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The family of Gödel logics has originally been introduced by Gödel [9] for the purpose of
showing that intuitionistic logic cannot be characterized by finite truth tables. They were first
studied in detail by Dummett [8]. Takeuti and Titani [10] based their “intuitionistic fuzzy set
theory” on the first-order Gödel logic with truth values from real unit interval [0, 1]. Nowadays
Gödel logics are studied intensively in the context of mathematical fuzzy logic [4]. We will

restrict attention to the version G∀△
[0,1] of first-order Gödel logic over [0, 1], where the usual

logical connectives are augmented by the projection operator △ [1].
We work in a usual first-order language L with free (a, b, . . . ) and bound (x, y, . . . )

variables, predicate and function symbols, logical connectives ∨, ∧, →, a propositional constant
⊥, quantifiers ∀, ∃, and a unary operator △. Terms and formulas are defined in the usual way.
We use ¬ as a defined connective; ¬A ≡ A → ⊥.

Definition 1 (Semantics of G∀△
[0,1]). An interpretation I into [0, 1] consists of

1. a nonempty set |I|, the ‘universe’ of I,

2. for each k-ary predicate symbol P , a function P I : |I| → [0, 1],

3. for each k-ary function symbol f , a function fI : |I| → |I|.

4. for each free variable a, a value aI ∈ [0, 1].

Let L I be the language L extended by constant symbols for the elements of |I| (so that
dI = d).

Any interpretation I extends to an evaluation function yielding a value I(A) for any formula
A of L I. For terms t = f(u1, . . . , uk) we define I(t) = fI(I(u1), . . . ,I(uk)), for atomic formulas
A ≡ P (t1, . . . , tn), we define I(A) = P I(I(t1), . . . ,I(tn)), and for composite formulas A we
define I(A) naturally by:

I(⊥) = 0 (1)

I(A ∧B) = min(I(A), I(B)) (2)

I(A ∨B) = max(I(A), I(B)) (3)

I(A → B) =

{
1 if I(A) ≤ I(B)

I(B) if I(A) > I(B)
(4)

I(△A) =

{
1 if I(A) = 1

0 if I(A) < 1
(5)

I(∀xA(x)) = inf{I(A(u)) : u ∈ |I|} (6)

I(∃xA(x)) = sup{I(A(u)) : u ∈ |I|} (7)



From a proof-theoretic perspective, several versions of hypersequent calculi for Gödel logics
have been proposed, including systems for first-order logics [2, 3, 6] and systems with △ [7].
In [5] the hypersequent calculus HGIF is shown to be complete for first-order [0, 1]-based Gödel
logic with △. In this contribution we settle the problem of cut-elimination for HGIF.

Hypersequents are finite multisets of single-conclusion sequents, written

Γ1 ⇒∆1 | . . . | Γn ⇒∆n.

The calculus HGIF is defined as follows.
Axioms:

A⇒A ⊥⇒
Internal structural rules:

G | Γ⇒∆

G | A,Γ⇒∆
iw⇒

G | Γ⇒
G | Γ⇒A

⇒ iw
G | A,A,Γ⇒∆

G | A,Γ⇒∆
ic⇒

External structural rules:

G
G | Γ⇒∆

ew
G | Γ⇒∆ | Γ⇒∆

G | Γ⇒∆
ec

Logical rules:

G | Γ⇒A

G | ¬A,Γ⇒
¬⇒

G | A,Γ⇒
G | Γ⇒¬A

⇒¬

G | A,Γ⇒∆ G | B,Γ⇒∆

G | A ∨B,Γ⇒∆
∨⇒

G | Γ⇒A G | Γ⇒B

G | Γ⇒A ∧B
⇒∧

G | Γ⇒A

G | Γ⇒A ∨B
⇒∨1

G | A,Γ⇒∆

G | A ∧B,Γ⇒∆
∧⇒1

G | Γ⇒B

G | Γ⇒A ∨B
⇒∨2

G | B,Γ⇒∆

G | A ∧B,Γ⇒∆
∧⇒2

G | Γ1 ⇒A G | B,Γ2 ⇒∆

G | A → B,Γ1,Γ2 ⇒∆
→ ⇒ G | A,Γ⇒B

G | Γ⇒A → B
⇒ →

G | A(t),Γ⇒∆

G | (∀x)A(x),Γ⇒∆
∀⇒

G | Γ⇒A(a)

G | Γ⇒(∀x)A(x)
⇒∀

G | A(a),Γ⇒∆

G | (∃x)A(x),Γ⇒∆
∃⇒

G | Γ⇒A(t)

G | Γ⇒(∃x)A(x)
⇒∃

The rules (⇒∀) and (∃⇒) are subject to eigenvariable conditions: the free variable a must not
occur in the lower hypersequent.

Rules for △:
G | A,Γ⇒∆

G | △A,Γ⇒∆
△⇒

G | △Γ⇒ A

G | △Γ⇒△A
⇒△

G | △Γ,Γ′ ⇒∆

G | △Γ⇒ | Γ′ ⇒∆
△cl

Communication:
G | Γ1,Γ2 ⇒∆ G | Γ1,Γ2 ⇒∆′

G | Γ1 ⇒∆ | Γ2 ⇒∆′ cm



Cut:
G | Γ⇒A G | A,Π⇒Λ

G | Γ,Π⇒Λ
cut

Our main result is the following:

Theorem 2 (Cut-Elimination). Every proof in HGIF of some hypersequent σ can be trans-
formed into a proof of σ that does not contain applications of (cut).

The problem of cut-elimination in hypersequent calculi is that Gentzen’s original method is
not suitable due to the lack of a definable mix-rule. This implies that induction on the height
and size of the cut-formula does not lead to the desired result, as the contraction rule appears
as obstacle. We therefore adopt the so-called Schütte-Tait procedure, where cut-elimination
proceeds by iteratively removing the maximal cuts; i.e., applications of cut, where the cut-
formula is of maximal size. This method of cut-elimination is based on the reduction of one
side of the cut without moving the cut-formula. Our adaption of this procedure is that not
the highest maximal cut is reduced, but the highest cut with a specific cut-formula is reduced
top-down with possibly multiplying the occurrences, but not the number of other maximal cut
formulas.

Spelling out details of the cut-elimination procedure requires quite a few technical prepa-
rations. Obviously this abstract is not the right place to do so. However we formulate a few
interesting corollaries that follow straightforwardly from the proof of Theorem 2.

Corollary 3 (Mid-Hypersequent Theorem). Let the end-hypersequent of a cut-free proof π
contain prenex formulas only. There is a hypersequent σ in π such that, besides structural
inferences, all inferences in π ocurring above σ are propositional and all inferences below σ are
quantificational.

Corollary 4. The prenex fragment of G∀△
[0,1] admits Skolemization and interpolation.

The following corollary in essence entails a version of Herbrand’s Theorem:

Corollary 5. Let A be quantifier-free, then the following rule is admissible in HGIF:

⇒△∃xA(x)

⇒∃x△A(x)
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[9] K. Gödel. Zum Intuitionistischen Aussagenkalkül. Ergebnisse eines mathematischen Kolloquiums,
4:34–38, 1933.

[10] G. Takeuti and S. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of
Symbolic Logic, 49:851–866, 1984.


