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A B S T R A C T   

The incidence angle dependence of C-band backscatter is strongly affected by the presence of vegetation in the 
sensor footprint. Many studies have shown the suitability of this dependence for studying and monitoring 
vegetation dynamics. However, short-term dynamics in the backscatter-incidence angle dependence remain 
unexplained and indicate that secondary effects might be superimposed on the vegetation component. In this 
study, we hypothesize that the observed short-term dynamics are caused by soil moisture. We investigate the 
effect by exploring relationships between the slope of the backscatter-incidence angle dependence (σ′) from the 
Advanced Scatterometer (ASCAT) and soil moisture, rainfall, temperature, and leaf area index. We carry out the 
analysis over six study regions in Portugal, Austria, and Russia with different climate, land cover, and vegetation 
cycles. Our results indicate that soil moisture has an effect on σ′. Spearman correlations of σ′ anomalies with soil 
moisture anomalies are stronger than with any other variable in most study regions and range from − 0.38 to 
− 0.70. Even when accounting for effects of water on canopy, correlations between σ′ and soil moisture remain 
relatively strong, ranging from − 0.14 to − 0.46. These results confirm the presence of secondary effects in the 
dynamic σ′, which need to be corrected for when applying σ′ in studies of vegetation dynamics. A correction may 
be achieved by the application of a suitable smoothing on σ′ (i.e., removing high frequency signal components), 
by masking observations taken under wet conditions, or by the use of models that explicitly account for the effect 
of soil moisture on σ′.   

1. Introduction 

Earth observation using active and passive microwave sensors has a 
long tradition in the context of environmental research. Over land, these 
sensors show high sensitivity to changes in the soil and vegetation water 
content, surface roughness, vegetation structure, and, in the case of 
passive sensors, temperature. As opposed to optical radiation, micro-
waves can penetrate cloud cover and are independent of daylight. The 
first microwave missions were launched in the 1970s and 80s. Since 
then, they have provided global, continuous estimates of a variety of 
biogeophysical variables such as soil moisture (Wagner et al., 2013; 
Dorigo et al., 2017; Al Bitar et al., 2017; Chan et al., 2018; Bauer-Mar-
schallinger et al., 2018), rainfall (Brocca et al., 2017), above-ground 
biomass (Santoro et al., 2015; Saatchi et al., 2007; Bousquet et al., 

2021), plant water content (Konings et al., 2019), and gross primary 
production (Teubner et al., 2018). Microwave observations have further 
been successfully applied for the estimation of vegetation optical depth 
(VOD) (Owe et al., 2008; Liu et al., 2011; Konings et al., 2016; Vreug-
denhil et al., 2016) and the monitoring of vegetation dynamics (Frappart 
et al., 2020), the study of interactions between soil moisture and climate 
(Seneviratne et al., 2010), and in the context of food security (Karthi-
keyan et al., 2020). These studies have proven the suitability and mul-
tiple benefits provided by microwave observation systems. In light of 
climate change, the availability of high quality, reliable, and easily 
accessible data will be even more critical in order to study and under-
stand its various impacts on the environment. This entails the constant 
development and assessment of algorithms and underlying assumptions, 
particularly with the availability of new missions with improved spatial, 
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temporal, and radiometric resolutions. 
In active microwave remote sensing, the characteristic interactions 

between the radar beam and the land surface lead to different scattering 
mechanisms. Over bare soil, surface roughness and soil water content 
cause diffuse scattering of the radar beam at the boundary between the 
atmosphere and the land surface. Over vegetation, volume scattering in 
the canopy is the dominant scattering mechanism and controlled by 
canopy structure and water content. In addition, sudden changes in the 
canopy structure, e.g., over cropland and deciduous forest, may trigger 
specific scattering mechanisms and affect the observed radar signal. In 
the context of remote sensing of vegetation using scatterometers, the 
scattering characteristics of a vegetation canopy are exploited. In 
particular, the dependence of the observed backscatter values (σ0) on 
the incidence angle (θ) has been found to carry valuable information 
(Wagner et al., 1999a). This dependence can be retrieved if (almost) 
simultaneous backscatter observations from different incidence angles 
are available for a target area, such as provided by the scatterometers 
onboard of the European Remote Sensing satellites (ERS-1, ERS-2) and 
their successor, the Advanced Scatterometer (ASCAT) onboard the series 
of Metop satellites. Wagner et al. (1999b) used the observation geometry 
of ERS to model the vegetation component (vc) in the backscatter signal 
based on the slope (σ′) and curvature (σ′ ′) of the backscatter-incidence 
angle dependence. Several studies confirmed a connection between σ′

and vegetation dynamics and advanced the understanding of the un-
derlying processes. Vreugdenhil et al. (2016) used a water cloud model 
to convert the long-term average σ′ to VOD, a measure of the optical 
thickness of a canopy related to vegetation water content and structure, 
leaf area index (LAI), and biomass. Steele-Dunne et al. (2019) analyzed 
dynamic σ′ time series over the North American prairie and showed the 
negative impact of a long dryspell on grasslands. Pfeil et al. (2020) 
carried out a detailed study of the effect of spring reactivation in de-
ciduous broadleaf forest on σ′. 

Furthermore, Wagner et al. (1999b) used vc for disentangling the 
vegetation and soil moisture (SM) components in the ERS backscatter 
signal. They applied vc in order to correct for vegetation dynamics and 
retrieve SM using a semi-empirical change detection method (Wagner 
et al., 1999a, 1999c). Since then, the approach has been developed 
further for ASCAT onboard the series of Metop satellites launched in 
2006, 2012 and 2018 (Naeimi et al., 2009). From their exploratory 
analysis of the ERS-1/-2 scatterometers, Wagner et al. (1999b) 
concluded that a SM effect on σ′ and σ′ ′ is weak or nonexistent. There-
fore, they assumed that SM effects on σ′ and σ′ ′ can, in a first approxi-
mation, be neglected. This assumption has become part of the core 
postulates of the TU Wien SM retrieval algorithm (Wagner et al., 1999c; 
Vreugdenhil et al., 2016; Hahn et al., 2020). 

Traditionally, vc has been modelled as a climatology (vcclim), i.e., σ′

and σ′ ′ are modelled for every day of year. However, vegetation dy-
namics can vary significantly in different years due to meteorological 
conditions, and vcclim is thus expected to be outperformed by a dynamic 
vegetation correction (vcdyn) when used for the retrieval of SM (Vreug-
denhil et al., 2016). Melzer (2013) showed how σ′

dyn and σ′′
dyn can be 

modelled in a robust way. The use of this vcdyn for SM retrieval from 
ASCAT has been evaluated in different studies with mixed outcomes: 
Pfeil et al. (2018) analyzed the differences in ASCAT SM time series 
when using vcdyn as opposed to vcclim in an agricultural catchment in 
Austria. They found that the correspondence with in-situ SM does not 
improve significantly, contradicting the expectation. Steele-Dunne et al. 
(2021) analyzed ASCAT SM retrieved with vcclim and vcdyn over the 
United States. They concluded that the application of vcdyn leads to 
improvements in the resulting SM dataset over regions with a temporal 
trend or changes in the amplitude or timing of phenological processes, 
but not in general, due to short-term variability in σ′

dyn. 
Short-term dynamics in the order of several days to a few weeks in 

σ′

dyn have not been studied in detail. As vegetation growth processes 
usually take place on temporal scales of several weeks, it is likely that 

the observed short-term effects are in fact secondary effects super-
imposed on the vegetation signal at the coarse spatial resolution of 
ASCAT. A possible explanation was put forward by Quast and Wagner 
(2016), who used radiative transfer theory to model backscatter from 
the land surface. They found that, in contrast to the assumption made in 
(Wagner et al., 1999b), σ′ and σ′ ′ might in fact be significantly affected 
by SM. A recent study by Vermunt et al. (2021) found that interception 
and dew, i.e., water present on the canopy (WOC), impact L-band 
backscatter. In a follow-on study (Khabbazan et al., 2022), the authors 
demonstrated that interception and dew influenced retrievals of vege-
tation parameters. It is likely that this effect also plays a role, or is even 
stronger, in C-band microwave remote sensing as the wavelength is 
shorter and closer to the size of plant constituents. 

The aim of this study is to advance the understanding of short-term 
variability in σ′

dyn and in particular the investigation of a potential SM 
effect on σ′. Whereas reference data for SM can be readily obtained from 
multiple sources, e.g., based on remote sensing data, land surface 
models, or data assimilation products, the availability of WOC reference 
data is currently limited to dedicated field experiments. Thus, we ac-
count for WOC only indirectly by masking potentially affected obser-
vations. As the effects are expected to be more pronounced on σ′ than on 
its derivative, σ′ ′, and the estimate of σ′ ′ is less robust than the estimate 
of σ′, we will not look at σ′ ′ in this study. The main challenge of this 
investigation is that SM, WOC, and vegetation dynamics are closely 
related through the water, energy and carbon cycles, and disentangling 
the effects needs a careful analysis. Thus, we base the study on different 
types of analyses and aim at answering the following questions:  

1. How do σ′

clim and σ′

dyn differ, and can we relate the differences to SM 
or LAI dynamics?  

2. What are the correlations between anomalies of σ′

dyn, SM, rainfall, 
temperature, and LAI?  

3. Is there a direct relationship between SM and the daily slope values, 
the so-called local slopes σ′

local?  
4. Do SM variations explain short-term dynamics in σ′

dyn even when 
excluding observations potentially affected by WOC?  

5. What is the magnitude of a potential SM effect on σ′

dyn? 

The calculation of σ′

local, σ
′

dyn, and σ′

clim will be described in section 
3.1. Section 5 provides details on each analysis step, including the 
chosen WOC masking approach. We carry out the analysis for six regions 
in Austria, Portugal and Russia, which differ in climate, land cover, and 
the factors that limit vegetation growth. 

2. Vegetation, soil moisture and roughness effects on σ′ 

An observed backscatter value (σ0) is affected by the characteristics 
of the land surface in the sensor footprint, and by the different scattering 
mechanisms that are activated. This, in turn, is primarily controlled by 
the sensor’s frequency and polarization, and the incidence angle of the 
observation (Ulaby, 1981). Fig. 1 shows a generalized overview of 
different effects that contribute to σ0. In the case of bare soil, the radi-
ation is reflected on the surface, and with increasing surface roughness, 
a larger part of the radiation is scattered back to the sensor. If a surface 
appears rough or smooth to a scatterometer is defined by the size of the 
surface height variations, the wavelength of the radar beam, and the 
incidence angle. In general, σ0 is higher over rough surfaces and de-
creases with increasing incidence angle. This decrease with increasing 
incidence angle is stronger for smooth surfaces. In addition, the soil 
water content plays a fundamental role in microwave remote sensing, as 
wet soil increases σ0 due to its high dielectric constant and consequently 
higher scattering strength. As opposed to bare soil, a vegetation canopy 
appears as an inhomogeneous medium with a higher penetration depth, 
and thus acts like a volume scatterer, which scatters the incident 
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radiation diffusely in all directions. In this case, the backscattered ra-
diation fraction depends less on the incidence angle. In addition to 
surface and volume scattering, double-bounce backscattering between 
vegetation constituents and the (soil or water) surface might occur. 
Double-bounce scattering is typical for flooded vegetation, e.g., paddy 
fields, but may also play an important role over croplands with pre-
dominantly vertically oriented plant constituents when observed with 
sensors that operate in vertical polarization mode. With increasing 
incidence angle, i.e., a longer pathway through the vegetation and thus 
decreasing canopy transmissivity, double-bounce effects are expected to 
become weaker (Xu et al., 2019). In most regions, except for, e.g., 
tropical rainforests or desert areas, the sensor footprint often covers a 
mixture of different land cover types, which also develop differently 
throughout the growing season. Thus, σ0, as well as the sensitivity of 
σ0 to the incidence angle of the observation (σ′), are usually affected by 
both surface and volume (and in some cases, double-bounce) scattering, 
and change over the year based on SM and vegetation conditions. 
Thereby, the presence of vegetation in the sensor footprint and the in-
crease of vegetation water content and biomass during the growing 
season reduce the sensitivity to SM. 

As stated in the introduction, recent studies suggest that the SM- 
induced increase of absolute backscatter might not be consistent 
across all incidence angles. As the attenuation of the radar beam by a 
vegetation canopy is higher at large incidence angles due to longer paths 
through the canopy, an increase in SM might increase σ0 (expressed in 
dB) observed at low incidence angles more than at high incidence an-
gles, leading to a steeper, i.e., more negative, σ′. This hypothesized 
process is shown in red in Fig. 1. This would mean that σ′ changes due to 
vegetation dynamics (rather long-term changes) as well as due to SM 
dynamics (rather short-term changes of a few days to weeks). 

3. Datasets 

Since SM and vegetation growth are closely connected through the 
water, carbon and energy cycles, we compare σ′ not only to SM but also 
to LAI, rainfall, and surface temperature. LAI, representing vegetation 
growth and dynamics, is obtained from the Copernicus Global Land 
Service (CGLS). Surface temperature, as a proxy for photosynthesis and 
land-atmosphere exchanges in radiation- or temperature-limited areas, 

and rainfall data are obtained from the ECMWF Re-Analysis (ERA5- 
Land). An overview of the datasets is given in Table 1. We collected data 
from all datasets for the period 2007–2019. Timestamps with a surface 
temperature below 3 ◦C or snow cover above 10% have been masked. 
Unless stated otherwise, we use time series that have been smoothed 
with a 42-day rolling Epanechnikov kernel in order to match the TU 
Wien change detection σ′ calculation (see section 3.1). This smoothing 
preserves the seasonal cycle as well as short-term events of several days 
to weeks, but removes events of shorter time scales, i.e., a few days or 
below. In the case of ASCAT, the Epanechnikov kernel is applied in order 
to obtain a robust estimation of σ′. Therefore, the observations are 
weighted based on their relative distance (d) to a given day using the 
following equation: 

weight = 0.75*(1 − d2) (1) 

Both absolute and anomaly time series are used in this study. 
Anomalies are calculated by subtracting the long-term average 
(2007–2019) from the absolute values. The long-term average is ob-
tained by applying a 5-day smoothing window on the time series (gap 
filling and short-term event correction), calculating the mean value for 
each day of year based on data from all available years, and applying a 
30-day smoothing window on the resulting time series (long-term event 
correction). The long-term average thus represents the average annual 
seasonal cycle, without variations in the order of several days to weeks. 
The anomaly time series on the other hand contain only these short-term 
deviations from the long-term average, i.e., without a seasonal cycle. 

3.1. Advanced Scatterometer (ASCAT) 

We test our hypothesis using σ0 observations and thereof derived σ′

from the Advanced Scatterometer (ASCAT). ASCAT is a side-looking C- 
band radar onboard the Metop-A, -B, and –C satellites, which were 
launched in 2006, 2012, and 2018, respectively. Recently, Metop-A has 
reached its end, and was deorbited in November 2021. ASCAT observes 
the surface with a frequency of f = 5.255 GHz across an incidence angle 
range of 25◦–53◦ (mid-beam) and 34◦– to 64◦ (fore- and aft-beams), and 
provides vertically co-polarized (VV) σ0. 

The description of the backscatter-incidence angle dependence, i.e. 
σ′ and σ′ ′, has been investigated in many studies. Please note that as 
stated in the introduction, we focus only on σ′ in this study. Wagner et al. 
(1999b) estimated σ′ based on all backscatter observations from a 
certain period of the year (slope climatology, σ′

clim). Later, Melzer (2013) 
showed that σ′ can be derived for sliding time windows of a few weeks 
(dynamic slope, σ′

dyn). Hahn et al. (2017) compared σ′

clim and σ′

dyn and 

showed the robustness of the σ′

dyn calculation on a global scale. All these 
studies used backscatter observations from ASCAT or its predecessors, 
the scatterometers onboard the ERS-1 and -2 satellites (ESCAT). The 
calculation of both σ′

clim and σ′

dyn is based on the so-called local slopes, 
which can be derived from the (almost) simultaneous observations of 
the fore- (f), mid- (m) and aft-beams (a) provided by ESCAT and ASCAT: 

Fig. 1. Dependence of the backscatter coefficient on the incidence angle under 
dry and wet conditions, for bare soil and fully grown vegetation (after (Wagner 
et al., 1999b)). The hypothesized change of σ′ due to SM variations is shown in 
red. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 1 
Overview of datasets.  

Variable Unit Dataset Spatial sampling 

σ0 dB ASCAT 12.5 km 
σ′

clim, σ′

dyn, σ′

local dB/ 
deg 

ASCAT 12.5 km 

Rainfall m/h ERA5-Land 9 km 
Soil moisture (0–7 cm 

depth) 
m3m− 3 ERA5-Land 9 km 

Surface temperature ◦C ERA5-Land 9 km 
Leaf area index [ − ] SPOT-VGT, 

PROBA-V 
resamp. to ASCAT 
grid  
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σ′

mf =
σ0

m − σ0
f

θm − θf
, σ′

ma =
σ0

m − σ0
a

θm − θa
(2)  

θmf =
θm − θf

2
, θma =

θm − θa

2
(3)  

where σ0 denotes the backscatter, θ is the incidence angle, and σ′

mf and 
σ′

ma are the local slopes (σ′

local). The dynamic slope, σ′

dyn, is estimated for 

every day by calculating a linear regression based on all σ′

local values 
within a window of ±21 days, weighted by their temporal distance from 
the respective date using a rolling Epanechnikov kernel. The result of 
this linear regression are σ′

dyn and σ′′
dyn of the respective date. The esti-

mation of σ′

clim (and σ′′
clim) is done in the same way, but using all ob-

servations from a certain period of all available years. In this study, we 
applied the same methods for the estimation of σ′

local, σ
′

clim, and σ′

dyn, i.e., 
descriptions of the linear part of the backscatter-incidence angle 
dependence on different temporal scales. 

σ′ is generally exploited in three ways: First, it is used to normalize 
backscatter observations to any desired incidence angle. Second, σ′ is 
used to correct for vegetation effects and the subsequently reduced 
sensitivity to SM in the TU Wien SM retrieval algorithm. Third, it is used 
to calculate VOD from ASCAT (Vreugdenhil et al., 2016) and for the 
study of vegetation dynamics (Steele-Dunne et al., 2019; Pfeil et al., 
2020). The main assumption underlying the latter two uses is that σ′ is 
only affected by vegetation water content and structure, not by SM 
conditions (or other secondary effects). The assumption is based on early 
studies by Wagner et al. (1999b) who calculated differences between 
measured σ′

local and their first-order approximation and compared the 
variability of these differences for grassland, boreal forest, and peri-
alpine forest regions. High variability in these differences would indi-
cate the presence of natural short-term changes in σ′. They found the 
variability to be similar among the vegetation regions, although back-
scatter from forested areas is much more stable than the backscatter 
from grassland, and concluded that σ′ is generally not affected by 
short-term changes of environmental conditions. Thus, they also ex-
pected correlations between σ′ and SM to be weak. This study was based 
on ESCAT data from two years (1993 and 1994). Nowadays, backscatter 
samples are available for much longer periods and at higher spatial, 
temporal, and radiometric resolutions. It is thus possible to revisit and 
potentially update the interpretation by Wagner et al. (1999b). 

3.2. CGLS leaf area index 

The Copernicus Global Land Service (CGLS) provides LAI from the 
SPOT-VGT and PROBA-V sensors (Camacho et al., 2013; Dierckx et al., 
2014). In this study, version 2 of the dataset was used, which is available 
from 1999–June 2020 and has a spatial resolution of 1 km. The LAI data 
was spatially resampled to the scale of ASCAT by averaging over all 1 km 
pixels within a 0.09◦ radius around the center of the respective ASCAT 
grid point. 

3.3. ERA5-land 

Hourly SM, rainfall, and surface temperature were obtained from the 
ERA5-Land dataset (Mu ñ oz Sabater, 2019) and resampled to daily 
averages. Surface temperature was included in the study to account for 
the fact that land-atmosphere exchanges are radiation- and/or 
temperature-limited in some regions. All time series used in this study 
were masked for cold and frozen conditions using daily surface tem-
peratures (masked if temperature is below 3 ◦C), and for snow cover 
(masked if snow content is greater than 10%). 

3.4. CCI land cover 

The dominant, i.e., most frequent land cover class for each ASCAT 
grid point has been derived from the CCI land cover dataset version 
v2.0.7, year 2015 (ESA, 2017). 

4. Study area 

We selected six regions of interest (ROIs) in Austria, Portugal and 
Russia in order to study SM and vegetation effects on σ′ under different 
environmental conditions. These six regions have different dominant 
climate regimes, land cover types, and vegetation cycles. Table 2 pro-
vides an overview of the study regions, and the factors mainly limiting 
vegetation growth (estimated from (Nemani et al., 2003), Fig. 1a). 
Long-term average annual temperature, SM, and LAI are shown in Fig. 2 
in order to illustrate differences of climate and vegetation growth be-
tween the ROIs. Note that short-term variations in the order of days to 
weeks are filtered out during the calculation of the long-term average. 
Average temperatures in Austria range from slightly below 0 ◦C in 
winter to around 20 ◦C in the summer months. SM is relatively constant 
throughout the year, with lowest values during the warm summer 
months. As shown by LAI, the growing season in cropland starts in 
March, peaks in June and ends around late September. In grassland, the 
peak of the growing season also happens around June, with a less sharp 
decline afterwards until autumn. In evergreen needleleaf forest, LAI 
increases constantly from around March to July and then decreases 
again until the end of autumn. The development is similar in Russia. 
However, LAI is lower there due to the sparse vegetation cover. Average 
temperatures range from around − 30 ◦C to 10 ◦C. In these four ROIs, 
vegetation growth is mainly limited by radiation and temperature. In 
Portugal on the other hand, vegetation growth is mainly water-limited. 
Average annual temperatures range from around 10 ◦C to above 20 ◦C. 
In summer, SM levels become very low. The peak of the growing season 
occurs around May/June, before the SM level reaches its minimum 
(around 0.15 m3/m3). 

Fig. 3 shows the average σ′

dyn time series for each ROI. Characteristic 
seasonal vegetation cycles, similar to LAI in Fig. 2, can be identified. In 
addition, interannual variability due to different weather conditions is 
clearly visible in all ROIs. σ′

dyn is most dynamic over cropland, varying 
from below − 0.15 dB/deg to − 0.05 dB/deg. Lowest slope dynamics are 
observed over evergreen needleleaf forest, with slope values from 
around − 0.10 dB/deg to − 0.075 dB/deg. The steepest slopes are 
observed over sparse vegetation in Russia, where the average slope in 
the short growing season is around − 0.15 dB/deg. 

5. Methods 

5.1. Correlation analysis - seasonal dynamics 

In a first step, we analyze the seasonal dynamics of the climatology 
slope (σ′

clim) and the dynamic slope (σ′

dyn) by correlating the time series 
with LAI and SM (smoothed with a 42-day rolling window). If the short- 
term variations in σ′

dyn represent vegetation dynamics, we expect to see 
similar dynamics in LAI, and thus a strong correlation between LAI and 
σ′

dyn. On the other hand, if the short-term dynamics are caused by SM, 

the correlation between SM and σ′

dyn will be stronger than between SM 

and σ′

clim, and the correlation between LAI and σ′

dyn will be weaker than 

between LAI and σ′

clim. Please note that we are not primarily interested in 
absolute correlations here, as the seasonal cycle in all variables will lead 
to high correlation values without necessarily bearing causality (Papa-
giannopoulou et al., 2017). Instead, we only look at the relative differ-
ences in the correlations of LAI and SM with σ′

clim and σ′

dyn. We use 
Spearman’s rank correlation coefficient, as the variables might be 
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non-linearly related. 

5.2. Correlation analysis - anomalies 

Next, we carry out a correlation analysis on anomaly time series, i.e., 
time series where the long-term seasonal cycle has been subtracted. As 
mentioned above, this is critical in the case of variables with a strong 
seasonal cycle, as potential (non-)correlations in the short-term dy-
namics of the variables will always be outweighed by long-term simi-
larities. In this step, we also include rainfall and temperature anomalies 
in addition to SM and LAI, as short-term vegetation dynamics might 
rather be reflected (indirectly) in these variables than in LAI. In addition, 
we carry out a multiple linear regression (MLR) in order to test the 
explanatory power of anomalies of the individual variables, as well as 
combinations thereof, on dynamics in σ′

dyn. The explanatory power is 
given by the coefficient of determination, R2, and is calculated using the 
ordinary least squares (OLS) function of the statsmodels Python package. 

5.3. Local slopes analysis 

As described in section 3.1, σ′

dyn is based on the weighted σ′

local values 
of all observations within a ±21-day window. Thus, potential short-term 
effects of SM are reduced in σ′

dyn (as well as in σ′

clim), but much more 

pronounced in σ′

local. In the presented analysis, the uncertainty in the 
local slopes is reduced by averaging the local slope pairs: 

σ′

local =
σ′

mf + σ′

ma

2
, θlocal =

θmf + θma

2
(4) 

We look at changes of the observed σ′

local and compare them to the 
corresponding changes in SM. For this purpose, we use the SM value 
from the timestamp closest to the ASCAT observation, as opposed to the 
42-day smoothed values that were used before. In case of a SM effect on 
the slope, we expect the slope to become steeper as SM increases. As σ′

local 
is calculated for each observation, the values are not yet normalized for 
incidence angle effects. Thus, this analysis is carried out per incidence 
angle (rounded to full integers). We do a visual analysis of the σ′

local 

Table 2 
Abbreviation, Koeppen-Geiger climate class, factors limiting vegetation growth (LVG), number of grid points (n), and center coordinates for the six regions of interest.  

Region Abbreviation Climate LVG n Center 

Austria (cropland) AT_cr Dfb radiation 79 16.14◦E, 48.33◦N 
Austria (grassland) AT_gr Cfb, Dfb radiation 23 13.84◦E, 48.12◦N 
Austria (evergreen needleleaf forest) AT_nf Dfb,c, ET radiation, temperature 86 14.90◦E, 47.11◦N 
Portugal (tree, shrub mosaic) PT_ts Csb radiation, water 93 7.46◦W, 41.00◦N 
Portugal (cropland) PT_cr Csa water 80 7.82◦W, 38.37◦N 
Russia (sparse vegetation) RU_sv Dfc temperature, radiation 102 108.20◦E, 72.00◦N  

Fig. 2. Long-term average annual temperature, SM and LAI for every day of year (DOY). Periods where the average temperature is less than or equal to 3 ◦C are 
shown in light blue. Please note the different temperature axis for Russia. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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dynamics during and after rainfall events in order to support the 
discrimination of SM and vegetation effects in σ′

local and, subsequently, 
σ′

dyn. 

5.4. Indirect assessment of WOC effects on the ASCAT slope 

A recent study by Vermunt et al. (2021) using L-band backscatter 
suggested that water on canopy (WOC), due to, e.g., interception and 
dew, may affect the backscatter significantly. It is assumed that C-band 
σ0 and σ′ are also strongly affected by WOC. However, these effects are 
poorly understood, and it is not known how ASCAT’s sensitivity to SM 
changes when WOC is present. In order to investigate correlations be-
tween σ′ and SM and at the same time reduce the uncertainty with 
respect to WOC, we apply an indirect WOC masking: First, we identify 
all σ′

local observed on days with rainfall (maximum rainfall value greater 
than 1 mm/h) and remove these observations. Moreover, we exclude all 
observations from morning overpasses (before 10:00 a.m.m), as dew is 
expected to occur mainly in the morning hours. Just like in the previous 
sections, we then derive the σ′

dyn time series based on all remaining σ′

local 

values within a ±21-day window. This modified σ′

dyn is referred to as 

σ′

dyn,nWOC (“dynamic slope, no water on canopy”). The assumption that 
we take here is that a potential WOC effect on the slope lasts shorter than 
a SM effect, as the drying of the leaves happens more quickly than the 
decrease in SM. The proposed approach is not expected to provide a 
perfect masking of WOC. For example, WOC may persist for a longer 
duration depending on weather conditions and leaf structure. None-
theless, in the absence of reference data for WOC, the proposed masking 
is adopted as a meaningful indirect indicator of WOC. It also has to be 
noted that the estimation of σ′

dyn,nWOC is less robust than the original σ′

dyn 

due to the reduced number of σ′

local. 
Similar as in section 5.3, SM, σ′

local, σ
′

dyn and σ′

dyn,nWOC are visually 
compared to each other and analyzed for selected grid points. Then, we 
redo the correlation analysis from section 5.2 with σ′

dyn,nWOC and 

compare the results with the correlations obtained with σ′

dyn. 

5.5. Quantification of SM effects on the ASCAT slope 

Finally, we provide an estimate of the magnitude of SM effects on 
σ′

dyn by calculating linear regressions between anomalies of 42-day 

smoothed SM and σ′

dyn. The regression line is used to obtain the 

change in σ′

dyn at the largest positive (wet) SM anomaly that occurred in 

each ROI. Then, the order of magnitude of the change in σ′

dyn is related to 

the characteristic σ′

dyn dynamics in each ROI. 

6. Results 

6.1. Correlation analysis - seasonal dynamics 

Fig. 4 shows example time series of σ′

clim, σ′

dyn, SM, and LAI for a grid 
point in Marchfeld, an agricultural region in eastern Austria. All four 
variables show a characteristic seasonal cycle and inter-annual varia-
tions, e.g., lower maximum values in σ′

dyn and LAI in 2017, 2018, and 

2019, and short-term variations in σ′

dyn and SM. As can be seen in the 

figure, some of the short-term variations in σ′

dyn correspond to variations 
in SM, but not to LAI, which shows relatively smooth temporal dynamics 
apart from inter-annual variations in the absolute values. For this grid 
point, the Spearman correlations between σ′

clim and SM, and σ′

clim and 

Fig. 3. Average σ′

dyn time series for each ROI (black). The grey shaded area shows the ±1 standard deviation range within each ROI.  

I. Greimeister-Pfeil et al.                                                                                                                                                                                                                       



Science of Remote Sensing 5 (2022) 100053

7

LAI are − 0.53 and 0.86, respectively. The correlations of SM and LAI 
with σ′

dyn are − 0.72 and 0.70, i.e., the correlation between SM and σ′

dyn is 

− 0.19 lower (stronger) than with σ′

clim, whereas it is 0.16 lower (weaker) 
for LAI and σ′

dyn than LAI and σ′

clim. We calculated these correlations for 
all grid points in the six ROIs and found a consistent behavior (Fig. 5): 
for all ROIs, the median correlation between SM and σ′

dyn is stronger 

than between SM and σ′

clim, whereas the opposite is true for LAI, except 
for the PT_cr ROI, where the correlation between σ′

clim and LAI is slightly 
lower. The weak correlations in PT_cr can be explained by a relatively 
quick drop in LAI in early summer, which in most years corresponds to 
the timing of the shallowest slope, but after the peak, the slope values 
decrease more gradually. An example of this behavior is shown in Fig. 6 
for a grid point in Portugal dominated by non-irrigated arable land. 
Figs. 4 and 6 also show that there is a small time lag between σ′ and LAI, 
which is due to a sensitivity to different biophysical parameters: whereas 
LAI is a representation of the photosynthetically active leaf area per 
surface area, σ′ is sensitive to the vegetation density, water content, and 
vegetation structure. These time lags are typically of a few weeks and 
have been observed for σ′ (Pfeil et al., 2018) and the closely related VOD 
(Jones et al., 2011) (see Fig. 7). 

6.2. Correlation analysis - anomalies 

In a next step, we calculated Spearman correlations between anom-
aly time series, i.e., time series where the long-term seasonal cycle has 

been removed. Table 3 shows the median correlation for each ROI. For 
all ROIs except PT_cr, the correlation is strongest between σ′

dyn and SM, 
ranging from − 0.37 to − 0.70. For PT_cr, the correlation is strongest 
between σ′

dyn and rainfall (− 0.51), but also relatively high between σ′

dyn 

and SM (− 0.45). The correlations with LAI range from − 0.14 to 0.26 and 
are thus much weaker than with SM and rainfall. As shown in section 
6.1, LAI does not show large short-term dynamics, and inter-annual 
variations mainly show in the absolute values and the long-term 
development of LAI throughout the growing season. The correlations 
with temperature anomalies range from 0.23 to 0.43, which most likely 
reflects the close relationship between temperature and SM, i.e., drying 
of the soil with higher temperatures and evaporation rates. The fact that 
the σ′

dyn correlations with rainfall and SM are higher than with tem-

perature suggests that the short-term dynamics in σ′

dyn do not represent 
temperature-induced vegetation dynamics, e.g., by an increased water 
demand from the atmosphere leading to water uptake by the leaves, but 
more likely a direct SM effect. 

The OLS analysis has the advantage that also multivariate relation-
ships can be tested. The R2 coefficient represents the percentage of 
variation in the σ′

dyn anomalies that can be explained by another variable 
or combinations thereof (Fig. 7). LAI has been excluded here because of 
the weak correlations with slope anomalies as shown in Table 3. In 
general, similar results are obtained as presented above. SM is in all 
regions the most important variable for explaining short-term dynamics 
in σ′

dyn. Over cropland and sparse vegetation, rainfall has a higher R2 

Fig. 4. σ′

clim, σ′

dyn, SM and LAI for a grid point in AT_cr (lon: 16.79◦, lat: 48.62◦).  

Fig. 5. Spearman correlation coefficient (r) of σ′

clim and σ′

dyn with SM and LAI, for each ROI. Only grid points with a significant correlation (p < 0.01) are included. 
The boxes show the quartiles, and the whiskers show the rest of the distribution. The horizontal line inside the boxes shows the median value. Outliers are shown 
by diamonds. 
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coefficient than temperature, whereas the opposite is true in grassland, 
needleleaf forest and shrubland. In all ROIs, the highest R2 coefficients 
are obtained when combining temperature, SM and rainfall anomalies. 
In all regions except AT_cr, where the combined R2 values are very 
similar, a clear drop in R2 is observed when including only temperature 
and rainfall in the analysis. Overall, the highest R2 values are obtained in 
RU_sv, with median values above 0.50 and maximum values around 
0.70. Vegetation growth in this ROI is generally limited by temperature 
and radiation, not by SM availability. The fact that much higher corre-
lations between σ′

dyn and SM than temperature are observed supports 

again the hypothesis that the short-term dynamics in σ′

dyn can be 
explained by SM dynamics to a very large extent. R2 is lowest over 
needleleaf forest, indicating that there, the bare soil scattering compo-
nent is largely attenuated by the canopy, and subsequently, the SM effect 

is lower. 

6.3. Local slopes analysis 

The local slopes σ′

local allow for the analysis of a potential SM effect at 
a much finer temporal scale. We selected two grid points as examples for 
the detailed study of a relationship between SM and short-term dy-
namics in σ′

local and σ′

dyn. Fig. 8 shows σ′

local observed over a range of 
incidence angles, the 42-day smoothed σ′

dyn time series, and ERA5-Land 

SM, temporally matched to σ′

local, for a grid point in AT_cr (left) and 
PT_cr (right). Displayed are only σ′

local values from the incidence angle 
with most observations in the bins 25◦–-35◦, 35◦–-45◦, 45◦–-55◦ and 
55◦–-65◦, whereas the resulting 42-day smoothed σ′

dyn (shown in black) 
includes all observations from the entire incidence angle range. The 
shown time series are from 2014, as interesting SM and σ′

dyn dynamics 
occurred in this year in AT_cr and PT_cr. 

In the first example (AT_cr), SM was relatively high in April and May 
2014, and decreased relatively smoothly in June. In the beginning of 
July, SM increased again. As opposed to SM, σ′

local and the resulting σ′

dyn 

started to increase (become more shallow) in March, then decreased 
during the period of higher SM in April and May, increased in June, and 
quickly decreased at the beginning of July. From August onwards, SM 
stayed constantly high. σ′

local and σ′

dyn decreased, mainly reflecting the 
end of the growing season and senescence of the vegetation, but also 

Fig. 6. σ′

clim, σ′

dyn, SM and LAI for a grid point in PT_cr (lon: -8.09◦, lat: 37.82◦).  

Fig. 7. Coefficient of determination (R2) obtained for regressions of temperature, soil moisture, rainfall, and combinations thereof against σ′

dyn, for each ROI. The 
boxes show the quartiles, and the whiskers show the rest of the distribution. The horizontal line inside the boxes shows the median value. Outliers are shown 
by diamonds. 

Table 3 
Median Spearman correlation (significant at p<0.01) between anomalies of σ′

dyn 

and the given variable. The maximum absolute correlation is given in bold.  

Region Rainfall Soil moisture Temperature LAI 

AT_cr − 0.49 ¡0.52 0.43 − 0.07 
AT_gr − 0.34 ¡0.51 0.41 − 0.14 
AT_nf − 0.24 ¡0.37 0.35 0.10 
PT_ts − 0.44 ¡0.52 0.32 0.10 
PT_cr ¡0.51 − 0.45 0.23 0.13 
RU_sv − 0.32 ¡0.70 0.27 0.26  
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including some short-term effects such as in October and the beginning 
of November, where again, the σ′

local and also σ′

dyn dynamics are clearly 
opposed to SM dynamics. In the second example (PT_cr), SM was high in 
the winter months in 2014, decreased from March onwards and 
increased again in September, interrupted by a number of SM increases 
and rapid decreases due to rainfall events. The distinct SM dynamics are 
also found in σ′

local: whenever SM increased, σ′

local decreased. The effect 
seems particularly pronounced at lower incidence angles, for example 
when comparing the σ′

local(θ = 35◦) time series with σ′

local(θ = 58◦). The 
time series also show the dependence on the overpass timing: the large 
rainfall event in mid-May is reflected in σ′

local(θ = 58◦), but missed by 
σ′

local(θ = 35◦). In σ′

dyn, the short-term effects that are so clearly visible in 

σ′

local appear smoothed, but can still be linked to large rainfall events for 
example in the beginning of April, the end of June and the beginning of 
September. Again, the seasonal dynamics are dominated by the vege-
tation cycle. These observations indicate that rainfall events and thus SM 
increases steepen σ′

dyn where a flattening is expected as a result of 
growing vegetation. Similarly, at the end of the growing season, the 
steepening of σ′

dyn is exacerbated by SM increases. 

6.4. Indirect assessment of WOC effects on the ASCAT slope 

In section 6.2, we showed that short-term σ′

dyn anomalies are highly 
correlated with SM and rainfall. However, rainfall has no direct effect on 
backscatter. Rather, it is SM and WOC after rainfall events (and, in the 
morning hours, WOC in the form of dew) that affect backscatter. Similar 
to SM, WOC might have an impact on σ′. However, due to a lack of 
reference data for WOC, we can currently assess contributions of WOC 
only indirectly. As described in section 5.4, we do this by removing 
measurements potentially affected by WOC before the σ′

dyn calculation. 

Fig. 9 shows the remaining σ′

local, the original σ′

dyn, the new σ′

dyn,nWOC 

with measurements from rainy days and morning overpasses removed, 
and SM, temporally matched to the dates of the remaining σ′

local values. 

Compared to Fig. 8, the AT_cr example (left panel) shows a longer slope 
increase in spring, but again a decrease around the beginning of May, 
when SM is high. In autumn, σ′

dyn and σ′

dyn,nWOC are very similar. In the 
PT_cr example (right panel), the number of quick drops in the 
σ′

local(θ = 58◦) time series is reduced. Remaining short-term effects are 
mainly visible during the large SM increase around the beginning of 
April and at the beginning of July, when the vegetation is already 
beginning senescence. The resulting σ′

dyn,nWOC dynamics are very similar 
to the original σ′

dyn. The reduced robustness of the calculation of 

σ′

dyn,nWOC shows for example in November 2014. 
This analysis shows that when excluding measurements from rainy 

days and morning overpasses, some short-term dynamics in σ′

local are 
indeed removed, which may be related to WOC. However, the main 
dynamics in σ′ are still present, as the 42-day smoothed σ′

dyn,nWOC does 

not differ much from σ′

dyn. This suggests that WOC might play a (sig-
nificant) role, however, it represents only another influence on σ′

dyn, in 
addition to the SM effect. 

To quantify the relative importance of the SM effect on σ′

dyn with 
respect to the WOC effect, we repeat the correlation analysis from sec-
tion 6.2, now using σ′

dyn,nWOC instead of σ′

dyn. Because of the only indirect 
effect on rainfall and the fact that we used rainfall to correct for WOC in 
σ′

dyn,nWOC, we omit this variable here. Table 4 shows the median 
Spearman correlations between anomalies of SM, temperature, and LAI 
and σ′

dyn,nWOC (r). In addition, the differences between the absolute 

correlations calculated between the explanatory variables and σ′

dyn,nWOC 

and the absolute correlations calculated between the explanatory vari-
ables and σ′

dyn (section 6.2, Table 3) are given (Δabs(r)). A boxplot of the 

correlations between anomalies of SM, σ′

dyn, and σ′

dyn,nWOC is shown in 
Fig. 10. Both Table 4 and Fig. 10 show that for all ROIs, the correlations 
between σ′

dyn,nWOC and SM are lower, but still significant, and higher 
than with temperature or LAI. The correlations are mainly reduced in 

Fig. 8. Soil moisture (SM), σ′

local from the five most frequent incidence angles and σ′

dyn for a grid point in (left) AT_cr and (right) PT_cr.  

Fig. 9. Same as Fig. 8, but without σ′

local from rainy days and morning overpasses, and the resulting σ′

dyn,nWOC in addition (dashed black line) to the original σ′

dyn.  
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ROIs with higher rainfalls, i.e., Austria and Russia, showing that mask-
ing observations from rainy days and morning overpasses effectively 
reduces the impact of WOC (and SM, to a certain extent). These results 
suggest that we need to find a way to also fully reduce the SM effect in 
σ′

dyn,nWOC in order to obtain a σ′

dyn that mainly includes vegetation water 
content and structure effects. 

6.5. Quantification of SM effects on the ASCAT slope 

As the previous sections indicate that SM causes secondary, short- 
term dynamics in σ′

dyn, we will give an estimate of the magnitude of 
the effect. Please note that in this estimation, we assume that SM causes 
all short-term effects in σ′

dyn, neglecting other effects which are, e.g., 
related to the vegetation structure. We do not correct for WOC here, as 
σ′

dyn,nWOC is less robust than σ′

dyn, and we do not have reference data for 
the actual presence and amount of WOC. The calculations are done for 
the maximum observed wet anomaly (i.e., 42-day smoothed SM anom-
alies) during the study period. The results should thus be interpreted as 
maximum values, and smaller SM effects are expected for most of the 
time. In order to quantify the SM effect, we calculate linear regressions 
between anomalies of 42-day smoothed SM and σ′

dyn. Fig. 11 shows the 
median regression lines for each ROI along with values from a randomly 
selected subset of grid points. Boxplots of the linear regression slope (k) 
and R2 values for the ROIs are shown in Fig. 12. The k values are similar 
in most ROIs, and range from around − 0.20 to − 0.05 dB/deg per m3/ 

m3. AT_nf sticks out as the k values are slightly higher there, i.e., the 
regression line is flatter (median k = − 0.08). The lowest median k are 
found in AT_gr and RU_sv (− 0.14). Using k, the magnitude of the SM 
effect with respect to the seasonal cycle of σ′

dyn can be quantified: For 
example, in AT_cr, the largest positive (wet), 42-day smoothed SM 
anomaly from 2007 to 2019 was 0.10 m3/m3 (SMwet). With a median k 
in AT_cr of − 0.13 dB/deg per m3/m3, SMwet corresponds to an effect on 
σ′

dyn of − 0.013 dB/deg. Typically, σ′

dyn ranges from − 0.15 dB/deg to 

− 0.06 dB/deg in cropland, i.e., over the year, the change in σ′

dyn is 0.09 
dB/deg. The value of − 0.013 dB/deg thus corresponds to 0.013/ 
0.09 = 14.4% of the average, total seasonal variation of σ′

dyn. Table 5 
gives an overview of the median values for k and the 95% confidence 
interval (kmin and kmax), the maximum SM anomaly during 2007–2019, 
minimum and maximum σ′

dyn, the difference between maximum and 

minimum σ′

dyn (Δσ′

dyn), and the thereof derived effect of the maximum 
wet anomaly on the slope, for each ROI. The SM effect is lowest, but still 
considerable, in AT_nf (6%). This is followed by grassland (AT_gr) with 
an effect of 11.2%. Over cropland (AT_cr and PT_cr), the effect is of 
14.4% and 13.0%, respectively. The largest effects are observed over 
tree and shrub mosaic (PT_ts) and sparse vegetation (RU_sv), with 17.3% 
and 23.3%. The SM effect thus increases with decreasing vegetation 
density, as with sparser vegetation, the signal is more and more coming 
from the soil. As stated above, these numbers are expected to be lower 
during most of the time. Still, they indicate that σ′

dyn is not just related to 

Table 4 
Median Spearman correlation (significant at p<0.01) between anomalies of 
σ′

dyn,nWOC and the given variable (r), and the difference to the correlations with 

σ′

dyn shown in Table 3 (Δabs(r); calculated between absolute r values). The 
maximum absolute correlation is given in bold.  

Region Soil moisture Temperature LAI  

r Δabs(r) r Δabs(r) r Δabs(r) 

AT_cr ¡0.36 − 0.16 0.28 − 0.15 0.05 − 0.02 
AT_gr ¡0.24 − 0.27 0.19 − 0.22 − 0.08 − 0.06 
AT_nf ¡0.12 − 0.25 0.12 − 0.23 0.10 0.00 
PT_ts ¡0.45 − 0.07 0.27 − 0.05 0.07 − 0.03 
PT_cr ¡0.42 − 0.03 0.18 − 0.05 0.10 − 0.03 
RU_sv ¡0.46 − 0.24 0.21 − 0.06 0.17 − 0.09  

Fig. 10. Median Spearman correlation (significant at p<0.01) between 
anomalies of SM and σ′

dyn (red) and between anomalies of SM and σ′

dyn,nWOC 

(yellow). The boxes show the quartiles, and the whiskers show the rest of the 
distribution. The horizontal line inside the boxes shows the median value. 
Outliers are shown by diamonds. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 11. Scatter plot of SM and σ′

dyn anomalies from randomly selected grid 
points for each ROI, along with the linear regression lines (calculated from all 
grid points of each ROI). 

Fig. 12. Linear regression slope k of SM and σ′

dyn anomalies for each ROI. The 
boxes show the quartiles, and the whiskers show the rest of the distribution. The 
horizontal line inside the boxes shows the median value. Outliers are shown by 
diamonds. R2 values of the linear regressions are shown above each box. 
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vegetation dynamics but also notably affected by SM. The secondary 
short-term dynamics caused by SM may be as large as a fifth of the 
seasonal, vegetation-induced variation in σ′

dyn. 

7. Discussion 

Backscatter measured by active microwave sensors is affected by 
multiple factors. Due to the coarse spatial resolution, each measurement 
usually contains signals from multiple land cover types. Moreover, 
rainfall, SM, temperature, and vegetation dynamics are closely related, 
which makes it especially difficult to separate the effects in the observed 
backscatter values. We tried to overcome these challenges by including 
different types of analyses, which all point to the same result: SM causes 
high-frequency variability in σ′, which appears as a secondary effect on 
top of the dominant vegetation signal. The effect can be explained by an 
SM-induced increase of the backscatter coefficient over vegetation 
canopies that still allow a fraction of the radiation to penetrate through 
and reach the surface. As vegetation canopies are less transparent at 
high incidence angles due to longer paths through the canopy, obser-
vations from lower incidence angles are more affected than observations 
from higher incidence angles. Consequently, the slope of the 
backscatter-incidence angle dependence becomes steeper, even though 
the vegetation canopy did not change. The assumption that SM causes an 
equal increase of σ0 (when expressed in dB) across all incidence angles is 
thus not strictly fulfilled. Rather, SM might increase σ0 especially at low 
incidence angles and thus lead to a steeper σ′, as displayed in red in 
Fig. 1. We gave a rough magnitude estimate of the SM effect, showing 
that it can be as high as one fifth of the total seasonal variation in σ′

dyn. 

The separation of vegetation, SM, and WOC effects on σ′

dyn as well as 
their respective contributions should be investigated further using more 
complex approaches, e.g., empirical orthogonal function analysis. 

Despite the clear results, we would like to discuss potential short-
comings of our analysis in the following. 

We carried out all our analyses on full time series, i.e., covering all 
months from January to December, apart from a masking of days with 
temperatures below 3 ◦C and snow cover. We did not do any seasonal 
split of the data because we were interested in the general presence of an 
SM effect. Single seasons might however show slightly different results. 
For example, we know of phenological processes such as spring reac-
tivation in deciduous broadleaf forest that can impact σ′ during a certain 
time of the year. These are neglected here, and it is assumed that all 
short-term effects have the same causes and appear throughout the year. 

As a reference for vegetation dynamics, we use LAI in this study. 
However, LAI is a suitable, but not perfect reference for VOD, which σ′ is 
most closely related to (Grant et al., 2016). For example, time lags have 
been observed between LAI and VOD (Jones et al., 2011; El Hajj et al., 
2019). These time lags are frequency-dependent and expected to be 
smaller for C-band (Grant et al., 2016; El Hajj et al., 2019). In the pre-
sented study, we tested the use of lagged correlations, but, as the time 
lags were small for all ROIs except for PT_cr and did not affect the results 
and conclusions of the study, they were omitted. Another way to over-
come this problem might be to compare σ′ to VOD derived from passive 

microwave sensors, which are expected to be less susceptible to SM ef-
fects because passive retrievals of SM and VOD make less strong 
pre-assumptions. However, also passive retrievals of VOD are associated 
with uncertainties, for example, due to radio frequency interference and 
pixel heterogeneity (Li et al., 2021; Bousquet et al., 2021). 

The impact of WOC on total backscatter and the relative contribu-
tions of the various scattering mechanisms are still poorly understood. 
Without reference data on how the presence of WOC alters the sensi-
tivity to surface SM, it is difficult to disentangle the respective impacts 
on the backscatter return. It is however expected that WOC leads to 
increased backscatter, while at the same time reducing the sensitivity to 
surface SM. The WOC filtering applied in this study can thus not be used 
to identify WOC directly, but should be interpreted as a method to mask 
events where both WOC as well as an increase in SM lead to secondary 
effects on σ′

dyn that do not originate from vegetation dynamics. Note that 
the examples discussed in sections 6.3 and 6.4 had a rather low number 
of rainfall events in 2014. In regions and years with more frequent 
rainfall events, removing WOC-affected measurements drastically re-
duces the number of σ′

local, leading to highly unstable σ′

dyn estimates in 
some cases. The effective removal of WOC and SM effects for the esti-
mation of σ′

dyn will thus require very thorough investigation. 
In the operational TU Wien SM retrieval algorithm, the estimation of 

the seasonal vegetation cycle is based on observations from several years 
and thus, short-term effects of SM become irrelevant. This explains the 
good performance of the operational ASCAT SM product as shown in 
many studies (Al-Yaari et al., 2014; Pierdicca et al., 2015; Miyaoka et al., 
2017; Chen et al., 2018; Mousa and Shu, 2020; Hahn et al., 2020). Our 
findings provide an explanation for studies (Pfeil et al., 2018; Steel-
e-Dunne et al., 2021) that did not find an improvement in the accuracy 
of SM datasets when retrieving them with vcdyn instead of vcclim. In order 
to benefit from an ASCAT-derived vcdyn in the SM retrieval and in studies 
of vegetation dynamics, all SM effects must first be corrected in the 
signal. A solution might be the application of a suitable temporal 
smoothing on σ′ in order to reduce SM effects in the signal while still 
keeping interannual vegetation dynamics. Other approaches could be 
the masking of observations taken under wet conditions, such as applied 
for WOC in this study, or by the use of models that explicitly account for 
the effect of soil moisture on σ′. 

8. Conclusions 

In this study, we revisited the assumption that soil moisture has a 
negligible effect on the slope σ′ of the backscatter-incidence angle 
dependence. Based on this assumption, σ′ has been used in studies of 
vegetation dynamics, for the retrieval of VOD, and to model the vege-
tation component in the backscatter signal. However, recent studies 
indicated that a soil moisture contribution may be present in the slope of 
the backscatter-incidence angle dependence. We analyzed this potential 
soil moisture effect on σ′ by comparing σ′, rainfall, soil moisture, tem-
perature, and leaf area index time series over six study regions with 
different climate, land cover, and vegetation cycles. The obtained results 
lead us to the following conclusions: 

Table 5 
Quantification of the SM effect on σ′

dyn k is the median slope of the linear regression between anomalies in SM and σ′

dyn. 95% of k are within kmin and kmax. The largest 

positive SM anomaly, SMwet, is given in m3/m3; σ′

dyn,min, σ′

dyn,max and Δσ′

dyn are given in dB/deg. The SM effect has been calculated based on the ROI-specific median 
values of all parameters.  

ROI kmin k kmax SMwet σ′

dyn,min σ′

dyn,max Δσ′

dyn Effect 

AT_cr − 0.14 − 0.13 − 0.13 0.10 − 0.15 − 0.06 0.09 14.4% 
AT_gr − 0.14 − 0.14 − 0.13 0.04 − 0.12 − 0.07 0.05 11.2% 
AT_nf − 0.09 − 0.08 − 0.07 0.03 − 0.10 − 0.06 0.04 6.0% 
PT_ts − 0.11 − 0.11 − 0.10 0.11 − 0.15 − 0.08 0.07 17.3% 
PT_cr − 0.12 − 0.11 − 0.11 0.13 − 0.17 − 0.06 0.11 13.0% 
RU_sv − 0.15 − 0.14 − 0.13 0.05 − 0.17 − 0.14 0.03 23.3%  
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● The slope of the backscatter-incidence angle dependence is domi-
nated by the vegetation cycle, but is affected by soil moisture at short 
temporal scales. This SM effect can be larger than 20% of the sea-
sonal, vegetation-induced variation over sparse vegetation. Over 
dense vegetation, the observed effect is lower (6% in evergreen 
needleleaf forest).  

● Short-term secondary effects are mitigated when using a climatology 
slope (σ′

clim) due to long-term averaging. The use of σ′

clim is however 
only suitable for applications that do not look at interannual vege-
tation dynamics.  

● As the slope has been found to be a useful complement to optical 
datasets for vegetation studies (Petchiappan et al., 2021), short-term 
secondary effects should be further investigated and a robust method 
for their mitigation should be developed. 

The findings from this study advance the understanding of vegeta-
tion and soil moisture effects on active microwave observations. The 
study also showed that there is a need to better understand interactions 
between C-band microwaves and water on canopy, i.e., how water on 
canopy alters σ0 and σ′, and how it affects the sensitivity to soil moisture. 
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Muñoz Sabater, J., 2019. Era5-land hourly data from 1981 to present, copernicus climate 
change service (c3s) climate data store (cds). https://doi.org/10.24381/cds. 
e2161bac accessed on 28-sep-2020.  

Naeimi, V., Bartalis, Z., Wagner, W., 2009. Ascat soil moisture: an assessment of the data 
quality and consistency with the ers scatterometer heritage. J. Hydrometeorol. 10, 
555–563. 

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., 
Myneni, R.B., Running, S.W., 2003. Climate-driven increases in global terrestrial net 
primary production from 1982 to 1999. Science 300, 1560–1563. 

Owe, M., de Jeu, R., Holmes, T., 2008. Multisensor historical climatology of satellite- 
derived global land surface moisture. J. Geophys. Res.: Earth Surf. 113. 

I. Greimeister-Pfeil et al.                                                                                                                                                                                                                       

http://refhub.elsevier.com/S2666-0172(22)00015-3/sref1
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref1
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref1
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref1
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref2
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref2
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref2
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref2
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref2
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref3
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref3
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref3
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref3
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref4
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref4
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref4
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref5
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref5
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref5
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref5
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref6
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref6
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref6
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref6
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref7
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref7
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref7
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref7
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref8
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref8
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref8
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref9
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref9
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref9
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref10
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref10
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref10
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref10
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref11
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref11
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref11
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref12
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref12
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref13
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref13
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref13
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref14
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref14
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref14
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref14
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref15
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref15
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref15
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref16
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref16
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref16
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref17
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref17
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref17
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref18
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref18
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref18
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref19
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref19
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref19
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref19
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref20
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref20
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref20
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref21
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref21
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref21
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref22
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref22
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref22
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref22
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref23
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref23
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref23
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref24
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref24
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref25
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref25
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref25
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref25
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref26
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref26
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref26
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.e2161bac
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref28
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref28
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref28
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref29
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref29
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref29
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref30
http://refhub.elsevier.com/S2666-0172(22)00015-3/sref30


Science of Remote Sensing 5 (2022) 100053

13

Papagiannopoulou, C., Miralles, D.G., Decubber, S., Demuzere, M., Verhoest, N.E., 
Dorigo, W.A., Waegeman, W., 2017. A non-linear granger-causality framework to 
investigate climate–vegetation dynamics. Geosci. Model Dev. (GMD) 10, 1945–1960. 

Petchiappan, A., Steele-Dunne, S.C., Vreugdenhil, M., Hahn, S., Wagner, W., Oliveira, R., 
2021. The influence of vegetation water dynamics on the ascat backscatter-incidence 
angle relationship in the amazon. Hydrol. Earth Syst. Sci. Discuss. 1–29. 

Pfeil, I., Vreugdenhil, M., Hahn, S., Wagner, W., Strauss, P., Blöschl, G., 2018. Improving 
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