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Kurzfassung

Eine der zentralen Aufgaben der Festkörperphysik ist die Untersuchung der elek-
tronischen Struktur von stark korrelierten Materialien. Eine tragende Rolle spielt
dabei die lokale Wechselwirkung von Valenzelektronen, welche zu Metall-Isolator-
Übergängen, magnetischer Ordnung und vielen weiteren Effekten führt. Für die
Untersuchung der elektronischen Struktur von korrelierten Materialien sind Kern-
röntgenspektroskopien weit verbreitet. In Kernröntgenspektroskopien emittiert ein
eingehendes Photon ein Kernelektron oder regt dieses in einen freien Valenzzustand
an. Die Resonanz des Systems auf das erzeugte positiv geladene Kernloch liefert
umfassende Informationen zur elektronischen Struktur der untersuchten Materi-
alien. Die vorliegende Dissertation umfasst die theoretische und numerische Mod-
ellierung von Kernröntgenspektroskopien. Wir entwickeln theoretische Kernrönt-
genspektroskopiemethoden, basierend auf lokaler Dichtenäherung und dynamischer
Molekularfeldtheorie. Dazu verwenden wir die Configuration-Interaction-Methode
und exakte Diagonalisierung. Dies ermöglicht uns eine gleichzeitige Behandlung
von lokalisierten (d–d) und nicht lokalisierten (ungebundene Elektron-Loch Paare)
Anregungen, welche in den Spektren beobachtet werden. Wir vergleichen unsere Re-
sultate mit Experimenten und anderen etablierten Methoden (z.B. Clustermodell).
In unseren Studien verwenden wir Röntgenphotoelektronenspektroskopie, Röntgen-
absorptionsspektroskopie oder resonante inelastische Röntgenspektroskopie. Jede
dieser Spektroskopien hat individuelle Vorteile und eine Kombination dieser liefert
ein umfassendes Verständnis zur elektronischen Struktur der Materialien. Wir un-
tersuchen eine breite Auswahl von stark korrelierten Materialien, wie zum Beispiel:
NiO, Fe2O3, Kobaltite, Kuprate und Nickelate Seltener Erden.
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Abstract

Understanding the electronic structure of strongly correlated materials is one of the
main ambitions of solid state physics. Local interactions of valence electrons play
an important role in correlated materials, leading to metal-insulator transitions,
magnetic orderings and a variety of other effects. The proper interpretation of
these effects is theoretically and computationally challenging. Core-level X-ray spec-
troscopy techniques are widely used for the investigation of the electronic structure
of correlated materials. In core-level X-ray spectroscopies an incident photon excites
(emits) a core-electron to an empty valence state. The response of the system to the
positively charged core-hole provides rich information about the electronic structure
of the studied compound. We study the theoretical and numerical modeling of core-
level X-ray spectroscopies and develop a theoretical core-level X-ray spectroscopy
approach based on local density approximation and dynamical mean-field theory.
For calculating the core-level spectra, we use the configuration-interaction scheme
and exact diagonalization. In contrast to other available methods, this approach
enables us to describe simultaneously localized (d–d) and delocalized (unbound
electron-hole pair) excitations observed in the core-level X-ray spectra. Within
our material studies we use various core-level X-ray spectroscopies; X-ray photoe-
mission spectroscopy, X-ray absorption spectroscopy and resonant inelastic X-ray
scattering. Each kind has its own advantages; by combining them we obtain a
comprehensive understanding of the electronic structure of the studied compounds.
The main purpose of this thesis is the generalization of our core-level spectroscopy
code to lower symmetries and its application to a broad variety of strongly corre-
lated materials, in particular transition metal oxides, e.g. NiO, Fe2O3, cobaltites,
cuprates and rare-earth nickelates.
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of the treatment of the incident photon energies used for resonant inelastic X-ray
scattering calculations. The extended basis provides a more realistic description
of X-ray absorption, core-level X-ray photoemission and resonant inelastic X-ray
scattering in correlated materials.
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Foreword

Quantum mechanics is the description of the behavior of matter and

light in all its details and, in particular, of the happenings on an atomic

scale. Things on a very small scale behave like nothing that you have

any direct experience about. They do not behave like waves, they do not

behave like particles, they do not behave like clouds, or billiard balls, or

weights on springs, or like anything that you have ever seen.

— R. P. Feynman [6]

The understanding of Nature had to be redefined with the development of quan-
tum mechanics in the early 20th century. Processes happening on the quantum scale
were completely contradictory to the perception of the physical world at that time.
The discovery of quantum processes led to the development of novel technology
influencing all fields of our modern society. For example the realization of semicon-
ducting transistors by Bardeen, Brattain and Shockley in 1947. Semiconducting
transistors were initially large sized and were first applied to radio machines. Once
their size shrunk, transistors became integrated in circuits, and laid the foundation
of modern computers. Today, application of quantum mechanics can be found in
all fields of modern technology, such as displays, smartphones, fibreoptics, internet
devices, or even in simple things like laser pointers. It must nevertheless be noted
that all these remarkable achievements came at the cost of severe exploitation of
natural resources. Nowadays, the research and development of new technologies is
necessary in order to provide a high-living standard within our society, while the
impact on our environment is kept at a sustainable level.

To continue the rapid development of sustainable technology, quantum mechan-
ics needs to be adapted to new and also numerically accessible theories. For exam-
ple real materials do not simply contain single particles, but rather an aggregate of
interacting particles, generating collective quantum mechanical phenomena. Real
materials contain 1023 particles in a size of just a cubic millimeter, which pre-
vents the description of their electronic structure by standard quantum mechanical
methods. A big breakthrough on the theory side was the development of density
functional theory (DFT) by Kohn and Sham in the 1960’s [7, 8]. DFT describes
the electronic structure of a material by a charge distribution, which encodes the
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x

electrons of a system in a simplified form. This approach enabled the numerical
calculation of electronic properties of large systems. It allowed for the theoretical
description of the electronic properties of many complex materials, e.g. semiconduc-
tors, metals and some insulators. DFT and its extensions (e.g. LDA [9], GGA [10],
LDA+U [11]) often provide a correct quantitative description of crystal, magnetic
and orbital structures. However, they fail to describe the correct electronic struc-
ture of a specific group of complex materials, in particular the group of strongly
correlated materials [12].

Dynamical mean field theory [13] (DMFT) was developed in the last three
decades and is a well established method to describe the electronic structure of
correlated materials today. DMFT takes into account the essential Coulomb inter-
action between localized valence electrons in strongly correlated materials, which is
often treated by a static mean field within standard electronic structure methods.
The local correlations may lead to metal-insulator transitions or lead to countless
other interesting physical phenomena. The combination of DMFT and density func-
tional theory (DFT+DMFT) into a first principle calculation tool was a further step
towards the accurate description of the electronic structure of real materials [14].
Although there are numerous experimental methods to compare DFT+DMFT re-
sults with experiments, there is still a missing link between X-ray spectroscopy
experiments of correlated materials and first principle calculations. Recent experi-
mental progress in energy resolution has led to the observation of correlated effects
in the spectra, often happening in a very low-energy regime. However, the extrac-
tion of electronic information from the spectra, and thus the theoretical modeling of
core-level X-ray spectroscopy, is a challenging task. We demonstrate how to com-
bine DFT+DMFT with core-level X-ray spectroscopies, and study various core-level
X-ray spectra of correlated materials.
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Chapter 1

Introduction

Strongly correlated materials exhibit a broad variety of electronic phenomena, such
as high-temperature superconductivity, magnetism or metal-insulator transitions.
They show a strong response to external parameters like temperature, pressure,
magnetic and electric fields. The high-degeneracy of low-energy states, i.e. the
degeneracy of orbital, spin and lattice degrees of freedom, in correlated materials
leads to instabilities and rich phase diagrams with various ordered phases. These
phenomena have been attracting much attention [12, 15–17] and are intriguing for
fundamental science as well as their possible application in technology. We mean
by ‘strongly correlated’, that one or two particle correlation functions cannot be
described by independent electrons (even in an effective model). Typically, for
the correlations to be manifested, one needs a strong Coulomb interaction and a
phase space available for electron dynamics, e.g. in partially filled d- or f -shells.
The Coulomb interaction is strong compared to the kinetic energy of the electrons,
which hinders the description of valence electrons as free particles as described in
classical mean-field theories. This is contrary to other metallic compounds where
local interactions are weak. Thus, more sophisticated approaches, which take the
strong local interaction into account, are needed to describe to electronic structure of
correlated materials. Experimental core-level X-ray spectroscopy studies revealed
intriguing fine spectral features in the electronic structure of strongly correlated
materials. We focus on the core-level spectra of transition metal oxides which are
an important class of correlated materials and show how to combine first principle
calculations with core-level X-ray spectroscopy studies. We discuss various kinds of
core-level X-ray spectroscopies, where each reveals different features of the electronic
structure of correlated materials.

1.1 Transition Metal Oxides

Transition metal oxides (TMOs) are strongly correlated materials with partially
filled transition metal (TM) d-shells. The partially filled TM shells form chemical
bonds with neighboring oxygen atoms. TMOs contain divalent O2− anions, where

1
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2 CHAPTER 1. INTRODUCTION

each oxygen ion deducts two additional electrons from the transition metal cation.
TMOs show phases with entirely different electronic or magnetic properties [12]. In
1937, de Boer and Verwey [18] pointed out the astonishing properties of 3d TMOs.
Mott and Peierls [19] discussed these properties, which gave rise to a whole new field
in solid state physics which is one of the core subjects of modern material science
and condensed matter physics. A famous TMO is NiO, which is predicted to be
metallic by band structure calculations [20], but experimentally observed to be an
insulator. The local correlations are the driving mechanism for the metal-insulator
transition, similar to many other correlated materials.

A quantitative description of the electronic structure of TMOs requires models
which include the local Coulomb interaction of the partially filled orbitals. The
Hubbard model is a paradigm model for describing local correlations. It takes into
account the hopping of electrons between different TM sites dni d

n
j → dn−1

i dn+1
j , where

i,j denote the position of TM atoms in the lattice, as well as the local Coulomb
interaction Udd of the valence electrons on the same site. The gap opening takes
place when the energy gain of the electron hopping between different sites becomes
smaller than the energy loss due to the Coulomb repulsion of two electrons on the
same site. Then the initially metallic band, which crosses the Fermi energy EF,
splits into two separate bands: the lower Hubbard band (LHB) below EF and the
upper Hubbard band (UHB) above EF [21, 22].

Figure 1.1: (a) Mott insulator: the upper (lower) Hubbard band is situated above
(below) the Fermi-level EF, the O 2p states are below the lower Hubbard band (b)
charge-transfer insulator: the O 2p states are situated above the lower Hubbard
band but below the Fermi-level [22]. Figure adapted from [21] with permission of
the author.

Zaanen, Sawatzky and Allen [23] classified Mott insulators into Mott-Hubbard
and charge-transfer types, see Fig. 1.1. Both types are classified by the local
Coulomb interaction of the valence electrons and the charge-transfer energy ∆CT.
∆CT is the energy cost of an electron transfer from O 2p to the Ni 3d states. In
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1.2. CORE-LEVEL X-RAY SPECTROSCOPY 3

order to take into account the p–d hopping in the Hubbard model, it has to be ex-
tended by the inclusion of O sites with the hopping process dnTMp

i
O → dn+1

TM pi−1
O . In

the Mott-Hubbard type, see Fig. 1.1a, the O 2p bands are situated below the lower
Hubbard band, which means that the Coulomb repulsion energy Udd is smaller than
the energy cost of a charge transfer ∆CT from oxygen to the TM ion. In charge-
transfer type insulators, see Fig. 1.1b, the bands formed by the O 2p electrons
are situated between the lower and upper Hubbard band. The energy cost of the
charge transfer from oxygen to the TM ion is lower than the energy cost of the local
Coulomb repulsion [21, 22].

1.2 Core-Level X-ray Spectroscopy

Core-level X-ray spectroscopies present a powerful set of tools to study materials
with a complex electronic structure, such as strongly correlated materials. The
excitation spectrum characterizes the electronic properties of the studied compound.
Core-level spectroscopies are element sensitive, due to the strong energy dependence
of X-ray absorption edges on the proton number. Different valence states of the same
elements can be observed in the spectra due to their typical shapes and their shifts
on eV scale.

Figure 1.2: Schematic picture of 2p core-level excitation processes: (a) X-ray pho-
toemission spectroscopy (XPS), (b) X-ray absorption spectroscopy (XAS), (c) res-
onant inelastic X-ray scattering (RIXS). Figure adapted from [21] with permission
of the author.

We present three types of core-level X-ray spectroscopies: X-ray photoemission
spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and resonant inelastic
X-ray scattering (RIXS), see Fig. 1.2. They share the absorption of an incident X-
ray, which creates a positively charged core-hole either by emitting or by excitation
of an electron from a 1s or 2p core-shell to a valence shell. The generated positively
charged core-hole is strongly bound to the core-excited atom and the response of
the system provides rich information about the electronic structure which can be
observed in the spectra. For example, local valence electrons forming multiplet
structures as a result of the Coulomb interaction with the core-hole, or screening
effects from neighboring ligand electrons.
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4 CHAPTER 1. INTRODUCTION

The spectroscopy types vary with the excitation process and the underlying
selection rules as well as with the electron number of the system. In XPS, see
Fig. 1.2a, the incident photons emit core-electrons from the system and generate
an electron emission spectrum. XAS provides an absorption spectrum of incident
photons, see Fig. 1.2b, retaining the electron number of the system constant. The
excitation process of RIXS is similar to the one of XAS, but followed by a relaxation
process where a photon is emitted, see Fig. 1.2c.

1.2.1 X-ray Photoemission Spectroscopy

Core-level X-ray photoemission spectroscopy is a widely used tool to study the
electronic properties of transition-metal compounds. XPS is a first-order optical
process in which a core-electron is emitted from the system by absorption of an
incident photon. The emitted electrons undergo scatterings in the bulk, leading to
a smearing of spectral features. Recent experimental progress reduces the impact of
these smearing effects by using hard X-ray sources in the energy range of >5.0 keV.
Hard X-ray photoemission spectroscopy (HAXPES) is capable of probing the bulk
states [24, 25] with an improved energy resolution, e.g., ≈ 200 meV in 2p HAXPES
for 3d TMOs. This makes it possible to study fine spectral features which reflect
the low-energy states near the Fermi energy [26–31].

(a) Fe 2p XPS of Fe3O4 (b) Ni 2p XPS of NiO

Figure 1.3: Experimental TM 2p XPS spectra of (a) Fe3O4 [28] and (b) NiO [32].
Figures taken from [28] and [32].

Fig. 1.3a shows the Fe 2p XPS spectra of Fe3O4 [28]. One can clearly distinguish
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1.2. CORE-LEVEL X-RAY SPECTROSCOPY 5

two separated parts, 2p3/2 (between 706 − 720 eV) and 2p1/2 (between 721 and
735 eV), due to spin-orbit (SO) coupling in the Fe 2p states. The peak α (≈
710.5 eV) is called the main line (ML) and observed in the soft X-ray photoemission
(PES) and HAXPES spectrum. The peaks β (≈ 708.5 eV) and γ (≈ 707.0 eV) are
only seen in the bulk-sensitive HAXPES spectrum indicating the importance of
HAXPES. In Ni 2p XPS of NiO [32], see Fig. 1.3b, we see two well-separated parts,
2p3/2 (between 853 − 869 eV) and 2p1/2 (between 870 − 886 eV), due to spin-orbit
coupling in the Ni 2p states. The 2p3/2 main line shows a double peak structure
(peak A and peak B) at ≈ 856 eV. The 2p1/2 main line at ≈ 872 eV is enhanced in
the bulk-sensitive HAXPES spectrum compared to the soft X-ray PES spectrum.
In Ni 2p XPS of NiO, fine spectral features are observed. The emission of a core-
electron breaks the local charge neutrality and induces a strong charge response from
neighboring ligand electrons. This effect is called charge-transfer (CT) screening
and is visible in peak C, in the 2p3/2 part, and in the peaks of the 2p1/2 part in
the region between 876 and 885 eV. HAXPES enabled the clear observation of
charge transfer from distant transition metals and the rest of the crystal, which
is traditionally called non-local screening (NLS) [33, 34]. Soft X-ray PES cannot
probe the bulk properly and non-local screening effects are suppressed on the surface
states. Peak B in Fig. 1.3b reflects the charge transfer from distant atoms. These
non-local screening features are sensitive to various aspects of inter-site physics,
e.g. the long-range magnetic or orbital ordering, or even to the metal-insulator
transition [4, 21, 31, 32, 34–41].

Figure 1.4: Fe 2p XPS of Fe2O3 in paramagnetic metal (PM) and antiferromagnetic
(AF) insulating phase, blue and red line are calculated with LDA+DMFT approach,
the experimental (black curve) data is taken from Ref. [42]. Figure taken from [31].
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6 CHAPTER 1. INTRODUCTION

Fig. 1.4a shows the Fe 2p XPS of Fe2O3 in the antiferromagnetic and para-
magnetic phases [31]. We distinguish two well separated parts, 2p3/2 (between
−15− 0 eV) and 2p1/2 (between 1− 6 eV). The 2p3/2 main line at ≈ −9 eV exhibits
an internal fine-structure as a result of non-local screening effects. The 2p3/2 charge-
transfer satellite is formed between −4 and 0 eV. A theoretical investigation without
the non-local screening channel from the Fe 3d bands is provided in Fig. 1.4b. The
2p3/2 main line in Fig. 1.4b consists of a sharp peak with a high-binding energy
EB shoulder (in some spectra observable as satellite), which is due to intra-atomic
Coulomb multiplets. These Coulomb multiplet shoulders (satellites) result from
unscreened final states and are well separated from the charge-transfer satellites.
The low-EB peak, which is observed in Fig. 1.4a and marked by the dashed line,
disappears if non-local screening effects are excluded, see Fig. 1.4b.

1.2.2 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) can be used to estimate the valence state of
an ion in mixed-valence materials. XAS in localized electron systems, e.g. L-edge
(2p→3d) in 3d TMOs, show complex spectra due to the rich core-valence Coulomb
multiplets. The charge-transfer screening from electrons of surrounding ions can be
also observed in the spectra. However, the charge transfer effects in XAS are not as
dominant compared to XPS. This is because the charge-neutrality is preserved in
the system and the core-excited electron screens the positively charged core-hole.
This hampers a direct access to the details of the ground as well as excited states
in the XAS spectra. In XAS the Coulomb multiplet effects and the crystal field
excitations are dominant [2, 30].
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1.2. CORE-LEVEL X-RAY SPECTROSCOPY 7

Figure 1.5: Ni L-edge XAS of NiO. Figure taken from [43].

Fig. 1.5 shows the experimental spectra of Ni L-edge XAS of NiO [43]. The spin-
orbit coupling in the Ni 2p states gives rise to two separated edges: L3-edge (2p3/2)
at ≈ 855 eV and L2-edge (2p1/2) at ≈ 872 eV. The dominant peak at the L3-edge
contains an unscreened excitation. The shoulder at ≈ 855 eV arises from Coulomb
multiplets and not from charge-transfer or non-local screening effects observable
in XPS spectra. Charge transfer effects from neighboring ligands are just faintly
observed at ≈ 857 eV.

1.2.3 Resonant Inelastic X-ray Scattering

Thanks to remarkable improvements in energy resolution, resonant inelastic X-
ray scattering (RIXS) has become a powerful tool to study strongly correlated
materials [2, 44]. RIXS is a second-order optical process, in which an incident
photon with energy ωin excites a core-electron to a valence state, followed by a
deexcitation process with emitted photon energy ωout. The dipole selection rules
in the second-order optical process enable the observation of various two-particle
excitations with lattice, spin, orbital and charge degrees of freedom in the low-energy

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

8 CHAPTER 1. INTRODUCTION

loss ωloss = ωin − ωout regime (≈ 100 meV) [45–48]. RIXS is also sensitive to high-
ωloss excitations (between 1− 10 eV), like charge transfer or atomic multiplet (d–d)
excitations [30, 49, 50]. Furthermore RIXS can resolve the momentum dependence,
which is not accessible by XPS and XAS.

(a) Cu L3-edge RIXS of Sr2CuO2Cl2 of (2010) (b) Cu L3-edge RIXS of NdBa2Cu3O6 (2019)

Figure 1.6: Experimental momentum resolved L3-edge RIXS of Cuprates. Figure
(a) taken from [51] and Figure (b) taken from [52].

Fig. 1.6a shows a momentum resolved Cu L3-edge (2p→3d→2p) RIXS study of
the compound Sr2CuO2Cl2 from the year 2010. The horizontal axis denotes the
energy loss ωloss, whereas the vertical axis corresponds to the momentum trans-
fer. The peaks within the range of 1.25 − 2 eV ωloss are d–d multiplet excitations.
The inset shows a Cu L3-edge XAS spectrum with a single absorption peak at
≈ 830 eV. Here, we see the limitations of extracting detailed information about the
electronic structure from XAS spectra. The resolution of RIXS allows for a more
detailed study of the elementary excitations near the elastic peak in the low-ωloss

regime. Fig. 1.6b shows a momentum-resolved Cu L3-edge RIXS study from the
year 2019. Due to improvements of the energy resolution, the elementary excita-
tions are resolved, whereas initially they were merged with the elastic peak. The
elementary excitations consist of phonons, magnons or bimagnons. Recent experi-
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1.2. CORE-LEVEL X-RAY SPECTROSCOPY 9

mental progress of RIXS also enabled the study of even more degrees of freedom,
e.g. tuning the incident photon energy ωin. This allows for scanning across the
X-ray absorption edges, facilitating the study of non-local charge excitations.

Figure 1.7: Cu L3-edge XAS and RIXS of NaCuO2 and LaCuO3. LaCuO3 shows a
continuous fluorescence-like feature in RIXS spectrum. Figure adapted from [5].

Figs. 1.7a,c show theoretical Cu L3-edge XAS spectra of NaCuO2 and LaCuO3.
In NaCuO2 we see a single peak at the incident photon energy ωin ≈ −16 eV,
whereas in the XAS spectrum of LaCuO3 there is a dominant peak at ωin ≈ −16 eV
with a broad shoulder at higher ωin due to non-local charge excitiations. Figs. 1.7f,h
show theoretical Cu L3-edge RIXS spectra of NaCuO2 and LaCuO3. The abscissa
corresponds to the incident photon energy ωin and the ordinate to the energy loss
ωloss. In both spectra we observe bound d–d excitations in the ωloss regime between
0.5 and 3.0 eV at ωin ≈ −16 eV. The charge-transfer excitations are more dominant
in NaCuO2 with ωloss > 3.0 eV. But the RIXS spectrum of LaCuO3 exhibits an in-
triguing continuous fluorescence-like feature which is not observed in NaCuO2. This
feature is due to unbound electron-hole pairs propagating through the crystal [5].
Generally we distinguish two main features observed in the spectra by scanning the
incident photon energy: Raman-like (RL) signals with constant ωloss, and continu-
ous fluorescence-like (FL) signals with a constant emission energy ωout. The energy
of the emitted photon has a linear dependence of ωloss on ωin [44, 50, 53–56].
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10 CHAPTER 1. INTRODUCTION

Figure 1.8: Typical excitations observed in RIXS spectra. Figure adapted from
[44].

Fig. 1.8 shows a cartoon of typical excitations that are observed in the RIXS
spectra of strongly correlated materials. The drawback of the sensitivity of this
technique to various excitations is that the interpretation of the spectra is complex,
due to possible overlap or interference between excitations. Through the analysis of
the material-specific excitations, questions about the itinerancy of charge carriers
as well as localization of charge excitations arise [54, 56, 57]. But while several
experimentally motivated interpretations were put forward, an unified description
of atomic-like RL and itinerant FL features poses a theoretical challenge [2, 58, 59].
Thus, the goal of the theoretical description of RIXS would be to cover the multi-
energy-scale excitations on the same footing, while eliminating uncertainties in dis-
entangling RL and FL excitations.

In order to provide a better understanding of RIXS, we discuss the excitation
process on the example of a compound with a TM d8 configuration in the ground
state, e.g. Cuprates or NiO.

Figure 1.9: TM L3-edge RIXS process with a d8 configuration in ground state.

Fig. 1.9 shows an L3-edge RIXS process with completely filled T2g orbitals and
two electrons in the Eg orbitals in the ground state of the compound. RIXS con-
sists of two steps, connecting three types of states: initial, intermediate (with active
core-hole) and final states. The incident photon excites a core-electron in the initial
state to an empty Eg orbital. The core orbitals are localized, thus the positively
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1.3. STUDIED MATERIALS: TRANSITION METAL OXIDES 11

charged core-hole remains at the impurity and renormalizes the energies of the TM
3d states in the intermediate state. TM 3d valence electrons can be transferred
from the inpurity into the crystal host within the intermediate state. The spin-
orbit coupling on the 2p core-level is also critical for the excitation of 3d multiplets.
The intermediate states of RIXS can be seen as the final states of XAS. Then, a
valence electron deexcites into the core-hole by emission of a photon, building the
final states.

1.3 Studied Materials: Transition Metal Oxides

In the following, we show the various transition metal compounds which were stud-
ied in this thesis. First we discuss NiO and Fe2O3, followed by cuprates, cobaltites
and rare-earth nickelates. We also introduce high-valence transition metal com-
pounds.

Figure 1.10: High-valence transition metals.

High-valence transition metal oxides possess interesting physics and share a
small or even negative charge-transfer energy. Since there is no strict definition,
we consider tetravalent Ti4+ to Co4+ and trivalent Ni3+ and Cu3+ high-valence
transition metals, see Fig. 1.10.

1.3.1 NiO

NiO has a rocksalt crystal structure with Fm-3m (225) space group, see Fig. 1.11.
The divalent Ni2+ cation is surrounded by six equidistant O2− anions forming an
NiO6 cluster in Oh point group symmetry. The ground state mainly consists of Ni
d8 configurations.
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12 CHAPTER 1. INTRODUCTION

Figure 1.11: Crystal structure of NiO, visualized by VESTA [60].

NiO is an type-II antiferromagnet (AF), with a staggered order in all three spa-
tial directions. The Néel temperature is TN ≈ 523 K, with a paramagnetic insulating
phase above TN. NiO has a large charge gap Egap ≈ 4 eV and a magnetic moment
of ≈ 2µB, where µB is the Bohr magneton. NiO is an extensively studied compound
and can be seen as a prototype material for studying electronic correlations. Stan-
dard band structure calculations predict NiO to be metallic [20] or small-gap AF
insulator [61]. Band structure calculations severely underestimate the charge gap
as well as the magnetic moment. The lowest excited state in NiO is formed by an
electron transfer from O 2p bands to the upper Hubbard band. Thus, NiO is a
charge-transfer type insulator which can be captured by DFT+DMFT calculations.

1.3.2 Fe2O3

α-Fe2O3, also known as hematite, has a corundum structure with R-3c h (167)
space group. The AF insulating phase develops at the Néel temperature TN ≈
956 K with paramagnetic insulating phase above TN. The iron has a formal Fe3+

valence where mainly d5 configurations contribute to the ground state. This gives
rise to a local high-spin state. Recently, the pressure dependence of α-Fe2O3 was
investigated by Kuneš et al. [62]. As the volume decreases with higher pressure, a
simultaneous first-order insulator-metal and high-spin to low-spin transition occurs
close to the experimental value of the critical volume. The high-spin insulating
phase is destroyed by a progressive reduction of the charge gap with increasing
pressure. The high-pressure phase is characterized by metallic conductivity and the
absence of magnetic long-range ordering and a high-spin local moment [63]. Similar
to many transition metal oxides, DFT fails to reproduce the ground state under
ambient conditions. DFT severely underestimates the charge gap and the magnetic
moment on iron. Fe2O3 is similar to NiO a charge-transfer type insulator. More
recently, the site-selective Mott transition was reported in Fe2O3 under pressure [64].
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1.3. STUDIED MATERIALS: TRANSITION METAL OXIDES 13

1.3.3 Cuprates

We study the two compounds LaCuO3 and NaCuO2 with perovskite structure with
P4/m space group and a monoclinic C2/m space group, respectively. The Cu3+

ions in both compounds are trivalent with dominant d8 configurations in the ground
state. The original motivation to study cuprates was the discovery of high-Tc super-
conductivity [65]. However, both compounds can also be used as model systems for
high-valence TMOs [5]. They share a tiny charge-transfer energy [66–70] which leads
to a small or even absent charge gap [66, 68, 69, 71, 72]. NaCuO2 (Egap ≈ 0.5 eV)
is a band-insulator with a gap present already in the LDA solution [73, 74]. The
main difference between these compounds is the lattice geometry. LaCuO3 has a
corner-sharing structure with CuO6 octahedra, whereas NaCuO2 has edge-sharing
CuO6 octahedra, see Fig. 1.12. The different lattice geometry is the key element of
the presence or absence of the FL-feature observed in the Cu L3-edge RIXS spectra
of these compounds.

Figure 1.12: The crystal structures of (a) LaCuO3 with P4/m and and C2/m
space groups in paramagnetic and antiferromagnetic states, respectively [71] (b)
NaCuO2 [75] visualized by VESTA [60]. The blue, red, green, and yellow circles
represent Cu, O, La and Na atoms, respectively. Figure and caption taken from [5].

1.3.4 Cobaltites

We study various kinds of cobaltites: LaCoO3, SrCoO3, LiCoO3 and CoO. The com-
pound LaCoO3 with trivalent Co3+ is a diamagnetic insulator at low temperatures,
where the T 6

2g orbitals are fully filled and the E0
g bands are empty. Thus, LaCoO3 has

a singlet 3d6 ground state. It undergoes a transition to a paramagnetic insulating
phase with increasing temperature, at TC ≈ 100 K, which was originally attributed
to the thermal population of atomic multiplets. Recently, this has been questioned
and the importance of either the intermediate-spin (IS, S = 1, T 5

2gE
1
g ,

3 T1g) or the
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14 CHAPTER 1. INTRODUCTION

high-spin (HS,S = 2, T 4
2gE

2
g ,

5 T2g) states for the phase transition are discussed [76–
93]. SrCoO3 crystallizes like LaCoO3 in corner-sharing perovskite structure with a
formal valence of Co4+. The ground state has a mixed 3d5 + dominant d6L1 con-
figuration with a hole in the ligands, denoted as L, due to a small charge-transfer
energy. While LiCoO2 crystallizes in a quasi-two-dimensional structure with edge-
sharing CoO6 octahedra, it has a trivalent ground state similar to LaCoO3. The
Co d6 manifolds have rich low-energy multiplets characterized by low-spin (S = 0),
intermediate-spin (S = 1), and high-spin (S = 2) states. LaCoO3 and LiCoO2 are
band insulators with a charge gap of Egap ≈ 0.5 eV. They share a LS configuration
in the ground state, while SrCoO3 is a ferromagnetic metal with an admixture of
the HS state and charge fluctuations around it [2, 94]. CoO is a typical TMO with
divalent Co2+ and d7 configuration in the ground state. CoO has a large charge gap
of Egap ≈ 3.6 eV.

1.3.5 Rare-Earth Nickelates

The RNiO3 family shows a concomitant metal-insulator and structural transition
followed by an unusual magnetic ordering resulting in a rich phase diagram [57, 95–
103], see Fig. 1.13.

Figure 1.13: Phase diagram of ReNiO3 family. Figure taken from [104].

At low temperatures a magnetically ordered region with antiferromagnetic in-
sulating behaviour is observed. As the temperature increases, we move from the
magnetic ordered phase to a paramagnetic insulating phase. The paramagnetic
insulating phase shows a bond disproportionation (BD) with two inequivalent Ni
sites. The sites are forming a NiO6 cluster with shrinked and expanded NiO6 octa-
hedra which are called short-bond (SB) and long-bond (LB) site, respectively, see
Fig. 1.14.
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1.3. STUDIED MATERIALS: TRANSITION METAL OXIDES 15

Figure 1.14: Crystal structure of LuNiO3, visualized by VESTA [60].

The disproportionation of the Ni-O bonds leads to a structural deformation of
the crystal. This bond disproportionation induces a charge disproportionation, see
Fig. 1.15. The Ni ions have a formal valence of Ni3+ in RNiO3. Starting from this
ionic picture, initially a charge disproportionation from 2d7 → d6+d8 was proposed
by Mazin et al. [95]. By taking ligand holes into account explicitly, a state with a
d8L2 configuration at the SB site and a d8 configuration at the LB site develops,
which was discussed recently by Park et al. [97]. The d8 state formed at the LB
site shows a local moment with a triplet ground state, while the d8L2 state at the
shrinked Ni-O site forms a singlet ground state.

Figure 1.15: Charge disproportionation in rare-earth nickelates.

At high temperatures on the other hand, a paramagnetic-metal (PMM) phase
with equivalent NiO6 octahedra is observed. The mechanism of the metal-insulator
transition is the object of an active debate. Recently, DFT+DMFT studies pointed
out the importance of the electronic correlations and proposed a site-selective Mott
transition scenario [97, 105]. Lee et al. [96] used the band picture to argue that a
Peierls-like distortion originating in Fermi surface nesting explains the physics of
rare-earth nickelates. This view is supported by LDA+U calculations of Mercy et
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16 CHAPTER 1. INTRODUCTION

al. [102] in the magenetically ordered state. They pointed out the importance
of octahedral rotations for tuning the Peierls-like instability. Thus, the metal-
insulator transition is connected with the magnetic ordering, which is at odds with
the paramagnet-to-paramagnet metal-insulator transition in a number of rare-earth
nickelates. The question of Peierls vs. site-selective Mott mechanism [106] remains
open [3].

1.4 Motivation

Recent experimental progress of various core-level X-ray spectroscopy methods have
opened opportunities to study the electronic structure of correlated materials. Ad-
ditional degrees of freedom in experiment, such as the tuning of the incident photon
energy in RIXS and a drastic improvement of energy resolution revealed fine fea-
tures in the core-level spectra of correlated materials. The use of core-level X-ray
spectroscopies for investigating the electronic structure is advantageous compared
to other methods. For example RIXS reaches dipole transitions which are not ac-
cessible by other methods, e.g. neutron scattering. These dipole transitions encode
various information about the fine features observed in the spectra. The non-local
screening effects and itinerant electron-hole pairs observed in the spectra of tran-
sition metal compounds are intriguing for the development of theoretical models.
The recent experimental advances are a challenge for the established models, which
oversimplify the studied compounds. We have developed a core-level X-ray spec-
troscopy code, based on the Anderson impurity model description [5, 22, 31], which
resolves a number of problems in the field and provides a quantitative agreement
with state-of-the-art experiments. We use DFT+DMFT to obtain a realistic elec-
tronic structure of the studied compounds and apply the hybridization function
obtained by DMFT to an Anderson impurity model augmented by core-orbitals
to calculate core-level spectra. We optimize the spectroscopy code to increase the
number of basis functions which is necessary to obtain realistic spectra including
their fine spectral features. In detail, we extend the number of possible bath states,
encoded in the hybridization function. The fine energy mesh of the hybridization
function allows us to study the metal-insulator transition in LuNiO3. Furthermore,
we extend the code to lower symmetries which allows for using a different hybridiza-
tion function for each valence orbital. This enables us to study a broad variety of
real materials with distorted MO6 octahedra. We use a combination of XPS, XAS
and RIXS to provide a detailed study of the electronic structure hidden in the spec-
tra of real materials. We compare the spectra with experimental core-level studies
and several commonly used impurity models, e.g. the cluster model. We highlight
the importance of the Anderson impurity model description and give insight into
some features of the electronic structure. One of the core topics is the investigation
of bond disproportionated systems, e.g. LuNiO3. We show that the metal-insulator
transition is connected to the presence or absence of the fluorescence-like feature
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observed in the low-energy loss regime of RIXS spectra.
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Chapter 2

Theory

Theoretical studies of core-level X-ray spectroscopies are crucial for extracting elec-
tronic information hidden in the experimental spectra. The theoretical modelling
is based on spectral functions which simulate core-excited spectra of electronic
systems. We discuss the spectral functions of X-ray photoemission spectroscopy
(XPS), X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scat-
tering (RIXS). Calculating spectral functions requires the choice of proper model
Hamiltonians which encode the electronic structure of real materials in an effec-
tive way. Naively, one would use the full Hamiltonian of a system, but due to the
exponentially increasing size of the Hamiltonian with the number of particles and
thus computational limitations, one has to limit oneself to models which reduce
the size of the Hamiltonian. The core-level excitation is a local process because
of the negligible overlaps of TM 1s and TM 2p core orbitals between neighboring
sites. Thus, impurity models are applicable for the calculation of core-level spec-
tra. We discuss the atomic model, where the electron exchange between atom and
the crystal is neglected. The atomic model is not the most appropriate model to
describe real materials, it fails to reproduce even simple features of the spectra.
A natural extension of the atomic model are impurity models. The cluster model
includes the charge transfer between an impurity and its nearest-neighbor ligands
and has been widely used in core-level spectroscopies of real materials. The cluster
model can be extended by a second cluster including the charge transfer between
distinct TM sites. This extension is the so-called double-cluster model [107] and can
be applied in order to describe bond disproportionated systems like RNiO3 [108].
These impurity models have many adjustable parameters and show limitations in
the description of real materials. The Anderson impurity model is a generalization
of the cluster model that encodes the electronic structure of the crystal host by a
so-called hybridization function. The hybridization function can be seen as hopping
amplitude between impurity and the electronic structure of the rest of the crystal
host. First principle calculations provide the hybridization function with almost no
parameters as input.
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20 CHAPTER 2. THEORY

We use first principle calculations in our core-level spectroscopy approach to cal-
culate the electronic structure of real materials, see Sec. 2.6. In Sec. 2.7 we discuss
the computational details of core-level spectroscopies. The core-level spectroscopy
calculations are based on exact diagonalization. We reformulate spectral functions
in terms of resolvents, which are numerically accessible. Furthermore we study
the scattering geometry and the transition operator as well as the configuration-
interaction scheme, which is widely used to generate optimized basis sets in theo-
retical core-level spectroscopy studies. The theoretical modelling of core-level spec-
troscopies includes a large variety of tools. In the last part of the theory chapter we
show the workflow of our core-level X-ray spectroscopy approach and discuss the
used parameters and software.

2.1 Spectral Functions of Core-Level X-ray Spec-

troscopy

Spectral functions of core-level X-ray spectroscopy provide the theoretical descrip-
tion of the absorption of an incident photon in materials. This absorption process
depends on the energy of the incident photon resulting in either an emission (XPS)
or excitation (XAS) of a core-electron. RIXS encodes the excitation of a core-
electron to a valence state followed by a relaxation process. Thus, the spectral
function of RIXS encodes additionally the emission of a photon. In this section
we study the spectral functions of core-level spectroscopy and the consideration of
finite temperature in core-level studies.

2.1.1 X-ray Photoemission Spectroscopy

The theoretical description of the core-level photoemission process is given by
Fermi’s golden rule [30]. Here, Fermi’s golden rule describes the transition from
an initial state |n〉 to a set of final states {|f〉} by emission of a photoelectron. The
transition is triggered by the incident photon

F
(n)
XPS(ω) =

∑

f

∣∣∣〈f |T̂D|n〉
∣∣∣
2

δ (En + ω − Ef ) , (2.1)

where ω is the energy of the emitted photoelectron. The initial state |n〉 is described
by a many-body wave function with nv electrons in its valence states and fully
occupied core states with np electrons. The valence states consist of partially filled
valence shells, e.g. for transition metal (TM) oxides TM 3d orbitals as well as
oxygen (O) 2p orbitals. The core states consist of orbitals from TM 1s, TM 2s
or TM 2p shells. The initial state is often the (degenerate) ground state of the
system but for finite temperatures we use a thermodynamical ensemble consisting
of multiple initial states. The number of valence electrons is conserved in the
XPS process, thus the set of final states {|f〉} has nv electrons in their valence
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2.1. SPECTRAL FUNCTIONS OF CORE-LEVEL X-RAY SPECTROSCOPY21

orbitals. Due to the emission of a photoelectron the number of electrons in the core
states is reduced, having ‘np-1’ core electrons compared to the initial state. The
missing electron in the core shell behaves as a positively charged core-hole. The
system’s response to the incident photon, i.e. the emitted electron, is encoded in
the transition operator T̂D, which connects the subspaces of the initial states |n〉
with the subspace of the set of final states {|f〉}. The transition operator encodes
the propagation of the photoelectron described as plane wave in the high energy
regime and can be approximated as a dipole moment T̂D ∼ ε · r̂, with the photon
polarization vector ε and the position operator r̂. The delta function represents
the energy conserving process. The energies En and Ef are the eigenenergies of the
eigenstates |n〉 and {|f〉} of the system, respectively. The initial eigenstate |n〉 is
calculated by diagonalizing model Hamiltonians which are introduced below.

2.1.2 X-ray Absorption Spectroscopy

The spectral function of core-level X-ray absorption spectroscopy describes the ab-
sorption process of an incident photon, where the incident photon excites a core
electron to an empty valence orbital. The spectral function is described by Fermi’s
golden rule, similar to that of XPS, and reads

F
(n)
XAS(ω) =

∑

f

∣∣∣〈f |T̂D|n〉
∣∣∣
2

δ (En + ω − Ef ) , (2.2)

where ω is the energy of the incident photon. The initial state |n〉 has nv electrons
in the valence orbitals and np electrons in the core orbitals. However, the set of
final states {|f〉} differ from XPS. The final states contain ’nv+1’ valence electrons
and ‘np-1’ electrons in the core states due to the excitation of a core electron to a
valence orbital. The response of the system to the incident photon is encoded in
the transition operator and approximated as dipole operator T̂D ∼ ε · r̂.

2.1.3 Resonant Inelastic X-ray Scattering

The numerical simulations of RIXS usually start from either two limits, the non-
interacting solid or the atomic limit. In the former limit one is able to apply the
Bethe-Salpeter approach based on band theory with effectively non-interacting elec-
trons [109, 110]. This approach provides only a crude approximation of many-body
effects in correlated materials. In the latter limit one applies exact diagonaliza-
tion which provides an accurate description of atomic multiplet excitations. The
spectral function of RIXS includes two optical processes. The excitation of a core
electron to an empty valence state by absorption of an incident photon followed by
a relaxation process, where a local valence electron deexcites into the core-hole by
emission of a photon. The sequence of the RIXS process reads

|n〉︸︷︷︸
initial state

→ T̂I︸︷︷︸
absorption

→ |m〉︸︷︷︸
intermediate state

→ T̂E︸︷︷︸
emission

→ |f〉︸︷︷︸
final state

,
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22 CHAPTER 2. THEORY

where two transition operators couple the initial state |n〉 to a set of intermediate
states {|m〉} which are then coupled to a set of final states {|f〉}. The first transition
operator T̂I encodes the excitation of the core electron to an empty valence state.
The second transition operator T̂E encodes the relaxation process. The theoretical
description of RIXS is given by Kramers-Heisenberg formula [111]

F
(n)
RIXS(ωin, ωout) =

∑

f

∣∣∣∣∣
∑

m

〈f |T̂E|m〉 〈m|T̂I|n〉
ωin + En − Em + iΓL

∣∣∣∣∣

2

δ(ωin − ωout + Ef − En), (2.3)

where ωin and ωout are the energies of the incident and emitted photons, respectively.
The states |n〉 and |f〉 are the initial and final states with energy En and Ef ,
respectively. Both states have nv electrons in the valence orbitals and fully occupied
core shells with np electrons. The set of intermediate states have ‘nv+1’ electrons
in its valence orbitals and ‘np-1’ electrons in its core shells, similar to XAS. Initial,
intermediate and final states are eigenstates of the system. The transition operators
T̂I and T̂E are approximated as dipoles T̂D ∼ ε · r̂. The delta function corresponds
to the energy conservation of the RIXS process. The term in the square of the
absolute value propagates the state T̂I |n〉 within the system

G(ωin) =
∑

m

1

ωin + En − Em + iΓL

|m〉 〈m| , (2.4)

where ΓL is the inverse of the lifetime (scattering rate) of the core-hole in the
intermediate state.

2.1.4 Core-Level Spectral Functions in Thermal Equilibrium

The spectral functions provide the core-level spectra for a given initial state. By
considering finite temperatures T > 0 K one has to take into account the thermo-
dynamical ensemble that includes a set of initial states {|n〉}. The contribution of
each initial state to the spectra is then weighted by the Boltzmann factor e−En/kBT

with the Boltzmann constant kB. The thermal average is calculated by the trace of
the density matrix resulting in

FXPS/XAS/RIXS(ω) =
∑

n

e−En/(kBT )

Z
× F

(n)
XPS/XAS/RIXS(ω), (2.5)

with the partition function Z =
∑

m e−Em/(kBT ). By summing over the weighted
spectral functions F

(n)
XPS/XAS/RIXS for different initial states we obtain the spectrum

for finite temperatures.

2.2 Atomic Model

The atomic model describes an atom in a crystal host, in which the electron transfer
between the atom and the host is neglected. The TM atom, which we call impurity
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2.2. ATOMIC MODEL 23

from now on, still feels an effective electric field generated by the rest of the crystal
ions. This field is the so-called crystal field, which lifts the energy degeneracy of
the partially filled valence orbitals of the impurity, see Fig. 2.1.

Figure 2.1: Decoupled atom in a octahedral crystal field, generated by neighboring
oxygen ions.

The atomic model describes the intra-atomic interactions explicitly, which in-
clude the spin-orbit coupling on outer and inner (core) shells of the TM ion and
the Coulomb multiplet interaction between electrons in the outer shell, e.g. the
partially filled TM 3d shells. When a hole is created in the core shell, e.g. TM 1s
or 2p, by X-ray absorption or emission, the multiplet interaction between the outer
and the excited core shell becomes important. In the formulas below (and in the
rest of this chapter) we focus on TM 2p and 3d shells for simplicity. The (impurity)
Hamiltonian of the atomic model reads

Ĥimp =
∑

γγ′

h1P
γγ′ d̂ †

γ d̂γ′ + Udd

∑

γ>γ′

d̂ †
γ d̂γ d̂

†
γ′ d̂γ′ − Udc

∑

γ,η

d̂ †
γ d̂γ(1− ĉ †η ĉη) + ĤC. (2.6)

Here, d̂ †
γ (d̂γ) and ĉ †η (ĉη) are creation (annihilation) operators for Ni 3d and 2p

electrons, respectively. The indices γ and η denote the TM 3d and TM 2p orbitals
including spin, respectively. The term h1P

γγ′ are the matrix elements of the single-
particle Hamiltonian and reads

h1P
γγ′ = 〈φγ|Ô1P|φγ′〉 =

∫
drφ∗

γ(r)O
1P(r)φγ′(r), (2.7)

where Ô1P can be a crystal field or a spin-orbit coupling operator. The φγ(r) =
Rγ(r)Yγ(θ, φ) are single-particle wave functions, e.g. atomic-like or Wannier func-
tions, with radial Rγ(r) and angular part Yγ(θ, φ). The isotropic part, i.e. the
averaged Coulomb interaction, of the valence 3d–3d (Udd) and core-valence 2p–3d
(Udc) interactions are shown explicitly in the Hamiltonian Ĥimp. The core-valence
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24 CHAPTER 2. THEORY

interaction Udc becomes important in the case of an existing core-hole in the TM
2p shell. The term ĤC contains the multipole parts of the Coulomb interaction
represented by higher-order Slater integrals. The energies of the TM 2p states are
not included explicitly, because they provide just a constant energy shift.

2.2.1 Crystal Field Splitting

The crystal field lifts the degeneracy of the TM 3d states in TMOs and depends
on the local symmetry (point group). The crystal field splitting is basis depen-
dent, where the cubic harmonics di form a real-valued eigenbasis of the crystal field
Hamiltonian. The cubic harmonics are expressed in terms of atomic-like orbitals
φkq = RkYkq, where k = 2 is the angular momentum of the TM 3d shells and q the
corresponding magnetic quantum number, and read

d3z2−r2 = φ20, dx2−y2 =
1√
2
(φ22 + φ2−2)

dxy = − i√
2
(φ22 − φ2−2), dyz =

i√
2
(φ21 − φ2−1), dzx = − 1√

2
(φ21 − φ2−1).

The φkq are complex-valued wave functions. A real-valued basis can be obtained
by performing a transformation Ĥ = ÛĤÛ † within the irreducible representations
of the diagonalized crystal field Hamiltonian. The diagonal elements are the eigen-
values of the crystal field splitting in the corresponding symmetry.

Figure 2.2: Schematic picture of the crystal field splitting for different point groups
in the basis of cubic harmonics.
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2.2. ATOMIC MODEL 25

Fig. 2.2 shows a schematic picture of the energy splitting in different point
groups. The left part shows an atom in a spherical field leaving the energies of the
cubic harmonics degenerate. In the Oh point group the six nearest-neighbor oxygen
ions are equally distributed along the orthogonal x, y and z axes, see Fig. 2.1.
The former degenerate energies split and form two irreducible representations, a
two-fold Eg: d3z2−r2 , dx2−y2 and a three-fold T2g: dxy, dyz, dzx. In the D4h point
group the oxygen ligands in z-direction are further apart than the ions in x- and
y-direction which results in an additional splitting of the energies. The lowest
two-fold degenerate orbitals have Eg symmetry, followed by singlet B2g, A1g and
B1g states in ascending order of the energy. The right part of Fig. 2.2 includes
the D3d point group. In the D3d point group the former cubic lattice is distorted
in [1,1,1]-direction. Thus, the initially diagonal crystal field Hamiltonian in the
representation of cubic harmonics has off-diagonal elements. In the D3d point group
the triple-degenerate T2g states split into double-degenerate Eπ

g states and a singlet
A1g state. A derivation of the crystal field potential generated by a general electron
density is given in Appendix. B.1.

Crystal Field Splitting in Octahedral Symmetry

Here we show the crystal field potential generated by neighboring oxygen ligands
in the octahedral (Oh) point group. The electrons of the ligand ions are treated as
point charges for simplicity. The crystal field potential takes the form [21, 22, 112]

O(r) = vcf =
Ze2

a

{
6 +

7

2

(r
a

)4
[
C4

0(θ, φ) +

√
5

14

(
C4

4(θ, φ) + C4
−4(θ, φ)

)
]
+ . . .

}
,

(2.8)

where Ck
q (θ, φ) =

√
4π

2k+1
Ykq(θ, φ) are renormalized spherical harmonics, which can

be regarded as spherical tensor operators, see Appendix. B.1. The application of
Ck

q (θ, φ) to a given atomic-like orbital can be understood as rotation of the orbital.
The first term, corresponding to k = 0, provides no rotation of the atomic-like
orbital due to its spherical character and thus provides a constant energy shift of
the TM 3d levels. The renormalized spherical harmonic C4

0(θ, φ) in the second
term corresponds to k = 4 which acts on the diagonal elements. The C4

4(θ, φ) and
C4

−4(θ, φ) rotate the atomic-like orbitals in a way such that it connect states with
magnetic quantum number ∆q = ±4. The remaining terms with k ≥ 6 do not affect
the TM 3d energy levels due to the selection rules in the coupling of the spherical
functions. This results in an energy splitting of the initially degenerate 3d levels
into double-degenerate Eg states and triple-degenerate T2g states represented with
a historical parameter Dq. We rewrite Eq. 2.8 as

vcf = 21Dq

[
C4

0(θ, φ) +

√
5

14

(
C4

4(θ, φ) + C4
−4(θ, φ)

)
]
, (2.9)
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26 CHAPTER 2. THEORY

where we neglected the term corresponding to the constant energy shift and con-
sidered only the terms that induce the energy splitting of the initially degenerate
orbitals. The energies of the Eg and T2g states read

εd(Eg) = εd + 6Dq (2.10)

εd(T2g) = εd − 4Dq, (2.11)

with the energy εd = ε0 +
6Ze2

a
of the 3d orbitals in a spherical field, where ε0 is

the energy of the degenerate TM 3d orbitals without the octahedral crystal field.
The induced energy splitting 10Dq is obtained from the radial parts of the wave
functions. The parameter 10Dq is treated as an adjustable parameter in a conven-
tional impurity model analysis of core-level spectra, while it is determined by first
principle calculations in this study.

2.2.2 Spin-Orbit Coupling

Spin-orbit (SO) coupling is active for shells with angular momentum l > 0 and
couples the orbital angular momentum with the spin momentum 1

2
. The SO coupling

lifts the energy degeneracy within the shells. It becomes more effective in inner
shells but decreases with increasing l, e.g. within TM 2p shells (≈ 10 eV), TM 3p
shells (≈ 1 eV), TM 3d shells (≈ 0.01 eV). The SO coupling in the TM 2p core shells
yields the splitting of the core-level spectra into two main parts, e.g. L2 (2p1/2) and
L3-edge (2p3/2) XAS, see Fig. 1.5. The SO Hamiltonian reads [21, 22]

ĤSO =
∑

l

ζl
∑

m,m′,s,s′

〈lm,
1

2
s|l · s|lm′,

1

2
s′〉 â†lmsâlm′s′ , (2.12)

where l and s are the orbital and spin angular momentum operators, respectively.
The m and s are the magnetic quantum numbers of the orbital (l) and spin (1

2
)

angular momentum, respectively. The operators â†lms and âlms create and annihilate
an electron with quantum numbers l, m and s, respectively. The spin-orbit coupling
constant includes the radial part of SO coupling and reads [21]

ζl =
1

2
α2

∫ ∞

0

drR2
l (r)

1

r

dV

dr
r2. (2.13)

The coupling constant represents the strength of the spin-orbit coupling (splitting)
within the shells. α is the relativistic fine-structure constant. The electronic poten-
tial V (r) with radial part Rl(r) acts on electrons in the l-th shell. The dot-product
l ·s between the orbital and spin angular momentum operators can be expanded in
terms of of tensor operators, see Appendix. B.2. Using the Wigner-Eckhart theo-
rem, the matrix elements in Eq. 2.12 can be expressed with 3J symbols and reduced
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2.2. ATOMIC MODEL 27

matrix elements of angular momentum and spin

〈lm,
1

2
s|l · s|lm′,

1

2
s′〉

= 〈l||l||l〉 〈1
2
||s||1

2
〉
∑

q

(−1)q+l−m+ 1

2
−s

(
l 1 l

−m −q m′

)(
1
2

1 1
2

−s q s′

)

= (−1)l+
1

2
−m′−s

√
3

2
l(l + 1)(2l + 1)

(
l 1 l

−m m−m′ m′

)(
1
2

1 1
2

−s s− s′ s′

)
.

(2.14)

Here, we used the selection rules of the 3J symbols, see Eqs. B.13,B.14, and the
definition of the reduced matrix elements (e.g. 〈l||l||l〉) for angular momentum
operators, see Eq. B.12. Since the SO coupling couples spin and orbital momentum,
the SO coupling results in the total angular momentum quantum number J = l+ 1

2

which is a good quantum number for SO systems. A basis transformation to the
J-basis can be obtained by either 3J symbols or equivalently by Clebsch-Gordan
coefficients [113]. The Clebsch-Gordan coefficients can be given by the 3J symbols

〈lm,
1

2
s|Jj〉 = (−1)−l+ 1

2
−j
√
2J + 1

(
l 1

2
J

m s −j

)
, (2.15)

where the total angular momentum J is in the range from |l − 1
2
| ≤ J ≤ l + 1

2
in

steps of one. The z-component j of the total angular momentum J is in the range
of −J, J + 1, . . . , J for a given J . The diagonal Hamiltonian in the basis of the
total angular momentum provides the energy splitting induced by the spin-orbit
interaction [21]

ε(J) =

{
ζl · l/2 (J = l + 1/2)

−ζl · (l + 1)/2 (J = l − 1/2).
(2.16)

2.2.3 Coulomb Interaction

Here we discuss the Coulomb interaction between electrons in partially filled TM 3d
shells as well as between partially filled TM 3d and TM 2p shells. In the previous
sections we introduced single-particle operators, e.g. crystal field and spin-orbit
coupling. The Coulomb interaction between two electrons on the contrary contains
two-particle operators. Matrix elements of a general two-particle operator Ô2p read

h2p
ijkl = 〈ij|Ô2p|kl〉 =

∫ ∫
d3rd3r′Ψ∗

i (r)Ψ
∗
j(r

′)O2p(r, r′)Ψl(r
′)Ψk(r), (2.17)

where Ψ are orbitals with index i, j, k, l. In the real space, the Coulomb interaction
is represented as

O2p(r, r′) =
1

|r′ − r| =
∑

k

rk<
rk+1
>

k∑

q=−k

(−1)qCk
−q(θ, φ)C

k
q (θ

′, φ′), (2.18)
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28 CHAPTER 2. THEORY

where we factorized the potential into radial and angular parts in the basis of
spherical harmonics, similar to the crystal field potential, see Appendix. B.1. The
Ck

q are renormalized spherical harmonics, see Eq. B.4. The angles θ, φ and θ′, φ′

denote the position of particle 1 and 2, respectively. The r< = min(r, r′) and
r> = max(r, r′) are the lesser and greater ones of r and r′. Here, we investigate
the Coulomb interaction including its multipole effects. The Hamiltonian of the
Coulomb interaction used in our calculations reads [21, 22]

ĤC = Ĥ3d−3d + Ĥ2p−3d, (2.19)

where the Coulomb Hamiltonian includes a TM 3d–3d valence and a TM 2p–3d
core-valence term. First, we focus on the TM 3d–3d valence interaction. We keep
in mind that the orbital momentum of TM 3d shells is l = 2, thus we neglect the
orbital momentum index. The Coulomb interaction of the 3d–3d valence interaction
reads

Ĥ3d−3d =
∑

m1<m2
m3<m4

[
〈m1m2|

1

|r′ − r| |m3m4〉 − 〈m1m2|
1

|r′ − r| |m4m3〉
]
d̂ †
m1

d̂ †
m2

d̂m4
d̂m3

=
∑

k=2,4

F k(3d, 3d)
∑

m1<m2
m3<m4

[
fk(m1m2,m3m4)− fk(m1m2,m4m3)

]
d̂ †
m1

d̂ †
m2

d̂m4
d̂m3

,

(2.20)

where the first term is the direct and the second term is the exchange part of
the Coulomb interaction. The monopole part k = 0 of the Coulomb interaction
is already included in the isotropic part of the Coulomb interaction Udd of the
atomic model Hamiltonian, see Eq. 2.6. The d̂ †

mj
(d̂mj

) are creation (annihilation)
operators for TM 3d electrons with orbital momentum l = 2 and the corresponding
magnetic quantum number mj. We use Eq. 2.18 to factorize the potential into
radial F k(3d, 3d), so-called Slater integrals, and angular parts

fk(m1m2,m3m4) = δs1,s3δs2,s4(−1)2+2−m2−m4 〈2||Ck||2〉 〈2||Ck||2〉

×
(

2 k 2
−m1 m1 −m3 m3

)(
2 k 2

−m2 m2 −m4 m4

)
,

(2.21)

where the spin si is conserved. Additionally, we used the Wigner-Eckhard theorem
and the reduced matrix elements, see Appendix. B.3. Only terms with k = 0, 2, 4
satisfy the selection rules of the 3J symbols in the TM 3d–3d valence interaction.
We note that m4 and m3 are interchanged in the exchange part of the Coulomb
interaction. The radial parts F k(3d, 3d) are shown in Appendix. B.3.

The reformulation of the Coulomb interaction between the 2p–3d core-valence
electrons into a numerically accessible form follows similarly to the valence-valence
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2.2. ATOMIC MODEL 29

interaction. The Hamiltonian of the core-valence interaction reads

Ĥ2p−3d =
∑

η1,m1,η2,m2

[
〈η1m1|

1

|r′ − r| |η2m2〉 − 〈η1m1|
1

|r′ − r| |m2η2〉
]
ĉ †η1 ĉη2 d̂

†
m1

d̂m2

= F 2(2p, 3d)
∑

η1,m1,η2,m2

f 2(η1m1, η2m2)ĉ
†
η1
ĉη2 d̂

†
m1

d̂m2

−
∑

k=1,3

Gk(2p, 3d)
∑

η1,m1,η2,m2

fk(η1m1,m2η2)ĉ
†
η1
ĉη2 d̂

†
m1

d̂m2
,

(2.22)

where d̂ †
mj

(d̂mj
) are creation (annihilation) operators for TM 3d electrons with or-

bital momentum li and magnetic quantum number mj. The ĉ †ηj (ĉηj) are creation
(annihilation) operators for TM 2p core electrons with orbital momentum l = 1 and
magnetic quantum number ηj. The first and second term represent the direct and
exchange term of the core-valence Coulomb interaction, respectively. The monopole
part is already considered in the averaged core-valence interaction Udc in the atomic
model Hamiltonian, see Eq. 2.6. The angular part of the direct core-valence inter-
action reads

fk(η1m1, η2m2) = δs1,s3δs2,s4(−1)1+2−m1−m2 〈1||Ck||1〉 〈2||Ck||2〉

×
(

1 k 1
−η1 η1 − η2 η2

)(
2 k 2

−m1 m1 −m2 m2

)
,

(2.23)

where the reduced matrix elements and a general form of the radial parts F k(2p, 3d)
and Gk(2p, 3d) are shown in Appendix. B.3.

In practice, the monopole parts of the Coulomb interaction are substantially
screened from their bare values [30, 114]. The screened value of the averaged
Coulomb interaction Udd can be estimated by constrained random-phase approx-
imation [115] (cRPA) or by fitting the experimental valence photoemission spectra.
The averaged Coulomb interaction Udc is hard to be determined in an ab-initio way.
We fix Udc = x×Udd with 1.1 < x < 1.3 in our core-level spectroscopy calculations,
which is empirically established by comparison with various 2p core-level XPS and
XAS spectra in 3d transition metal oxides [30, 50, 116–119]. In general the screen-
ing is less effective for higher-order Slater-integrals, and cRPA provides reasonable
estimates for Hund’s J which relates to the Slater integrals of the TM 3d–3d valence
interaction by J = (F 2 + F 4)/14. We use the relation F 4 = 0.625× F 2 [115, 120].
The multipole parts of the core-valence interaction are calculated with an atomic
Hartree-Fock code [121]. The F 2

pd, G1
pd and G3

pd values in the core-valence (p–d)
interaction are scaled down between 20 - 30% of their actual values to simulate
the effect of intra-atomic configuration interaction from higher basis configurations
neglected in the atomic calculation [30, 122].
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2.3 Cluster Model

The cluster model includes the electron transfer between impurity states and lig-
ands. Thus, it is able to reproduce spectral features, arising from the charge transfer
from neighboring ligands to the impurity, which are missing in the description of
the atomic model.

Figure 2.3: Cluster model with electron hopping between metal and ligand ions.

The MO6 cluster includes the impurity with its six nearest-neighbor ligands in
a three dimensional material, see Fig. 2.3. The Hamiltonian of the cluster model
reads

Ĥclu = Ĥimp +
∑

γ

εp(γ)b̂
†
γ b̂γ +

∑

γ

vγ(d̂
†
γ b̂γ + b̂ †γ d̂γ), (2.24)

where the first term is the impurity Hamiltonian Ĥimp, see Eq. 2.6. The b̂ †γ and b̂γ
are creation and annihilation operators of the ligand states with energy εp. The
ligand states are described as molecular orbitals with same symmetry as the TM 3d
states. There are as many possible molecular orbitals as TM 3d orbitals, thus we
use the same index γ as for the TM 3d orbitals. The hopping amplitude vγ between
TM 3d states and the ligand states can be either tuned by hand or calculated by
first principle calculations. We use cluster models constructed from ab-initio lattice
models. By comparison with the more realistic Anderson impurity model one is
able to the identify non-local screening contributions missing in the cluster model.

2.3.1 Charge-Transfer Energy

The charge-transfer energy ∆CT is the average energy cost of an electron transfer
from a ligand state, e.g. O 2p state, to an impurity valence state, e.g. TM 3d state
[22, 30],

∆CT = E(|dn+1L〉)− E(|dn〉). (2.25)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3. CLUSTER MODEL 31

Here n is the number of electrons in the TM 3d shell and L denotes a hole in the O
2p shells. An estimate for the charge-transfer energy for n electrons in its valence
orbitals is given by

∆CT =

(
n+ 1

2

)
Udd + (n+ 1)ǫd0 − 35ǫp −

[(
n

2

)
Udd + nǫd0 − 36ǫp

]
, (2.26)

where ǫd0 and ǫp are the average energies of the TM 3d states and the ligand 2p
states, respectively. These energies provide a constant energy shift and can be
determined by first principle calculations. Udd is the isotropic part of the Coulomb
interaction. By including the six neighboring oxygen ligands with fully filled O 2p
shells in the |dn〉 configuration, we obtain 6× 6 = 36 electrons in the ligands. The
charge-transfer energy can be used as a parameter to fix the energy splitting ǫd0−ǫp,
and hence fit the calculated spectra to the experiment.

2.3.2 Molecular Orbitals

The TM ion contains ten 3d orbitals including spin, whereas the oxygen ligands
contain six O 2p orbitals resulting in a total of 10 + 36 = 46 valence orbitals in the
cluster. Describing all orbitals separately exponentially increases computationally
costs [123]. Slater and Koster [124] showed that only some of the O 2p orbitals have
a finite coupling intensity with the TM 3d orbitals. Thus, by creating molecular
orbitals out of the coupling ones, the computational costs are substantially reduced.
For example in the left panel of Fig. 2.4, the TM 3dx2−y2 orbital couples with
only four neighboring O 2p orbitals, denoted as pi. These can be determined by
applying the symmetry operations of the TM 3d orbital to a given O 2p orbital. By
superposing the O 2p orbitals obtained by the symmetry operations of the TM 3d
orbital, one constructs a molecular orbital with the same symmetry as the TM 3d
orbital. It turns out that out of the 46 ligand orbitals, just 20 orbitals couple to
the TM 3d orbitals. In Oh point group symmetry this results to three (with spin:
six) T2g symmetric and two (with spin: four) Eg symmetric molecular orbitals. The
molecular orbitals can be used as basis functions. The coupling between molecular
orbitals and the TM 3d orbitals results in a bonding and anti-bonding solution of the
Hamiltonian. All other possible superpositions of O 2p orbitals result in so-called
non-bonding states which have no finite coupling. Thus, for creating an effective
model Hamiltonian, the non-bonding states can be neglected.
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Figure 2.4: Bonding molecular orbitals with Eg (left) and T2g (right) symmetry in
the xy-plane. Figure adapted from [123].

Fig. 2.4 shows the bonding solution between the TM 3d orbitals and the molec-
ular orbitals in Eg (left) and T2g (right) symmetry. The Eg orbitals form so-called
σ-bonds, whereas the T2g orbitals form so-called π-bonds. The hopping amplitude
between the TM 3d orbitals and the O 2p orbitals can be expressed by the sum of the
Slater-Koster parameters pdσ and pdπ [124] for atomic orbitals. The σ-bonds have
usually a greater overlap and thus a larger hopping amplitude than the π-bonds.

2.4 Double-Cluster Model

Initially the multi-site cluster model was introduced by Veenendal and Sawatzky
to study core-level XPS in cuprates and NiO [33]. The double-cluster model is the
smallest variant of a multi-site cluster model and consists of a M2O11 cluster with
two metallic sites and eleven surrounding ligand ions, see Fig. 2.5. The oxygen
orbitals are included as molecular orbitals, similar to the single-cluster model de-
scription. Out of the ligand orbitals five (with spin: ten) molecular orbitals can
be formed. Although the global symmetry of the molecular orbitals is broken by
inclusion of just one neighboring cluster, the approach leads to reasonable results
by tuning the hopping parameters between the TM ions and the molecular orbitals
as well as between the different TM ions.
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2.4. DOUBLE-CLUSTER MODEL 33

Figure 2.5: M2O11 cluster.

Here we adapt the full Coulomb-multiplet form of the double-cluster model,
which was employed by Agui et al to study Ti L3-RIXS in FeTiO3 [125], and subse-
quently applied to Ni L3-XAS and RIXS analyzes of RNiO3 [108]. The Hamiltonian
of the double-cluster model reads

Ĥdc = Ĥ
(A)
imp + Ĥ

(B)
imp + ĤIM

+
∑

γ

εγ b̂
†
γ b̂γ +

∑

i∈{A,B}

∑

γ

vi,γ(d̂
†
i,γ b̂γ + b̂ †γ d̂i,γ),

(2.27)

where Ĥ
(A)
imp and Ĥ

(B)
imp are the impurity Hamiltonians, see Eq. 2.6, for impurities A

and B, respectively. The εγ are the energies of the molecular orbitals with index
γ denoting orbital and spin. The d̂ †

i,γ (d̂i,γ) and b̂ †γ (b̂γ) are creation (annihilation)
operators for TM 3d electrons on site i = {A,B} and electrons on the molecu-
lar orbitals, respectively. The metal-ligand hopping amplitudes vi,γ are constructed
by Slater-Koster parameters which can be obtained from first principle calculations.

The double-cluster model incorporates a metal-metal charge-transfer (MMCT),
by the inclusion of inter-metal hopping between the TMs on site A and TM on site
B. The Hamiltonian of the inter-metal hopping reads

ĤIM =
∑

γ,γ′

uγγ′(d̂ †
A,γ d̂B,γ′ + d̂ †

B,γ′ d̂A,γ), (2.28)

where the indices γ and γ′ denote the orbital and spin of the TM on site A and
the TM on site B, respectively. The uγγ′ is the hopping amplitude between the two
TM sites. Although the double-cluster model incorporates MMCT, only a single
metal-metal bond is considered due to the symmetry of the double-cluster. This
simplification needs an adjustment of the MMCT amplitude obtained by first prin-
ciple calculations, to mimic contributions of the other five bonds in a real crystal.
Thus, the MMCT hopping amplitude is tuned to reproduce experimental core-level
spectra.
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2.5 Anderson Impurity Model

The Anderson impurity model (AIM) is a single-impurity model and takes into
account the hybridization, i.e. hopping, between an impurity embedded in a crystal
host and the electronic states of the host, so-called bath states, see Fig. 2.6. The
AIM allows to include unbound electron-hole pair excitations which propagate in
the crystal host. These unbound excitations cannot be captured by a cluster model
analysis. We employ two kinds of AIMs in this thesis: (1) Within first principle
DMFT calculations, where a lattice model is mapped onto the AIM self-consistently.
This AIM contains just valence states around the Fermi energy EF. (2) Within the
calculation of spectral functions, where the AIM is extended by core orbitals to
explicitly take into account the core-valence interaction.

Figure 2.6: Anderson impurity model with hybridization to the crystal host bath
states. Figure adapted from [21].

The AIM Hamiltonian consists of the on-site term, i.e impurity, and the hy-
bridization term, which includes the energy of bath states. The Hamiltonian reads

ĤAIM = Ĥimp + Ĥhyb, (2.29)

where the impurity term is equivalent to the Hamiltonian of the atomic model, see
Eq. 2.6. The hybridization term reads [1]

Ĥhyb = Ĥhost + Ĥimp−host

=
∑

α,γσ

εα,γσv̂
†
α,γσv̂α,γσ +

∑

α,γσ

Vα,γσ(d̂
†
γσv̂α,γσ + v̂†α,γσd̂γσ).

(2.30)

The first term Ĥhost represents the energies of the bath states εα,γσ. The operator
v̂ †
α,γσ (v̂α,γσ) creates (annihilates) an electron of the bath state with energy εα,γσ.

The index α denotes the energy levels for each orbital γ and spin σ. The second
term Ĥimp−host contains the hybridization between the impurity and bath states.
The hybridization amplitude Vα,γσ relates to the hybridization function ∆γσ(ε).
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2.5. ANDERSON IMPURITY MODEL 35

2.5.1 Hybridization Function

The hybridization function ∆γσ(ε) is the core element of the Anderson impurity
model. It describes a density which encodes the hopping amplitude between the
impurity states and the bath states. The bath consists of auxiliary states which
describe the electronic structure of the rest of the crystal host, see Fig. 2.7.

Figure 2.7: Anderson impurity model for TM 3d states with a schematic hybridiza-
tion intensity in continuous and discrete (black bars) form.

The hybridization function of the Anderson impurity model is often assumed
to be semi-elliptical or triangular shaped for spectroscopy calculations [30]. This
assumption does not reflect the electronic structure of a real material. The hy-
bridization function obtained by first principle calculations, describes a realistic
hopping between impurity and bath states. We distinguish two parts of the hy-
bridization function. The hybridization intensities above EF are denoted as con-
duction, whereas the hybridization initensities below EF are denoted as valence.
The hybridization function is a general function of energy ε for each valence orbital
γ of the impurity with spin σ

∆γσ(ε) =
∑

α

V 2
α,γσ

ε+ − εα,γσ
. (2.31)

Here, ∆γσ(ε) describes a continuous hybridization function with hopping intensities
(amplitudes) V 2

α,γσ. The energy ε+ = ε+ i0+ shifts the poles to the lower half of the
complex plane. The hybridization function, which is continuous in real materials,
takes the form of a Dirac delta function for the special case of the cluster model
and reads

ℑ∆γσ(ε) = −π|Vγσ|2 × δ(ε− εpγσ), (2.32)

where Vγσ is the hopping amplitude between the Eg and T2g orbitals of the TM ion,
denoted by γ with spin σ, and its surrounding molecular orbitals with energy εpγσ.
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2.6 First Principle Calculations

First principle calculations are used to calculate the electronic structure of real
materials with almost no parameters. First we use density functional theory to
create Bloch functions which describe the electronic structure of a periodic lat-
tice without explicit local interactions. The Bloch functions are transformed into
Wannier functions which are atomic-like orbitals centered on the lattice sites. We
construct a tight-binding representation in the Wannier basis which contains the
hopping amplitudes between Wannier orbitals on the same and on different lattice
sites. Then we construct a lattice model with local interactions, e.g. dp model,
where we add the Coulomb interaction Udd to the TM 3d valence orbitals which
is active only locally on the lattice sites. The Udd can be evaluated by e.g. con-
strained random phase approximation (cRPA) [115]. There are two approaches to
calculate electronic structure of correlated materials in general; Green’s function
based methods and wave function based methods. Green’s function based meth-
ods work with correlation functions directly, whereas wave function based methods
use the interacting Hamiltonian in terms of a resolvent to calculate the electronic
properties. The resolvent formalism is computationally more challenging because
it uses the description of many-body wave functions. But the resolvent formalism
is applicable for the impurity models we are using for the calculation of core-level
X-ray spectral functions. To calculate the electronic structure from lattice based
models we use dynamical mean-field theory (DMFT) [13]. DMFT is a Green’s
function based method which maps the lattice model with local interaction onto an
Anderson impurity model.

2.6.1 Density Functional Theory

Density functional theory (DFT) is a powerful method to calculate the electronic
structure of a many-body system. DFT allows the calculation of basic character-
istics of interacting systems, such as charge and spin density on the ground state
level, by mapping it onto an effective non-interacting problem. The experience
shows that DFT band structures provide an excellent description of weakly corre-
lated materials as well as a good starting point for many-body treatment of strongly
correlated materials. With this methodological simplification it is possible to study
real materials in continuous space where only the positions of atomic nuclei have to
be provided as input. DFT for solids was introduced by Hohenberg and Kohn [7] as
well as Kohn and Sham [8]. They showed that the ground state of the N -electron
Schrödinger equation is uniquely determined by a non-interacting electron density
n(r) [7, 22]:

• There is a one-to-one mapping between an external potential V (r) and the
ground state particle density n(r).

• The ground state of a system characterized by the external potential V (r)
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can be obtained by the minimization of a functional E[n(r)].

The energy of the ground state can be calculated by the variational principle

∂E[n(r)]

∂n(r)

∣∣∣∣
n(r)=n0(r)

= 0, (2.33)

with the use of self-consistent single-particle Kohn-Sham equations. The Ansatz
n(r) =

∑
i fi|Ψi(r)|2 is used, together with constraining the particle number con-

servation N =
∫
n(r)d3r and the mutual orthogonality of the single-particle wave

functions Ψi(r). The energy functional can be written as

E[n(r)] = T [n(r)]+
e2

2

∫ ∫
n(r)n(r′)

|r − r′| d3rd3r′+

∫
n(r)V (r)d3r+Exc[n(r)], (2.34)

where T [n(r)] is the kinetic energy of non-interacting electrons. The second term
is the Hartree energy with electrostatic interaction within the electron density. The
interaction with an external potential V (r) generated by positively charged nuclei
is included in the third term. The positions of the nuclei are usually provided by ex-
periment, but can also be evaluated by minimization of the total energy, see Eq. 2.36
below. The exchange and correlation functional Exc[n(r)] =

∫
n(r)εxc[n(r)]d

3r cor-
rects the energy of the non-interacting electrons. If Exc[n(r)] was exact, DFT would
provide the real electronic density of a material. Unfortunately the exact solution
is not known, therefore several approximations exist, e.g. local density approxi-
mation (LDA) or generalized gradient approximation (GGA). Varying the energy
functional of Eq. 2.34 results in

[
− ~

2

2m
∇2 + V (r) + e2

∫
n(r′)

|r − r′|d
3r′ + µxc[n(r)]

︸ ︷︷ ︸
Veff

]
Ψi(r) = εiΨi(r), (2.35)

where µxc[n(r)] =
∂Exc[n(r)]

∂n(r)
. This equation is the Kohn-Sham equation which can

be read as a single-particle Schrödinger equation with kinetic term and effective
potential Veff . The total energy is obtained by multiplying Eq. 2.35 by Ψ∗

i (r),
and integrating over the occupied states with subtraction of Eq. 2.34. The second
Kohn-Sham equation reads

E =
∑

i

εi −
e2

2

∫ ∫
n(r)n(r′)

|r − r′| d3rd3r′ +

∫
n(r)

[
εxc[n(r)]− µxc[n(r)]

]
d3r. (2.36)

The Kohn-Sham equation can be solved self-consistently, starting with a test density
n(r). By using a proper approximation for Exc[n(r)], e.g. LDA, one can calculate
the effective potential Veff . Then the wave functions Ψi(r) can be evaluated, result-
ing in a new density. From that one can calculate the total energy. To stabilize
the iterative cycle one mixes the input density with the output density of previous
iterations to generate a new density for the next cycle. We use WIEN2k [126] with
an LSDA potential for band structure calculations.
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2.6.2 Bloch Functions and Band Structure

The Kohn-Sham equation has the form of a Schrödinger equation for non-interacting
electrons [22, 115]

−1

2
∇2Ψ(r) + Veff(r)Ψ(r) = εΨ(r). (2.37)

This equation represents an eigenvalue problem for a Hermitian Hamiltonian Ĥ =
−1

2
∇2 + Veff(r), if the wave function Ψ(r) has periodic boundary conditions at

infinity and is normalizable. If the potential obeys translational symmetry

Veff(r) = Veff(r +R), (2.38)

where R is the Bravais lattice vector, then the Bloch theorem states that the eigen-
functions can be written in terms of Bloch wave functions

Ψn,k(r) = e−ik·run,k(r). (2.39)

The function un,k(r) is an r-periodic function. The index n denotes discrete bands
and k is a continuous vector from the first Brillouin zone. The translational operator
T̂Rl

commutes with the Hamiltonian Ĥ and thus, the eigenstates of Ĥ can be chosen
to be eigenstates of T̂Rl

. T̂Rl
shifts the Bloch wave function by the Bravais lattice

vector Rl to the l-th unit cell in the Bravais lattice which results into the same
Bloch function with an additional phase factor

T̂Rl
Ψn,k(r) = Ψn,k(r −Rl) = eik·RlΨn,k(r). (2.40)

By applying the eigenfunctions Ψn,k(r) of the translational operator into the Schrödinger
equation one obtains

1

2
(−i∇− k)2un,k(r) + Veff(r)un,k(r) = εn,kun,k(r), (2.41)

where the eigenvalues εn,k for band n are continuous and periodic in k. The band
structure is formed by the plotted eigenvalues εn,k.
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Figure 2.8: Classification of band types.

Fig. 2.8 shows a cartoon plot of eigenvalues εn,k forming different types of bands,
where we distinguish three different kinds. The top panel of Fig. 2.8 shows an
isolated band, which does not cross any other band at any k: εn−1,k < εn,k < εn+1,k

for each k. In the center panel of Fig. 2.8 there are composite bands, which cross
each other, but do not cross any other band at any k: εnmin−1,k < εnmin,k ≤ εnmax,k <
εnmax+1,k. If bands do not obey the above criteria and cross other bands, they are
called entangled bands, as shown at the bottom panel of Fig. 2.8 [22, 115].

2.6.3 Wannier Functions

Wannier functions are commonly used to link first principle band structure calcu-
lations with lattice models [12, 22, 115]. They can be seen as natural extension of
atomic orbitals into the concept of solids. We use atomic-centered Wannier func-
tions, describing a basis set which is localized and orthonormal on lattice sites.
The shapes of the Wannier functions are invariant under lattice translations TR,
i.e. the Wannier functions are centered on each atom forming a localized orbital.
Wannier functions are constructed out of Bloch wave functions. Here we describe
the construction of maximally localized Wannier functions, where the spread of the
Wannier function from the center of mass at each lattice site is minimized. The
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Wannierization, i.e. construction procedure of Wannier functions, depends on the
band type in the band structure, see Fig. 2.8.

Wannier functions wn(r −Rl), obtained from isolated bands with index n, can
be seen as a Fourier transform of the Bloch wave function Ψn,k(r) = eikrunk(r) [115,
127].

wn(r −Rl) =
V

(2π)3

∫

BZ

dke−ik·RlΨn,k(r). (2.42)

We Fourier transform the vector k of the first Brillouin zone (BZ) to Bravais lat-
tice vectors Rl. The Fourier transformation is not unique, the freedom in choice
of the Wannier function corresponds to the freedom of choice in the phases of
Bloch orbitals as function of the wave vector k [127]. Therefore a particular
choice of the phases, a so-called gauge, can be realized by a gauge transformation
Ψn,k → eiφ(k)Ψn,k. This transformation preserves the center of mass of the Wannier
functions but not the spread Ω, see Eq. 2.47 below. The inverse transformation
results into Bloch functions Ψn,k(r) and reads

Ψn,k(r) =
∑

Rl

eik·Rlwn(r −Rl). (2.43)

The orthogonality of the Wannier functions is ensured by the transformation prop-
erties of Bloch functions under lattice translations.

For composite bands, a unitary transformation for a set of isolated bands has
to be determined [22, 115]

w(r −Rl) =
V

(2π)3

∫

BZ

dkU (k)Ψk(r), (2.44)

where wn(r−Rl) and Ψn,k(r) are vectors of functions corresponding to composite
bands as entries

w =




wnmin

...
wnmax


 ,Ψk =




Ψnmin,k
...

Ψnmax,k


 . (2.45)

The unitary matrix U (k) mixes the bands at a given wave vector k. Here, the trans-
formation does not preserve the center of mass of the individual Wannier functions,
but preserves the sum of the center of masses of the composite Wannier functions,
modulo the lattice vector. If U (k) can be chosen such that the product is an analytic
and periodic function of k, one obtains exponentially localized Wannier functions.
The inverse transformation results in quasi-Bloch states and reads [22, 115]

Ψ̃k(r) =
∑

Rl

eik·Rlw(r −Rl). (2.46)
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These quasi-Bloch wave functions preserve the transformation properties under lat-
tice translations, but are not solutions of the Schrödinger equation anymore.

To obtain maximally localized Wannier functions for isolated and composite
bands, one minimizes the spread of the Wannier functions. The spread functional
reads [127]

Ω =
∑

n

[
〈r2〉n − r̄2

n

]
, (2.47)

with the center of mass for each Wannier function n

r̄n = i
V

(2π)3

∫

BZ

dk 〈wn,k|∇k|wn,k〉 , (2.48)

and the second moment

〈r2〉n =
V

(2π)3

∫

BZ

dk
∣∣ |∇kwn,k〉

∣∣2. (2.49)

The derivation for calculating the spread functional Ω can be found in [127]. Cre-
ating Wannier functions for entangled bands fail by using only a unitary trans-
formation. Thus, a disentanglement procedure was introduced by Souza, Marzari
and Vanderbilt [128]. It also uses the minimization of the spread but in a proper
subspace with fixed energy window, which encompasses the bands of interest. The
obtained functions are then not Wannier functions anymore in the common sense,
but they are Wannier-like functions, forming an orthonormal, localized basis set of
the same Bloch subspace from which they were constructed. An important aspect of
Wannier functions is, that an increase of localization can be obtained by increasing
the energy window in the Wannierization, i.e. by taking more bands into account.

Figure 2.9: The A1g Wannier function in the T2g-only model (left) and T2g-p model
(right) of SrRu2O6. The gray, red, and green circles represent Ru, O, and Sr atoms,
respectively. The Wannier function in the T2g-only model has a considerable weight
on neighboring O sites. Figure and caption taken from [129].
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Fig. 2.9 shows the Ru A1g Wannier function of SrRu2O6 for two models, T2g-only
with six orbitals and T2g-p model with explicit presence of the O 2p orbitals [129].
In the T2g-only model the Ru A1g Wannier function has a considerable weight on the
O sites, whereas the Ru A1g Wannier function of the T2g-p model is more localized
on the Ru site. For Wannier calculations we usually consider a full d–p model
and use the WANNIER90 [130] and WIEN2WANNIER [131] packages included in
WIEN2k [126].

2.6.4 Tight-Binding Representation

In solid state physics one is particularly interested in the physics happening in
the low energy regime, i.e. around Fermi Energy EF. Thus one limits oneself to
proper model Hamiltonians capturing just the effects of interest. Tight-binding is
a widely used representation, where only partially filled valence orbitals are taken
into account explicitly. These are for example Wannier functions, generated by
DFT and the Wannierization procedure.

Figure 2.10: Tight-binding model with four atoms (TM A, TM B and 2 × O) per
unit cell Rl.

Fig. 2.10 shows a lattice with four atoms per unit cell. The unit cell is denoted
by the Bravais lattice vector Rl. Each orbital on a lattice site (TM A, TM B, or O)
can either be unoccupied, occupied by up or down spin σ, or doubly occupied with
up and down spin. The tight-binding representation lacks the local interaction,
thus multiple electrons on the same site do not interact which each other. The
energies of O 2p orbitals in TMOs are often near EF, thus we include O 2p orbitals
within our calculations to provide a realistic description of the electronic structure
near EF. The tight-binding representation contains the electron hopping between
sites in the periodic lattice structure, see Fig. 2.10. Thus, the Hamiltonian of the
tight-binding representation reads

ĤTB = −
∑

i,j,σ

hij ĉ
†
i,σ ĉj,σ, (2.50)

where ĉ†i,σ and ĉj,σ are creation and annihilation operators for electrons. The indices
i and j denote the unit cells Rl and R′

l in the lattice and as well as the orbitals γ

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.6. FIRST PRINCIPLE CALCULATIONS 43

and γ′ of the atoms in the unit cells, respectively. The index σ denotes the spin,
for simplicity we drop it in the formulas below. The hopping amplitudes hij are
evaluated from the matrix elements of the Hamiltonian using Wannier functions
|wγ(Rl)〉 as basis functions, e.g. the Hamiltonian of the first Kohn-Sham equation,
see Eq. 2.35. Due to translational invariance of the Wannier functions, the hopping
matrix hij can be constructed out of the distance between lattice vectors R̃l =
R′

l −R0. The lattice vector R0 denotes some fixed unit cell in the lattice. The use
of maximally localized Wannier functions with fast decay from the center of mass
and thus negligible overlap of Wannier functions of R′

l far away from R0 enables a
dramatic reduction of the size of the hopping matrix. The hopping matrix elements
can be calculated by

hij = hγγ′(R̃l) = 〈wγ(R0)|Ĥ|wγ′(R′
l)〉 . (2.51)

In practice hγγ′(R̃l) has a block structure corresponding to the hopping of electrons
between unit cells R̃l. We neglect in the following the indices notation hγγ′ and
denote matrix sublocks by an underscore. Each block corresponding to R̃l has the
following matrix form

h(R̃l) =




hA(R̃l) hAB(R̃l) hAO(R̃l)

hBA(R̃l) hB(R̃l) hBO(R̃l)

hOA(R̃l) hOB(R̃l) hO(R̃l)



, (2.52)

where the hopping matrix of each diagonal sub-block, e.g. hA, hB, hO, is constructed
out of the orbital basis γ ∈ {γA, γB, γO} of the corresponding atom (A, B, O) in
the R0 unit cell and the same atoms γ′ ∈ {γ′

A, γ
′
B, γ

′
O} in the R′

l unit cell, see
Eq. 2.51. The block hO consists of two sub-blocks, corresponding to each oxygen
atom in the unit cell. The diagonal elements of each sub-block on the diagonal
of h(R̃0 = 0) = 〈wγ(R0)|Ĥ|wγ(R0)〉 are the onsite energies of Wannier orbitals.
From these one can calculate the crystal field splitting. The off-diagonal sub-blocks
include the cross hopping between orbitals from different atoms in different unit
cells. As an example, the element hAB

γAγ′

B
(R̃1) in the sub-block hAB(R̃1) corresponds

to the hopping amplitude of an electron in orbital γ′
B of atom B in the unit cell R′

1

to an orbital γA of atom A in the unit cell R0. Another important aspect is the
reciprocal space k representation of h(R̃l). The reciprocal space representation is
obtained by replacing the creation and annihilation operators by its Fourier series
in the tight-binding Hamiltonian, see Eq. 2.50. The creation operator reads

ĉ†γ(Rl) =
1√
N

N∑

k

e−ik·Rl ĉ†γ(k), (2.53)
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and the annihilation operator reads

ĉγ(R̃l) =
1√
N

N∑

k′

eik
′·R̃l ĉγ(k

′). (2.54)

Then, Eq. 2.50 results in a k diagonal representation of the single-particle Hamil-
tonian

h(k) =




hA(k) hAB(k) hAO(k)

hBA(k) hB(k) hBO(k)

hOA(k) hOB(k) hO(k)


 . (2.55)

We note that the former discrete R-dependence of h(R̃l) has a continuous k-
dependence in h(k). In practice k = km are discrete vectors from the first Brillouin
zone. The h(k) is diagonal in k and the sub-block structure for the atoms in the
unit cell for each k is consistent with the real-space representation.

2.6.5 Hubbard Model and dp Model

The Hubbard model is a paradigm model for describing electronic correlations in
TMOs [22]. It captures TM atoms which are fixed on the lattice sites with a single
orbital and includes the local interaction U between electrons on the same lattice
site with different spin.

Figure 2.11: Single-band Hubbard model with local interaction U .

The Hamiltonian of the Hubbard model reads

ĤHubbard = −t
∑

〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ U

∑

i

n̂i,↑n̂i,↓, (2.56)

where ĉ†i,σ (ĉi,σ) is a creation (annihilation) operator of an electron with spin σ
on lattice site i. The sum over indices 〈ij〉 includes the hopping between nearest-
neighbor lattice sites with amplitude t. The Coulomb term includes the occupation
number n̂i,σ = ĉ†i,σ ĉi,σ for each lattice site i with Coulomb interaction U between
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electrons with opposite spin. If the Coulomb interaction is strong compared to the
band width W ≈ zt, where z is the number of nearest-neighbors, then the electronic
bands split into a lower and upper Hubbard band. However, the Hubbard model
has a limited capability to describe the electronic structure of real materials, such as
TMOs. Therefore, an extension to a dp model with long-distance hopping, multiple
bands and also O 2p orbitals is necessary. The dp Hamiltonian reads [21, 22]

Ĥdp =
∑

i,γ,σ

εd(γ)d̂
†
i,γσd̂i,γσ +

∑

j,λσ

εp(λ)p̂
†
j,λσp̂j,λσ + T̂pd + T̂dd + T̂pp

+
∑

i

∑

κλµν

Uκλµνd
†
κid

†
λidνidµi, (2.57)

where d̂†i,γσ (p̂†j,λσ) d̂i,γσ (p̂j,λσ) are creation (annihilation) operators of TM 3d and O
2p electrons, respectively. The indices γ and λ denote the TM 3d and O 2p orbitals
on lattice site i and j, respectively. The εd(γ) and εp(λ) are the onsite energies of
the TM 3d and O 2p states, respectively. The Coulomb interaction Uκλµν acts on
the TM 3d shells with orbital and spin indices κλµν locally on each lattice site i.
The operator T̂pd refers to the inter and intra-site hopping of electrons between TM
3d and O 2p orbitals

T̂pd =
∑

i,γ,j,λ,σ

tpd(i, γ; j, λ)
(
d̂†i,γσp̂j,λσ + p̂†j,λσd̂i,γσ

)
, (2.58)

where tpd(i, γ; j, λ) is the hopping amplitude. The operators T̂dd and T̂pp in Eq. 2.57
denote the inter and intra-site hopping of electrons within TM 3d and O 2p orbitals,
respectively. They read

T̂dd =
∑

i,γi′,γ′,σ

tdd(i, γ; i
′, γ′)

(
d̂†i,γσd̂i′,γ′σ + d̂†i′,γ′σd̂i,γσ

)
(2.59)

and
T̂pp =

∑

jλj′λ′σ

tpp(j, λ; j
′, λ′)

(
p̂†j,λσp̂j′,λ′σ + p̂†j′,λ′σp̂j,λσ

)
, (2.60)

where tdd(i, γ; i
′, γ′) and tpp(j, λ; j

′, λ′) are the hopping amplitudes. They describe
the hopping between d (p) orbitals on different atoms i (j) and i′ (j′), respectively.
By Fourier transforming the operators in the hopping part of Eq. 2.57 to the k-space
representation, the dp Hamiltonian reads [4]

Hdp =
∑

k

(
d
†
k

p
†
k

)(hdd
k
− µdc hdp

k

hpd
k

hpp
k

)(
dk

p
k

)

+
∑

i

∑

κλµν

Uκλµνd
†
κid

†
λidνidµi. (2.61)

Here, d
k

(p
k
) is an operator-valued vector which elements are Fourier transforms

of dγi (pγi). The double-counting energy µdc is diagonal in the subspace of the TM
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3d states and corrects the d–d interaction already accounted for in DFT. The µdc

renormalizes the splitting of the TM 3d and O 2p energies, thus µdc is related to
the charge-transfer energy ∆CT [5, 31, 132].

2.6.6 Dynamical Mean-Field Theory

DMFT is used to calculate the electronic structure of correlated materials [13, 133,
134]. DMFT maps the infinite lattice model with local interaction, e.g. Hubbard
(dp) model, self-consistently onto an Anderson impurity model which is coupled to
an optimized non-interacting host, see Fig. 2.12. The non-interacting states of the
crystal host are auxiliary bath states. They represent the former interacting valence
states of the infinite crystal lattice around the impurity.

Figure 2.12: Crystal lattice with two inequivalent impurities. DMFT simultaneously
captures the mapping of the crystal lattice onto the Anderson impurity model of
both impurities.

DMFT is a many-body theory based on one-particle Green’s functions. A one-
particle Green’s function describes a particle or hole added to the system at time
t′ and propagating in the system until its removal at time t. For finite tempera-
tures we use imaginary time, where it → τ . The causal Green’s function for finite
temperatures T > 0 is defined as

Gij(τ, τ
′) ≡ −〈T ĉi(τ)ĉ

†
j(τ

′)〉

= − 1

Z
Θ(τ − τ ′)Tr

[
e−Ĥ(β−τ)ĉie

−Ĥ(τ−τ ′)ĉ†je
−Ĥτ ′

]

± 1

Z
Θ(τ ′ − τ)Tr

[
e−Ĥ(β−τ ′)ĉ†je

−Ĥ(τ ′−τ)ĉie
−Ĥτ

]
.

(2.62)

The operator ĉ†j (ĉi) adds (removes) a particle to (from) the system. The indices i
and j denote the lattice sites, orbital and spin. The sign ± corresponds to fermionic
(−) or bosonic (+) creation and annihilation operators. The operators are described
in the Heisenberg picture, where ĉi(τ) = eτĤ ĉie

−τĤ and ĉ†j(τ
′) = eτ

′Ĥ ĉ†je
−τ ′Ĥ . Z =

Tr
[
e−βĤ

]
is the partition function. The Green’s function is defined on the time

interval τ ∈ (0, β) and with an anti-periodic (periodic) extension to the whole real
axis for fermions (bosons) G(τ) = ±G(τ). If the Hamiltonian is time independent
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2.6. FIRST PRINCIPLE CALCULATIONS 47

the Green’s function depends only on the relative time τ = τ−τ ′. The time ordering
symbol T contains the Heaviside step functions Θ which sort the time arguments,
starting with the largest time argument on the left. The periodicity of τ implies that
we can express the Green’s function as a Fourier series in Matsubara frequencies ωn

G(τ) =
1

β

∞∑

n=−∞

e−iωnτG(iωn), (2.63)

where the Fourier coefficients are the Matsubara Green’s functions

G(iωn) =

∫ β

0

dτeiωnτG(τ).

{
ωn = (2n+ 1)π

β
. . . fermions

ωn = 2nπ
β

. . . bosons
(2.64)

The Matsubara frequencies ωn are odd for fermions and even for bosons. The
relation between an interacting Green’s function G(ω) and a non-interacting Green’s
function G0(ω) is given by the Dyson equation

G(k, iωn) = G0(k, iωn) +G0(k, iωn)Σ(iωn)G(k, iωn), (2.65)

where the self-energy Σ(iωn) is assumed to be local in DMFT, i.e. the energy
dependence of the self energy is explicitly taken into account, whereas the momen-
tum dependence k is neglected. DMFT is exact in the limit of infinite dimensions.
However, it provides a realistic description of the electronic structure of 3- or even
2-dimensional materials [12, 14, 134, 135]. Here we show how to apply DMFT for
systems with several interacting impurities in the unit cell including non-interacting
ligand ions.

Figure 2.13: DMFT self-consistent cycle for a single impurity. Figure adapted
from [22].

The self-consistent DMFT cycle follows: Initially the self-energy Σ(iωn) is guessed
for the interacting orbitals γA and γB of each TM atom A and B, respectively. The
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spin is included in the index γ. In this section we use the same notation as in
Sec. 2.6.4. Thus, the self-energy reads

Σ(iωn) =




ΣA(iωn) 0 0

0 ΣB(iωn) 0

0 0 0


 . (2.66)

In our approach DMFT is based on the momentum-space k-representation of the
tight-binding Hamiltonian, see Eq. 2.55. We calculate the local lattice Green’s
function Gav for the orbitals γ ∈ {γA, γB, γO} (γ′ ∈ {γ′

A, γ
′
B, γ

′
O}) by summing over

all momenta k within the Brillouin zone (BZ). The lattice Green’s function averaged
over all k reads

Gav(iωn) =
1

N

∑

k∈BZ

[iωn − h(k)− Σ(iωn)]
−1 . (2.67)

It is a matrix which includes all orbitals γ of all atoms in the unit cell. The
hybridization functions ∆J(iωn) of both impurities J = {A,B} are matrix valued
and read

∆J(iωn) = iωnI
J − hJ(R̃l=0)− ΣJ(iωn)−

[
G−1

av (iωn)
]J
, (2.68)

where I
J is the identity matrix in sub-block J . The local Hamiltonian

hJ(R̃l=0) = 1
N

∑N
k
hJ(k) is given in Eq. 2.52. The last term in Eq. 2.68 denotes a

diagonal sub-block J of G−1
av (iωn). Then we construct the Green’s function of the

Anderson impurity model for each impurity J . The Anderson impurity model con-
sists of the local Hamiltonian hJ(R̃l=0), the hybridization function ∆J(iωn) and the
local interaction UJ

κλµν , see Eq 2.61. We use the strong coupling continuous-time
quantum Monte Carlo (CT-QMC) method to calculate the interacting Anderson
impurity model Green’s function, where we use an in-house CT-QMC package,
which implements recent improved-estimator techniques [136–138]. The new self

energies Σ̃
J

for all impurity d orbitals are calculated by the Dyson equation from
the Anderson impurity model Green’s function

GJ
AIM(iωn) =

[
iωnI

J − hJ
loc −∆J(iωn)− Σ̃

J
(iωn)

]−1

. (2.69)

After obtaining the self-energy Σ̃(iωn) for all impurities J , we update the self-energy,
see Eq. 2.66, and initiate a new cycle. The cycle is repeated until the convergence
criteria

GJ
AIM(iωn) = GJ

av(iωn) (2.70)

is reached. The self-energy Σ(iωn) is then analytically continued to real frequencies
Σ(ǫ) by the maximum entropy method [139, 140].
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2.6.7 Double Counting and Charge-Transfer Energy

The on-site d-energies εd(γ) = εLDA
d (γ) − µdc in the impurity Hamiltonian, see

Eq. 2.6, are renormalized from the LDA values [1], where γ denotes orbital and
spin of the TM ion. The εLDA

d (γ) are the energies of the Wannier TM 3d states
and µdc is the double-counting energy included in the DMFT cycle. The double-
counting correction accounts for the d–d interaction implicitly present in the LDA
calculation. The double-counting correction µdc renormalizes the splitting between
Ni 3d and O 2p states and thus is related to the charge-transfer energy, which is
introduced as ∆CT = E(dn+1L) − E(dn) in the cluster model analysis. The dn

represents the electron filling n of the TM ion in its formal valence and L denotes
a hole in the neighboring ligands. Since there is no unique mapping between the
charge-transfer energy in the cluster-model picture and double-counting energy in
a solid, we use a fuzzy estimate [1]

∆CT = εLDA
d − µdc + nUdd − εLDA

p (2.71)

to relate µdc with ∆CT. The averaged energy of the TM 3d states (εLDA
d ) is evalu-

ated by a partial trace of the TM 3d energies in the tight-binding Hamiltonian as
εLDA
d = 1

N

∑
γ ε

LDA
d (γ). Similarly, the averaged energy of O 2p states (εLDA

p ) is eval-
uated by a partial trace of the O 2p energies. Since the O 2p states are not fully
occupied in the LDA result and form a band, the ∆CT value estimated above cannot
be compared to the values used in the cluster-model analysis [1].

2.7 Computational Details of Core-Level X-ray

Spectroscopy

In this section we introduce the resolvent representation of core-level spectral func-
tions, which provides an efficient computational route using exact diagonalization.
We explain the geometry of a scattering process and discuss the transition operator
in more detail. Furthermore, we study the configuration-interaction scheme which
provides a optimized basis set for core-level spectroscopy calculations in the resol-
vent formalism. Finally, we discuss an efficient way in order to treat fermionic basis
sets and operators numerically.

2.7.1 Fermi’s Golden Rule

Here we describe how to calculate core-level photoemission and absorption spectra
based on first order perturbation theory with electron-photon coupling T̂D as per-
turbation. This first order perturbation theory results in Fermi’s golden rule. Thus,
the spectral functions of XPS and XAS read

F
(n)
XPS/XAS(ω) =

∑

f

∣∣∣〈f |T̂D|n〉
∣∣∣
2

δ (En + ω − Ef ) . (2.72)
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Using the identity 1
ω+i0++En−Ef

= p.v.
[

1
ω+En−Ef

]
− iπδ(ω+En−Ef ), then Eq. 2.72

can be reformulated as imaginary part of a Lorentzian

F
(n)
XPS/XAS(ω) = − 1

π

∑

f

ℑ
[
〈n|T̂ †

D|f〉 〈f |T̂D|n〉
ω+ − Ef + En

]
, (2.73)

where ω+ = ω+i0+. The Ef are the eigenvalues of the Hamiltonian in the subspace
of the final states |f〉. We use the spectral theorem

Ĥf =
∑

f

Ef |f〉 〈f | →
1

Ĥf

=
∑

f

1

Ef

|f〉 〈f | , (2.74)

which enables us to rewrite the spectral function in terms of a resolvent

F
(n)
XPS/XAS(ω) = − 1

π
ℑ
[
〈n|T̂ †

D

1

ω+ − Ĥf + En

T̂D|n〉
]
. (2.75)

The resolvent representation of the spectral function allows us to formally remove
the summation of the final states |f〉. The final states in the original representation,
see Eq. 2.72, had to be evaluated separately. Thus, the computational efforts are
substantially reduced in this representation since one does not have to compute all
eigenenergies Ef and eigenvectors |f〉, but just compute the matrix element of the
resolvent between the initial state |n〉. The spectral function can be calculated by
a continued fraction expansion, see Appendix. A.2.

2.7.2 Kramers-Heisenberg Formula

The spectral function of RIXS is described by the Kramers-Heisenberg formula,
see Eq. 2.3. Evaluating the Kramers-Heisenberg formula directly exceeds numerical
limitations since the summation over all intermediate and final states would require
the separate computation of each state by diagonalizing the full Hamiltonian. Thus,
we introduce a way to reformulate the Kramers-Heisenberg formula where we avoid
the direct evaluation of the intermediate and final states. We use the spectral
theorem, see Eq. 2.74, where we apply Em |m〉 = Ĥm |m〉, to rewrite Eq. 2.3 in
terms of a resolvent

FRIXS(ωin, ωout) =
∑

f

∣∣∣∣〈f |T̂E
1

ωin + En − Ĥm + iΓL

T̂I|n〉
∣∣∣∣
2

δ(ωin + Eg − ωout − Ef ),

(2.76)
with the operator form of the intermediate-state Hamiltonian Ĥm. In practice, we
calculate the initial state |n〉 by the use of the Lanczos algorithm, see Appendix. A.1.
Then we apply the transition operator onto the initial state and obtain a new state
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|x〉 = T̂I |n〉. By applying the resolvent in Eq. 2.76 onto |x〉 we obtain |y〉 =
1

ωin+Eg−Ĥm+iΓL

|x〉 which can be formally rewritten as

(ωin + Eg − Ĥm + iΓL) |y〉 = |x〉 . (2.77)

We use the conjugate gradient method to evaluate state |y〉, which can be paral-
lelized for each ωin. Alternatively, one can employ the shifted conjugate gradient
method [141, 142] proposed in Ref. [2], which reuses the Krylov subspace spanned
for one specific ωin for finding |y〉 for other energies. However, by using Eq. 2.77 we
simplify Eq. 2.76 to

FRIXS(ωin, ωout) =
∑

f

∣∣∣〈f |T̂E|y〉
∣∣∣
2

δ(ωin + Eg − ωout − Ef ), (2.78)

which resembles Fermi’s golden rule, see Eq. 2.72. Here, we show a route alternative
to the one introduced in Sec. 2.7.1 to calculate Eq. 2.78. In principle, we are
searching for a subset of final states {〈f̃i|} which have a finite overlap 〈f̃i|z0〉 6= 0
with state |z0〉 = T̂E |y〉. One can use the Lanczos algorithm, see Appendix. A.1,
for calculating these overlaps by calculating the eigenstates of Ĥf and by adopting
|z0〉 as starting vector (seed state) of the Lanczos recursion formula, see Fig. 2.14.

Figure 2.14: Eigenvectors obtained with Lanczos with |z0〉 as starting vector.

The Lanczos algorithm creates a tridiagonal matrix Hf |{z} in an orthogonal
Krylov basis. By diagonalizing the matrix and calculating the eigenvectors we
obtain in the first row the elements with finite overlap with the seed state |z0〉, see
right panel of Fig. 2.14. Thus, the spectral function only incorporates the subset of
finite overlaps and reads

FRIXS(ωin, ωout) =
∑

i

∣∣∣〈f̃i|z0〉
∣∣∣
2

δ(ωin + Eg − ωout − Ei), (2.79)

where the overlap elements 〈f̃i|z0〉 contain all states which are reachable from the
initial state |n〉. Ei are the energies corresponding to the final states f̃i.
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2.7.3 Scattering Geometry

The scattering geometry of RIXS is shown in Fig. 2.15.

Figure 2.15: Scattering geometry of RIXS.

The orthogonal vectors x,y and z span the global coordinate system. The
scattering plane is spanned by the incident kin and emitted kout photon vectors. The
angle θi (φi) with i ∈ {in, out} is between the z-axis (x-axis) and the corresponding
photon vector ki. For the polarization of the photons we define a local coordinate
system. The transformation from the global to the local coordinate system reads



er

eθ

eφ




i

=



sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0




i



x

y

z


 , (2.80)

where (er)i points into the direction of the incident or emitted photon. The vec-
tors (eθ)i and (eφ)i are orthogonal to (er)i and span the polarization plane. The
polarization vector is defined within the polarization plane and reads

(ε)i = (cosαeθ + sinαeφ)i , (2.81)

where (α)i defines the polarization direction of the photon with respect to the
direction of (eθ)i. By inserting Eq. 2.80 in Eq. 2.81 we obtain an expression for the
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polarization in the global coordinate system



εx
εy
εz




i

=



cosα cos θ cosφ− sinα sinφ
cosα cos θ sinφ+ sinα cosφ

− cosα sin θ




i

. (2.82)

For RIXS we distinguish between two kinds of polarization which are defined by
the polarization of the incident photon. In the case of π-polarized (also called
depolarized) the polarization of the incident photon lies within the scattering plane,
whereas in σ-polarized (also called polarized) the polarization is orthogonal to the
scattering plane.

2.7.4 Transition Operator

The transition operator in core-level spectroscopies encodes the photoemission of a
core-electron or the excitation of a core-electron to a valence state and vica versa.
In terms of second quantization, the transition operator, describing an excitation
of a core electron to a valence state, reads

T̂D =
∑

ij

Tij d̂
†
i p̂j, (2.83)

where d̂†i (p̂j) is a creation (annihilation) operator of a valence (core) electron with
orbital and spin indices i and j. The transition operator for a deexcitation process
has the form of T̂E = T̂ †

D. In core-level photoemission spectroscopy the transition
operator reads

T̂D =
∑

i,j

Tij q̂
†
i p̂j, (2.84)

where p̂ annihilates a core electron and q̂† creates a free electron. The transition
operator is approximated as a dipole in weak field approximation, containing the
position operator r̂ of the orbitals and the polarization vector ε of the photon. [30].
The transition matrix elements Tij = 〈i|ε · r̂|j〉 can be expressed by renormalized

spherical harmonics Ck
q =

√
4π

2k+1
Ykq and by left-polarized εl = −

√
1
2
(εx − iεy),

right-polarized εr =
√

1
2
(εx + iεy) and z-polarized εz = εz photons

[ε · r̂] ∼ −
√

1

2
(εx − iεy)C

1
1 +

√
1

2
(εx + iεy)C

1
−1 + εzC

1
0 . (2.85)

Here, we did not consider the radial part of Tij = 〈i|r̂|j〉 because it is approximately
constant and scales the spectral intensity uniformly. The selection rules lead to
∆q = ±1 for left and right polarized light and ∆q = 0 for z polarized light. The
transition operator for either the incident or emitted photon in the global coordinate
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system reads

[ε · r̂] ∼−
√

1

2
(cosα cos θ − i sinα) e−iφC1

1

+

√
1

2
(cosα cos θ + i sinα) eiφC1

−1

− cosα sin θC1
0 ,

(2.86)

with the photon polarization angle α, the scattering angles θ and φ. Here we
inserted the polarization represented in the global coordinate system, see Eq. 2.82.

2.7.5 Configuration Interaction Scheme

The present configuration interaction (CI) scheme provides a convenient way to
construct an optimized basis set, consisting of many-body Slater determinants for
core-level spectroscopy calculations using the resolvent formalism. The CI scheme
excludes Slater determinants with small contributions to ground as well as excited
states reachable by X-ray excitations [1]. It is built as an expansion between the
hybridization to the bath and the impurity atom. The bath is filled up to the Fermi
energy EF with electrons and is empty above EF . Starting with the isolated-atom
limit, electron-hole pairs are created by applying the impurity-bath hybridization
term Ĥimp−host, see Eq. 2.30, subsequently. This scheme was introduced by Gunnar-
son and Schönhammer in their studies of XPS and XAS in Ce compounds [143] on
the basis of a 1

Nf
expansion for the Anderson impurity model. In the CI scheme for

the Anderson impurity model with discretized bath levels, the choice of the total
number of the electrons in the CI expansion plays an important role since it cannot
be changed in the recursive procedure for creating the electron-hole pairs [1]. In a
conventional CI implementation, e.g. in a cluster-model analysis, the total number
of electrons is chosen such that the number of the electrons on the impurity site
(with the filled bath up to EF) is equal to the one of the target transition metal in
formal valence (e.g., |d7〉 for RNiO3). If weakly coupled bath levels close to EF are
included, the ground state of the system does not depend on the total number of
electrons in the system. I.e. if a |d8〉 − |d9L〉 configuration represents the ground
state, where L denotes a hole in the valence bath, by choosing a different initial con-
figuration, e.g. |d7〉−|d8L〉−|d9L2〉, the ground state is contained in (|d8〉−|d9L〉)L
if the hole L on the right hand side is located at EF and almost decoupled from the
ground state configuration. But choosing a different initial configuration is compu-
tationally more demanding. However, this treatment is not always appropriate for
finding the true ground state of the Anderson impurity model with discretized bath
levels since the total number of electrons in the system determines the symmetry
of the wave functions in the Fock space expanded by the CI scheme.
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Figure 2.16: Schematic representation of basis construction in the CI scheme for a
3d system with 8 electrons in the 3d shell in the nominal valence. Starting from (a)
|d8〉 configuration, electronic configurations (b) |d9L1〉, (c) |d10L2〉, (d) |d8L1c′1〉, (e)
|d9L2c′1〉 and (f) |d8L2c′2〉 are constructed through the hybridization interaction [22].
Figure adapted from [21] with the permission of the author.

The CI scheme works as follows [21, 22, 143]: a state with
(
10
n

)
electron configu-

rations is denoted collectively as |dnLmc′l〉 with n electrons in the impurity valence
orbitals, m = 0 holes in the valence bath states and l = 0 electrons in the conduction
bath states. We successively apply the Hamiltonian onto the state and obtain con-
figurations with charge transfer from bath to impurity and vica versa, see Fig. 2.16.
In practice, we use up to m = 4 holes in the valence states and l = 2 electrons in
the conduction states and up to 30 discretized energy levels of the bath per spin
and orbital, 20 for the valence bands and 10 for conduction bands. We tested even
higher numbers of discretized levels which will be applied in future studies. The
number of configurations in each state rises exponentially with the number of holes
and electrons. The state in its full CI basis can be written as a superposition of the
generated basis configurations [21, 22]

|n〉 = a0 |dn〉+ a1 |dn+1L〉+ a2 |dn+2L2〉+ a3 |dn−1c1〉+ a4 |dnLc1〉 . . . , (2.87)
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with weights ai. If there is a core-hole, e.g. in the final states |f〉 of XAS, the
procedure works similarly

|fXAS〉 = c0 |pdn+1〉+ c1 |pdn+2L〉+ c2 |pdnc1〉+ c3 |pdn+1Lc1〉 . . . , (2.88)

where ci are the weights and p denotes a hole in the core-level states.

2.7.6 Numerical Many-Body Basis

Here we provide a short introduction of the numerical treatment of fermionic states
and their numerical manipulation with operators. The commutation relations for
fermionic operators read

{ai, a†j} = δij (2.89)

{a†i , a†j} = {ai, aj} = 0, (2.90)

where ai and a†i are electron annihilation and creation operators, respectively. Dur-
ing the procedure of creating basis states, the order of the operators must be kept
consistent. For the first orbital we use the starting index i = 0 and an ascending
order of the operators from right to left. By adding an electron into the vacuum on
orbital 3 one applies the creation operator onto the vacuum state

c†3 |vac〉 = |1000〉 . (2.91)

By creating an additional electron in orbital 1 we sort the creation operators into
the predefined order by using the anti-commutation relation of Eq. 2.90

c†1 |1000〉 = c†1c
†
3 |vac〉 = −c†3c

†
1 = − |1010〉 , (2.92)

where we obtain a negative phase factor due to the anti-commutation rules of
fermionic operators. In our ordering scheme, the phase is determined by the number
of electrons existing in orbitals on the left of the actual orbital. An even number
of electrons on the left provides a positive phase factor, whereas an odd number of
electrons on the left results in a negative phase factor. To store this information ef-
ficiently we use binary2 numbers for the Dirac representation, which we convert into
an integer form. Tab. 2.1 shows configurations in Dirac and integer representation.
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Particle Number Dirac Integer

1

|0001〉 1
|0010〉 2
|0100〉 4
|1000〉 8

2

|0011〉 3
|0101〉 5
|0110〉 6
|1001〉 9
|1010〉 10
|1100〉 12

3

|0111〉 7
|1011〉 11
|1101〉 13
|1110〉 14

4 |1111〉 15

Table 2.1: Basis configurations in Dirac (binary2) and integer notation.

Now, let us assume we have a given configuration of the TM 3d states (we ignore
spin for the moment), where we want to calculate the number of particles in this
configuration

|11001〉 =̂ 25. (2.93)

In this example, the particle number is easy to determine, but in practice there
are configurations with ∼ 103 particles, e.g. the bath states of the Anderson im-
purity model. Our spectroscopy code is written in FORTRAN. Thus, we use the
command ‘IBITS(I,POS,LEN)’ to calculate the particle number of a given configu-
ration. ‘IBITS’ takes an integer number ‘I’, converts it into binary form and creates
a new integer with only the binaries of ‘I’ which are on the left of ‘POS’ with length
‘LEN’.

Algorithm 1 Particle Number

1: N = 0;
2: phase(0:5);
3: do j=0,4
4: N = N + IBITS(25,j,1)
5: phase(j+1)=phase(j)+IBITS(25,j,1)
6: end do

Alg. 1 counts the number of electrons ‘N’ in the configuration |11001〉. We set
‘LEN=1’ in ‘IBITS’ to monitor the current bit (occupation) by looping through
each binary digit (orbital) of the configuration 25. Additionally, we created an
array ‘phase’ which provides the number of electrons on the left of each orbital. The
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output of ‘phase’ for configuration |11001〉 is [0, 1, 1, 1, 2, 3], where two electrons are
on the left of orbital 0. Now we can create full basis configurations for the TM 3d
orbitals including spin. There are 210 = 1024 possible configurations if we do not
restrict the particle number in the TM 3d orbitals. The following example, shown
in Alg. 2, treats up and down spin separately. We restrict ourselves to all possible
configurations with ‘nprtcl=7’ electrons in the TM 3d orbitals, which reduces the
basis size to

(
10
7

)
= 120 configurations.

Algorithm 2 Basis Creation

1: nbit(0:1023)=(/(SUM(IBITS(j,POS(0:9),1)),j=0,1023)/)
2: mref = 2**5-1; shift=5; nprtcl = 7
3: n0=0
4: DO jd=0,mref
5: DO ju=0,mref
6: IF( nbit(ju)+nbit(jd) /= nprtcl ) CYCLE
7: n0 = n0+1
8: Shell_Conf(n0) = ju + ISHFT(jd,shift)
9: END DO

10: END DO
11: Shell_Dim=n0

The array ‘nbit’ provides the number of electrons for each of the 210 possible
configurations. Here, we use the first 512 entries because we split up the spin con-
figurations. The variable ‘mref’ provides the number of total configurations for each
spin. Two loops, corresponding to both spins, iterate through each configuration,
where ‘jd’ (‘ju’) denotes down (up) spin. The ‘IF’ statement monitors the particle
number of each configuration allowing only configurations with ‘nprtcl=7’. The
variable ‘n0’ counts the number of valid configurations. We use ‘ISHFT(I,SHIFT)’
to convert the integer into binary (Dirac) form and adding ‘SHIFT’ zeros on the right
of the binary form of ‘I’. I.e. we assume an up spin configuration ju = 15 =̂ |01111〉
and a down spin configuration jd = 11 =̂ |01011〉. ‘ISHIFT’ manipulates the down
spin configuration

ISHIFT(jd, 5) = 352 =̂ |0101100000〉 . (2.94)

By adding the shifted down-spin configuration 352 with the up-spin configuration 15
we obtain Shell_Conf = 367 =̂ |0101111110〉. This TM 3d configuration contains
seven electrons. In Alg. 2 we store all Shell_Dim = 120 configurations as integers
into the array ‘Shell_Conf’ which provides a fast and memory friendly basis set.
Here we note, that for further purposes one should create an additional array with
the position of each configuration in ‘Shell_Conf’. This is useful for the evaluation
of matrix elements 〈Shell_Conf|Ĥ|Shell_Conf〉 6= 0, where Ĥ manipulates config-
urations in |Shell_Conf〉 with creation and annihilation operators. By using the
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additional array with the position of each configuration we know the position of the
new configuration in 〈Shell_Conf|.

The creation and annihilation operators of Ĥ can also be written in binary and
thus integer form. The annihilation operator for an electron in orbital 3 reads

c3 =̂ 010002 = 8. (2.95)

By applying this annihilation operator onto configuration |11001〉 we initially have
to verify the existence of an electron in orbital 3 with the FORTRAN command
‘IAND(I,J)’. ‘IAND’ compares two integers ‘I’ and ‘J’ bit-wise and provides an inte-
ger with bits equal to one as output if they coincide in ‘I’ and ‘J’, e.g. IAND(8, 25) =
IAND(010002, 110012) = 8 = 010002. By combining ‘IBITS’ and ‘IAND’ we obtain
a small routine which monitors the existence of an electron in a given orbital, e.g.

for configuration 25 at position 3: IBITS(IAND(8, 25), 3, 1)
!
= 1. The annihilation

is obtained by the exclusive-or command ‘IEOR(I,J)’, where ‘I=8’ denotes the an-
nihilation operator and ‘J=25’ the configuration in integer form. In our example we
obtain for the annihilation IEOR(8, 25) = 17 =̂ |10001〉, where we did not consider
the phase factor

c3 |11001〉 = − |10001〉 . (2.96)

However, the phase factor is stored in the array ‘phase’ with one electron on the
left of orbital 3, resulting in a negative sign. The creation operators are described
similarly to the annihilation operators. The creation operator for an electron in
orbital 2 reads

c†2 = 001002 = 4. (2.97)

By letting c†2 act on configuration |10011〉, we obtain

c†2 |10011〉 = − |10111〉 , (2.98)

where the condition for the creation is similar to the condition of the annihilation
process with IBITS(IAND(4, 19), 2, 1)

!
= 0. The creation of an electron is achieved

by IEOR(4, 19) = 23 =̂ |10111〉 with consideration of the negative phase factor
stored in array ‘phase’.

2.8 Workflow

Here, we elucidate the workflow of our core-level spectroscopy approach, which is
based on the Anderson impurity model extended by core orbitals and a hybridization
function obtained by first principle calculations, see Fig. 2.17.
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Figure 2.17: Workflow of our core-level spectroscopy approach based on the Ander-
son impurity model description. Figure adapted from [22].

We start our core-level X-ray studies with the crystal structure of the compound.
We use WIEN2k [126] to calculate the electron density of the system. The choice of
the exchange and correlation potential Exc[n(r)] used in DFT is usually not critical
for our calculations. Hence, we apply the standard LDA potential. We note, that
we perform paramagnetic DFT calculations without active spin-orbit coupling for
most materials. The spin-orbit coupling as well as the possible antiferromagnetic
ordering can be added in the DMFT calculations later on.

We use the Bloch functions from a converged DFT solution and construct Wan-
nier functions with the WANNIER90 [130] package and the WIEN2WANNIER [131]
interface, which are both included in WIEN2k [126]. For the Wannierization we use
a set of local basis functions to create maximally localized Wannier functions. If
bands are entangled, we apply disentanglement in a proper energy window. Then
we construct the lattice model with local interaction Udd. The spin-orbit coupling
and the Coulomb interaction are calculated with an atomic Hartree-Fock code by
Cowan [121]. The Coulomb interaction of the TM 3d shells, is parameterized by
the Slater integrals F0, F2 and F4. We fix the ratio F4/F2 = 0.625, that enables
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2.8. WORKFLOW 61

us to determine the Coulomb vertices Uκλµν using Hubbard U = F0 and Hund’s
J = (F2 + F4)/14 parameters [115].

To obtain the electronic structure of the lattice model we use DMFT. We know
the formal valence of the TM ion in the compound and thus, we can roughly de-
termine the charge-transfer energy. The charge-transfer energy ∆CT is related to
the double-counting energy µdc, see Eq. 2.71. Thus, we scan µdc within a narrow
energy window of a few eV. The µdc is fixed by comparison of the valence spectra
to experimental (inverse) photoemission spectra. In the antiferromagnetic order,

the self-energy obeys the condition Σ̃
A

σ (iωn) = Σ̃
B

−σ(iωn) for atom A and B in the
magnetic unit cell. Furthermore, we apply a magnetic field in the first few iter-
ations of antiferromagnetic DMFT calculations. The paramagnetic phase usually
contains just one TM ion in the unit cell and can be enforced with the condition
Σ̃σ(iωn) = Σ̃−σ(iωn), by using the same self-energy for both spins. We apply the
strong coupling continuous-time quantum Monte Carlo method [136–138, 144] with
density-density approximation to the Coulomb vertices to compute the self-energy
of the auxiliary Anderson impurity model. After convergence of the DMFT cycle we
analytically continue the self-energy with the maximum entropy method [139, 140]
in order to obtain the hybridization function ∆(ε) in the real-frequency domain.
Then we discretize the hybridization function and use it to construct an Anderson
impurity model extended by core-orbitals. Usually we use between 25 and 30 energy
levels per orbital and spin.

For the core-level spectroscopy studies we apply the same spin-orbit and Coulomb
parameters for the TM 3d interaction as in the lattice model. The parameters of the
radial parts of the Coulomb interaction, including higher-order Slater integrals, are
discussed in Sec. 2.2.3. To calculate the spectral functions we perform exact diago-
nalization. For RIXS spectral functions we calculate the propagation of the initial
states by the resolvent (ωin+En−ĤAIM+ iΓ)−1T̂i|n〉 with active core-hole. The nu-
merical propagation is achieved by using the conjugate-gradient-based method [2].
We calculate the core-level spectra for different charge-transfer energies (= different
double-counting energies) and compare them to experimental spectra if available.
In case of uncertainties we additionally scan the Coulomb interaction parameters
Udd and Upd.
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Chapter 3

1s and 2p X-ray Photoemission

Spectroscopy of Correlated Materials

We study 1s and 2p hard X-ray photoemssion spectra (XPS) in series of late tran-
sition metal oxides, where we have chosen compounds with different initial config-
urations in the ground state; starting with 3d5 for Fe2O3, 3d6 for FeTiO3, 3d7 for
CoO and 3d8 for NiO. The different initial state configurations enable us to test the
theoretical modelling of XPS with the Anderson impurity model approach compre-
hensively. We show, that 1s hard X-ray photoemission is a sensitive probe of the
chemical bondings and non-local charge-transfer screening. The calculated spectra
well agree with the experimental ones. This chapter is based on

[4] "Charge transfer effect in hard X-ray 1s and 2p photoemission
spectra: LDA+DMFT and cluster-model analysis"
M. Ghiasi, A. Hariki, M. Winder, J. Kuneš, A. Regoutz, T.-L. Lee, Y. Hu,
J.-P. Rueff, and F. M. F. de Groot
Phys. Rev. B 100, 075146 (2019).

Extended text passages which are directly adopted from the publication are marked
with a black bar.

3.1 Introduction

We compare the cluster model with the Anderson impurity model approach, where
we use the hybridization function obtained by first principle calculations. Thus,
we are able to distinguish the local and non-local screening contributions observed
in the 1s and 2p spectra. The 2p spectra are a popular choice for the study of 3d
transition-metal oxides. We demonstrate that the disentanglement of the local and
non-local screening contributions in the 2p spectra is a complex task due to rich core-
valence multiplets. I.e. the charge-transfer features in 2p XPS are buried in complex
spectra reflecting the 2p–3d core-valence multiplets and spin-orbit coupling in the
2p shell. These effects are absent in the 1s XPS spectra. We use the 1s spectra,
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where the asymmetric shape of the 1s XPS main line is found to be a fingerprint of
non-local screening effects. In practice, little additional effort is required to measure
1s XPS together with valence or other core-level spectra. Despite the large life-time
broadening, the absence of the core-valence multiplets and spin-orbit coupling allows
1s XPS to be used to identify charge-transfer satellites at higher binding energies.
This enables an accurate estimation of material-specific parameters [42, 145]. We
note, that there is a 1s–3d exchange interaction, but the interaction strength is
only a few meV. Thus, this effect is not visible in the spectral shape. The accuracy
of the ab-initio calculated material-specific parameters is examined by comparison
with the present experimental 1s XPS data.

3.2 Computational Details

The experimental spectra are obtained at room temperature. We enlarge the unit
cell of NiO, CoO and Fe2O3 for DMFT calculations to simulate the antiferromag-
netic ordering observed experimentally below T ≈ 300 K.

We used the following computational parameters for both, the cluster model
and the LDA+DMFT approach: the Coulomb interaction of the 3d electrons
Udd; the core-valence Coulomb interactions Usd (Upd) in the 1s (2p) XPS; Slater
integrals representing the multipole part of the Coulomb interaction; one-particle
hopping parameters; crystal-field splitting; and charge-transfer energy ∆CT. The
Udd value is fixed by consulting with DFT-based estimates or previous XPS stud-
ies, as given in Table 3.1. The core-hole potential Usd (Upd) is fixed by fitting the
experimental core-level spectra. Based on experimental observations, we use the
same value for Usd and Upd. The multipole part of the core-valence interaction is
determined by the Slater integrals Fk and Gk, see Eq. B.17 and Eq. B.18. The
spin-orbit coupling in the 2p and 3d shell, and the Slater integrals Fk, Gk are
calculated with an atomic Hartree-Fock code. The Fk and Gk values are scaled
down to 80% of the Hartree-Fock values to simulate the effect of intra-atomic
configuration interaction from higher basis configurations, which is a successful
empirical treatment [50, 78, 121, 122, 146].

The one-particle hopping and the crystal-field parameters are obtained from
the LDA bands. The double-counting correction µdc in LDA+DMFT is treated
as an adjustable parameter and fixed by comparison to the valence photoemission
spectra [31]. For FeTiO3, µdc is determined to reproduce the experimental gap
(≈ 2.5 eV) [147] since valence photoemission data are not reported so far. The
computed XPS intensities are broadened using Gaussian function to simulate the
instrumental resolution and the finite core-hole life time.
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3.3. NI 1S AND NI 2P XPS OF NIO 65

Fe2O3 FeTiO3 CoO NiO
Fe3+ (d5) Fe2+ (d6) Co2+ (d7) Ni2+ (d8)

10Dq 0.5 0.25 0.25 0.45
∆ 3.7 3.5 4.1 4.4
Usd (Upd) 8.4 8.0 8.6 7.8
Udd 6.4 6.4 6.8 6.5
VT2g

1.3 1.3 1.2 1.2
VEg

2.5 2.1 2.0 2.1
Γ1s 0.7 1.1 0.9 0.9
Γ2p 0.5 0.5 0.4 0.4

Table 3.1: Summary of the parameter values in the present study: crystal-field
splitting between Eg and T2g states (10Dq), charge-transfer energy (∆CT), core-
hole potential for 1s (Usd) and 2p (Upd) XPS, 3d Coulomb interaction (Udd), hopping
amplitude of the nearest-neighboring ligand states and transition metal Eg (VEg

)
and T2g (VT2g

) state. Γ1s and Γ2p are the Gaussian broadening (half width at half
maximum) included in theoretical 1s and 2p spectra, respectively. In Fe2O3 and
FeTiO3, the triply-degenerate T2g states split into double-degenerate Egπ states and
single A1g state. The values of the T2g state in the table are obtained by averaging
over the ones of the Egπ and A1g states. In actual calculation, the splitting of the
Egπ and A1g states is taken into account explicitly. All values are in eV. Table and
caption taken from [4].

3.3 Ni 1s and Ni 2p X-ray Photoemission Spec-

troscopy of NiO

Figure 3.1 shows Ni 1s and 2p XPS spectra of NiO, together with the cal-
culated spectra obtained by the cluster model and the LDA+DMFT approach.
The 1s main line around 8311 eV corresponds to cd9v configuration, where c and
v denote a 1s core-hole and a hole in the valence band, respectively. In addition,
the charge-transfer satellite with a mixed character of cd8 and cd10v2 configu-
rations is clearly observable around 8318 eV. The Ni 1s XPS spectrum is free
from spin-orbit coupling in the core level, while the 2p spectrum is composed
of 2p3/2 (≈ 868 − 853 eV) and 2p1/2 (≈ 885 − 870 eV) components. Since the
spin-orbit coupling in the Ni 2p core level is large (≈ 11 eV), the Ni 2p3/2 and
2p1/2 components have no overlap. The 2p3/2 (2p1/2) main line is located around
854 eV (873 eV) and the 2p3/2 (2p1/2) charge-transfer satellite is observed around
861 eV (878 eV).
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Experiment

LDA+DMFT

Cluster 

Figure 3.1: Experimental Ni 1s and 2p XPS spectra of NiO (black) are compared
with LDA+DMFT in the antiferromagnetic phase (black, solid) and cluster-model
(red, solid) calculations. The Gaussian spectral broadening of 0.7 (0.5) eV (HWHM)
is taken into account in the calculated 1s (2p) spectra. The experimental Ni 2p XPS
data is taken from Ref. [32]. The fitting result (red, dashed) using Voigt functions
(black, dashed) for the 1s data is shown together. Figure and caption taken from [4].

The splittings of the main line and the charge-transfer satellite in the Ni 1s
and 2p spectra are almost identical to each other (≈ 6 eV), indicating the values
of the core-hole potential Usd and Upd are comparable. Indeed, the LDA+DMFT
calculation with Usd = Upd = 7.8 eV reproduces the splitting of the main and
charge-transfer satellite well, in both the 1s and 2p XPS spectra. A double-peak
feature is observed in the 2p3/2 main line. The lower (higher) binding-energy
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3.3. NI 1S AND NI 2P XPS OF NIO 67

EB side of the double peaks is due to the non-local (local) screening in the final
states [31, 32, 39]. The LDA+DMFT result qualitatively reproduces the Ni 2p
XPS data including the double-peak lacked in the cluster-model result. We find
that a double peak is discernible in the 1s main line despite the larger core-hole
broadening. The similarity to the 2p3/2 main line and its presence/absence in the
LDA+DMFT/cluster-model spectra suggests its non-local screening origin. In
addition, the charge-transfer satellite shows a noticeable difference in the cluster
and LDA+DMFT results, indicating the non-local screening affects not only the
main line but also the satellite with a higher binding energy. This is because
the charge-transfer satellite has a contribution of the cd10v2 configuration, the
so-called over-screened states, in which the non-local screening takes part.

3.3.1 Hybridization Dependence

We study the hybridization dependence of the Ni 1s core-level spectra, where we
systematically extend the hopping between impurity and its neighbors. This pro-
vides us a detailed study of the non-local screening effects observed in the core-level
XPS spectra.

In contrast to the real-space approach of the multi-site cluster model [33],
LDA+DMFT includes both local-screening and non-local screening effects in the
hybridization function ∆γ(ε) of the Anderson impurity model, see Eq. 2.31, where
γ denotes orbital and spin. To see the connection between this description and
the real-space one, Fig. 3.2a shows the distance dependence of the hybridiza-

tion intensity Vγ(ε) =
√
− 1

π
ℑ∆γ(ε) in NiO. Starting from a single peak in the

Vγ(ε) of the cluster model, which corresponds to the hybridization with nearest-
neighboring oxygen atoms, Vγ(ε) acquires a band character by taking more dis-
tant atoms into account. We note that the truncated Vγ(ε) in panels (I)-(IV)
and (V) is computed in non-interacting finite-size clusters and infinite lattice,
respectively. The intensities around −2 to 2 eV correspond to the hybridization
with Ni 3d bands. These intensities are rather weak compared to those arising
from O 2p bands (≈ −4 eV) due to a smaller amplitude of direct metal-metal
hopping as well as indirect hopping, e.g., via a metal-ligand-metal path. The
electronic correlation represented by the DMFT self-energy, see Eq. 2.66, mod-
ifies the V (ε) dramatically and a gap opens at the Fermi energy. Figure 3.2b
shows the calculated 1s XPS spectra by the Anderson impurity model with the
truncated hybridization intensities Vγ(ε). By taking surrounding Ni ions into
account, a new peak develops in the low-binding-energy side of the main line.
This accompanies a noticeable shift of the local-screening peak (≈ 8312 eV) be-
cause of the following reason. In the cluster model, the main line is composed
of mainly cd9L configuration. By including the charge transfer from surrounding
Ni ions, cd9D configuration contributes the main line (here, D denotes a hole
on the neighbor Ni ion). In the impurity picture, though there is no coupling
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between cd9L and cd9D configurations, indirect coupling via (unscreened) cd8

configuration (i.e. cd9L ↔ cd8 ↔ cd9D) gives rise to effective repulsion between
the two screened configurations. However, we find a qualitative difference in the
main-line shape between the experimental data and the spectra in (I)-(V). The
LDA+DMFT result in the paramagnetic phase, see (VI), shows double peaks
in the main line although their splitting is narrow. The LDA+DMFT result in
the antiferromagnetic phase, see Fig. 3.1b, reproduces the double-peak feature
qualitatively. The Vγ(ε) in LDA, in principle, includes hybridization with all va-
lence states in the non-interacting lattice, indicating the importance to include
the correlated Ni 3d band and the magnetic ordering properly to describe the
XPS spectra.

(a) VEg(ε) (b) Ni 1s XPS

(I)

(II)

(III)

(Ⅳ)

(Ⅴ)

(Ⅵ)

(I)

(II)

(III)

(Ⅳ)

(Ⅴ)

(Ⅵ)

Experiment

Energy (eV)

H
y
b

ri
d

iz
a

ti
o

n
 i
n

te
n

s
it
y

Figure 3.2: (a) Hybridization intensities for the Eg state in NiO. From top to
bottom, the long-distance hoppings including the atom denoted in the bracket are
taken into account. VEg

(ε) in panels (I)-(IV) and (V) are computed in the non-
interacting finite-size clusters and infinite lattice, respectively. The VEg

(ε) obtained
in the LDA+DMFT calculation for the paramagnetic phase is shown in panel (VI),
for comparison. The VEg

(ε) for the antiferromagnetic phase is found in Ref. [31].
(b) Ni 1s XPS calculated by the Anderson impurity model with the hybridization
intensities in Fig. (a). Figure and caption taken from [4].
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3.4. CO 1S AND CO 2P XPS OF COO 69

3.4 Co 1s and Co 2p X-ray Photoemission Spec-

troscopy of CoO

Figure 3.3 shows Co 1s and 2p XPS spectra of CoO, together with the calcu-
lated spectra of the cluster model and the LDA+DMFT approach.

Experiment

LDA+DMFT

Cluster 

Figure 3.3: Experimental Co 1s and 2p XPS spectra of CoO (black) are compared
with LDA+DMFT (black, solid) and cluster-model (red, solid) calculations. The
Gaussian spectral broadening of 1.1 (0.5) eV (HWHM) is taken into account in the
calculated 1s (2p) spectra. The fitting result (red, dashed) using Voigt functions
(black, dashed) for the 1s data is shown together. Figure and caption taken from
[4].
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70 CHAPTER 3. 1S AND 2P XPS OF CORRELATED MATERIALS

The Co 1s XPS, see Fig. 3.3a, shows the main line (≈ 7647 eV) corresponding
to cd8v configuration and the charge-transfer satellite (≈ 7653 eV). In the 2p
spectra, 2p3/2 (2p1/2) component is located in 794 − 778 eV (807 − 795 eV),
in which the main line and satellite are observed around 780 eV (796 eV) and
787 eV (803 eV), respectively. The splitting of the main line and the charge-
transfer satellite in the 1s and 2p spectra is almost identical (≈ 6 eV). The 1s
main line has an asymmetric shape with a shoulder on the higher binding energy
EB side. Because of the absence of the core-valence multiplets in Co 1s spectra,
the Co 1s main line is expected to be a single peak. Indeed, the cluster-model
calculation yields a symmetric main line. On the other hand, the LDA+DMFT
spectrum contains an asymmetric main line, suggesting the non-local screening
is the origin of the asymmetry of the main line. Then, in Co 2p spectra, we find
the 2p3/2 main line is rather broad, in a clear contrast to the Ni 2p3/2 main line of
NiO. The LDA+DMFT result well reproduces the broad shape of the main line
as well as of the charge-transfer satellite, compared to the cluster-model result.
The difference between the LDA+DMFT and cluster-model results suggests that
the non-local screening from Co 3d bands plays a role in the formation of the
broad asymmetric main line [31]. However, the Co 2p3/2 main line in the cluster-
model result has inner features due to rich 2p-3d core-valence multiplets in the
cd8v1 configuration. Thus a theoretical simulation is required to disentangle the
local screening and non-local screening contributions in the Co 2p spectra [31].

3.5 Fe 1s and Fe 2p X-ray Photoemission Spec-

troscopy of Fe2O3

Figure 3.4 shows Fe 1s and 2p XPS spectra, together with the calculated
spectra by LDA+DMFT and cluster model. The Fe 1s spectrum shows three
peaks: main line (≈ 7118.5 eV), the first satellite (S1 : ≈ 7128 eV) and the
second satellite (S2 : ≈ 7135 eV). The energy splittings of the main line and
satellites are rather large (≈ 9.5 eV for S1 and ≈ 17 eV for S2) compared to
those in NiO and CoO (≈ 6 eV). The large splitting in Fe2O3 can be explained
by the value of the effective hybridization Veff [30, 148, 149],

Veff =
√

(4−NEg
)V 2

Eg
+ (6−NT2g

)V 2
T2g

,

where NEg
(NT2g

) and VEg
(VT2g

) are the occupation of the Eg (T2g) states and
the (bare) hybridization intensity between ligand and the Eg (T2g) orbitals. For
simplicity, octahedral symmetry is assumed and the effect of long-distance hop-
ping (non-local screening) is not taken into account in the qualitative discussion.
The Veff values in NiO, CoO and Fe2O3, computed for high-spin ground state
in formal valence, are 2.97, 3.24, and 4.19 eV, respectively. Thus the different
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3.5. FE 1S AND FE 2P XPS OF COO 71

configurations (dn, dn+1L, dn+2L2, here L denotes a hole in nearest-neighbor lig-
ands) are split more in Fe2O3 as compared to NiO and CoO, yielding the large
separations of the main line and satellites in Fe 1s XPS. Thus in Fe and ear-
lier transition-metal oxides [117, 148, 149], the hybridization strength between
transition metal 3d and surrounding atoms can be estimated accurately by the
satellite positions since the large Veff magnifies its bare value.

Experiment

LDA+DMFT

Cluster 

S1
S2

M2
M1

Figure 3.4: Experimental Fe 1s and 2p XPS spectra of Fe2O3 (black) are compared
with LDA+DMFT (black, solid) and cluster-model (red, solid) calculations. The
spectral broadening using a Gaussian of 0.9 (0.4) eV width (HWHM) is taken into
account in the calculated 1s (2p) spectra. The experimental data of Fe 2p XPS is
taken from Ref. [42]. In the 1s spectra, the first and second satellites are labeled
as S1 and S2 in Fig. 3.4a, respectively. The fitting result (red, dashed) using Voigt
functions (black, dashed) for the 1s data is shown together. Figure and caption
taken from [4].
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Both the LDA+DMFT and the cluster-model calculations reproduce the po-
sitions of the satellites reasonably well, reflecting the accuracy of hopping pa-
rameters obtained from the LDA calculation. However, in the Fe 2p spectrum,
Fig. 3.4b, the second satellite S2 is not visible due to its overlap with the main
line of the Fe 2p1/2 component (≈ 725 eV). Thus, thanks to the absence of spin-
orbit coupling, 1s XPS complements the 2p XPS information about bonding.
The Fe 2p3/2 main line shows a double-peak shape, marked as M1 and M2 in the
figure, that is well reproduced in the LDA+DMFT result. The difference in the
LDA+DMFT and cluster-model results is attributed to the contribution of the
non-local screening, the M2 intensity is enhanced relative to the M1 one. How-
ever, as seen in the cluster-model spectrum, Fig. 3.4b, the main line has a rich fine
structure also due to the core-valence Coulomb multiplets, which makes determi-
nation of the non-local screening contribution a difficult task. On the contrary,
the asymmetry of the Fe 1s XPS main line, observed in the experiment, Fig 3.4a,
is solely due to non-local screening. As in CoO, the 1s main line of the cluster
model consists of a single peak due to the absence of the core-valence multiplets,
while that of the LDA+DMFT shows a clear asymmetry. Thus the shape of the
1s XPS main line provides an unambiguous signature of the non-local screening,
while it is hidden in the complex structure of 2p XPS.

3.6 Fe 1s and Fe 2p X-ray Photoemission Spec-

troscopy of FeTiO3

Figure 3.5 shows the experimental Fe 1s and 2p XPS spectra. In the Fe 1s
spectrum, we observe a main line (≈ 7090 eV) and a charge-transfer satellite
(S1 : ≈ 7097 eV). The energy splitting between the charge-transfer satellite (S1)
and main line is 7 eV which is about 2.5 eV smaller compared to that in Fe2O3,
see Fig. 3.4a. As found in Table. 3.1, the hopping amplitude between Fe and
nearest-neighboring oxygen as well as other parameters does not differ so much
in the two compounds. The large difference in the main-line – charge-transfer-
satellite splitting comes from the value of the Veff , 4.19 eV for Fe2O3 and 3.49 eV
for FeTiO3 . The Veff value in the divalent Fe system (d6) is smaller than that in
the trivalent Fe system (d5) due to an additional electron in the T2g orbital in the
high-spin ground state, resulting in the observed smaller main-satellite splitting
in FeTiO3. In FeTiO3, a higher-EB charge-transfer satellite (S2) is rather weak
and not observed in the present data, which is due to little contribution of the
|d8v2〉 configuration to the ground state. The position of S1 and the absence of
S2 are well reproduced in the LDA+DMFT calculation.
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3.6. FE 1S AND FE 2P XPS OF FETIO3 73

Experiment

LDA+DMFT

Cluster 

S1

M2

M1

Figure 3.5: Experimental Fe 1s and 2p XPS spectra of FeTiO3 (black) are compared
with LDA+DMFT (black, solid) and cluster-model (red, solid) calculations. The
spectral broadening using a Gaussian of 1.1 (0.4) eV width (HWHM) is taken into
account in the calculated 1s (2p) spectra. The fitting result (red, dashed) using
Voigt functions (black, dashed) for the 1s data is shown together. Figure and
caption taken from [4].

We expect that the non-local screening plays a minor role in FeTiO3 compared
to Fe2O3 since Ti ions, formally tetravalent d0 configuration, cannot provide
electrons to screen the X-ray excited Fe ion. Simulation of the Fe 2p XPS of
Fe2O3, Fig. 3.4b, revealed that non-local screening amplifies the intensity of M2
relative to M1. This is confirmed by comparing the experimental data of Fe2O3

and FeTiO3. In FeTiO3, Fig. 3.5b with weaker non-local screening, a smaller ratio
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of M2 to M1 intensities than in Fe2O3 is observed. Indeed, the LDA+DMFT
spectra of FeTiO3 do not differ much from the cluster-model calculation, though
the relative intensity of M1 and M2 is still noticeably modified by non-local
screening. The main line of Fe 1s XPS in FeTiO3 is rather sharp compared to
that in Fe2O3, see the fitting analysis in Fig 3.5 and 3.4, indicating less non-
local screening contribution. The intensity ratio of the low-energy peak (I1) to
the high-energy peak (I2) in the main line is I1/I2 = 3.92, 4.38 for Fe2O3 and
FeTiO3, respectively. The smaller I1/I2 for Fe2O3 supports that the non-local
screening is more effective in Fe2O3.

3.7 Conclusions

All spectral features in the studied compounds are well reproduced by the
LDA+DMFT Anderson impurity model approach. This is not so for the cluster
model approach. The comparison of the approaches provides information about
the non-local screening effects. Despite rather large life-time broadening of the
1s spectra compared with the 2p counterparts, the charge-transfer satellites are
clearly visible for the studied compounds. This holds also for charge-transfer
satellites at higher binding energies, which are not obscured by the overlap
of spin-orbit split edges as in the 2p spectra. Usually, the 1s charge-transfer
satellites are well pronounced in the spectra of correlated insulators. Thus, they
provide information about covalent bonding in these compounds. The absence
of the core-valence multiplets in 1s XPS directly reveals the effect of non-local
screening reflected in the asymmetry of the 1s main line. The shape of the
1s XPS spectra has implications for the interpretation of 1s (K-edge) X-ray
absorption spectroscopy (XAS). In K-edge XAS, the electron excited from the
1s core-level to the broad 4p band is not bound to the excited transition-metal
atom. The fact, that the 1s XPS spectra have multiple peaks implies that one
X-ray photon energy creates a series of electrons with different kinetic energies.
This is in contrast to the usual way to calculate K-edge XAS, i.e. it is assumed
that the X-ray photon creates a single electron kinetic energy. To take the
spectral shape of the 1s XPS spectra into account, the K-edge XAS spectra
must be viewed as a convolution of the empty 4p density of states (as calculated
from for example multiple scattering) and the 1s XPS spectrum. In other words,
the detailed understanding of the K-edge XAS spectral shape requires the
inclusion of many-body response to the core-hole potential as measured with the
1s XPS spectral shape, where we note that this approach is similar in concept
to the charge-transfer satellite method as applied earlier [150–152]. If the 1s
XPS spectral shape can be described by a single peak, the related K-edge XAS
can be described from the multiple scattering of a single electron energy [153],
As shown here, charge-transfer satellites present a sizable contribution to the 1s
XPS of late transition-metal oxides. Therefore a simultaneous analysis 1s XPS
and 1s XAS is desirable for the detailed understanding of the 1s XAS spectral
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shape.

We have studied both experimentally and theoretically the 1s and 2p hard
X-ray photoemission spectra in a series of late transition metal oxides: Fe2O3,
FeTiO3, CoO and NiO. Despite the large core-hole life-time broadening, the 1s
XPS benefits from the absence of core-valence multiplets and spin-orbit coupling
effects in the spectra, which allows observation of high-energy satellites as well
as the main-line asymmetry. These 1s XPS features can be interpreted in terms
of material specific metal-ligand covalency (satellites) and non-local screening
(main-line asymmetry). The 1p XPS is thus complementary to 2p XPS that has
more complex spectra. Using LDA+DMFT approach we were able to reproduce
the 1s and 2p XPS spectra of the studied materials, while the deviations from
the cluster model allowed us to quantify the role of non-local screening. Based on
the present 1s XPS results, we have pointed out the importance of the 1s XPS
to interpret the 1s (K-edge) X-ray absorption spectra.
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Chapter 4

L3-Edge X-ray Absorption

Spectroscopy and Resonant Inelastic

X-ray Scattering of Correlated

Materials

We present a computational L3-edge X-ray absorption spectroscopy (XAS) and
resonant inelastic X-ray scattering (RIXS) study of selected 3d transition-metal
oxides. We have chosen the same compounds as in the previous X-ray photoemission
spectroscopy study and included a few additional materials; NiO (3d8), cuprates
(3d8), cobaltites (3d7 and 3d6) as well as Fe2O3 (3d5). Part of the study is the origin
of the fluorescence-like (FL) feature, due to unbound electron-hole pair excitations
and observed in the RIXS spectra of some of the compounds. There is a good
agreement between calculated and experimental spectra. This chapter is based on

[2] "LDA+DMFT approach to resonant inelastic X-ray scattering
in correlated materials1"
A. Hariki, M. Winder, T. Uozumi, and J. Kuneš
Phys. Rev. B 101, 115130 (2020),

with the exception of the L3-edge XAS and RIXS study of cuprates which is based
on

[5] "Continuum Charge Excitations in High-Valence Transition-Metal
Oxides Revealed by Resonant Inelastic X-ray Scattering"
A. Hariki, M. Winder and J. Kuneš
Phys. Rev. Lett. 121, 126403 (2018),

and also based on the master thesis of the author [22]. Extended text passages
which are directly adopted from the publications are marked with a black bar.

1Editors’ Suggestion, A.H and M.W contributed equally to this work.
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4.1 Introduction

We use the Anderson impurity model approach with a hybridization function ob-
tained by LDA+DMFT [13, 133, 134]. This allows us to include the continuum of
unbound electron-hole pairs (EHPs) as well as the charge transfer excitations in a
unified and material specific manner. The Anderson impurity model approach lacks
the momentum dependence of the bound electron-hole excitations such as magnons
or excitons, but it allows a non-perturbative description of the initial (final) and
intermediate states of the RIXS process, the continuum of unbound EHPs and
many-particle excitations. Therefore, our approach provides a good description of
the incident photon energy ωin-dependence of the RIXS spectra. A complex situ-
ation arises when the formation of core-valence excitons compete with continuum
excitations in the intermediate states at a given incident photon energy ωin [5, 56].
This is manifested, for example in high-valence nickelates [57] and titanium het-
erostructures [56], by coexistence of the Raman-like (RL) and FL features near the
X-ray absorption edge. The computational parameters of the studied compounds
can be found in Sec. 3.2. The parameters of the additional compounds are explicitly
discussed in the corresponding section.

4.2 Ni L3-Edge X-ray Absorption Spectroscopy and

Resonant Inelastic X-ray Scattering of NiO

Figure 4.1a shows the valence spectra of NiO calculated by LDA+DMFT in
the antiferromagnetic state at T = 300 K (below the experimental Néel temper-
ature of 525 K). We employed U = 7.0 eV and J = 1.1 eV [31]. We find a fair
agreement with experimental photoemission and inverse photoemission data [154]
for a double-counting energy µdc in the range of 50− 52 eV. The µdc dependence
of valence, XAS and RIXS spectra is shown in Fig. 4.3. Here we present the result
obtained with µdc = 50 eV. Figure 4.1c shows Ni L2,3-edge XAS calculated using
the LDA+DMFT and cluster model, together with the experimental data [43].
The Ni L2,3 XAS is composed of the main line (ωin between 850− 855 eV), corre-
sponding to |cd9〉 final-state configuration, and the weak satellite (ωin ≈ 856 eV),
corresponding to |cd10v〉 configuration. Here, c and v denote a hole in 2p core level
and valence bands, respectively. The LDA+DMFT and cluster-model results are
almost identical to each other and show a good agreement with the experimental
data. The match of the two is expected as the charge-transfer screening from
the surrounding atoms is rather weak in the XAS final states. Figure 4.1d shows
Ni L3-RIXS map obtained by LDA+DMFT. For comparison, Figs. 4.1e,f show
the cluster-model result and the experimental data [155]. Three distinct RIXS
features are observed: RL d–d excitations (ωloss = 1− 4 eV); the charge transfer
excitations (ωloss = 4 − 8 eV) showing a broad feature along ωloss; FL feature,
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showing a linear increasing feature with ωin. The RL and charge transfer exci-
tations resonate mainly at the L3 main line, while the FL feature appears for
ωin > 855 eV. The LDA+DMFT spectrum shows a good overall agreement with
the experimental data. In the cluster-model result, though the RL feature is re-
produced, the charge transfer feature is found at a sharp ωloss and the FL feature
is missing due to the lack of the unbound EHP continuum in this description.
The lowest d–d peak at 1.0 eV in the experimental data, corresponding to a sin-
gle excitation from T2g orbit to Eg orbit in the one-electron picture, is located at
around 0.85 eV in both the LDA+DMFT and cluster-model results, see also in
Sec. 4.2.1. In terms of the atomic symbols, this corresponds to 3A2 → 3T2 exci-
tation. The quantitative discrepancy could be attributed to underestimation of
the Eg–T2g splitting due to covalency in the present LDA calculation [156]. The
FL feature originates from unbound EHP excitations. The low ωloss-region of the
FL features reflects the EHPs that involve low-energy valence bands, as demon-

strated in Fig. 4.1g. There the hybridization intensity V (ε) =
√

− 1
π
ℑ∆(ε), see

Eq. 2.31, from −2 to 0 eV is numerically removed, see Fig. 4.1b. Thus prohibit-
ing creation of a hole in the low-energy valence bands in the RIXS process. As a
result, the low-ωloss part of the FL feature around 4− 6 eV disappears.
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Figure 4.1: (a) LDA+DMFT valence spectra of NiO. The experimental data (black,
dotted) are taken from Ref. [154]. (b) DMFT hybridization function. (c) Ni L3-
edge XAS calculated by LDA+DMFT (solid), cluster model (blue, dashed) and
the experimental data in Ref. [43]. RIXS spectra calculated by (d) LDA+DMFT.
(e) experimental data [155]. (f) RIXS spectra calculated by the cluster model.
(g) RIXS spectra calculated without hybridization intensities from −2.0 to 0.0 eV.
The RIXS intensities above the horizontal lines (white) are magnified by a factor
indicated in panels. The spectral broadening is taken into account using a Gaussian
of 150 meV for RIXS, a Lorentzian 300 meV for XAS, and a Gaussian 600 meV for
valence XPS. Figure and caption taken from [2].

The RIXS intensities calculated by the LDA+DMFT approach for µdc = 50 eV and
selected photon energies ωin are shown together with the experimental data [155]
in Fig. 4.2.
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ωin=853eV

ωin=855eV

Figure 4.2: Ni L3-RIXS intensities calculated by LDA+DMFT (µdc = 50 eV) for
selected ωin. The experimental data are taken from Ref. [155]. Figure and caption
taken from [2].

4.2.1 Double-Counting Dependence

Figure 4.3 summarizes the µdc dependence of the LDA+DMFT result for valence,
XAS and RIXS spectra in NiO.

In NiO, the one-particle gap reduces with µdc increase (corresponding to de-
crease of the charge-transfer energy ∆CT), as expected in the charge-transfer-
type insulator [23]. The satellite and lower Hubbard band are observed around
9 eV and 1 eV, respectively. We obtained a reasonable agreement with the ex-
perimental photoemission and inverse photoemission data [154] in the range of
µdc = 50− 52 eV. The µdc dependence of the Ni L2,3-XAS spectra is rather weak
since the spectral shape is mostly dominated by the local multiplet interaction
and the crystal-field splitting. The onset of the FL feature in the ωin-ωloss plot
relates to the one-particle gap in the valence spectra.
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82 CHAPTER 4. L3-EDGE XAS AND RIXS OF CORRELATED MATERIALS

Figure 4.3: The double-counting correction µdc dependence of (a) valence spec-
tra, (b) Ni L2,3-XAS spectra and (c-e) Ni L3-RIXS spectra of NiO calculated by
LDA+DMFT. The RIXS intensities above the horizontal lines (white) are magni-
fied by a factor indicated in panels. The µdc = 50.0, 51.0, and 52.0 eV correspond
to ∆CT = 5.4, 4.4, and 3.4 eV, respectively. Figure and caption taken from [2].

Finally, we comment on the character of the FL feature in a large-gap insula-
tor. Fig. 4.4 shows the RIXS spectra calculated while artificially excluding charge
transfer from X-ray excited Ni ion to the conduction bands above Fermi energy
EF . This prohibits excitation of upper Hubbard states (d9) outside the excited
Ni ion in the RIXS process. This results in only a minor intensity modulation of
the FL feature, suggesting that the FL L3-RIXS feature of NiO reflects projected
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EHP continuum with an extra d electron sitting on the excited Ni site (local
upper Hubbard band state) and a hole propagating in the lower Hubbard band
or O 2p bands. This behavior is expected to be common in large-gap systems
and qualitatively differs from the behavior of FL feature in high-valence TMO
with a small gap which is discussed in Sec. 4.4 [5].

Figure 4.4: Left: Ni L3-RIXS map of NiO calculated by excluding a charge-
transfer between X-ray-excited Ni ion and conduction states above Fermi energy
EF . Right: Ni L3-RIXS map of NiO calculated by LDA+DMFT. The RIXS in-
tensities above the horizontal lines (white) are magnified by a factor indicated in
panels. Figure and caption taken from [2].
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4.3 Fe L3-Edge X-ray Absorption Spectroscopy and

Resonant Inelastic X-ray Scattering of Fe2O3

Figure 4.5: (a) LDA+DMFT valence spectra of Fe2O3 with the experimental data

(black) [157, 158]. (b) DMFT hybridization intensity Vγ(ε) =
√

− 1
π
ℑ∆γ(ε). (c) Fe

L2,3-edge XAS spectra calculated by LDA+DMFT (solid), cluster model (dashed)
and experimental data (dotted) [159]. (d) RIXS spectra calculated by LDA+DMFT.
The intensities above the horizontal lines (white) are magnified by the factor indi-
cated in panels. (e) RIXS spectra calculated at selected incident photon energies,
see panel (c). The experimental data are taken from Ref. [160] (A-C corresponds
to 3, 5, 7 in the reference). The spectral broadening is taken into account using
a Gaussian of 200 meV for RIXS, a Lorentzian 300 meV for XAS, and a Gaussian
600 meV for valence XPS. Figure and caption taken from [2].
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4.3. FE L3-EDGE XAS AND RIXS OF FE2O3 85

Fig. 4.5a shows the valence spectra of Fe2O3 obtained by LDA+DMFT in the
experimental corundum structure [161] and antiferromagnetic state at T = 300 K
(the experimental Néel temperature is 950 K). We employ U = 6.8 eV and
J = 0.86 eV following previous DFT studies [11, 62]. A reasonable agreement
with experimental photoemission and inverse photoemission data [157, 158] is
found in the range µdc = 30.6−32.6 eV. Thus we present the result obtained with

µdc = 31.6 eV. The hybridization intensity V (ε) =
√
− 1

π
ℑ∆(ε) in Fig. 4.5b shows

the spin dependence reflecting the antiferromagnetic ordering. Fig. 4.5c shows
Fe L2,3-edge XAS calculated by LDA+DMFT and the cluster model, together
with the experimental data [159]. The two methods yield almost identical results
and show a good agreement with the experiment. The shape of the Fe L3-edge
main line (706 – 711 eV), that corresponds to the |cd6〉 final state, is known to be
sensitive to the local multiplet structure [78, 162], indicating the accuracy of the
parameters in the present local Hamiltonian Ĥimp, see Eq. 2.6. Fig. 4.5d shows the
Fe L3-RIXS map obtained by the LDA+DMFT approach. The RIXS intensities
calculated at selected photon energies are shown in Fig. 4.5e with recent high-
resolution experimental data [160]. Fe L3 RIXS shows rich d–d features (ωloss ≈ 1
– 5 eV) and a complex ωin dependence due to a variety of multiplets in the d5

manifolds. The LDA+DMFT result reproduces the position and ωin dependence
of low-energy features reasonably well.

4.3.1 Double-Counting Dependence

We find a reasonable agreement with experimental photoemission and inverse
photoemission data [157, 158] in Fe2O3 in the range of µdc = 30.6− 32.6 eV, see
Fig. 4.6a. The Fe L2,3-edge XAS spectra, see Fig. 4.6b, are rather insensitive
to the choice of the double-counting corrections, indicating the spectral features
are dominated by the local multiplets [78, 162]. We point out that in the RIXS
spectra the positions of the low-energy excitations are largely renormalized by
the double-counting energy µdc values. Interestingly, with decrease of the charge-
transfer energy ∆CT (increase of µdc), the d–d feature around ωloss ≈ 1 − 2 eV
shifts to the low-ωloss side sharply, while the one around ≈ 2 − 3 eV is rather
insensitive despite it is close in energy to the charge-transfer excitations. The
result with µdc = 31.6 eV gives the best agreement with the experimental RIXS
data, see Fig. 4.5e.
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86 CHAPTER 4. L3-EDGE XAS AND RIXS OF CORRELATED MATERIALS

Figure 4.6: The double-counting correction µdc dependence of (a) valence spec-
tra, (b) Fe L2,3-XAS spectra and (c-e) Fe L3-RIXS spectra of Fe2O3 calculated by
LDA+DMFT. The RIXS intensities above the horizontal lines (white) are magni-
fied by a factor indicated in panels. The µdc = 30.6, 31.6, and 32.6 eV correspond
to ∆CT = 4.8, 3.8, and 2.8 eV, respectively. Figure and caption taken from [2].
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4.4 Cu L3-Edge X-ray Absorption Spectroscopy and

Resonant Inelastic X-ray Scattering of Cuprates

We study Cu L3-Edge XAS and RIXS in high-valence LaCuO3 and NaCuO2. We
have chosen these compounds as model systems for the investigation of the origin of
the FL feature observed in the RIXS spectra. Both compounds share a tiny charge-
transfer energy [66–70] leading to small or no gap [66, 68, 69, 71, 72]. Part of this
study is the origin of the FL feature and its connection to the crystal structure.

In Figs. 4.7a,b we show the one-particle (1P) density of states of LaCuO3

and NaCuO2. The µdc in the range of 55.64− 57.64 eV yields results consistent
with Cu L-edge XAS studies [68, 163, 164]. The µdc values provide also the
best match with earlier valence XPS studies [68, 70] shown in Figs. 4.7a,b. The
deviations from the experimental XPS spectra may be due the uncertainty of
the relative Cu 3d − O 2p cross section and the surface sensitivity of XPS. In
NaCuO2, in particular, the surface is prone to contamination leading to the
appearance of Cu2+ ions [74, 163]. Varying µdc within the above range has only
a minor impact on the RIXS spectra for both materials and does not affect
our conclusions. For LaCuO3, paramagnetic metal (PM) and antiferromagnetic
insulator (AFI) solutions can be stabilized, similar to LDA+U studies [69],
indicating the Slater nature of the gap. Reflecting the unclear experimental
situation [68, 69, 71, 72], we proceed with both states and use them later to
demonstrate the effect of the small gap on RIXS. NaCuO2 (Egap ≈ 0.5 eV) has a
band-insulator character with a gap present already in the LDA solution [73, 74].
Overall, the 1P density of states suggest an existing phase space for a continuum
of excitations in the few eV range.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

88 CHAPTER 4. L3-EDGE XAS AND RIXS OF CORRELATED MATERIALS

Figure 4.7: LDA+DMFT 1P density of states for (a) LaCuO3 in the PM and AFI
phases and (b) NaCuO2. The hybridization intensiy V 2

γ (ε) = − 1
π
ℑ∆γ(ε) of LaCuO3

(c) in the PM and AFI phases and NaCuO2 (d). The energy origin is taken at
EF . The experimental XPS data (symbols) of LaCuO3 [68] and NaCuO2 [70] are
compared to the theoretical ones (black line). We used the same instrumental
broadening and the relative Cu 3d : O 2p cross section as in Ref. [68], where the
atomic cross section is taken from Ref. [165]. µdc=55.64 eV is employed in the
calculation. Figure and caption taken from [5].
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The calculated Cu L3-edge XAS and RIXS spectra are shown in Fig. 4.8. The
XAS spectrum of NaCuO2 has a single-peak (A), while that of LaCuO3 exhibits
an additional shoulder (B), which is enhanced in the PM phase and is observed
also in experiment for NaCuO2 [163] and LaCuO3 [68]. The shoulder B is missing
in the calculations on the CuO6 cluster model [68, 166], see Fig. 4.8e, indicating
that the shoulder is not of d–d or charge transfer origin but due to a final state
delocalized beyond the CuO6 cluster [31].

The RIXS spectra of NaCuO2 and LaCuO3 are strikingly different. Tuning
ωin to the peak A of the XAS, two distinct d–d transitions with RL behavior are
found in both compounds, similar to another Cu3+ material Zn1−xCuxO [167],
followed by charge transfer transitions with higher ωloss. However, at higher ωin

the RIXS of LaCuO3 yields a linear FL feature, with little difference between the
AFI and PM phase. The FL feature is suppressed in NaCuO2 resembling the
spectrum of the cluster model. The calculated RIXS spectra of LaCuO3 reminds
one of the experimental observation on NdNiO3 [57] with the FL feature starting
at the ωin on the L3 main edge and not far above it as in NiO. The continuum
of unbound particle-hole pairs in the manner of Ref. [57] explains the FL feature
in LaCuO3.

Figure 4.8: The calculated L3-edge XAS and RIXS spectra for (a),(f) NaCuO2 and
LaCuO3 in (b),(g) AFI phase, (c),(h) PM phase, (d),(i) no EHP and (e),(j) CuO6

cluster model. The RIXS intensity with ωloss ≥ 3.0 eV (horizontal dashed line)
are magnified by 3.5 times [1.5 time for (e)]. µdc=55.64 eV is employed in the
calculation. The LDA+DMFT spectrum for LaCuO3 (PM) is shown by a dotted
curve in (d) and (f), for comparison. The experimental XAS data (dashed line) for
LaCuO3 (PM) and NaCuO2 are taken from Ref. [68] and Ref. [163]. The spectral
broadening is considered using a Gaussian of 150 meV for RIXS and a Lorentzian
300 meV for XAS (HWHM). Figure and caption taken from [5].
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4.4.1 Fluorescence-like Feature

Here we discuss the origin of the FL feature observed in the RIXS spectra of LaCuO3

and which is absent in NaCuO2.

The small NaCuO2 charge gap cannot explain the absence of visible particle-
hole excitations at ωloss in the 3−4 eV range. In fact, the experiment on
NdNiO3 [57] and the calculations in the PM and AFI phases of LaCuO3 in Fig. 4.9
show that the gap opening affects the FL feature only at low ωloss. Moreover, the
NaCuO2 1P density of states, see Fig. 4.7b, exhibits a noticeably higher density
of states above and below the gap than LaCuO3, see Fig. 4.7a, which suggests a
larger phase space for particle-hole excitations in NaCuO2. The reason for the
existence of the FL feature observed in LaCuO3 lies in the hybridization function
∆γ(ε), see Eq. 2.31. The hybridization intensities V 2

γ (ε) = − 1
π
ℑ∆γ(ε) of both

compounds are shown in Figs. 4.7c,d.

Figure 4.9: Low ωloss region (< 1.0 eV) of the RIXS map in the PM and AFI phases
of LaCuO3. The FL feature continues to zero energy loss in the PM phase. Figure
and caption taken from [5].

How does the hybridization intensity affect the RIXS spectra? In the spectral
function of RIXS, see Eq. 2.3, all intermediate states accessible in the XAS process
contribute to RIXS in principle. We estimate that the intermediate states with
|Em − En − ωin| . ΓL, which approximately conserve energy in the partial XAS
process, dominate while those outside this range cancel approximately out due to
the varying sign of the denominator. Such a claim cannot be directly confirmed
with the resolvent formulation, see Eq. 2.76. It is, nevertheless, supported by the
diagonal shape of the FL feature in the ωin-ωloss plane, suggesting that a narrow
range of intermediate states are ‘excited’ that ‘decay’ into a narrow range of final
states with matching electron-hole excitation. The small hybridization intensity
for ε > 0 in NaCuO2 implies that (intermediate) states with different numbers

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.4. CU L3-EDGE XAS AND RIXS OF CUPRATES 91

of conduction electrons hybridize only weakly with one another. In LaCuO3 a
RIXS process that we schematically write as d8 + d9v → Cd10v + Cd9cv → d8cv
ends up in a final state that can be characterized as the ground state plus an
electron-hole pair in the continuum, see Fig 4.10a, where C, v, and c correspond
to a hole in 2p core level, in valence bands, and an electron in conduction bands,
respectively. Such processes in NaCuO2 are strongly suppressed since states of
the type Cd10v and Cd9cv hybridize only weakly. This is a local expression of
the fact that in NaCuO2 a hole transferred from Cu to O has a small probability
to escape the CuO4 cluster.

Figure 4.10: Schematic of (a) electron-hole pair creation in the RIXS process of
LaCuO3 and NaCuO2, and (b) charge transfer to the conduction states in the
intermediate state. Figure and caption taken from [5].

To test this interpretation, we switched off the hybridization to the conduc-
tion band in the intermediate states for the PM phase of LaCuO3; see Fig. 4.8i.
In practice, we have set Vγ(ε > 0) = 0 in the Hamiltonian Hm of the intermediate
states, see Eq. 2.3, while keeping Vγ(ε) unrestricted in the initial and final states.
The intensity of the FL feature is dramatically suppressed and the structure
of the RIXS spectrum resembles that of NaCuO2. Although (unchanged) final
states with excited electron-hole pairs exist, they cannot be resonantly excited
by the RIXS process. This result supports the interpretation of the FL feature in
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Ti L-edge spectra by Pfaff et al. [56] and shows that the nature of hybridization
in intermediate states is the dominant factor affecting the intensity of FL fea-
ture. In Fig. 4.10b the hybridization to the conduction band is sketched. Cutting
hybridization to the conduction states affects also the XAS spectrum, Fig. 4.8d,
which loses the shoulder B and overlaps with that of the cluster model, Fig. 4.8e.
This shows that intermediate states with localized and delocalized character co-
exist in this ωin region, which leads to coexistence of FL and RL features in the
RIXS spectrum.

4.4.2 Double-Counting Dependence

Fig. 4.11 shows Cu L-edge XAS and RIXS calculated for different double-
counting corrections µdc in LaCuO3 and NaCuO2. As one could find in the dp
Hamiltonian, see Eq. 2.57, µdc renormalizes the p–d splitting and a larger µdc

reduces the splitting, i.e. the charge-transfer energy.

Figure 4.11: Calculated L3-edge XAS and RIXS for (a) LaCuO3 (PM), (b) LaCuO3

(AF), and (c) NaCuO2. The experimental XAS data (dashed line) for LaCuO3

(PM) and NaCuO2 are taken from Ref. [68] and Ref. [163]. Figure and caption
taken from [5].
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The XAS spectra of LaCuO3 with µdc = 51.64 eV, deep in the Mott insulating
regime, shows a sharp main line (A) and a weak multiplet feature around the
incident photon energy of −14 – −15 eV, resembling Ni L-edge XAS of NiO
(3d8 electronic configuration) [43]. With µdc increase (i.e., charge-transfer energy
decrease), a new shoulder feature B develops in both, the antiferromagnetic and
paramagnetic phases. The metal-insulator transition occurs at µdc ≈ 55.64 eV in
the paramagnetic solution, while a gap survives in the antiferromagnetic solution
for µdc . 56.74 eV. The µdc=55.64–57.64 eV yields a reasonable agreement to
the experimental XAS data measured using the total electron yield method [68].
The XAS of NaCuO2 shows a rather weak µdc dependence and does not show the
shoulder B, consistent with the experimental observation [163]. The estimated
µdc values give similar RIXS features in LaCuO3, showing coexisting FL and RL
features across the Cu L3 main line, while a small µdc, see µdc = 51.64 eV, gives a
FL feature that appears far above the L3 main line as in NiO [49]. The calculated
valence XPS with the estimated µdc give a fair agreement to early photoemission
data [68, 70], see Fig. 4.12.
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Figure 4.12: Calculated 1P density of states of (a) LaCuO3 (PM), (b) LaCuO3

(AF), and (c) NaCuO2 for different double-counting corrections µdc. The calculated
valence spectra (black line) are shown together. The experimental valence XPS data
of LaCuO3 and NaCuO2 are taken from Ref [68] and [70], respectively. Figure and
caption taken from [5].

4.4.3 Cluster Model

Next, we show the difference of the spectra between cluster model and Anderson
impurity model approach. We use a cluster-like hybridization function with hy-
bridization intensity to the impurity’s nearest-neighbor ligands and apply it to the
Anderson impurity model.

Fig. 4.13 shows the hybridization intensity V 2
γ (ε) = − 1

π
ℑ∆γ(ε) of the studied

compounds in the cluster model. Considering the crystal structure, see Fig. 1.12,
here we assumed an CuO6 and CuO4 cluster for LaCuO3 and NaCuO2, respec-
tively. The V 2

γ (ε) shows a single-peak feature, as expected, while the energy
position of the peaks depends on γ because of the crystal-field splitting in O 2p
states.
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Figure 4.13: The hybridization intensity of LaCuO3 and NaCuO2 in the cluster
model. Figure and caption taken from [5].

Fig. 4.14 shows the L3 XAS and RIXS spectra computed by the LDA+DMFT
approach and the cluster model. For comparison, a magnified RIXS map of the
RL features is shown for LaCuO3. We find a reasonable agreement in the energy
positions of the RL features (. 2.0 eV) between the two methods. However, the
intensities and the resonance photon energies of the RL features differ between
the two methods. These depend in general on the character of the intermediate
states of the RIXS process. We remind that the cluster model does not describe
the intermediate states of LaCuO3 properly, which leads to the absence of the
shoulder B in the XAS spectrum of the cluster model (as compared to experi-
ment).

Figure 4.14: The L3 XAS and RIXS spectra for NaCuO2 and LaCuO3 calculated
by the LDA+DMFT approach and the cluster model. The magnification of the
RL features in the cluster-model spectrum is shown, for comparison. Figure and
caption taken from [5].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

96 CHAPTER 4. L3-EDGE XAS AND RIXS OF CORRELATED MATERIALS

4.5 Co L3-Edge X-ray Absorption Spectroscopy and

Resonant Inelastic X-ray Scattering of Cobaltites

We present Co L-edge RIXS spectra in representative cobaltites: SrCoO3,
LaCoO3, and LiCoO2. The comparison among the three materials allows us
to explore the sensitivity of RIXS spectra to the TM valence state and lattice
geometry.

SrCoO3 and LaCoO3 crystallize in the corner-sharing perovskite structure,
while LiCoO2 crystallizes in a quasi-two-dimensional structure with edge-sharing
CoO6 octahedra. Formally, Co ion is trivalent (3d6) in LaCoO3 and LiCoO2,
while it is tetravalent (3d5) in SrCoO3. Due to its small charge-transfer energy,
SrCoO3 possesses a dominant d6 configuration (plus one hole in ligands) in the
ground state [88, 94, 168]. The Co d6 manifolds have rich low-energy multi-
plets characterized by low-spin (S = 0, LS), intermediate-spin (S = 1, IS), and
high-spin (S = 2, HS) states. The ground states of the three compounds at low
temperatures are well known; LaCoO3 and LiCoO2 are band insulators (insulat-
ing gap ≈ 0.5 eV) with the LS configuration, while SrCoO3 is a ferromagnetic
metal with an admixture of the HS state and charge fluctuations around it [94].
The LDA+DMFT calculations are performed in the experimental crystal struc-
ture reported well below possible spin-state transition temperatures. Following
previous DFT studies for LaCoO3 [169], we use U = 6.0 eV and J = 0.8 eV. Fig-
ures 4.15a–c show the LDA+DMFT valence spectra, together with experimental
data. Due to its LS character, T2g states are almost fully occupied in LaCoO3

and LiCoO2, while the HS character in SrCoO3 yields considerable Eg weights
below EF in the majority-spin channel [94]. Figures 4.15d–f show the hybridiza-
tion intensities V 2(ε) = − 1

π
ℑ∆(ε). The intensities around −8 to −2 eV (−2

to 4 eV) represent the hybridization with O 2p (Co 3d) states though explicit
decomposition of contributing states in the continuum bath is impossible [4].
Despite the similar LS valence spectra in LiCoO2 and LaCoO3, we find a clear
difference in V 2

γ (ε) for the Eg orbital between the two. LaCoO3 shows sizable
hybridization intensities above EF , while LiCoO2 shows only below EF (around
−2 eV). In LaCoO3 with nearly 180◦ of Co-O-Co bonds, inter-orbital (Eg-T2g

channel) hopping between neighboring Co sites is forbidden, while it is allowed
in LiCoO2 owing to the edge-sharing CoO6 octahedra. The Eg-Eg hopping, on
the other hand, is allowed/forbidden in the former/latter geometry. This ex-
plains the presence/absence of the hybridization intensities with the empty Eg

bands above EF in LaCoO3/LiCoO2. In this way, the hybridization function
∆γ(ε) encodes the lattice environment around the impurity site. Since an extra
d electron, excited by the local X-ray absorption, goes into the empty Eg states
in the LS configuration, the hybridization properties of Eg orbital is important to
understand possible EHP excitations in the RIXS spectra. Figures 4.15g–i show
the Co L3-XAS spectra calculated by LDA+DMFT. In both trivalent [77] and
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tetravalent cases [168], the Co L3-XAS is sensitive to the spin-state character
on the Co atom in the ground state. Thus, the overall good agreement with
the available experimental data [77, 170, 171] suggests that the spin state in the
ground state is well described within the LDA+DMFT scheme. Figures 4.15j–l
show the RIXS spectra calculated across the Co L3 edge. The d–d excitations
in LaCoO3 and LiCoO2 resemble each other due to the similar local multiplet
structures above the LS ground state, while those in SrCoO3 are rather obscure
mainly due to the thermal mixture of the HS multiplets. Despite the similarity of
the d–d excitations, the FL feature in LaCoO3/LiCoO2 is visible/invisible. This
difference originates from the hybridization of the excited Co ion with the con-
tinuum of conduction states above EF , which differs in the two lattice geometries
as mentioned above. The presence/absence of the FL feature in the corner-
/edge-sharing structure, see Fig 1.12, resembles the behavior of the FL feature
isoelectronic high-valence cuprates (LaCuO3 and NaCuO2), see Sec. 4.4 [5]. The
FL feature in SrCoO3 is more intense compared to that in LaCoO3 despite com-
parable hybridization intensities above EF between the two, see Figs. 4.15d,e.
This is because, in SrCoO3, metallicity due to negative charge-transfer energy
favors EHP excitations.
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Figure 4.15: LDA+DMFT Valence spectra and hybridization intensities of (a,d)
SrCoO3, (b,e) LaCoO3 and (c,f) LiCoO2. Co T2g orbitals split into Egπ and A1g

orbitals due to trigonal distortion in LaCoO3 and LiCoO2. The experimental va-
lence photoemission data for SrCoO3−δ [170], LaCoO3 (Sr 0.2% doped) [172] and
LiCoO2 [173] are shown together. The Co L3-edge XAS and RIXS spectra calculated
for (g,j) SrCoO3, (h,k) LaCoO2 and (i,l) LiCoO2, together with the experimental
XAS data (dashed lines) [77, 171, 174]. The RIXS intensities above horizontal lines
(white) are magnified by a factor indicated in panels. A small periodic oscillation
of the RIXS intensities in the magnified region (charge-transfer excitation region) is
due to a discretization effect in the hybridization intensity V 2(ε) = − 1

π
ℑ∆(ε). The

spectral broadening is taken into account using a Gaussian of 150 meV for RIXS, a
Lorentzian 300 meV for XAS. Figure and caption taken from [2].
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4.6 Conclusions

We presented numerical simulations of L-edge RIXS spectra of typical 3d TM ox-
ides: NiO, Fe2O3, cuprates and cobaltites. We used the Anderson impurity model
approach with a hybridization function obtained by LDA+DMFT. This approach
reproduces the experimental RIXS and XAS data of the studied materials accu-
rately. Taking cobaltities as an example, we examined the variation of the RIXS
spectra with the TM valence state and crystal geometry. We found substantial dif-
ferences in RIXS spectra of isoelectronic LaCoO3 and LiCoO2 despite their almost
identical valence photoemission and XAS spectra. The difference between the two
compounds lies in the decoration of the crystal lattice with CoO6 octahedra, which
is encoded in the DMFT hybridization function. This example demonstrates that
the information contained in the RIXS spectra cannot be extracted from the one-
particle spectral function [2]. Furthermore we studied the coexistence of RL and
FL features in RIXS spectra of high-valence transition-metal oxides e.g. cuprates.
We predict that the FL feature is present in the L-edge RIXS spectra of LaCuO3 in
both the paramagnetic and antiferromagnetic insulating phases, while it is absent
in the isoelectronic NaCuO2. We have interpreted this numerical observation in
terms of crystal geometry [5]. Comparing the RIXS spectra of paramagnetic and
antiferromagnetic insulating LaCuO3, we have shown that the FL feature in the
low-ωloss regime is sensitive to the opening of a small gap, similar to the experimen-
tal observation on NdNiO3 [57]. The results show that the FL component of the
RIXS spectra is rather material-specific, and its interpretation requires advanced
many-body calculations.

The present method provides a computationally feasible material specific ap-
proach to RIXS spectra in a wide range of materials, including the strongly corre-
lated ones. Although our approach contains a number of input parameters such as
the valence-valence and core-valence interaction, these can be estimated by direct
calculation or taken from other materials since they are only weakly material de-
pendent. The only ‘real’ free parameter in the present study is the double-counting
correction µdc, which is adjusted by comparison to the experimental valence pho-
toemission spectra [2].
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Chapter 5

L3-Edge X-ray Absorption

Spectroscopy and Resonant Inelastic

X-ray Spectroscopy of Rare-Earth

Nickel Oxides

We present a computational study of L-edge X-ray absorption spectroscopy (XAS)
and resonant inelastic X-ray scattering (RIXS) of LuNiO3. LuNiO3 is a repre-
sentative rare-earth nickelate exhibiting multiple phases, e.g. paramagnetic metal
(PMM), paramagnetic insulating (PMI) and antiferromagnetic insulating (AFI)
phase. We study the changes of the spectra across the metal-insulator transition,
which is accompanied by a site-disproportionation. We address the question of
site-selectivity of L-edge XAS and RIXS in the disproportionated insulating phase.
Moreover, we discuss the fluorescence-like feature and the gap opening in the insu-
lating phase, proposed by Bisogni et al [57]. This chapter is based on

[1] "X-ray spectroscopy of rare-earth nickelate LuNiO3: LDA+DMFT
study"
M. Winder, A. Hariki, and J. Kuneš
arXiv:2004.01428 (2020).

Extended text passages which are directly adopted from the publication are marked
with a black bar.
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102CHAPTER 5. L3-EDGE XAS AND RIXS OF RARE-EARTH NICKEL OXIDES

5.1 Introduction

Rare-earth nickelates show an anomalous double-peak line of Ni L3-edge XAS which
was observed in earlier experimental studies and was recently associated with sig-
nals from two-distinct Ni sites which show a charge disproportionation (CD) [175].
Bisogni et al [57] studied high-resolution RIXS across the L3-edge double-peak,
and revealed an unusual coexistence of Raman-like (RL) and fluorescence-like (FL)
features, which indicates that the 2P excitation spectra of the two Ni-sites differ
qualitatively from each other, see Fig. 5.1a. The gap opening of the FL feature
(0 < ωloss < 0.5 eV) between the CD-insulating and metallic phase was interpreted
as a signature of the metal-insulator transition [57], see Fig. 5.1b. Very recently, the
authors in Refs. [108, 176] succeeded in measuring low-energy magnetic excitations
in the film NdNiO3 by setting the ωin to the magnetically-active Ni site, i.e. the
expanded (long-bond) d8 site. The site-selectivity in RIXS was also used to study
magnetic and orbital excitations in Fe3O4 [177, 178].

(a) a XAS / RIXS in b PMM and c AFI phase (b) Magnification of the FL gap

Figure 5.1: Experimental Ni L3-edge XAS and RIXS for NdNiO3, Figures taken
from [57].

The study of Bisogni et al. [57], as well as the claimed site-selectivity achieved by
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5.2. COMPUTATIONAL DETAILS 103

tuning the incoming photon energy ωin [57, 108, 176], calls for deeper theoretical in-
vestigation. We investigate the transition from PMM to PMI phase with transition
temperature of TMI ≈ 600 K. The transition is characteristically for the RNiO3 fam-
ily [104, 179–181]. The site disproportionation in the PMI phase induces a charge
disproportionation. In charge disproportionated systems composed of localized and
delocalized states d8 and d8L2 in RNiO3, respectively, the XAS signals between
sites may show interference or an overlap. That would limit the site resolution
(projection) of 2P excitations. Thus, a theory is needed that enables to simulate
the site-resolved contributions in both the RIXS and XAS spectra accurately. For
Ni L3-edge RIXS in RNiO3 the double-cluster model (Ni2O11), which is a minimum
multi-site cluster model, was applied [108, 176]. However, the small-size description
dismisses the signature of the electron-hole pair continuum at the metal-insulator
transition. We use the Anderson impurity model approach which includes the self-
consistently coupled inequivalent Ni ions as well as the electron-hole continuum of
the extended system [2, 4, 5, 31, 182].

5.2 Computational Details

RNiO3 in PMI phase contains of two distinct Ni sites, a long bond (LB) and
short bond (SB) site. These are named after the average distance between the Ni
atoms and their nearest-neighboring oxygen ligands. The total Ni L3-edge XAS
and RIXS spectra in PMI phase are obtained by summing up the LB and SB
spectra

FRIXS/XAS(ωout, ωin) = F SB
RIXS/XAS(ωout, ωin) + F LB

RIXS/XAS(ωout, ωin). (5.1)

The site-resolved XAS and RIXS spectra are given by Fermi’s golden rule, see
Eq. 2.2, and Kramers-Heisenberg formula, see Eq. 2.3, respectively. The spectra
are calculated in thermal equilibrium

F S
RIXS/XAS =

∑

n

1

Z
e

En
kBT F

(S,n)
RIXS/XAS, (5.2)

where S ∈ {SB,LB}. The Boltzmann factor is used at simulated temperatures
with the energies En of the relevant initial states. In our approach we use
T = 533 K and T = 673 K for the PMI phase and PMM phase, respectively. In
the PMM phase both sites are equivalent, and thus we drop out the site average.

The excitation of a core-level electron to a valence state is a local process, thus
we use impurity models to describe the excitation process. We use the Anderson
impurity model, see Eq. 2.29, for each site S

ĤS
AIM = ĤS

TM + ĤS
hyb. (5.3)
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The two sites have different occupation and different energies. In this study, we
define the charge-transfer energy ∆CT on the formal valence of Ni3+, thus we
set n = 7 electrons to estimate ∆CT. The averaged energy of the Ni 3d states
(εLDA

d ) differs between the LB and SB site. The double-counting energy µdc is
calculated by Eq. 2.71 and slightly varies for each site. This slight variation does
not affect the spectra, i.e. by setting µdc equal for both sites (averaging them)
one can estimate a slightly different ∆CT for both sites, but the spectra do not
change. In the following we discuss the parameters of this study, see Tab. 5.1.
Udd is the averaged Coulomb interaction used in the configuration interaction
scheme. The F 2

pd, G
1
pd and G3

pd values in the core-valence (p–d) interaction, are
scaled down to 75% of their actual values to simulate the effect of intra-atomic
configuration interaction from higher basis configurations neglected in the atomic
calculation [30, 121, 122]. We fix the isotropic part of the core-valence interaction
by the relation Upd ≈ 1.3×Udd which is a successful empirical treatment [30, 116,
118]. The Coulomb parameters are discussed in more detail in Sec. 2.2.3. The
spin-orbit coupling ζ2p within the Ni 2p states and the anisotropic part of the
2p-3d interaction parameters F k, Gk are calculated by an atomic Hartree-Fock
code [121]. The spin-orbit coupling within Ni 3d shells is ignored.

Param. Value [eV] Param. Value [eV] d9 [eV] Param. Value [eV]
U 7.000 Upd 8.638 εLDA

d (LB) -1.686
J 0.800 F 2

pd 8.350 7.721 εLDA
d (SB) -1.928

Udd 6.644 G1
pd 6.332 5.787 εLDA

p (PMI) -3.503
F 2
dd 6.892 G3

pd 3.603 3.291 εLDA
d (PMM) -1.797

F 4
dd 4.308 ζ2p 11.507 εLDA

p (PMM) -3.482

Table 5.1: (left) Coulomb interaction U and Hund’s interaction J used in the present
study. The corresponding isotropic (configuration averaged) Udd and higher Slater
integrals (F 2

dd and F 4
dd) are shown together. The U and J parameters are used

commonly in all configurations. (center) The isotropic part Upd and the Slater
integrals of the 2p–3d interaction (direct: F 2

pd, exchange: G1
pd, G3

pd), and spin-
orbit coupling ζ2p in the 2p core-shell used in the XAS and RIXS calculation. For
configurations with 9 electrons on the Ni 3-shell (e.g. |d9〉, |d9v〉), we used the core-
valence parameters shown in the d9 column. (right) The averaged site-energies of
the Wannier states, obtained by partial traces in the tight-binding Hamiltonian are
shown. Table and caption taken from [1].

In practice, the hybridization function ∆S
γ (ε) obtained with the LDA+DMFT

calculation is represented by 25–30 discretized bath states α for each orbital and
spin, collectively denoted by γ, and differs for both sites in the PMI phase.
The hybridization is assumed to be orbital (and spin) diagonal, which is a good
approximation in the studied compounds.
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5.3. CI SCHEME FOR DIFFERENT CHARGE SECTORS 105

Figure 5.2: Hybridization intensities V S
γ (ε) =

√
− 1

π
ℑ∆S

γ (ε) obtained by the

LDA+DMFT calculation and discretized hybridization intensities used in the XAS
and RIXS calculations in the LB site (left) and the SB site (center) in the PMI
phase, and PMM (right) phase for charge-transfer energy ∆CT = 0.5 eV. Figure
and caption taken from [1].

Fig. 5.2 shows the hybridization intensities V S
γ (ε) =

√
− 1

π
ℑ∆S

γ (ε) obtained

by LDA+DMFT, and the discretized intensities V S
α,γ, see Eq. 2.31, for the charge-

transfer energy ∆CT = 0.5 eV. The discretized hybridization intensities are dis-
tributed uniformly with 20 levels in the valence channel (< EF) and 10 levels
in the conduction channel (> EF). The energy window is adapted to intensities
larger than ≈ 5% of the peak value.

5.3 Configuration-Interaction Scheme for Different

Charge Sectors

To compute Ni L3-edge XAS and RIXS from the Anderson impurity models,
we employ the configuration-interaction (CI) scheme, see Sec. 2.7.5. Here, the
CI scheme renders computational challenges because (i) the ground state wave
function at LB and SB sites resides in different symmetry and the symmetry
obtained by CI scheme depends on the initial configuration, and (ii) moderate
charge fluctuation requires an accurate energy evaluation for the thermal average
in the spectral function. We overcome these difficulties by a CI implementation
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up to higher orders, while retaining a semi-continuum fashion of the bath. We
perform calculations in different charge sectors of ĤAIM resulting in different
initial states |n〉. In the XAS and RIXS spectral calculations, we use 30 (25)
bath levels per spin and per orbital for the Ni2+ and Ni3+ (Ni4+) charge sectors.
Additionally we evaluate the energies En of the initial states in all three charge
sectors using 30 bath levels. The CI expansion for three charge conserving series
follows

Ni2+ =
{
|d8〉, |d9v1〉, |d10v2〉, |d7c1〉, |d8v1c1〉, |d9v2c1〉, |d6c2〉, |d7v1c2〉

}

Ni3+ =
{
|d7〉, |d8v1〉, |d9v2〉, |d10v3〉, |d7v1c1〉, |d8v2c1〉

}

Ni4+ =
{
|d6〉, |d7v1〉, |d8v2〉, |d9v3〉, |d10v4〉, |d7v2c1〉

}
.

Here, dn represents Ni 3d states with n electrons on the Ni 3d shell. vi (cj)
denotes the number of holes (electrons) in the valence (conduction) bath states
below (above) EF . The initial states |n〉 are computed using the Lanczos
method. The energies En of the initial states calculated in each charge sector
are used to evaluate the corresponding weight of these spectra in the thermal
average of the entire system. In the PMI phase, one of these charge sectors,
depending on LB or SB site, provides the initial states with a dominant weight
in the thermal average. The LB site has a triplet ground state in the Ni2+

charge sector, whereas the SB site has a singlet ground state in the Ni4+ charge
sector. In PMM phase we obtain a mixture of all three charge sectors in thermal
average, but the contributions to the spectra are mainly from Ni2+ and Ni3+

sectors which is discussed below.

In Tab. 5.2 we compare the occupation of the configurations in the ground
state calculated with the CI solver with discretized bath and the CT-QMC solver.

CI CT-QMC
Sector LB SB PMM LB SB PMM
d6 0.3 2.4 0.4 0.4 2.0 1.0
d7 17.9 34.3 23.2 17.6 31.1 25.5
d8 70.9 52.7 65.2 69.5 54.4 60.5
d9 10.7 10.3 11.0 12.2 12.1 12.5
d10 0.2 0.3 0.2 0.3 0.5 0.3

Table 5.2: The atomic weights (diagonal elements of the site-reduced density ma-
trix) integrated in the N = 6 − 10 sectors. The weights are calculated with the
Anderson impurity model of the LB site and the SB site, and the PMM phase. The
numbers estimated by the CI solver (descritized bath) and the CT-QMC solver
(continuum bath) are compared. Table and caption taken from [1].
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Application of the CI solver to metallic systems raises questions concerning
discretization of the bath, reference state of the impurity or the size of the CI basis
(degree of expansion). While the choice of the impurity reference state is crucial
to minimize the computational effort (degree of CI expansion), we have checked
that the same impurity dynamics (spectra) is obtained for different choices. In
the present study we combine the spectra obtained from several impurity refer-
ence states (corresponding to different charge sectors of the discretized Anderson
impurity model). To benchmark the CI results, we compare the equilibrium local
density matrices (abundances of different Ni valence states) obtained with the
CI scheme to those from CT-QMC in Table 5.2. The Ni LB site is dominated
by d8 (S = 1) state, expected in ionic Ni2+. The SB site exhibits pronounced
charge fluctuations between d8 (≈ 54 %) and d7 (≈ 31 %) states. The ground
state of HSB

AIM is a spin singlet. This behavior matches well with the notion of
site-selective Mott state in RNiO3 [97, 101, 106].

5.4 Valence Spectra and Hybridization

Figures 5.3ac show the LDA+DMFT one-particle (1P) spectral densities in
the PMI and PMM phases. The gross features of the spectra in the two phases
are similar spectra to one another. The Ni 3d peak at −1.0 eV and O 2p peaks at
−2.5 eV and −5.0 eV, corresponding to non- and anti-bonding states, respectively,
match well with the experimental spectra of related nickelate LaNiO3 [183], see
Fig. 5.3c. The hybridization intensities V 2

γ,S(ε) = − 1
π
ℑ∆S

γ (ε), the amplitude of
electron hopping between the Ni 3d orbital γ (incl. spin) and the rest of the
system at energy ε are shown in Figs. 5.3bd. Since the hybridization density is
defined via the inverse of the local Green’s function, the valence spectrum and
V 2
γ,S(ε) are not proportional to each other in general. The top of the valence

band (bottom of the conduction band) is dominated by Ni LB (SB) 3d Eg states
in Fig. 5.3a, although the total Ni d-occupation is almost identical on the two
sites. The stronger Ni–O bonds at the SB site pushes the anti-bonding states
above EF , leading the sizable charge disproportionation in at low energies, that
is compensated by its bonding counterpart at higher energies (around −8 eV to
−4 eV). Somewhat counter-intuitively, we find larger V 2

γ,S(ε) above EF for LB
than for SB site, which follows from the overall low-energy behavior of VEg ,LB

reflecting the 1P spectral density on the SB site and vice versa. This behavior of
the hybridization function is essential for the understanding of XAS and RIXS
spectra.
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Figure 5.3: The 1P spectra calculated by LDA+DMFT in (a) PMI phase and (c)
PMM phase with experimental valence photoemission spectrum (Ref [183]). DMFT
hybridization intensities V 2

γ,S(ε) in (b) PMI phase and (d) PMM phase. In the PMI
phase, the 1P spectra and V 2

γ,S(ε) at the Ni SB site are multiplied by −1. Figure
and caption taken from [1].

5.5 Ni 2p X-ray Absorption and Resonant Inelastic

X-ray Spectroscopy of LuNiO3

Fig. 5.4 shows the calculated Ni L3-XAS spectra in the PMI and PMM phases,
together with the experimental data in the PMI phase of LuNiO3 [184]. The
experimental data exhibit a double-peak shape, composed of a sharp peak at
low energy ωin (≈ 853.5 eV) and a broader feature in high ωin (≈ 855 eV). The
LDA+DMFT spectra match the experiment quite well. Note that no by-hand
alignment of LB and SB spectra was applied. The low-ωin peak originates from
a 2p − 3d exciton on the LB side. The broader high-ωin peak originates from
the excited d electron delocalized to the bath orbitals. This process is dominant
on the SB site, but has a sizable contribution on the LB site as well. The
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delocalization of the excited electron from the LB site is facilitated by the large
hybridization intensity above EF (Fig. 5.3b). This is demonstrated in the inset
of Fig. 5.4 by setting Vγ,S(ε > 0) to zero. There, the broad high-ωin feature in
the LB spectra vanishes. The small peak, that remains at ≈ 856 eV is due to a
core-valence multiplet as observed in typical Ni2+ insulators like NiO [30, 43, 78].
The overlap of the LB and SB signals limits the site-selectivity of 2p XAS in
RNiO3 nickelates.

Figure 5.4: Ni L3-XAS in LuNiO3 calculated by LDA+DMFT in (a) PMI phase
and. (b) PMM phase. In the PMI phase, LB (SB) Ni site contribution is shown
in blue (red) color. The experimental Ni L3-XAS data (Ref. [184]) measured in
the PMI phase is shown together. The spectral broadening is considered using a
Lorentzian 400 meV (HWHM). The inset shows the site contribution calculated
with no a hybridization above EF in the XAS final states. The horizontal dashed
line marks the peak position of the LB XAS spectrum in the panel (a). Figure and
caption taken from [1].
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Figs. 5.5ab show the calculated Ni L3-RIXS spectra in the PMI and PMM
phases, respectively. The results reproduce the experimental observations by
Bisogni et al. [57] well: the RL feature (ωloss ≈ 1 eV) with a constant energy
loss ωloss coexists with the FL feature showing a constant ωout behavior, i.e., a
linear dependence of ωloss on ωin. In the PMI phase, the FL intensity is slightly
suppressed at ωin between the L3 double-peak (i.e. ωin ≈ 854 eV) compared to the
one in the PMM phase, which is also observed in the experiment [57]. Figs. 5.5cd
show the site-resolved RIXS spectra in the PMI phase. As we mentioned above,
the LB L3-XAS consists of two features marked as A (excitonic peak) and B
(continuum). Their different character is reflected in the ωin-dependence of the
LB RIXS spectra: RL feature (due to inter-atomic dd excitations) resonates
mainly at A, while the FL feature due to unbound electron-hole pairs gains
intensity with approaching B. The latter can be understood as the X-ray excited
electron, which leaves the LB site in the intermediate state of RIXS, giving
rise to an unbound electron-hole pair in the RIXS final state, see Fig. 5.5c.
The propensity of the excited electron to escape the TM site is encoded in the
hybridization intensity above the Fermi level. The SB signals in Fig. 5.5d shows
an intense charge-transfer excitation extending to higher ωloss in addition to a
less prominent FL feature, which merges with the charge-transfer excitations at
ωloss ≈ 3 eV. The bright and (vertically) broad charge-transfer feature reflects
stronger Ni–O hybridization on the SB site. Since the B-peak signal from the
LB site largely overlaps with the SB signal, Fig. 5.4, the site-selectivity cannot
be achieved for the corresponding ωin. In RNiO3, only the d–d excitations at the
A-peak can be associated with the LB site.
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5.5. NI 2P XAS AND RIXS OF LUNIO3 111

Figure 5.5: Ni L3-RIXS in LuNiO3 calculated by LDA+DMFT in (a) PMI phase
and (b) PMM phase. (c) LB and (d) SB Ni site contribution to the RIXS spectra
in the PMI phase. White lines in panels are Ni L3-XAS spectra calculated in
the corresponding phase or Ni site. The spectral broadening is considered using a
Gaussian 150 meV (HWHM). Figure and caption taken from [1].

5.5.1 Metal-Insulator Transition

Then, we zoom at very low ωloss to address the behavior reported in Ref. [57].
Figs. 5.6ab show the calculated low-ωloss RIXS spectra in the PMI phase and the
PMM phase, respectively. The photon energies ωin are set to around the main
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peak at the LB site. We find a significant difference, gap closing, between the
CD-insulating and metallic phases, which matches the experimental observation
of Bisogni et al [57]. Thus, RIXS can be used to study the reconstruction of the
low-energy electron-hole continuum due to the metal-insulator transition and
LDA+DMFT provides an accurate description of it.

Figure 5.6: Low-energy Ni L3-RIXS features in LuNiO3 in (a) PMI phase and (b)
PMM phase. Note that the calculated elastic peak (ωloss=0.0 eV) is removed. Figure
and caption taken from [1].

5.5.2 Charge Sector Resolved Spectra

In the following we show the XAS and RIXS spectra for PMI and PMM
phase for each charge sector with a charge-transfer energy of ∆CT = 0.5 eV.
This corresponds to a double-counting energy of µdc = −47.8278 eV for LB and
µdc = −47.5858 eV for SB in PMI phase and in PMM phase to µdc = −47.6960 eV.
Fig. 5.7 shows the Ni L3-edge XAS and RIXS spectra of three charge sectors
(Ni2+, Ni3+, Ni4+) for PMI (SB, LB) and PMM phase. The total spectra of
the LB site consists purely of the triplet state in the Ni2+ charge sector due to
the high energies of the doublet Ni3+ states and singlet Ni4+ states. In the SB
spectra only the singlet state of the Ni4+ charge sector contributes to the total
spectra. The final spectra in PMI phase are the sum of thermal averaged LB and
SB spectra, see Fig. 5.5a. In PMM phase all three charge sectors contribute in
thermal average to the total spectra, with 75 % Ni2+, 15 % Ni3+ and 10 % Ni4+,
see Fig. 5.5b.
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Figure 5.7: Ni L3-edge XAS and RIXS spectra of each charge sector for LB (left)
and SB (right) site. The XAS and RIXS spectra of LB site Ni2+ and SB site Ni4+

contribute to the final spectra of PMI phase. Figure and caption taken from [1].

5.6 Double-Counting Dependence

We show briefly the Ni L3-edge XAS and RIXS spectra for different charge
transfer energies ∆CT = {−1.0, 0.0, 0.5, 1.0} eV in PMI phase, see Fig. 5.8. The
spectra are calculated with 20 discrete hybridization levels below EF and 5 above
EF. The LB site with ∆CT = 0.5 eV has 10 discrete levels above EF.
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Figure 5.8: Ni L3-edge XAS and RIXS spectra for different charge transfer energies
∆CT = {−1.0, 0.0, 0.5, 1.0} eV in PMI phase. Figure and caption taken from [1].

5.7 Conclusions

We presented a computational study of L-edge X-ray absorption spectroscopy and
resonant inelastic X-ray scattering of the representative rare-earth nickelate LuNiO3.
LuNiO3 shows a charge disproportionation within the PMI phase with a triplet and
singlet ground state for LB and SB site, respectively. Our approach enabled us to
capture the charge disproportionation in the PMI phase and also the strong charge
fluctuations in the PMM phase. We discussed the spectra across the CD/metal-
insulator transition in LuNiO3 and reflected on the possibility of site-selectivity of
XAS and RIXS in the PMI phase of the compound. Our results showed, that the
two peaks, present in XAS spectra and reflected in RIXS of the CD insulating phase,
cannot be uniquely associated with the LB and SB sites. While the low-energy peak
originates from the LB site, the high-energy peak combines signals from both sites.
We showed that the shoulder above the main line observed in the XAS spectra of
the LB site consists of unbound electron-hole pairs which are propagating within
the crystal host. Thus, the shoulder is not only due to Coulomb multiplet excita-
tions, which provide only minor intensities. Furthermore, we studied the FL feature
observed in the RIXS spectra of the studied compound. There are subtle changes
in the FL features at the low-ωloss regime which can be used to identify the metal-
insulator transition as proposed in Ref. [57]. We also studied the charge resolved
spectra and the double-counting dependence of the spectra, to which especially the
gap in the low-ωloss regime of the FL feature is sensitive.
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Chapter 6

Summary and Outlook

We studied the application of the new core-level spectroscopy framework based on
the Anderson impurity model to a variety of transition metal oxides. We have
chosen transition metal compounds with different occupation number of valence
electrons in the ground state to test its wide applicability. The studies contain the
simulation of several core-level spectroscopies, X-ray photoemission spectroscopy
(XPS), X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scatter-
ing (RIXS). In core-level spectroscopy calculations, we were able to include the band
character of the bath states in the Anderson impurity model description. This is
important to understand the core-level spectra of transition metal compounds. For
example, we captured the non-local screening effects observed in XPS spectra. In
XAS spectra we observed pronounced delocalization effects of electrons which were
formally attributed to Coulomb multiplet effects. Our approach provided an accu-
rate description of both bound (dd) and unbound (electron-hole pair) excitations
in the RIXS spectra. We also studied charge disproportionated systems with two
inequivalent NiO6 octahedra. The spectra are intriguing and have a quantitative
agreement with experimental spectra.

In general, we confirmed that our approach provides a quantitative description
of core-level spectroscopies of transition metal oxides. We are even able to study
complex systems at relatively low computational cost. But there are still remaining
tasks concerning our approach. Although one is able to study a broad variety of
materials, the code is still not user friendly. A detailed knowledge and experience is
needed to generate inputs for the study of complex materials, which often includes
minor modifications of the code. Thus, a user friendly interface which automatically
generates input for at least simple systems should be provided for future studies.
The extension of the possible basis size of the Hamiltonian is always an important
aspect. We are limited by available memory size, but we can reduce the memory
demands by a further parallelization of the code. The study of large f -electron
systems, e.g. uranium compounds, would need an adjustment of the code, although
the foundation is already provided. Another idea is the application of the code
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for X-ray magnetic linear dichroism (XMLD), which would be of great interest to
obtain an even more comprehensive understanding of the electronic structure. A
more extensive project would be the implementation of momentum-depended RIXS
on the basis of the existing code.
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Appendix A

Methods

A.1 Lanczos Algorithm

When dealing with Hamiltonian’s of large rank the knowledge of a ’few’ lowest
(or largest) eigenvalues is for many calculations sufficient. Contrary to simply di-
agonalizing the matrix, which is often computationally not feasible, the Lanczos
algorithm provides a clever alternative. Let us consider a Hamiltonian Ĥ of rank
N and orthonormal basis states |Φj〉 with j = 0, 1, 2, . . . , N . The Lanczos algo-
rithm transforms the Hamiltonian with the initial basis set {|Φj〉} iteratively into
a tridiagonal form with a new basis {|xi〉} and i = 0, 1, 2, . . . k; k ≤ N . Basis
vectors {|xi〉} are generated by applying the Hamiltonian Ĥ to a randomly cho-
sen starting vector |x0〉, also called seed state. This creates Krylov basis states
{|kN〉 = ΠN

i=0Ĥ
i |x0〉}, which are not orthogonal. The Lanczos algorithm builds up

on the Krylov states by including the orthonormalization. The orthogonalization of
a state |xi〉 depends only on its two preceding states (|xi−1〉 , |xi−2〉). By normalizing
these states {|xi〉} one obtains {|fi〉}. If k < N the true eigenvalues of Ĥ can be
approximated by the eigenvalues of the tridiagonal matrix. It turns out, that after
a few iterations the eigenvalues of the tridiagonal matrix converge to the lowest (or
largest) eigenvalue of the Hamiltonian. This is due to the analogy of the Lanczos
algorithm to the power method. Let us consider a Hamiltonian with eigenspectrum
of |E0| > |E1| > · · · > |EN |. Successive application of the Hamiltonian onto any
state not orthogonal to the ground state results in

|xk〉 = Ĥk |x0〉 =
N∑

j=0

Ek
j cj |Φj〉 = Ek

0

[
c0 |Φ0〉+

N∑

j=1

(
Ej

E0

)k

cj |Φj〉
]
−−−→
k→∞

Ek
0 c0 |Φ0〉 .

(A.1)
Thus as long as the seed state |x0〉 contains the ground state |Φ0〉, only the ground
state ‘survives’ [21, 185].
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120 APPENDIX A. METHODS

Figure A.1: Scheme of the Lanczos algorithm. Figure adapted from [185].

The Lanczos algorithm operates like follows: First a random seed state |x0〉
state must be generated and normalized |f0〉. To obtain a subsequent state |x1〉, we
apply the Hamiltonian Ĥ onto the seed state Ĥ |f0〉 and orthogonalize this state by
subtracting its projection onto the initial state, see left panel of Fig. (A.1),

|x1〉 = Ĥ |f0〉 − 〈f0|Ĥ|f0〉 |f0〉 . (A.2)

By subsequent normalizing of |x1〉 we obtain a state |f1〉 = |x1〉
b1

which is orthonormal

to |f0〉. In the next iteration, state |x2〉 is obtained by applying the Hamiltonian Ĥ
onto state |f1〉 and by orthogonalization to the two preceding states |f1〉 and |f0〉,
see right panel of Fig. (A.1),

|x2〉 = Ĥ |f1〉 − 〈f1|Ĥ|f1〉 |f1〉 − 〈f0|Ĥ|f1〉 |f0〉 . (A.3)

By normalization of |x2〉 we obtain |f2〉. The essence of the Lanczos algorithm is,
that by orthogonalizing the next state |x3〉 to the previous states, the projection
〈f0|Ĥ|f2〉 ≡ 0 vanishes, which is valid for all succeeding iterations. Thus, this
procedure results in

|xi+1〉 = Ĥ |xi〉 − ai |xi〉 − b2i |xi−1〉 , (A.4)

where

ai =
〈xi|Ĥ|xi〉
〈xi|xi〉

(A.5)

and

b2i =
〈xi−1|Ĥ|xi〉
〈xi−1|xi−1〉

, (A.6)
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A.2. CONTINUED FRACTION EXPANSION 121

with b0 = 0. The approximate Hamiltonian Ĥ in the basis {|fi〉} reads

Ĥ =
k∑

i=0

ai |fi〉 〈fi|+ bi+1 [|fi〉 〈fi+1|+ |fi+1〉 〈fi|] , (A.7)

which is a tridiagonal matrix

H =




a0 b1
b1 a1 b2

b2 a2
. . .

. . . . . . bk
bk ak



. (A.8)

This procedure is continued until the convergence of the lowest (or highest) eigen-
value. The ground state |GS〉 in its initial basis |Φj〉 can be reconstructed from the
entries ci of the eigenvector |f̃i〉 of the corresponding lowest eigenvalue

|GS〉 =
n∑

i=0

ci |f̃i〉 . (A.9)

To obtain the first excited state, one creates a new seed state, where the ground
state |GS〉 is projected out, e.g. by Gram-Schmidt, and rerun the procedure of the
Lanczos algorithm. This process can be done repeatedly to obtain multiple excited
states.

A.2 Continued Fraction Expansion

The continued fraction expansion is related to the inversion of tridiagonal matrices.
Here we consider the inverse of a tridiagonal matrix 1

H
, where H is obtained by e.g.

the Lanczos algorithm. We want to calculate the first diagonal element of the inverse
of the matrix, e.g

(
1
H

)
00

. To evaluate this element we split the tridiagonal Matrix
H into various subspaces and use of a set of special determinants Di. D0 is the
determinant of the whole tridiagonal matrix H; D1 is the determinant of H, where
the first row and first column are removed from the matrix; D2 is the determinant
of H when additionally the second row and second column are removed, and so on.
We use Cramers rule to obtain the diagonal element

(
1
H

)
00

= D1

D0
. By using the

introduced determinants, this results in [185]
(

1

H

)

00

=
1

a0 − b21
1

D1/D2

, (A.10)

where H is represented by Eq. A.8. We inserted D0 = a0D1 − b21D2 by developing
the determinant D0 along the first row. The expression D1/D2 can be evaluated
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with D1 = a1D2 − b22D3. By iterating over all expressions Di/Di+1 we obtain a
continued fraction expansion

(
1

H

)

00

=
1

a0 −
b21

a1 −
b22

a2 − . . .

, (A.11)

which is a convenient way to calculate objects like spectral functions of the form

F (ω) = − 1

π
ℑ
[
〈x| 1

ω+ − Ĥ
|x〉

]
, (A.12)

where Ĥ is the Hamiltonian and ω+ = ω + i0+. The term in the brackets has the
form

〈x| 1

ω+ − Ĥ
|x〉 =

〈x|x〉

ω+ − a0 −
b21

ω+ − a1 −
b22

ω+ − a2 − ...

, (A.13)

where we consider that the Hamiltonian is calculated by the Lanczos algorithm with
|x〉 as seed state. Usually, the continued fraction expansion converges after a few
hundred iterations, depending on the system size.

A.3 Resolvent Formalism of Electronic Systems

The resolvent formalism of electronic systems provides a systematic way to obtain
the electronic structure of a system with initially large or even infinite number of
basis functions. The number of basis functions is reduced progressively within this
scheme by creating subsequently new basis states describing an effective model. We
start the procedure with a Hamiltonian Ĥ with dimension N which describes the
electronic structure of the system. Then we divide the system into two sub-blocks

Ĥ
A

and Ĥ
B

with dimension NA and NB = N − NA, respectively [21, 185]. The
Hamiltonian of the system reads

Ĥ = Ĥ0 + Ŵ =

[
Ĥ

A
0

0 Ĥ
B

]
+

[
0 Ĥ

AB

Ĥ
BA

0

]
, (A.14)

where Ĥ
AB

and Ĥ
BA

connects the two Hamiltonians Ĥ
A

and Ĥ
B

in subspace A and
B. The diagonal blocks of Ĥ are contained in the operator Ĥ0. The Hamiltonian
can be further transformed into additional subspaces which are only connected by
their preceding and succeeding subspaces. I.e. by iteratively transforming subspace

B into e.g. subspace B′ and subspace C, or transforming Ĥ
B

into two blocks Ĥ
B′
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and Ĥ
C
, and so on, one obtains a tridiagonal shape of Ĥ which is an implicit

characteristic of the Lanczos algorithm. For pedagogical reasons we stick in this
section to two sub-blocks. We use the identity

ε− Ĥ0 = (ε− Ĥ0 − Ŵ ) + Ŵ , (A.15)

where we multiply from left 1

ε−Ĥ0

and from right 1

ε−Ĥ0−Ŵ
which results in

1

ε− Ĥ0 − Ŵ
=

1

ε− Ĥ0

+
1

ε− Ĥ0

Ŵ
1

ε− Ĥ0 − Ŵ
. (A.16)

This equation reminds of the Dyson equation, see Eq. 2.65. We note that the
expressions here are operators, compared to the scalar (matrix) valued form of the
Dyson equation used in DMFT. We rewrite Eq. A.16 in terms of resolvents F̂ and
F̂0

F̂ = F̂0 + F̂0Ŵ F̂ . (A.17)

By using the Hamiltonian in its sub-block shape, Eq. A.17 reads
[
F̂

A
F̂

AB

F̂
BA

F̂
B

]
=

[
F̂

A

0 0

0 F̂
B

0

]
+

[
F̂

A

0 0

0 F̂
B

0

][
0 Ĥ

AB

Ĥ
BA

0

][
F̂

A
F̂

AB

F̂
BA

F̂
B

]
, (A.18)

where Ŵ connects the two sub-blocks Ĥ
A

and Ĥ
B
. The matrix elements of Eq. A.18

provide the following four equations

F̂
A
= F̂

A

0 + F̂
A

0 Ĥ
AB

F̂
BA

(A.19)

F̂
B
= F̂

B

0 + F̂
B

0 Ĥ
BA

F̂
AB

(A.20)

F̂
AB

= F̂
A

0 Ĥ
AB

F̂
B

(A.21)

F̂
BA

= F̂
B

0 Ĥ
BA

F̂
A
. (A.22)

These equations can be solved to provide an expression for the resolvent in subspace
A

F̂
A
=

1

ε− Ĥ
A − Ĥ

AB 1

ε− Ĥ
B
Ĥ

BA
. (A.23)

One can now repeat this splitting for ĤB. This can be done repeatedly which
leads to a continued fraction expansion. In practice, the splitting of the sub-blocks
is continued until the expansion converges. Now let us focus on the term in the
denominator of Eq. A.23. This term can be viewed as effective or renormalized
Hamiltonian

Ĥeff = Ĥ
A − Ĥ

AB 1

ε− Ĥ
B
Ĥ

BA
. (A.24)
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The effective Hamiltonian Ĥeff = Ĥ
A
+ V̂

A
consists of Ĥ

A
and an operator V̂

A

V̂
A
= Ĥ

AB 1

ε− Ĥ
B
Ĥ

BA
. (A.25)

V̂
A

describes an effective interaction of the remaining system ĤB with the sub-

system ĤA [185]. In physical terms V̂
A

describes the hopping of a particle from
subspace A into subspace B, followed by the propagation of the particle within
subspace B and the returning into subspace A. This scheme formally decouples

the resolvent F̂
A

in Eq. A.23 from subspace B. In practice one applies a state,
e.g. ground state, from left and right to the resolvent. The resolvent formalism is
connected to the zero temperature Green’s function by

GA
ij(ε) = 〈GS|ciF̂

A
(ε)c†j|GS〉 , (A.26)

where c†i and cj are creation and annihilation operators, where the indices i and j
denote to e.g. site, orbital and spin. In practice, Lanczos algorithm is used to trans-
form the Hamiltonian Ĥ into sub-blocks with a tridiagonal shape. The continued
fraction expansion combined with the orthogonal Krylov basis is used iteratively to
increase the number of subspaces until the convergence of the continued fraction
expansion. Usually around 200–500 iterations are used.
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Appendix B

Tensor Operators

B.1 Crystal Field Potential

The crystal field potential vcf(r) = vcf(r, θ, φ) is generated in the most general
case by a charge density ρ(R) = ρ(R,Θ,Φ) describing electrons of the crystal
host [21, 112, 113, 186, 187]

O(r) = vcf(r) =

∫
d3R

ρ(R)

|R− r| . (B.1)

Since the basis functions can be expressed in terms of atomic-like orbitals and thus
spherical harmonics, we expand the Coulomb potential vcf(r) in terms of Legendre
polynomials

1

|R− r| =
∞∑

k

rk<
rk+1
>

Pk(cosω), (B.2)

where ω is the angle between R and r. The r< = min(|R|, |r|) and r> = max(|R|, |r|)
are the lesser and greater ones of R = |R| and r = |r|. The addition-theorem
for spherical harmonics, which is a generalization of the trigonometric relation
cosω ≡ cosΘ cos θ+sinΘ sin θ cosΦ− φ, provides an expression for Legendre poly-
nomials in terms of spherical harmonics

Pk(cosω) =
4π

2k + 1

k∑

q=−k

Y ∗
kq(Θ,Φ)Ykq(θ, φ), (B.3)

with the identity of spherical harmonics Ykq = (−1)qY ∗
kq. This expansion and the

expression of renormalized spherical harmonics

Ck
q (θ, φ) =

√
4π

2k + 1
Ykq(θ, φ), (B.4)

result in the crystal field potential

vcf(r) =
∞∑

k

k∑

q=−k

Ck
q (θ, φ)

∫
d3Rρ(R)

rk<
rk+1
>

Ck
q (Θ,Φ)∗. (B.5)
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The renormalized spherical harmonics provide a practical way to evaluate the crystal
field potential in spherical symmetry. In practice, either further simplifications are
applied, e.g. using point charges with fixed positions or the crystal field potential
is obtained by first principle calculations.

B.2 Spin-Orbit Coupling

The matrix elements of the spin-orbit coupling read 〈lm1
2
s|l · s|lm′ 1

2
s′〉, where m

and s are the magnetic quantum number and the secondary spin quantum number,
respectively. We express the angular momentum operator l and the spin momentum
operator s in terms of ladder operators

l1 = − lx + ily√
2

≡ − l+√
2
, (B.6)

l−1 =
lx − ily√

2
≡ l−√

2
, (B.7)

l0 = lz, (B.8)

where the spin momentum operator s is defined equivalently. The inner product of
vector operators reads

l · s =
∑

q

(−1)ql−qsq = −l−1s1 + l0s0 − l1s−1, (B.9)

where l0s0 are diagonal elements with no change of magnetic m and spin s quantum
numbers. The off-diagonal elements l−1s1 and l1s−1 change the magnetic and spin
quantum number by ±1. This results in a total angular momentum conservation
J = l + s. The matrix elements

〈lm,
1

2
s|l · s|lm′,

1

2
s′〉 =

∑

q

(−1)q 〈lm|l−q|lm′〉 〈1
2
s|sq|

1

2
s′〉 (B.10)

of the angular momentum tensor operators T 1
q ∈ {lq, sq} are calculated by the

use of the Wigner-Eckhart theorem which can be used for both, angular and spin
momentum

〈lm|T 1
q |l′m′〉 = (−1)l−ml 〈l||T 1||l′〉

(
l 1 l′

−m q m′

)
, (B.11)

with the reduced matrix elements for the angular momentum operator (spin mo-
mentum operator)

〈l||T 1||l′〉 = δll′
√

l(l + 1)(2l + 1). (B.12)

The selection rules of 3J symbols

(
A B C
a b c

)
provide finite values for

|A− B| ≤ C ≤ A+B, (B.13)

a+ b+ c = 0. (B.14)
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B.3 Coulomb Interaction

The two-particle matrix element of the Coulomb interaction reads

〈l1m1l2m2|
1

|r′ − r| |l3m3l4m4〉 =
∑

k

F k(shell1, shell2)× fk(l1m1l2m2, l3m3l4m4),

(B.15)
where we factorized the potential in radial and angular part in the basis of spherical
harmonics. The mi are magnetic moments of the corresponding angular momentum.
The radial parts of the valence-valence Coulomb interaction read

F k(3d, 3d) =

∫ ∞

0

∫ ∞

0

drdr′R2
3d(r)R

2
3d(r

′)
rk<
rk+1
>

r2r′2, (B.16)

which are so-called Slater integrals. The R3d(r) are the radial parts of the TM 3d
orbitals. The radial part of the direct core-valence interaction reads

F k(2p, 3d) =

∫ ∞

0

∫ ∞

0

drdr′R2
2p(r)R

2
3d(r

′)
rk<
rk+1
>

r2r′2. (B.17)

The exchange part reads

Gk(2p, 3d) =

∫ ∞

0

∫ ∞

0

drdr′R2p(r)R3d(r)R2p(r
′)R3d(r

′)
rk<
rk+1
>

r2r′2. (B.18)

The R2p and R3d correspond to the radial part of the TM 2p and TM 3d orbitals,
respectively. The angular integrals of the Coulomb interaction read

fk(l1m1l2m2, l3m3l4m4) =
∑

q

(−1)q 〈l1m1|Ck
−q|l3m3〉 〈l2m2|Ck

q |l4m4〉 , (B.19)

which can be evaluated by the Wigner-Eckhart theorem, see Eq. B.11,

fk(l1m1l2m2, l3m3l4m4) = δs1,s3δs2,s4(−1)l1+l2−m2−m4 〈l1||Ck||l3〉 〈l2||Ck||l4〉

×
(

l1 k l3
−m1 m1 −m3 m3

)(
l2 k l4

−m2 m2 −m4 m4

)
.

(B.20)

The reduced matrix elements 〈l||Ck||l′〉 of the tensor operators of the Coulomb
interaction are represented by

〈l||Ck||l′〉 = (−1)l
√

(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)
, (B.21)

where the selection rules of the 3J symbol provide finite values for

|l − l′| ≤ k ≤ l + l′, (B.22)

and
l + k + l′

!
= even. (B.23)
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