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ABSTRACT
A wheelset of a rail vehicle may experience stability issues in curves
with a small radius of curvature, which are typical for tramway net-
works. Accompanied self-excited vibrations of thewheelsetmight be
a potential mechanism of adverse wheel polygonization, although a
possible relationship between the two phenomena is not addressed
here. A basic 2-DOFmodel, representing awheelset with non-driven,
independently rotating resilient wheels, has been derived from the
analysis of simulation results with a more detailed system model to
understand the reasons for a possibly unstable motion in a uniform
curve. It has been found that a dominatingmotion in the regimewith
a negative gradient of the lateral creep force–creepage characteris-
tics is necessary for possible self-excitation but is not sufficient for
the considered parameter range. The combination and interaction
of the lateral oscillations of the resilient wheel and laterally elas-
tic wheelset axle is essential for amplification. Resulting stable limit
cycles canbeobserved, and influences on corresponding amplitudes
are discussed. The lateral flexibility of thewheelset axle appears as an
important influence.
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1. Introduction

Mechanisms of possibly harmful wheel polygonization are manifold, and the literature
suggests different explanations for different types of rolling stocks. Nielsen et al. reported
the state-of-the-art until 2003 in [1,2] and gave a comprehensive classification of railway
wheel defects. The paper discussed the reasons for the development of out-of-round rail-
way wheels and the damage they may cause to track and vehicle components. A recent
survey on potential causes, consequences, simulation methods, and potential remedies
to prevent wheel polygonization was presented in [3], focusing on metro vehicles, loco-
motives, and high-speed trains in China. Wheel polygonization and rail corrugation, in
terms of their characteristics, consequences, causes, and countermeasures in the Chinese
high-speed railway system, were addressed in [4].

In [5], initial static and dynamic imbalances of the wheelset as a cause of polygoniza-
tion at high-speed trains were addressed. Cui et al. [6] reported that low-order polygons
may emerge at high-speed trains due to the fixation that supports the wheelset during a
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typical wheel re-profiling process. The resulting initially small out-of-roundness (OOR)
may then be amplified during rolling. Also, wheel flats may cause or exacerbate wheel
polygonization [7].

The majority of researchers believe that wheel polygonization is induced by a ‘fixed-
frequency’ or a ‘fixed wavelength’ mechanism related to a resonance of the vehicle–track
system. The vertical track anti-resonance and P2 resonance were suggested as potential
factors of growth in the wheel OOR defects at metro trains [8]. Also, [9], it was concluded
from the experimental and numerical investigations that the P2 resonance is a possible
root cause of wheel polygonization at metro trains. In [10,11], the formation mechanism
of high-order wheel polygonization at high-speed trains was studied. It was found that
the rail vertical bending modes between the front and the rear wheels of the bogie play
an important role in the dynamic response of the wheel–rail forces and related orders of
polygonal wear.

Self-excited vibrations of a wheelset–track system, caused by saturated wheel–rail creep
forces due to braking or traction, are a further possible polygonizationmechanism at high-
speed trains [12].

In [3,13], it was reported that the wavelength of polygonal wheels can be related to the
lower bending or torsionalmodes of thewheelset of different types of railway vehicles. Peng
et al. investigated in [14] the influence of the locomotive wheelset flexibility on polygonal
wear and concluded that the wheelset flexibility would not dominate railway wheel poly-
gonization in a general sense unless the wheelset flexibility effectively and continuously
excites the contact responses. Then, wheel polygonization may be initiated. Fröhling et al.
identified in [15] the first torsional eigenmode of a driven wheelset, excited due to satu-
rated adhesion in the longitudinal direction, as a potential cause of wheel polygonization
at locomotives.

In [16], remedies to reduce the occurrence of the OOR phenomena at tram wheels
were discussed. The authors suggested to improve the technology of manufacturing and
assembling the wheel rims. Tram vehicle–track vibration responses in curves were anal-
ysed considering excitation from polygonal wheels and track irregularities in [17]. Results
revealed that the wheelset flexibility, in particular the first torsional mode and the second
bendingmode, might affect the vibration characteristics of the rail, car body, and axle-box,
and intensify the wheel-rail contact force and creepages.

The above short review on wheel polygonization mechanisms follows from the particu-
lar interest to find possible root causes of observed polygonal wheels at a specific tram line,
but unfortunately could not provide a clear answer. For this tram line, a technical mea-
surement report indicated that periodic wheelset oscillations of ∼ 50Hz may occur when
negotiating curves with a small radius of curvature, typically at speeds of 15–19 km/h [18].
The measured wheel profiles included pronounced orders in the range of 17–20. In a
preliminary study, [19], a representative system model applying a multibody dynamics
simulation software was set up. The simulation results revealed the possible appearance of
self-excited vibrations when negotiating a curve with a small radius of curvature, for exam-
ple, in reversing loops at rather constant speeds. It was found that the effect from falling
friction in the lateral creep force–creepage characteristics is essential for the initiation of
these self-excited vibrations. Amore detailed understanding of self-excited vibrations with
respect to the falling friction characteristics at high lateral creepage, typically for trams,
is lacking in scientific literature, also in [19], and will be focused here. An appropriate
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minimal model will be introduced to identify key parameters that influence the onset of
such self-excited vibrations and subsequent vibrational behaviour.

The observed vibrations show a dominant frequency, which is considered essential for
polygonal wear as mentioned above, but an investigation about a possible relation or inter-
action between observed vibrations and observed polygonal wear has not been conducted
so far and is left for future investigations.

In the next Section 2, the curving behaviour typical for trams will be pointed out
briefly. It will help to understand the assumptions made for the basic system model intro-
duced in Section 3. Stability analysis of the steady-state (linearised) curving motion will
be performed, and conditions for potential (oscillatory) instability and resulting self-
excited vibrations will be discussed. Mode shapes and energy balances of these self-excited
vibrations will be presented to gain further insight into the effects of key parameters. In
particular, the main effects from the saturation of the lateral creep force–creepage charac-
teristics and the influence of the effective stiffness of the wheelset axle on the self-excited
vibrations will be revealed. Amplitudes of occurring limit cycles will be found from bifur-
cation analysis. Also, a simple formula for the prediction of these amplitudes will be given.
The findings with the basic systemmodel and respective assumptions will be reviewedwith
amore detailed systemmodel in Section 4. Finally, concluding remarks will close the paper.

2. Creep forces in curves with small radius of curvature

Curving behaviour of railway vehicles has been studied in detail, e.g. in [20], see also [21].
In this section, the (simplified) characteristic curving behaviour of a two-axle tram bogie
on grooved rails at sharp curves, representative of tram network systems, will be briefly
recaptured for a better understanding of the basic system model, introduced in the next
section.

When a railway vehicle negotiates a curve, the bogie yaws about its vertical axis. As
a consequence, the leading wheelset of the bogie tends to move outwards, and the rear
wheelset moves inwards. Depending on vehicle speed and radius of curvature, the outer
front wheel or both the outer front wheel and the inner rear wheel may be in flange contact,
which will be assumed here. Both wheelsets are guided by the bogie frame and are not
aligned with the radial direction of the curve. Thus, an angle of attack appears between the
rolling direction of the wheels and the tangential direction of the rail. The angle of attack
of both wheelsets increases with decreasing curve radius, and its magnitude is larger at the
leading wheelset.

Due to the present angle of attack, there is a lateral relative velocity between the wheel
and the rail, see Figure 1(a), resulting in large values of lateral creepage at sharp curves. The
steady-state lateral creepage is approximately equal to the angle of attack and increases with
decreasing curve radius. Respective components in longitudinal and spin directions may
contribute as well.

Figure 1(b) shows a normalised lateral creep force–creepage characteristics for dry con-
tact between the wheel and the rail, which is based on Polach’s formulation [22] andwill be
used in the context of the paper. At low values of lateral creepage (I), the developed lateral
creep force is about proportional to the lateral creepage. As the lateral creepage increases,
the lateral creep forces saturate (II). The peak value depends on the coefficient of friction
between the wheel and the rail and on the normal force. As the lateral creepage increases
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Figure 1. (a) Lateral relative velocity due to angle of attack at outer front wheel in a curve with small
radius of curvature. (b) Normalised lateral creep force–creepage characteristics with (I) linear regime, (II)
saturated regime, and (III) falling regime.

further and the wheel–rail adhesion level is exceeded, the creep force declines, resulting in
a ‘falling regime’ (III) with a negative gradient. As an explanation for the decreasing creep
force, the general decrease of the coefficient of friction with increasing slip velocity due to
increasing temperature in the contact patch is given and frequently called ’falling friction
effect’. The negative gradient in the falling regime can act as ‘negative damping’ and may
be a source of instability and self-excited vibrations. Basically, a change in the contact con-
ditions, e.g. dry, wet, contaminated contact, rolling velocity, normal load, will modify the
characteristics [23].

Necessary conditions to operate in the falling regime of Figure 1(b), related to the rela-
tionship between the angle of attack, the curve radius and the vehicle speed at the leading
wheelset of a two-axle tram bogie are depicted in Figure 2.

The grey line represents the tram (bogie) operated at the lateral acceleration of
0.65m/s2, which is usually the admissible maximum lateral acceleration, for several curve
radii. The grey area denotes vehicle speeds above this maximum. A relation between the
curve radii and the angles of attack can easily be identified; the angles of attack increasewith
decreasing curve radii. The coloured lines show only small changes in the angle of attack
with varied vehicle speed for a few fixed curve radii. The horizontal black line in Figure 2
represents the angle of attack and the lateral creepage at the wheel–rail adhesion level of
the given lateral creep force–creepage characteristics, indicated by (II) in Figure 1(b). For
smaller angles of attack, operation in the falling regime of the creep force–characteristic
occurs. Then, flange contact at the outer wheel of the leading wheelset (two point contact)
or even constrained curving results, as marked in the figure, for smaller curve radii. As this
curving configuration is able to promote self-excited vibrations, it will be considered for
the modelling approach of the basic system model.

A (not published) technical measurement report indicated that lateral periodic wheelset
oscillations, likely from self-excitation, may occur when negotiating particular curves with
a small radius of curvature at a speed of about 20 km/h at a particular tramline. Although
it is not investigated and confirmed if the observed vibrations can be related to the polygo-
nization of the wheels of order 17–20, the self-excitation phenomenon will be focused on
in the remainder of this paper.
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Figure 2. Contact conditions of a two-axle tram bogie at steady-state curving for different radii of
curvature and vehicle speeds.

To investigate the influence of system parameters relevant to the appearance of these
self-excited vibrations, a systemmodel of a two-axle tram bogie was presented in [19]. This
model is briefly described below, as the basic system model, presented in the next section,
derives from it. It has also been used to derive the contact conditions of the two-axle tram
bogie shown in Figure 2.

A tram is typically composed of a series of driven and non-drivenmodules. This assem-
bly is separated, and a single, non-driven, low-floor tram vehicle is considered only. The
two-axle bogie includes two wheelsets in axlebridge design with independently rotating,
resilient wheels. An overview of the generic system is depicted in Figure 3. A corresponding
model has been developed in themultibody dynamics simulation software SIMPACK [19].
It has been applied to derive the simulation results in later Section 4.

The car body and the frame of the bogie are modelled by rigid bodies, the primary
suspension isolates the wheelsets from the other parts of the tram. These bodies are con-
nected by bushing elements that represent the secondary springs and dampers. The car
body is attached to a (virtual) ‘traction body’ that is moved with constant velocity along
the track. The primary suspension connects the wheel axles and the bogie frame and is
also modelled utilising bushing elements. To substitute for the omitted fore and aft cars, an
additional support of the car body against the inertial system is provided w.r.t. pitch and
roll by torsional spring-damper elements.

The flexibility of the wheelsets in the axlebridge design with the independently rotat-
ing wheels is accounted for by a linear SIMBEAM element [24]. The wheel hub and the
wheel rim of the wheels are represented by rigid bodies, the elastic layer is modelled using
a spring-damper element allowing for relative translational and rotational motions of the
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Figure 3. Generic systemmodel in SIMAPCK [19].

rim w.r.t. the hub in several directions. The wheel–rail contact is modelled using Hertzian
contact to derive normal forces, and the FASTSIM/Polach algorithm, [22,25], to calculate
creep forces, respectively. The flexibility has not been considered.

The authors found in [19] that besides the negative slope of the creep force–creepage
characteristics, the flexibility of both the wheelset axle and the resilient wheel is essential
for the onset of self-excited vibrations. However, a better understanding of underlying phe-
nomena is still required. This may be obtained from an appropriate minimal model with
only small degree of freedom,which is expected to support the understanding of the results
from the more detailed system model.

3. Minimal model for self-excited vibrations simulations

As the outer wheel of the leading wheelset of the tram bogie runs in flange contact during
the steady-state, constrained curving situation described above, this wheel will be consid-
ered to be constantly aligned with the rail, Figure 4. The wheelset is guided by the bogie
frame and is, therefore, not aligned with the radial direction of the curve. Thus, an angle
of attack γ appears between the rolling direction of the wheels and the tangential direction
of the rail.

It is assumed that a lateral motion of the contact point of the inner wheel can be excited
by the compliance of the wheelset axle and the resilient wheels, represented in the model
by the state variables yA and yR. The contribution of these lateral motions to the lateral
creepage of the inner wheel will, in general, be small, as the angle of attack will domi-
nate in sharp curves. The considered effective lateral motion yA may originate from the
elasticity of a common axle with two rigid wheels, or it may originate from bending of
the elastic support for the two independently rotating wheels, as in our case, see Figure 3.
The effective lateral motion of the resilient wheel yR shall comprise the contributions from
camber and lateral displacement. The assumption of resilient wheels will allow for a more
comprehensive interpretation, as the motion may easily be locked.
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Figure 4. Minimal lateral wheelset model.

All required parameters are denoted in Figure 4. For the lateral motion of the rim w.r.t.
the hub, the lumped parameters are the effective stiffness cR and damping coefficient dR.
The effective stiffness and damping coefficients for the wheelset axle, cA and dA, also take a
contribution of the stiffness and the damping of the primary suspension into account. The
inertia and the mass of the resilient wheel rim are lumped in the equivalent massmR. The
reduced mass of the wheelset axle and the wheel hub is denotedmA.

This system model constitutes the most simple but yet fundamental model to study
the influences of the falling friction effect and the possible mutual influence of coupled
oscillations and their amplification with respect to the lateral dynamic behaviour of the
free-rolling wheelset negotiating a sharp curve.

The outer wheel moves along a circular path of radius rC, representing the outer rail,
with constant velocity � rC and yaw rate �. Then, the equations of motion read

mA aAy = −cA(yA − l) − dA ẏA + cR(yR − yA) + dR(ẏR − ẏA) (1)

mR aRy = −cR(yR − yA) − dR(ẏR − ẏA) − Fy (2)

with

aAy = �2rC cos γ − �2yA + ÿA, aRy = �2rC cos γ − �2yR + ÿR

Fy is the lateral creep force, acting at the wheel–rail contact of the inner wheel. Polach’s
formulation for the lateral creep force–creepage characteristics, [22], is used. The lateral
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creepage νy for the inner wheel is given by

νy = ẏR − Vc

V0
(3)

with Vc = sin γ V0 ≈ γ V0 and the rolling speed of the inner wheel V0. The coefficient of
friction μ is determined by

μ = μ0
[
(1 − A) e−Bνy + A

]
(4)

with the ratio of the friction coefficients A = μ∞/μ0 and the coefficient B of expo-
nential friction decrease; μ0 is the maximum friction coefficient, μ∞ is defined at infi-
nite slip velocity. The resulting lateral creep force–creepage characteristics with nominal
parameters in later Table 1 are shown in Figure 1(b).

3.1. Stability in first approximation

First, a small perturbation of the steady-states during curving with constant yaw rate� and
constant angle of attack γ is presumed. Therefore, the equations of motion, (1) and (2),
are linearised with respect to the corresponding steady-states in the falling regime (III),
denoted by index 0. The linearisation of the lateral creep force–creepage characteristics is
determined by gradient k

k = k2k3 = ∂Fy
∂νy

∣∣∣∣
νy0=γ

(5)

which is illustrated in Figure 1(b). The lateral creep force of the free-rolling inner wheel
with rolling speed V0 = �(rC cos γ − yR0) ≈ �(rC − yR0) results to

Fy = Fy0 + k2k3 (νy − νy0), νy = ẏR/V0 − γ (6)

with parameters k2, k3 from Table 1 and more details about them later. yR0 is the steady-
state lateral distance of the wheel. Then, the linearised equations of motion for small

Table 1. Baseline parameters of the lateral wheelset model.

Symbol Parameter Value Units

rC Curve radius at outer wheel 25.75 m
γ Angle of attack −0.04 rad
� rC Running speed of the outer wheel 4.15 m/s
FN Normal force 35,000 N
mR Equivalent mass of wheel rim 125 kg
mA Reduced mass of wheelset axle and wheel hub 400 kg
cR Effective stiffness coefficient of resilient wheel 4.9 × 107 N/m
dR Effective damping coefficient of resilient wheel 9500 Ns/m
cA Effective stiffness coefficient of wheelset axle/primary suspension 5.2 × 107 N/m
dA Effective damping coefficient of wheelset axle/primary suspension 7250 Ns/m
A Ratio of friction coefficientsμ∞/μ0 0.36 –
B Coefficient of exponential friction decrease 0.7 s/m
μ0 Coefficient of friction 0.35 –
k1 Slope parameter for region (I) of creep force-creepage characteristics 0.345 –
k2 Slope parameter for region (III) of creep force-creepage characteristics −0.0033 –
k3 Creep contact parameter 5.8333 × 106 N
νyc Critical creep 0.006 –
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perturbations �y = y − y
0
with state-vector y = [yA, yR]T read in matrix notation

M�ÿ + D�ẏ + C�y = 0 (7)

with symmetric matrices

M =
[
mA 0
0 mR

]
D =

⎡
⎣dA + dR −dR

−dR dR + k2k3
V0

⎤
⎦

C =
[
cA + cR − mA�2 −cR

−cR cR − mR�
2

]

The corresponding baseline parameters, which have been derived from the detailed
multibody dynamics model to meet the two relevant lateral modes, are listed in Table 1.

With the positive definite mass matrix, a simple, sufficient condition for instability is
given by, [26],

Tr(M−1D) = dA + dR
mA

+
dR + k2k3

V0

mR
< 0 (8)

For a negative gradient k2k3 < 0, instability is possible. If (8) holds, and the stiffnessmatrix
C is positive definite, then the instability will be oscillatory.

The stability behaviour of theminimal lateral wheelsetmodel in first approximationwill
now be discussed. It will allow to gain insight into the conditions for potential instability
as a cause of self-excited vibrations. Based on the characteristic equation of (7), which is of
fourth order, stability maps are derived analytically by applying the Routh-Hurwitz crite-
rion [27]. Setting the Hurwitz determinantH3 = 0 and the coefficient of the characteristic
equation a4 = 0 yield the oscillatory marginal and monotone marginal stability, respec-
tively. As these expressions are lengthy, they are omitted here and evaluated numerically in
Figure 5. Static instability (divergence) arises only for very small parameter values, which
are unrealistic from a practical application point of view, and will not be considered any
further. The black circle indicates the baseline configuration from Table 1.

In Figure 5(b), the boundaries of stability are presented as a function of the effective stiff-
ness coefficients, cR and cA. Obviously, the baseline configuration is dynamically unstable
with a diverging oscillation (light grey area) when negotiating a curve of about 25m with
15 km/h. The effective negative gradient of the lateral creep force–creepage characteris-
tics is essential for this behaviour. However, this condition is not sufficient, as for specific
combinations of effective stiffnesses, also stable behaviour may appear due to the coupling
of the two relative lateral motions (dark grey area). Their mutual influence will affect the
amount of damping. Note, starting from the baseline configuration, a stable behaviour can
be achieved if one of the stiffness coefficients tends to infinity (cA → ∞ or cR → ∞),
i.e. if one of the respective components is considered as rigid. This clearly reveals the
implications and the effects of the compliance of the wheelset axle and of the resilient
wheel.

The unstable area reduces with the increased effective damping coefficient of the
resilient wheel and fully disappears if damping is sufficiently high. In general, damping
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(a) k2∗ ∼ 0.97 · k2 (b) Baseline slope k2 (c) 1.2 · k2

Figure 5. Stability maps of minimal lateral wheelset model with an influence of the negative slope in
the falling regime of the lateral creep force–creepage characteristics.

effects of the rubber inlay of the resilient wheel will not remain constant over operating
time and depend on effects from (pre)load, temperature, and service time [28].

The area of dynamic instability depends significantly on vehicle load, as the gradient of
the falling regime of the creep force–creepage characteristics also depends on the normal
force. Decreasing the normal force, decreases the negative gradient, [29], i.e. the charac-
teristics become flatter after the peak value, the dynamically unstable area decreases, and
the system is less prone to self-excitation, see Figure 5(a)–(c). Without a negative regime,
all stiffness combinations are stable as the dynamically unstable area completely vanishes.

If velocity and curve radius are both increased, but lateral acceleration and thus load
distribution kept the same as above, the negative gradient in the falling regime increases,
[29], due to the increased velocity. As a consequence, the unstable area will increase as well.
However, the steady-state lateral creepage will decrease with increasing curve radius and
the creep force–creepage characteristics will become flatter depending on the actual curve
radius and angle of attack. The stable area will thus increase until the dynamically unstable
area completely disappears if the curve radius gets large enough.

Also from H3 = 0, the marginal negative slope k∗
2 ∼ 0.97 k2 for the baseline configu-

ration can be derived, which becomes obvious from Figure 5(a). This case is of interest,
having in mind that conditioning of the creep force–creepage characteristics by means of
friction modifiers might be an option to reduce the risk of self-excitation.

The unstable mode of the baseline configuration oscillates with a frequency of about
50Hz. The oscillation frequency is dominated by the effective stiffness cA of the wheelset
axle and not by the effective stiffness of the resilient wheel, the radius of curvature, or the
vehicle speed. A plot of the root locus for varied cA is shown in Figure 6, revealing a section
of positive conjugate complex eigenvalues corresponding to Figure 5(b). In this section,
self-excited vibrations are possible.

3.2. Energy balance andmode shapes

The self-excitation energy and the energy lost from damping in the structural parts and
the energy dissipated in the contact between the inner wheel and the rail must balance at
the emerging limit cycles of the nonlinear system. Asmentioned before, the falling friction
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Figure 6. Root locus (poles) for variable effective stiffness coefficient cA of thewheelset axle in the range
from 0.1 · cA (indicated by a cross) to 5 · cA (indicated by a circle).

effect and thus the related negative gradient of the lateral creep force with respect to the
creepage can act as a source of self-excitation (energy).

It is assumed that the two components, yA and yR, of the periodic oscillatory motion of
the wheelset axle that occurs on the boundary of (oscillatory) instability can be described
as follows

yA = Aη sin(ωt + ε) + yA0 and yR = A sin(ωt) + yR0 (9)

where ω is the dominating radial frequency, A the amplitude, which is assumed to be con-
stant, η the amplitude ratio, and ζ the phase angle between the two lateral motions. If η is
zero, only the motion between the rim and the hub is considered.

Considering the periodicity of the displacement and the velocity over one oscillation
cycle τ = 2π/ω, the self-excitation energy W is composed of the contribution from the
wheel–rail contact, the damping from the resilient wheel and the wheelset axle.

W = −
∫ τ

0
Fy ẏR dt −

∫ τ

0
dR(ẏR − ẏA)2 dt −

∫ τ

0
dA ẏ2A dt (10)

IfW is positive, energy is fed into the system and is not fully dissipated over one cycle, and
amplitudes of the unstable motion will increase. Integration over one cycle of the periodic
oscillation with a constant amplitude and the linear approximation for Fy in (6) yields

W = A2ωπ

[
−dA η2 − dR(1 + η2) − k2k3

�
(
rC − yR0

) + 2dR η cos ε

]
(11)

W = 0 will determine the boundary of stability. From (11), it becomes obvious, that
for a positive gradient, k2k3 ≥ 0, W cannot become positive, even for cos ε = 1. Conse-
quently, the coupled 2-DOF minimal lateral wheelset model cannot self-excite without
falling friction effect.
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Figure 7. Zero energy boundaries as function of amplitude ratio η and phase angle ε with stable ( )
and unstable ( ) areas.

However, it has been shown in the previous section that curving in the falling regime
is not yet sufficient for the onset of dynamic instability and diverging oscillations. Also,
the coupling of the differential equations of the lateral motions plays an important role,
determined by the parameters cj and dj, j = A, R, (if no inertial effects are considered), or
by amplitude ratio η and phase angle ε, respectively.

On the boundary of stability,W = 0, a relationship between η and ε results from (11);
it is plotted in Figure 7 with parameters of the baseline configuration. The boundaries are
egg-shaped (thick black lines, marked with k2) and periodically distributed over the phase
angle ε. The mode shapes need to manifest themselves in certain amplitude ratios η and
phase angles ε inside the egg (light grey area), where W>0, for possible instability. The
stability boundaries do not depend on radial frequency ω here but on vehicle speed � rC.
For the parameters of the baseline configuration, the steady-state solution will not become
dynamically unstable if only the lateral degree of freedom of the wheelset axle (η → ∞)
or if only the lateral degree of freedom of the wheel rim is introduced (η = 0).

A comparison of the energy balance between the (stable) 2-DOF system and the (unsta-
ble) 1-DOF system (with locked relative motion between the wheel hub and the wheel
rim, representing a monobloc wheel) has revealed that for the 2-DOF system, more self-
excitation energy is provided and only little energy is dissipated by the additional damper
dR as only a small relative motion (ẏR − ẏA) appears. However, a large enough negative
gradient and/or small enough dissipationmay also destabilise the degraded 1-DOF system.

Additionally, the boundaries of stability for the larger negative gradient, 1.2 k2 (thin
black lines) corresponding to Figure 5(c), are plotted in Figure 7, indicating a destabil-
ising effect, which becomes obvious from the larger egg-shaped areas. FromW = 0, also a
critical negative slope kc2 of the lateral creep force–creepage characteristics can be derived,
where the eggs and the unstable areas fully disappear, independent of the phase angle ε

kc2 = −dR dA �
(
rC − yR0

)
k3(dA + dR)

(12)



VEHICLE SYSTEM DYNAMICS 13

This simple analytical formula allows to specify k2 = kc2 ∼ 0.83 k2, where the stability map
in Figure 5 will only show a stable area for all effective stiffnesses cA and cR.

3.3. Approximation of the amplitude of the limit cycle

The periodic oscillatory motion of the wheelset axle is characterised by an initial growth
of the vibration amplitudes until a stable limit cycle is reached. To study influences on the
limit cycles, a closed-form analytical solution for the steady-state amplitude is obtained
based on simplifying assumptions and following the approach in [30].

The symmetrical system matrices and the forcing vector from (1) and (2) read

M =
[
mA 0
0 mR

]
C =

[
cA + cR − mA�2 −cR

−cR cR − mR�
2

]

D =
[
dA + dR −dR

−dR dR

]
F =

[−mA �2rC cos γ + cAl
−mR �2rC cos γ − Fy

] (13)

The modal matrix U of the real eigenvectors ũi of the undamped system is obtained from
(C − λiM)ũi = 0 and is used for modal decoupling by introducing modal coordinates in
Y . With

y = UY with y =
[
yA
yR

]
Y =

[
Y1
Y2

]
U = [

ũ1 ũ2
] =

[
1 u2
u1 1

]
(14)

there follows

UTMUŸ + UTDUẎ + UTCUY = UTF (15)

with diagonal modal mass and stiffness matrix, Mdiag = UTMU and Cdiag = UTCU, and
the modal force vector UTF. The modal damping matrix UTDU is not diagonal as the
eigenvectors of the undamped system are not orthogonal with respect to the damping
matrix. It is assumed that structural damping will be small or sufficiently proportional and
non-diagonal terms may be neglected [30,31]. The remaining modal damping terms are
denoted d1 and d2.

The nonlinear lateral creep force–creepage characteristics for the inner wheel will now
be approximated by a bilinear curve with slope k1 for the linear regime and k2 for the falling
regime with

Fy =
⎧⎨
⎩
FN

(
k1ν′

y

)
ν′
y ≤ 1

FN
[
k1 + k2(ν′

y − 1)
]

ν′
y > 1

(16)

ν′
y is the normalised creepage ν′

y = (νyk3)/FN . At the critical slip νyc, there is ν′
y = 1.

Implementing (16) in (15) for small oscillations about a constant angle of attack γ yields

miŸi +
(
di + kFik12

V0

)
Ẏi + ciYi = 0, i = 1, 2 (17)

with modal mass mi, modal stiffness ci and modal forcing factors kF1 = u21 and kF2 = 1.
k12 represents either the slope (k1k3) in the linear regime or (k2k3) in the falling regime,
V0 = �(rC − yR0) is the rolling speed.
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It is well known that the sign of the damping term determines the stability of the respec-
tive mode and can be used to find a closed-form analytical expression for the boundary of
stability with

ks2 = − d2V0

k3kF2
= −2V0

{
c2R[2dAm

2
R + dR(mA + mR)

2] + cAdRmR [cAmR + cm]

− cRdR [2cAmAmR + (mA + mR) cm]} /
{
k3kF2 [cAmR + cR(−mA + mR) + cm]2

}
with cm =

√
c2Rm

2
A + 2cR(−cA + cR)mAmR + (cA + cR)2m2

R (18)

The numerical value for ks2 agrees almost exactly with k∗
2, which was found as numeri-

cal solution for the boundary of stability in Section 3.1 for the baseline configuration. It
becomes obvious that increasing the effective stiffness of the wheelset axle reasonably leads
to lower critical slopes ks2, which agrees well with the results gained from the stability map
and the results with the more detailed system model in Section 4.

The damping term in (17) also determines the growth or the decay of the vibration
amplitudes according to

Ŷi(t) = Ŷi(0) e−(di+kFik12/V0)t/(2mi) (19)

If the exponent becomes negative and the negative damping from the falling friction
effect exceeds the positive damping of the structures, self-excitation energy is fed into the
system at the wheel–rail contact causing its periodic oscillatory motion to grow expo-
nentially until a steady-state limit cycle amplitude is reached. The oscillations spread
into the region with a positive gradient in the creep force–creepage characteristics, thus
adding additional damping and reaching an energy balance W = 0 over one oscillation
cycle τi = 2π/ωi. The shape of steady-state limit cycle can be assumed sinusoidal with
Yi = Ai sin(ωit), similar to Section 3.2. Then, the energy balance for the limit cycle of the
dominant mode

Wi =
∫ τi

0
Pi dt = 2

(∫ tc

0
Pi dt +

∫ π/ω

tc
Pi dt

)
= 0 with Pi = −FiẎi − diẎ2

i (20)

can be derived to, here i = 2,

Wi = [(k1 − k2)kFi [4(FNV0 + k3Vc) sin(ωitc) − ARωik3(2ωitc + sin(2ωitc))]

− 2πARωi(k2k3kFi + diV0)]/(4V0) = 0 (21)

Time tc and given critical creepage νyc are related to the transition between the two linear
regimes of the lateral creep force–creepage characteristics with

νyc = ARωi cos(ωitc) − Vc

V0
(22)

A closed-form analytical solution for the steady-state amplitude ARωi of the limit cycle of
the wheel rim motion may be obtained from solving Equations (21) and (22), applying a
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Taylor series approximation with sin(2ωitc) ≈ 2ωitc − (2ωitc)3/3!, [30],

ARωi ≈ V0(νyc + γ )

cos(ωitc)
, ωitc =

(
3π(k2k3kFi + diV0

2k3kFi(k2 − k1)

)1/3
(23)

The slope of the falling regime affects both the growth rate and the steady-state amplitude
of the oscillatory motion.

Figure 8(a) shows the rise of oscillations ẏR(t) for the baseline configuration and for
the configuration with increased effective stiffness of the wheelset axle, 1.5 cA, based on
simulation results with the simplified lateral creep force–creepage characteristics in (16).
For the stiffer wheelset, there results an increase of the oscillation frequency from about
50Hz to 60Hz. Further, a very fast growth of amplitudes to their constant value can be
noticed, both mapped by the simple formulae (19) and (23), while the vibration amplitude
of the limit cycle increases only slightly. The fast growth will come to a quick end because
of the increased dissipation from the wide extension into the regime with a very large pos-
itive gradient of the lateral creep force–creepage characteristics, see Figure 8(b). Note, the
oscillations are not symmetrical about the constant angle of attack, νy0 = −γ .

3.4. Numerical analysis of the Hopf bifurcation

The behaviour of the nonlinear minimal lateral wheelset model is assessed before and after
the loss of stability by means of numerical continuation of the Hopf bifurcation, using the
numerical software package MatCont [32]. Polach’s nonlinear formulation for the lateral
creep force–creepage characteristics, [22], is applied. Model parameters, in particular, the

Figure 8. (a) Timehistory ẏR(t) of themotion of thewheel rim for the baseline configuration ( ) and for
1.5 cA ( )withdetail (greenbox); corresponding analytical predictions of the amplitudeof the limit cycle
(horizontal lines in respective colour) and growth of amplitude ( ). (b) Lateral creep force–creepage
characteristics with an exploited range of oscillations (steady-state limit cycles) around νy0 = 0.04 for
both configurations.
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ratio of friction coefficients A and the coefficient of exponential friction decrease B are
listed in Table 1, the parameter A is varied below.

As a distinguished bifurcation parameter, c∗A the effective stiffness of the wheelset axle
is chosen and normalised with the nominal parameter of the baseline configuration; the
other parameters remain unchanged. The bifurcation diagram for the motion of the wheel
rim y∗

R0, normalised with yR0, is displayed in Figure 9(a). The baseline configuration is
plotted in green. Between the two supercritical Hopf bifurcation points, at c∗A = 0.92 and
c∗A = 3.67, a family of stable periodic solutions (solid line) with small amplitudes are found,
which coexists with the unstable steady-state solutions (dashed line). Interestingly, for
small and (very) large effective stiffnesses c∗A, no limit cycles appear; in between, ampli-
tudes do not change significantly, with smaller amplitudes for larger c∗A. Figure 9(b) reveals
that the amplitudes are smaller for the Polach creep force–creepage model compared with
the bilinear approximation. The gradients get flatter towards the critical creepage for the
Polach model and less self-excitation energy might be fed into the system to balance the
dissipated energy even in the falling regime. For the configurationwith 1.5 c∗A, there appears
a small overlap to the regime with a positive gradient. Similar to above, higher steady-state
amplitudes appear compared with the baseline configuration.

Additionally, in Figure 9(a) parameter A, the ratio of friction coefficients from Polach’s
model, [22], is varied. With parameter A, the gradient of the lateral creep force–creepage
characteristics can be changed. A = 0.36 represents the baseline parameter. Only a small
variation of the slopes of the falling regime with A = 0.2 and A = 0.4 is chosen here; see
also Figure 11(b). A steeper (negative) gradient, A = 0.2, increases both the amplitudes of
stable periodic solutions and the range of c∗A of unstable steady-state solutions responsible
for the (stable) limit cycles, which basically confirms the above findings.

Figure 9. (a) Bifurcation diagram for normalisedwheel rimmotion y∗R over normalised effective stiffness
c∗A for creep force–creepagemodel parameter A = 0.3, A = 0.36 (baseline parameter), and A = 0.4. (b)
Lateral creep force–creepage characteristics with an exploited range of oscillations (steady-state limit
cycles) around νy0 = 0.04 for the baseline configuration and for 1.5 cA.
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4. Generic systemmodel of two-axle tram bogie

A number of simplifications and assumptions have been made at the minimal lateral
wheelset model. Conclusions drawn by means of the minimal model are discussed now
by comparing previous findings with results from a detailed generic system model of the
two-axle tram bogie described in Section 2.

A systematic nonlinear stability analysis, such as the application of bifurcation theory,
is not feasible due to the large level of modelling detail. Instead, significant influences on
the limit cycles are presented by time simulation. For the results below, the vehicle initially
runs on a straight track and enters a curve (after 3 s) with a constant radius of curvature
of 25m without passing a transition curve. The longitudinal velocity is set to 4m/s. Thus,
the steady-state curving conditions correspond to the studies in the previous sections.

Figure 10(a) shows the influence of the effective stiffness cA of the wheelset axle on the
vibration amplitudes of the inner wheel contact point ẏRc, similar to ẏR. In addition to the
baseline configuration, the effective stiffness has been decreased to 0.8 cA and increased to
1.5 cA, but also to 4 cA, which is not realistic for practical application, by adjusting the cross
section of the SIMBEAM element. The discontinuity of the curvature after 3 s acts as a dis-
turbance and excites the system, resulting in vibrations. As already seen from the minimal
model, increasing the effective stiffness results in faster growth, higher steady-state ampli-
tudes and increased oscillation frequency (around 60Hz, blue line). Oscillations attenuate,
either for decreased effective stiffness (green line) or extreme increase of effective stiffness
(brown line). For the self-exited vibration, the analytical formulae (19) and (23) predict
similar trends, horizontal lines and dotted red lines, but underestimate the steady-state
amplitudes somewhat depending on the quality of the fit of the lateral creep-force–creepage

Figure 10. (a) Time history ẏRc(t) of the lateral motion of the wheel rim contact point for the baseline
configuration ( ), 1.5 cA ( ), 0.8 cA ( ), 4 cA ( ); corresponding analytical predictions of the amplitude
of the limit cycle (horizontal lines in respective colour) and growth of amplitude ( ). (b) Lateral creep
force–creepage characteristics with exploited range of oscillations (steady-state limit cycles) around
νy0 = 0.04 for the baseline configuration and for 1.5 cA.
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Figure 11. (a) Time history ẏRc(t) of the lateral motion of the wheel rim contact point for creep
force–creepage model parameter A = 0.2 ( ), A = 0.36 (baseline parameter, ( ), and ( ); corre-
sponding analytical predictions of the amplitude of the limit cycle (horizontal lines in respective colour)
and growth of amplitude ( ). (b) Lateral creep force–creepage characteristics for the three configu-
rations.

characteristic with a bilinear curve. The amplitudes of the limit cycles have increased,
Figure 10(b), compared with the minimal model.

The frequency of the self-excited vibrations relates to the stiffness of the wheelset axle
and less to the stiffness of the resilient wheel, the radius of the curvature, and the vehicle
speed, already found in Section 3.1. The mode shape of the unstable mode can be asso-
ciated with the second bending mode of the elastic wheelset axle around 50Hz. In [33],
it was found that a continuous excitation with a fixed frequency (such as track irregular-
ity, sleeper passing frequency, etc.), which can fluctuate the contact parameters (normal
force, creepages, etc.) in the same frequency, will cause a corresponding order of the wheel
polygonization to develop, according to

Order = Perimeter
Wavelength

= Frequency
Speed

× Perimeter (24)

With reference to the report mentioned in the Introduction and considering the domi-
nant frequency of about 50Hz of the self-excited vibrations and a frequent vehicle speed
of about 18 km/h at certain curves with a small radius of curvature of a certain tramline,
the corresponding orders match the measured orders of 17–20 quite well. However, it is
still questionable if vibrations with respect to self-excitation will dominate wheel poly-
gonization. In general, other potential excitation mechanisms, such as P2 resonance or
initial wheel out-of-roundness, might also excite the bending mode of the elastic wheelset
axle continuously [3]. The impact of self-excited vibrations on wheel polygonization
will depend on their duration and how often they occur. Further, wheel polygoniza-
tion may not form easily if its wavelength cannot be exactly divided into the wheel
circumference [34].
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Finally, the influence of the gradient of the lateral creep force–creepage characteristics
in the falling regime will be addressed. Similar to Section 3.4, three variants are considered,
which are depicted in Figure 11(b). From Figure 11(a), it becomes obvious that the gradi-
ent of the falling regime has a significant impact on the stability behaviour of the system.
For the negative gradient with A = 0.46 (green line), the vibration following the singular
disturbance dies out, although the creep force–creepage characteristics is not far from the
baseline configuration (grey line). The absolute value of the local gradient at νy = 0.04 is
smaller than marginal gradient |k∗

2|, see Figure 5(a). A = 0.2 results in an unstable oper-
ating point and leads to a faster growth and higher steady-state amplitudes (blue line), as
found before, and suggested by (19) and (23).

In general, it can be concluded that the wheelset axle is less prone to self-excitation with
a small gradient of the falling regime as less self-excitation energy is fed into the system.

5. Conclusions

This paper reports on basic research investigating the underlying reasons for self-excited
vibrations ofwheelsets in curveswith small radius of curvature. Respective vibrations cause
additional wear.Whether these self-excited vibrations could also be a root cause of adverse
wheel polygonization, is left for future research.

A basic minimal lateral wheelset model was introduced to predict the possibility of the
onset of self-excitation from stability analysis and to analyse the influence of key parameters
on the nonlinear vibrational behaviour and observed limit cycles. Main findings could be
confirmedwith results fromamore detailed generic systemmodel of a two-axle trambogie.

A falling regime in the lateral creep force–creepage characteristics is necessary but is not
sufficient for potential self-excitation for a realistic range of parameters. An interaction
of the motions between the resilient wheel and the wheelset axle is essential for poten-
tial loss of instability and sustained self-excited vibrations. Results reveal that reducing
the effective stiffness of the wheelset axle or the slope of the falling regime in the creep
force–creepage characteristics is likely to avoid unstable conditions and suppress subse-
quent self-excitation. In contrast, increasing the effective stiffness of the wheelset axle in
a practically reasonable range may lead to a system behaviour that is more prone to self-
excitation. Fast-growing amplitudes of the lateral oscillations of the wheel contact point
extend from the falling regime to the regime with a positive gradient, which adds damp-
ing, stops the growth of the amplitudes, and leads to a stable limit cycle. The frequency
of the unstable mode is governed by the frequency of the wheelset axle stiffness, and the
unstable mode is related to a bending mode of the wheelset axle.

Finally, based on various simplifications, analytical formulae have been derived to pre-
dict the influence of key parameters on the stability behaviour and on the amplitudes
of emerging limit cycles. The validity depends, above all, on the knowledge about the
effective lateral creep force-creepage characteristics and on the errors from their bilinear
approximation.
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