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Abstract 

The airport city of Vienna International Airport 

consists of more than 125 energy-consuming objects 

– mostly buildings but also infrastructure. In order to 

ensure their energy-efficient operation, digital 

models are needed that predict the energy 

consumption that the objects should have. Multiple 

linear regression can provide such models if 

historical data is available to train regression models 

with. In our approach, we explore how regression 

models must be set up for the case of airport objects. 

Further, we investigate how the prediction 

performance of multiple linear regression can be 

improved by combining it with other methods. 

Introduction 

Airports such as Austria’s largest airport, Vienna 

International Airport, are comparable to small cities 

in terms of size, energy consumption, and 

complexity. 

While the term “airport” generally refers to the 

buildings and infrastructure that are necessary to 

provide aeronautical services, the term “airport city” 

also refers to buildings and infrastructure in relatively 

close proximity that interact with the airport 

(Kasarda, 2006). 

The whole Vienna airport city consists of more than 

125 objects that are connected to and supplied by the 

airport’s electricity grid, heating grid, or cooling grid. 

Most of the objects are separate buildings, some are 

parts of the general infrastructure (e.g. the apron 

lighting), and some are a set of buildings that share 

the same energy meter. In the past years the operator 

of the Vienna International Airport, the “Flughafen 

Wien Aktiengesellschaft”, initated several projects 

that aim for the reduction of the energy consumption 

in the airport city. For instance, in the project 

“Virtuelle Flughafen Stadt” (Virtual Airport City) a 

virtual model of the airport city regarding to energy-

consumption was created (Forster et al., 2018). In the 

project “Smart AirportCity” an energy monitoring 

system was established in order to collect the airport 

city’s energy meters in one single system (Lindinger 

et al., 2020). 

The overall goal of such projects is to identify 

abnormal energy consumption and ensure an energy-

efficient operation of buildings and infrastructure to 

avoid unnecessary waste of resources. For this 

purpose, the normal daily consumption must be 

known, and due to the large number of objects in 

airport cities, the creation of detailed consumption 

models (e.g., models that can be used for 

hygrothermal building simulation) is not feasible. 

Therefore, there is the need for another type of model 

that indicates nominal energy consumption based on 

historical data, the so-called data-driven model. 

The research field of machine learning offers several 

methods for data-driven modelling – each of them 

with their unique advantages and disadvantages. One 

of the most basic methods is the multiple linear 

regression. Its simplicity, its speed, and the fact that 

it is not some sort of black box or dependent on 

random processes are its main advantages (Hastie et 

al., 2017). By using multiple linear regression with 

the method of “one-hot enconding”, it is possible to 

achieve remarkable prediction performances (Price, 

2010, Granderson & Price, 2012). In building science 

multiple linear regression models with a certain type 

of “one-hot encoding” are often known as LBNL 

(Lawrence Berkeley National Laboratory) models. In 

those models the timestamp information is translated 

to a set of “time-of-week” indicators. Basically, the 

time and the weekday of each datapoint are “one-hot 

encoded” (Price, 2010). 

In our approach, we show which predictor variables 

are useful to model the energy consumption of 

objects in the airport city. For this purpose the 

prediction performance of LBNL models and four 

alternative models, which facilitate multiple linear 

regression but do not use “one-hot encoding”, are 

evaluated. 

Method 

To build multiple linear regression models that can 

predict the course of energy consumption of objects, 

time series of their energy consumption and 

parameters to be used as predictor variables are 

needed. As the heating and cooling energy 

consumption of buildings is primarily determined by 
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weather conditions, the time series should cover a 

period of time that includes all the different weather 

conditions that normally occur at the location of the 

facilities, i.e., at least one full year. 

Thus, for the analysis of the energy consumption of 

airport cities, we now take the weather data and 

15 min load profiles from the objects of the airport as 

basic data set. This data set is extended by additional 

time-related information that is known to influence 

the intensity of aeronautical services and therefore 

the energy consumption of certain objects: 

• Time – the Central European Time or the 

Central European Summer Time encoded as 

categorical variable with 15 min time 

resolution steps resulting in 96 possible 

values: 00:00, 00:15, …, 23:30, 23:45 

• Weekday – the day of the week encoded as 

categorical variable with 8 possible values: 

Monday (1) to Sunday (7) and Holiday (8) 

• Bridge day – information whether the day is 

a bridge day or not encoded as binary 

variable: Normal day (0) and bridge day (1) 

• Free – information whether the day is part of 

the school holidays or not encoded as binary 

variable: No school holiday (0) and school 

holiday (1) 

• Flightplan – information whether the 

Airport’s winter or the summer flightplan 

was valid during this day encoded as binary 

variable: Winter flightplan (0) and summer 

flightplan (1) 

The weather data consists of the following variables: 

• Temperature – the air temperature in °C 

• Radiance – the global horizontal radiance in 

W/m² 

• Humdidity – the relative humidity in % 

• Pressure – the atmospheric pressure in hPa 

• Rain – information whether it was raining or 

not encoded as binary variable: No rain (0) 

and rain (1) 

The time- and weather-related data are used as a 

training set for five different regression models 

(ATR, RT, RiT, ARiT, LBNL), which are examined 

for their applicability in terms of load profile 

prediction. In the following, we describe the general 

approach for the training of and prediction with the 

models and then their specific application steps. 

While the LBNL models are plain multiple linear 

regression models with one-hot encoding, the other 

types of models are combinations of multiple linear 

regression with two other methods (filtering, 

averaging). These combination models are basically a 

step-wise application of the same methods in 

different orders. After one method is applied on a 

load profile, it is immediately used to predict the 

same load profile. The difference between the input 

load profile and the predicted load profile, the 

“residual load profile”, is then used as input for the 

next method. The idea behind this step-wise 

approach is that different methods can grasp different 

aspects that influence the load profiles. While the 

multiple linear regression primarily models the 

influence of the weather, the other methods model 

the temporal aspects. 

In order to predict energy consumption with these 

combination models, the steps are simply reversed 

and the outputs of the respective methods added to 

form the predicted load profiles. To ensure that the 

predictions stay in a plausible range, they were 

limited to the minimum and maximum values that 

were present in the training data set of a load profile. 

The heart-peace of every model is the multiple linear 

regression, which is trained to predict a load profile 

or a residual load profile. Here the weather data 

variables and the variable “bridge day” are used as 

predictor variables. If interaction between those 

variables is allowed, the token in the model name is 

“Ri”, otherwise it is “R”. In order to predict with the 

multiple linear regression, it is simply provided with 

new weather data and the information whether the 

day is a bridge day or not. 

The first combination method is the calculation of the 

average daily load profile. This average daily load 

profile is calculated out of all days that are present in 

the training data set – regardless of the weekday or 

other time-related information. If this method is used, 

the token in the model name is “A”. In order to 

predict with this method, it must be provided with 

information about the time and then the 

corresponding average load profile value is returned. 

The second combination method is the calculation of 

the average daily load profile for each type of day. 

To accomplish this, the training data is filtered for 

each possible combination of the variables 

“weekday”, “free”, and “flightplan”. An average 

daily load profile is then calculated for each of these 

32 types of days. If this method is used, the token in 

the model name is “T”. In order to predict with this 

method, it must be provided with the information of 

the variables “weekday”, “free”, “flightplan”, and the 

time and then the corresponding average load profile 

value of the respective type of day is returned. 

ATR model 

1. The average daily load profile (A) is 

calculated out of one load profile. 

2. The “residual load profile” from step 1 is 

then filtered according to each type of day 



                                                                                                                                                   

 

 

and the average load profile for this type of 

day is calculated (T). 

3. A multiple linear regression without 

interaction (R)  is then trained to predict the 

“residual load profile” from step 2. 

RT model / RiT model 

1. A multiple linear regression without 

interaction (R) or with interaction (Ri) is 

trained to predict one load profile. 

2. The “residual load profile” from step 1 is 

then filtered according to each type of day 

and the average load profile for this type of 

day is calculated (T). 

ARiT model 

1. The average daily load profile (A) is 

calculated out of one load profile. 

2. A multiple linear regression with interaction 

(Ri)  is then trained to predict the “residual 

load profile” from step 1. 

3. The “residual load profile” from step 2 is 

then filtered according to each type of day 

and the average load profile for this type of 

day is calculated (T). 

LBNL model 

The LBNL model is simply a multiple linear 

regression model, where the variables “time” and 

“weekday” are one-hot encoded and all other 

variables  are used as-is. 

Model selection 

The application of the five models was carried out on 

the objects of the Vienna International Airport. The 

models were trained with synthetically generated 

load profiles for three types of energy (heating, 

cooling, electricity), which were originally derived 

from energy meter data from 2016. Since the 2016 

data consists only of detailed energy readings with a 

temporal resolution of 15 min for certain nodes of the 

supply grid infrastructure (e.g., transformers) and 

otherwise monthly energy meter readings, synthetic 

load profiles (15 min resolution) were calculated 

from these detailed load profiles, the monthly 

readings, and additional information (e.g., which 

object is connected to which node) (Lindinger 2020). 

The training data used to develop the models is 

almost the whole data set from 2016. The only data 

that is not included are the days that were semi-

randomly sampled for the test data set. For each 

possible combination of the variables “weekday”, 

“free”, and “flightplan” one day was randomly 

sampled from the days that fit the combination. This 

led to a test data set encompassing 32 days and a 

training data set encompassing 334 days. 

All available load profiles of all airport city objects 

are modelled for each type of model. The prediction 

performance of all five types of models is estimated 

through repeated random subsampling validation 

(100 repetition cycles). 

Results 

Figure 1 shows the prediction performances that the 

five models achieved during the 100 repetition 

cycles. Every model was trained and evaluated with 

data from each of the 198 load profiles (124 

electricity, 20 cooling, and 54 heating) – i.e. the 

boxplot of each model is based on 19.800 values. 

The prediction performance is presented by two 

indicators, namely the coefficient of determination 

(R²) and the deviation of the cumulative predicted 

consumption from the cumulative real consumption 

(short: deviation). 

Due to the calculation method for synthetical load 

profiles of 2016, the load profiles of smaller objects 

appear to be random noise instead of showing a 

distinct daily pattern. Thus, the prediction 

performance is especially poor when predicting such 

small objects. To compensate for this, Figure 1 is 

extended by an additional view, in which only the 

prediction performance of the larger objects, that are 

responsible for 95% of the respective energy 

consumption, are shown. In this view the number of 

values the boxplot of each model is based upon 

declines to 9.600. A comparison of this view with the 

original view shows that there are less outliers and 

that generally, the prediction performance increases. 

When analyzing the deviation, it becomes obvious 

that, regardless of the model type, with a 99.7% 

confidence the deviation will approximately be 

between -9% and 10% (95% view: -8% and 8%). 

Moreover, in 50% of the cases, the deviation can be 

expected to be between -2% and 3% (both views). 

I.e. even if the prediction of a load profile does not 

match the daily pattern, the cumulative predicted 

energy consumption is not too far off. 

The R² score can come from a much broader band of 

possible values. While most of the values can be 

expected to be in a range between 0.5 and 0.8, the 

range extends from near 0.0 and 1.0 at a 99.7% 

confidence interval. Some outliers are even below 

0.0, indicating that in those cases the predictions are 

worse than random. Considering the origin of the 

synthetical load profiles and the fact that the number 

of outliers is low enough to be deemed insignificant, 

these results do not void the usefulness of the 

prediction models. When comparing the R² scores of 

the different models in Figure 1, it becomes obvious 

that the prediction performance of the ATR model is 

slightly below the performance of the LBNL model. 

Contrarty to that, the RT, RiT, and ARiT models 

show a slightly better performance. 



                                                                                                                                                   

 

 

 

Figure 1: Boxplots of the prediction performances that were achieved by each of the five multiple linear 

regression model types when predicting the energy consumption of the airport cities’ objects during 100 cycles 

of repeated random subsampling 
 

The prediction performances that each model 

achieved during the 100 repetitions were averaged 

for each load profile and ranked in order to determine 

which model should be used to predict the load 

profile of one object and energy type. Table 1 and 2 

illustrate the results of this ranking. While Table 1 

shows the results of a ranking according to the 

coefficient of determination, Table 2 shows the 

results of the ranking according to the lowest 

absolute deviation. Both tables show that there is not 

one “best” model that outperforms all other models. 

With the exception of the RT model, there is always 

at least one load profile where a model shows better 

prediction performance than the other models. 

Considering that, as shown in Figure 1, the absolute 

deviation is generally low, the coefficient of 

determination is deemed to be the correct indicator to 

decide upon the best model for a load profile. 

As can be seen in Table 1, it appears that electricity 

load profiles are best modelled with ARiT or LBNL, 

sometimes ATR models. The RiT models seem to be 

the best models to model cooling or heating energy 

load profiles. The reason for that might be that RiT 

models are better suited to model weather-dependent 

consumption while the other models are better suited 

to model time-dependent consumption. 
 

Table 1: Number of load profiles where each model 

showed the best prediction performance according to 

the coefficient of determination (R²) 
 

type of 

energy 

consumption 

number of load profiles where each 

model on average showed the 

highest coefficient of determination 

during the 100 repetitions 

ATR RT  RiT ARiT LBNL 

electricity 16 0 6 68 34 

cooling 0 0 13 3 4 

heating 0 0 43 0 11 
 

 

Table 2: Number of load profiles where each model 

showed the best prediction performance according to 

the absolute deviation 
 

type of 

energy 

consumption 

number of load profiles where 

each model on average showed 

the lowest absolute deviation 

during the 100 repetitions 

ATR RT  RiT ARiT LBNL 

electricity 20 4 21 35 44 

cooling 0 1 17 2 0 

heating 5 0 28 1 20 



                                                                                                                                                   

 

 

Table 3 and 4 give an overview over the prediction 

performance of the whole airport city when each of 

the load profiles is modelled by the respective best-

performing model. While the average results of the 

100 repetitions portray the general magnitude that 

can be expected, the result of one random repetition 

illustrates what performance can be expected when 

the models are trained once and then used in reality. 

Considering only the objects that cause 95% of the 

consumption, the majority of the predictions can be 

expected to have a R² score above 0.7. In case of 

electricity load profiles, it can be expected that the 

absolute deviation is below 5%. In case of cooling 

and heating load profiles, the absolute deviation will 

most likely be below 10%. 

A detailed analysis of the underyling results revealed 

that the models performed best when a load profile 

showed a very strong time-dependency and/or 

weather dependency. 

Figure 2 illustrates how well the models’ predicted 

load profiles fit to the corresponding profiles from 

the test data in three cases: (a) shows a load profile of 

a building which is strongly interconnected with 

aeronautical services and thus very dependent from 

time tables. It can be seen that all five models could 

predict the profiles very well – the R² scores are all 

above 0.85. (b) is the load profile of a building which 

is additionally cooled by local fan coils. Therefore, 

the electricity consumption of this building is 

dependent from the building’s usual usage and it is 

also dependent from the weather. The prediction 

performance of the models varies much more – some 

models can predict the profiles significantly better 

than other models. (c) shows the load profile of one 

of the smaller objects, which is not part of the objects 

that cause 95% of the electricity consumption. The 

real load profile from the test data appears quite 

random and thus, the models fail to provide well-

fitting predictions. 

Table 3: Prediction performances (R²) achieved in the whole airport city when each of the load profiles is 

modelled by the model that showed the best prediction performance during the 100 repetitions 
 

coefficient of determination 

(R²) of the predicted 

consumption 

average results of 100 repetitions results of one random repetition 

all objects 

objects that cause 

95% of the 

consumption 

all objects 

objects that cause 

95% of the 

consumption 
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≥ 0.95   2 0 5 1 0 2 1 0 0 1 0 0 

≥ 0.9 < 0.95 7 0 12 3 0 8 5 0 16 2 0 10 

≥ 0.8 < 0.9 20 11 19 11 7 13 17 3 16 9 3 11 

≥ 0.7 < 0.8 22 4 5 12 2 4 31 7 10 13 3 6 

≥ 0.6 < 0.7 29 1 6 10 1 3 22 5 4 13 3 2 

≥ 0.5 < 0.6 14 3 3 5 3 1 15 2 3 2 2 2 

≥ 0.4 < 0.5 9 1 2 3 1 1 6 2 0 2 2 0 

≥ 0.3 < 0.4 6 0 2 0 0 0 9 1 1 4 1 1 

≥ 0.2 < 0.3 9 0 0 4 0 0 7 0 1 2 0 0 

≥ 0.1 < 0.2 4 0 0 0 0 0 7 0 2 1 0 0 

  < 0.1 2 0 0 1 0 0 4 0 1 1 0 0 
 

Table 4: Prediction performances (absolute deviation) achieved in the whole airport city when each of the load 

profiles is modelled by the model that showed the best prediction performance during the 100 repetitions 
 

absolute deviation of the 

cumulative predicted 

consumption from the 

cumulative real 

consumption 

average results of 100 repetitions results of one random repetition 

all objects 

objects that cause 

95% of the 

consumption 

all objects 

objects that cause 

95% of the 

consumption 
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  ≤ 1% 25 0 0 20 0 0 56 3 10 30 2 6 

> 1% ≤ 2% 52 0 4 21 0 4 23 1 5 9 1 3 

> 2% ≤ 5% 33 12 31 6 10 22 28 3 18 8 2 12 

> 5% ≤ 10% 9 6 15 3 3 5 10 10 13 0 8 9 

> 10% ≤ 20% 5 2 4 0 1 1 6 3 7 3 1 2 

> 20%   0 0 0 0 0 0 1 0 1 0 0 0 



                                                                                                                                                   

 

 

 

Figure 2: Examples of the models’ prediction 

performance in three different cases 

Generally, unique spikes that occurred independent 

from the time and weather cannot be replicated by 

the models. Further, structural or operational changes 

that influence the energy consumption (e.g., office 

space that is rented or not) can also not be replicated 

in the presented model configurations. Due to the 

nature of the underlying synthetically generated load 

profiles, it is assumed that the models would perform 

better if they would be trained with the real 

monitoring data from each object. Nevertheless, the 

general prediction performance achieved in the 

whole Vienna airport city is on a level that is deemed 

good enough for the usage of the models as reference 

for the nominal energy consumption of each object 

and energy type. 

Conclusion 

Multiple linear regression is a useful tool to predict 

the nominal energy consumption load profiles of 

buildings and infrastructure. The prerequisite for that 

is the availability of historical data and ensuring this 

data contains information about parameters that 

affect energy consumption – e.g., time-related 

information or weather data. 

Five different models were analyzed. Generally, none 

of those models is the one best model for all purposes 

– instead, the decision on the best model had to be 

done for each load profile. When each of the load 

profiles is modelled by the respective best-

performing model, the predicted energy consumption 

of the majority of airport city objects can be expected 

to have an R² score above 0.7. The absolute deviation 

of the cumulative predicted consumption from the 

cumulative real consumption can be expected to be 

below 10%. 

The presented models and their underlying methods 

are also applicable to other load profiles from other 

energy consumers – especially, if they have a strong 

time- and/or weather dependency. Some of the 

predictor variables, e.g. the airport-specific 

“flightplan“, will be useless for the modeling of non-

airport energy consumers. They should be removed 

or swapped with other predictor variables. 
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