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Kurzfassung

Diese Diplomarbeit untersucht exponentielle Nutzenindifferenzpreise und das optimale In-
vestitionsproblem für nicht replizierbare Eventualforderungen auf einem unvollständigen
Markt, unter der Annahme, dass diese asymptotisch verschwindet. Eine tiefe Beziehung zwi-
schen der Theorie großer Abweichungen und optimalen Abnahmemengen für einen Investor
mit exponentiellem Nutzen wird vorgestellt. Um asymptotisches Verschwinden der nicht re-
plizierbaren Komponenten zu betrachten, wird das Konzept der ”halb-vollständigen”Märk-
te eingeführt und die erforderlichen Ergebnisse entsprechend diesem Rahmen formuliert.
Darüber hinaus wird eine Folge von halb-vollständigen Märkten betrachtet, bei denen die
unvollständigen Komponenten für den Markt im Grenzwert verschwinden. Dies führt zur
Annahme eines Prinzips der großen Abweichungen für den nicht absicherbaren Teil. In die-
sem Rahmen werden der Grenzwert des Nutzenindifferenzpreises, sowie optimale Abnah-
memengen ermittelt. Entgegen den Erwartungen, wird für den Grenzwert, dessen Markt
vollständig ist, der Nutzenindifferenzpreis für unbeschränkte Positionen nicht mit dem Re-
plikationskapital übereinstimmen, sowie es für beschränkte Handelsgrößen der Fall ist. Diese
nicht triviale Differenz kann explizit mit Hilfe des Lemmas von Varadhan berechnet werden.
Darüber hinaus wird gezeigt, wie große Positionen auf natürliche Weise entstehen, indem
nach optimalen Mengen gefragt wird.
Diese Arbeit basiert weitgehend auf dem Artikel INDIFFERENCE PRICING FOR CON-
TINGENT CLAIMS: LARGE DEVIATIONS EFFECTS von Robertson und Spiliopoulos,
2018.
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Abstract

This thesis studies exponential utility indifference prices and the optimal investment prob-
lem for non-replicable contingent claims in an incomplete market, which asymptotically
vanish. A deep relationship between large deviations and optimal purchase quantities for
an investor with exponential utility is presented. In order to consider asymptotic vanishing
of the non-replicable components, the concept of semi-complete markets is introduced and
the required results are formulated according to this framework. Furthermore, a sequence
of semi-complete markets will be considered, therein the incomplete components vanishing
for the limiting market, i.e. n → ∞. This leads to an assumed large deviation principle
(LDP) for the unhedgeable part. In this setting limiting utility indifference prices and
the optimal purchase quantities will be determined. For unbounded positions the limiting
utility indifference price will vary from the one for bounded position sizes. This non-trivial
difference can be explicitly calculated by using Varadhan’s integral lemma. In addition,
there will be shown how large positions occur naturally by asking for optimal quantities.

This work is largely based on the paper INDIFFERENCE PRICING FOR CONTINGENT
CLAIMS: LARGE DEVIATIONS EFFECTS by Robertson and Spiliopoulos, 2018.

Keywords: indifference pricing, large deviations, optimal investment, semi-complete mar-
kets, varadhan’s integral lemma.
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1. Introduction

This thesis deals with the connection of some considerable theories. In particular, large
deviations theory will be applied to both, utility indifference pricing and optimal positions.
Heuristically, the connections between these theories are made by demonstrating the deep
relation between large deviations and the optimal investment problem, as it has been done
originally by [Robertson and Spiliopoulos, 2018]. Therefore, the effects of large position
sizes on the limiting indifference price as well as the natural arising of large positions for
optimal purchase quantities in the presence of vanishing hedging errors will be pointed out.
As in real financial markets, most instruments are not replicable by trading in the under-
lying market, the theory of utility indifference pricing became very popular. Moreover, the
reason one should care about large investors is very simple - in the last decades there was an
exponential growth in the amount of outstanding financial instruments, as can be seen in
the annual report [Bank of International Settlements, 2020]. Furthermore, it is natural to
assume vanishing hedging errors for unbounded positions. This will lead to the concept of
semi-complete markets, where a part of the claim can be hedged perfectly, but the remain-
ing components of it are completely unhedgeable, hence there is an additional source of
risk [Becherer, 2003]. The considered instruments should have zero limiting hedging errors,
i.e. should be asymptomatically replicable, but, as it will be shown, there is an additional
term on the utility indifference price that might be non-trivial. As a result, unbounded
purchasing positions will occur naturally. To see why this dependence holds, one may think
of a complete market, where one is able to buy a claim for some price that does not equal
the unique fair price, then the optimal position will be infinite, [́Ilhan, Jonsson, and Sircar,
2005] . Finally, there will be an additional non-zero term in the limiting utility indifference
price, added to the limiting replication capital, one would not expect naively and which
does not occur for bounded positions.
This master thesis is structured as follows: First, Chapter 2 gives basic definitions and
results of mathematical finance following the literature of [Delbaen and Schachermayer,
2006] and [Rheinländer and Sexton, 2011]. Furthermore, an overview on utility indiffer-
ence pricing, leaning on [Carmona, 2009], and the duality results by [Delbaen, Grandits,
et al., 2002] will be presented. Finally, this Chapter also provides the basic definitions and
a few major results of large deviations theory. The content refers to the manuscripts of
[Dembo and Zeitouni, 1998], [Hollander, 2008] and [Pham, 2010], which also offer a more
profound view into theory.
In Chapter 3 the abstract semi-complete market setting will be developed. In particular,
the aim is to precisely define the vanishing hedging in an incomplete market with underly-
ing tradable assets. For an important example, one may think of a sequence of risky assets
that are theoretically available to trade, but practically it is only possible to trade in the
first n assets. As the claims depend on all sources of risk, the market is semi-complete.
Furthermore, the main results from utility indifference pricing and optimal positions will be
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1. Introduction

applied to the semi-complete setting. Therefore, the optimal investment problem, the range
of arbitrage free prices and an equation to obtain optimal purchase quantities are discussed
therein. The chapter follows the associated section from [Robertson and Spiliopoulos, 2018],
as well as [Becherer, 2003].
Chapter 4 deals with a detailed example of a large semi-complete market. Therein, the
setting of Chapter 3 is embedded in a sequence of semi-complete markets, where the assets
follow a geometric Brownian motion and the claim is described as sum of independent com-
ponents. This model attracts a lot of authors as for example [Bouchard, Elie, and Moreau,
2012] and is consequently well known in literature.
After the mathematical foundations are set, the required examples and definitions are used
in Chapter 5. Therein the mentioned connection of large deviations, optimal investment
and utility indifference pricing by [Robertson and Spiliopoulos, 2018] is discussed in detail
by assuming that in the sequence of semi-complete markets an LDP holds for the unhedge-
able components of the claim. Herein, the non-trivial effects on the limiting indifference
price for unbounded positions will be identified.
The final chapter includes some sufficient conditions that ensure an LDP for the unhedge-
able part holds. Therein, two concrete examples will be given. For each, an LPD will be
proven as a first step and then the results from Chapter 5 will be applied to explicitly
calculate the quantities of interest. This happens in two various ways that are required for
each setting.
The Appendix provides some technical lemmas, as well as various statements, which are
used throughout this thesis.

2
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2. Preliminary Definitions and Results

This chapter should give a brief introduction to the main definitions and results required
later on in the thesis.
First of all, there are outlined some preliminaries that will be assumed to hold throughout
the thesis unless explicitly indicated otherwise. Let (Ω,F ,F,P) be a filtrated probability
space. Assume a finite time horizon T and F = FT .

2.1. Mathematical Finance

If not explicit denoted, this section leans on definitions and results in [Rheinländer and
Sexton, 2011] and [Delbaen and Schachermayer, 2006].
Let S =

(
S1, . . . , Sd

)
denote a d-dimensional price process of a risky asset, where Sit de-

scribes the price of the ith-asset at time t. S is imposed to be adapted and a locally bounded
semi-martingale. As common, the interest rate is supposed to be zero throughout all of the
thesis.

For readers convenience as well as consistent notation and understanding, the basic
definitions and results are discussed in the following.

Definition 2.1.1. A probability measure Q absolutely continuous to P (written Q ≪ P)
is called a martingale measure for S, if S is a Q-local martingale. If Q is equivalent to P

(written Q ∼ P), it is called an equivalent martingale measure. M (S) denotes the set of
all martingale measures for S and Me (S) the set of all equivalent martingale measures for
S.

Definition 2.1.2. A strategy ∆ =
(
∆1, . . . ,∆d

)
is a Rd-valued S-integrable process. ∆i

t

denotes the units invested in Si at time t. The associated value process X∆ = X(x,∆),
with initial capital x and strategy ∆, is given through the stochastic integral process

X∆
· = x+

∫ ·

0
∆udSu.

Definition 2.1.3. A strategy ∆ is called admissible if the associated value process X∆ is
a Q-martingale for every equivalent martingale measure Q.

Remark 2.1. The definition of an admissible strategy always depends on the required re-
strictions, e.g., different market models or optimization problems. In the ordinary definition
a strategy is called admissible if the associated value process is a super-martingale. As the
upcoming problems will need various restrictions, the definition will be adapted during this
work. There will be an additional, less restrictive term of allowable strategies in section
2.3 (Definition 2.3.1).
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2. Preliminary Definitions and Results

Definition 2.1.4. A FT -measurable random variable B is named a claim. B is said to be
replicable if there exists an admissible strategy ∆ and a constant c ∈ R, such that B could
be written as sum of a stochastic integral process with respect to the underlying asset St
and the constant c, i.e.

B = c+

∫ T

0
∆tdSt.

Definition 2.1.5. A filtrated probability space (Ω,F ,F,P) together with a price process
S is called a market. It is said to be complete, if every claim is redundant, meaning that
all claims are replicable according to Definition 2.1.4.

Complete markets are an idealization of reality and therefore are only used for theoretical
market models. In a complete market every claim could be perfectly hedged by trading in
the underlying assets. Theorem 2.1.2 below shows that in this case there is only one fair
price for every claim.

Definition 2.1.6. A strategy ∆ is an arbitrage opportunity if the associated value process
X∆ satisfies

(i) X∆
0 ≤ 0

(ii) X∆
T ≥ 0 P− a.s.

(iii) P
(
X∆
T > 0

)
> 0.

Theorem 2.1.1. If Me (S) 6= ∅, then there are no arbitrage opportunities with admissible
strategies in the (Ω,F ,F,P, S)-market .

Theorem 2.1.1 is a more intuitive formulation of the well known first fundamental theo-
rem of asset pricing [Theorem 8.2.1 Delbaen and Schachermayer, 2006]. To ensure there is
no arbitrage in the selected market model, it is commonly assumed that Me (S) 6= ∅.

Definition 2.1.7. If there is at least one Q ∈ Me(S) the market is arbitrage free and for
any contingent claim B

π(B) := EQ [B]

is called an arbitrage free fair price of B for every Q ∈ Me(S).

It was shown by [Delbaen and Schachermayer, 2006, Theorem 2.4.1] that the set of all
arbitrage free prices {EQ [B] |Q ∈ Me(S)} is an open interval (π(B), π(b)) with

π(B) := inf{EQ [B] |Q ∈ Me(S)};

π(b) := sup{EQ [B] |Q ∈ Me(S)}.
(2.1)

To study the concept of complete or incomplete markets we need to formulate the second
fundamental theorem of asset pricing by [Harrison and Pliska, 1983]
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2. Preliminary Definitions and Results

Theorem 2.1.2 (Second fundamental theorem of asset pricing). The following statements
are equivalent:

(i) The market is complete.

(ii) Me (S) consists of a singleton

(iii) S satisfies the predictable representation property from Definition A.2.2 with respect
to (Q,F), where Q is the unique element of Me (S).

2.2. Modeling Stock Prices

The most popular stochastic model for stock prices is the geometric Brownian motion.
Therefore, define

Definition 2.2.1. A stochastic process St follows a geometric Brownian motion, if S is a
solution to the stochastic differential equation

dSt
St

= µdt+ σdW t, (2.2)

where Wt is a Brownian motion and µ and σ are constants.

The constant µ is called the percentage drift of return and σ the percentage volatility.
µ models deterministic trends, while σ spreads the stochastic impact. If there is no un-
certainty about the stock price, then σ = 0. Considering a short interval of time, ∆t,
this yields an expected increase in S of µS∆t. For this reason, µ is called the expected
instantaneous rate of return and σ2 the instantaneous variance of the rate of return [Hull,
2009]. Solving Equation (2.2) for an arbitrary initial value S0 by applying Itô’s Lemma,
see [Protter, 2004], yields the solution

St = S0 exp

((

µ−
σ2

2

)

t+ σWt

)

. (2.3)

Hence, it follows that St is a log-normally distributed random variable for any value of t.
In order to have no arbitrage opportunities, it is assumed that there exists a equivalent
local martingale measure. Under this measure, the price of the underlying asset has to be a
local martingale. Therefore, the price process St with drift should be transformed into such
a local martingale under the risk neutral measure. The transformation can be performed
effectively using Girsanov’s Theorem, see [Protter, 2004, Theorem 35, III]. To remove the
drift, the density of the risk neutral measure is defined by (remember we assumed r ≡ 0)

dQ

dP

∣
∣
∣
∣
FT

= E(−θW )T , (2.4)

with market price of risk θ = µ/σ. Note that E(·) denotes the stochastic exponential defined
in A.2.1.
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2. Preliminary Definitions and Results

2.3. Exponential Utility Indifference Pricing

This section introduces the theory of utility indifference pricing, referring to [Carmona,
2009] and [Delbaen, Grandits, et al., 2002]. Theorem 2.1.2 implicates that, in a complete
market, the price of every contingent claim B is uniquely determined by EQ0 [B], where Q0

is the sole element of Me (S). This value represents the cost of replication for a claim. In
an incomplete market, generally, the claims are not replicable and the set of all equivalent
martingale measures Me (S) is not a singleton. This leads to a range of prices, which do
not allow arbitrage. Thus, it needs an approach to select a specific element of Me (S) for
exact claim pricing. This yields to the theory of indifference pricing.

First, note that a utility function U(x) for the wealth x is defined as a twice continuously
differentiable function, which is strictly increasing and strictly concave. Furthermore, to
reflect the investors risk aversion, one defines by r(x) = u′′(x)/u′(x) the risk aversion pa-
rameter. Then, the basic concept of utility indifference pricing is that, for a given utility
function Ua with absolute risk aversion a > 0 and payoff of a claim B, the utility indifference
price p is the solution to the equation

Ua(x) = E [Ua (x− p+B)] ,

where the constant x denotes the wealth level. Intuitively, the utility of the current wealth
should coincide with the expected utility of buying a claim B for the premium p in addi-
tion to the wealth level x. This simple attempt, works in the absence of dynamical trading
opportunities and was know for a long time, see [Bernoulli, 1738]. Nowadays, the consider-
ation of dynamic financial markets is indispensable, which results in a more sophisticated
problem formulation. To reduce the risk exposure to the terminal liability B, investors
can dynamically trade in a risky asset with discounted price process S. Hence, the theory
needs to involve trading strategies. Not any desired strategy is admissible and therefore,
let A denote the space of all allowable trading strategies. In particular, define:

Definition 2.3.1. A trading strategy ∆ is called allowable, if it is F-predictable, (P,F;S)-
integrable and the associated wealth process is a (Q,F)-super martingale for all equivalent
martingale measures for S.

Note that the definition of an allowable strategy is more restrictive than the one of an
admissible, this restrictiveness will be needed in the optimization problem below.

Definition 2.3.2. Let B denote the payoff of a claim. For an initial capital x ∈ R and
position size q ∈ R in B, the value function for the investor is given by

u (x, q) = sup
∆∈A

E
[
Ua
(
X∆
T + qB

)]
; X∆

· = x+

∫ ·

0
∆udSu. (2.5)

Heuristically, the function u (x, q) describes the optimal utility of trading in the underly-
ing market, an investor with utility function Ua can achieve, starting with an initial capital
x and q units of B.
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2. Preliminary Definitions and Results

Definition 2.3.3. For a given initial value x ∈ R, a number q ∈ R denoting the units of
B and a given utility function Ua, the indifference price of the claim B is defined as the
unique solution p (x, q) to the equation

u (x− qp (x, q) , q) = u (x, 0) . (2.6)

Since p (x, q) typically does not admit an explicit formula, it is difficult to obtain prop-
erties of the indifference price just by using its definition. The famous six authors paper
[Delbaen, Grandits, et al., 2002] first relates maximising the expected exponential utility
from pure investment to minimising an entropy functional over all equivalent martingale
measures for S. For this purpose define,

Definition 2.3.4. The relative entropy H (Q,P) of a probability measure Q with respect
to another probability measure P is defined as

H (Q,P) =

{

EP
[
dQ
dP log

(
dQ
dP

)]

if Q ≪ P

+∞ otherwise.
(2.7)

Intuitively, one can imagine the relative entropy as a measure of how close a probability
distribution is to another one.
Recall the set M (S), which denotes all martingale measures for S. We are searching for a
measure Q̂ that minimizes functional H(Q,P) in (2.7) over all elements of M (S). If this
certain Q̂ is also an element of Me (S) the optimal martingale measure is obtained.

Definition 2.3.5. Denote by Q̂ the minimal entropy martingale measure, which satisfies

H(Q̂,P) = min
Q∈M(S)

H (Q,P) .

In the sequel, those martingale measures which have finite relative entropy are relevant
and therefore set

M̃ = {Q ∈ M (S) |H(Q,P) <∞} (2.8)

The following theorem ensures the existence and uniqueness of the minimal entropy
measure, if there is at least one martingale measure for S absolute continuous to P. For
the original theorem and the proof see [Theorem 1, Frittelli, 2000].

Theorem 2.3.1 (Existence and uniqueness of the entropy measure). The minimal entropy
martingale measure Q̂ exists and is unique if M̃ 6= ∅.

Most of the relative entropy’s elementary properties were shown by [Csiszar, 1975].
Some of them are reformulated hereafter according to [Frittelli, 2000] and [Grandits and
Rheinländer, 2002]. For the related proofs see [Csiszar, 1975].

Lemma 2.3.1. It holds that,

(i) If one assumes a Q̃ ∈ M̃, then Q̃ = Q̂, i.e. Q̃ equals the minimal entropy martingale
measure, if and only if

H(Q,P) ≥ H(Q, Q̃) +H(Q̃, P ) for all Q ∈ M̃ (2.9)
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2. Preliminary Definitions and Results

(ii) If M′ denotes a convex subset of M (S) and for all Q1 ∈ M′ there exists an α ∈ (0, 1)
and Q2 ∈ M′ such that Q̂ = αQ1 + (1− α)Q2 (i.e. Q̃ is an algebraic inner point of
M′), then M′ ⊂ M̃ and (2.9) holds with equality for all Q ∈ M′.

As the optimal martingale measure to price a claim needs to be in Me(S), one has
to ensure that the minimal entropy measure, if it exists, is equivalent to P. In fact, the
next result by [Csiszar, 1975] shows this is true, as long as there is at least one equivalent
martingale measure for S.

Theorem 2.3.2 (Equivalence of the minimal entropy martingale measure). Assuming that
M̃ ∩Me (S) 6= ∅, then the minimal entropy martingale measure Q̂ is equivalent to P.

Proof. As the minimal entropy measure needs to satisfy H(Q̂,P) < ∞, it follows by the
definition of the relative entropy that Q̂ ≪ P. At the same time, for some Q ∈ M̃∩Me (S)
Equation (2.9) in Lemma 2.3.1 yields to

H(Q, Q̂) ≤ H(Q,P)−H(Q̂,P).

Since both, H(Q,P) and H(Q̂,P), are finite, it holds that Q ≪ Q̂. This immediately
follows from the definition of the set M̃ and the relative entropy. Furthermore, Q ∼ P and
hence P ≪ Q̂. This implies P ∼ Q̂.

The next theorem is a direct consequence of Csiszar’s result. Therein, the density of the
minimal entropy martingale measure is given. It is an important structural result which
states that the logarithm of the density of the minimal entropy martingale measure for
S can always be written as sum of a constant and a stochastic integral with respect to
S. The result itself and the proof are given in a more abstract setting, see [Grandits and
Rheinländer, 2002], so only the conclusion for this thesis is given below.

Theorem 2.3.3 (Density structure for Q̂). Suppose that Q̂ is the minimal entropy mar-
tingale measure and M̃ ∩Me (S) 6= ∅. Then the probability density can be written as

dQ̂

dP
= exp

(

c+

∫ T

0
∆̂tdSt

)

, (2.10)

for a constant c ∈ R and a predictable process ∆̂ such that
∫
∆̂dS is a Q̂-martingale.

The reverse direction of Theorem 2.3.3 does not hold in general. This means, not every
martingale measure with a density structure like (2.10) is a minimizer of the entropy func-
tional. However, there is criterion for a martingale measure to coincide with the minimal
entropy martingale measure. The following proposition is a characterisation of the minimal
entropy measure and thus a partial converse to Theorem 2.3.3 originally in [Proposition
3.2, Grandits and Rheinländer, 2002].

Proposition 2.3.1. Suppose there is a Q∗ ∈ M̃ ∩Me (S), then Q∗ = Q̂ if and only if

(i) dQ∗

dP = exp
(

c+
∫ T
0 ∆tdSt

)

for some constant c ∈ R and an S-integrable ∆ and

(ii) EQ
[∫ T

0 ∆tdSt

]

= 0 for Q = Q∗, Q̂ .
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2. Preliminary Definitions and Results

Proof. First, note that due to the condition Q∗ ∈ M̃ ∩ Me (S), it follows that M̃ 6= ∅
and hence, by Theorem 2.3.1, the minimal entropy martingale measure Q̂ exists and is
unique. Conditions (i) and (ii) are necessary, since Theorem 2.3.3 holds. So, proving they
are sufficient is enough. As a direct consequence of the demanded conditions one has

H(Q∗,P) = EQ∗

[

log
dQ∗

dP

]

= c+ EQ∗

[∫ T

0
∆tdSt

]

= c

for the selected Q∗. At the same time, as the relative entropy satisfies H(Q,P) ≥ 0 for
all probability measures, see [Ihara, 1993], it follows that

H(Q̃,P) = EQ̃

[

log
dQ̃

dP

]

= EQ̃

[

log

(

dQ̃

dQ∗

dQ∗

dP

)]

= EQ̃

[

log
dQ̃

dQ∗

]

+ EQ̃

[

log
dQ∗

dP

]

= H(Q̃,Q∗) + EQ̃

[

log
dQ∗

dP

]

≥ c+ EQ̃

[∫ T

0
∆tdSt

]

= c.

The estimation holds due to condition (i) for the density of Q∗. This indicates

H(Q̃,P) ≥ H(Q∗,P),

which, by the uniqueness of Q̃, sums up to Q̃ = Q∗

2.4. Duality Results

The duality results by [Delbaen, Grandits, et al., 2002] are linking the exponential utility
maximisation with minimisation of the entropy function over martingale measures. As
mentioned before, these results are important to identify some qualitative properties of the
utility indifference price. Therefore, recall the definition of an admissible strategy from
2.1.3. Define by Θ the set of all admissible strategies for S, i.e.,

Θ =

{

∆ ∈ L (S)
∣
∣
∣

∫

∆ dS is a Q-martingale for all Q ∈ M̃

}

. (2.11)

The following theorem describes the reduced duality result without a claim B. For proof
details of Theorem 2.4.1 and 2.4.2 see [Delbaen, Grandits, et al., 2002].

Theorem 2.4.1 (Entropic duality). Let a > 0 denote the absolute risk aversion associated
to the given utility function Ua, then

inf
∆∈Θ

E

[

exp

(

−a

∫ T

0
∆tdSt

)]

= exp
(

−H(Q̂,P)
)

(2.12)

holds and the infimum is attained by 1
a∆̂ ∈ Θ, where ∆̂ is determined by (2.10).
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2. Preliminary Definitions and Results

To make sure these duality also holds with claim B the definition of a new probability
measure Pa, which contains a normalizing constant, is required. To reduce the problem
to the already approached case without a claim, the normalizing property of Pa will be
necessary. Therefore, there has to exist a measure Qa with a density of the form (2.10),
that satisfies (2.12) with respect to Pa. By assuming B to be bounded from below, this
could be shown for any P-equivalent probability measure of the form dPa = exp(ca+qaB)dP
with normalising constant exp(ca), see [Delbaen, Grandits, et al., 2002]. As in this work
B is not assumed to be bounded, select a special measure Pa, that performs in accordance
with the problem formulation hereafter. By assuming e−qaB to be P-integrable one can
define the measure Pa by

dPa

dP
=

e−qaB

E[e−qaB]
. (2.13)

Since Pa ∼ P, the sets M(S) and Me(S) remain equal by replacing P through Pa, although
the densities are different. To see that replacing P by Pa is also possible in the definition
of M̃ is less trivial. It was shown by [Becherer, 2003] that assuming

E

[

e(−a+ǫ)qB
]

<∞ and E
[
e−ǫqB

]
<∞ for some ǫ > 0 (2.14)

implies that B is in L1(Q) for every Q ∈ M̃ and that M̃ coincides with respect to P and Pa.
Thus, with the convention that P corresponds to a = 0, the space Θ of admissible strategies
does not depend on a. By assuming M̃∩Me(S) 6= ∅, Theorem 2.3.1 ensures the existence of
an unique element Qa of M̃ that minimizes H(Q,Pa) over all Q ∈ M̃. Moreover, Theorem
2.3.3 ensures that the density of Qa can be written as

dQa

dP
= exp

(

−a

(

cB +

∫ T

0
∆B
t dSt + qB

))

for some constant cB ∈ R and ∆B ∈ Θ such that
∫
∆BdS is a Qa-martingale. Thus, by

changing the measure from P to Pa and the fact that (2.12) holds with respect to Pa, one
receives the entropic duality with claim.

Theorem 2.4.2 (Entropic duality with claim). For a claim B, that satisfies (2.14), we
receive

inf
∆∈Θ

E

[

exp

(

−a

(∫ T

0
∆t dSt + qB

))]

= exp

(

− inf
Q∈M̃

(

H(Q,P) + aEQ[qB]
))

.

(2.15)

The infima are attained at Qa ∈ M̃ ∩ Me and − 1
a∆

B ∈ Θ, determined by the density of
Qa.

This duality result yields to a closed form of the utility indifference price p(x, q) depending
on the selected utility function Ua. Thus, set Ua(x) = − 1

ae
−ax. Now, recall the value
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2. Preliminary Definitions and Results

function u(x, q) from Definition 2.3.2 and the balance equation (2.6) that defines p(x, q).
One can rewrite u(x, q) with the results from above and obtains

u(x, q) = −
1

a
exp(−ax) exp

(

− inf
Q∈M̃

(

H(Q,P) + aEQ[qB]
))

. (2.16)

In view of that, it follows

u(0, 0) = u(−qp(q), q)

−
1

a
exp(−H(Q̂, P )) = sup

∆∈Θ
E
[
exp

(
−a
(
X∆
T + q (B − p(q))

))]
;

= −
1

a
exp

(

− inf
Q∈M̃

(

H(Q,P) + aEQ [q (B − p(q))]
))

and hence

p(q) = inf
Q∈M̃

EQ [B] +
1

aq

(

H(Q,P)−H(Q̂,P)
)

. (2.17)

This closed form allows a more specific analysis of the utility indifference prices’ properties.
The most obvious one is that for a replicable claim B with B = c +

∫ T
0 ∆tdSt it follows

that, if ∆t is an allowable strategy, the utility indifference price coincides with the fair price
of the claim, in that case c. Furthermore, there were many properties shown by [Frittelli,
2000] and [Becherer, 2003]. The one mentioned in the next lemma will be useful in the
upcoming proofs.

Lemma 2.4.1. The utility indifference price p(q) for q units of the claim B is non-
increasing in q, i.e. q 7→ p(q) is non-increasing.

Proof. For ǫ > 0 the closed form of p(q) (2.17) for the quantity q + ǫ yields

p(q + ǫ) = inf
Q∈M̃

EQ [B] +
1

a(q + ǫ)

(

H(Q,P)−H(Q̂,P)
)

Now, denote by Q̃ the specific element of M̃ achieving the infimum of the problem (2.17)
for p(q). Then the indifference price for q + ǫ units could be estimated by

p(q + ǫ) ≤ EQ̃ [B] +
1

a(q + ǫ)

(

H(Q̃,P)−H(Q̂,P)
)

= EQ̃ [B] +
1

aq

(

H(Q̃,P)−H( ˆ̃Q,P)
)

−
1

aq

(

H(Q̃,P)−H( ˆ̃Q,P)
)

+
1

a(q + ǫ)

(

H(Q̃,P)−H(Q̂,P)
)

= p(q)−

(
1

aq
−

1

a(q + ǫ)

)(

H(Q̃,P)−H(Q̂,P)
)

≤ p(q),

where the last inequality follows observing that Q̂ is the minimal entropy measure, hence
H(Q̃,P)−H(Q̂,P) > 0.
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2. Preliminary Definitions and Results

2.5. Large Deviations Theory

The theory of large deviations is a sector of probability theory which deals with the asymp-
totic estimates of the probabilities of very rare events. In many stochastic models, the
law of large numbers that describes the “typical” behaviour, holds, meaning that the mean
values of certain random variables converging against a deterministic limit value. The prob-
abilities for large deviations from this typical behaviour are often very small and decrease
exponentially. The precise estimation of the probabilities for such large deviations is one of
the most important modern tools of probability theory [Dembo and Zeitouni, 1998]. In this
process, connections between stochastic questions and variation problems arise naturally.
The idea is to change the probability measure to a measure under which the concerned
rare event is no longer rare. The mentioned definitions and results, that will be used in
the sequel mainly follow the ones from [Dembo and Zeitouni, 1998], [Hollander, 2008] and
[Pham, 2010].
At first, a concrete definition of a large deviation principle (LDP) is given below. The

LDP characterizes the limiting behaviour for ǫ→ 0 of a family of probability measures on
a topological space in terms of a rate function. Throughout this section, let S be a Polish
space with Borel σ-algebra B(S).

Definition 2.5.1. A rate function I : S → [0,∞] is lower semicontinuous, in the sense
that for all s ≥ 0 the level set ΦI(s) = {x ∈ S : I(x) ≤ s} is a closed subset of S.
The rate function is said to be good if all of its level sets ΦI(s) are compact subsets of
S. The effective domain of I, denoted by DI , is the set of points in S of finite rate, i.e.,
DI = {s ∈ S : I(s) <∞}.

Remark 2.2. A mapping I on the Polish space S is called lower semicontinuous if and only
if, for every x ∈ S and a sequence xn → x, limxn→x I(xn) ≥ I(x) holds. Hence, a good rate
function achieves its infimum over every closed set.

In the common literature, the LDP is usually defined as property of a sequence of prob-
ability measures. As the work in this thesis will need a definition for a sequence of random
variables, this one will be given.

Definition 2.5.2. For the Polish space S with Borel σ-algebra B(S) and a probability
space (Ω,F ,P), a collection (ξn)n∈N from Ω to S satisfies a large deviation principle (LDP)
with good rate function I : S → [0,∞] and scaling rn if rn → ∞ and

(i) For every s ≥ 0, the set Φ(s) = {x ∈ S : I(x) ≤ s} is a compact subset of S, hence I
is lower semicontinuous.

(ii) For every open subset G ⊂ S it holds that

lim inf
n→∞

1

rn
log (P [ξn ∈ G]) ≥ − inf

s∈G
I(s) (2.18)

(iii) For every closed subset F ⊂ S it holds that

lim sup
n→∞

1

rn
log (P [ξn ∈ G]) ≤ − inf

s∈F
I(s) (2.19)
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2. Preliminary Definitions and Results

Note, that a collection of random variables is said to satisfy a LDP if its laws meet the
conditions of definition 2.5.2.
In the following an alternative characterization of a large deviation principle by [Dembo

and Zeitouni, 1998] is given. Denote by ΦI(s) the level set of the rate function I. Since (ii)
trivially holds if infs∈G I(s) = ∞ and (iii) if infs∈F I(s) = 0, it is easy to see, that these
two conditions are equivalent to the following

(ii*) For every x ∈ DI and each measurable set Γ with x ∈ Γo

lim inf
n→∞

1

rn
log (P [ξn ∈ Γ]) ≥ −I(x) (2.20)

(iii*) For every s ∈ (0,∞) and each measurable set Γ with Γ̄ ⊂ ΦI(s)
c

lim sup
n→∞

1

rn
log (P [ξn ∈ Γ]) ≤ −s. (2.21)

As proving the upper bound (iii) often becomes a challenge, it is common to first proof
it for compact sets only and then proof the exponential tightness, as defined below. First,
define the weak variant of a principle of large deviations, which drops the compactness of
the level sets, (but not the closure) and requires the upper bound in (iii) only for compact
sets.

Definition 2.5.3. Assume that all compact subsets of S are also in B(S). If for a collection
of random variables (ξn)n∈N, condition (2.21) holds for every s ∈ (0,∞) and all compact
subsets of ΦI(s)

c, and further, (2.20) holds for all measurable sets, then (ξn)n∈N is said to
satisfy a weak LDP with rate function I and rate rn.

To make a connection to the stronger definition of 2.5.2, the following definition will be
indispensable.

Definition 2.5.4. Assume that all compact subsets of S are also in B(S). A collection of
random variables (ξn)n∈N is called exponentially tight on the scale rn if for each s < ∞
there is a compact subset Ks ⊂ S such that

lim sup
n→∞

1

rn
log (P [ξn ∈ Kc

s ]) < −s.

Having set these two definitions, makes it sometimes easier to prove an LDP, as the
following lemma by [Section 1.2, Dembo and Zeitouni, 1998] shows.

Lemma 2.5.1. Suppose (ξn)n∈N is exponentially tight. Then it follows, that

- If (2.21) holds for some s < ∞ and all the compact subsets of ΦI(s)
c, then it also

holds for all measurable sets Γ with Γ̄ ⊂ ΦI(s)
c.

- If (2.20) holds for all measurable sets, i.e. all open sets, then the function I(·) is a
good rate function as in Definition 2.5.1.
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2. Preliminary Definitions and Results

Hence, if a collection of random variables is exponentially tight and satisfies a weak LDP,
then the rate function I is good and the LDP according to Definition 2.5.2 holds. Note,
[Dembo and Zeitouni, 1998] provides a slightly more general version of Lemma 2.5.1 as well
as the proof.
An additional tool to prove the upper bound (2.19) is the following lemma, again by

[Section 1.2, Dembo and Zeitouni, 1998].

Lemma 2.5.2. For a fixed integer M and every αirn ≥ 0 it follows that

lim sup
n→∞

1

rn
log

(
M∑

i=1

αirn

)

= max
i=1,...,M

{

lim sup
n→∞

1

rn
log
(
αirn
)
}

.

The next theorem provides the limiting behaviour of a specific exception. It is an exten-
sion of the famous Laplace method, that evaluates the asymptotic of specific integrals on
R. This theorem will be a key tool to obtain the results from [Robertson and Spiliopou-
los, 2018]. For more details and the proof of Theorem 2.5.1 see [Section 4.3, Dembo and
Zeitouni, 1998].

Theorem 2.5.1 (Varadhan’s integral lemma). Let (ξn)n∈N be a collection of random vari-
ables satisfying a LDP with good rate function I : S → [0,∞]. Then for any continuous
function φ : S → R fulfilling the tail condition

lim
M̂→∞

lim sup
ǫ→0

ǫ log
(

E

[

eφ(ξn)/ǫ1{φ(ξn)>M̂}

])

= −∞,

or the following moment condition for γ > 1

lim sup
ǫ→0

ǫ log
(

E

[

eγφ(ξn)/ǫ
])

<∞,

it holds that

lim
ǫ→0

ǫ log
(

E

[

eφ(ξn)/ǫ
])

= sup
x∈R

(φ(x)− I(x)) .

In Varadhan’s integral lemma above an LDP for (ξn)n∈N was supposed to hold, in the
sequel some conditions for an LDP to hold will be given. A well known theorem with such
a statement is Cramér’s theorem about the large deviations associated with the empirical
mean of independent and identical distributed random variables taking values in a finite
set. As this thesis will need a more general result, the expanded version of Cramér’s
theorem, namely the Gärtner-Ellis theorem, for random sequences that have some moderate
dependence, is given below. It was originally proofed by [Gärtner, 1977] and [Ellis, 1984].
The version given below leans on [Hollander, 2008].
First, some preliminaries are required. Consider the collection of random variables

(ξn)n∈N on the probability space (R,B(R),P) and set Λn(λ) = log(E[eλξn ]) for every λ ∈ R

and n ∈ N. Furthermore, denote the limit of Λn by Λ, i.e. limn→∞ Λn =: Λ. Then define
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2. Preliminary Definitions and Results

Definition 2.5.5. Denote by Λ∗ the Legendre transform of Λ, i.e.

Λ∗(y) = sup
λ∈R

(λy − Λ(λ)), y ∈ R.

Further, a point x ∈ R is called exposed for the function Λ∗ if there is a point t ∈ R

satisfying

Λ∗(y)− Λ∗(x) > (y − x)t for each y 6= x.

Such t is called (the normal to) an exposing hyperplane for x.

As it is also done in Cramér’s theorem, it will be assumed that 0 ∈ Do
Λ. This assumption

ensures that under certain assumptions Λ > −∞. Additionally, observe that the map
y 7→ Λ∗(y) is convex as supremum of a convex function. Furthermore, the function Λ∗ will
work as a rate function in the Gärtner-Ellis theorem. The following lemma by [Hollander,
2008] covers these claims.

Lemma 2.5.3. Assume that Λ(y) exists in [−∞,∞] for all y ∈ R and 0 ∈ Do
Λ, then

(i) Λ is convex and Λ(y) > −∞ for each y ∈ R.

(ii) Λ∗ is a rate function according to Definition 2.5.1.

The proof of (i) is a simply conclusion of the convexity of the Λn and the following
convexity of Λ∗. For the proof of (ii) and more detail see [Lemma V.4, Hollander, 2008].

Theorem 2.5.2 (Gärtner-Ellis). Let (ξn)n∈N be a collection of random variable on (R,B(R)).
Further, suppose that Λ(y) exists in [−∞,∞] for all y ∈ R and 0 ∈ Do

Λ, then

(i) For every closed set C ⊂ R

lim sup
n→∞

1

n
log (P [ξn ∈ C]) ≤ − inf

y∈C
Λ∗(y)

(ii) For every open set O ⊂ R

lim inf
n→∞

1

n
log (P [ξn ∈ O]) ≥ − inf

y∈O∩E
Λ∗(y)

where E is the set of those exposed points for Λ∗ which have an exposing hyperplane
in Do

Λ.

If, in addition, Λ is lower semicontinuous on R, differentiable on Do
Λ and either DΛ = R

or Λ is steep at ∂DΛ, i.e.

lim
t→∂Λ: t∈DΛ

|Λ̇(t)| = ∞

then O ∩E may be replaced by O in (ii). As a result, the LDP holds on R with rate n and
rate function Λ∗.

This theorem is rather general but still it does not capture all the cases in which a
sequence of random variables on Rd satisfies a LDP, as will be shown in Chapter 6 by a
concrete examples.
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3. The Semi-Complete Market Framework

3.1. Definition

In this part of the thesis, the semi-complete market for a fixed model will be introduced. The
range of arbitrage free prices, the utility indifference price and optimal purchase quantity
for exponential investors will be identified herein. This chapter mainly follows the results
in [Robertson and Spiliopoulos, 2018], as well as [Becherer, 2003].
To specify the semi-complete market model and the technical assumptions, let B be a
contingent claim. A market model is called semi-complete if every claim B allows the
decomposition

B = D + Y (3.1)

where D is replicable according to Definition 2.1.4. Y will denote the unhedgeable part of
the claim. Therefore, Y is assumed to be independent of the underlying assets.
To precisely define the semi-complete market one has to impose the structure of the claims
to the quintuple (Ω,F ,F,P;S) at the beginning. Therefore, let (Ω,F ,P) be a complete
probability space. The filtration F, the probability space will be equipped with, needs to
allow the decomposition

F = G ∨H = (Ft ∨Ht)0≤t≤T . (3.2)

Then the following theorem by [Wu and Gang, 1982] ensures that the usual conditions for
filtrations also hold for the composed filtration.

Lemma 3.1.1. F from (3.2) satisfies the usual conditions, if G and H do and GT ,HT ⊂ F
are P independent.

Proof. It has to be shown that F is right continuous and contains all P-null sets. Because
by assumption G and H contain all P-null sets and the decomposition (3.2) holds, F does
the same.
Consider η ∈ GT and ζ ∈ HT some integrable random variables. GT ,HT are assumed to be
P independent and hence

E[ηζ|Ft] = E[η|Gt] E[ζ|Ht] (3.3)

holds for all t ≥ 0. For an arbitrary t0 ≥ 0, let t ց t0 in (3.3). The right continuity of
G and H, as well as Levy’s continuity theorem, see [17.38, Kusolitsch, 2014], yield to

E[ηζ|Ft0 ] = E[η|Gt0 ]E[ζ|Ht0 ]

= E[η|G+
t0
] E[ζ|H+

t0
]

= E[ηζ|F+
t0
]
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3. The Semi-Complete Market Framework

Furthermore, linear combinations of integrable random variables, as η and ζ are dense in
L1 (FT ). Hence, for all ξ ∈ L1 (FT )

E[ξ|F+
t0
] = E[ηζ|Ft0 ]

holds and therefore F+
t = Ft.

To gain more specific results and build a semi-complete market framework, now, some
standing assumptions are supposed to hold.

Assumption 3.1. The filtration F admits the decomposition (3.2). GT ,HT ⊂ F are as-
sumed to be P independent and G,H fulfil the usual conditions.

Assumption 3.2. The price process S =
(
S1, . . . , Sd

)
is a d-dimensional, locally bounded

(P,G)-semi martingale. The market (Ω,F ,G,P;S) is supposed to be complete and arbitrage
free.

Since Assumption 3.2 holds, it follows from Theorem 2.1.2 and Definition 2.1.5 that there
exists a unique probability measure, denoted by Q0, equivalent to P on GT , in order that S
is a (Q0,G)-local martingale. Because of the equivalence of P and Q0 and Definition 2.3.4

H (Q0,P|GT ) <∞

holds. Furthermore, every claim ξ, which is GT -measurable by definition, is perfectly repli-
cable in the complete market. For all claims, that additionally satisfy EQ0 [|ξ|] < ∞,
there exists a unique x ∈ R and a (P,G;S)- and, as P ∼ Q0, also

(
Q0,G;S

)
-integrable,

d-dimensional trading strategy ∆, so that the associated value process

X∆
· = x+

∫ ·

0
∆udSu (3.4)

is a (Q0,G)-martingale. This immediately follows from (iii) in Theorem 2.1.2 and Definition
2.1.5. Moreover, X∆

T = ξ,P− a.s. holds for the finite maturity T .
Since G fulfils the usual conditions by Assumption 3.1, [Corollary 2.11 Ethier and Kurtz,
2005] guarantees the existence of a càdlàg modification of the value process X∆. Hence,
without loss of generality X∆ is assumed to be càdlàg.

Assumption 3.3. The contingent claim B admits the decomposition (3.1). Assume D to
be GT -measurable and Y to be HT -measurable.

Equipped with these assumptions, the main results for the semi-complete setting can
be formulated. As a first consequence of Assumption 3.1 and Assumption 3.2, more pre-
cisely the P-independence of GT and HT , it follows from equation (3.3) that every (P,G)-
martingale is a (P,F)-martingale as well. Moreover, S is even a special (P,F)-semi mar-
tingale. In fact, S is supposed to be a (P,G)-semi martingale and therefore a (P,F)-semi
martingale by Theorem A.2.1. Further, S is locally bounded, hence special. Therefore,
the stochastic integral with respect to S of a F-predictable and (P,F;S)-integrable process
exists. To make sure the stochastic integral process

∫ ·
0 ∆udSu coincides under G and F, one

may observe that it is well defined on G ⊂ F for a G-predictable process and a (P,F)(hence
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3. The Semi-Complete Market Framework

(P,G))-special semi martingale. Further note, [Proposition 8, Jacod, 1980] and Theorem
A.2.2 ensure, that under these conditions the stochastic integrals coincide and

L (S,G) ⊂ L (S,F) .

Thus, allG-predictable and (P,G;S)-integrable processes are also F-predictable and (P,F;S)
-integrable.
Recall the martingale measure Q0 on GT , which by Assumption 3.2 is unique. This one
has to be expanded to the enlarged filtration FT and hence, on the semi-complete market
(Ω,F ,F,P;S). Obviously, the extended measure should have the martingale property for
the enlarged market. To this end, define Q0 on FT by

Q0 [A] := E

[

dQ0

dP

∣
∣
∣
∣
GT

1A

]

; A ∈ FT . (3.5)

This kind of extension is call “martingale preserving probability measure” by [Amendinger,
Imkeller, and Schweizer, 1998]. It can be shown that under some assumptions the extended
measure retains the martingale property of all processes. For the results in this thesis, it is
only necessary to prove that S is a local martingale with respect to the extended measure.
Thus, define

Z0
t :=

dQ0

dP

∣
∣
∣
∣
Gt

=
dQ0

dP

∣
∣
∣
∣
Ft

; t ≤ T, (3.6)

the density process for Q0, and for an arbitrary P-equivalent martingale measure Q

ZQ
t :=

dQ

dP

∣
∣
∣
∣
Ft

; t ≤ T. (3.7)

According to Definition 2.1.1 further define

M = {Q ∼ P on FT : S is a (Q,F)− local martingale}. (3.8)

In the following the elements of M are stated more precisely. It will be shown, that Q0 is
a martingale measure for S with respect to F, hence an element of M. Therefore, some
structural results of the equivalent martingale measures in the semi-complete market are
given below. To this end we recall the results from [Becherer, 2003].

Lemma 3.1.2. For Q ∈ M, define the process R implicit through

ZQ
t = Z0

tRt; t ≤ T. (3.9)

In that case it follows that Q = Q0 on GT and E [Rt|Gt] = 1 for every t ≤ T .

Proof. First, let A ∈ Gt and consider the claim 1A. The completeness of the (P,G;S)-
market ensures the existence of a G-predictable and (P,G;S)-integrable strategy ∆ such
that for some unique x ∈ R

1A = x+

∫ T

0
∆tdSt = X∆

T (3.10)
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3. The Semi-Complete Market Framework

holds, see (3.4). As mentioned above this is a (Q0,G)-martingale. Furthermore, due to
∣
∣X∆

∣
∣ ≤ 1, it is a bounded martingale. By assumption Q ∈ M and as the stochastic integral

coincides, it holds that ∆ is (P,F;S)-integrable. From Lemma A.2.1 it follows that X∆ is
a (Q,F)-local martingale and hence even a (Q,F)-martingale. Now, consider for A ∈ Gt

Q [A] = EQ [1A] = EQ
[
X∆
T

]
= x = EQ0

[
X∆
T

]
= Q0 [A] .

Therefore, the densities coincide on Gt, i.e., dQ
dP |Gt = dQ0

dP |Gt = Z0
t . On the other hand

dQ
dP |Gt = Z0

t E [Rt|Gt] holds by definition. This yields to the result E [Rt|Gt] = 1 and Q = Q0

on GT .

Lemma 3.1.3. Define Q on FT via

dQ

dP
= Z0

TRT ,

where RT is HT -measurable, strictly positive and satisfies E [RT ] = 1. Then Q is an
equivalent martingale measure for S with respect to F, i.e., Q ∈ M

Proof. By assuming S to be a locally bounded (Q0,G)-local martingale, it follows that
there exists a sequence of G-stopping times (τm)m∈N such that Sm· = Sτm∧· is bounded
and hence a (Q0,G)-martingale. Set Ru = E [RT |Hu] for u ≤ T , which apparently is a
(P,G)-martingale. For some As ∈ Gs, Bs ∈ Hs and fixed 0 ≤ s ≤ t ≤ T one obtains

E

[

1As1BsSτm∧t
dQ

dP
|Ft

]

= E
[
1As1BsSτm∧tZ

0
tRt

] (3.3)
= E

[
1AsSτm∧tZ

0
t

]
E [1BsRt]

= E
[
1AsSτm∧sZ

0
s

]
E [1BsRs] = E

[

1As1BsSτm∧s
dQ

dP
|Fs

]

,

where the third equality follows from the fact that Gt and Ht are assumed to be P-
independent. Thus, the stopped process Sm is a bounded (Q,F)-martingale. By observing
that (τm)m∈N is also a F-stopping time, it follows that S is a local (Q,F)-martingale, which
yields to the result.

Assumption 3.1, 3.2 together with Lemma 3.1.3 imply that Q0 extended on FT , as
defined in (3.5) is in M. Thus, one could consider the optimal investment problem on the
semi-complete market.

3.2. Optimal Investment Problem

Consider a utility function U (x) = − 1
ae

−ax, x ∈ R of an exponential investor with a > 0,
the absolute risk aversion. Exponential utility and indifference pricing is always linked to
the theory of relative entropy, see Definition 2.3.4. Especially the set of measures having
finite relative entropy with respect to P, a subset of M, is relevant. This subset is given by

M̃ = {Q ∈ M : H (Q|P) <∞}. (3.11)
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3. The Semi-Complete Market Framework

As Lemma 3.1.3 shows, the unique measure Q0 extended on FT is in M. It follows im-
mediately from the definition of M̃ (3.11) and the relative entropy (2.3.4), that Q0 ∈ M̃.
As a result M̃ 6= ∅, which is related to the lack of arbitrage in the (P,F;S)-market by
the fundamental theorem of asset pricing by [Delbaen and Schachermayer, 2006]. Now,
recall the set of allowable strategies A. As defined in 2.3.1, a strategy ∆ is called allowable
with respect to P and F if it is F-predictable, (P,F;S)-integrable and the resultant value
process is a (Q,F)-super martingale for all P-equivalent martingale measures Q for S, here
Q ∈ M̃. Furthermore, recall the value function u (x, q) from Definition 2.3.2. The goal will
be to show that there exists an F-optimal strategy ∆̂ in A, solving the optimal investment
problem

u (x, q) = sup
∆∈A

E
[
U
(
X∆
T + qB

)]
; X∆

· = x+

∫ ·

0
∆udSu, (3.12)

for an initial value x and position size q in B. Therefore, first determine the value func-
tion without the contingent claim u (x, 0). The exponential utility yields to the following
property of the value function.

u (x, 0) = sup
∆∈A

E
[
U
(
X∆
T

)]
=sup

∆∈A
E

[

−
1

a
exp

(

−ax− a

∫ T

0
∆tdSt

)]

=eax sup
∆∈A

E

[

−
1

a
exp

(

−a

∫ T

0
∆tdSt

)]

=e−axu (0, 0) (3.13)

Hence, consider x = 0. The following proposition identifies the value function and the
associated optimization problem (3.12) for x = q = 0, i.e. without a claim.

Proposition 3.2.1. Let Assumption 3.1 and 3.2 hold. It follows that there exists an
optimal strategy ψ ∈ A to the optimal investment problem (3.12) for q = x = 0. Precisely,
ψ is G-predictable, (P,G;S)-integrable and satisfies the first order condition

dQ0

dP

∣
∣
∣
∣
GT

=
e−aX

ψ
T

E

[

e−aX
ψ
T

] . (3.14)

Further, Xψ is a Q-uniformly integrable (Q,F)-martingale for all Q ∈ M̃.

Sketch of proof. Before diving into the full proof, we would first like to give a brief overview
of the steps which are necessary to obtain the result. First note that, as Q0 is the unique
equivalent martingale measure in the complete (P,G;S)-market, it also has to be the unique
minimal entropy martingale measure. Therefore, the density takes the form from 2.3.3
and by taking a closer look on the entropy H(Q0,P|GT ), perceive by the duality results,
that there has to be an optimal strategy ψ solving the maximization problem (3.12) for
x = q = 0. In a second step, identify the extended Q0 on FT to be the minimal entropy
martingale measure relative to (P,F). This implies ψ to be the optimal trading strategy
in the (P,F;S)-market as well, if it can be shown that ψ is allowable, hence in A. As
mentioned above, the (P,F)-integrability, as well as the fact that ψ is F-predictable, hold
as ψ has this properties relative to G. Thus, in the last step, it has to be proven that
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3. The Semi-Complete Market Framework

the associated value process Xψ is a (Q,F)-super-martingale for every Q ∈ M̃. To this
end, we show it is a (Q,F)-local martingale for every Q ∈ M̃. Together with the results
for the density processes ZQ for some Q ∈ M̃ by [Kabanov and Strickler, 2002, Chapter
4] and [Delbaen, Grandits, et al., 2002], one may observe that the family of the stopped
value processes is Q uniformly integrable and hence Xψ is a Q uniformly integrable (Q,F)-
martingale for every Q ∈ M̃. Therefore, Xψ is particularly a (Q,F)-super-martingale. This
finishes the proof.

Proof. Consider the complete market (Ω,G,G,P, S). Hereunder, the optimal investment
problem (3.12) needs to be solved for trading strategies ∆ which areG-predictable, (P,G;S)-
integrable and the resultant value or wealth process X∆ is a (Q0,G)-super martingale.
Remember, that S is assumed to be locally bounded by Assumption 3.2 and that Q0 is the
unique equivalent local martingale measure for S on GT . Clearly, H (Q0|P|GT ) <∞ holds.
Since the (P,G;S)-market is complete and hence Q0 is unique, it follows from Theorem
2.3.1, that Q0 needs to be the minimal martingale measure, as defined in 2.3.5. By the
characterisation of the minimal entropy martingale measure 2.3.1 and Theorem 2.3.1, one
may conclude that (3.14) holds for some (P,G;S)-integrable trading strategy ψ such that
the value process Xψ is a (Q0,G)-martingale. Thus,

H(Q0,P|GT ) = EQ0

[

log
dQ0

dP

∣
∣
GT

]

= EQ0

[

−aXψ
T − log

(

E

[

e−aX
ψ
T

])]

(3.15)

= − log
(

E

[

e−aX
ψ
T

])

,

which yields

E

[

U(Xψ
T )
]

= −
1

a
E

[

e−aX
ψ
T

]

= −
1

a
e−H(Q0,P|GT ). (3.16)

Hence by Theorem 2.4.1, ψ is the optimal trading strategy in the (P,G;S)-market.
It remains to prove ψ is optimal among the larger class of trading strategies A in the
(P,F;S)-market. Therefore, recall the extended Q0 from (3.5). Assumptions 3.1 and 3.2
and Lemma 3.1.3 implicate that the extended Q0 is in M. For any Q ∈ M, Lemma 3.1.2
implies

E

[
dQ

dP
log

(
dQ

dP

)]

= E
[
Z0
TRT

(
log
(
Z0
T

)
+ log (RT )

)]

= E
[
E
[
Z0
TRT

(
log
(
Z0
T

)
+ log (RT )

)
|GT
]]

= E
[
Z0
T log

(
Z0
T

)]
+ E

[
Z0
TE [RT log (RT ) |GT ]

]

≥ E
[
Z0
T log

(
Z0
T

)]
+ E

[
Z0
T

]
= E

[
dQ0

dP
log

(
dQ0

dP

)]

,

where R is determined by Lemma 3.1.2. The third equality follows by the fact, that the
density process Z0

T is a P-martingale and E[RT |GT ] = 1 holds again by Lemma 3.1.2. The
conditional Jensen inequality yields to the estimation. Since, this estimation holds for
every Q ∈ M, Q0 has to be the (P,F)-minimal entropy martingale measure. As equation
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3. The Semi-Complete Market Framework

(3.16) still holds, it remains to prove that ψ ∈ A. This yields that ψ is the optimal trading
strategy, i.e., the solution of the optimal investment problem (3.12) for q = x = 0 in the
semi-complete market. To this end, it has to be proven thatXψ is a (Q,F)-super-martingale
for all Q ∈ M̃. As discussed above, ψ is F-predictable and (P,F;S)-integrable, due to these
properties hold for the filtration G.
First, make sure that Xψ is a (Q,F)-local martingale for all Q ∈ M. It was already
shown that Xψ is a (Q0,G)-martingale and hence a (Q0,G)-special semi-martingale. From

Proposition A.2.1 it follows that, since x = Xψ
0 = 0, Yt = sups≤t |Xψ

0 | is (Q0,G)-locally
integrable for all t ≤ T . Therefore, there exists a sequence of G-stopping times (τn)n∈N
such that τn ր ∞ for n → ∞ and that EQ0 [sups≤T∧τn |X

ψ
s |] < ∞. Now, fix this sequence

(τn)n∈N and let Q ∈ M. As a consequence, this gives

EQ

[

sup
s≤T∧τn

|Xψ
s |

]

= E

[

Z0
TRT sup

s≤T∧τn

|Xψ
s |

]

= E

[

E

[

Z0
TRT sup

s≤T∧τn

|Xψ
s |

∣
∣
∣
∣
GT

]]

= EQ0

[

sup
s≤T∧τn

|Xψ
s |

]

<∞,

by the fact that E[RT |GT ] = 1 and all τn are G-stopping times. Hence,
(
Xψ
)−

is (Q,G)-
integrable, further implying it is also (Q,F)-locally integrable. Together with the fact that
S is a (Q,F)-local martingale by imposing Q ∈ M, Lemma A.2.1 ensures that Xψ is a
(Q,F)-local martingale.
It remains to show that Xψ is a (Q,F)-super-martingale for all Q ∈ M̃. To this end,
first conclude that Xψ is a (Q0,F)-martingale. Therefore, fix 0 ≤ s ≤ t ≤ T and let
As ∈ Gs, Bs ∈ Hs. Further, consider

E[1As1BsX
ψ
t Z

0
t ] = P[Bs]E[1AsX

ψ
t Z

0
t ] = P[Bs]E[1AsX

ψ
s Z

0
s ] = E[1As1BsX

ψ
s Z

0
s ].

where the first equality follows by the P-independence of G and H, the second one holds as
it is already known that Xψ is a (Q0,G)-martingale and Z0

t is the density process of Q0.
In the following, the results from [Kabanov and Strickler, 2002] are applied. Therefore set

D :=
{

ZQ : Q ∈ M̃
}

;

TT := {τ : τ is F-stopping time such that τ ≤ T} ; (3.17)

Z̄t := exp
(

EQ0 [log(Z0
T )|Ft]

)

; t ≤ T,

as defined in A.2.3 and Lemma A.2.2. Together with the density of Q0 with respect to P

(3.14) one receives

log(Z̄t) = EQ0
[
log(Z0

T )|Ft
] (3.14)

= EQ0

[

−aXψ
T − log

(

E

[

e−aX
ψ
T

])

|Ft
]

;

= −aXψ
t − log

(

E

[

e−aX
ψ
T

])

; t ≤ T,

To complete the proof, one has to show that Xψ is of class DL, i.e. {Xτ : τ ≤ t} is Q

uniformly integrable for each t ≤ T . To this end, apply Theorem A.2.2, which implies that
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3. The Semi-Complete Market Framework

{log(Z̄τ∧T )}τ∈TT is Q uniformly integrable. Recall Z̃ from Definition A.2.3,

Z̃ = ZQ11[0,τ) +
ZQ1
τ

ZQ2
τ

ZQ21[τ,T ].

One may observe easily that E[Z̃T log(Z̃T )] <∞, Z̃T > 0 by definition of Z̃t. By the optimal
sampling theorem, one has E[Z̃T ] = 1. To make sure D is stable under concatenation, note
that as S is locally bounded by assumption and by again using the optimal sampling
theorem, it follows that Z̃t is the density process with respect to P of some Q̃ ∈ M̃,
see [Delbaen, Grandits, et al., 2002, Lemma 4]. Thus, D is stable under concatenation.
Therefore, by Lemma A.2.2 one receives that {log(Z̄τ∧T )}τ∈TT Q uniformly integrable, and

so is {Xψ
τ∧T }τ∈TT . Therefore, Xψ is of class DL and since it is a (Q,F)-local martingale

for every Q ∈ M̃, it is even a Q uniformly integrable (Q,F)-martingale for every Q ∈ M̃.
This completes the proof.

3.3. The Indifference Price in the Semi-Complete Market

As this work considers an investor with exponential utility, it follows immediately from the
balance equation of the utility indifference price (2.6) that p(x, q) does not depend on the
initial capital x, as seen in (3.13). Thus, one may write p(q) instead and assume x = 0
throughout. To identify p(q) consider

u(−qp(q), q) = sup
∆∈A

E

[

−
1

a
exp

(

−a

(

−qp(q) +

∫ T

0
∆tdSt + qB

))]

= eaqp(q)u(0, q)

and hence

u(−qp(q), q) = eaqp(q)u(0, q) = u(0, 0)

aqp(q) = − log

(
u(0, q)

u(0, 0)

)

p(q) = −
1

aq
log

(
u(0, q)

u(0, 0)

)

. (3.18)

To solve the optimal investment problem in the semi-complete market, the value function
u(0, q), together with the optimal trading strategy, which is denoted by ∆̂, as well as the
optimal local marginal measure Q̂ has to be determined. The idea is that, as D is perfectly
replicable by some initial capital denoted by d, the utility indifference price p(q) should be
decomposable to the form p(q) = d + p(q;Y ), where p(q;Y ) is the indifference price for q
units of the “unhedgeable” part Y of the claim B. By continuing this heuristic consideration,
a consequence of Y being independent of S, and therefore trading in S should not affect
p(q;Y ), is that p(q;Y ) should coincide with the average certainty equivalent. The equation

U(0) = E [U (qY − qp̂(q;Y ))]

is the implicit definition of the average certainty equivalent, denoted by p̂(q;Y ). In the case
of an exponential investor with utility function U(x) = − 1

ae
−ax, p̂(q;Y ) can be expressed
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3. The Semi-Complete Market Framework

by

p̂(q;Y ) = −
1

qa
E
[
e−qaY

]
. (3.19)

By specifying this thought, one should conclude that the allowable strategies in A have
to be F-predictable and hence are not independent of Y . As Proposition 3.3.1 below shows,
this has no effect on the decomposition of p(q).
In the sequel, the cumulant generating function of Y , as defined in A.1.1, will be used to
express the utility indifference price p(q). Therefore, set

Λ(λ) := log
(

E

[

eλY
])

; λ ∈ R (3.20)

As already discussed as a direct consequences of Assumption 3.2 and the formula for p̂(q;Y ),
it makes sense to consider integrable claims and hence the following conditions for D and
Y are imposed.

Assumption 3.4. For the claim B = D+Y , as in Assumption 3.3, it holds that for some
ǫ > 0, EQ0 [|D|1+ǫ] <∞ and for all λ ∈ R that Λ(λ) <∞.

Remark 3.1. As it can be seen in the proof of Proposition 3.2.1, if the duality results should
be used to solve the optimal investment problem, the integrability is a main property to
ensure that every (Q0,G)-martingale is also a (Q,F)-martingale as for any Q ∈ M̃. Thus,
it is essential for finding an optimal strategy in A. Therefore, the stronger condition upon
D, opposed to the one we needed in the consequences of Assumption 3.2 above is imposed.
In view of the formula for p̂(q;Y ) and consequently the one of the utility indifference price,
we assume Y to have exponential moments of all order. Otherwise one would have to
matter about position size. Despite all that, B is not required to be bounded and therefore
Assumption 3.4 will be sufficient.

Together with Assumption 3.4 the following proposition, that completes the optimal in-
vestment problem and determines the utility indifference price in the semi-complete market,
holds.

Proposition 3.3.1. Let Assumption 3.1, 3.2, 3.3 and 3.4 hold. Then for each q ∈ R it
follows that

u(0, q)

u(0, 0)
= e−qadE

[
e−qaY

]
, (3.21)

where d is the initial capital required to replicate D. Therefore, the indifference price p can
be written in the form

p(q) = d−
1

qa
log
(
E
[
e−qaY

])
= d−

1

qa
Λ(−qa). (3.22)

The F-optimal (i.e. G-predictable, (P,G;S)-integrable) trading strategy ∆̂ ∈ A is given by
∆̂ = −q∆1 + ψ, where ∆1 is the replication strategy for D and ψ is the optimal strategy

from Proposition 3.2.1. The associated value process X∆̂ is a (Q,F)-martingale for every
Q ∈ M̃. Furthermore, the optimal local martingale measure Q̂ ∈ M̃ for solving the optimal
investment problem (3.12) with claim has the form

dQ̂

dP
=
dQ0

dP

∣
∣
∣
∣
GT

e−qaY

E[e−qaY ]
. (3.23)
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3. The Semi-Complete Market Framework

Sketch of proof. The proof will be split up in three parts. First, one has to ensure that the
measure Q̂ as defined by (3.23) is in M̃ by using the independence of dQ0/dP|GT and Y ,
as well as the existence of all exponential moments of Y from Assumption 3.4.
As a second step, it will be shown that the trading strategy ∆̂ is in A, where the structure
of ∆̂ is taken into account. Proposition 3.2.1 implies that ψ ∈ A, hence it suffices to show
∆1 ∈ A. The third and main step, it to prove that the duality result 2.4.2 holds in this
setting and as a result Q̂ is the optimal local martingale measure and ∆̂ the optimal trading
strategy.

Proof. 1.Step. To make sure Q̂ ∈ M̃, firstly conclude that Q̂ ∈ M by Lemma 3.1.3. This
is an immediate consequence of the fact that the normalizing factor e−qaY /E[e−qaY ] of the
measure Q̂ has exception 1 and is HT -measurable. Therefore, it is sufficient to show that
H(Q̂, P ) <∞. Consider

H(Q̂,P) = E

[

Z0
T

e−qaY

E[e−qaY ]

(
log
(
Z0
T

)
− qaY − log

(
E
[
e−qaY

]))
]

= H(Q0,P|GT )− E

[

Z0
T

e−qaY

E[e−qaY ]
qaY

]

− E

[

Z0
T

e−qaY

E[e−qaY ]
log
(
E
[
e−qaY

])
]

= H(Q0,P|GT )− qa
E[Y e−qaY ]

E[e−qaY ]
− log

(
E
[
e−qaY

])
<∞.

The last equality follows from the fact that Z0, the density process of Q0 on GT , and
Y , a HT -measurable process, are independent. The inequality follows as there exist all
exponential moments for Y by Assumption 3.4, i.e. E[eλY ] < ∞ for all λ ∈ R. Thus,
Q̂ ∈ M̃.

2.Step. Now, consider ∆̂ = −q∆1 + ψ, where ∆1 is the replication strategy for D and ψ is
the optimal strategy from Proposition 3.2.1. To see ∆̂ ∈ A, let Q ∈ M̃. As the (P,G;S)-
market was supposed to be complete in Assumption 3.2 and D is an GT -measurable claim,
it follows that the replication strategy ∆1 is G-, hence F-predictable and both, (P,G;S)
and (P,F;S)-integrable. The same holds for ψ due to Proposition 3.2.1 and hence also for

∆̂. Furthermore, the process X∆̂ coincides under G and F with respect to P and thus, for

every P-equivalent measure on FT . Therefore, it is left to show that X∆̂
· , which can be

written as

X∆̂
· =

∫ ·

0
∆̂udSu = −q

∫ ·

0
∆1
udSu +

∫ ·

0
ψudSu = −q

(

X∆1

· − d
)

+Xψ
· , (3.24)

is a (Q,F)-super martingale. Since Xψ is a Q uniformly integrable (Q,F)-martingale by
Proposition 3.2.1, it has to be shownX∆1

is a (Q,F)-martingale as well. As Q0-integrability
for D was imposed in Assumption 3.4, Assumption 3.2 implies that (Q0,G)-martingale.
Note that X∆1

is G-adapted and that Q0 = Q on GT (Q0 is the unique local martingale
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3. The Semi-Complete Market Framework

measure on GT ). As there is a càdlàg modification of X∆1

, we obtain

EQ

[

sup
t≤T

|X∆1

t |

]

= EQ0

[

sup
t≤T

|X∆1

t |

]

= EQ0



sup
t≤T

∣
∣EQ0 [X∆1

T
︸︷︷︸

D

∣
∣Gt]
∣
∣





≤ EQ0





(

sup
t≤T

∣
∣EQ0

[
D
∣
∣Gt
] ∣
∣

)1+ǫ




1

1+ǫ

≤

(
1 + ǫ

ǫ

)

EQ0
[
|D|1+ǫ

] 1

1+ǫ
3.4
< ∞,

where the first inequality follows by Hölder’s inequality and the second from Doob’s maxi-
mal inequality. Lemma A.2.1 then implies that X∆1

is a (Q,F)-local martingale. Further,
let τ be an arbitrary F-stopping time and λ > 0. Under these premises the following
inequality holds.

EQ
[

|X∆1

t∧τ |1|X∆1

t∧τ |≥λ

]

≤ EQ

[

sup
t≤T

|X∆1

t |1
sup
t≤T

|X∆1

t |≥λ

]

≤ EQ

[

sup
t≤T

|X∆1

t |

]

.

Therefore, X∆1

is of class DL with respect to (Q,F), consequently a (Q,F)-martingale and
∆̂ ∈ A.

3.Step. For the last step, recall the equation (3.15) in Proposition 3.2.1, which leads to

H(Q0,P|GT ) = − log
(

E

[

e−aX
ψ
T

])

= − log (−au(0, 0)) . (3.25)

The last equality holds since ψ is the optimal strategy for q = x = 0 and thus, the

supremum is attained at ψ. Conclude from above that ∆̂ is G-predictable and so X∆̂, as

integral process, is G-adapted. Due to the P-independence of G and H, it follows that X∆̂

is independent of H. Moreover, ∆̂ ∈ A and as a consequence X∆̂ is a (Q,F)-martingale for

every Q ∈ M̃. Concerning the structure of X∆̂ from (3.24), one arrives at

a(X∆̂
T + qB) = −aXψ

T + qaX∆1

T − qad− qaD − qaY = −aXψ
T − qad− qaY,

since X∆1

T = D P-a.s. due to Assumption 3.2. Thus

E

[

U(X∆̂
T + qB)

]

= −
1

a
E

[

e−a(X
∆̂
T
+qB)

]

= −
1

a
e−qadE

[

e−aX
ψ
T
+qaY

]

= −
1

a
e−qadE

[

e−aX
ψ
T

]

E
[
e−qaY

]

= u(0, 0)e−qadE
[
e−qaY

]
.

(3.26)

To complete the proof, the duality result 2.4.2 has to hold for Q̂ and ∆̂. Hence

−
1

a
exp

(

−H(Q̂,P)− aEQ̂ [qB]
)

= −
1

a
exp

(

−E

[

ZQ̂
T

(

log(ZQ̂
T ) + qaB)

)])

;

= −
1

a
exp

(

−qaE

[

ZQ̂
T

(

B +
1

qa
log(ZQ̂

T )

)])

(3.27)
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3. The Semi-Complete Market Framework

in turn has to coincide with (3.26), i.e. E[U(X∆̂
T + qB)]. First, consider the term B +

1
qa log(Z

Q̂
T ) and note that by recalling the structure of Q̂ on FT in (3.23) it follows that

B +
1

qa
log(ZQ̂

T ) = D + Y +
1

qa
log

(

Z0
T

e−qaY

E[e−qaY ]

)

;

= D + Y +
1

qa
log
(
Z0
T

)
− Y −

1

qa
log
(
E
[
e−qaY

])
;

= X∆1

T +
1

qa
log
(
Z0
T

)
−

1

qa
log
(
E
[
e−qaY

])
.

Identifying that E[ZQ̂
T ] = 1 and E

[
e−qaY /E[e−qaY ]

]
= 1 results in

E

[

ZQ̂
T

(

B +
1

qa
log(ZQ̂

T )

)]

= E

[

X∆1

T Z0
T

e−qaY

E[e−qaY ]

]

+
1

qa
E

[

log
(
Z0
T

)
Z0
T

e−qaY

E[e−qaY ]

]

−
1

qa
log
(
E
[
e−qaY

])

= E

[

X∆1

T Z0
T

]

E

[
e−qaY

E[e−qaY ]

]

+
1

qa
E
[
log
(
Z0
T

)
Z0
T

]
E

[
e−qaY

E[e−qaY ]

]

−
1

qa
log
(
E
[
e−qaY

])

= d+
1

qa
H(Q0,P|GT )−

1

qa
log
(
E
[
e−qaY

])

= d−
1

qa
log (−au(0, 0))−

1

qa
log
(
E
[
e−qaY

])
.

In the equation above, the second equality follows as a result of the independence of Y
and X∆1

T Z0
T , the third one holds as X∆1

T is a (Q0,G)-martingale with expected value d
regarding to Q0 and the last one follows from (3.25). Now, inserting these results to (3.27)
gives

−
1

a
e
−qaE

[

ZQ̂
T

(

B+ 1

qa
log(ZQ̂

T
)
)]

= −
1

a
e−qad+log(−au(0,0))+log(E[e−qaY ]) = u(0, 0)e−qadE

[
e−qaY

]

= −
1

a
E[e−a(X

∆̂
T
+qB)].

Thus, it was shown that (3.26) coincides with (3.27), consequently Theorem 2.4.2 ensures
that ∆̂ is the optimal strategy, Q̂ is the optimal local martingale measure. Therefore,

E[U(X∆̂
T + qB)] = u(q, 0), in fact (3.21) holds and the indifference price p(q) equals (3.22).

3.4. Arbitrage Free Prices

As an incomplete market is considered, it is well known that there is no unique arbitrage
free price, actually there is a range of possible prices that do not admit arbitrage. For the
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3. The Semi-Complete Market Framework

consideration of optimal purchase quantities subsequently, it is necessary to identify this
range for the claim B precisely. Recall that the range of arbitrage free prices for Y 6= 0,
which is defined by equation (2.1). It is given as the open interval I = (b, b) , where

b = inf
Q∈M

EQ [B] ; b = sup
Q∈M

EQ [B] . (3.28)

The constructed semi-complete market setting permits an explicit characterization for the
boundaries b and b of I.

Lemma 3.4.1. If Assumptions 3.1, 3.2, 3.3 and 3.4 hold, it follows that

b = d+ essinfP(Y ) ; b = d+ esssupP(Y ) (3.29)

where d is the initial capital required to replicate D. Both, b and b, do not need to be finite,
since Y is not necessarily bounded.

Proof. First, fix a Q ∈ M, a P-equivalent local martingale measure for S. Then Lemma
3.1.2 implies that in this case ZQ

T = Z0
TRT for a HT -measurable RT , satisfying E[RT |GT ] =

1. Now, consider

EQ [B] = E

[

Z0
TRT (X

∆1

T + Y )
]

= E

[

Z0
TRTX

∆1

T

]

+ E
[
Z0
TRTY

]
, (3.30)

wherein the fact, that D = X∆1

T almost surely, was used. Furthermore, one may observe

that X∆1

T is a (Q0,G)-martingale with initial value d. Thus, continue the consideration as
follows,

(3.30) = E

[

E

[

Z0
TRTX

∆1

T

∣
∣GT
]]

+ E
[
Z0
TRTY

]
= E

[

Z0
TX

∆1

T E
[
RT
∣
∣GT
]]

+ E
[
Z0
TRTY

]

= EQ0

[

X∆1

T

]

+ E
[
Z0
TRTY

]
= d+ E

[
Z0
TRTY

]
.

The fact that E
[
Z0
TRTY

]
≥ essinfP(Y ) together with the equation above immediately

yields to

inf
Q∈M

EQ [B] ≥ d+ essinfP(Y ). (3.31)

The reverse direction needs a little more effort. First, consider the class of all strictly
positive, HT -measurable random variables RT , such that E[RT ] = 1 and denote it by
MT . Lemma 3.1.3 implies that for any RT ∈ MT the through dQ/dP = Z0

TRT defined
probability measure Q is in M. By additionally using the independence of G and H at
the identification of EQ[B], it is easy to see that EQ[B] = d + E[RTY ]. Therefore, by the
triangle inequality

inf
Q∈M

EQ [B] ≤ inf
Q∈M

EQ [D] + inf
Q∈M

EQ [Y ] = d+ inf
RT∈MT

E [RTY ] . (3.32)

As a next step, fix an m ∈ R such that P[Y < m] > 0 and set Am = {Y < m} ∈ HT .
Further, define for 0 < δ < 1

Rm,δT =
(1− δ)1Am + δ1Acm

(1− δ)P[Am] + δP[Acm]
.
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3. The Semi-Complete Market Framework

As Rm,δT is strictly positive, HT -measurable and E[Rm,δT ] = 1, one can conclude that Rm,δT ∈
MT . Therefore,

inf
RT∈MT

E [RTY ] ≤ E

[

Rm,δT Y
]

=
(1− δ)E[Y 1{Y <m}] + δE[Y 1{Y≥m}]

(1− δ)P[Y < m] + δP[Y ≥ m]

≤
m(1− δ)P[Y < m] + δE[Y 1{Y≥m}]

(1− δ)P[Y < m] + δP[Y ≥ m]
,

where the last inequity follows as Y was estimated by m. Since Y has all exponential
moments by Assumption 3.4, E[|Y |] < ∞ or rather E[|Rm,δT Y |] < ∞ holds. So by taking
δ ց 0 it follows that

inf
RT∈MT

E [RTY ] ≤ m,

and therefore taking mց essinfP(Y ) yields to infRT∈MT
E [RTY ] ≤ essinfP(Y ). Combin-

ing this with (3.32) proofs the reverse direction of (3.31) and thus

b = inf
Q∈M

EQ [B] = d+ essinfP(Y ). (3.33)

The upper bound b = d+ esssupP(Y ) can be calculated analogical.

3.5. Optimal Quantities

As the range of arbitrage free prices was identified above, the optimal purchase quantities
shall be determined next. So, let p̃ ∈ (b, b). If an investor could buy an arbitrary amount
of B for a unit prices p̃, one may ask what the optimal purchase number q̂ would be.
Therefore, u(−qp̃, q) shall be maximized over all q ∈ R, i.e.

sup
q∈R

u(−qp̃, q) = sup
q∈R

eaqp̃u(0, q)

= sup
q∈R

−
1

a
eaqp̃ exp

(

−aqp(q) + inf
Q∈M̃

H(Q,P)

)

= sup
q∈R

ea(qp̃−qp(q))u(0, 0),

where the second equality follows by the dual formulation (2.16) of u(0, q) and the closed
form of p(q) from (2.17), whereas the last one by (3.18). Although the set of arbitrage
free prices was defined in terms of all equivalent martingale measures Q ∈ M, [Theorem
7.1, Ílhan, Jonsson, and Sircar, 2005] implies, that it is sufficient to consider the measures
Q ∈ M̃ to obtain optimal purchase quantities. Since u(0, 0) < 0 a value q̂ is required that
minimizes qp̃ − qp(q) or more precisely q̂ ∈ argminq∈R(qp̃ − qp(q)). Inserting the received
formula for p(q) from (3.22), results in

inf
q∈R

(

qp̃− q

(

d−
1

qa
log
(
E
[
e−qaY

])
))

= inf
q∈R

(

q(p̃− d) +
1

a
log
(
E
[
e−qaY

])
)

= inf
q∈R

(

q(p̃− d) +
1

a
Λ(−qa)

)

.

(3.34)
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3. The Semi-Complete Market Framework

This equation can be solved in order to obtain the optimal q̂. The following proposition
shows that the optimal purchase number q̂ exists and is unique in R.

Proposition 3.5.1. If Assumption 3.1, 3.2, 3.3 and 3.4 hold and p̃ ∈ (b, b), where b, b
are defined as in (3.28), then there exists a unique purchase quantity p̂ ∈ R that solves the
optimization problem (3.34). Moreover, q̂ is the unique element in R satisfying the first
order condition for the optimization

p̃− d = Λ̇(−qa), (3.35)

where Λ̇(·) denotes the derivative of Λ(·).

Proof. First, rewrite the problem (3.34) in a more convenient form by taking q = −λ/a,
i.e.,

1

a
inf
λ∈R

(Λ(λ)− λ(p̃− d)) .

Now, define the function f(λ) := Λ(λ)−λ(p̃− d). By taking a closer look to the derivative
of f(λ), one may realize that, since Λ(λ) is strictly convex, Λ̇(λ) exists and is finite for all
λ ∈ R by Lemma A.1.1 (iii). The same is true for f(λ). To see f(·) is coercive too, consider
f(λ)/λ. For λ 6= 0 one arrives at

f(λ)

λ
=

Λ(λ)

λ
− (p̃− d).

As p̃ ∈ (b, b), it follows from Lemma 3.4.1 essinfP(Y ) < p̃− d < esssupP(Y ). Parts (i) and
(ii) of Lemma A.1.1 imply that there exists an ǫ > 0 such that lim inf |λ|ր∞ f(λ)/|λ| ≥ ǫ.
Therefore, lim inf |λ|ր∞ f(λ)/|λ| · λ = ∞. Consequently f is strictly convex and coercive.

Thus there exists a unique minimizer λ̂ ∈ R for the function f and by the standard results
of minimizer’s differentiable function, it follows that the minimizer λ̂ must fulfil the first
order condition (3.35). To make this plausible, first note that, since λ̂ minimizes f(λ), for
every λ ∈ R, f(λ)− f(λ̂) ≥ 0 holds, hence

Λ(λ)− Λ(λ̂) ≥ (λ− λ̂)(p̃− d).

Now, assume λ > λ̂. From the inequality above, one has

p̃− d ≤
1

λ− λ̂

∫ λ

λ̂
Λ̇(τ)dτ.

Taking λր λ̂, together with the smoothness of Λ(·), which is a consequence of Assumption
3.4, gives p̃− d ≤ Λ̇(λ̂). For the reverse direction, i.e., λ̂ > λ, a similar calculation provides
the opposite inequality.
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4. Large Embedding of Semi-Complete

Markets

4.1. The Sequence of Markets

In this section the semi-complete market setting is embedded in a sequence of markets.
The below constructed model motivates the consideration of semi-complete markets with
asymptotically vanishing hedging errors. For a fixed n ∈ N this setting describes a market
in which a sequence of risky assets are theoretically available to trade. In practice one is
only able to trade in the first n assets and since any contingent claim always depends on all
the sources of uncertainty the market is incomplete for every finite value of n. The consid-
ered and fixed probability space (Ω,F ,P) is required to admit a sequence of independent
Brownian motions (W j)j∈N. Further, the right-continuous, P-augmented enlargement of
the induced filtration of (W j)j∈N on [0, T ] shall be denoted by F.

Assumption 4.1. For a given µ = (µi)i∈N and Σ = (Σij)i,j∈N assume
∑∞

i=1 µ
2
i < ∞ and

Σ is symmetric, meaning that Σij = Σji. Further, Σ is supposed to be uniformly elliptic,
i.e. there exists a λ̃ > 0, such that for every ξ = (ξi)i∈N with |ξ|2 =

∑∞
i=1 ξ

2
i <∞, it holds

that ξTΣξ =
∑∞

i,j=1 ξiΣijξj ≥ λ̃|ξ|2.

In the following, let σ denote the lower triangular matrix uniquely determined by σσT =
Σ. Since Σ is symmetric and positive definite, as a consequence of being uniformly elliptic,
σ can be calculated by applying the recursive Cholesky factorization, see [Meister, 2008].
The sequence of risky assets (Si)i∈N develops according to the dynamic

dSit
Sit

= µidt+

i∑

j=1

σijdW
j
t ; i ∈ N, (4.1)

which can be summarized to dSt/St = µdt + σdW t. Hence, the assets follow a geometric
Brownian motion, see Definition 2.2.1. Therefore, for every i, j ∈ N, the instantaneous rate
of return of Si is µi and the instantaneous return covariance of Si, Sj is described through
Σij .
For a claim B in the sequence of markets, i.e. the FT -measurable non-traded asset, it holds
that

B =

∞∑

i=1

Bi, (4.2)

with Bi denoting a measurable random variable with respect to the σ-algebra generated
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4. Large Embedding of Semi-Complete Markets

by W i
T . As all the Brownian motions were assumed to be independent under the measure

P, so are (Bi)i∈N. Since the cumulant generating function of Bi, as before, will be part of
the explicit representation of the indifference price below, the notation will be simplified
by denoting it by Γi, so

Γi (λ) = logE
[

eλBi
]

; λ ∈ R. (4.3)

To ensure that the assumptions of Section 3 hold and that B is well defined, some further
assumptions are required in the sequel.

Assumption 4.2. For every i ∈ N, the cumulant generating function of Bi, Γi (λ) is finite
for all λ ∈ R, i.e. Γi(λ) <∞.

Assumption 4.3. The limit

∞∑

i=1

Γi (λ) = lim
Nր∞

N∑

i=1

Γi (λ) , (4.4)

exists and is finite for every λ ∈ R.

As a direct consequence of Assumption 4.2, it follows that all moments of Bi exist,
especially E

[
B2
i

]
< ∞. Therefore, Γ̇i(0) = E[Bi], with Γ̇i(·) denoting the first derivative

of Γi(·). Furthermore, limNր∞
∑N

i=1 Γi(λ) may depend on the order of summation, as
∑∞

i=1 |Γi(λ)| <∞ was not assumed. The following lemma implies that by Assumption 4.2
and Assumption 4.3, the claim B is well defined.

Lemma 4.1.1. Under Assumption 4.2 and 4.3 the sum
∑N

i=1Bi converges for N → ∞
P-almost surely, as well as in L2(P) to a random variable B. Particularly, the limits
limNր∞

∑N
i=1 E[Bi] and limNր∞

∑N
i=1Var(Bi) exists and are finite.

Proof. To ensure
∑N

i=1Bi converges to an element of L2(P), it has to be shown that

limNր∞
∑N

i=1 E[Bi] and limNր∞
∑N

i=1Var(Bi) exist and are finite. Then

lim
Nր∞

N∑

i=1

Var(Bi) =

∞∑

i=1

Var(Bi) =

∞∑

i=1

E
[
(Bi − E [Bi])

2
]

holds and implies L2(P)-convergence. Further, if the limits exist and are finite, Lemma
A.2.3 guarantees the P-almost sure convergence. Thus, consider limNր∞

∑N
i=1 E[Bi]. Due

to the convexity of each Γi, it follows that Γi(−λ) ≥ Γi(0) − λΓ̇i(0) for every λ > 0 and
consequently

−
1

λ
Γi (−λ) ≤ Γ̇i(0) = E [Bi] = log

(

exp

(

E

[
1

λ
λBi

]))

≤
1

λ
Γi (λ) ,

where the last inequality follows immediately by Jensen’s inequality. As a result, one
obtains for every M ∈ N with M > N

−
1

λ

M∑

i=N+1

Γi (−λ) ≤
M∑

i=N+1

E [Bi] ≤
1

λ

M∑

i=N+1

Γi (λ) .
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4. Large Embedding of Semi-Complete Markets

Since, − 1
λ

∑∞
i=1 Γi(−λ) and

1
λ

∑∞
i=1 Γi(λ) exist and are finite for every λ > 0 by Assumption

4.3, conclude that for every ǫ > 0 there is a Nǫ ∈ N, so that for all M,N > Nǫ, the sum
∣
∣
∑M

i=N+1 E [Bi]
∣
∣ ≤ ǫ. Therefore,

∑N
i=1 E [Bi] is a Cauchy sequence and by the completeness

of L2(P), the limit exists and is finite. It remains to show
∑∞

i=1Var(Bi) <∞. To this end,
one may apply the equation

x2 ≤
2

λ2

(

eλx + e−λx
)

; x ∈ R, λ > 0, (4.5)

to x =
∑N

i=1(Bi − E[Bi]). Therefore, consider

(
N∑

i=1

(Bi − E[Bi])

)2

=
N∑

i=1

(Bi − E[Bi])
2 +

N∑

i,j=1

i 6=j

(Bi − E[Bi])(Bj − E[Bj ])

and observe, that by taking the exception yields

E





(
N∑

i=1

(Bi − E[Bi])

)2


 =

N∑

i=1

E
[
(Bi − E[Bi])

2
]
+

N∑

i,j=1

i 6=j

E [BiBj ]− E [Bi]E [Bj ] .

Using the independence of Bi and Bj for i 6= j yields

E





(
N∑

i=1

(Bi − E[Bi])

)2


 =

N∑

i=1

E
[
(Bi − E[Bi])

2
]
=

N∑

i=1

Var (Bi) .

Due to inequality (4.5), one obtains

N∑

i=1

Var (Bi) ≤
2

λ2

(

E

[

eλ
∑N
i=1Bi

]

e−λ
∑N
i=1 E[Bi] + E

[

e−λ
∑N
i=1Bi

]

eλ
∑N
i=1 E[Bi]

)

As N → ∞, note that e±λ
∑∞
i=1 E[Bi] < ∞, since

∑∞
i=1 E [Bi] exists and is finite. By

Assumption 4.3
∑∞

i=1 Γi(λ) = log(E[eλ
∑∞
i=1Bi ]) < ∞ and consequently E[eλ

∑∞
i=1Bi ] <

∞.

In order to verify the assumptions from Chapter 3, especially to identify the equivalent
martingale measure for every market, the market price of risk θ has to be defined. To
this end, one may firstly notice that σ is invertible, as it is the unique non singular lower
triangular satisfying Σ = σTσ, computed by the Cholesky factorization. Thus, the inverse
σ−1 again is a lower triangular with diagonal elements σ−1

ii = 1/σii. Forward substitution
yields

σ−1
ij =

1

σii

(

δij −
i−1∑

k=1

σikσ
−1
kj

)

,
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4. Large Embedding of Semi-Complete Markets

thus, the market price of risk θ can be defined as in the one dimensional case, see Section
2.2, hence

θ = σ−1µ.

As by Assumption 4.1
∑∞

i=1 µ
2
i < ∞, θ can also be defined iteratively. Therefore, set

θ1 = µ/σ11 and observe that

θ2 = σ−1
21 µ1 +

1

σ22
µ2

=
1

σ22

(

−σ21
1

σ11

)

µ1 +
1

σ22
µ2

=
1

σ22
(µ2 − σ21θ1) .

Precisely, by induction it follows that θ = σ−1µ has an inductive representation

θi =
1

σii



µi −
i−1∑

j=1

σijθj



 , for i ≥ 2. (4.6)

Assumption 4.1 also implies that
∑∞

i=1 θ
2
i = θT θ = µTΣ−1µ ≤ (1/λ̃)µTµ < ∞, which

allows the definition of an equivalent measure Q̃ ∼ P on FT by

dQ̃

dP

∣
∣
∣
∣
FT

= E

(
∞∑

i=1

−θiW
i
·

)

T

, (4.7)

where E(·) denotes the stochastic exponential as defined in A.2.1. After the definition of
all the necessary parts, the described market model is semi-complete for each n ∈ N. The
next lemma guarantees that the market fulfils all the assumptions from Chapter 3.

Lemma 4.1.2. If Assumption 4.1, 4.2 and 4.3 hold, then for every n ∈ N consider the
market model with tradable assets S = (S1, . . . , Sn), a claim B splitting in D =

∑n
i=1B

i

and Y =
∑∞

i=n+1B
i, the right-continuous, P-augmented filtration generated byW 1, . . . ,Wn

denoted by G and right-continuous, P-augmented filtration generated by Wn+1,Wn+2, . . .
denoted by H. It follows, that this market is semi-complete for each n ∈ N. Indeed,
Assumption 3.1, 3.2, 3.3 and 3.4 hold, hence with

dn =
n∑

i=1

EQ̃
[
Bi
]

(4.8)

the utility indifference price pn(q) for q units of the claim B has the form

pn (q) = dn −
1

qa

∞∑

i=n+1

Γi (−qa) ; for q ∈ R. (4.9)
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4. Large Embedding of Semi-Complete Markets

The range of arbitrage free prices from Lemma 3.4.1 is given by (bn, bn), where

bn = dn +

∞∑

i=n+1

essinfP (Bi) ; bn = dn +

∞∑

i=n+1

esssupP (Bi) . (4.10)

For any price p̃n ∈ (bn, bn) the optimal purchase quantity q̂n fulfils the first order condition
according to Proposition 3.5.1

p̃n − dn =

∞∑

i=n+1

Γ̇i (−q̂na) . (4.11)

Proof. First, note that, as the Brownian motions W i are independent, so are the generated
filtrations G and H. Further, as both satisfy the usual conditions, Assumption 3.1 holds.
The claim B from (4.2) can be written as the sum of D and Y , hence Assumption 3.3 is
true. To make sure that Assumption 3.2 holds, firstly observe that σ is lower triangular and
square root of Σ, so S, i.e. the first n assets, only depend onW 1, . . . ,Wn. Therefore, S is G
adapted. By the martingale representation theorem every contingent claim in the (P,G;S)-
market can be exactly replicated by trading in the underlying stock. Indeed, as Z0S (recall
(3.6)) has to be a local martingale with respect to the generated Brownian filtration G,
the martingale representation theorem implies that there is an almost everywhere unique
process eliminating the drift term in the dynamics of Z0S. As this process is unique, the
associated local martingale measure Q0 is unique too and therefore, the (P,G;S)-market
is complete by the second fundamental theorem of asset pricing 2.1.2. Since S is given in
terms of the Brownian motions W 1, . . . ,Wn, the process can be calculated by using Itô’s
formula. Hence, the unique equivalent local martingale measure is

dQ0

dP

∣
∣
∣
∣
GT

=
dQ̃

dP

∣
∣
∣
∣
GT

= E

(
n∑

i=1

−θiW
i
·

)

T

,

with relative entropy

H (Q0|P|GT ) = EQ0

[

log

(

E

(
n∑

i=1

−θiW
i
·

)

T

)]

=
1

2

n∑

i=1

θ2i <∞.

As a direct consequence, Assumption 3.2 is satisfied as well. Thus, Assumption 3.4 remains
to be verified. To prove the integrability assumptions on D and Y , notice that by the
assumed existence of all cumulant generating functions of Bi, it follows that all moments
exist, in particular E [Bi] < ∞ for every i ∈ N. Furthermore, for every 0 < ǫ < 1 applying
Hölder’s inequality gives
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4. Large Embedding of Semi-Complete Markets

EQ0
[
|D|1+ǫ

]
= E

[

Z0
T

∣
∣
∣
∣

n∑

i=1

Bi

∣
∣
∣
∣

1+ǫ
]

≤ E

[

(Z0
T )

2

1−ǫ

] 1−ǫ
2

E





(
n∑

i=1

Bi

)2




1+ǫ

;

≤ e
T
2

1+ǫ
1−ǫ

∑n
i=1 θ

2
i

(

n

n∑

i=1

[B2
i ]

) 1+ǫ
2

<∞,

with Hölder exponents p = 2/(1 − ǫ) and q = 2/(1 + ǫ). The second inequality holds due
to Cauchy-Schwarz inequality and

E

[

(Z0
T )

2

1−ǫ

] 1−ǫ
2

= E



exp

(

−
n∑

i=1

θiW
i
T −

1

2

n∑

i=1

θ2i T

) 2

1−ǫ





1−ǫ
2

= exp

(

2

1− ǫ

T

2

n∑

i=1

θ2i

)

exp

(

−
T

2

n∑

i=1

θ2i

)

= exp

(

T

2

1 + ǫ

1− ǫ

n∑

i=1

θ2i

)

.

Concerning the integrability assumption for Y , the independence of the (Bi)i∈N is taken
into account. In fact,

E

[

eλY
]

= E

[

eλ
∑∞
i=n+1Bi

]

= e
log

(

E

[

e
λ
∑∞
i=n+1

Bi
])

= e
∑∞
i=n+1 Γi(λ) <∞

by Assumption 4.3. As the required assumptions for Proposition 3.3.1 hold, it follows
that for each n, the indifference price for q units of the claim B in the nth-market equals
p(q) = d− (1/(qa)) log(E[e−qaY ]). Since, by definition Q0 and Q̃ agree on the GT , together
with the definition of d and dn in Section 3.3 and (4.8) it follows that

d = EQ0 [D] =
n∑

i=1

EQ̃ [Bi] = dn

log
(
E
[
e−qaY

])
= log

[

e−qa
∑∞
i=n+1Bi

]

=
∞∑

i=n+1

Γi(−qa).

The next thing to verify is the range of arbitrage free prices. By proving essinfP(
∑∞

i=n+1Bi)
=
∑∞

i=n+1 essinfP(Bi) and esssupP(
∑∞

i=n+1Bi) =
∑∞

i=n+1 esssupP(Bi), Equation (4.10) fol-
lows instantaneously. To show essinfP(

∑∞
i=n+1Bi) =

∑∞
i=n+1 essinfP(Bi) and

esssupP(
∑∞

i=n+1Bi) =
∑∞

i=n+1 esssupP(Bi) firstly remember that
∑∞

i=1 E[Bi] exists due
to Lemma 4.1.1 and the Bi are independent for every i ∈ N. Without loss of general-
ity, assume that E[Bi] = 0 and, as every E[B2

i ] < ∞,
∑∞

i=1 E[B
2
i ] < ∞. Now, define
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4. Large Embedding of Semi-Complete Markets

M∞ =
∑∞

i=n+1Bi and observe M∞ < ∞ almost surely. Let c <
∑∞

i=n+1 essinfP(Bi).
Then it follows by the independence of the Bi, that P[M∞ < c] = 0 and consequently,
essinfP(

∑∞
i=n+1Bi) ≥

∑∞
i=n+1 essinfP(Bi). The reverse direction requires the definition of

M = (Mm)m∈N with Mm =
∑m+n

i=n+1Bi, which is a L2(P)-bounded martingale with respect
to the filtration Fm = σ(Bi, i = n + 1, . . . , n +m). Namely, as

∑∞
i=1 E[B

2
i ] < ∞ was as-

sumed, the L2 bound follows immediately and for m < u the martingale property is verified
by

E [Mu|Fm] = E

[
u+n∑

i=n+1

Bi

∣
∣
∣
∣
Fm

]

= E

[
m+n∑

i=n+1

Bi

∣
∣
∣
∣
Fm

]

+ E

[
u+n∑

i=n+m+1

Bi

∣
∣
∣
∣
Fm

]

=

m+n∑

i=n+1

Bi =Mm.

Thus, Mm = E[M∞|Fm] and therefore for m ∈ N

m+n∑

i=n+1

essinfP (Bi) = essinfP

(
m+n∑

i=n+1

Bi

)

= essinfP (Mm) = essinfP (E [M∞|Fm])

≥ essinfP (M∞) = essinfP

(
∞∑

i=n+1

Bi

)

where the first equality holds as a finite sum of the independent Bi is considered. By
taking m to ∞ the reverse direction is proved. The first order condition (4.11) follows from
Proposition 3.5.1 as one observes that Λ(λ) from (3.20) results in Λ(λ) =

∑∞
i=n+1 Γi(λ) and

that d
dλ

∑∞
i=1 Γi(λ) =

∑∞
i=1 Γ̇i(λ). Thus, notice that as the cumulant generating function

Γi(λ) is convex the derivative of Γi increases. This yields to

n∑

i=k

(Γi(λ)− Γi(λ− 1)) ≤
n∑

i=k

Γ̇i(λ) ≤
n∑

i=k

(Γi(λ+ 1)− Γi(λ)),

which means that
∑·

i=0 Γ̇i(λ) is a Cauchy sequence, since limn→∞
∑n

i=1 Γi(λ) is assumed to
exist in Assumption 4.3. As a result

∑·
i=0 Γ̇i(λ) converges to a finite limit, which completes

the lemma’s proof.

By Lemma 4.1.2 it follows that for every n ∈ N the nth-market is semi-complete and
fulfils the requirements from Section 3.3. To follow the aim of considering the market for
n = ∞ it requires a proof for the unique existence of the limit of the indifference price pn.
By Assumption 4.3 the second term of pn exists for n → ∞. Concerning dn from (4.8)
define

d = lim
n→∞

dn. (4.12)

To make sure d is well defined, i.e. the limit exists, recall Lemma 4.1.1 which proves that
limNր∞

∑N
i=1 E[Bi] and limNր∞

∑N
i=1Var(Bi) both exist and are finite. Further, consider

for any n ≤ N in N
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4. Large Embedding of Semi-Complete Markets

dN − dn =

N∑

i=n+1

EQ̃[Bi] =

N∑

i=n+1

EQ[Bi] +

N∑

i=n+1

(EQ̃[Bi]− E[Bi])

and
∣
∣
∣
∣

N∑

i=n+1

(EQ̃[Bi]− E[Bi])

∣
∣
∣
∣

2

=

∣
∣
∣
∣
E

[

dQ̃

dP

(
N∑

i=n+1

(Bi − E[Bi])

)] ∣
∣
∣
∣

2

≤ E

[∣
∣
∣
∣

dQ̃

dP

∣
∣
∣
∣

2
]

E

[∣
∣
∣
∣

(
N∑

i=n+1

(Bi − E[Bi])

)∣
∣
∣
∣

2
]

≤ eT
∑∞
i=1 θ

2
i

N∑

i=n+1

Var(Bi)

wherein the first inequality follows by the Hölder inequality with Hölder exponents p =
q = 2. The second inequality follows by the fact that

E

[

dQ̃

dP

2
]

= E

[

exp

(

−2

∞∑

i=1

θiW
i
T −

∞∑

i=1

θ2i T

)]

= exp

(

T

∞∑

i=1

θ2i

)

and the independence of (Bi)i∈N. Consequently, the replicating capitals dn are converging
to an unique replicating capital d. Therefore, in the n = ∞ market model, where all the
assets (Si)i∈N are available to trade, it follows from Lemma 4.1.1 that B ∈ L2(P) and that

the unique arbitrage free price for B is given by d = EQ̃[B]. Hence the market is complete.

In this large market example there occur large position sizes when the hedging errors for
the claim B are getting small. Due to a simple consideration, the connection of hedging
errors and position size shall be pointed out. In a complete market there are no hedging
errors, since every claim is perfectly replicable. Moreover, there is only one arbitrage free
price d for a given claim, so if there is a possibility to purchase claims for a price p̃ 6= d it
would be optimal to buy an infinite amount of claims. This simple idea also appears in the
following examples, where optimal purchase quantities can be calculated explicitly.

4.2. Examples

Example 4.1. Assume Bi
P
∼ N (γi, δ

2
i ) is normally distributed for every i ∈ N. Due to the

properties of the normal distribution it immediately follows that the cumulant generating
functions exist for every Bi, so Assumption 4.2 is satisfied. Calculating Γi(λ) by (4.3)
gives Γi(λ) = λγi + (1/2)λ2δ2i , and therefore, if

∑∞
i=1 |γi| < ∞ and

∑∞
i=1 δ

2
i < ∞ hold

additionally, Assumption 4.3 is satisfied as well. Therefore, it follows by Lemma 4.1.2 that
the range of arbitrage free prices goes from bn = −∞ to bn = ∞ for each n ∈ N. Hence,
by (4.11) it follows that the optimal purchase quantity q̂n for every p̃n ∈ R satisfies

∞∑

i=n+1

Γ̇i(q̂na) =
∞∑

i=n+1

γi − q̂na
∞∑

i=n+1

δ2i = p̃n − dn,
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4. Large Embedding of Semi-Complete Markets

thus

q̂n =
dn − p̃n +

∑∞
i=n+1 γi

a
∑∞

i=n+1 δ
2
i

.

As
∑∞

i=n+1 δ
2
i → 0 for n→ ∞, one may observe that if lim infn→∞|p̃n − d| > 0 holds, this

yields to |q̂n| → ∞ at a rate proportional to (
∑∞

i=n+1 δ
2
i )

−1.

Example 4.2. Another example for optimal positions becoming large is a claim B where

each Bi
P
∼ Poi(βi) is Poisson for every i ∈ N. Since the cumulant generating function of the

Poisson distribution always exists, Assumption 4.2 is satisfied. Calculating Γi(λ) by (4.3)
gives Γi(λ) = (eλ − 1)βi, and therefore, if

∑∞
i=1 |βi| < ∞ holds additionally, Assumption

4.3 is satisfied as well. Therefore, it follows by Lemma 4.1.2 that the range of arbitrage
free prices goes from bn = dn to bn = ∞ for each n ∈ N. Hence, by (4.11) it follows that
the optimal purchase quantity q̂n for every p̃n ∈ R satisfies

∞∑

i=n+1

Γ̇i(q̂na) = e−qa
∞∑

i=n+1

βi = p̃n − dn.

Since by construction of the range of arbitrage free prices p̃n > bn should always hold and
further dn ր d, conclude that bn = dn < d ≤ p̃n. Therefore, for any p̃n ≥ d > dn the
optimal purchase quantity q̂n for every p̃n ∈ R takes the form

q̂n = −
1

a
log

(
p̃n − dn
∑∞

i=n+1 βi

)

.

As
∑∞

i=n+1 β
2
i → 0 for n → ∞, one may observe that if lim infn→∞p̃

n − d > 0 holds, this
yields to |q̂n| → ∞ at a rate proportional to − log(

∑∞
i=n+1 β

2
i ).
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5. Relation of Limiting Indifference Price and

Optimal Quantities with Large Deviations

5.1. Introduction

This chapter deals with the main results of [Robertson and Spiliopoulos, 2018] concerning
the limiting indifference price and optimal purchase quantities in the sequence of semi-
complete markets. The vanishing unhedgeable component Yn of Bn in the nth-market,
combines the theory of large deviations from Section 2.5 with the one of utility indifference
pricing from Section 2.2. In the sequence of semi-complete markets, the limit of indifference
price of Bn shall be determined for n → ∞ while assuming that (Yn)n∈N has an LDP
according to Definition 2.5.2. Naturally, there will occur large positions naturally while
dealing with optimal quantities and, as demonstrated below, there will be non-trivial terms
in the limiting indifference price. To correctly define a general embedding of semi-complete
markets the following assumption is supposed to hold.

Assumption 5.1. There is a complete filtered probability (Ωn,Fn,Fn,Pn) for each n ∈ N,
with associated subfiltrations Gn and Hn, assets Sn, probability measures Qn

0 and claims
Bn so that Assumptions 3.1, 3.2, 3.3 and 3.4 are satisfied.

As shown in Chapter 4, there is an embedding that satisfies Assumption 5.1. Indeed,
the sequence of semi-complete markets, where one is only able to trade in the first n assets
S1, . . . , Sn in the nth-market, fulfils all the required conditions from Assumption 5.1. Next,
recall the definition of a large deviation principle 2.5.2. In the required setting for this
section, the Polish space S is imposed to be R, while for each n ∈ N the collection of
random variables ξn shall be Yn in the filtrated probability space (Ωn,Fn,Fn,Pn). In view
of the conditions for some important theorems, like Theorem 2.5.1 and 2.5.2, an additional
convergence condition for Yn is required. Due to Pn[Yn ∈ R] = 1 for every n ∈ N, it
is necessary that infy∈R I(y) = 0 for the upper bound to hold [Section 1.2 Dembo and
Zeitouni, 1998]. Since I is a good rate function, defined in 2.5.1, meaning that the level
sets are compact, there has to be at least one element y ∈ R with I(y) = 0. Therefore, by
assuming I(y) = 0 if and only if y = 0, it follows by the lower semicontinuity of the rate
function I, that for every ǫ > 0 the probability P[|Yn| ≥ ǫ] → 0 for n→ ∞. Indeed, due to
the upper bound from (2.19), one receives

lim sup
n→∞

1

rn
log (P [|Yn| ≥ ǫ]) ≤ − inf

s∈[ǫ,∞)
I(s),

which by rearrangement of the terms implies that P[|Yn| ≥ ǫ] → 0 for n → ∞. Hence,
the laws of Yn weakly converge to the Dirac mass at 0, which means that for n → ∞ the
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

unhedgeable component Yn vanishes. Assuming this is reasonable, as one may think of
Lemma 4.1.1 where Yn =

∑∞
i=n+1Bi converges to 0 in L2(P), hence in probability and

moreover, as will be shown below, it is very supportive by determining the limiting utility
indifference price and the optimal position size for an exponential investor.
Recall Proposition 3.3.1, Assumption 5.1 guarantees that the required conditions hold and
therefore,

pn(qn) = dn −
1

qna
log
(

EPn
[
e−qnaYn

])

, (5.1)

with dn = EQn0 [Dn] denoting the replication capital for the hedgeable part Dn of the claim
Bn for each n ∈ N. Furthermore, assume that the sequence of unhedgeable parts (Yn)n∈N
of (Bn)n∈N satisfies an LDP with I(y) = 0 if and only if y = 0. As shown above, this
results in vanishing of the unhedgeable components according to the LDP. One may expect
that as a consequence the limiting indifference price would be d = limn→∞ dn. As will be
shown in 5.2.1, this is true for finite position sizes, i.e. supn∈N |qn| < ∞. As large optimal
purchase quantities will arise naturally, for unbounded ones with limn→∞ qn/rn = l 6= 0
Varadhan’s integral lemma 2.5.1 together with some adapted integrability assumptions,
stated in Assumption 5.2, implicates that

lim
n→∞

pn(qn)− dn = −
1

la
sup
y∈R

(−lay − I(y)).

Further, note that commonly the rate function is assumed to be convex, which leads to
−1/(la) supy∈R(−lay − I(y)) 6= 0 for all l 6= 0. Therefore, there is a non-trivial large
deviations effect on the limiting utility indifference price. These heuristic observations give
rise of some major questions which are stated in [Robertson and Spiliopoulos, 2018]. The
questions that shall be discussed are given in the following.

1. Does the LDP hold for some (Yn)n∈N? What are sufficient conditions for an LDP to
hold?

2. If a LDP is assumed to hold for (Yn)n∈N, what would be the limiting indifference
prices? Which impact has the limiting ratio of |qn| and |rn| on the asymptotic be-
haviour of pn(qn)?

3. Which circumstances yield qn/rn → l for a value 0 < |l| <∞? What is the asymptotic
ratio of q̂n, the optimal purchase quantity from Proposition 3.5.1, and the scaling rn?

The remaining work of this thesis is to fully answer those question. First, in Section
5.2 a LDP for (Yn)n∈N is supposed to hold. This will lead to the answer of the second
and third question. In Proposition 5.2.1 the limiting utility indifference prices depending
on the asymptotic value of qn/rn will be identified. Furthermore, in Section 5.3 by still
assuming an LDP to hold, Proposition 5.3.1 considers the relations between q̂n, the optimal
purchase quantity, and the scaling rn of the large deviation. It will be shown that the
possibility to buy claims at price p̃ 6= d for all reasonable prices p̃, as specified later, leads
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

to 0 < lim infn→∞ |q̂n|/rn ≤ lim supn→∞ |q̂n|/rn < ∞. In other words, one is typically
within the large deviations regime where non-zero effects on the limiting indifference price
occur by purchasing optimal quantities. To finally answer the first question, Chapter 6
identifies sufficient conditions for a LDP to hold and precisely proves the LDP of (Yn)n∈N
for two concrete examples.

5.2. Analysis of Large Claims satisfying LDP

For each n ∈ N

Λn(λ) = log
(

EPn
[

eλYn
])

(5.2)

denotes the cumulant generating function of Yn. Therefore, (5.1) takes the form

pn(qn) = dn −
1

qna
Λn (−qna) . (5.3)

Due to Assumption 5.1, Assumption 3.4 holds for every n ∈ N, hence Λn(λ) <∞ for every
λ ∈ R. Further, by Lemma 2.4.1, q 7→ pn(q) is non-increasing.
Next, a LDP for (Yn)n∈N with some suitable integrability conditions will be imposed to
hold.

Assumption 5.2. The sequence of random variables (Yn)n∈N satisfies a LDP according
to Definition 2.5.2 with scaling rn and good rate function I(y). Furthermore, I(y) = 0 is
supposed to hold if and only if y = 0 and there exists a constant δ > 0 such that for ǫ = ±δ

lim sup
n→∞

1

rn
log
(

EPn
[
eǫrnYn

])

= lim sup
n→∞

1

rn
Λn(ǫrn) <∞ (5.4)

Remark 5.1. In this setting, the convexity of I(y) is not assumed and hence, −1/(la)
supy∈R(−lay − I(y)) may be zero for an l 6= 0. In Section 5.3 the definition of reasonable
prices will replace this.

Due to (5.4), the moment condition of Theorem 2.5.1 is satisfied. Hence, one may ask
for the maximal ǫ fulfilling the bound (5.4). Therefore, define

M̄ := sup

{

M ∈ R : lim sup
n→∞

1

rn
Λn(Mrn) <∞

}

;

M := inf

{

M ∈ R : lim sup
n→∞

1

rn
Λn(Mrn) <∞

} (5.5)

and

M∗ := sup

{

M ∈ R : sup
y∈R

(My − I(y)) <∞

}

,

M∗ := inf

{

M ∈ R : sup
y∈R

(My − I(y)) <∞

}

.

(5.6)
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

By the adapted integrability conditions in Assumption 5.2 it follows thatM ≤ −δ < δ ≤ M̄ .
Recall the moment condition of Varadhan’s integral lemma 2.5.1, then one may notice that
it is satisfied by Assumption 5.2. Indeed, for ǫ̃ > 0 choose γ = (M + ǫ̃)/M > 1 with
M + ǫ̃ < M̄ , the lim supn→∞(1/rn)Λn(γMrn) = lim supn→∞(1/rn)Λn((M + ǫ̃)rn) < ∞.
Thus, it follows for an affine function with M ∈ (M, M̄)

lim
n→∞

1

rn
Λn(Mrn) = sup

y∈R
(My − I(y)) <∞ (5.7)

Since M and M̄ are working as bounds for the moment condition of Varadhan’s inte-
gral lemma 2.5.1 and consequently ensure its validity, M∗ and M∗ may be different from
M and M̄ . Thus

−∞ ≤M∗ ≤M ≤ −δ < 0 < δ ≤ M̄ ≤M∗ ≤ ∞. (5.8)

As mentioned in the introduction, the limiting ratio of the sequence of purchase quantities
(qn)n∈N and the scaling rn of the LDP plays an important role in the evaluation of the
limiting indifference price. For the further analysis suppose Assumption 5.2 holds. One
then has to study the limiting indifference price pn(qn) in three different regimes for every
arbitrary sequence (qn)n∈N with |qn| → ∞ up to oscillations. Define the regimes as follows

lim
n→∞

|qn|

rn







= 0 Regime 1,

∈ (0,∞) Regime 2,

= ∞ Regime 3.

(5.9)

The following proposition shows the different forms of the limiting indifference price de-
pending on both the regimes and the different values of M∗,M, M̄ and M∗. The result is
given for all limits l ∈ [−∞,∞] with qn/rn → l such that the moment condition for Varad-
han’s integral lemma 2.5.1 and (5.4) are satisfied. Thus, apart from l ∈ [−M/a,−M∗/a]
and l ∈ [−M∗/a,−M̄/a] all l ∈ R are treated below.

Proposition 5.2.1. Under Assumption 5.1 and 5.2 it holds that,

1. Regime 1: If limn→∞ |qn|/rn = 0, then limn→∞(pn(qn)−d
n) = 0. This holds especially

if supn∈N |qn| <∞.

2. Regime 2:

• If limn→∞ qn/rn = l ∈ (0,∞)

- with l ∈
(

0,−M
a

)

it follows that

lim
n→∞

(pn(qn)− dn) = inf
y∈R

(

y +
1

al
I(y)

)

∈ (−∞, 0], (5.10)

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

- with M∗ > −∞ and l > −M∗
a it follows that

lim
n→∞

(pn(qn)− dn) = −∞. (5.11)

• If limn→∞ qn/rn = l ∈ (−∞, 0)

- with l ∈
(

−M̄
a , 0

)

it follows that

lim
n→∞

(pn(qn)− dn) = sup
y∈R

(

y +
1

al
I(y)

)

∈ [0,∞), (5.12)

- with M∗ <∞ and l < −M∗

a it follows that

lim
n→∞

(pn(qn)− dn) = ∞. (5.13)

3. Regime 3:

• If limn→∞ qn/rn = ∞, then

- if M∗ > −∞ it follows that

lim
n→∞

(pn(qn)− dn) = −∞, (5.14)

- if M = −∞ it follows that

lim sup
n→∞

(pn(qn)− dn) ≤ inf{y ∈ R : I(y) <∞}. (5.15)

• If limn→∞ qn/rn = −∞, then

- if M∗ <∞ it follows that

lim
n→∞

(pn(qn)− dn) = ∞, (5.16)

- if M̄ = ∞ it follows that

lim inf
n→∞

(pn(qn)− dn) ≥ sup{y ∈ R : I(y) <∞}. (5.17)

Proposition 5.2.1 covers all cases for the different values of the boundsM∗,M, M̄ and M∗

in every regime. It is the most general case and therefore not easily readable. For reader’s
convenience the following proposition handles a special case of Proposition 5.2.1 pointing
out the main results by assuming M = −∞ and M̄ = ∞. This implicates that Varadhan’s
integral lemma 2.5.1 holds for all M ∈ R and moreover, it implies that M∗ = −∞ and
M∗ = ∞.

Proposition 5.2.2. Under Assumption 5.1 and 5.2 it holds that,

1. Regime 1: If limn→∞ |qn|/rn = 0, then limn→∞(pn(qn)−d
n) = 0. This holds especially

if supn∈N |qn| <∞.
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

2. Regime 2: If limn→∞ |qn|/rn = l ∈ (0,∞) it follows that

lim
n→∞

(pn(qn)− dn) = −
1

la
sup
y∈R

(−lay − I(y)) ∈ R (5.18)

3. Regime 3:

• If limn→∞ qn/rn = ∞, then lim supn→∞(pn(qn)− dn) ≤ inf{y ∈ R : I(y) <∞}.

• If limn→∞ qn/rn = −∞, then lim infn→∞(pn(qn)−d
n) ≥ sup{y ∈ R : I(y) <∞}.

As Proposition 5.2.2 is a special case of Proposition 5.2.1, the proof follows immediately
from the one of 5.2.1 below.

Proof of Proposition 5.2.1. Regime 1: In order to guarantee the moment condition (5.4),
recall δ from Assumption 5.2 and fix an ǫ > 0 such that ǫa < δ. Further, observe that,
as limn→∞ |qn|/rn = 0, there exists an n ∈ N such that |qn| < ǫrn for n large enough. As
pn(qn) is non-increasing due to Lemma 2.4.1 and −ǫrn ≤ qn ≤ ǫrn the following inequality
holds,

−
1

aǫrn
Λn(−aǫrn) = pn(ǫrn)− dn ≤ pn(qn)− dn ≤ pn(−ǫrn)− dn =

1

aǫrn
Λn(aǫrn).

Together with Varadhan’s integral lemma 2.5.1 this implicates

lim inf
n→∞

pn(qn)− dn ≥ lim inf
n→∞

pn(ǫrn)− dn = −
1

aǫ
sup
y∈R

(−aǫy − I(y))

lim sup
n→∞

pn(qn)− dn ≤ lim sup
n→∞

pn(−ǫrn)− dn =
1

aǫ
sup
y∈R

(aǫy − I(y)).

Note, that for some y±ǫ ∈ [l±ǫa, u±ǫa], with ǫ small enough as required above and lǫ and uǫ

as defined in Lemma A.1.3, the maximum of the function (±aǫy − I(y)) over all y ∈ R is
attained, hence

lim inf
n→∞

pn(qn)− dn ≥ y−ǫ +
1

aǫ
I(y−ǫ) ≥ y−ǫ

lim sup
n→∞

pn(qn)− dn ≤ y+ǫ −
1

aǫ
I(y+ǫ) ≤ y+ǫ.

(5.19)

Additionally, Lemma A.1.3 states that l±ǫ → 0 as well as u±ǫ → 0 for ǫ→ 0 and therefore
y±ǫ → 0. As (5.19) holds for all ǫ small enough, the inequality also holds for the limiting
value for ǫ→ 0. This concludes the proof for Regime 1, as limn→∞ pn(qn)− dn = 0.

Regime 2: Suppose limn→∞ |qn|/rn = l ∈ (0,∞). To prove (5.10) assume 0 < l < −M/a.
By the limit requirement, it follows that there exists an n ∈ N large enough such that
(l− γ)rn ≤ qn ≤ (l+ γ)rn for a constant γ > 0. By choosing γ small enough it follows that

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

M < −a(l + γ) < −a(l − γ) < 0 which by the fact that qn 7→ pn(qn) is non-increasing, see
Lemma 2.4.1, yields

pn(qn)− dn ≤ pn((l − γ)rn)− dn = −
1

a(l − γ)rn
Λn(−a(l − γ)rn)

pn(qn)− dn ≥ pn((l + γ)rn)− dn = −
1

a(l + γ)rn
Λn(−a(l + γ)rn).

Further, note that as I(y) ≥ 0 for every y ∈ R and I(y) = 0 if and only if y = 0,
supy∈R(−(l − γ)ay − I(y)) ≥ 0. As −a(l + γ) > M ≥ M∗ and by the definition of M∗ it
follows that supy∈R(−(l + γ)ay − I(y)) ≤ ∞. Then, Varadhan’s integral lemma 2.5.1 for
ǫ = rn implies

lim sup
n→∞

pn(qn)− dn ≤ lim sup
n→∞

pn((l − γ)rn)− dn
2.5.1
= −

1

a(l − γ)
sup
y∈R

(−a(l − γ)ay − I(y))

= inf
y∈R

(

y +
I(y)

(l − γ)a

)

≤ 0;

lim inf
n→∞

pn(qn)− dn ≥ lim inf
n→∞

pn((l + γ)rn)− dn
2.5.1
= −

1

a(l + γ)
sup
y∈R

(−a(l + γ)ay − I(y))

= inf
y∈R

(

y +
I(y)

(l + γ)a

)

> −∞.

As affine functions are convex and concave and the infimum of a concave function again is
concave, one can draw the conclusion that the function τ 7→ infy∈R(y+τI(y)) is continuous
on the interior of its effective domain. Thus, (5.10) follows by taking γ → 0.

To prove (5.11) assume that M∗ > −∞ and l > M∗/a. As M∗ ≤ M , l > −M/a follows
immediately from (5.8). Consequently, there is a γ > 0 such that for an n ∈ N large enough
it is reasonable to assume that qn ≥ (l− γ)rn and l− γ > −M∗/a ≥ −M/a. Again, due to
the fact that qn 7→ pn(qn) is non-increasing, it follows that

pn(qn)− dn ≤ pn((l − γ)rn)− dn = −
1

a(l − γ)rn
Λn(−a(l − γ)rn). (5.20)

Recall the definition of M in (5.5) and note that this together with −a(l− γ) < M implies
that lim supn→∞(1/rn)Λn(−a(l− γ)rn) = ∞. To show that even limn→∞(1/rn)Λn(−a(l−
γ)rn) = ∞ suppose there exists a subsequence with lim supk→∞(1/rk)Λk(−a(l−γ)rk) <∞.
Therefore, for the subsequence for which the LDP still holds, the conditions for Varadhan’s
integral lemma 2.5.1 are satisfied. Thus, for γ sufficiently small, it results in

lim
k→∞

(1/rk)Λk(−a(l − 2γ)rk) = sup
y∈R

(−a(l − 2γ)y − I(y)) <∞.

Due to γ being such that −a(l − 2γ) < M∗ there is a contradiction to the definition of
M∗, as according to this definition supy∈R(−a(l − 2γ)y − I(y)) has to be ∞. Hence, as
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

−1/(a(l − γ)rn) < 0 and equation (5.20) holds, it follows that limn→∞ pn(qn)− dn = −∞.

Consider limn→∞ qn/rn = l for an l ∈ (−∞, 0). To receive the result in this case the
approach is analogue to the one for l > 0. As a first step, suppose M̄/a < l < 0. By
the limit requirement, it follows that there exists an n ∈ N large enough such that (l −
γ)rn ≤ qn ≤ (l + γ)rn for a constant γ > 0. By choosing γ small enough it follows
that 0 < −a(l + γ) < −a(l − γ) < M̄ < 0 which due to the fact that qn 7→ pn(qn) is
non-increasing, see Lemma 2.4.1, yields

pn(qn)− dn ≤ pn((l − γ)rn)− dn = −
1

a(l − γ)rn
Λn(−a(l − γ)rn)

pn(qn)− dn ≥ pn((l + γ)rn)− dn = −
1

a(l + γ)rn
Λn(−a(l + γ)rn).

Further, note that as I(y) ≥ 0 for every y ∈ R and I(y) = 0 if and only if y = 0,
supy∈R(−(l + γ)ay − I(y)) ≥ 0. As −a(l − γ) < M̄ and by the definition of M̄ it follows
that supy∈R(−(l − γ)ay − I(y)) <∞. Varadhan’s integral lemma 2.5.1 for ǫ = rn implies

lim sup
n→∞

pn(qn)− dn ≤ lim sup
n→∞

pn((l − γ)rn)− dn
2.5.1
= −

1

a(l − γ)
sup
y∈R

(−a(l − γ)ay − I(y))

= sup
y∈R

(

y +
I(y)

(l − γ)a

)

<∞;

lim inf
n→∞

pn(qn)− dn ≥ lim inf
n→∞

pn((l + γ)rn)− dn
2.5.1
= −

1

a(l + γ)
sup
y∈R

(−a(l + γ)ay − I(y))

= sup
y∈R

(

y +
I(y)

(l + γ)a

)

≥ 0.

As affine functions are convex and concave and the supremum of a convex function again
is convex, one may conclude that the function τ 7→ infy∈R(y + τI(y)) is continuous on the
interior of its effective domain. Thus, (5.12) follows by taking γ → 0.

To prove (5.13) assume that M∗ < ∞ and l < M∗/a. As M∗ ≥ M̄ , l < −M̄/a follows
immediately from (5.8). Consequently, there is a γ > 0 such that for a n ∈ N large enough
it can be assumed that qn ≥ (l + γ)rn and l + γ < −M∗/a ≤ −M̄/a. Again, due to the
fact that qn 7→ pn(qn) is non-increasing it follows that

pn(qn)− dn ≥ pn((l + γ)rn)− dn = −
1

a(l + γ)rn
Λn(−a(l + γ)rn). (5.21)

Recall the definition of M̄ in (5.5) and note that it, together with −a(l + γ) > M̄ , implies
that lim supn→∞(1/rn)Λn(−a(l + γ)rn) = ∞. An analogous argumentation as presented
above yields to limn→∞ pn(qn)− dn = ∞.

Regime 3: First, assume that qn/rn → ∞. This implies that for each M > 0 there exists
a N ∈ N such that qn ≥ Mrn for every n > N . As pn(qn) is non-increasing in qn, one
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

receives

pn(qn)− dn ≤ pn(Mrn)− dn = −
1

Mrn
Λn(−Mrn). (5.22)

Then, in caseM∗ > −∞, it follows by (5.8) thatM > −∞. By choosingM sufficiently large
such that −aM < M∗ ≤M the definition ofM∗ yields lim supn→∞(1/rn)Λn(−aMrn) = ∞.
To see that even limn→∞(1/rn)Λn(−aMrn) = ∞ suppose there exists a subsequence with
lim supk→∞(1/rk)Λk(−a(l−γ)rk) <∞. Therefore, for the subsequence, for which the LDP
still holds, the conditions for Varadhan’s integral lemma 2.5.1 are satisfied. Thus, for γ
small enough that −a(M − γ) < M∗, it results in

lim
k→∞

(1/rk)Λk(−a(M − γ)rk) = sup
y∈R

(−a(M − γ)y − I(y)) <∞.

This is a contradiction to the definition of M∗, as according to this supy∈R(−a(M − γ)y −
I(y)) has to be ∞. Hence, as −1/(a(M − γ)rn) < 0 and equation (5.22) holds, it follows
that limn→∞ pn(qn)− dn = −∞, proving (5.14).
To show (5.15), note that assuming M = −∞ forces M∗ = −∞. Then, by equation (5.22)
and Varadhan’s integral lemma 2.5.1 for every M > 0, it follows that

lim sup
n→∞

pn(qn)− dn ≤ lim sup
n→∞

pn(Mrn)− dn = −
1

aM
sup
y∈R

(−aMy − I(y))

= inf
y∈R

(

y +
I(y)

aM

)

.

Moreover, infy∈R(y + I(y)/(aM)) is decreasing in M . Note that

lim sup
n→∞

pn(qn)− dn ≤ lim
M→∞

inf
y∈R

(

y +
I(y)

aM

)

(5.23)

and observe that as I(y) ≥ 0 for any y ∈ R

lim
M→∞

inf
y∈R

(

y +
I(y)

aM

)

= lim
M→∞

inf
y∈R

I(y)<∞

(

y +
I(y)

aM

)

≥ inf {y ∈ R : I(y) <∞} .

Then fix a y with I(y) < ∞. Since infy∈R(y + I(y)/(aM)) ≤ y + I(y)/(aM), by taking
M → ∞ one receives

lim
M→∞

inf
y∈R

(

y +
I(y)

aM

)

≤ lim
M→∞

y + I(y)/(aM) = y.

Taking y → inf{y ∈ R : I(y) <∞} results in
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

lim
M→∞

inf
y∈R

(

y +
I(y)

aM

)

= inf {y ∈ R : I(y) <∞} ,

which by (5.23) provides the result in (5.15).

Proving (5.16) for qn/rn → −∞ requires a similar argumentation as for qn/rn → ∞. For
M̄ = ∞, note that M∗ = ∞ follows instantaneously. This implies that for each M < 0
there exists an N ∈ N such that qn ≤ Mrn for every n > N as rn → ∞. As pn(qn) is
non-increasing in qn one receives

pn(qn)− dn ≥ pn(Mrn)− dn = −
1

Mrn
Λn(−Mrn). (5.24)

Together with Varadhan’s integral lemma 2.5.1, this implicates for every M < 0

lim inf
n→∞

pn(qn)− dn ≥ lim inf
n→∞

pn(Mrn)− dn = −
1

aM
sup
y∈R

(−aMy − I(y))

= sup
y∈R

(

y +
I(y)

aM

)

.

Observe that supy∈R(y + I(y)/(aM)) is decreasing in M and that

lim inf
n→∞

pn(qn)− dn ≥ lim
M→∞

sup
y∈R

(

y +
I(y)

aM

)

. (5.25)

Further, note that as I(y) ≥ 0 for any y ∈ R and M < 0

lim
M→∞

sup
y∈R

(

y +
I(y)

aM

)

= lim
M→∞

sup
y∈R

I(y)<∞

(

y +
I(y)

aM

)

≤ sup {y ∈ R : I(y) <∞} .

Then fix a y with I(y) < ∞. Since supy∈R(y + I(y)/(aM)) ≥ y + I(y)/(aM), by taking
M → −∞ one receives

lim
M→−∞

sup
y∈R

(

y +
I(y)

aM

)

≥ lim
M→−∞

y + I(y)/(aM) = y.

Taking y → sup{y ∈ R : I(y) <∞} yields

lim
M→−∞

sup
y∈R

(

y +
I(y)

aM

)

= sup {y ∈ R : I(y) <∞} ,

which by (5.25) provides the result in (5.17).
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

5.3. Relations of Optimal Quantities and Large Deviations

Scaling

In accordance to the appropriate section of [Robertson and Spiliopoulos, 2018], this section
is about the specification of the limiting value l when qn is the sequence of optimal pur-
chasing quantities. Section 5.2 deals with the evaluation of all possible limiting indifference
prices for each limit l = limn→∞ qn/rn. The major achievement is proving that by pur-
chasing optimal quantities the limiting valuesl ∈ {0,±∞} does not occur for all reasonable
prices as defined below. First, recall Proposition 3.5.1, more precisely the unique value
q̂n(p̃

n) satisfying the first order condition (3.35) for every p̃n ∈ (bn, b̄n) with bn and b̄n as
in Lemma 3.4.1. This gives

bn = dn + essinfPn(Yn), b̄n = dn + esssupPn(Yn).

In order to motivate the reasonable prices, two special cases should be excluded in the
following considerations. A reasonable price p̃n ∈ (bn, b̄n) should satisfy lim infn→∞ |p̃n −
dn| > 0. The first case violates this condition is a trivial one. In fact, if there exists some
subsequence (Yk)k∈N of (Yn)n∈N and some limit ly denoting

ly = lim
k→∞

esssupPk(Yk) = lim
k→∞

essinfPk(Yk),

by the definition of the essential supremum and infimum, more specifically as Pn[Yn ≥
ly + ǫ] → 0 and Pn[Yn ≤ ly − ǫ] → 0, it follows that (1/rn) log(P

n[Yn ≥ ly + ǫ]) → −∞
and (1/rn) log(P

n[Yn ≤ ly − ǫ]) → −∞ for any ǫ > 0. As I(y) = 0 if and only if y = 0 by
Assumption 5.2 and therefore the laws of Yn converge to the Dirac measure at 0, this forces
ly = 0 and I takes the form I(0) = 0, I(y) = ∞ for y 6= 0. Moreover, one may observe that
the set of arbitrage free prices converges to the singleton {dn} and hence, for all arbitrage
free prices p̃n(qn) of every sequence (qn)n∈N, one obtains limn→∞ p̃n(qn) − dn = 0. This
result is completely unaffected by the limiting relation between qn and rn. This trivial case,
together with one special case, where there is some oscillation in the range of arbitrage free
prices, meaning that the prices may be arbitrage free for some subsequence (nk)k∈N of qn
converging to infinity, but not for another (nj)j∈N, were excluded in the considerations of
[Robertson and Spiliopoulos, 2018] by imposing the following assumption.

Assumption 5.3. For ly = limn→∞ essinfPn(Yn) and uy = limn→∞ esssupPn(Yn) assume
that ly < uy. Therefore, for some p ∈ (ly, uy), it follows that p+ dn ∈ (bn, b̄n) for a n large
enough, hence, it is an arbitrage free price.

Remark 5.2. Recall the large market setting of Section 4, where bn = essinfP(Yn) =
∑∞

i=n+1 essinfP(Bi) and b̄n = esssupP(Yn) =
∑∞

i=n+1 esssupP(Bi). Then, Assumption 5.3
forces ly = 0 or ly = −∞ and uy = 0 or uy = ∞. To state this argumentation more pre-
cisely, remember that Lemma 4.1.1 guarantees that

∑∞
i=1 E[Bi] exists and is finite, which

leads to
∞∑

i=n+1

esssupP(Bi) =
∞∑

i=n+1

(esssupP(Bi)− E [Bi]) +
∞∑

i=n+1

E [Bi] .
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

Consequently, in case
∑∞

i=1(esssupP(Bi) − E [Bi]) < ∞, the sequence of the esssupP(Bi)
has to be a null sequence, hence uy = 0. Then again, if the sum is infinite, one receives
uy = ∞ since

∑∞
i=1 E[Bi] is finite. Analogue arguments yield ly = 0 or ly = −∞.

In general, since it was assumed that I(y) = 0 if and only if y = 0 and therefore Yn
converges to zero, one must have ly ≤ 0 ≤ uy.

Before formulating the main result of this section, the idea of reasonable prices should be
briefly discussed. As mentioned above, for such a reasonable price p̃n it should hold that
lim infn→∞ |p̃n − dn| > 0. This means, the probability of |Yn| being greater than |p̃n − dn|
should not be zero. To state this in the large deviations setting, it will be assumed that
there is at least one y < p̃n − dn and one y > p̃n − dn, such that the rate function I from
Assumption 5.2 is finite at these y.

In the following, note that there exists an N ∈ N such that p̃n − dn = pn ∈ (ly, uy) for
each n ≥ N . Further, denote the limit limn→∞ pn =: p. Without loss of generality, it
can be assumed that pn ≡ p, as the results in the following proposition do not change for
p̃n − dn = pn → p. After all this preliminaries, the proposition below gives the desired
result.

Proposition 5.3.1. Suppose that Assumption 5.1, 5.2 and 5.3 hold. Given a p̃n ∈ (bn, b̄n)
let q̂n = q̂n(p̃

n) denote the optimal purchase quantity for each arbitrage free price p̃n as in
Proposition 3.5.1. Further, let (ly, uy) be as defined in Assumption 5.3. Then, it follows:

1. If ly < 0 and p̃n = dn + p for ly < p < 0, then

- lim infn→∞ q̂n/rn > 0.

- If I(y) <∞ for at least one y < p, then lim supn→∞ q̂n/rn <∞.

2. If uy > 0 and p̃n = dn + p for 0 < p < uy, then

- lim supn→∞ q̂n/rn < 0.

- If I(y) <∞ for at least one y > p, then lim infn→∞ q̂n/rn > −∞.

Proof. First note that (3.35) for Yn writes as

p = p̃n − dn = Λ̇n(−aq̂n) =
EPn

[
Yne

−aq̂nYn
]

EPn [e−aq̂nYn ]
, (5.26)

where Λ̇n is the first derivative of Λn as in (5.2). By Lemma A.1.1 it is clear that Λn is
convex and hence the function q 7→ EPn

[
Yne

qYn
]
/EPn

[
eqYn

]
is increasing in q.

Statement 1.: By way of contradiction, suppose that lim infn→∞ q̂n/rn ≤ 0. This allows to
assume that for some ǫ > 0, there is a subsequence, which is still labeled by n, that satisfies
aq̂n ≤ ǫrn for sufficiently large n. As this yields −aq̂n ≥ −ǫrn and Λ̇n is increasing, one
arrives at

p = Λ̇n(−aq̂n) ≥ Λ̇n(−ǫrn) =
EPn

[
Yne

−ǫrnYn
]

EPn [e−ǫrnYn ]
(5.27)
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

This gives as n→ ∞ and ǫ→ 0

p ≥ lim inf
ǫ→0

lim inf
n→∞

EPn
[
Yne

−ǫrnYn
]

EPn [e−ǫrnYn ]
= 0

The equality holds due to Appendix Lemma A.1.4. Therein, it was shown that the desired
limit is 0, if one takes −ǫ instead of ǫ. Observe that this leads to p ≥ 0, which is a
contradiction to condition p < 0. Thus, under the required conditions, lim infn→∞ q̂n/rn >
0 has to hold.
In the sequel, suppose p < 0 in order to guarantee the existence of a y < p such that
I(y) < ∞. Assume lim supn→∞ q̂n/rn = ∞. Then consider the subsequence, still labeled
with n, satisfying limn→∞ q̂n/rn = ∞. By Proposition 3.5.1 it follows that for q̂n the
infimum of (3.34) is uniquely attained, and hence minimizes

qp+
1

a
Λn(−qa) = qp+

1

a
log
(

EPn
[
e−aqYn

])

over all q ∈ R. Therefore,

q̂np+
1

a
log
(

EPn
[

e−aq̂nYn
])

≤ qp+
1

a
log
(

EPn
[
e−aqYn

])
∣
∣
∣
∣
q=0

= 0.

Furthermore, q̂n/rn → ∞ as n → ∞ yields q̂n > 0 for some n sufficiently large. Dividing
by q̂n and subtracting p then gives

1

aq̂n
log
(

EPn
[

e−aq̂nYn
])

≤ −p.

Apart from that, note that q 7→ (1/q) log(EPn [e−qYn ]) is increasing for q > 0. Indeed, for
some q̃ > q Hölder’s inequality with Hölder exponents r = q̃/q and s = r/(r − 1) gives

1

q
log
(

EPn
[
e−qYn

])

≤
1

q
log
(

EPn
[
e−q̃Yn

] q
q̃

)

=
1

q̃
log
(

EPn
[
e−q̃Yn

])

. (5.28)

For the next stage, note that q̂n/rn → ∞ as n → ∞ implies that for some M > 0 there
is an index N , such that for n greater than N the condition 0 ≤ Mrn ≤ q̂n is met. This
observation yields

1

Mrn
log
(

EPn
[
e−MrnYn

])

≤
1

aq̂n
log
(

EPn
[

e−aq̂nYn
])

≤ −p.

By Assumption 5.2 (Yn)n∈N has an LDP with rate function I and scaling (rn)n∈N. Further,
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

observe that since −p <∞, it follows for eachM ′ < M ≤ M̄ by Varadhan’s integral lemma
2.5.1 and by (5.28) that

lim
n→∞

1

rn
log
(

EPn
[

e−M
′rnYn

])

= sup
y∈R

(−M ′y − I(y)) ≤ −M ′p.

This immediately gives for each y ∈ R

−M ′y − I(y) ≤ −M ′p⇔ −y −
I(y)

M ′
≤ −p.

Due to assumption, there is at least one y with I(y) <∞. Further, remember that M > 0
was arbitrary, meaning that all the conclusions above also hold for any other M > 0.
Therefore, one should take a look on the result for taking M ′ → ∞, which leads −y ≤ −p.
One may conclude that therefore I(y) <∞ implies y ≥ p, which yields I(y) = ∞ for y < p.
This is a contradiction, as p should be such that there is at least one y < p which satisfies
I(y) < ∞. Thus, the assumption that lim supn→∞ q̂n/rn = ∞ has to be rejected and as a
result lim supn→∞ q̂n/rn <∞.

Statement 2.: To prove the second statement, i.e. the result for p > 0, one can follow the
argumentation of Statement 1. Indeed, assume lim supn→∞ q̂n/rn ≥ 0, which implicates
that for some ǫ > 0, there is a subsequence, which is also labeled by n, that satisfies
aq̂n ≤ −ǫrn for sufficiently large n. As above in Equation (5.26) one has

p = Λ̇n(−aq̂n) ≤ Λ̇n(ǫrn) =
EPn

[
Yne

ǫrnYn
]

EPn [eǫrnYn ]
,

which yields

p ≤ lim sup
ǫ→0

lim sup
n→∞

EPn
[
Yne

ǫrnYn
]

EPn [eǫrnYn ]
= 0,

as n→ ∞ and ǫ→ 0. As the desired limit is 0 due to Appendix Lemma A.1.4 the equation
above holds. However, this is a contradiction to condition p > 0. As a result, under the
required conditions lim supn→∞ q̂n/rn < 0 has to hold.
Further, suppose p > 0 in order to guarantee the existence a y > p such that I(y) < ∞
and assume lim infn→∞ q̂n/rn = −∞. Then consider the subsequence, again labeled with
n, satisfying limn→∞ q̂n/rn = −∞. As q̂n minimizes

qp+
1

a
Λn(−qa) = qp+

1

a
log
(

EPn
[
e−aqYn

])

over all q ∈ R, taking into account that q̂n < 0 gives
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5. Relation of Limiting Indifference Price and Optimal Quantities with Large Deviations

q̂np+
1

a
log
(

EPn
[

e−aq̂nYn
])

≤ qp+
1

a
log
(

EPn
[
e−aqYn

])
∣
∣
∣
∣
q=0

= 0.

Observe that this is equivalent to

−
1

aq̂n
log
(

EPn
[

e−aq̂nYn
])

≤ p.

Apart from that, note that q 7→ (1/q) log(EPn [e−qYn ]) is increasing for q > 0.
For the next stage, note that q̂n/rn → −∞ as n→ ∞ implies that for someM > 0 it follows
that there is an index N , such that for every n larger that N it holds that 0 ≤Mrn ≤ −q̂n.
This observation yields

1

Mrn
log
(

EPn
[
eMrnYn

])

≤
1

aq̂n
log
(

EPn
[

e−aq̂nYn
])

≤ p.

By Assumption 5.2 (Yn)n∈N has an LDP with rate function I and scaling (rn)n∈N. Further,
observe that since p <∞, it follows for each M ′ < M ≤ M̄ by Varadhan’s integral lemma
2.5.1 and as q 7→ (1/q) log(EPn [e−qYn ]) is increasing, that

lim
n→∞

1

rn
log
(

EPn
[

eM
′rnYn

])

= sup
y∈R

(M ′y − I(y)) ≤M ′p.

This immediately yields that M ′y − I(y) ≤ M ′p ⇔ y − I(y)/M ′ ≤ p for each y ∈ R. Note
that by assumption, there is at least one y with I(y) < ∞ and M > 0 was arbitrarily
chosen, consequently all the considerations also hold for any other M > 0. Therefore, one
should take a look on the result for M ′ → ∞, which leads to y ≤ p. One may conclude
that I(y) < ∞ implies y ≤ p, which yields I(y) = ∞ for y > p. This is a contradiction
to the assumption that lim infn→∞ q̂n/rn = ∞, as p should be such that there is at least
one y > p such that I(y) <∞. Thus, the assumption has to be rejected and consequently
lim infn→∞ q̂n/rn > −∞.
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6. Existence of an LDP

In this chapter, the validity of Assumption 5.2 shall be pointed out. As a first step it is
argued below that the Gärtner-Ellis theorem 2.5.2, which provides condition for an LDP
to hold, implicates Assumption 5.2. As mentioned in Section 2.5, Gärtner-Ellis does not
cover all the sequences of random variables satisfying an LDP, as defined in 2.5.2, hence
it is only sufficient but not necessary. To demonstrate this, two concrete examples will
be given according to [Robertson and Spiliopoulos, 2018]. To this end, Example 4.1 and
4.2 will be expanded by firstly proving the LDP holds and then applying the herein build
theory to it. For the first one the Gärtner-Ellis theorem holds and the LDP is given via
it, so limiting indifference price and optimal quantities can be calculated according to the
appropriate results. For the second example Gärnter-Ellis can not be applied, but despite
this even for the considered example the LDP holds and the desired quantities can be cal-
culated explicitly.

Recall Gärtner-Ellis theorem 2.5.2 and suppose it holds for ξn = Yn, some sequence
rn with rn → ∞ and Λ(λ) = limn→∞(1/rn)Λn(λrn), with Λn from (5.2). Then, since
I(y) = supy∈R(λy − Λ(λ)), the Legendre transform of Λ(λ), performs as a (good) rate
function and the condition 0 ∈ Do

Λ implies the moment condition (5.4), it follows that
Assumption 5.2 holds.

6.1. Gaussian Case

Herein Example 4.1 should be extended, hence assume Bi
P
∼ N (γi, δ

2
i ) and

Yn =

∞∑

i=n+1

Bi
P
∼ N

(
∞∑

i=n+1

γi,

∞∑

i=n+1

δ2i

)

.

Again by Example 4.1, let rn = (
∑∞

i=n+1 δ
2
i )

−1, which obviously satisfies limn→∞ rn = ∞.
Furthermore, one has for every λ ∈ R

Λ(λ) = lim
n→∞

1

rn
log
(

EPn
[

eλrnYn
])

= lim
n→∞

(

1

2
λ2 + λ

∞∑

i=n+1

γi

)

=
1

2
λ2, (6.1)

which is continuous and differentiable on R. Therefore, one may use Gärtner-Ellis theorem
to see that (Yn)n∈N satisfies an LDP with rate rn and good rate function I(y) = supλ∈R(λy−
λ2/2) = y2/2. This implicates that Assumption 5.2 holds.
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6. Existence of an LDP

6.1.1 (The Limiting Indifference Price). For any large market example as introduced
in Section 4, it was shown that the limit d = limn→∞ dn exists. Further, recall the utility
indifference prices in the sequence of semi-complete markets from (4.9) and that Γi can be
explicitly calculated by Γi(λ) = λγi + (1/2)λ2δ2i , as done in Example 4.1. This gives

pn(qn)− dn = −
1

qna

∞∑

i=n+1

Γi (−qna) = −
1

qna

∞∑

i=n+1

(
1

2
q2na

2δ2i − qnγi

)

=
1

2
qna

∞∑

i=n+1

δ2i +
∞∑

i=n+1

γi = −
aqn
2rn

+
∞∑

i=n+1

γi,

where the definition of rn was taken into account, i.e. r−1
n =

∑∞
i=n+1 δ

2
i . As a consequence,

it follows that limn→∞(pn(qn) − dn + aqn/(2rn)) = 0, since
∑∞

i=n+1 γi → 0 for n → ∞.
Thus, one can explicitly calculate the values of limn→∞ pn(qn) depending on the limit ratio
of qn/rn by just using this result. This gives for any subsequence such that limn→∞ |qn|/rn
exists

- (Regime 1): If limn→∞ |qn|/rn = 0 then limn→∞ pn(qn) = d.

- (Regime 2): If limn→∞ |qn|/rn = l 6= 0 then limn→∞(pn(qn)) = d− (1/2)al.

- (Regime 3): If limn→∞ |qn|/rn = ∞ then limn→∞(pn(qn) − dn) = ±∞ for qn/rn →
∓∞.

Now, recall the definition of M and M̄ from (5.5). It follows immediately by (6.1) and as
I(y) = y2/2, that M = M∗ = −∞ and ¯M =M∗ = ∞. Therefore, one may also use the
results from Proposition 5.2.2, thus for any subsequence such that limn→∞ |qn|/rn exists

- (Regime 1): If limn→∞ |qn|/rn = 0 then limn→∞ pn(qn) − dn) = 0 or equivalent
limn→∞(pn(qn) = d.

- (Regime 2): If limn→∞ |qn|/rn = l 6= 0 then limn→∞(pn(qn)−d
n) = − 1

la supy∈R(−lay−
y2/2) = −(1/2)al, as the supremum is attained by y = al.

- (Regime 3): If limn→∞ qn/rn = ∞, then lim supn→∞(pn(qn) − dn) ≤ inf{y ∈ R :
y2/2 < ∞} = −∞. Else, if limn→∞ qn/rn = −∞, then lim infn→∞(pn(qn) − dn) ≥
sup{y ∈ R : y2/2 <∞} = ∞.

Therefore, the results perfectly coincide.

6.1.2 (Optimal Quantities). From Example 4.1, the optimal purchase quantity q̂n for
some p̃n ∈ (bn, b̄n) takes the form

q̂n =
dn − p̃n +

∑∞
i=n+1 γi

a
∑∞

i=n+1 δ
2
i

=
rn
a

(

dn − p̃n +

∞∑

i=n+1

γi

)

, (6.2)
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6. Existence of an LDP

where the second equality follows by the definition of rn. For a reasonable price p̃n with
p̃n − dn = p 6= 0 the equation above yields limn→∞ q̂n/rn = −p/a. If p̃n = dn then taking
n → ∞ results in limn→∞ q̂n/rn = 0, although (6.2) states that |qn| → ∞ is possible. To
sum it up, optimal quantities for some reasonable price with p̃n−dn = p yield q̂n/rn → l =
−p/a. Thus, together with the results from 6.1.1 it follows that limn→∞ pn(qn) = d+ p/2,
with some non-trivial large deviation effect of p/2.

6.2. Poisson Case

Herein Example 4.2 shall be extended, hence assume Bi
P
∼ Poi(βi) and

Yn =

∞∑

i=n+1

Bi
P
∼ Poi

(
∞∑

i=n+1

βi

)

(6.3)

Due to the summation property of the Poisson distribution (6.3) holds, i.e. for each λ ∈ R

the moment generating function of Yn satisfies EP[eλYn ] = e(e
λ−1)

∑∞
i=n+1 βi . Again, by

Example 4.2, let rn = − log(
∑∞

i=n+1 βi), which obviously satisfies limn→∞ rn = ∞. Note

that the definition of rn yields Yn
P
∼ Poi(e−rn) and for each λ ∈ R it follows

1

rn
log
(

EPn
[

eλrnYn
])

=
1

rn

(

eλrn − 1
)

e−rn =
e(λ−1)rn − e−rn

rn
. (6.4)

As a consequence, this together with L’Hôpital’s rule gives

lim
n→∞

1

rn
log
(

EPn
[

eλrnYn
])

=

{

∞ λ > 1

0 λ ≤ 1.

Thus, in this case one is not able to use Gärtner-Ellis theorem 2.5.2 to prove the existence
of an LDP for Yn, as the additional assumptions are violated in this case. Nevertheless,
explicit calculations in the following proposition will show the LDP for Yn still holds.

Proposition 6.2.1. Suppose (βi)i∈N is P-independent such that Bi
P
∼ Poi(βi) for each

i ∈ N and
∑∞

i=1 βi <∞. Further, set rn = − log(
∑∞

i=n+1 βi). Then Yn, as defined in (6.3)
has an LDP with rate (rn)n∈N and good rate function

I(y) =

{

∞ y /∈ {0, 1, 2, 3, . . . }

0 y ∈ {0, 1, 2, 3, . . . }.

Proof. First, consider for any y ∈ {0, 1, 2, 3, . . . }

1

rn
log (P [Yn = y]) =

1

rn
log

(
e−rny

y!
e−e

−rn

)

= −
1

rn
e−rn − y −

1

rn
log(y!), (6.5)
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6. Existence of an LDP

which is a consequence of Yn
P
∼ Poi(e−rn). For y ∈ {0, 1, 2, 3, . . . } assume A ⊂ R with

y ∈ A is an open set. Then, (6.5) together with the monotony of the probability measure
yields

lim inf
n→∞

1

rn
log (P [Yn ∈ A]) ≥ lim inf

n→∞

1

rn
log (P [Yn = y]) = −y = −I(y)

which implicates (2.20). As a next step suppose A ⊂ R is compact and in the first place
assume A ∩ {0, 1, 2, 3, . . . } = ∅. Then one receives that

lim
n→∞

1

rn
log (P [Yn ∈ A]) = −∞ = − inf

y∈A
I(y),

where the first equality follows as P [Yn ∈ A] = 0 and the second one as I satisfies I(y) = ∞
for y ∈ A by construction. Now, assume A∩{0, 1, 2, 3, . . . } 6= ∅ and denote by {y1, . . . , yM}
the finite set of non-negative integers in A. Then again, by (6.5) it follows that

lim sup
n→∞

1

rn
log (P [Yn ∈ A]) = lim sup

n→∞

1

rn
log

(
M∑

m=1

P [Ym = ym]

)

= max
m=1,...,M

{

lim sup
n→∞

1

rn
log (P [Ym = ym])

}

= max
m=1,...,M

{−ym} = − min
m=1,...,M

{I(ym)} = − inf
y∈A

I(y).

Therein the second equality follows by Lemma 2.5.2 and the last as A is supposed to be
compact. Hence, it was shown that (Yn)n∈N satisfies a weak LDP as defined in 2.5.3. By
Lemma 2.5.1, it remains to prove that (Yn)n∈N is exponentially tight according to Definition
2.5.4. Thus, fix an arbitraryK > 0. Then for every λ > 0 it follows by applying the Markov
inequality to eλYn , that

P [Yn ≥ K] = P

[

eλYn ≥ eλK
]

≤
EPn [eλYn ]

eλK

= e−λK+log(EPn [eλYn ]) = e−λK+e−rn (eλ−1).

As this equation holds for each λ ∈ R, one may take the minimizing value λ̂ = rn+ log(K)
for the right hand side as well as the limits on both sides and obtains

lim sup
n→∞

1

rn
log (P [Yn ≥ K]) ≤ lim sup

n→∞

1

rn

(

(−rn + log(K))K + e−rn(ern+log(K) − 1)
)

= lim sup
n→∞

elog(K)

rn
−K

log(K)

rn
−
e−rn

rn
= −K.

This provides the result, as due to this estimations (Yn)n∈N is exponentially tight and thus
satisfies an LDP by Lemma 2.5.1.
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6. Existence of an LDP

The proposition, together with the fact that I is lower semicontinuous and satisfies
I(y) = 0 if and only if y = 0, implies that I fulfils the conditions for the rate function from
Assumption 5.2. Together with (6.4) it follows that M∗ = M = −∞ and M̄ = M∗ = 1,
thus Assumption 5.2 holds for (Yn)n∈N with δ = 1.

6.2.1 (The Limiting Indifference Price). As mentioned before, for any large market
example as introduced in Section 4, it was shown that the limit d = limn→∞ dn exists.
As Example 4.2 satisfies all required conditions from Assumption 5.1 and it was argued
above that Assumption 5.2 holds, one may use Proposition 5.2.1 to identify the limiting
indifference prices. To this end, recall the form of I from Proposition 6.2.1 and suppose a
subsequence of (qn)n∈N, still indexed by n, so that limn→∞ |qn|/rn exists, then

- (Regime 1): If limn→∞ |qn|/rn = 0 then limn→∞ pn(qn)− dn = 0.

- (Regime 2): If limn→∞ |qn|/rn = l 6= 0 then

lim
n→∞

(pn(qn)− dn) =







infy∈R
(
y + 1

alI(y)
)
= 0 l > 0

supy∈R
(
y + 1

alI(y)
)
= 0 −

1

a
< l < 0

∞ l < −
1

a

- (Regime 3): If limn→∞ qn/rn = ∞, then lim supn→∞(pn(qn) − dn) ≤ inf{y ∈ R :
I(y) < ∞} = 0. Else, if limn→∞ qn/rn = −∞, then as M∗ < ∞ limn→∞(pn(qn) −
dn) = ∞.

Furthermore, as the explicit formula of pn(qn) is available, one can precise limn→∞(pn(qn)−
dn) for limn→∞ qn/rn = ∞. Indeed, consider

lim
n→∞

(pn(qn)− dn) = − lim
n→∞

1

qna
log
(

EPn
[
e−qnaYn

])

= − lim
n→∞

1

qna
e−rn(e−qna − 1) = 0,

which strengthens the statement for Regime 3.

6.2.2 (Optimal Quantities). From Example 4.2 the optimal purchase quantity q̂n for
some p̃n ∈ (bn, b̄n) takes the form

q̂n = −
1

a
log

(
p̃n − dn
∑∞

i=n+1 βi

)

= −
rn
a

−
1

a
log(p̃n − dn).

For p̃n − dn = p > 0 this yields

lim
n→∞

q̂n/rn = lim
n→∞

−
1

a
−

log(p)

arn
= −

1

a
.

Note that the limit does not depend on p and hence optimal purchase quantities for every
reasonable price dn + p ∈ (bn, b̄n) will result in the same limit ratio of q̂n/rn. As for
this limiting value Proposition 5.2.1 yields no result, one has to calculate the limiting
indifference price pn(q̂n) for optimal purchase quantities q̂n explicitly. Therefore, recall
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6. Existence of an LDP

lim
n→∞

pn(q̂n)− dn = −
1

q̂na
log
(

EPn
[

e−q̂naYn
])

, (6.6)

which by plugging in the value of q̂n and, as EP[eλYn ] = e(e
λ−1)e−rn for every λ ∈ R, yields

(6.6) = lim
n→∞

1

rn + log(p̃n − dn)
log
(

EPn
[

e−(rn+log(p̃n−dn))Yn
])

= lim
n→∞

(p̃n − dn)− e−rn

rn + log(p̃n − dn)
= 0.

Hence, the limiting indifference price limn→∞ pn(q̂n) = limn→∞ dn = d.
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A. Appendix

A.1. Supporting Lemmas

Definition A.1.1. The cumulant generating function for a random variable X is defined
by

κ(λ) = log
(

E

[

eλX
])

; λ ∈ R. (A.1)

If the cumulant generating function is finite for all λ ∈ R one sustains some useful
properties for κ(·).

Lemma A.1.1. If the cumulant generating function κ(λ) is finite for all λ ∈ R one obtains
the following results:

(i) limλր∞
1
λκ(λ) = esssupP(X)

(ii) limλց−∞
1
λκ(λ) = essinfP(X)

(iii) For every λ ∈ R it holds that

κ̇(λ) =
E
[
XeλX

]

E [eλX ]
. (A.2)

Furthermore, the function κ(λ) is strictly convex, consequently it follows that the map
λ 7→ κ̇(λ) is increasing in λ.

Proof. First, notice that for λ > 0

1

λ
κ(λ) =

1

λ
log
(

EP
[

eλX
])

≤
1

λ
log
(

EP
[

eλ esssupP(X)
])

= esssupP(X) (A.3)

Then select m > 0 such that P [X > m] > 0, or rather m < esssupP(X). By observing that
X ≥ m1{X>m}, it follows that

1

λ
κ(λ) ≥

1

λ
log
(

EP
[

eλm1{X>m}

])

≥
1

λ
log
(

EP
[

eλm1{X>m}

])

= m+
1

λ
log
(

EP
[
1{X>m}

])

For λ ր ∞ one receives that lim infλր∞
1
λκ(λ) ≥ m and by taking m ր esssupP(X)

together with (A.3), limλր∞
1
λκ(λ) = esssupP(X) holds. An analogous consideration yields

limλց−∞
1
λκ(λ) = essinfP(X), which turn in proves (i) and (ii) from above. To prove (iii)

use the inequality

|x|eλx ≤ C(λ)
(

e2λx + e−2λx
)

, x ∈ R (A.4)
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A. Appendix

that holds for some constant C(λ) <∞. It immediately follows by the product rule that

κ̇(λ) =
1

E [eλX ]
·
d

dλ
E

[

eλX
]

=
E
[
XeλX

]

E [eλX ]
.

The last equality holds due to the dominated convergence theorem and as inequality (A.4),
that holds for some C(λ) <∞. If κ̇(λ) exists for all λ ∈ R, (iii) follows by the observation
that κ̇(λ) is increasing. To this end, consider E

[
eλX

]
and note that by Jensen’s inequality

and as κ(λ) was supposed to be finite for all λ ∈ R, particularly as E [|X|] <∞

E
[

eλX
]

≥ eλE[X] ≥ e−|λ|E[|X|] > 0.

Moreover, as inequality (A.4) holds and all exponential moments of X exist, one obtains

∣
∣E

[

XeλX
] ∣
∣ ≤

∣
∣C(λ)

∣
∣

(∣
∣E

[

e2λX
] ∣
∣+
∣
∣E

[

e−2λX
] ∣
∣

)

<∞,

and therefore κ̇(λ) exists for all λ ∈ R and one may conclude (iii).

For the following three lemmas, suppose that Assumption 5.1 and 5.2 hold.

Lemma A.1.2. Let δ be the constant and I the good rate function from Assumption 5.2,
then lim inf |y|→∞ I(y)/|y| ≥ δ.

Proof. Recall the moment condition (5.4), which implies that Varadhan’s integral lemma
2.5.1 holds for all ǫ ∈ (−δ, δ) and hence

Γ(ǫ) := lim
n→∞

1

rn
log
(

EPn
[
eǫrnYn

])

= sup
y∈R

(ǫy − I(y)) <∞

Further, observe that for ǫ > 0 and y > 0 the equation above yields Γ(ǫ) ≥ ǫy − I(y) and
thus

I(y)

y
≥ ǫ−

Γ(ǫ)

y
,

which by taking y ր ∞ and ǫր δ provides the result.
Moreover, for ǫ < 0 and y < 0 the inequality above yields Γ(ǫ) ≥ ǫy − I(y) and thus

I(y)

(−y)
≥ −ǫ−

Γ(ǫ)

(−y)
,

which by taking y ց −∞ and ǫց −δ provides the result.

Lemma A.1.3. For δ as in Assumption 5.2 and ǫ ∈ (−δ, δ) define

lǫ := inf {y ∈ R : y ∈ argmaxy∈R(ǫy − I(y))} ,

uǫ := sup {y ∈ R : y ∈ argmaxy∈R(ǫy − I(y))} .
(A.5)

Then it follows, that limǫ→0 l
ǫ = 0 = limǫ→0 u

ǫ.
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A. Appendix

Proof. First, note that since I(y) ≥ 0 for each y ∈ R and I(y) = 0 if and only if y = 0, it
follows that uǫ ≤ 0 for ǫ < 0, lǫ ≥ 0 for ǫ < 0 and that for ǫ = 0 lǫ = uǫ = 0. Moreover, as
limn→∞

1
rn

log
(
EPn

[
eǫrnYn

])
= supy∈R(ǫy− I(y)) <∞, it follows by Lemma A.1.2 that for

all |ǫ| < δ/2 there exists a constant K > 0 independent of ǫ such that −K ≤ lǫ ≤ uǫ ≤ K.
In the sequel, consider the case that ǫ < 0. Let ǫ→ 0 and assume by way of contradiction
that lǫ converges to −l < 0 for a fixed l > 0. Then, as lǫ is defined as infimum of all y ∈ R

maximizing (ǫy − I(y)), it follows that there exists a sequence yǫ → y < −l/2 with y ≥ −l
and for each ǫ, yǫ ∈ argmaxy∈R(ǫy − I(y)). Then by Lemma A.1.2

0 ≤ lim inf
ǫ→0

(ǫyǫ − I(yǫ)) ≤ −I(y),

where the last inequality holds as I(y) is lower semicontinuous by Assumption 5.2, see
Remark 2.2. According to the inequality above, I(y) ≤ 0 holds, which contradicts the fact
I(y) ≥ 0 for all y ∈ R by Assumption 5.2. As y < −l/2 < 0, but I(y) = 0 holds if and only
if y = 0, there is a contradiction. Thus, it follows that lǫ → 0 for ǫ→ 0, which leads to the
result, as it was already shown that uǫ ≤ 0. By an analogous argumentation for ǫ > 0 and
ǫ→ 0, the lemma is proven.

Lemma A.1.4. For δ as in Assumption 5.2 and ǫ ∈ (−δ, δ) define

pǫn =
EPn

[
Yne

ǫrnYn
]

EPn [eǫrnYn ]
.

Then it follows that

lim inf
ǫ→0

lim inf
n→∞

pǫn = lim sup
ǫ→0

lim sup
n→∞

pǫn = 0.

Proof. First, observe that Λn(λ) = log(EPn [eλYn ]) as defined in (5.2) satisfies Λn(λ) < ∞
by Assumption 5.1. Thus, it is strictly convex and by Lemma A.1.1 it follows that Λ̇n(λ) =
EPn

[
Yne

λYn
]
/EPn

[
eλYn

]
. In addition, set Λ(λ) := supy∈R(λy − I(y)), which is convex as

supremum of an affine function. Varadhan’s integral lemma or rather (5.7) yields that
(1/rn)Λn(ǫrn) → Λ(ǫ) for n → ∞ due to the assumption ǫ ∈ (−δ, δ). Further, note that
Proposition 3.5.1 states

p̃n − dn = Λ̇n(−qna)

with p̃n ∈ (bn, b̄n), only holds for a unique value qn that also minimizes the function
qn(p̃ − dn) + (1/a)Λn(−aqn). Hence, λ = ǫrn is the unique value minimizing the function
λ 7→ −λpǫn + Λn(λ). This leads to the following inequality for any arbitrarily chosen γ ∈ R

−ǫrnp
ǫ
n + Λn(ǫrn) ≤ −γpǫn + Λn(γ). (A.6)

Now, fix λ > 0 in such a way that λ+ ǫ < δ and insert λ+ ǫ instead of γ. Then due to the
inequality (A.6) one has
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A. Appendix

−ǫrnp
ǫ
n + Λn(ǫrn) ≤ −(λ+ ǫ)rnp

ǫ
n + Λn((λ+ ǫ)rn).

After some equivalent transformation, i.e. cancel out the −ǫpǫn and divide both sides
through λrn, this inequality yields

pǫn ≤
1

λ

(
1

rn
Λn((λ+ ǫ)rn)−

1

rn
Λn(ǫrn)

)

.

As aforementioned, for n→ ∞ Equation (5.7) yields

lim inf
n→∞

pǫn ≤ lim sup
n→∞

pǫn ≤
1

λ
(Λ(λ+ ǫ)− Λ(ǫ)).

By taking λ→ 0, this implies

lim inf
n→∞

pǫn ≤ lim sup
n→∞

pǫn ≤ lim
λ→0

Λ(λ+ ǫ)− Λ(ǫ)

λ
= Λ̇+(ǫ),

with Λ̇+(ǫ) being the right derivative of Λ at ǫ. On the other hand, by (A.6) and using
γ = (ǫ− λ)rn for with λ > 0 such that −δ < −ǫ− λ one obtains

−lim sup
n→∞

pǫn ≤ −lim inf
n→∞

pǫn ≤ lim
λ→0

Λ(ǫ− λ)− Λ(ǫ)

λ
= Λ̇−(ǫ),

with Λ̇−(ǫ) being the left derivative of Λ at ǫ. These two inequalities together with Theorem
23.2 in [Rockafellar, 1997] imply, as Λ is convex by construction, that lim supn→∞ pnǫ =
lim infn→∞ pnǫ = ∂Λ(ǫ). Note that ∂Λ(ǫ) denotes the subdifferential, i.e. the set of all
subgradients gǫ of Λ at ǫ defined through the inequality Λ(λ) ≥ Λ(ǫ) + gǫ(λ − ǫ). In the
sequel, assume an arbitrary gǫ ∈ ∂Λ(ǫ). Proving limǫ→0 |g

ǫ| = 0 provides the desired result.
To this end, it is assumed by way of contradiction, that for some subsequence ǫk → 0 and
τ > 0, it holds that gǫk ≥ τ . Fix 0 < λ < δ in such a way that ǫk < λ as of some k large
enough. As gǫk ∈ ∂Λ(ǫk) for every k, one finds that

Λ(λ) ≥ Λ(ǫk) + gǫk(λ− ǫk) ≥ Λ(ǫk) + τ(λ− ǫk).

Further, note that by Lemma A.1.3, there exists an yλ ∈ argmaxy∈R(λy − I(y)) for λ

sufficiently small that still satisfies λ > ǫk, such that Λ(λ) = λyλ−I(yλ), which immediately
yields

Λ(λ) = λyλ − I(yλ) ≥ Λ(ǫk) + τ(λ− ǫk).

Due to the convexity of Λ and as its finiteness for all λ ∈ (−δ, δ), it follows that the function
Λ is continuous. Furthermore, since Λ(0) = 0 the limit for k → ∞ gives λyλ − I(yλ) ≥ τλ,
which is equivalent to yλ − I(yλ)/λ ≥ τ and therefore implies yλ ≥ τ . Lemma A.1.3
states yλ → 0 for λ → 0, which is a contradiction, as this means 0 ≥ τ . The analogous
argumentation yields a contradiction for assuming a subsequence gǫk ≤ −τ for τ > 0 and
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A. Appendix

ǫk → 0. Indeed, for 0 > λ > −δ in such a way that ǫk > λ as of some k large enough, again
for some gǫk ∈ ∂Λ(ǫk) for every k ∈ N one has

Λ(λ) ≥ Λ(ǫk) + gǫk(λ− ǫk) ≥ Λ(ǫk)− τ(λ− ǫk).

Moreover, by Lemma A.1.3, there exists a yλ ∈ argmaxy∈R(λy − I(y)) for λ sufficiently

small, that still satisfies λ < ǫk, such that Λ(λ) = λyλ − I(yλ), which immediately yields

Λ(λ) = λyλ − I(yλ) ≥ Λ(ǫk)− τ(λ− ǫk).

Similar to the argumentation above, the limit for k → ∞ gives λyλ − I(yλ) ≥ −τλ, which
is equivalent to −yλ + I(yλ)/λ ≥ τ and hence −yλ ≥ τ . Lemma A.1.3 states yλ → 0 for
λ → 0, which is a contradiction, as this means 0 ≥ τ . All together, this yields |gǫ| → 0 by
taking ǫ→ 0 for each gǫ ∈ ∂Λ(ǫ) = limn→∞ pǫn, which finishes the proof.

A.2. Additional Theory

Definition A.2.1. For a continuous (P,F)-semi-martingale X, the corresponding stochas-
tic exponential is defined as

E(X) = exp(X −
1

2
[X]) (A.7)

Definition A.2.2. A (P,F)-local martingale S has the predictable representation property
if for any FS-local martingale X there is a predictable process θ in L2(S) such that

Xt = X0 +

∫ t

0
θudSu.

Here FS denotes the natural filtration of S.

Lemma A.2.1 ([Delbaen and Schachermayer, 2006]). If the following holds:

(i) S is a local martingale,

(ii) ht is S-integrable process

(iii)
(∫ ·

0 htdSt
)−

is locally integrable, i.e., there exists a sequence (τn)n∈Nof increasing

stopping times with τn ր ∞ for n→ ∞, such that E
[

− inf0≤t≤τn
∫ t
0 hu dSu

]

<∞,

then the stochastic integral process
∫ ·
0 htdSt is a local martingale.

Proof. First, note that the notation (h · S)t is used for the stochastic integral process in
the sense of semi-martingale integration. (h,∆S)t denotes the process of jumps of the
stochastic integral. According to the lemma of Ansel and Stricker, see [Theorem 7.3.7,
Delbaen and Schachermayer, 2006], one has to verify the existence of a sequence of stopping
time Tn ր ∞, as well as the existence of a sequence of integrable functions ζn ≥ 0, such that
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A. Appendix

the stopped process of jumps is bounded from below. Hence, proving that (h,∆S)Tn ≥ ζn
for all n, provides the required result. Therefore, set Rn := inf{t| (h · S)t ≥ n} for each
n ∈ N, which are also stopping times. Consider a sequence (τn)n∈N such that the stopped
process satisfies (h · S)τn ≥ ζn for a sequence of any integrable functions ζn, n ∈ N. Further,
set Tn = min (Rn, τn), which again is a stopping time, as it is the minimum of two stopping
times. As Rn ր ∞ and τn ր ∞ for n → ∞, the same holds true for Tn. One may easily
observe that this yields to (h,∆S)Tn ≥ −n+ ζn, which in turn yields the result.

Theorem A.2.1 ([Protter, 2004]). Let X be a (P,G)semi-martingale with decomposition
X = M + A on a filtered probability space (Ω,G,G,P). H is a σ-algebra P-independent of
the local martingale term M of X. Further, F shall denote the expanded filtration obtained
by the extension of G with the σ-algebra H, i.e., Ft = Gt ∨Ht for each t ≥ 0. Then X is a
(P,F)-semi-martingale with the same decomposition.

Proof. As the local martingale term M is independent of G, it remains a local martingale
under F. Therefore, the result follows immediately.

Theorem A.2.2 ([Protter, 2004]). Let F = (Ft)t≥0 and G = (Gt)t≥0 denote two filtrations
satisfying the usual conditions, such that Gt ⊂ Ft for each t ≥ 0. X is a semi-martingale
for F and G. Let ht be a locally bounded and predictable process for G. Then the stochastic
integral processes exist and coincide for both F and G.

Proof. Since all G-stopping times are F-stopping times as well, the process h is also locally
bounded and predictable for F. Without loss of generality h is supposed to be bounded
since stopping yields a bounded process. Set

H =
{
ht ∈ L (X) |ht bounded, G-predictable such that (h ·X)Gt = (h ·X)Ft , for all t ≥ 0

}
,

where (h ·X)G· = (h ·X)F· denotes the integral processes computed with respect to the
filtrations F and G, respectively. Clearly, H is a vector space, all constant functions are in
H and for every sequence of processes converging to a bounded limit, the limiting process
is also in H . Hence, H is a monotone vector space. Further, H contains the multiplicative
class of all left continuous and F-adapted processes. Thus, the dominated convergence
theorem, together with the monotone class theorem prove the result.

The following proposition brings up a main property of semi-martingales, which is in-
cluded in some proofs of this thesis. For more detail and the proofs see [Protter, 2004,
Therorem 33, III] or [Jacod and Shiryaev, 2003, Proposition 4.23]

Proposition A.2.1. Let X be a semi-martingale. Then X is a special semi-martingale,
if and only if the associated process X∗

t = sup
s≤t

|Xs −X0| is locally integrable.

Definition A.2.3. Define

D := {ZQ : Q ∈ M̃} and TT := {τ : τ is F-stopping time such that τ ≤ T} .
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A. Appendix

The set D is said to be stable under concatenation for F if for all τ ∈ TT , one has that
ZQ1 , ZQ2 ∈ D implies that

Z̃ = ZQ11[0,τ) +
ZQ1
τ

ZQ2
τ

ZQ21[τ,T ] ∈ D.

Lemma A.2.2 ([Kabanov and Strickler, 2002]). Let Q ∈ M̃ such that ZtdP = dQ and
E[ZT log(ZT )] < ∞. If D is stable under concatenation it follows that {log(Z̄τ )}τ∈TT with
Z̄t = exp

(
EQ0 [log(Z0

T )|Ft]
)
is Q uniformly integrable.

Lemma A.2.3 ([Stroock, 2011]). Let (Xn)n∈N be a sequence of independent random vari-
ables. If every Xn is in L2(P) and if

∞∑

i=1

Var (Xn) <∞,

then

∞∑

i=1

(Xn − E [Xn])

converges P-almost surely.

Proof. First, assume without loss of generality that for all n ∈ N, E[Xn] = 0. Then, by
applying Kolmogorov’s inequality to {XN+n : n ∈ N}, it follows that

P

[

sup
n>N

|
n∑

i=1

Xi −
N∑

i=1

Xi| ≥ ǫ

]

≤
1

ǫ2

∞∑

i=N+1

E
[
X2
i

]
→ 0 as N → ∞

for any ǫ > 0. Hence, it follows immediately that the sequence of partial sums (
∑n

i=1Xi)n∈N
is P-almost sure a Cauchy sequence P-almost sure, which completes the proof.
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et changements de filtration”. In: Séminaire de probabilités de Strasbourg 14, pp. 161–
172.

Jacod, Jean and Albert N. Shiryaev (2003). Limit Theorems for Stochastic Processes. 2.
ed.. Die Grundlehren der mathematischen Wissenschaften. Berlin/Heidelberg: Springer-
Verlag.

Kabanov, Yuri and Christophe Strickler (2002). “On the optimal portfolio for the exponen-
tial utility maximization: Remarks to the six-author paper”. In: Mathematical Finance
12.2, p. 125.

Kusolitsch, Norbert (2014). Maß- und Wahrscheinlichkeitstheorie : Eine Einführung. 2.,
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