem has been given by Becker et al. [4] . For this thesis we mainly follow the algorithm
described in Agrell et al. [2], where their implementation is based on the Schnorr-Euchner
method [29].

3.2.1 Algorithm overview

Before starting to decribe the CVP algortihm used in this work, we need to recap shortly
some lattice theory. Since we use the algorithm from Agrell et al. [2], we will therefore mainly
use their notation.

A lattice is always generated by a matrix with real entries and linearly independent rows
(or colums, depending on the represention). Given such a generator matrix G with n rows

and m columns, where n < m, a lattice is given as:
AG) =uG:uelZ

As a generator matrix of a lattice needs not to be unique, we say that generator matrices G,
and G, create identical lattices, i.e. A(G1) = A(G2) if and only if

G, = WG,

where W is a square matrix with integer entries such that |det(W)| = 1. Often it is also
useful to change the representation of the generator matrix G to a lower triangular matrix.

Thus we will often look at
G = G0

where G5 is square and lower triangular and Q'Q = I. G, is then said to be the lower
triangular representation of Gy.

The reason why it is necessary to discuss the above representations of a generator matrix,
is that for many CVP algorithms it is necessary or advantageous to select a proper basis

for the lattice. The idea of finding a good representation of the generator matrix for a
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CVP algorithm is called reduction. The two most commonly used reduction techniques are
the Korkine-Zolotaroff (KZ) reduction [20] and Lenstra-Lenstra-Lovasz (LLL) reduction [23].
Since we do not use one of these techniques we refrain for discussing them in detail here and
refer to the original papers, or Agrell et al. [2] for more details on reduction issues.

Finally we can describe a closest vector problem as the problem of finding the element of
the lattice u € A(G) such that

|z —all < [lz = ull, Vu € AG)
In this case z is a given point in R™, which the lattice element should be closest to.

After having established the general problem and some basic ideas from lattice theory we
can now start inspecting the algorithm we use in this thesis in more detail. Therefore let us

again consider the n x m generator matrix G for a lattice. We can think about G as

G*

Un

G:

where G* are the first (n — 1) rows of the generator matrix and v, = v* + v+ where v* is in
the row-space of G* and v is in the null space. This decomposition is particularly easy if G
is a triangular matrix, then we have v* = (Un1, ..., Un(n—1),0) and v+ = (0,...,0,0,,).

With the above terminology it is possible to rewrite the lattice in the following way:

AG) = G {c+uv* +u,vt :ce A(GH)})

Up=—00

Thus we can represent the lattice as (n — 1)-dimensional sublattices, which are called layers.

1 is normal to the layers and the distance of two adjacent layers is ||v||,

=

Here the vector v
[Vnn |-

All of the existing search algortihms for lattice problems are iteratively searching through

which for triangular matrices is conveniently given as ||v

a finite number of layers to solve the problem. The Schnorr-Euchner method hereby searches

through the layers via the following sequenece

tn = L], [in] = 1, [in] + 1, @] — 2,. ..

where u,, = % and x is again the point to which the closest lattice element is searched.

This strategy proves to be very efficient in encountering the closest element early on and is

an optimized variant of other searching strategies.
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As already mentioned earlier this algorithm is taken from Agrell et al. [2], where they also
describe in more detail other searching methods and provide pseudocode for the algorithm.
Lastly it is necessary to mention that for the closest point search via the described technique
a triangular generator matrix is needed. This can be easily achieved by performing a QR-

decomposition on the original matrix.

3.2.2 CVP for integer hedging

In this part we want to discuss how we can use the CVP algorithm for our integer hedging
problem. To do so we need to take a closer look at the problem described via equation 2.10.
For the case, where the asset price evolves according to a multinomial lattice with L possible
future values of the price in the next timestep, there are LT different paths the asset can
move.

The idea for being able to use a CVP type algorithm is to order the paths appropriately,
in such a way that the strucure of the dependencies of the desired trading strategy ¢ on
the different w; with ¢ € {1,..., LT} becomes more clear. As already mentioned and as can
easily be seen from the representation of our integer hedging problem via equation 2.11, the
@ are not dependent on every single path w;. In fact ¢; is even deterministic and we have
already shown how the sturcture of strategy in each timestep depends on the multinomial
tree of the model (c.f. section 2.3). Therefore, by properly ordering the paths w; and by
remembering that each time component ¢; of the strategy has (t — 1)(L — 1) + 1 relevant
components, it is possible to rewrite equation 2.10 in terms of each individual element of
© = (P1, 02151 P205 -+, PT1s -+ Pz 1y 1-1ys1)

In combining all these findings one can see that our integer hedging problem amounts to

a closest vector problem where the lattice is an L7 x d matrix which has the following form:
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AS)(w) ASy(w1) 0
ASQ (C{)LT—1>
0
P1 E + P2, 5 T 2y
0
ASQ (W(L_I)LTA)
ASl (WLT) 0 ASQ(LULT>
AST<W1) 0
0 .
+ SOTl 0 + + ¢T(T71)(L71)+1 0
: 0
O AST(CULT)

\

(3.2)
where d is again given as (L —1)T(T —1)/2+4T. To solve the problem the algorithm searches

for the lattice point closest to the vector:

H(wi)
(3.3)

H(wre)
Having written down the problem we can now solve it by using a CVP algorithm. Here it is
worth to mention that we do not use any preprocessing of the lattice using some reduction
techniques, since for the examples we used the runtime was not yet an issue and thus we
have refrained from that. Further details about the performance and other issues regarding

the CVP approach are described in the applications section below.
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Chapter 4
Applications to specific models

In the preceding chapters we have derived a framework in which we work and also pre-
sented two approaches to solve an integer hedging problem. In this chapter we try to imple-
ment the previously derived ideas and apply them to specific discrete time models.

The most well known and also most used discrete time lattice models are the binomial
model, derived by Cox et al. [12], and the trinomial model which is a natural extension of
it. These models have various properties which make them very popular. First of all the
structure of them is very easy and intuitive thus these models have been studied a lot. Second
of all it is possible to show that they are able to approximate continuous time models such
as the well known Black Scholes model [7].

In the following we will recap the most important porperties of the two above mentioned

models and see how the two algorithms apply to theses specific case.

4.1 The Binomial model

As mentioned before this model is a special case of our general model from 2.8, where
L = 2. Thus, besides the two parameters v and d we also want to find the probability p of
moving up. Since we are interested in risk neutral valuation for our claims, we need to find

conditions which p has to fullfill.

Theorem 4.1.1. The binomial model is arbitrage free if and only if d < 1 +1r < u. The
martingale measure defined through the probability p = P[S; = S;_1 * u] is unique and thus

the model is a complete market model. Furthermore we have

(1+7r)—d

P= u—d
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Proof. In order for the model to be arbitrage free we need to find a martingale measure for
our price process, that is the following has to hold:
pSiau | (1=p)Siad |

o Lo S
]E[StLF.tfl] - (1 T T)t + (1 T T)t - Stfl - (1 n T)t_l

Reordering the terms gives the equivalent condition that

(1+7r)—d

p= u—d

Thus d < (1+r) < u is a necessary and sufficient conditon for the measure defined by p and

since the term for p is independent of the time ¢ we find that this expression is unique. [

Since the binomial model is complete, it is possible to perfectly hedge any given claim. To
find the replicating strategy a recursive scheme can be applied. Let ¢, = (¢, ¢,), t € T\{0},

be a replicating strategy, we can start by finding the value for ¢ via the equation:
Vp = ¢ + ¢rSr

Rewriting this we get:
Vp — épSp = o7

And since the right hand side is predictable, thus known at time 7" — 1, also the left hand

side must be known at T'— 1 and we can find ¢r by solving the equation

Vi — Vi

Vi — orSr_iu = chwl — ¢pSr_1d & ¢r = Sr 1 — Sp1d

where V# and V2 are the values of the claim if the underlying moves up from time 7" — 1
respectively the down movement. Finally we can compute ¢J via Vi — ngTS’T = ¢%. This

procedure can be repeated until we arrive at ¢;.

Thus far we have revisited some results for the binomial model, which are very helpful
and important when dealing with pricing and hedging under this model. Before discussing
the main part, namely the application of the two algorithms of the previous section for the
integer hedging problem, we briefly want to discuss another important aspect of the model.

As we have seen there are basically two parameters we have to choose, for this model to

work, namely u and d. A priori it is not so clear how to select these parameters in order
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to use the model in practice. Intuitively the model should capture the market structure of
the asset. Thus it is of interest to determine the up and down rates such that the model fits
the actual market data as close as possible. The usual idea to achieve this is to match these
parameters with the moments of the underlying distribution of the asset, see e.g. Yamada
and Primbs [31] for details on that.

Suppose we are looking at an asset in a time period of [0,7] (e.g. any kind of time unit
like days, weeks, etc.). To illustrate the usage of the model lets fix this interval to be 1
day. The price of a stock can evolve in many directions and can take many different values
at the end of the day, especially more than two values, as the simple binomial model would
assume. Thus one typically divides the interval into N 41 periods, and let the price evolve as
a binomial tree over these 0 = tg,...,ty =T periods. Using the information of the moments
of the distribution of an underlying stock we can try to come up with values for v and d such
that our binomial model fits to this distribution.

In pratice, the most common assumption is that the asset follows a geometric brownian
motion, as in the Black Scholes model. Thus the distribution of the asset price follows a
lognormal distribution. For this case Cox et al. [12] already showed how the parametrization
needs to be chosen in order to achieve approximation of the binomial model price to the
Black-Scholes price. Assuming equally spaced timesteps, t; —t,_y = T/N, fori=1,... N,

they presented the choices for the price movements as
1 1
u=eVIN,d=e VI and thus p = 5 + §H\/T/N
o

where 1 and o are the drift respectively the volatility in the Black Scholes model. Note that
it also necessary to adjust the evolvement of the riskless asset to (1 + 7)?/" in each period.
Letting N — oo, i.e. increasing the steps of the binomial lattice, the price converges to the

Black-Scholes price.

4.1.1 Integer hedging results

We saw in the previous section why the binomial model is a popular and very often used
in real life trading. For our analysis we are nevertheless more interested in the performance
of the integer hedging algorithms when using this model. Thus we calculated the optimal
integer hedging strategy for different numbers of timesteps, and also varied the values of the
parameters u,d and r to get a feeling of the behavior of the approaches.

Besides varying the parameters, we also investigated two different options as claims;
first a simple European call option, i.e. an option whose payoff is given as (Sp — K)* =

max(S; — K, 0). Secondly we looked at a corridor option, i.e. an option where the price stays
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within a given corridor from the starting value. The payoff of such an option is given as
(157 — So|) 1 {sreiso—s,5+0}3- The choice of these two types of options are very arbitrary. The
european call is an obvious choice since this is the most common type of option, whereas the
other one is a bit more special.

The first approach was always the naive approach where we simply rounded the results
of the classical optimal strategy. In a next step we computed the optimal strategy by using
the BB algorithm described in section 3.1. Finally we also computed the results by using
a CVP approach described in section 3.2.The code to both approaches can be found in the
appendix A.

Before presenting the results we will briefly discuss some of the properties of the BB

algortihm and the CVP algorithm when using them for this model.

BB approach

It is worth to mention that the BB approach used highly depends on the initial solution
provided, which gives a first bound for the optimal value, and thus will trigger one of the
pruning rules, namely the pruning by bounds (c.f. section 3.1.3). So if one already provides
a nice initial value then the algorithm is very fast, even for a high number N of timesteps
and thus a high-dimesional value of ¢. If the initial value provided is far from optimal then
the runtime of the algortihm increases drastically with the number of timesteps and thus
is not very efficient. For N up to 5, the algorithm works very well and fast, even when
providing a bad starting value. Therefore we will only consider these cases for the moment.
Nonetheless it is important to mention that it might be useful to improve the performance
by using different approaches for the 3 key performance factors; branching, searching and
pruning.

One idea is of course to use the solution of the naive approach, so simply rounding the
optimal strategy, as an initial value. As we will see this is already the optimal starting value

and thus with this value the BB algorithm will be very fast.

CVP approach

In the case of the CVP approach we have found that there are similarities to the BB
approach. In general the algorithm is fast for up to 7 timesteps, without any adaption. Nev-
ertheless the runtime of the algorithm increases exponentially with the increase of timesteps,
thus suggesting that for NV > 7 a preprocessing of the lattice would be helpful to decrease
the runtime.

Due to the structure of the algorithm and also due to the fact that the simply rounded
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N 2 3
Classical (0.59,0.97,0.00) (0.59,0.79,0.28,1,0.46,0)

rounded (1,1,0) (1,1,0,1,0,0)
BB (1,1,0) (1.1,0,1,0,0)
CVP (1.1,0) (1,1,0,1,0,0)
N 4
Classical (0.63, 0.81, 0.34, 0.97, 0.57, 0, 1, 0.93, 0, 0)
rounded (1,1,0,1,1,0,1,1,0,0)
BB (1,1,0,1,1,0, 1,1, 0, 0)
CVPpP (1,1,0,1,1,0,1, 1,0, 0)
T 5
Classical (0.63, 0.78, 0.41, 0.91, 0.57, 0.16, 1, 0.78, 0.26, 0, 1, 1, 0.43, 0, 0)
rounded (1,1,0,1,1,0,1,1,0,0,1, 1,0, 0, 0)
BB (1,1,0,1,1,0,1,1,0,0, 1, 1, 0, 0, 0)
(OAVA (1,1,0,1,1,0,1,1,0,0, 1, 1, 0, 0, 0)

Table 4.1: European Call option results

value is already the optimal value the algorithm however is able to find the correct solution
very quickly. The high runtime of the algorithm comes due to checking the criterion imple-
mented for the layers, thus even though the optimal solution is found very fast, the algorithm
can take a while. Thus is it possible to insert a check into the algorithm which speeds the
procedure up, but also prevents the algortihm from checking every layer. This would increase

the performance of the algorithm also for high values of N and can be used in our case.

Results

We will now present some results from the different algorithms for the different options

and different number of timesteps N. We will fix the parameters to

u=1.07, Sy = 100
d=0.93, K =100
r=0.01,0=25

This is only due to convenience and the choice has no particular reason. Furthermore it is
essential to mention that we varied the parameters a lot, but the outcomes have not changed
and thus we only provide the results for this particuar case in this work. To make the
structure of the table more clear we ask the reader to notice that we arrange the results in

a way such that ¢ = (1, 92,, 02y, PTys -« - OTy)-
Table 4.1 shows the results of our algorithms, as well as the simply rounded strategy for
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N 2 3
Classical (0.17,0.93-1) (0.18,0.58,-0.44,1,-0.07,-1)

rounded (0,1,-1) (0,1,0,1,0,-1)
BB 0,1-1) (0,1,0,1,0,-1)
CVP (0,1-1) (0,1,0,1,0,-1)
N 4
Classical (-0.01, -0.04, 0.03, -0.15, 0.13, -0.12, -0.81, 0.87, -1, 1.24)
rounded (0,0,0,0,0,0,-1,1,-1, 1)
BB (0,0,0,0,0,0,-1,1,-1, 1)
CVP (0,0,0,0,0,0,-1, 1, -1, 1)
N 5}
Classical (0.04, 0.07, 0, 0.02, 0.14, -0.23, -0.33, 0.55, -0.48, 0.15, -1.19, 1, -0.14, -1, 1.91)
rounded (0,0,0,0,0,0,0,1,0,0,-1, 1,0, -1, 2)
BB (0,0,0,0,0,0,0,1,0,0,-1, 1, 0, -1, 2)
CVP (0,0,0,0,0,0,0,1,0,0,-1, 1, 0, -1, 2)

Table 4.2: Corridor option results

the european call option. Here one can already see how the integer constraints affect the
optimal strategy. As can be seen, in the binomial model, it is sufficient to simply round the
outcome of the classical hedging problem to find the integer optimum. Neither of our more
eloborated algorithms used is able to come up with a better strategy for the problem. Table
4.2 confirms this result for the second type of option used in our example cases, the corridor
option.

The results for the Binomial model are far from being unexpected. In fact in his master
thesis, Breese [11, sec. 3] shows as one of his main results that in the Binomial model the

rounded strategy is the optimal integer strategy.

4.2 The Trinomial model

The Trinomial model is a natural extension of the binomial model of the previous section.
As opposed to the binomial model, in this case the price can evolve in three different ways in
each time step, thus we have a multinomial lattice model from section 2.3 with L = 3. We
will define the three states as {@,m, CZ}, where @ = u2, m = ud and d = d2, resulting in an

evolution of the price that can be represented as follows:

Si_1a  with prob. p,
Sy = ¢ S;_im with prob. p,, (4.1)
St_ch with prob. pg
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As usual we are interested in risk neutral valuation of the claims in this model, so we
need to determine the corresponding risk neutral probabilites, pi, ps, p3, of ending up in state

@, m,d. To do so, we need to solve the following system of equations:

P+ parn + psd = (14 7),
p1+p2+p3 =1

If d < 14 r < u there is no unique solution to the above system of equations, thus the tri-
nomial model is not a complete market model and we have infinetely many possible choices
for the martingale measure. In order to find one parametrization it is usually common to fix

one value of the probabilities and then determine the other ones.

As in the case of the binomial model, also the trinomial model finds a lot of attention
in practice, since it is easy to handle and quite flexible. To use the model in practice there
are various possibilities to calibtrate the parameters by matching them with the moments of
the underlying distribution of the assets (we again refer to Yamada and Primbs [31] for the
general procedure).

A special case is again the one where the asset follows a geometric Brownian motion, so
the Black-Scholes model. In this case we can follow Boyle [9] to determine the risk neutral
probabilities and the parameters u and d. Assuming equally spaced timesteps, t; —t;_1 =

T/N = At, fori =1,..., N, we have the following representations:

1
u=e"V¥*» d== andthus m=1
U
N~
_(erAt_ea > )2
-~ A
e’V2 —e 2
p2=1—p1—p3
At
_( e’ 2_erAt )2
p3 = A A
e’V2 —e¢ 2

where o is again the volatility of the asset in the Black-Scholes model. Letting now N — oo,
i.e. increasing the time steps, the price of the trinomial model converges to the Black-Scholes

price.
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4.2.1 Integer hedging results

The analysis here is pretty similar to the previous case of the binomial model. As we
have seen in the previous part there is no unique martingale measure, thus besides fixing
the parameters u, d and r, we will also specify ps (which is the probability for the price to
evolve as m = ud, c.f. section 2.3) and caluclate the other two probabilites accordingly. We
again look at the same two option used in the binomial case, an european call option and a
corridor option. For the presentation of the results we will again fix the parameters to the

following values

uy = 1.07, ug = 0.93
Sp =100, K = 100
r=0.01,0=25
po = 0.25

Although the results are presented for the above fixed values, it is important to mention that
we have tried to vary the paratemers a lot, but since the results are similar in any case we do
not look more closely into the selection of parameters. For the results we proceed as usual,
i.e. we compare the results of the naive approach to the ones from the algorithms described
in chapter 3. The codes for the results can again be found in the appendix A.

Before having a closer look at the results we will again briefly discuss some of the properties
of the BB algorithm and the CVP algorithm when using them for this model.

BB approach

The BB approach for the trinomial model performs pretty similar to the case of the
binomial model. The runtime of the algorithm is again dependent on the initial bound
provided for the optimal value. Thus using the naive approach, which is the best one as
seen below, results in a very fast performance, which increases quite quickly when providing
suboptimal solutions. We only present results for N up to 4, for which the runtime is

manageable even when providing a "bad” initial bound.

CVP approach

Also the behavior of the CVP algorithm for the trinomial model is pretty similar to the
one of the binomial model. Up to a number of timesteps N of 5 the algorithm is quite

fast and does not really need adaption. When increasing the number the runtime increases
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N 3
Classical (0.59, 0.84, 0.
1,1,
1,1
1,1

rounded (
BB (
CVP (

N
Classical (0.6, 0.82, 0.58, 0.3, 0.98, 0.83, 0.55,
rounded (1,1,1,0,1,1,1,0,0

BB (1,1,1,0,1,1,1,0,0,

CVP (1,1,1,0,1,1,1,0,0

) Y Y Y Y

Table 4.3: European Call option results for the trinomial model

N 3
Classical (-0.02, -0.18, -0.03, 0
rounded (0,0,0,0,0,0

BB (0, 0,0,0,0, 0,

CVP (0,0,0,0,0,0

.0, 0.02, 0.71)

N

Classical (-0.03, -0.11, -0.03, 0.09, -0.

rounded (0,

1 )
0,0,0
BB (0,0, 0,
CVP (0,0,0

Table 4.4: Corridor option results for the trinomial model

drastically, thus it might be of advantage using some preprocessing mechanisms to boost the

performance.

Results

The results of our exercise can be found in tables 4.3 and 4.4. The first table shows the
results for the european call option, the second one shows the analysis of the corridor option.
As we can see the naive approach of simply rounding the classical results, provides us with
the same strategy as the more sophisticated approaches, thus leading to the conclusion that
it is not to recommend the more costly algorithms to solve the integer hedging problem in

the trinomial model.
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4.3 Models with more than one asset

In the previous sections we studied the most commonly used models for pricing and
hedging claims. As we have seen the outcome for the integer hedging problem in these
classical models were not very elaborate, the simple approach of rounding to the next integer
already gave the desired best results, thus the complex algorithms developed in section 3 of
this work were not necessary.

In this section we will look at more sophisticated models, which are based on the two
previously defined models. The key modification within these model is that we will not
restrict the number of assets modelled to only one. We will look at two distinct models
which model two assets at once, but which can easily be adapted for a higher number of
assets. Considering two or more assets not only complicates the model, but also leads to a
bigger variety of claims which can be considered.

In the following, we examine two models and inspect the impact of the integer constraint
on a hedging strategy. To find the optimal strategy we proceed as before, so we will first look
at the naive approach and then consider a branch and bound approach as well as a closest

vector problem approach.

4.3.1 A lattice framework for 2 Assets

The first model we want to study goes back to the work of Boyle [10]. He developed a
lattice framework for two assets which is based on the CRR model and trinomial model. We
will adapt the ideas of his paper such that we can use our developed framework, since the
concepts are pretty similar.

Boyle [10] proposed a five-jump process to capture the evolvement of the two stocks, S*
and S?%, in time. In each timesteps these assets move according to multivariate binomial
lattice, thus shifting up and down with rates uq,us, respectively dy,ds. Accordingly in each
timestep there are four possible movements from the state before. Furthermore, to get the
five-jump structure, there is also the possibility that the assets do not move in this timestep.
Suppose at time ¢ the values of the assets are given by S} and S?, then the five possible states

in time ¢t + 1 are the following;:
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Asset 1 Asset 2

Stlul Sfuz
Siu Sidy
Std, Stus
Std, Sids
S St

From this structure it is easy to see the connenction to our framework described in section
2.3. Implementing the model is nothing else than using an appropriate lattice for the possible

events.

Before looking at the outcomes of the integer hedging approaches within this model, it
is worthwhile to mention some more properties and some motivation for the usage of such a
model.

One very nice feature is that within this framework it is easy to calibrate the model
parameters to market data. If one uses the standard assumption that the two assets S* and
S? follow a joint lognormal distribtuion and the variance and covariance structure can be
estimated from data, then Boyle [10] shows how to select the values u; and us and how to
calculate the according risk neutral probabilites py, ..., ps for each state.

Using the parametrization of the Boyle [10] paper has another very useful property. It
can be shown that within this framework it is possible to approximate the prices for european
claims. When using a generalisation of the Black-Scholes model for 2 Assets as proposed by
Stulz [30], one can derive analytical results for the European type option. Then by proceeding
in a similar fashion as when calibrating the binomial model to market data, i.e. by dividing
the time interval into a number of timesteps and using moments to fit the parameters (c.f.
section 4.1), the analytical prices are approximated.

Beside the various useful properties this model has also drawbacks such as the possibility
of negative probabilities and slow convergence. Thus Ekvall [14] has proposed some modifi-
cations on the model to overcome these flaws, making the model easy to implement and very

practical for usage in various applications.
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Approach \ Optimal Strategy Error
Classical | (0.288,0.304,0.645,-0.298,0.075,0.289,0.249,0.339,-0.164,0.764,-0.010, 0.181) | 9.012
rounded (0,0,1,0,0,0,0,0,0,1,0,0) 19.391
BB (0,0,1,0,0,1,0,0,0,1,0,0) 19.087
CvVPp (0,0,1,0,0,1,0,0,0,1,0,0) 19.087

Table 4.5: Optimal integer strategy in the 2 Asset lattice framework for an European call on
the maximum of two assets.

Numerical results

For our numerical studies of the model in our integer constraints framework we will look
at an example where we fix the number of timesteps to N = 2. Furthermore we analyse the
problem of hedging an European call option on the maximum of the two assets, thus the

payoff is given as (max(Sk, S%) — K)*. The other parameters used are:

uy = 1.0551, uy = 1.0692
dy = 0.9478, dy = 0.9353
Sy =100, S7 = 98

r=0.025, K =99

It is necessary to mention that, as we are only looking for an example to use our integer
hedging algortihms, also the parameters for the probabilties are chosen by hand. Since we do
not use any real underlying and thus are not interested in calibrating the model to specific
data we do not follow the procedure of deriving the according risk neutral probabilites, but
instead choose values for the probabilites such that they dont vary to much for every outcome.
This goes in line with Boyle [10] and Ekvall [14], who mention that the events should have
similar probability weights.

Table 4.5 shows the result of the numerical exercise. In the simple case where we only
consider two timesteps, there are 6 different values for each of the two assets for the hedging
strategy. The results in the table are ordered in a way such that the first 6 entries are the
values for the strategy for S; and the last 6 ones are the corresponding entries for S;. When
observing the values one can see that the integer hedging approaches developed in chapter 3
work better than the naive approach which is simply rounding. Between the two algorithms
we can see that they both come with the same result and also from a runtime performance

there seems to be no preference, at least for this small example.

33


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

4.3.2 A complete trinomial model

The second model we want to look at is a modification of the trinomial model for two
assets. We follow here the idea of Pascucci and Runggaldier [27], they propose to look at two
independent assets S; and S, which both follow a trinomial model. To follow the notation
from section 4.2 (and to keep the strucure of section 2.3), this means that each asset S;,
i = 1,2 has tree possibilites {u;, m;, cL} to move in each step, where u; = u?, m; = u;d; and
d; = d2, thus:

S¢ ju; with prob. p!,
St =< Si_m; with prob. pi (4.2)
Z?lczi with prob. pj,
Doing so we can find the martingale measure by solving the following system of equations:
priiy + parng + pady = (1+47)
plﬂQ —|—p277~b2 +p3d2 = (1 + 7”) (43)

p1+pr+ps=1

Pascucci and Runggaldier [27] showed that the system 4.3 is uniquely solveable and that the
parameters can be chosen in such a way that pi, ps, p3 are really valid probabilites. Thus

the market model is complete and is straightforward to calculate the optimal hedging strategy.

Numerical results

For the numerical example we will study a similar case as before, i.e. we want to find the
optimal integer strategy for a european call on the maximum of the two assets S; and Ss.

The parameter we choose are similar to the ones before, they are given as:

w1 = 1.07, uy = 1.084
dy =0.93, dy = 0.91
Sy =100, Sz =98
r=0.025 K =99

We will again only look into the simple case where the number of timesteps is fixed to N = 2.
Thus we have in this case eight different values for the hedging strategy where the first four
values belong to the strategy for S; and the last four to the one for S5.
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Approach Optimal Strategy Error
Classical | (-15.74,-7.91,-26.45,0.00,13.51,7.23,22.39,0.00) 0

rounded (-16,-8,-26,0,14,7,22,0) 16.192
BB (-15,-9,-26,0,13,8,22,0) 2.039
CVP (-20,-5,-26,0,17,5,22,0) 0.837

Table 4.6: Optimal integer strategy in the 2 Asset trinomial model for an European call on
the maximum of two assets.

Table 4.6 shows the outcome of the example used. In this model we see that the optimal
integer strategies vary for each case. By looking at the error it is clear that the naive apporach
of simply rounding performs way worse than the BB approach and the CVP algorithm.
Furthermore we find that the there are also differences between the two more sophisticated
approach. The error of the CVP solution is clearly the smallest, thus this method works
best. The reason why the solution of the BB approach differs that much from the CVP one
is due to the fact of how the algorithm works. The algorithm always rounds the optimal
value received from the relaxed solution. Thus is not able to reach values far away from
the classical solution. We see that the CVP optimal value differs substantially from the
ones of the rounded solutions, being able to take more values for the strategy into account.
Nevertheless the outcome of the BB solution is already a huge improvement to the one of

the naive approach.
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Chapter 5
Analysis of limiting behaviour

Up to now we have explored the integer hedging problem for various models and to find
an optimal strategy under the imposed constraints we have studied two numerical methods.
Nevertheless we have seen that for standard models like the binomial and the trinomial model
it is sufficient to simply round the results of the classical strategy to find an optimal solution
to the integer hedging problem.

In this chapter we want to analyse the behaviour of the integer strategy in the binomial
model and see if we can recover completeness in the limit. The idea here comes from the fact
mentioned in section 4.1 that the prices for options in the binomial model converge to the
price of the Black-Scholes model. The goal is to consider sequences of the Binomial model
and observe whether there is a similar kind of convergence for the integer hedging strategy to
the classical hedging strategy. To achieve this we will try to infer from numerical outcomes

whether the hedging error vanishes when considering more and more timesteps.

5.1 Completeness for a sequence of binomial models

For our analysis we recall the details of the model. We consider an asset that evolves over
a fixed timeperiod [0, 7] as a binomial tree with N + 1 different equally spaced timepoints
0 = tg,t; = ]ZV, ...,ty = T such that t; — t,_1 = % The asset evolves in each time step
according to

St(N) = St(ivl)m, t=0

=1

1
7N7"’7

where m € {u,d} with u = e"VI/N and d = e 7 VIV,
In order to analyse how the optimal integer strategy evolves for this sequence of binomial

models as N — co, we will analyse the hedging error H — VT(,N) made in each time steps. To
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be more precise we will look at the maximum error made, i.e.
_ (™)
By = max|H(w) - V()

where H is the discounted claim and VT(N) is the value process for the selffinancing integer
hedging strategy in a binomial model with N + 1 periods at time ty =T

As initially mentioned, the idea is to find out what happens to Ey when N — oo. To
start, we will consider a classical European call option, i.e. the payoff is given as (S — K)*.

The other parameters are chosen as

Sy = 100, K = 100
T=10=02

N even Exy N odd Exn N even Exn N odd Exn

2 5.680 3 13.160 24 6.213 25 7.484
4 9.705 5 14.775 26 5.403 27 6.570
6 11.434 7 15.634 28 4.639 29 5.692
8 11.683 9 15.279 30 3.921 31 4.878

10 11.656 11 14.726 32 3.235 33 4.122
12 11.365 13 13.861 34 2.600 35 3.423
14 10.630 15 12.733 36 2.013 37 2.781
16 9.693 17 11.598 38 1.456 39 2.186
18 8.836 19 10.557 40 0.962 41 1.634
20 7.910 21 9.479 42 0.508 43 1.122
22 7.069 23 8.454 44 0.089 45 0.761

Table 5.1: Maximal error Ey for different number of timesteps

In the following we will present the results of the analysis in two ways. First we present
some numerical results of the maximal hedging error Fy for different numbers of N. Table
5.1 shows how the values of Ey evolve as N increases. We make a distinction between an even
and odd numbers of N as there results are more visible in that way. The table confirms what
we had hope to achieve. After the first few timesteps (after N > 7), we observe a decreasing
behavior of Ey, which seems to converge slowly to 0. At the last timepoints considered we
see that the hedging error is already very close to 0, indicating that the integer constraint
strategy converges to the classical solution of the binomial model.

Figure 5.1 gives a graphical representation of what is decribed in table 5.1. The decreasing

behavior of the hedging error is clearly visible (until the last timepoints where the values
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max absolute error

15

10

Convergence of the integer strategy
to the classical strategy in a binomial model
(European call option)

Figure 5.1:

10 20 30 40

Number of steps

Maximal error Ey for increasing number N of timesteps
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closely approximate zero).

From the above results we see an interesting tendency for the hedging error in a binomial
model. In a next step we will extend the analysis to different claims and also vary the
parameters to see if this form of limiting behavior can be observed for different scenarios.
The most obviuos choice to extend the analyses is to consider a European put option instead
of a call option. However in our simulations it turned out that the behaviour of the error is
exactly the same as the one for the call option, thus we will not present these results here.
Instead of that we will analyze the behavior when we change the parameters ¢ and K.

Figure 5.2 shows the results for this analysis. We observe a very interesting behavior
of the error Fy. First of all there seems to be a convergence, i.e. it seems that the error
decreases in all cases. However for a higher choice of parameters of o the decrease is slower
than for lower values. A similar behavior is obtained when increasing K. In fact for o = 0.4
we observe a decreasing behavior but still have relative high values of Ey in comparison
to other cases. When choosing o = 0.15 we have a different picture. The error decreases
relatively fast and reaches almost zero. However after a number of timesteps (N > 30) we
observe a strange behavior with high volatility in the error.

In a final analysis we will consider a digital call option, i.e. an option with payoff function
given as lyg,>x}. The results of this hedging error with various parameter choices of o and
K are presented in figure 5.3. In the case of the digital option we achieve convergence, i.e.
the hedging error decreases and approaches 0 for the number of timeperiods presented. We
observe a similar behavior as beforehand, where the speed of decrease is again dependent on
the choice of parameters; for a smaller value of 0 and K the convergence to 0 takes fewer

timesteps, whereas for higher values it takes longer.

The results of the analysis show an interesting behavior for the hedging error of the
integer hedging strategy, indicating that there could exist a limiting property in a binomial
model. Nevertheless one has to be careful as we also have seen that for the call/put option
the performance of the error shows different behavior for small values of o. In any case the
picture for the digital call option strongly indicates that the error converges to 0.

Of course it would be of interest to analyze the behavior in more detail, and especially
to give a sound mathematical analysis on the behavior of the integer hedging strategy in
the binomial model. However in this thesis we refrain from doing so and only provide this
numerical analysis, which gives a nice overview of the integer strategy of the most classical

options in the very popular binomial model.
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Chapter 6
Conclusion

In the context of financial mathematics the market theories and models often underly a
variety of different assumptions that might be inadequate in the real world. Such violations of
the assumptions or market fricitons may have a big impact on practitioners and thus cannot
be neglected. One of these assumptions, that is basically always violated in the real world is
that under the majority of market models one can buy any kind of position size, i.e. every
share of assets in a portfolio can be described by a real number. However, in real life trading
it is often only possible or at least more reasonable to buy round lots or integer amounts of
an asset.

The goal of this thesis was to consinder these assumption where it is only possible to buy
integer amounts of assets and to see how this would affect hedging strategies and optimal
portfolio choices. To this end, we developed a framework which builds on the usual market
assumption but also takes into account the integer restriction for the portfolios. To solve a
kind of integer constraints problem for varous different models it was necessary to consider
ideas from integer programming and lattice theory. We developed two methods to calculate
the optimal hedging strategy for different models, a Branch and Bound (BB) approach and
a Closest Vector problem (CVP) approach, providing the algorithm for it as well as the code
written in the statistical programming language R (R Core Team [28]).

One of the ideas of the thesis was to look at practical applications for the two developed
procedures of finding an optimal hedging strategy for the case of integer restricitions. Thus
we looked at popular models used in practise and also variations of them. We began by
inspecting the classical binomial model and then also the more complex trinomial model. The
outcome of our developed approaches for these two models were not particularly spectacular.
It turned out that the optimal integer strategy derived by our approaches does not differ from
the one that can be deduced by simply rounding the optimal strategy of the classical case, i.e.

the case without integer constraints. However when extending the trinomial model to models
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with more than one underlying asset, we showed that the the developed algorithm performs
far better than by simply rounding the classical solution in terms of the hedging error. It
turned out that the CVP approach is even performing a bit better then the BB approach,
where the performance of the algorithm does not differ very much considering runtime.

Finally in the last chapter of the thesis we analyzed integer strategies in the binomial
in more detail. The idea was to see if a limiting behaviour for the integer hedging strategy
can be observed when increasing the timesteps of the binomial model. Interestingly, in a
numerical exercise, we indeed found that the hedging error decreased and converges to zero
for the majority of our applications, indicating that we can achieve some kind of completeness
in the limit. However it is necessary to be careful before hastily coming to conclusions as
we have seen that the behavior of the analysed hedging error can vary depending on the
parameter choice of the model.

This thesis adresses some of the problems that integer constraints impose on the optimal
strategy with respect to hedging. However there are still a lot of possible extensions that can
be done in this direction. One could be concerned with the optimization of the algorithm
presented to solve the integer constraints problem for various models. As far as we went in
this work, the algorithms used to solve the integer constraints are not yet fully elaborate
and can be very slow for too high number of timesteps N. Another very interesting research
could go into a deeper and more mathematical elaboration on chapter 5. The convergence
analysis in this thesis is done by performing a numerical exercise, but a more mathematical
approach with some convergence proof could be very interesting. Furthermore the research
work on integer problems in mathematical finance is still not very profound and thus there
is a lot of tasks in this field that are yet to tackle.
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Appendix A

Appendix

A.1 Codes

For this work all the computations are done within the statistical programming language
R (R Core Team [28]). The codes provided here are selfwritten algorithms in R, which follow
the ideas mentioned in the different chapters of the thesis. To make the code work, the
only requirement besides the base packages of R is the package data.table (Dowle and
Srinivasan [13]). Apart from that all the functions needed are provided here. The functions
are categorized in the order of appearance in the thesis, i.e. first we present the Branch and
Bound algorithm used, secondly we provide code for the closest vector algorithm, which are
both described in chapter 3. After that we procede with the code used for the applications
to the Binomial model and the trinomial model from chapter 4. Finally further necessary

functions are provided, so that the code can be run properly.

A.1.1 Code for the BB algorithm

In the following we present the code for the Branch and Bound algorithm as described
in section 3.1.3 of the thesis. For the actual computations in chapter 4 there are 3 different
versions of this algorithm, since we considered different models. However, since the basic
structure of all 3 BB functions is the same and the difference is only in the arguments passed

to the function, we only present one version of the algorithm.

BB_algorithm_1 <- funct ion(opt im_func,asset_paths,option_paths,delta_Asset,
N,x_start,phi_init,n_iter = F,keep_track = T){
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#### inittialize solution
x_hat <- x_start

opt_val <- optim_func(x_hat,asset_paths,delta_Asset,option_paths,N)

phi_opt <- optim(phi_init, optim_func,asset_paths = asset_paths,
delta_Asset = delta_Asset,option_paths = option_paths,N = N,
method = "BFGS",
control = list(factr = 10°(-11)))

relaxed_sol <- ifelse(abs(phi_opt$par-1) < 10°-6,1,
ifelse(abs(phi_opt$par-0) < 107°-4,0,phi_opt$par))

problems <- which(abs(relaxed_sol) %% 1 != 0)

#### select a nmode to branch on, first at random, but look at branching methods
branch_node <- sample(problems,1)

layer <- 1

open_nodes <- 1list()
first_node <- list(branch_node,c(floor(relaxed_sol[branch_node]),

ceiling(relaxed_sol[branch_node])))

open_nodes[[1]] <- first_node
if (n_iter){

iter <- 1

#set.seed(100)
while(length(open_nodes) != 0){
if (keep_track) {
cat(paste0(" ",layer))

}

subprob <- open_nodes[[layer]] [[2]] [1]
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node <- open_nodes[[layer]]
restr <- sapply(open_nodes,function(n)n[[1]])
restr_vals <- sapply(open_nodes,function(n)n[[2]][1])
new_opt <- optim(phi_init, optim_func,asset_paths = asset_paths,
delta_Asset = delta_Asset,option_paths = option_paths,N = N,
restr = restr, restr_vals = restr_vals,
method = "BFGS",control = list(factr = 10°(-11)))
new_relaxed_sols <- ifelse(abs(new_opt$par-1) < 10°-4,1,
ifelse(abs(new_opt$par-0) < 10°-4,0,new_opt$par))
new_relaxed_sols[restr] <- restr_vals
new_problems <- which(abs(new_relaxed_sols %% 1 - 0) > 10°-10)
if (length(new_problems) == 0){
if (new_opt$value < (opt_val-10"-10)){#### <f true: interger sol is better, adjust
opt_val <- new_opt$value
x_hat <- new_relaxed_sols
if (keep_track){

cat(" inside the if ")

}

node[[2]] <- node[[2]] [-(which(node[[2]] == subprob))]
open_nodes[[layer]] <- node
telse{

if (new_opt$value < (opt_val-10"-10)){ #### careful about tolerance here!!
#cat (" how often here? ")
layer = layer+1
new_branch_node <- ifelse(length(new_problems) == 1,

new_problems,sample (new_problems,1))
new_node <- list(new_branch_node,c(floor(new_relaxed_sols[new_branch_node]),
ceiling(new_relaxed_sols[new_branch_node])))

open_nodes[[layer]] <- new_node

}else{
node[[2]] <- node[[2]] [-(which(node[[2]] == subprob))]

open_nodes[[layer]] <- node
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#cat (paste0(" lnew: ",layer," €£4"))
while(length(open_nodes[[layer]][[2]]) == 0 && layer > 1){
open_nodes <- open_nodes[-layer]
if (layer > 1){
layer = layer-1
open_nodes[[layer]] [[2]] <- open_nodes[[layer]][[2]][-1]

}

if (layer == 1 && length(open_nodes[[layer]][[2]]) == 0){
open_nodes <- open_nodes[-layer]

}

if(n_iter){

iter <- iter+1

return(list("par" = x_hat,"value" = opt_val))

A.1.2 Code for the CVP algorithm

We present the CVP algorithm used as described in section 3.2.2 of the thesis. As before
there are two versions of the CVP_algo functions, but again the main difference is only the
input arguments provided and thus we only present one version.

First we provide the decode algorithm which mainly follows the idea of the Agrell et al.

[2]:

decode <- function(x,H,n_iter){
n = dim(H) [1]
bestdist = 10710
k=n
dist = rep(0,n)
e = matrix(0,nrow = n, ncol = n)
elk,] = x)*)H
u = rep(0,n)
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ulk] = round(elk,k])

y = (elk,k]-ulk])/H[k, k]

sgn <- function(x){
1% (x>0)-1x(x <= 0)

}

step = c(rep(0,n-1),sgn(y))

u_hat = 0

runs = 0

while(runs < n_iter){######### this line needs adjustment, maybe insert another breal
#cat (pasteO(" ", k))
newdist = dist([k] + y~2
if (newdist < bestdist){

if(k '= 1){
elk-1,] = elk,]-y*xH[k,]
k = k-1

dist[k] = newdist
ulk] = round(elk,k])
y = (elk,k]-ulk])/H[k, k]
step[k] = sgn(y)
}else{

u_hat = u

bestdist = newdist
k = k+1
ulk] = ulk]+step[k]
y = (elk,k]-ulk])/H[k,k]
steplk] = -steplk]-sgn(steplk])
}
telse{
if(k == n){
print (paste0("algo breaks after ", runs, " steps"))
break
}else{
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k = k+1
ulk] = ulk]+steplk]
y = (elk,k]-ulk])/H[k, k]
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steplk] = -steplk]-sgn(steplk])

}

runs = runs+l1

}

return(list(u_hat,k))

The function for the CVP algorithm is given as:

CVP_algo_1 <- function(lattice,probs,option_paths){
mat_used <- latticexprobs~(1/2)

option_paths <- as.data.frame(option_paths)
C_tilda <- option_paths[, (N+1)]-option_paths[,1]

dec <- gr(mat_used)
Q <- gr.Q(dec)
R <- qr.R(dec)

—
I

C_tilda*probs~(1/2)
x_1%*%Q

Lol
Il

H = solve(t(R))

val <- decode(x,H)

val

A.1.3 Code for application to binomial model

In this section we will provide code used to calculate the hedging strategies for the bi-
nomial model. To come up with the final solution of the integer hedging problem under the

two different approaches there are various functions that have to be defined.
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e Creating the asset paths in the binomial model

CRR_paths <- function(N,U,D,S0){
CRR_grid <- expand.grid(lapply(1:N,function(i)c(U,D)))
CRR_grid <- CRR_grid[N:1]
paths <- SO*t(apply(CRR_grid,1,function(x)sapply(1:N,function(i)prod(x[1:i]))))
cbind(rep(S0,2°N),paths)

e (Calculating the prices of an option

Prices <- function(N,K,S_n,r,p,opt){
### opt needs to be a function for the payoff of an option
disc_opt <- opt(N,S_n,K)*exp(-r*N)

prices <- list()
prices[[N+1]] = disc_opt
for(i in N:1){
prices[[i]] <- prices[[i+1]][-1]*(1-p)+p*prices[[i+1]] [-length(prices[[i+1]])]

}

prices

}

### example for opt function
E_call <- function(N,S_n,K){
pmax (S_n[[N+1]]-K,0)

e Calculating option price paths

CRR_option_paths <- function(N,asset_paths,help_fun){
option_paths <- as.data.table(t(apply(asset_paths,1,function(x){
c(x[1:(length(x)-1)],max(x[length(x)]-K,0)*exp(-r*N))})))
names (option_paths) = pasteO(rep("col",N+1),as.character(l:(N+1)))

for(i in N:1){
sup <- option_paths[,lapply(.SD, help_fun),

20
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by = eval(paste0("col",i)),.SDcols = eval(pasteO("col",i+1)
option_paths <- merge(option_paths,sup,by = pasteO("col",i),sort = F)
option_paths <- option_paths[,-1]

if(i == 1){
setcolorder(option_paths,c(N+1,i:N))
telse{

setcolorder(option_paths,c(1:(i-1),N+1,i:N))

}

names (option_paths) = pasteO(rep("col",N+1),as.character(l:(N+1)))

option_paths

help_fun_call <- function(x){ #### for Call option

max (x) *p+min (x) * (1-p)

#### if not all values needed (often the case!)

CRR_option_paths_2 <- function(asset_paths,opt_prices,N){
option_paths_2 <- as.data.frame(matrix(0,nrow = 2°N,ncol = N+1))
swap_vals <- unique(asset_paths[,N+1])
for(k in 1:length(swap_vals)){

option_paths_2[asset_paths == swap_vals[k]] <- opt_prices[[N+1]] [k]
}
option_paths_2[,1] <- opt_prices[[1]]
option_paths_2

e (Calculating the replicating strategy

replicating_strat <- function(N,K,S,r,p,prices){
strat <- list(Q)
for(i in N:1){

strat[[1]] <- exp(r*i)=*
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(prices[[i+1]] [-1length(prices[[i+1]])]-prices[[i+1]]1[-1])/
(S[[i+1]] [-length(prices[[i+1]1])]-S[[i+1]][-1])

}

strat

A.1.4 Code for application to trinomial model

Similar to the previous case of the binomial model there are various functions needed for

the trinomial model.

e Creating the asset paths in the trinomial model

Multinom_paths <- function(N,U,D,SO0,L){
grid_vec <- c()
for(l in 1:L){
grid_vec <- c(grid_vec,U~(L-1)*D"(1-1))
}
grid <- expand.grid(lapply(1:N,function(i)grid_vec))
grid <- grid[N:1]
paths <- SO*t(apply(grid,1,function(x)sapply(1:N,function(i)prod(x[1:i]))))
cbind(rep(S0,L"N),paths)

e Calculating the prices of an option in the trinomial model

Prices_tm <- function(N,K,S_n,r,p,opt){

disc_opt <- opt(N,S_n,K)/(1+r)°N
#disc_opt <- opt(N,S_n,K)*exp (-r*N)

prices <- list()
prices[[N+1]] = disc_opt
for(i in N:1){

ind <- length(prices[[i+1]])
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prices[[i]] <- prices[[i+1]][-c(ind-1,ind)]*p[1]+
p[2]*prices[[i+1]] [-c(1,ind)]+
prices[[i+1]] [-c(1,2)]*p[3]

}

prices

e Calculating option price paths in the trinomial model

Multinom_option_paths <- function(asset_paths,opt_prices,N,L){ #only price end end
option_paths_2 <- as.data.frame(matrix(0,nrow = L°N,ncol = N+1))
swap_vals <- unique(signif(asset_paths[,N+1],7))
for(k in 1:length(swap_vals)){
option_paths_2[signif (asset_paths,7) == swap_vals[k]] <- opt_prices[[N+1]] [k]
}
option_paths_2[,1] <- opt_prices[[1]]
option_paths_2

e Calculating the minimum variance strategy via dynammic programming approach:

dyn_optim_tm <- function(phi,opt_prices,S_N,K,r,p,time){
1 <- length(S_N[[timell)
disc_price_1 <- S_N[[time+1]]/(1+r)~(time)
disc_price_2 <- S_N[[time]]/(1+r)~(time-1)
pl1]*sum((opt_prices[[time+1]][1:1] -
phi*(disc_price_1[1:1]-disc_price_2)-opt_prices[[time]])~2)+
pl[2] *sum((opt_prices[[time+1]][2:(1+1)] -
phi*(disc_price_1[2:(1+1)]-disc_price_2)-opt_prices[[time]])~2)+
p[3]*sum((opt_prices[[time+1]][3:(1+2)] -
phi*(disc_price_1[3:(1+2)]-disc_price_2)-opt_prices[[time]])"2)

#### procedure for derivation below

23


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

#opt_strat_tm <- list()
#for(i in N:1){
phi_init <- rep(1, (i-1)*(L-1)+1)
opt_strat_tm[[i]] <- optim(par = phi_init,fn = dyn_optim_tm,

S_N=SNtm, K=K, r=n7,p = ps,time = 1,
method = "BFGS",

#

#

# opt_prices = call_prices_tm,

#

#

# control = list(reltol = 10°(-10)))£par

#

A.1.5 Further necessary Code

For the BB algorithm it is necessary to provide an optimization function, thus it is

necessary to write a proper one for the different integer hedging problems of chapter 4.

e Optimization function for the binomial model
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optim_func <- function(phi,asset_paths,delta_Asset,option_paths,N,
restr = NULL,restr_vals = NULL){

option_paths <- as.data.frame(option_paths)

temp <- phi
temp[restr] <- restr_vals #### tester!
phi_list <- list()
count = 1
for(i in 1:N){
phi_list[[i]] <- temp[1:i]
temp <- temp[-(1:i)]
}
phi_mat <- asset_paths[,1:N]
for(j in 1:N){
swap_vals <- unique(asset_paths[,j])

for(k in 1:length(swap_vals)){

phi_mat [phi_mat == swap_vals[k]] <-

}

phi_list[[j]1] [k]

sum(probs*((option_paths[, (N+1)]-option_paths[,1])-
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rowSums (as.matrix(delta_Asset)*phi_mat)) ~2)

e Optimization function for the trinomial model

optim_func_Multinom <- function(phi,asset_paths,delta_Asset,option_paths,N,
probs = probs_tm,restr = NULL,restr_vals = NULL){
option_paths <- as.data.frame(option_paths)
temp <- phi
temp [restr] <- restr_vals #### tester!
phi_list <- list()
phi_list[[1]] <- temp[1]
temp <- temp[-1]
ind <- 1
for(i in 1:(N-1)){
ind <- ind+(L-1)
phi_list[[i+1]] <- temp[1:ind]
temp <- temp[-(1:ind)]
}
phi_mat <- signif(asset_paths[,1:N],7)
for(j in 1:N){
swap_vals <- unique(signif (asset_pathsl[,j]l,7))
for(k in 1:length(swap_vals)){
phi_mat [phi_mat == swap_vals[k]] <- phi_list[[j]] [k]

}

sum(probs*((option_paths[, (N+1)]-option_paths[,1])-

rowSums (as.matrix(delta_Asset)*phi_mat))~2)

A.1.6 Code for the Chapter 5

In this subsection we present the code for the calculation and results of chapter 5. It
is important to note, that the code depends to some extend on the code presented in the
sections before. Furthermore we only present the code for the European call option as the

code for the other options follow a similar logic.
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conv_checker_2 <- function(N){

exp(sigma*sqrt(Mat/N))

(]
I

exp (-sigmaxsqrt (Mat/N))

calc_MM(U,D,r)

o
I

S_N <- S_n(N,U,D,S0)

plot_CRR(S_N,N,U,D)

E_call <- function(N,S_n,K){
pmax (S_n[[N+1]]-K,0)

call_prices <- Prices(N,K,S_N,r,p,E_call)
plot_CRR_options(S_N,N,U,D,call_prices)

strat_list_Asset <- replicating strat(N,K,S_N,r,p,call_prices)

unique_strat_paths <- function(strat_list_Asset,N){
#disc_asset_paths <- as.data.frame(sapply(0:N, function(z){as.data.table(asset_path.
rounded <- lapply(strat_list_Asset,round)
uniques <- matrix(O0,nrow = 1,ncol = N)
uniques[1] <- rounded[[1]]
for(j in 2: (M){
if (length (unique(rounded[[j1])) == 1){
uniques[j] <- rounded[[j]][1]
}else{
if (nrow(uniques) == 1){
add_row <- uniques
uniques[j] <- unique(rounded[[j]]) [1]

uniques <- rbind(uniques,add_row)
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telse{

n_j <- nrow(uniques)

sel_0 <- which(rounded[[j-1]] == unique(rounded[[j-1]]) [2]) [1]
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sel_1 <- sel_0-1
val_0 <- rounded[[j]] [c(sel_0,sel_0+1)]
val_1 <- rounded[[j]][c(sel_1,sel_1+1)]
for(k in 1:n_j){
w_val_k <- uniqueslk,j-1] ### check <f entry before (j-1) in row k is 1 or
if (w_val_k == 1){
if (length(unique(val_1))==1){
uniques [k, j] <- val_1[1]
telse{
add_row <- uniquesl[k,]
uniques [k, j] <- val_1[1]
uniques <- rbind(uniques,add_row)
}
Jelse{
if (length(unique(val_0)) == 1){
uniques [k, j] <- val_0[1]
telse{
add_row <- uniques[k,]
uniques[k,j] <- val_1[1]

uniques <- rbind(uniques,add_row)

}

uniques

unique_s_paths <- unique_strat_paths(strat_list_Asset,N)

rownames (unique_s_paths) <- 1l:nrow(unique_s_paths)
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for(i in N:1){

ordered_paths <- unique_s_paths[order(-unique_s_paths[,i]),]
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get_disc_asset_mat <- function(S_N,ordered_paths,N,strat_list_Asset){

rounded <- lapply(strat_list_Asset,round)
disc_S_N <- lapply(0:N,function(x){S_N[[x+1]]*exp(-r*x) })
if (is.null(nrow(ordered_paths))){
ordered_paths <- t(as.matrix(ordered_paths))
}
d_asset_mat <- ordered_paths
d_asset_mat[,1] <- S_N[[1]]
for(i in 2:N){
col_p <- ordered_paths[,i]
oz_vec <- unique(col_p)
if (length(oz_vec) == 1){
d_asset_mat[,i] <- disc_S_N[[i]] [length(disc_S_N[[i]])]
}else{
sel_0 <- which(col_p == oz_vec[2])

sel_1 <- which(col_p == oz_vec[1])

rounded_0 <- which(rounded[[i]] == unique(rounded[[i]]) [2]) [1]

rounded_0_val <- disc_S_N[[i]] [rounded_0]

help_r1l <- which(rounded[[i]] == unique(rounded[[i]]) [1])

rounded_1 <- help_ri[length(help_r1)]
rounded_1_val <- disc_S_N[[i]] [rounded_1]
d_asset_mat[sel_0,i] <- rounded_O_val

d_asset_mat[sel_1,i] <- rounded_1_val

}

d_asset_mat

d_asset_ps <- get_disc_asset_mat(S_N,ordered_paths,N,strat_list_Asset)

if (is.null(nrow(ordered_paths))){

ordered_paths <- t(as.matrix(ordered_paths))
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}

BA_rounded_ps <- matrix(0,nrow = nrow(ordered_paths),ncol = N)
BA_rounded_ps[,1] <- call_prices[[1]]-ordered_paths[,1]*d_asset_psl[,1]

for(i in 2:N){
BA_rounded_ps[,i] <- BA_rounded_ps[,i-1]+d_asset_ps[,i]*
(ordered_paths[,i-1]-ordered_paths[,i])

disc_S_N <- lapply(0:N,function(x){S_N[[x+1]]*exp(-r*x) })
rounded <- lapply(strat_list_Asset,round)

p_val <- which(rounded[[N]] == 0) [1]

opt_val_rel <- rep(call_prices[[N+1]] [p_vall)

d_asset_rel <- rep(disc_S_N[[N+1]] [p_val] ,nrow(ordered_paths))

err2 <- opt_val_rel- (ordered_paths[,N]*d_asset_rel+BA_rounded_ps[,N])

return(max(abs(err2)))
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