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Kurzfassung

Machine Learning und Predictive Analytics sind ein wichtiger Teil der Entwicklungen in
Industrie 4.0, inklusive ihrer Anwendung in diversen intelligenten Entscheidungsprozes-
sen. Große Datenmengen, die oft dezentral von verschiedenen Produktionseinheiten an
unterschiedlichen Standorten oder sogar von unterschiedlichen Organisationen gesammelt
werden, sind eine essentielle Basis für erfolgreiche Lösungen im Bereich der künstlichen
Intelligenz.Das Sammeln und Verarbeiten solcher Daten in klassischer zentraler Weise
stellt neue Herausforderungen dar oder ist unter Umständen gar nicht oder nur schwer
möglich.Dies erfordert neue Ansätze für die Verarbeitung der Daten und für das Trainieren
von maschinellen Algorithmen.Hier kommt Federated Learning (FL) in Betracht.Bei FL
Ansätzen werden globale Modelle erstellt, ohne dass die Daten zentral gesammelt werden
müssen.Die Daten der einzelnen Produktionseinheiten oder Organisationen werden mit
anderen Einheiten oder mit dem zentralen Server nicht geteilt.Sondern es werden nur die
lokal trainierten Modelle an den zentralen Server übermittelt, wo der zentrale Server sie
zur Erstellung eines einzigen globalen Modell verwendet.Dieses globale Modell wird dann
an die einzelnen Einheiten übermittelt and von deren weiter eingesetzt.Die Forschung
im Bereich des FL nimmt seit seiner Einführung im Jahr 2017 stetig zu.Dennoch gibt
es nur wenige Belege für die Nützlichkeit von FL Methoden für Predictive Maintenance
Probleme, die oft mit tabellarischen Daten und sehr ungleicher Verteilung der Daten
representiert werden.In unserer Arbeit geben wir einige Einblicke in die Leistung von FL
Modelle für vier verschiedene Datensätze und Datenverteilungsszenarien. Wir bewerten
ausgewählte FL Techniken hinsichtlich ihrer Effektivität, der zusätzlichen Kosten, die
durch die Übertragung individueller und globaler Modelle entstehen, und der Fähigkeit,
eine vergleichbare Effektivität zwischen den teilnehmenden Einheiten zu erreichen, also
Fairness der Modelle.Darüber hinaus zeigen wir, dass für einige ausgewählte Szenarien
FL eine geeignete Alternative zu klassischen Trainingsansätzen ist.In bestimmten Fäl-
len müssen FL Methoden jedoch noch weiter erforscht und entwickelt werden, um mit
individuell trainierten Modellen mithalten zu können.
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Abstract

Machine learning and predictive analytics have become an important part of the intelligent
decision-making process contributing to Industry 4.0 developments. The most important
ingredient to successful artificial intelligence solutions is data, which are often produced
in a decentralized manner by separate production units at different locations or even
organizations. Collecting and processing such data in a classic centralized manner poses
new challenges or may be intractable or even not possible. This requires novel approaches
for processing the data and training machine learning algorithms. Here, Federated
Learning may come in handy. Federated approaches train global models without the
need to collect the data centrally. Individual data of each production unit or organization
does not leave that entity; while trained local models are sent to the server, which
aggregates them to produce a single global model. This single global model can then
be used by individual entities. Currently, the research in the field of federated learning
is growing since it was first introduced in 2017. Still, there is little evidence about the
usefulness of federated approaches for predictive maintenance problems, represented
by tabular and very imbalanced data. In our work, we provide some insights into the
performance of federated models for different datasets and data distribution scenarios.
We evaluate selected federated techniques in terms of their effectiveness, additional costs
imposed by transferring individual and global models, and ability to achieve comparable
effectiveness across participating entities, i.e. fairness. Moreover, we show that for
some selected scenarios, federated learning is a suitable alternative to classic training
approaches. Nevertheless, in certain cases, federated methods still require further research
and development to be able to contend with models trained on an individual basis.
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CHAPTER 1
Introduction

1.1 Motivation
Machine Learning is an important development in Industry 4.0 with applications in
product recommender systems, dynamic product pricing, optimal supply chain scheduling,
and many others. More and more production companies already employ artificial
intelligence during the production process for automated equipment health monitoring
and product fault detection to ensure their product quality and reliability, and to decrease
maintenance costs. Tracking the data generated by machines, production units, sensors,
and intelligent factories has become an essential part of manufacturing processes. However,
the relevant data are often spread among different entities/locations within the same
company or are even possessed by different organizations. Thus, the processing and
employment of such distributed data requires novel machine learning approaches.

Collecting everything into a central resource to perform the training centrally might be a
solution, yet this usually implies high communication costs for transferring the individual
data. Also, finding optimal machine learning methods for predictive maintenance and
defect detection problems requires large datasets due to the rare occurrence of failures in
production processes or products. Such datasets are difficult and expensive to collect
for companies individually [ZLM+21]. Therefore, the cooperation of several similar
companies could be beneficial for developing joint solutions. However, this would imply
the necessity to share the data among the companies, which may be an unacceptable
obstacle due to the competitive nature of the market. Moreover, accumulating data into
one source is, in general, associated with severe privacy and security threats [RLD+18],
[XLD+19]. Finally, the large scale of some modern industrial infrastructures may make
such centralized training approaches intractable [HLL+20a].

Federated learning approaches are used to avoid any central accumulation of data. These
methods propose training a global model without directly accessing the data stored on
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1. Introduction

different entities or edge devices, called clients. In particular, clients locally model their
data, without having to share their data with anybody. The clients communicate their
local models to a central server, and the central server aggregates them into a global
model [GHP22]. Subsequently, the global model is shared with all participating entities.
McMahan et al. [MMR+17] first introduced a secure training using client text-data on
mobile devices to generate a global text-model. Since then, federated learning has found
many applications in the industry, such as in healthcare or production companies, due
to its obvious advantage of keeping the privacy of local data private and leveraging the
data availability and optimal model performance.

Both the scientific community and business widely discuss the data privacy and other
benefits of federated learning. Many studies concentrate on theoretical aspects and
challenges of federated learning. For example, challenges associated with data and
systems heterogeneity, privacy preservation, communication costs, etc. Still, there are
relatively limited research focusing on industrial predictive maintenance tasks [CLH+21].
Many studies do implement federated learning in the industry, e.g. for machinery fault
diagnosis [ZLM+21] or anomaly detection in industrial Internet of Things [LGN+21].
However, they usually propose certain federated learning frameworks and mostly use
the basic federated learning algorithms to establish the global models, e.g. [ZZL+21].
Furthermore, many researchers consider data heterogeneity and imbalance across clients,
but very few works examine the behavior of federated learning approaches on highly
imbalanced industrial datasets. Typical predictive maintenance problems are solved using
data with highly imbalanced distributions between faulty and non-faulty observations with
only a fraction of data constituting the faulty samples. What is more, measurements are
often represented by tabular data. Though, many existing works explore the performance
of federated learning for computer vision or natural language processing applications.
Finally, there are numerous adaptations of the initial federated learning algorithm, which
tackle its different drawbacks. Nevertheless, there are no guidelines on how to select an
optimal approach, making it even more challenging to identify the practical usefulness of
this innovative approach in a concrete use case for industrial problems.

Therefore, our goal is to provide researchers and industrial experts some insights on
the behavior of federated learning in the industrial context for problems with highly
imbalanced available data, more precisely, in predictive maintenance and production
quality control tasks. We aim to systematically compare different federated learning
approaches for our selected problems. Finding a good machine learning model is often
time- and resource-intensive, especially in the case of federated learning, where we have to
consider not only the model architecture but also a variety of possibilities for aggregation
of local models into the central model. Additionally, we contrast the federated setting
against local training, where all clients base their models only on their data isolated from
other clients, and against centralized training, where all data are centrally collected, thus
violating the data privacy requirement.

2



1.2. Federated Learning

1.2 Federated Learning
Federated Learning is a relatively new field of research, originating from the work of
McMahan et al [MMR+17], who suggested a method to collaboratively learn a shared
model involving hundreds to millions of mobile devices and the data stored on these
devices. Since the local data on mobile devices are usually privacy-sensitive, the technique
proposed a mechanism to train a shared model by aggregating only the local models
trained on local data without collecting all the locally stored data centrally. Subsequent
research showed that the described approach could not only be employed in cross-
device settings (e.g., mobile phones, sensors) but also in cross-silo settings, involving
data generated and/or stored by different organizations, like hospitals or factories, e.g.
[HYF+20], [SER+20], [ZLM+21].

Federated learning is defined as a machine learning subcategory, where some edge devices
or organizations, called clients, cooperate to achieve the global learning objective under
the coordination of a central server [KMA+19]. Contrary to the centralized approach,
where all data have to be collected on the central server, see Figure 1.1b, "in the case of
federated learning, the clients do not transfer their data to the central server but build
their local models and share model updates to the central server. The central server
aggregates these updates into the global model and transfers the global model back to
the corresponding clients for further training" [GHP22], see Figure 1.1c.

Formally, the learning objective of federated learning is usually to minimize the global
objective function

min
w

F (w), where F (w) :=
N

k=1
pkFk(w), (1.1)

where N is the total number of clients (devices, organizations, etc.), pk ≥ 0 and k pk = 1,
Fk(w) is the local objective function of k-th client [LSTS20]. The selection of weights pk

is subject to the user’s choice. A common and quite natural strategy, known as Federated
Average (FedAvg) [MMR+17], is defined by setting the weights pk proportionally to the
amount of data hold by each client, i.e. pk = nk

n , n = nk, where nk is a number of
data samples of k-th client.

Finding an optimal solution to the problem defined in Equation 1.1 is not restricted
to proper selection of weights or optimization of local objectives. There are numerous
challenges present in the federated networks, which do not exist in the case of classical
distributed training on the central server. First, we have to deal with heterogeneous
data among the clients in most cases. Data on mobile devices generated by different
users may be specific to these users’ preferences and significantly vary in distribution.
Similarly, data collected by various production companies or units may reflect specifics of
their products or production processes. Thus, the "data originating from various clients
usually cannot be considered as independent identically distributed (i.i.d.)" [GHP22], i.e.,
we cannot expect the local data to be a part of a single global distribution. Moreover,
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(a) Local training

(b) Centralized training

(c) Federated Learning

Figure 1.1: An illustration of different learning architectures: (a) Local training, where
clients use only their own data and no global model is trained, (b) Centralized training,
where all local data are collected on the central server and is used there to train a single
global model, (c) Federated learning, where the training is done locally and only model
updates are aggregated centrally.4
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sizes of data on each client’s side may vary as well. This aspect of federated networks is
commonly known as the statistical heterogeneity. Heterogeneous data among clients may
lead to a strong divergence of an aggregated global model resulting in lower or even much
lower performance, at least for some clients [LSZ+18]. Second, in addition to varying the
data distributions across the clients, clients’ computation and communication capabilities
are usually quite diverse. This issue is referred to as systems heterogeneity, because
differences in hardware, network connectivity, etc., may significantly influence the ability
of the clients to participate in the global training and their timely response. While this
challenge is more actual in orchestrating a federated network with millions of devices,
rather than in the case of tens to hundreds of organizations, still also in cross-silo settings
it cannot be neglected entirely. Third, even though it is expected that federated learning
strategies may be helpful in tackling communication costs since instead of uploading
the entire data, only model updates are communicated to the server, "communication
may become a critical bottleneck in federated approaches [KMA+19], especially when a
great number of clients have to transfer local updates a multitudinous number of times"
[GHP22]. Finally, although federated learning approaches suggest a strong advantage
in privacy-sensitive applications, as the clients’ data remain local, sharing the "model
updates can pose a risk of revealing some sensitive information" [GHP22], while the
approaches with enhanced privacy may have reduced effectiveness or efficiency [MRTZ18].

Our work focuses on exploring the performance of federated learning approaches in
cross-silo settings with a reasonable number of participating clients within an order of
magnitude of tens, and thus, systems heterogeneity and communication challenges are
less relevant for our analysis. Therefore, we concentrate primarily on the optimization
task from Equation 1.1, testing different statistical heterogeneity scenarios.

1.3 Research questions
McMahan et al. [MMR+17] introduced FedAvg, a "federated optimization method, where
a global model is derived by taking a weighted average of the local models’ parameters"
[GHP22]. Empirical evaluations indicate a good performance of FedAvg; however, this
approach "does not provide any convergence guarantees and can diverge in practical
settings when data are heterogeneous" [LSZ+18]. In other words, simple averaging of
the local models may not be optimal for constructing a global model, especially when
clients’ data are non-i.i.d. Therefore, consideration of other aggregation methods becomes
inevitable.

Ji et al. [JSP+21] researched numerous aggregation strategies and suggest a taxonomy
of federated model fusion algorithms by designating them to one of the following groups:
adaptive/attentive aggregation, regularization, clustering, Bayesian methods, and fairness,
which are based on specifics of every algorithm. In our research we focus on three
aggregation algorithms in addition to FedAvg: FedProx, FedYogi, and qFedAvg, as they
have different designs and suppose to address different disadvantages of the classical
FedAvg approach. Since achieving the acceptable performance is vital for every machine
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1. Introduction

learning task, we formulate our first research question as follows:

• RQ1: How effective are selected aggregation algorithms for our predictive mainte-
nance/defect detection task?

Typical predictive maintenance/defect detection problems could be represented by binary
classification tasks with two values - failure / no failure. Also, the data is usually highly
imbalanced - failures have much lower occurrence in the data than healthy states. Thus,
we consider two metrics for effectiveness, which are meaningful performance indicators in
case of imbalance data. We calculate F-beta score [Ste] based on the resulting confusion
matrix and subsequently the standard metrics precision and recall:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall .

By setting the parameter β we will be able to control the relative importance of the
different types of prediction mistakes - false positives vs false negatives. Also, since one
of the main tasks of predictive maintenance/defect detection is to optimize the economic
cost of maintenance, the F-beta score alone may not be enough to incorporate various
business constraints and requirements [SMWB18]. Therefore, we additionally model the
maintenance cost as the total cost, required for unnecessary checks of false positives and
replacement of missed false negatives:

Maintenance cost = c1 · # false positives + c2 · # false negatives,

where c1 is a unit cost of checking for a possible failure during the production process
and c2 is a unit cost for replacement of a faulty product; often c1 ≪ c2.

However, model effectiveness is not the only aspect for optimization in federated networks.
Numerous uploads and downloads of the model updates may significantly influence
communication costs and become a critical issue [KMY+16]. Thus, it is vital to consider
decreasing communication by reducing the amount of communicated information or by
reducing the number of communication rounds; a communication round represents the
full cycle between local downloads of the global model and uploads as well as subsequent
aggregation of local updates on the central server. On the other hand, it may be also
important to look both at the total effectiveness of the whole network and examine the
effectiveness metrics for each client locally. One drawback is that after the aggregation
process, some clients may be advantaged or disadvantaged if, for example, the model
gets biased towards the clients with more data or towards the clients having more similar
distributions. Hence, we formulate the second research question:

• RQ2: What is the relationship between the effectiveness of the aggregation algo-
rithm and the communication cost and fairness of the model?

6
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In our selected aggregation methods, the amount of information communicated in
each round is the same, i.e., if the same model architecture is selected, the number of
communicated model weights is the same. Thus, as a proxy for communication cost,
we can straightforwardly use the number of communication rounds between the server
and the clients. To estimate the fairness, there are different definitions and metrics in
machine learning. Li et al. [LSBS19] studied the fairness issue in federated learning and
suggested a fairness definition for a federated learning framework:

Definition 1.3.1 (Fairness of performance distribution) "For trained models w
and w′, we informally say that model w provides a more fair solution to the feder-
ated learning objective 1.1 than model w′ if the performance of model w on the n devices,
a1, ..., an, is more uniform than the performance of model w′ on the n devices." [LSBS19]

To measure the fairness as defined above, i.e., to assess the uniformity of the effectiveness
measures, we consider one of the fairness metrics suggested by Divi et al. [DLFB21] -
Entropy of clients’ performance metrics; in our case entropy of clients’ individual F-beta
scores:

Entropy = −
n

i=1

Fi
n
j=1 Fj

log Fi
n
j=1 Fj

.

Finally, we compare the performance of the federated strategies against two baseline
methods - pure local training and centralized training. In the case of local training, the
clients train individual models utilizing exclusively their local data, without any further
communication, see Figure 1.1a. In the case of centralized training, all the data are
collected centrally, consequently, the data privacy is sacrificed and a single central model
is trained, see Figure 1.1b. Thus, we formulate the third research question:

• RQ3: To what extent can the federated learning approach replace the centralized
and /or local training without major losses in model effectiveness?

To answer the research questions, we select four industrial datasets with a high class
imbalance - three publicly available datasets and one private dataset from the industry.
We then choose a base model for each dataset and use the same architecture for all
individual clients, and the global models. Due to convenience for executing calculations
with weights, and since most of federated approaches are designed for and used with
neural networks, see e.g. [ZZL+21], [LWW+21], we select Feed-Forward Neural Networks
as a base model. We use the same initial neural network, i.e. same architecture with the
same initial weights, to train 4 federated learning approaches. Also, we train the same
network in local and centralized settings, thus making the results of different methods
comparable to each other.

7





CHAPTER 2
Related Work

2.1 Machine Learning in Manufacturing
The fourth industrial revolution evolved as a consequence of recent technological ad-
vances in Internet of Things, computational and connectivity resources, cloud and edge
computing, digitization of processes, and others. Data analytics and artificial intelligence
have become an essential part of smart factories - self-aware, self-predictive, and self-
maintaining organisms - and have found broad applicability to different areas ranging
from production operations and supply chain management to customer service [RTID21].
By applying machine learning techniques to different segments of manufacturing pipelines,
companies can increase the level of automation and efficiency, saving both money and
time.

One of the fundamental functions of every manufacturing process is maintenance, which
has a significant contribution to manufacturing costs and may constitute from 15% up
to 60% of total operational costs [Mob02]. Thus, there is a lot of potential for various
optimizations by utilizing machine learning approaches.

The increased importance of intelligent data-driven engineering solutions has also been
reflected in academia. Zonta et al. [ZdCdRR+20] in their systematic literature review
indicate that the amount of research on predictive maintenance has been growing continu-
ously and more than half of the works deal with data-driven AI-related techniques. Cinar
et al. summarize numerous examples, how these techniques were applied successfully in
several predictive maintenance fields, like systems and equipment health management,
product state of health identification, remaining useful life prediction, and other. The
most relevant for us is the diagnosis of products or their parts.

In component health diagnostics, two approaches serve as a common practice - visual
inspection of the images of completed parts or product surfaces or model-based approaches
taking the advantage of the metrics measured and collected during different stages of the
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2. Related Work

production process. The appropriateness of one method or another is determined by the
data available and problem specifics.

The latest visual inspection approaches cover recent advances in deep learning methods
for image processing, like convolutional neural networks (CNN). For example, using CNN,
Weimer et al. [WSRS16] achieved over 99% classification accuracy for industrial optical
inspection tasks with different industrial texture patterns. Their suggested method
showed also superior results in terms of true negative rate, i.e. it succeeded in correctly
identifying defected cases for the most texture types. Other works employing different
variants of CNN, e.g. steel defect detection [MMC+12], wood veneer quality control
[SLZ+20], casting products inspection [NCP+21], demonstrate similar good performance.
Thus, CNNs are typically preferred over classical methods, e.g. feature extraction,
like SIFT/HOG/etc., combined with SVM/PCA/etc., fuzzy clustering, Hidden Markov
Models.

Different methods are used with the data representing measurements gathered during
the production, such as temperature, pressure, vibration, speed, oscillation, corrosion
levels, and others. Typical techniques for both classification/regression problems include
regression models, support vector machines (SVM), decision trees and random forest, and
artificial neural networks. The most common and best-performing supervised learning
approaches for early fault detection or component health assessment, as determined
by Cinar et al. [ÇANZ+20], are artificial neural networks, random forest, and SVM.
Still, the effectiveness of the models differs substantially depending on the problem
specifics and underlying data. For some tasks, neural networks can be used as a primary
solution showing satisfactory results and/or outperforming other approaches. The
examples include wind turbine testing [BS15] with almost 93% prediction accuracy, tool
wear monitoring of a Computer Numerical Control (CNC) milling machine [HM19],
where the neural network outperformed SVM and KNN, prediction of motor failure
[SSVFSdSAdS19], where ANN showed equal or higher performance than SVM, decision
tree, random forest. At the same time, many works prove usefulness of other algorithms,
like random forest, SVM, etc., e.g. [FMNC19], [WY07], [XHL18], [BDP19], [QMM+18].
Overall, according to the research performed by Zhang et al. [ZYW19], neural networks
indicate a decent performance in predictive maintenance tasks, however, they are primarily
suitable in case of complex large-scale systems.

Nonetheless, the applicability of machine learning to a concrete company’s case is strongly
correlated with the availability of the data and heavily ranges throughout the industry
sectors. For example, many studies exist for the semiconductor industry, the earliest
of them going back to 1993 (e.g. [AWG93]), due to the possibility to gather lots of
data in a short time. Still, typical challenges, like missing or imbalanced data, remain
applicable up till now [CB17]. However, in most cases, it is extremely difficult to gather
enough high-quality data, which may be adopted for comprehensive analyses and building
models, as the behavior of machines and causes for failures are too diverse and complex
[ZHA19]. For example, the data used in the previously mentioned work of Weimar et al.
[WSRS16] was created artificially, still incorporating real-world observations. In practice,

10



2.2. Federated Learning approaches

only a small part of companies have already reached the state of continuous real-time
monitoring of manufacturing by incorporating automated processes employing predictive
models [HMV17]. Most manufacturers still perform manual periodic inspections or rely
on predefined rules or critical levels, which are mostly based on expert knowledge and
best practices.

2.2 Federated Learning approaches
Federated Learning is a machine learning method designed to deal with decentralized
data without collecting the data centrally. In practice, there are three main scenarios
of how federated learning could be utilized for training models on partitioned data -
horizontal federated learning, vertical federated learning, and federated transfer learning.

Horizontal federated learning (HFL) is applicable when clients share a similar feature
space, but the users/objects are different, see Figure 2.1.(a). For example, there are some
manufacturing units, which are spread geographically and produce similar products, thus,
measuring the same features during the production. In such a case, HFL is useful to
increase the size of the data, leading to potential improvements in the global model’s
effectiveness. In general, HFL settings require that different clients work on a similar
machine learning problem, but due to some reasons cannot share their data. The clients
would then calculate and upload local gradients to a central server, and the server would
incorporate local gradient updates into the global model.

Contrary to HFL, "vertical federated learning (VFL) is employed, when the feature spaces
among the clients are rather disjoint, but these clients store the features or characteristics
of the same users/objects" [GHP22], see Figure 2.1.(b). In other words, the same
users/objects are processed by different clients for different tasks/purposes. Primarily,
VFL methods are applicable to cross-silo settings, i.e. when clients are organizations or
their units rather than individual devices. For example, the same product is tracked over
a sequence of stages of the production process and different metrics of this product are
recorded at each stage. Another typical example of vertically partitioned data covers the
patients, whose drug files are stored by pharmacies and whose clinical history is collected
by hospitals. Obviously, VFL is more complicated than HFL due to entity resolution
challenges, since the matching the individual entities across the different parties may
not always be known a priori or be easily achieved [GSB+17]. Thus, the aim of VFL is
to collect distinct features in an encrypted way to obtain a comprehensive model. Still,
available secure encryption techniques may only be used with simple models like logistic
regression and thus need to be further improved [LFTL20].

In the case of federated transfer learning (FTL), the clients observe neither common
features nor common users/objects, see Figure 2.1. Typically, FTL scenarios exhibit a
lack of data labels and poor data quality. Liu et al. [LKX+20] first suggested an FTL
framework to ensure privacy-preserving transfer learning with a similar level of accuracy.
Some works employ FTL approaches, e.g. [CLL+20], still, the research state of FTL is
not yet mature [LFTL20].
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Figure 2.1: Different data partitions in federated learning
Figure source: [LHW+21]

In practice, HFL is most commonly adopted [ZZL+21]; in our analysis, we also model
HFL settings. Thus, we restrict further discussion to HFL approaches only. There are
many directions for optimization in federated learning, such as decreasing communication
overhead, leveraging fault tolerance and resource allocation, and dealing with privacy
risks. In our experiments, we focus on model optimization and data heterogeneity. Model
optimization task essentially encompasses two aspects - "selection of underlying machine
learning algorithm for local training and a choice for model aggregation to obtain the
global model" [GHP22].

Zhang et al. [ZXB+21] in their survey on federated learning outlined three main machine
learning model groups, which are used in federated schemes - linear models, tree models,
and neural networks. There are some works showing successful implementation of privacy-
preserving linear and tree models. Nikolaenko et al. [NWI+13] proposed a ridge regression
system, which achieved the best performance. Cheng et al. [CFJ+21] constructed
SecureBoost, a lossless gradient tree-boosting system, which before constructing boosting
trees "conducts entity alignment under a privacy-preserving protocol" and was indicated
to be as accurate as its non-federated counterparts. Li et al. [LWH20] designed a
similarity-based federated learning framework for gradient boosting decision trees and
obtained similar, yet slightly worse, accuracy as the centralized approach. Still, different
types of neural networks prevail in federated learning applications due to their broad
applicability to numerous problems - from modeling tabular data to solving computer
vision and text processing tasks.

While some researchers suggested federated versions of random forest and SVM, [LLL+20],
[GLZL21], [VYJ08], these approaches still lack proof of concept. Also, only neural
networks and linear and simple tree models are realized in federated learning frameworks,
as described in Section 2.4.

Another area for optimization in HFL is related to the production of a global model
based on the local ones. FedAvg [MMR+17] is a common and straightforward method
for combining the local models. Clients train distinct models employing only their local
data, communicate their models to the server and the server produces the global model
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by taking a simple or weighted average of the local models. However, FedAvg has some
weaknesses, especially when clients’ local data are heterogeneous. When training their
local models, clients carry out the optimization of their local objectives only, which in
the case of heterogeneous data may differ significantly among each other as well as from
the global optimum, i.e. the optimum of the global model.

There are numerous methods in the literature, which deal with different perspectives in
the management of the global training process. In our research, additionally to FedAvg,
we explore FedProx, FedYogi, and qFedAvg. We provide detailed information on these
algorithms in Section 3.3, thus we do not discuss them here. Still, there are many other
approaches, which are more advanced than FedAvg and often use FedAvg as a base.
SCAFFOLD [KKM+20] uses variance reduction techniques to restrict the client drift from
the global model. Similar to FedProx, which limits deviations from the global model by
adding a proximal term, SCAFFOLD may help to decrease communication costs and the
global effectiveness in heterogeneous data. While FedProx and SCAFFOLD control the
local training process to favor global optimization, FedNova [WLL+20] seeks to improve
the aggregation stage by normalizing local model updates when averaging. Attentive
methods, such as FedAtt [JPL+19] and FedMed [WLW20], are used to manipulate the
global model at the aggregation stage as well. While FedAvg usually weights the client
models proportionally to the clients’ underlying data, attentive methods operate with the
attention scores for client model parameters. FedMA[WYS+20] is another method, used
for leveraging global model effectiveness and total communication burden. It is based
on an observation that different permutations of neural network architectures yield the
same outputs. Thus, this technique suggests composing the global model layer-wise, by
identifying similar elements in the network (e.g., neurons in MLPs, channels in CNNs,
etc.) and averaging them.

All previously described techniques aim for optimization of the total performance of the
system, i.e. improving the effectiveness and/or communication costs with respect to the
whole data available in the system. An alternative solution is to design personalized
federated approaches. On the one hand, these solutions should prioritize local optimization.
On the other hand, they should still profit from the knowledge exchange by participating
in federated training. Per-FedAvg [FMO20] and pFedMe [TDTN20] are two examples of
personalized federated learning algorithms.

To be noted, FedAvg often serves as a baseline in evaluations of alternative approaches.

For the sake of completeness, we point out that there are also federated learning mecha-
nisms designed for many other tasks than supervised machine learning. Such approaches
include meta-learning, reinforcement learning, collaborative filtering, matrix factorization,
generative adversarial learning, and others. Some examples in these areas are mentioned
in the studies [LWW+21] and [JSP+21].
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2.3 Industrial Federated Learning Applications
Originally, federated learning was suggested for cross-device settings, i.e. for mobile or
edge devices, due to the increasing computational power and storage capacity of these
devices. Examples of successful applications include, for example, next word or emoji
prediction on keyboard [CMOB19] and human activity recognition [SVG18].

Inspired by the promising results in cross-device applications, scientists found also plentiful
use cases in the industry. Due to its privacy-preserving mechanisms, FL gained decent
attention in health care. Normally, medical institutions process loads of patients’ data,
however, the data of a single institution still may not be enough to build a reliable model.
Pfohl et al. [PDH19] used electronic health records from intensive care units to model
the length of stay and hospital mortality and showed that FL surpasses local learning
achieving efficacy similar to that of centralized training, i.e. cooperation of medical
institutions would be beneficial over non-cooperation. Huang et al. [HYF+20] adopted
the FL approach to train a model for patient mortality prediction using drug utilization
data, which outperformed the baseline. Silva et al. [SGR+19] used brain magnetic
resonance images for feature extraction in a federated manner for further determination
of brain diseases.

Driven by the achievements in privacy preservation, but also by promising FL performance,
FL found wide-ranging applications in other industrial branches as well. Zhang et al.
[ZLY+20] proposed to combine FL and blockchain technologies to detect device failure in
the Industrial Internet of Things. They designed a centroid distance weighted federated
averaging algorithm, which builds up weights depending on the separation of the classes
of each client’s data set, which showed similar or better results than classic federated
averaging. While the blockchain was used to ensure the data integrity by hashing and
periodically storing the clients’ data on the blockchain. However, in many tested cases,
centralized and local training showed more favorable results. Liu et al. [LGN+20]
performed anomaly detection using sensor data from different fields, e.g. power demand
space shuttle, etc. Due to the exchange of lots of information, i.e. high number of gradients,
which implies high communication costs till a model is sufficiently trained, they suggested
a "Top-k selection-based gradient compression scheme" to tackle the communication
challenges. The proposed technique proved to be effective and efficient, also better than
some centralized schemes. Still, these results were shown for time series data only. Li et al.
[LWS+20] introduced the FL-based intrusion detection model in industrial cyber-physical
systems. They enhanced their model with a secure communication scheme, which is
aimed to retain the security and privacy of the local data but also of the model weights.
Their suggested method demonstrated close performance to the baseline. However, it was
only tested with a single dataset. Hu et al. [HGLM18] applied FL in urban environment
monitoring. Insufficient environment sensing sites, sparse sensory data, and incomplete
records showed to make a detrimental impact on the central model performance. The
suggested solution to cluster the sensors into regions and subsequently apply federated
averaging improved computational efficiency and increased model accuracy compared to
the centralized approach. Yet, this approach was again explored with only one dataset.
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Other industrial FL applications include FL-based recommender systems, e.g. video
recommendations [DZW+19], federated collaborative filtering [AUDIK+19], traffic flow
prediction [LJK+20], energy demand prediction [SHN+19], credit card fraud detection
[YZY+19], and many other. To be noted that almost all of the described solutions used
different kinds of neural networks.

Even though FL utilization in the industry is manifold, the number of works on predictive
maintenance remains limited. Even less research exists for tabular imbalanced data.
Zhang et al. [ZGC+21] suggested privacy-preserving federated learning approach AdaPFL
for fault diagnosis in Internet-of-Ships with adaptive changes to the model aggregation
interval for reducing cryptography computation and communication costs. Empirical
experiments prove the high effectiveness of the AdaPFL close to the centralized training
approach. Yet, the data used in the experiments was perfectly balanced with 500 samples
per class. Ge et al. [GLZL21] constructed an FL SVM and random forest approaches
for predicting the failures in a production line, compared them to centralized SVM and
random forest respectively, and achieved similar effectiveness between corresponding
federated and central learning models, e.g. SVM centralized vs SVM federated. However,
this study can be generalized to a very restricted extent and the suggested algorithms
may show different performances in other experimental settings. Zhang et al. [ZLM+21]
analyzed the effects of different types of data heterogeneity in machinery fault diagnostics.
They introduced an FL method with dynamic validation and self-supervision with
promising performance on non-i.i.d. data. At the same time, they focused on modeling
non-i.i.d.-Class and non-i.i.d.-Domain imbalance, e.g. by assigning different types of
faulty states to different clients, and did not explore the data imbalance issue within the
same client. Mowla et al. [MTDC19] discuss the class-imbalance problem for detection
of jamming attacks in Flying Ad-Hoc Network and propose a client group prioritization
mechanism to identify better client groups for global model construction. Still, this
work is isolated to the Unmanned Aircraft Vehicle data, which is pre-processed in a way
to artificially create an unbalanced class distribution. Also, only federated averaging
is considered for the aggregation of local models. Zhang et al [ZWZ+21] adopted a
combination of autoencoders and Siamese networks to detect faults in permanent magnet
synchronous motors. The proposed method was tested with both centralized and federated
learning approaches using sparse data and achieved increases in accuracy against other
common deep learning architectures. But here again, only one dataset was included in
the analysis, making the study hardly generalizable.

Thus, to our best knowledge, there are no studies so far on imbalanced tabular predictive
maintenance data that evaluate the performance of several federated learning algorithms
simultaneously considering the effectiveness, communication cost, and fairness of the
models.
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2.4 Existing Federated Learning Frameworks
With the increasing interest in federated learning methods, several federated frameworks
have been developed recently, which enable a more convenient practical usability of this
novel approach. Common frameworks cover TensorFlow Federated (TFF) from Google
[ten] and PySyft from OpenMined community [pys].

TensorFlow Federated and PySyft are both designed to be used together with deep
learning approaches - TFF is built on top of TensorFlow, and PySyft should support
PyTorch and TensorFlow libraries. Even though they provide powerful solutions to many
tasks, which require deep learning solutions, still they do not support any classic machine
learning approaches, which may be disadvantageous in some cases. Moreover, the choice
of federated algorithms is quite limited despite many existing strategies for aggregation of
the local models. TFF aggregation techniques are limited to FedSGD, FedAvg, FedProx
and MIME_lite [KJK+20] in weighted and unweighted versions. Similarly, PySyft covers
also only FedAvg, FedSGD, FedProx, and FedDANE as ready techniques. As opposed
to TFF, PySyft supports both vertical and horizontal FL, while TFF can be used only
for horizontal data partitioning in the FL network. Still, both libraries are composed of
different classes for computation of estimates, aggregation of local models, performance
metrics calculation, etc., so users may further extend and develop the existing resources
based on their own needs. Another general issue with these frameworks, which would
not have any effect for our analysis though, is that both are suited well for experiments
and simulations, however, practical applicability in industrial products is still limited
[KYF+20].

Other open-source frameworks include Federated AI Technology Enabler Framework
(FATE) [fat], Paddle Federated Framework [pad], Federated Learning and Differential
Privacy (FL&DP) Framework. FATE was designed for the industrial-level application, i.e.
is well-suited in cross-silo settings, ensuring a high degree of privacy by using homomorphic
encryption and secure multiparty computing. It can be used with neural networks but
also implements some regression models and decision trees. Paddle Federated Framework
uses a deep learning platform PaddlePaddle and has support not only for centralized but
also for decentralized FL, where no central server is involved and clients may communicate
directly with each other. Contrary to TFF and PySyft, FATE and Paddle have "all
the necessary features to be used in production" [KYF+20]. FL&DP is a rather simple
framework, yet it works together with neural networks as well as with linear and clustering
models from the scikit-learn package. Unfortunately, this framework has a very low
number of contributors (6).

Most open-source frameworks are designed for simulations on a single machine or may
be available for production in cross-silo settings only, while the solutions supporting
large-scale industrial applications are commercial and thus closed. What is more, they
primarily rely on client simulations and usually perform the necessary calculations in
nested loops rather than replicate real FL environments, where the calculations are
performed on edge devices simultaneously. Therefore, Beutel et al. suggested another
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FL framework FLOWER [BTM+20], which should also model systems heterogeneity in
computing capabilities, network bandwidth, model, etc. Furthermore, the authors claim
that their solution offers a language and ML framework-agnostic implementation, e.g.
compatible with PyTorch, TensorFlow, scikit-learn, or even raw NumPy. Still, by looking
at the source code of this framework we conclude that mainly models, which are defined
by their weights, can be used in the framework. On the other hand, it includes the most
model aggregation strategies in comparison to the frameworks described before.

Commercial institutions like NVIDIA and IBM offer their own frameworks as well, which
again confirms the relevance of federated learning to the industry.

We considered different available federated framework networks and decided to implement
our own to have the flexibility necessary for our explorations with industrial imbalanced
data regarding different simulations of client data, resampling and loss re-weighing
techniques, aggregation algorithms, performance metrics, and others.
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CHAPTER 3
Background

3.1 Neural networks
Neural networks / deep learning has become a powerful tool for solving different machine
learning problems in a supervised manner due to recent developments of hardware and
computational resources. Numerous deep learning approaches exist in modern practice,
like convolutional neural networks designed for image processing or recurrent neural
networks for sequence modeling [GBC16], but also more sophisticated methods with
e.g. attention mechanisms for multiple natural language processing tasks [VSP+17], and
other. Despite specifics in model architectures, all these approaches share a rather simple
base originating from a perceptron method inspired by the neuroscience [Ros58] and its
extension to a more flexible multi-layer perceptron (MLP).

Looking at the example in Figure 3.1, MLP can be considered as a mathematical function,
which itself consists of a set of simple functions connected in a chain, mapping input values
x to output values y, i.e. y = fn(...(f2(f1(x)))). The inputs, intermediary values, and
outputs, all called neurons, are organized in layers, where the calculations are processed
simultaneously on all neurons of a layer and where the outputs of the same layer are
propagated forward as inputs for the next layer. The first layer of a network is called
an input layer, the final layer is an output layer and all layers in between are referred
to as hidden layers. To generate the outputs, a set of calculations on input values are
performed. The input values, which are themselves the outputs of the preceding layer
(with an exception of the input layer), are multiplied by the parameters called weights
and are shifted by the bias parameters. The resulting values are then summed up and
the resulting sum is transformed via an activation function. The activation function is
used to distinguish to what extent the output of the neuron is relevant for the whole
model. Common activation functions include non-linear functions like rectified linear
unit (ReLu), sigmoid, hyperbolic tangent, and others, thus allowing to model non-linear
relationships between input x and output y.
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Figure 3.1: An example of MLP with three input units, three hidden layers and a single
output unit

Neural networks have high flexibility due to the possibility to tune their architecture
by selecting the number of layers and calibrating the sizes of each layer by adjusting
the number of neurons, as well as by setting the activation functions. However, training
the neural network usually means optimization task for millions of weight and bias
parameters. This can be done by applying small changes to the parameters to step-wise
decrease the model error defined by the loss function. Different loss functions exist; one
commonly used for classification task is cross-entropy loss, which in binary case is defined
as follows:

L = − 1
n

n

i=1
[yi · log(fθ(xi)) + (1 − yi) · log(1 − fθ(xi)] ,

where n is the number of training samples, yi is the target label for training example i,
xi input for training sample i fθ is the neural network with weights θ. To minimize the
loss function Stochastic Gradient Descent (SGD) algorithm [GBC16] or its adaptations
like ADAM [KB14], etc. can be used. All are based on the idea of calculating gradient,
i.e. vector of partial derivatives, in order to determine the direction of the sharpest
increment of the given function. For minimization of the function, a step in the opposite
direction is taken, and this procedure is repeated, iteratively adjusting the parameters of
the function till certain criteria are reached, for example, after a certain number of steps
or till the error is decreased to a given level. The size of these, usually small, steps is
controlled by the learning rate, which is selected by the user in advance. The higher this
parameter is set, the bigger steps can be done at once, potentially decreasing the number
of optimization rounds. Still, the learning rate is usually selected rather moderate in
order not to miss the targeted minimum, by "jumping" over or around it.

3.2 Handling data imbalance
A key feature of industrial predictive maintenance or defect detection data is a very high
class imbalance, reflecting the real world that failures happen rather rare in comparison
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to the total production, however, the cost of missing such failure is quite high. Classifying
unbalanced data generally leads to poor prediction accuracy and low generalization
ability of the model [Lee00]. Moreover, since miss-classification of a faulty object results
in a much higher relative cost, we aim to find an appropriate model to optimize not
only for total accuracy but, more important, to correctly detect the minority class still
keeping the number of false positives low. Hence, approaches for dealing with the class
imbalance problem were broadly studied over the last decades. Existing solutions usually
address this issue from two perspectives - on the data level by applying class re-balancing
approaches like data resampling or on the algorithm level by employing cost-sensitive
re-weighting techniques [JK19], for example by adjusting the weights of classes in the
cost function.

3.2.1 Data Resampling
Data resampling techniques are frequently used to alter the class distribution. The
simplest approaches include random undersampling and oversampling. In random un-
dersampling, a selected percentage of majority class samples are discarded randomly,
while in random oversampling random instances of the minority class are duplicated to
achieve a selected class distribution. However, random oversampling was shown to have
a tendency for overfitting [CJK04] and thus alternative oversampling methods shall come
into consideration.

One of the more sophisticated oversampling methods, proposed by Chawla et al. [CBHK02]
is Synthetic Minority Oversampling Technique (SMOTE). Instead of simply duplicating
the existing minority samples SMOTE is used to generate new synthetic samples from
minority distribution. For each minority instance, a neighborhood of the k closest minor-
ity instances is considered and new instances are created by moving in one or several
directions towards the nearest neighbors.

More resampling techniques exist, for example, cluster-based oversampling, one-sided
selection, Wilson’s editing. Still, even though they may seem more "intelligent" than
random duplication or discarding of instances, Van Hulse et al. [VHKN07] showed these
simple techniques may be preferable in case of severe class imbalance when positive
instances constitute less than 5% of total data.

3.2.2 Cost-sensitive techniques
In comparison to data resampling, cost-sensitive techniques do not introduce any pertur-
bations in the data, but rather reflect the variability of costs by introducing the penalties
of different magnitude for different classes. In case of deep learning, a common approach
is to include weight factors into a loss function, i.e. previously defined cross-entropy loss
is adapted to weighted cross-entropy loss given by:

Lweighted = − 1
n

n

i=1
[w · yi · log(fθ(xi)) + (1 − yi) · log(1 − fθ(xi)] ,
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where w represents the weight parameter(s). Selecting the weights may be quite straight-
forward by setting them to inverse class frequency, or more advanced like assigning them
with Effective Number of Object Class [CJL+19], defined by formula w = 1−βnj

1−β , where
β ∈ [0, 1) is a hyper-parameter and nj is a number of samples in j-th class.

Alternatively, other options like Focal Loss [LGG+17] with automatic adjustments to
weights based on the confidence of the classifier may be applied. However, the experiments
with different weighting strategies or other loss functions will be considered out of the
scope of this work, and the simple inverse class frequency weights will be used.

3.3 Federated Learning aggregation algorithms
FThe ederated Learning paradigm covers machine learning approaches, where the central
server orchestrates the training performed on the clients’ side, collects the local updates
centrally, and aggregates the updates into a global model. In our work, we explore 4
aggregation strategies - FedAvg, FedProx, qFedAvg, and FedYogi, as they put a different
focus on optimization methods, robustness, and fairness.

3.3.1 Federated Averaging (FedAvg)
One of the leading techniques to find a global optimum in a federated network is Federated
Averaging [MMR+17]. Let us consider a federated infrastructure with one central server
and N clients. At any time t the central server hosts a global model represented by its
weights wt (e.g. weights defining a neural network). Within one communication round,
the central server selects K clients, which will participate in this training round and
communicates to them the global model wt. Each client k ∈ K on their side carries out
E epochs of local optimization, i.e. each client performs E steps of SGD with a learning
rate η on the local objective function Fk. The obtained local models wt+1

k are transferred
back to the central server, where an updated global model wt+1 is constructed by taking
the average of local models. Thus, starting with an initial global model w0, which, for
example, could be initialized randomly, after executing T communication or in other
words global training rounds, we obtain a trained global model, which possibly better
solves the global optimization problem defined in Equation 1.1.

In Algorithm 3.1 we provide the pseudo-code for the original version of FedAvg suggested
by McMahan et al., where a simple average of the local models is calculated. Later works
suggest utilizing a weighted average, for example, with weights proportional to the size
of data held by each client to improve the performance of the global model and avoid a
big influence of outlying local distributions.

3.3.2 FedProx
Although FedAvg was widely explored empirically and indicates a reasonable performance,
especially in convex settings, simply averaging the local models may not always lead
to the optimal predictions, when local client distributions vary significantly. Indeed, in
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Algorithm 3.1: Federated Averaging (FedAvg), [MMR+17]
Input: K, T, η, E, w0, N, pk, k = 1; ...; N

1 for t = 0;...; T–1 do
2 Server selects a subset St of K clients at random (each device k is chosen with

probability pk)
3 Server sends wt to all chosen clients
4 Each device k ∈ St updates wt for E epochs of SGD on Fk with step-size η to

obtain wt+1
k

5 Each device k ∈ St sends wt+1
k back to the server

6 Server aggregates the w’s as wt+1 = 1
K k∈St

wt+1
k

7 end

case of heterogeneous data, i.e. when data are not identically distributed, but also in
heterogeneous networks, FedAvg may have severe losses in performance, e.g. [KKM+20],
[HQB19]). Moreover, FedAvg comes without convergence guarantees and can diverge in
practice. [LSZ+18] One more concern associated with FedAvg is that it does not consider
a realistic situation, when different clients may be able to complete different amounts of
work, i.e. to achieve different progress or even drop out of the network.

To improve the stability of the training process in diverse settings in terms of both data
and systems heterogeneity, Li et al. [LSZ+18] introduced the FedProx algorithm, an
adaption of FedAvg. This approach suggests adding a proximal term µ, which shall
"restrict strong drifts of the global model towards any of the local ones" [GHP22] by
limiting the contribution size of the local updates. Additionally, it allows to incorporate
incomplete work of the clients or to ignore non-responding clients without posing any
risk of high perturbations to the global model. In comparison to FedAvg, FedProx does
not derive a global model from the local models directly, however, it iteratively updates
the global model based on the local updates limiting their impact by using the proximal
term µ, see pseudo-code lines 4,6 in Algorithm 3.2.

Note that the algorithm does not require having exact solutions to the local objectives
Fk at any step, but demands the local solution to be γt

k-inexact, see Definition 3.3.1.
This requirement allows deriving convergence guarantees for FedProx for both convex
and nonconvex functions; authors also empirically demonstrated the model’s superiority
in heterogeneous settings. Moreover, by setting the proximal term to 0, the model is
reduced to FedAvg, however in that case the converge guarantees cannot be maintained.

Definition 3.3.1 (γt
k-inexact solution) "For a function hk(w; wt) = Fk(w)+µ

2 ∥w − wt∥2,
and γ ∈ [0, 1], we say w∗ is a γt

k-inexact solution of minw hk(w, wt), if ∥∇hk(w∗, wt)∥ ≤
γt

k∥∇hk(w∗; wt)∥, where ∇hk(w; wt) = ∇Fk(w) + µ(w − wt)." [LSZ+18]

Note that a smaller γt
k corresponds to higher accuracy.
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Algorithm 3.2: FedProx, [LSZ+18]
Input: K, T, µ, γ, w0, N, pk, k = 1; ...; N

1 for t = 0;...; T–1 do
2 Server selects a subset St of K devices at random (each device k is chosen

with probability pk)
3 Server sends wt to all chosen devices
4 Each chosen device k ∈ St finds a wt+1

k which is a γt
k-inexact minimizer of:

wt+1
k ≈w hk(w; wt) = Fk(w) + µ

2 ∥w − wt∥2

5 Each device k ∈ St sends wt+1
k back to the server

6 Server aggregates the w’s as wt+1 = 1
K k∈St

wt+1
k

7 end

3.3.3 FedYogi

Some works analyzing FedAvg have already highlighted its convergence challenges in
heterogeneous networks. Aggregating local models with non-identically distributed data
may result in s global model shift if the individual optima move too much away from the
optimum of the whole network. Another problem lies in lack of adaptivity since in case
of FedAvg, distributed SGD does not incorporate the information about past training
rounds, which may result in slower training and thus in increased communication costs.

Reddi et al. [RCZ+21] suggest a technique to integrate the knowledge from previous
communication rounds by extending FedAvg with adaptivity options similarly to momen-
tum in SGD optimization. The suggested approach FedYogi benefits from optimization
on both the client and the server side - similarly to FedAvg clients perform several local
epochs E of SGD updates, but contrary to FedAvg, the server also applies additional
gradient-based updates. In other words, FedYogi extends FedAvg by adding adaptive
optimization also on the server size, and by setting respective parameters FedYogi can
be reduced to FedAvg. This adaptive server’s behavior may help reduce the number of
global training rounds and thus improve significantly expensive communication.

The detailed training steps are described in the pseudo-code of Algorithm 3.3. Here, in
comparison to FedAvg, not only a local learning rate η has to be set for local training on
the client side, but also a global learning rate ηg for adaptivity on the server side has to
be selected. Additionally, the parameter τ is used to manage the level of adaptivity -
smaller τ values resulting in higher adaptivity.

To be noted that the authors suggest different adaptive approaches, i.e. in addition to
FedYogi, also FedAdagrad and FedAdam are proposed, which differentiate from FedYogi
by vt calculation in line 11 of Algorithm 3.3.
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Algorithm 3.3: FedYogi, [RCZ+21]
Input: K, T, η, ηg, E, w0, v−1 ≥ τ2, N, pk, k = 1; ...; N ,
decay parameters β1, β2 ∈ [0, 1)

1 for t = 0;...; T–1 do
2 Server selects a subset St of K clients at random (each client k is chosen with

probability pk)
3 Server sends wt to all chosen clients
4 for each client k ∈ St in parallel do
5 Client k ∈ St updates wt for E epochs of SGD on Fk with step-size η to

obtain wt+1
k

6 ∆t
k = wt+1

k − wt

7 end
8 Each client k ∈ St sends ∆t

k back to the server
9 ∆t = 1

|St| k∈St
∆t

k

10 mt = β1mt−1 + (1 − β1)∆t

11 vt = vt−1 − (1 − β2)∆2
t sign(vt−1 − ∆2

t )
12 Server updates the w’s as wt+1 = wt + ηg

mt√
vt+τ

13 end

3.3.4 qFedAvg

Heterogeneous client distributions pose challenges not only for convergence of the global
model. A global model may perform well on the whole infrastructure in general, e.g. by
achieving high average accuracy, however, it may deliver poor prediction results for a
subset of clients In other words, there is no possibility to ensure a similar accuracy level
across all individual clients in the network. Averaging local models, including calculating
the weighted average, may result in a biased model favoring clients with more data or
clients with "popular" distributions. Nevertheless, in some situations, optimization of
the global model from the overall perspective may be insufficient, if similar prediction
quality has to be ensured for all clients without exceptions. For example, in cross-silo
settings, organizations would have the interest to participate in collaborative training, if
they can profit from such training themselves. Also, in case of predictive maintenance,
even if collaborative training is performed within the same organization by consolidating
different units, the organization may be interested to have similar model performance
across all units for better diversification and control of costs and resources. Thus, certain
problems may require an increased degree of performance uniformity across the clients,
which indicates the necessity for considering the fairness of the model.

To tackle this problem, Li et al. [LSBS19] proposed a fairness-driven federated opti-
mization qFedAvg, where the clients with poor performance at a given time point are
dynamically assigned with higher relative weights. Higher weights increase the impact
of low-performing clients on the global model and so the global model is encouraged
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to seek less variation in performance across the clients. This approach was inspired by
the α-fairness in Network Resource Allocation [LKCS10], where the orchestrator of the
network can manage the level of fairness by setting different levels of α.

We will leave the theoretical background for the reader to study from the original paper
[LSBS19] on their own. In Algorithm 3.4 we provide the detailed pseudo-code. We
note that similarly to the alpha-fairness metric, the algorithm includes the parameter
q, which allows to control the degree of fairness by emphasizing more the clients with
higher local losses Fk. Higher q values imply superior fairness levels. Still, since an
overall performance remains an essential goal of the global optimization, setting the
parameter q forces the user to balance between the fairness of the model and the total
model effectiveness.

The algorithm involves one more hyper-parameter L - Lipschitz constant, which in our
experiments we set to 1/η, similarly to the paper author.

Algorithm 3.4: qFedAvg, [LSBS19]
Input: K, E, T, q, 1/L, η, w0, N, pk, k = 1; ...; N

1 for t = 0;...; T–1 do
2 Server selects a subset St of K clients at random (each client k is chosen with

probability pk)
3 Server sends wt to all chosen clients
4 Each client k ∈ St updates wt for E epochs of SGD on Fk with step-size η to

obtain wt+1
k

5 Each client computes:
∆wt

k = L(wt − wt+1
k )

∆t
k = F q

k (wt)∆wt
k

ht
k = qF q−1

k (wt) ∆wt
k

2 + LF q
k (wt)

6 Each client k ∈ St sends ∆t
k and ht

k back to the server
7 Server updates wt+1’s as:

wt+1 = wt − k∈St
∆t

k

k∈St
ht

k

8 end
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CHAPTER 4
Experiments

4.1 Data
Meaningful real federated datasets are problematic to collect due to data privacy and
legal concerns [HLL+20b]. Moreover, predictive maintenance data are mostly considered
private and thus are rarely disclosed for open access. We select three publicly available
datasets, which are suitable for a classification task with a very high class imbalance. Our
selected datasets are single collections of data. Thus, we simulate the clients by splitting
existing data. Additionally, we include an evaluation on a real dataset received as a part
of project Interactive carried out by the Austrian Institute of Technology1. This dataset
shall represent a realistic federated scenario since we can allocate the data to individual
clients semantically.

4.1.1 AI4I 2020 Predictive Maintenance Dataset (Synthetic)
The AI4I 2020 Predictive Maintenance Dataset2 provided by Matzka [Mat20] is a synthetic
dataset, which aims to represent real-world predictive maintenance data appearing in
the industry. Hereinafter, we will address this dataset as Synthetic.

The dataset contains 6 features, which include one categorical variable for product
type with three possible values and numerical variables for process temperature, air
temperature, rotational speed, torque, and tool wear, as well as data for different types
of failures. We restrict our analysis to a binary problem - the presence or absence of a
failure, as the production process would fail in case of any type of failure.

The dataset consists of 10 000 data points, out of which 339 contain some kind of failure,
resulting in a high class imbalance with 3.39% of samples having a positive class. We

1https://www.interactive-project.info/
2https://archive.ics.uci.edu/ml/datasets/AI4I+2020+Predictive+Maintenance+

Dataset
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use 80% of the data for training, 10% for validation, and 10% for testing. To tackle the
data imbalance issue, we employ SMOTE oversampling technique for training data. We
generate minority samples till the total number of failures account is 20% of the majority
class size.

Recalling that different types of classification errors have significantly different contribu-
tions to the total maintenance cost, we set c1 = 1 and c2 = 30, as the author suggests 30
times higher cost for false negatives than for false positives.

We point out that the preprocessing, i.e. oversampling, is performed for each client
separately in the case of local and federated training, without taking into account the
data from other clients. The same methodology is applied to all other datasets to preserve
data privacy. Obviously, in the case of central training, as we collect local data centrally,
we execute all preprocessing steps also centrally utilizing the full collected dataset.

4.1.2 Air pressure system failures in Scania trucks
The Failures in Scania trucks dataset3, provided by the company Scania CV AB for the
Industrial Challenge 2016 on The 15th International Symposium on Intelligent Data
Analysis (IDA), is a collection of different component failures in Scania trucks in everyday
usage. The positive class, in this case, represents the failures, which are related to the
air pressure system, while the negative class covers the failures not associated with the
air pressure system. The dataset contains 60 000 data points for training, thereof only 1
000 records or 1.7% belong to the positive class. We use 20% of the training data for
validation. For testing, an additional dataset is provided. It encompasses 16 000 records,
out of which 2.3% of the positive class. Each data point is assigned 170 features, which
represent operational measurements. The feature names are anonymized.

The dataset contains a lot of missing values. Therefore, we delete the features, where
more than 70% of values are missing. For the rest, we impute the missing values using the
median. We randomly remove 70% of the negative class observations and use SMOTE to
upsample the positive class records to comprehend 20% of the data. We also standardize
all values before training.

To evaluate maintenance cost, we again consider different types of false predictions, where
a false positive would represent an unnecessary check by a mechanic and a false negative
would mean missing a faulty truck and potentially resulting in a breakdown. As provided
by the dataset author, we set the cost parameters c1 = 10 and c2 = 500.

This dataset was widely studied in the literature in terms of different machine learning
approaches. However, only centralized training approaches were considered. The best-
performing models resulted in a total cost of approximately 10 000 - 11 500 for the test
set ([CN16]). This should give us an indication, of whether our model has a decent
performance. However, we also accept models with a moderately higher total cost.

3https://archive.ics.uci.edu/ml/datasets/APS+Failure+at+Scania+Trucks
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4.1.3 Hard Drive Reliability Sample

Since 2013, Backblaze provides daily data and summary statistics about the performance
of hard drives in their data centers4. The detailed data includes serial number and
model of the drive, drive capacity, 45 S.M.A.R.T. statistics [Wik] in raw and normalized
form, and a failure indicator. These data are recorded daily and can be used for health
monitoring of the hard drives by taking into consideration the timely development for
predicting the remaining useful life. In order to have a binary classification problem, we
will consider only the short-term health of hard drives and aim to identify the faulty
records at the moment the measurements are taken.

The dataset includes different hard drive models, whose annualized failure rate may
vary between 0.5% till 2%. Also, S.M.A.R.T. statistics may vary in meaning based on
the manufacturer and the model, making this dataset a good candidate for modeling
heterogeneity in a federated network.

Although almost 10 years of data are available, we will use only a snapshot of the data,
collected in 2019. This snapshot contains over 30 million records, representing the data
for more than 100 000 unique hard drives. In our experiments, we use a portion of the
data, as for many models, e.g. Hitachi, Seagate, DELLBOSS, no failing hard drives were
recorded in 2019. Moreover, some important S.M.A.R.T. characteristics, as suggested by
Backblaze, such as 5, 187, 188, 197, and 198 are not available for many of these drives.
Thus, we include in our analysis only ST drives, for which at least some failure instances
are present in the data. Furthermore, we consider only a subset of features, which should
be the most useful for predicting failures. In particular, we use these S.M.A.R.T. metrics:
3, 5, 7, 187, 188, 190, 194 197, 198, 199, either raw or normalized, as suggested by Amram
et al. [ADTZ21].

During preprocessing, we remove approximately 200 000 records, which contain missing
values (most of these records have no failure). Still, we are left with more than 30 million
records, over 90 000 unique drives, thereof 1967 with a failure. We assign the drives to
train/validation/test sets in 80%/10%/10% proportions. By splitting the data based
on the drives we ensure that no drive appears in more than one set and so there is no
data leakage. There are only a few failed hard drives, as the failure is indicated on the
last day, while all preceding days represent no failure. To increase the percentage of the
positive class in the training data, we modify the labels of the failed drives so that the
last two days of a drive’s life represent failure. By doing so we can double the number of
positive class observations. On the other hand, we do not adjust more observations, as
this may lead to an increased false alarm rate, i.e., false positive rate. Especially, since
the deviations in S.M.A.R.T statistics that differentiate working drivers from failed ones
are very small [AW]. At the same time, instead of simply downsampling the negative
class, we select 4 random samples per good drive, which should be enough to maintain
necessary information [ZWL+13].

4https://www.backblaze.com/b2/hard-drive-test-data.html
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As a benchmark, we consider other works employing the Backblaze data. e.g. [ADTZ21],
[SH18]. For example, Amram et al. achieved a 10% false alarm rate while identifying
around half of the failing drives (50% failure detection rate). Shen et al detect almost all
failures while ensuring only a 1.764% false alarm rate, however they analyzed hard drive
models not present in our dataset. Overall, various investigations are often based on
different time frames, isolate the experiments for a single drive submodel, or use different
S.M.A.R.T. features, which make the surveys less comparable. Moreover, many studies
use decision trees or random forest. Still, they provide some insights about meaningful
effectiveness, which we could also expect and target.

We observed that most of the works dealing with hard drive data analyze both metrics:
false alarm rate and failure detection rate without prioritizing one of them. Also, most
investigations use prediction accuracy or f1-score and do not weigh the impact of type I
or type II errors. Therefore, also in our analysis, we weigh the classes equally and set a
cost for both false positives and false negatives to 1.

4.1.4 Automotive dataset from industry

The automotive industry presents an ideal real-world use case for the application of Feder-
ated Learning. First, components are standardized, and their production is distributed all
around the globe, while the segmentation into multiple suppliers prohibits the exchange
of data. Therefore, federated learning could provide a standard model while respecting
the privacy concerns of the involved parties. Second, suppliers store production data
for individual articles for up to five years due to quality assurance requirements. Thus,
machine learning practitioners can access high-quality historical data.

The dataset originates from the production of gearbox components, in which prefabricated
parts are first deformed and then combined using laser welding. During production,
quality inspection engineers extract single articles for destructive testing. These detailed
quality inspection results represent the target variables for this use case. The original
dataset consists of 6230 samples with 178 features representing measurements such as
position, force, and moment of a single part, and 237 quality metrics, considered as target
variables.

For our experiments, we selected a single target variable that indicates whether an article
passed the quality inspection. Thus we have again a binary classification task. The
relevant data for this task consists of 4090 samples, which can be grouped into four
variants of the same product. These variants, more precisely product types, represent the
individual clients in our distributed scenario. This simulates the production of comparable
products in different production facilities.

Based on the discussions with the business people, we set c1 = 5 and c2 = 15 for
estimation of the total maintenance cost. Here the difference between type 1 and type 2
errors is lower than in the previous cases, as it shall consider that stopping the production
line to perform unnecessary checks is a costly process as well. Also, such parameters
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reflect the specifics of the data collection process, as not every article in the production
line is being inspected.

4.2 Client Simulation
While some manufacturing companies, their subsidiaries, or production units may produce
standardized products, the manufacturing and maintenance processes may have different
specifics across the companies. Also, companies may range in size, capabilities, production
volumes, etc. Thus, we cannot always expect that the data gathered by individual entities
are i.i.d. Therefore, in our analysis, we consider different scenarios, based on data
distribution across the clients. On the one hand, we are interested in the behavior of i.i.d.
data, which may simulate different production sites of a single enterprise. On the other
hand, we explore non-i.i.d. settings, as they may often represent the situations described
before.

Kairouz et al. [KMA+19] summarized non-IID scenarios from a statistical distribution
perspective. For our investigations, feature distribution skew and quantity skew schemes
are most meaningful. Feature distribution skew appears when the statistical distributions
of clients are non-identical given the same feature space. This skew type could simulate
variation in manufacturing processes, even though the same items are produced. Quantity
skew is observed when different units possess different amounts of observations. Other
types include Label distribution skew (e.g., different clients record different types of
failures), Same label, different features (e.g., same failures, but caused by different
reasons), and opposite, Same features, different label. Real-world data often incorporates
a composite of these factors.

Thus, we consider three scenarios in our investigations:

• I.I.D.: In such case, we split the data across clients randomly in equal proportions;

• NON-I.I.D. with feature distribution skew: To simulate clients with dif-
ferent feature distributions, we employ principal components analysis. Principal
components are known to capture the summarized information stored in different
features. Thus, we calculate the principal components of our data and assign the
observations to clients according to the value of their first principal component. To
ensure that we simulate isolated feature distribution skew without incorporating
also data quantity skew, we allocate each client a similar portion of data, defined by
the quantiles of the principal component. For example, in the case of 10 clients, we
allocate 10% of existing data to the first client, but we allocate those observations,
whose principal component values lie within the range of the first 10-quantile.
Analogically, the second client is allocated with the data having their principal
component within the second 10-quantile, and so on. In Figure 4.1 we see t-SNE
representation of (a) Synthetic dataset and (b) Scania trucks data split into 10
clients employing PCA. Even though we do not see pure disjoint clusters, we can
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still capture some differences in the distributions of the clients. In the case of
the Synthetic dataset, Figure 4.1a, we observe that most data of clients 8-9 are
displayed in the lower right quadrant, while clients 0-4 tend to be represented on
the left half of the graph. However, clearer differences can be recognized for Scania
trucks data, Figure 4.1b. Here, clients 0-2 seem to form some clusters at the sides,
while clients 7-9 lean towards the center of the plot. We note that for both datasets,
the first principal component accounts for 30% of the variance in the data only,
thus it is not surprising that we do not see clear separations between the clients.
Similar to our approach, Verma et al. [VWJ+19] in their experiments, split the
data based on the first two principal components by assigning the quadrants of the
PCA 2D plot to the respective clients.

• NON-I.I.D. with quantity skew: Yurochkin et al. [YAG+19] suggested using
Dirichlet distribution for simulations of skew in federated learning and this method
is now widely used in research for experiments with different skew types. In
such case, clients are allocated with proportions of data according to Dirichlet
distribution, i.e. the proportions are sampled pk ∼ Dir(β) and the clients k ∈ K
are assigned with nk = n · pk random samples. The parameter β > 0 controls the
imbalance of the distribution - smaller β values impose a higher concentration of
data at a few clients. Still, if β is chosen too small, some clients would end with
only some records. In Figures 4.2 and 4.3 we see examples of such data split for
Synthetic and Scania trucks datasets respectively. Like previously, 10 clients are
simulated for each dataset. In part (a) we see equally-sized clients, which would
occur in the case of I.I.D. or NON-I.I.D. with feature distribution skew data splits.
While in part (b) we see clients with quantity skew, i.e. with varying dataset sizes,
obtained according to Dirichlet distribution. For Synthetic dataset we used β = 1.3
and for Scania trucks β = 1.1. Even though in the literature the parameter β is
often set to 0.5, we use higher β values due to high global data imbalance. In other
words, we aim to have at least some observations from both negative and, more
important, positive classes.

4.3 Infrastructure Simulation
Typically, federated learning is considered in cross-device (e.g. mobile devices) or cross-
silo (organizations) settings. According to Kairouz et al. [KMA+19], the federated
learning domain for organizations has the following characteristics. Typically, 2 to 100
organizations, i.e. clients, are involved in the system. The clients are almost always
available and each client may participate in each training round. The clients are reliable,
i.e. they are not expected to fail or drop out during the training round (no stragglers).
Each client has an identity and can be specifically addressed by the system. The primary
bottleneck in the cross-silo settings might be either computation or communication.
Thus, for our experiments, we consider a rather small number of clients. We analyze
different settings based on the available data:
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(a) Synthetic dataset

(b) Scania trucks

Figure 4.1: t-SNE representation of clients’ data
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(a) Equally sized clients (b) Clients with quantity skew

Figure 4.2: Client data sizes, Synthetic dataset

(a) Equally sized clients (b) Clients with quantity skew

Figure 4.3: Client data sizes, Scania trucks

• Synthetic dataset: we divide the data in 5 / 10 / 15 clients. We assign data to
individual clients based on different data splitting strategies, as described in Section
4.2 - client distributions are I.I.D. / NON-I.I.D. with feature skew / NON-I.I.D.
with quantity skew.

• Scania trucks dataset: we split the data in 10 / 20 / 30 clients. Again, we use the
same 3 strategies for data assignment to the clients.

• Hard drive dataset: this dataset contains information about the hard drive model for
each observation. We have the data for 11 models: ST4000DM000, ST500LM030,
ST6000DX000, ST8000DM002, ST8000NM0055, ST8000DM005, ST8000DM004,
ST10000NM0086, ST12000NM0007, ST12000NM0117, ST12000NM0008. Using this
information, we can simulate clients with heterogenous distributions with feature
distribution skew, but also to some extent with quantity skew, as various models
have an unequal number of observations. Based on the amounts of available data,
we group similar models and simulate 3 clients: ST10000NM0086, ST12000NM0007,
ST12000NM0117, ST12000NM0008, ST8000DM002, ST8000NM0055, ST8000DM005,
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ST8000DM004 and ST4000DM000, ST500LM030, ST6000DX000. Additionally, we
consider again i.i.d. clients and non-i.i.d. with quantity skew, simulated according
to the same methodology as before.

• Automotive dataset: 4 predefined clients are considered, where every client represents
a certain type of product.

For each of the described settings, we perform local training, centralized training, and
federated training. In the federated scenario, we train 4 algorithms FedAvg, FedProx,
qFedAvg, and FedYogi. Every client shall participate in every training round, i.e. we
simulate no stragglers.

We note that we execute data preprocessing steps for different training scenarios on the
appropriate level. In the cases of local and federated training, we preprocess the data on
the client level for each client separately. We do not operate with any global data, as we
should also not have any access to local data. In the case of the centralized training, we
first collect all data centrally and then do the preprocessing for the full dataset at once.
Hence, we incorporate the knowledge of all local data.

4.4 Parameter tuning
Tuning models and their parameters is an inevitable part of solving most machine learning
problems. In the case of federated learning, tuning is an even more comprehensive process
than in the case of centralized training. In addition to variations in local models, in
federated networks, we have to adjust a number of new parameters specific to federated
algorithms.

In further subsections, we discuss the features, which we have to consider before training
and comparing all models. We tune all parameters for every dataset separately. However,
we examine a single setting for each of the datasets:

• Synthetic dataset: 10 clients with feature distribution skew (same clients, as in
Figure 4.1a).

• Scania trucks dataset: 10 clients with feature distribution skew (same clients, as in
Figure 4.1b).

• Hard drive dataset: 3 clients with feature distribution skew (data split according
to the hard drive model).

• Automotive dataset: 4 defined clients.

In all other scenarios, we use the best parameters of the respective datasets.
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4.4.1 Base model and local learning rate

All our considered approaches require finding an underlying model that would solve the
respective optimization objective. For example, in a federated setting, the objective is
defined in Equation 1.1. Our main goal is to carry out comparisons between selected
training approaches in terms of convergence, communication, and fairness. Still, we
aim for an appropriate underlying model to be trained further. To make the results
comparable among different training paradigms, we select a single underlying model
architecture, which shall be trained within each scenario individually from scratch.

Finding a proper model within federated training is rather complicated due to numerous
parameters, which have to be tuned. Therefore, we make a quick evaluation of differ-
ent model architectures in the centralized framework. Even though in real federated
infrastructures this approach would not be achievable, we consider it sufficient for our
investigations.

After experiments with different MLP architectures and learning rates, we find these
models satisfactory, as their performance is similar to the state of the art found in the
literature:

• Synthetic dataset: MLP with 3 linear layers - 50, 20 and 10 neurons respectively;
ReLU activation function; an output layer with 2 neurons; Learning rate = 1e-5.

• Scania trucks dataset: MLP with 3 linear layers - 200, 100 and 50 neurons respec-
tively; ReLU activation function; an output layer with 2 neurons; Learning rate =
1e-4.

• Hard drive dataset: MLP with 4 linear layers - 400, 200, 100 and 50 neurons
respectively; ReLU activation function; an output layer with 2 neurons; Learning
rate = 1e-5.

• Automotive dataset: MLP with 3 linear layers - 35, 15, 15 neurons respectively;
ReLU activation function; an output layer with 2 neurons; Learning rate = 1e-4.5

4.4.2 Number of local epochs in federated training

A number of local epochs E per single training round can have a significant impact
on the performance of federated learning algorithms and in some cases may lead to
non-improving plateau behavior or even divergence of the model [MMR+17]. Thus, we
explore the impact of the amount of local work per round on the overall effectiveness of
the models.

5Obviously, for this dataset we do not have any indication of the state-of-the-art performance.
Therefore, we additionally trained random forest and SVM in a central manner to check that our model
is acceptable
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For each dataset, we train a separate model employing the Federated Averaging method,
as FedAvg should be more sensitive to a local epochs choice than, for example, FedProx
[WYS+20].

For Synthetic and Scania trucks datasets, we consider a candidate set E ∈ {1, 2, 5, 10, 20,
50, 100, 200}, while for Hard drives data we tune the number of local epochs over the
grid E ∈ {1, 2, 5, 10, 20}. In Figure 4.4 we can see the performance of different algorithms
for our three cases in terms of the total maintenance cost, summed over all clients. For
Scania trucks, Figure 4.4b, we select E = 10 as an optimal parameter, as it shows
faster improvements and reaches the best total cost value of all considered options. Its
effectiveness starts to decrease after 30 global rounds, while shorter local training (1-2
local epochs per round) seems to have more consistent performance for more global
rounds. Still, very few local epochs per round would imply more costly training in terms
of communication. Due to similar reasons, we select E = 5 for Hard drives data, as
training longer than for 5 epochs locally results in a soon overfitting of the model, see
Figure 4.4c. On the other hand, there is almost no difference in the initial convergence
speed between 5, 10, and 20 local epochs. For the Synthetic dataset, we cannot decide
about the optimal number of local epochs so easily, see Figure 4.4a. It seems like 200
local epochs per round would deliver the best total cost value in round 33. However,
the training process is not stable in this case and after reaching the optimum peak the
model diverges rapidly. In general, we prefer a lower amount of local epochs to avoid such
spikes, as in cases of 50, 100, and 200 local epochs. Therefore, we additionally inspect
the effect of local epochs on FedProx. In Figure 4.5, we can see the behavior of different
FedProx models, i.e., with different values of the parameter µ, for Synthetic data. Here,
we prefer slower local training with 10 epochs per round rather than quickly reaching the
optimum with an instant decrease in performance. The lower values of the number of
local epochs result in much slower training.

4.4.3 Proximal term µ in FedProx

FedProx has two main parameters: the number of local epochs and the proximal term
µ. A high number of local epochs E, as discussed in the previous section, may lead
to unstable training. The proximal term µ may be seen as a re-parameterization of
E, which may help to avoid drift from a global optimum and increase the stability of
the model [LSZ+18]. On the other hand, high µ values may slow down the training
progress. Such behavior can be clearly seen for Synthetic and Hard drives data, Figures
4.6a and 4.6c respectively. In the case of the Synthetic dataset, small µ values result in
model divergence after the 80th epoch. We note that the smaller the size of µ, the closer
FedProx gets to FedAvg - FedAvg is a single case of FedProx with µ = 0. Thus, we select
µ = 0.1. In the case of the Hard drives dataset, there is very little difference for µ values
between 0.001 and 0.1. Therefore, we select the highest µ of the available meaningful
options to allow more difference from FedAvg. We set µ to 0.1 for Hard drives data as
well. For Scania trucks data, we select µ = 0.001, as it is the only parameter delivering
the total cost much below 4000.
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(a) Synthetic dataset (b) Scania trucks

(c) Hard drives

Figure 4.4: Parameter tuning: number of local epochs

4.4.4 Fairness parameter q in qFedAvg

The fairness parameter q shall control the degree of fairness in qFedAvg. This parameter
influences the training process by assigning higher relative weights to the clients with
higher loss. Still, increasing the fairness requirements not only may have detrimental
effects on the model effectiveness, but also slow down the speed of convergence [LSBS19].
We observe this phenomenon for Scania trucks data, Figure 4.7b. Higher q values do
indeed result in much higher total cost. However, lower q parameters do not indicate
almost any differences in terms of fairness, expressed here as the entropy of the clients’
F-scores. We select here a medium fairness parameter q = 1e-5. For Hard drives data,
Figure 4.7c, we also observe very few differences with respect to the both effectiveness
and fairness. Thus, we choose here a highest fairness parameter value q = 1.0. In the
case of Synthetic data, we give priority to the model effectiveness over the fairness and
opt for q = 5e-12, as the models with only slight improvements in the fairness result in
much higher total cost, see Figure 4.7a.
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(a) 10 local epochs (b) 20 local epochs

Figure 4.5: Influence of number of local epochs on FedProx performance,
Synthetic dataset

4.4.5 Global learning rate ηg and degree of adaptivity τ in FedYogi
For FedYogi we carry out a grid search for a global server learning rate and degree of
adaptivity over the grid ηg, τ ∈ {1e-05, 0.0001, 0.001, 0.01, 0.1}. A higher global learning
rate may increase the convergence speed. On the other hand, it may also contribute to
a divergence of the model. Smaller τ values imply a higher degree of adaptivity. The
highest disparity among different global learning rates and degrees of adaptivity can be
observed for Scania trucks data, Figure 4.8b. Lower η ∈ {1e-05, 0.0001} significantly slow
down the training, while higher η ∈ {0.01, 0.1} lead to instability of the models. Also, a
proper selection of τ drives an increase in the convergence speed. Thus, for this dataset
we use a parameter pair η = 0.001 and τ = 1e-05. For other datasets, we barely observe
any differences, see Figures 4.8a and 4.8c. We make the following choice: for Synthetic
dataset (η, τ) = (0.1, 1e-05), for Hard drives data (η, τ) = (0.001, 0.001).

4.5 Final Setup
Based on all the above steps, we define a set of scenarios for our experiments as described
in Table 4.1. As we used the validation sets for parameter tuning, we evaluate the
performance of the trained models on the test sets and present the results in the next
chapter.
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4. Experiments

(a) Synthetic dataset (b) Scania trucks

(c) Hard drives

Figure 4.6: Parameter tuning: proximal term µ
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4.5. Final Setup

(a) Synthetic dataset

(b) Scania trucks

(c) Hard drives

Figure 4.7: Parameter tuning: fairness degree q
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4. Experiments

(a) Synthetic dataset

(b) Scania trucks

(c) Hard drives

Figure 4.8: Parameter tuning: global learning rate ηg and degree of adaptivity τ
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4.5. Final Setup

Table 4.1: Experiment settings

Parameter Synthetic
dataset

Scania
trucks

Hard drives Automotive
dataset

β for F-beta score 30 50 1 3

Number of clients
K

5 / 10 / 15 10 / 20 / 30 3 / 10 / 20 4

Client data
simulation

i.i.d. /
non-i.i.d.

i.i.d. /
non-i.i.d.

i.i.d. /
non-i.i.d. /
by product

by product

Concentration
parameter β
(quantity skew)

1.1 1.3 1 -

Base model MLP
architecture

[50, 20, 10] [200, 100, 50] [400, 200,
100, 50]

[35, 15, 15]

Local learning
rate η

1e-05 1e-04 1e-05 1e-04

Batch size 128 128 1024 75

Number of local
epochs E

10 10 5 20

Number of global
rounds T

100 100 50 500

Proximal term µ
(FedProx)

0.1 0.001 0.1 0.05

Fairness parame-
ter q (qFedAvg)

5e-12 5e-05 1 5e-06

Global learning
rate ηg (FedYogi)

0.1 0.001 0.001 0.1

Degree of adaptiv-
ity τ (FedYogi)

1e-05 1e-05 0.001 1e-05

43





CHAPTER 5
Results

In order to make inferences about the performance of different training approaches (central
training, local training, federated learning), we tested each approach for 4 datasets and
evaluated the results of 28 scenarios using the parameters as described in Table 4.1. We
calculated 4 defined metrics for a test set of each scenario - total cost and F-beta score
of the infrastructure, the number of communication rounds, and entropy of individual
clients’ F-scores1. Based on modeled scenarios and resulting metrics, we answer the
research questions.

5.1 Effectiveness of federated learning algorithms
In figures 5.1 (a)-(d) we see calculated average f-score among clients for each data splitting
approach, i.e. data across clients is i.i.d., has feature distribution skew or quantity skew.
The strokes in the boxplots represent different numbers of clients in the infrastructure,
e.g. for Scania trucks 10/20/30 clients. We note that we display only the best-achieved
scores (at any moment of the training).

We see that in all cases the simplest federated algorithm FedAvg, which averages the
individual clients’ models, achieves a good and in some cases, the best performance in
comparison to other algorithms - for best performance see Synthetic dataset, Figure 5.1a,
and Hard drives dataset, Figure 5.1c, even when the data across the clients are skewed
(feature distribution or quantity skew).

FedProx reaches very similar prediction accuracy to FedAvg in terms of average F-score,
still performing worse in the case of Hard drives and Automotive datasets, see Figures
5.1c and 5.1d respectively. Looking back at the definition and purpose of FedProx, see
Algorithm 3.2, we remind that FedProx was introduced to improve the stability of a

1For Hard drives data we analyze mainly F-score since the cost parameters are both equal to 1, i.e.
c1 = c2 = 1

45



5. Results

training process and leverage data, but, more importantly, systems heterogeneity. In
our case, we did not analyze systems heterogeneity. This is consistent with our modeled
cross-silo setting (limited number of participating organizations), where the clients are
mostly reliable and there should be no stragglers. Thus, in our cases, the gains of
employing FedProx are rather limited.

More complex aggregation algorithms, qFedAvg and FedYogi, performed much poorer on
Synthetic and Hard drives data, than FedAvg and FedProx. Still, for the Scania trucks
dataset, FedYogi obtained the highest average F-score in almost all modeled scenarios
(except for 10 clients in the non-i.i.d. setting with feature distribution skew). Similarly,
qFedAvg achieved the best performance for the Automotive dataset. Here we have to note
that the underlying data, which come from the industry, represent a realistic federated
scenario with a limited amount of data and having differing distribution across clients. In
particular, client number 4 has a significantly different distribution than the other three
clients. With the help of qFedAvg, we were able to slightly improve the total performance
by imposing the requirement for fairness.

5.2 Communication cost and fairness of federated learning
algorithms

Now we analyze the communication cost and the fairness of the algorithms at the moment,
when they achieved their best effectiveness, as in the section 5.1.

We observe that FedAvg and FedProx in the case of the Synthetic dataset and Scania
trucks require a very similar number of global rounds to achieve their local optima, see
Figure 5.2 (a), (b). In Appendix, we can also see that for these two datasets, the training
progress of FedAvg and FedProx is almost the same. Recalling the definition of FedProx,
see Algorithm 3.2, FedProx’s main difference compared to FedAvg is the proximal term
µ. The closer this term gets to 0, the more similar FedProx is to FedAvg. Thus, we may
suspect that we selected µ too small. However, during the parameter tuning process, we
aimed for the highest µ without having much impact on the performance and training
speed, therefore we consider parameters as suitable.

For the Synthetic dataset, qFedAvg and FedYogi achieved their results much faster,
however, their effectiveness is much lower than FedAvg and FedProx. For Scania trucks,
in the case of i.i.d. and non-i.i.d. with quantity skew FedYogi required slightly more
communication rounds to achieve its optimum, but it also outperformed other algorithms
in terms of average F-score. Similarly in the non-i.i.d. with feature distribution skew
scenario, where FedYogi outperformed other algorithms. However, in this case, it took
many more communication rounds to achieve this performance. qFedAvg required a
similar number of global rounds as FedYogi but reached slightly lower effectiveness.

In the case of Hard drive data, FedYogi and qFedAvg have a much lower number of global
rounds, but they show poor performance in terms of F-scores. FedAvg and FedProx
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5.2. Communication cost and fairness of federated learning algorithms

(a) Synthetic dataset

(b) Scania trucks

Figure 5.1: Average F-score by dataset and client simulation method

47



5. Results

(c) Hard drives

(d) Automotive dataset

Figure 5.1: Average F-score by dataset and client simulation method (cont.)
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5.2. Communication cost and fairness of federated learning algorithms

accomplish similar performance, but FedAvg reaches its best values slightly faster. This
can also be seen in Appendix, Figures A.8, A.9, A.10.

Finally, for the Automotive dataset, FedAvg and qFedAvg have similar training speeds,
i.e. number of communication rounds, achieving top performance. While FedProx and
FedYogi lag in terms of both effectiveness and communication cost.

Analogically to the communication cost, we mainly analyze the fairness of the models,
which have satisfactory effectiveness. That means that we do not consider the fairness of
qFedAvg and FedYogi for Synthetic and Hard drives datasets, as they have much lower
effectiveness.

In the case of the Synthetic dataset, FedAvg and FedProx have very similar effectiveness,
but also entropy of the individual clients’ F-score is almost identical. With exception of
the non-i.i.d. case with feature distribution skew with 5 and 10 participating clients -
here FedAvg is slightly fairer (see also Figure B.3 in Appendix).

In the case of Scania trucks, the fairness level is again very similar or in some cases
identical across different training methods. Here we also point out that our chosen
fairness metric turns up to be suboptimal, as the differences in the entropy values are
considerably low (e.g. starting at the 3rd or even 5th decimal place) and we have to
examine the distributions of F-scores in detail. In Figure 5.3, we can see that:

• case (a): FedYogi is fairer (distribution more skewed) than FedAvg or FedProx,
while respective entropy values are 3.32178 vs 3.32176 or 3.32175. qFedAvg is
the least fair, even though it should ensure more fairness by the definition of the
algorithm.

• case (b): here qFedAvg looks the fairest, however, its effectiveness is the lowest
among all approaches (highest total cost).

• case (c): in this scenario, qFedAvg and FedYogi have quite similar fairness levels,
but FedYogi has superior effectiveness.

• case (d): here again, qFedAvg seems to be the fairest. Also, in this case, qFedAvg
delivers the best effectiveness.

• case (e): here the higher fairness of qFedAvg and FedYogi is obvious, also fairness
values differ more - 4.32168 (qFedAvg) vs 4.31686 (FedAvg). In this case, FedYogi
achieves the best effectiveness, being also the fairest model, while qFedAvg performs
the worst in terms of the total cost.

In the case of Hard drives, similarly to the Synthetic dataset, FedAvg and FedProx have
similar fairness and prediction accuracy levels.

For the Automotive dataset, qFedAvg has slightly higher fairness, i.e. entropy value.
It also outperforms other models. Here we remind again that client 4 has dissimilar
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(a) Synthetic dataset

(b) Scania trucks

Figure 5.2: Number of communication rounds till optimum
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5.2. Communication cost and fairness of federated learning algorithms

(c) Hard drives

(d) Automotive dataset

Figure 5.2: Number of communication rounds till optimum (cont.)
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distribution than the other 3 clients and thus the fairness criterion may help to improve
the total performance by controlling for fairness level.

Table 5.1: Synthetic dataset, entropy of the F-scores (fairness)

Data
distribution

Number of
clients

Training method
FedAvg FedProx qFedAvg FedYogi

i.i.d.
5 2.3203 2.3203 2.3218 2.3148
10 3.2755 3.2757 2.9998 2.9998
15 3.8626 3.8626 3.7002 3.6806

non-i.i.d.
with feature
distribution
skew

5 2.2925 2.2903 2.3219 2.3219
10 3.2893 3.2663 3.3219 3.3219
15 3.8657 3.8661 3.8898 3.9069

non-i.i.d.
with
quantity
skew

5 2.2761 2.2760 1.9998 2.2465
10 3.2961 3.2961 3.1681 3.1681
15 3.8262 3.8288 3.5848 3.8072

Table 5.2: Automotive datasets, entropy of the F-scores (fairness)

Data
distribution

Number of
clients

Training method
FedAvg FedProx qFedAvg FedYogi

non-i.i.d.
with feature
distribution
and quantity
skew

4 1.9819 1.9857 1.9901 1.9838
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5.2. Communication cost and fairness of federated learning algorithms

(a) 10 clients, i.i.d. (b) 20 clients, i.i.d.

(c) 30 clients, i.i.d. (d) 10 clients, feature distribution skew

(e) 20 clients, quantity skew

Figure 5.3: Fairness and communication cost of FL algorithms, Scania trucks, selected
scenarios
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Table 5.3: Scania trucks, entropy of the F-scores (fairness)

Data
distribution

Number of
clients

Training method
FedAvg FedProx qFedAvg FedYogi

i.i.d.
10 3.3218 3.3218 3.3216 3.3218
20 4.3216 4.3216 4.3218 4.3217
30 4.9055 4.9055 4.9065 4.9065

non-i.i.d.
with feature
distribution
skew

10 3.3218 3.3218 2.3219 3.3218
20 4.3218 4.3218 4.3218 4.3218
30 4.9067 4.9067 4.9068 4.9068

non-i.i.d.
with
quantity
skew

10 3.3212 3.3211 3.3216 3.3215
20 4.3169 4.3168 4.3217 4.3217
30 4.8983 4.9018 4.8982 4.8988

Table 5.4: Hard drives dataset, entropy of the F-scores (fairness)

Data
distribution

Number of
clients

Training method
FedAvg FedProx qFedAvg FedYogi

i.i.d.
3 1.5849 1.5849 1.5840 1.5850
10 3.3187 3.3190 3.3187 3.3219
20 4.3118 4.3114 4.3165 4.3219

non-i.i.d.
with feature
distribution
skew

3 1.5820 1.5833 1.5821 1.5850
10 3.3188 3.3188 3.3187 3.3219
20 4.3116 4.3112 4.3165 4.3219

non-i.i.d.
with
quantity
skew

3 1.5841 1.5839 1.5840 1.5850
10 3.3149 3.3164 3.3165 3.3219
20 4.3085 4.3108 4.3047 4.3219
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5.3 Effectiveness of various training methods
One of the main tasks of our analysis was to find out, whether federated learning
approaches can be a good alternative to classic central or local training. Thus, we
examine the total cost for each of our scenarios to answer this question. We present the
total cost for each of the modeled settings (for Hard drives data we analyze F1-score
instead) in the Tables: Synthetic dataset 5.5, Scania trucks 5.6, Hard drives 5.7 and
Automotive dataset 5.8.

For the Synthetic dataset, federated learning algorithms showed in most scenarios a
poorer performance than central and local training approaches. Thus, in this case,
in the absence of the possibility to collect the data centrally, training the individual
models locally would be preferred. For Scania trucks data, federated learning approaches
outperformed both central and local training methods with quite significant differences.
For Hard drives data, federated learning algorithms outperformed both central and local
training approaches in most cases. However, in this case, the difference between the
best federated models and the models trained locally or on centrally collected data are
smaller, thus it would be worth evaluating more infrastructure characteristics, like costs
and others, before introducing additional complexity by employing federated learning.
For the Automotive dataset, federated learning showed lower effectiveness than central
and local training techniques, however, the differences are not high. Recalling that client
4 has a very different distribution, this may introduce some noise into the global model
trained in a federated manner. Thus, a possible approach would be to try a mixed
procedure combining local and federated training.

Table 5.5: Synthetic dataset, total maintenance cost

Data
distribution

Number of
clients

Training method
Central
training

Local
training

FedAvg FedProx qFedAvg FedYogi

i.i.d.
5 101 247 159 158 966 609
10 101 228 300 296 966 966
15 101 349 399 399 957 910

non-i.i.d.
with feature
distribution
skew

5 101 165 526 514 966 1020
10 101 222 662 665 966 1020
15 101 218 653 654 974 1020

non-i.i.d.
with
quantity
skew

5 101 240 241 241 965 761
10 101 273 320 321 962 962
15 101 301 358 368 960 607

55



5. Results

Table 5.6: Scania trucks, total maintenance cost

Data
distribution

Number of
clients

Training method
Central
training

Local
training

FedAvg FedProx qFedAvg FedYogi

i.i.d.
10 16550 17420 14660 14510 19420 14300
20 16550 25060 19340 18350 19800 14180
30 16550 28140 24140 23940 18650 14840

non-i.i.d.
with feature
distribution
skew

10 16550 4960 2450 3060 2060 2420
20 16550 3080 2130 2000 2790 1960
30 16550 5160 3480 3680 2570 1920

non-i.i.d.
with
quantity
skew

10 16550 21240 15670 15650 18610 13850
20 16550 21740 16700 17940 19140 12150
30 16550 34140 25970 24790 19030 12640

Table 5.7: Hard drive dataset, average F1-score

Data
distribution

Number of
clients

Training method
Central
training

Local
training

FedAvg FedProx qFedAvg FedYogi

i.i.d.
3 0.730 0.729 0.739 0.730 0.550 0.495
10 0.730 0.690 0.735 0.727 0.550 0.495
20 0.730 0.646 0.729 0.714 0.542 0.495

non-i.i.d.
with feature
distribution
skew

3 0.730 0.697 0.688 0.681 0.536 0.495
10 0.730 0.688 0.737 0.727 0.550 0.495
20 0.730 0.646 0.732 0.715 0.542 0.495

non-i.i.d.
with
quantity
skew

3 0.730 0.735 0.733 0.738 0.555 0.495
10 0.730 0.698 0.758 0.744 0.552 0.494
20 0.730 0.656 0.731 0.701 0.561 0.495
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Table 5.8: Automotive dataset, total maintenance cost

Data
distribution

Number of
clients

Training method
Central
training

Local
training

FedAvg FedProx qFedAvg FedYogi

non-i.i.d.
with feature
distribution
and quantity
skew

4 2465 2485 2500 2570 2515 2575
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CHAPTER 6
Conclusion

In our work, we analyzed the applicability of federated learning approaches to typical
problems in the industry - predictive maintenance and defect detection. We evaluated
the performance of various federated learning algorithms in terms of their effectiveness,
communication costs, and fairness to represent different aspects of business problems,
like maintenance costs, training complexity / IT infrastructure costs, and allocation of
costs to different units.

We selected 4 datasets, which depict industrial data with a typical pattern where failures
or defects appear on a rare basis. Obviously, this is very expected from the business side.
Still, from a machine learning perspective, this poses numerous challenges for modeling
very imbalanced data, where missing an erroneous item results in a high cost (e.g. high
cost to replace a faulty part), yet checking each and every item makes the maintenance
process itself very costly.

Furthermore, as there is a lack of real federated datasets from the industry accessible to
the scientific community, we had to split available data artificially to model federated
infrastructures. When modeling the individual clients, we aimed to approximate realistic
federated networks by considering three scenarios: a) data across clients are i.i.d., b)
data across clients are non-i.i.d. with feature distribution skew, and c) data across clients
are non-i.i.d. with quantity skew.

Utilizing this background, we focused on answering three research questions:

• RQ1: How effective are selected aggregation algorithms for our predictive mainte-
nance/defect detection task?

• RQ2: What is the relationship between the effectiveness of the aggregation algo-
rithm and the communication cost and fairness of the model?

• RQ3: To what extent can the federated learning approach replace the centralized
and /or local training without major losses in model effectiveness?
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We demonstrated that each of our selected federated algorithms (FedAvg, FedProx,
qFedAvg, and FedYogi) may be a good choice, depending on a concrete use case. Moreover,
in many of our tested cases, FedAvg achieved decent effectiveness, and thus we can add
our work to the list of empirical evaluations, showing the good performance of FedAvg.
Still, we should not discard other methods as unsuitable for predictive maintenance tasks,
as in some cases they could be beneficial in terms of effectiveness, communication costs,
or fairness. Furthermore, we showed that even though FedProx is designed to be handy
when dealing with different kinds of heterogeneity, it indicated to be less practical in our
scenarios, as we modeled cross-silo settings with all clients participating in every round.
We also did not consider systems heterogeneity.

Secondly, we estimated communication costs and fairness of different aggregation algo-
rithms. In most of our analyzed cases, we did not encounter any major differences, and
the models showing similar effectiveness would often have comparable communication
costs and fairness. In order to have a deep dive into the differences, one would need
to extend our research and model the impact of communication cost and fairness to
assess the results objectively, whether these minor differences would be impactful for the
business or not.

Finally, we evaluated the applicability of federated learning to training models on
imbalanced data by comparing the performance of federated to classic central and local
training approaches. In the case of central training, we collect all data centrally and train
a single central model that shall be used by all clients. In the case of local training, clients
train individual models using only their data, without profiting from the experience
of others. While in the case of federated learning, one global model is trained, which
incorporates the knowledge of each participating client, yet without accessing clients’
individual data. We showed that in some situations, federated learning may outperform
both central and local training approaches (e.g. Scania trucks and Hard drives datasets).
Federated learning takes advantage of each client’s individual situation but still allows
for indirect cooperation between the clients, in this way helping them to leverage their
disadvantages (e.g. low amounts of data in case of local training) and not generalizing
too much (e.g. in comparison to training central model on merged data and considering
each client being part of a single distribution). On the other hand, in other cases (e.g.
Synthetic and Automotive datasets), especially when the clients’ individual distributions
are too diverse or clients possess too little data, it is preferable to train a single model,
when a central collection of data is possible, or to let the clients train their models
independently.

6.1 Future Work
We analyzed the suitability of federated learning to solve distributed predictive mainte-
nance and defect detection problems employing very imbalanced data. We provided some
insights about the performance of federated learning, still, there are some limitations in
our study. Our investigation focuses primarily on the evaluation of federated learning
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in different data heterogeneity settings. However, a typical federated infrastructure
is represented not only by data heterogeneity but also by systems heterogeneity. In
other words, the performance of federated algorithms is also dependent on the individual
systems and the network, and these aspects should be explored as well.

Another limitation in our work is originating from the lack of available federated methods
employing other models than neural networks. Much research is focused on solving com-
puter vision or natural language processing tasks, thus investigating different approaches
to be used with deep neural networks. Though, there are much fewer works exploring and
developing federated learning algorithms suitable for classic machine learning algorithms,
like the random forest, SVM, etc, which could be useful, when modeling tabular data.
We mention several existing approaches in Section 2.2, however as already mentioned
before they miss proof of concept by the community. Also, in our study, we omitted the
investigation of personalized approaches, see Section 2.2 for examples. As discussed for
the Automotive dataset, one client had a very distinct distribution from the other three,
thus this client may have profited from a personalized approach.

Finally, we executed our research on non-federated data, which we had to split manually
according to our defined scenarios. Still, these methods are only proxies for real-world
problems involving a mixture of different skew types and more complex data patterns.
So explorations with real federated datasets would be advised.
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APPENDIX A
Training progress of federated

learning algorithms

In Figures A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.1 we display the development
of average F-score and total cost of the respective test sets through the training for all
scenarios.

(a) 4 clients

Figure A.1: Training of FL algorithms, Automotive dataset, feature distribution and
quantity skew case
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A. Training progress of federated learning algorithms

(a) 5 clients

(b) 10 clients

(c) 15 clients

Figure A.2: Training of FL algorithms, Synthetic dataset, i.i.d. case
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(a) 5 clients

(b) 10 clients

(c) 15 clients

Figure A.3: Training of FL algorithms, Synthetic dataset, feature distribution skew case
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A. Training progress of federated learning algorithms

(a) 5 clients

(b) 10 clients

(c) 15 clients

Figure A.4: Training of FL algorithms, Synthetic dataset, quantity skew case
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(a) 10 clients

(b) 20 clients

(c) 30 clients

Figure A.5: Training of FL algorithms, Scania trucks, i.i.d. case
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A. Training progress of federated learning algorithms

(a) 10 clients

(b) 20 clients

(c) 30 clients

Figure A.6: Training of FL algorithms, Scania trucks, feature distribution skew case
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(a) 10 clients

(b) 20 clients

(c) 30 clients

Figure A.7: Training of FL algorithms, Scania trucks, quantity skew case
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A. Training progress of federated learning algorithms

(a) 3 clients

(b) 10 clients

(c) 20 clients

Figure A.8: Training of FL algorithms, Hard drives, i.i.d. case
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(a) 3 clients

(b) 10 clients

(c) 20 clients

Figure A.9: Training of FL algorithms, Hard drives, feature distribution skew case
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A. Training progress of federated learning algorithms

(a) 3 clients

(b) 10 clients

(c) 20 clients

Figure A.10: Training of FL algorithms, Hard drives, quantity skew case
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APPENDIX B
Communication costs and fairness

of the federated learning
algorithms

In Figures B.2, B.3, B.4, B.5, B.6, B.6 B.8, B.9, B.10, B.1 we display the distributions of
individual clients’ test set F-scores at the moment, when each algorithm reaches its best
value. We also indicate the communication round and the fairness value.

(a) 4 clients

Figure B.1: Fairness and communication cost of FL algorithms, Automotive dataset,
feature distribution and quantity skew case
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B. Communication costs and fairness of the federated learning algorithms

(a) 5 clients (b) 10 clients

(c) 15 clients

Figure B.2: Fairness and communication cost of FL algorithms, Synthetic dataset, i.i.d.
case
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(a) 5 clients (b) 10 clients

(c) 15 clients

Figure B.3: Fairness and communication cost of FL algorithms, Synthetic dataset, feature
distribution skew case
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B. Communication costs and fairness of the federated learning algorithms

(a) 5 clients (b) 10 clients

(c) 15 clients

Figure B.4: Fairness and communication cost of FL algorithms, Synthetic dataset,
quantity skew case
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(a) 10 clients (b) 20 clients

(c) 30 clients

Figure B.5: Fairness and communication cost of FL algorithms, Scania trucks, i.i.d. case

77



B. Communication costs and fairness of the federated learning algorithms

(a) 10 clients (b) 20 clients

(c) 30 clients

Figure B.6: Fairness and communication cost of FL algorithms, Scania trucks, feature
distribution skew case
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(a) 10 clients (b) 20 clients

(c) 30 clients

Figure B.7: Fairness and communication cost of FL algorithms, Scania trucks, feature
distribution skew case
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B. Communication costs and fairness of the federated learning algorithms

(a) 3 clients (b) 10 clients

(c) 20 clients

Figure B.8: Fairness and communication cost of FL algorithms, Hard drives, i.i.d. case
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(a) 3 clients (b) 10 clients

(c) 20 clients

Figure B.9: Fairness and communication cost of FL algorithms, Hard drives, feature
distribution skew case
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B. Communication costs and fairness of the federated learning algorithms

(a) 3 clients (b) 10 clients

(c) 20 clients

Figure B.10: Fairness and communication cost of FL algorithms, Hard drives, quantity
skew case
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