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Abstract This comprehensive reviewprimarily concerns axiallymovingflexible structures in problems involv-
ing distributed structure-to-solid contact. The distinguishing features of axiallymoving structures are presented
in terms of prevalent studies regardingmodels with simplified support conditions. Subsequent sections focus on
the particular difficulties of treating contact problems with classical structural theories, on the appropriate non-
material kinematic description for travelling structures, on the proper formulation of established mechanical
principles for open systems and on the category of Arbitrary Lagrangian–Eulerian (ALE) approaches, which
are frequently applied for the development of application-oriented finite element schemes. Novel analytical
and numerical transient solutions for the benchmark problem of an axially moving beam, which is travelling
across a rough surface between two misaligned joints, are presented to illustrate particular challenges as well
as to highlight perspectives for future research activities. There are 177 references cited in this paper.
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1 Introduction

Axially moving structures, also known as travelling structures, are slender bodies with a predominant motion
in direction of their longitudinal axis. In technical applications, they appear as transmission or conveyor belts,
ropeway cables, band saw blades, paper webs, steel slabs or metal sheets moving across a rolling mill and so
forth. The surrounding parts of such machinery keep the structure running and guide it along the desired path
of motion, which is typically achieved by means of an interaction through some kind of solid contact. For
example, the frictional contact between belt and pulleys permits power transmission in flat belt drive systems.

In operation, travelling structures exhibit various kinds of mechanical phenomena, like: divergence buck-
ling, self-excited vibrations or parametric resonance at critical axial transport rates. Moreover, intrinsic imper-
fections or changes of the environmental conditions can induce undesirable deformations or cause the structure
to leave its designated path of motion. In view of this mechanical richness, the ongoing development of such
systems cannot do without a thorough scientific investigation that helps to avoid potentially catastrophic inci-
dents beforehand and serves as the basis for improved control designs.

It is generally a difficult task to account for the interaction of an axially moving structure with the surround-
ing parts of machinery. This inherent complexity often necessitates simplification. Hence, idealised approaches
regarding the boundary conditions prevail in the literature and few researchers have considered unified models
that incorporate those parts of the mechanism that drive, guide or in some other manner directly interact with
the axially moving structure, see, for example: contributions of the authors’ research group [1–4] as well as
Rubin [5], Kong and Parker [6] or Raeymaekers and Talke [7], among others. In view of this knowledge gap,
the present review article aims to present a selective, yet sufficiently comprehensive overview of past research
on axially moving structures and, moreover, to point out promising strategies to bridge the gap as well as to
bolster the research activity in this field with great practical relevance.

The paper focuses on the modelling and the analytical or numerical treatment of problems of travelling
structures in the framework of the classical structural theories of strings, beams, rods or membranes, plates
and shells. Owing to their reduced kinematic capabilities in contrast to the 3D-continuum, these theories
are computationally efficient but generally difficult to handle in problems of distributed contact. Except for
some simple cases, numerical solution techniques are required based on either strong or weak mathematical
formulations. We shall refer to these methods along the way, elaborate on some and, in particular, on the
finite element method (FEM) in the general context of the Arbitrary Lagrangian–Eulerian (ALE) kinematic
approach.

In the upcoming Sect. 2, emanating from a brief recap of a few seminal works, the discussion continues
with a survey on the research concerned with dynamic vibration, stability and bifurcation as well as large
deflection problems that, however, lack an explicit account for distributed contact. Afterwards, we highlight
the implications of distributed frictionless and frictional contact in problems of structural mechanics and
proceed with a review of past attempts to incorporate contact in unified models of axially moving structures. In
preparation of the discussion on finite element schemes in the ALE-framework, we meticulously distinguish
the different variants of kinematic parametrisation. Regarding non-material kinematics, further emphasis is
put on the proper formulation of the governing equations for open systems, which, often times, is not remarked
explicitly.

In writing this review, we aim to acknowledge researchers, who have contributed significantly to the topics
at hand. At the same time, we explicitly apologize to those, who were mistakenly overlooked or disregarded
in the survey.

In Sect. 3, we revisit the seemingly simple, geometrically linear example of a partially slipping Euler–
Bernoulli beam on a moving rough surface, most recently considered in [1]. Novel transient solutions are
produced both semi-analytically and with beam finite elements in the Mixed Eulerian–Lagrangian (MEL)
framework. This prototype example illustrates the inherent complexity of frictional contact problems of axially
moving structures, which, nonetheless, can be tackled by means of properly designed solution techniques.

2 General lines of past research in the mechanics of axially moving structures

The study of transverse vibrations of axially moving structures dates back to Skutsch [8], who considered the
problem of small transverse vibrations of an axially moving string, see Fig. 1, that was later, for the first time
in English, revisited by Sack [9] as well as by Archibald and Emslie [10].

This simple problem of a slender structure moving at a certain material transport rate between two supports
constitutes a prototype example for studies on stability and transverse vibrations. We shall later consider
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Fig. 1 Motion of transverse waves in an axially moving string captured at two time instances: the string is transported at constant
rate v through the control domain; material particles are marked with red dots

different extensions of the above setting and, for now, utilize the basic setup to highlight some of the distinct
features of axially moving structures: The small-deflection problem of an ideal string with no flexural stiffness
is governed by the wave equation

ẅ = c2w′′, ẇ = ∂w

∂t

∣
∣
∣
∣
s=const

, w′ = ∂w

∂s
, (1)

with the wave speed c and the transverse deflection w, which, in the context of the usual Lagrangian kinematic
description of solidmechanics, is understood as a function of thematerial (particle) coordinate s and time t . This
description is, however, inappropriate, because the particles are constantly travelling across the boundaries of
the spatial control domain 0 ≤ x ≤ L , where the kinematic constraints must be enforced. A simple coordinate
transformation suffices to avoid this inconvenience of time-variable constraints in the parametrisation with the
material coordinate s:

s = x − vt, ẇ = ∂tw + v ∂xw, ∂xw = ∂w

∂x
, ∂tw = ∂w

∂t

∣
∣
∣
∣
x=const

(2)

where the deflection is regarded as a function of the Eulerian coordinate x and time t , i.e. w = w(x, t); the
operators ∂t and ∂x to account for the spatial and convective derivative are introduced accordingly. The above
transformation step is well established and, thus, frequently taken in a tacit manner, although it involves the
systematically important transition from the Lagrangian to the Eulerian perspective.

We compute the second-order material derivative of w to proceed with the transformation of the wave
equation (1):

ẅ = ∂2t w + 2v ∂t∂xw + v2 ∂2xw, w′′ = ∂2xw. (3)

The derivatives with respect to s and x are interchangeable in the present case due to s′ = 1 = x ′. Substitution
yields the transformed boundary value problem:

∂2t w + 2v ∂t∂xw = (

c2 − v2
)

∂2xw, w(0, t) = 0, w(L , t) = 0. (4)

Though the coordinate change somewhat complicates the governing PDE, it allows to state the boundary
conditions at fixed points in space and helps to work out the physics of the problem more clearly: The type of
PDE changes as the particle transport rate v approaches the wave speed c and a gyroscopic term appears that is
of critical importance when it comes to stability and buckling of axially moving structures, see Renshaw and
Mote [11]. Furthermore, transverse waves, as visualised by the two separating fronts in Fig. 1, are observed to
propagate with velocity c + v in direction of axial motion (downstream) and with c − v upstream, see [9].

2.1 Axially moving structures in problems with idealised support conditions

The simple setup depicted in Fig. 1 already exhibitsmany characteristics of axiallymoving structures. However,
the idealised support conditions imposed at the boundaries of the control domain present a rather rough
approximation of the actual circumstances, which in reality assume the form of eyelets, channels, guide and
chain wheels or are realised as rollers, pulleys or cylindrical drums. In the following survey, we peruse the
open literature for studies that share this deliberate neglect of the complicated interactions with the surrounding
parts.

A vast number of these publications are concerned with the dynamics of initially straight axially moving
structures in terms of modal analysis, transverse vibrations or stability and buckling. In this regard, the recently



J. Scheidl, Y. Vetyukov

published book by Banichuk [12] is devoted to the stability analysis of axially moving strings, beams or plates;
for a general discussion on the evolved methods of nonlinear stability and bifurcation theory, we further refer
to Troger and Steindl [13]. In addition, the review papers by Chen [14] with respect to axially moving strings
as well as the one by Marynowski and Kapitaniak [15] with respect to plate-like systems present rich sources
of information. In view of these extensive repositories, we shall provide only a modest number of references on
exhaustively covered topics and instead highlight less recognisedworks on large deflection problems, boundary
layers and the effects of a small flexural stiffness or axially moving structures of variable length.

2.1.1 Vibrations and stability of axially moving rods and strings

The prototype example of Fig. 1 is revisited by Wickert and Mote [16] for string and beam models of the
structure. Based on the differential operator representation of the governing partial differential equation (4),
the Green’s function method and a modal analysis are employed to conclude on the system’s response on
arbitrary excitations and the limiting speed for divergence instability of the gyroscopic system. Though limited
to small deflections, the authors even considered a kinematic excitation in form of the harmonic transverse
motion of one of the supports. The conclusion in [16] that the string model runs into a critical state as the
transport speed approaches wave speed was later revised by Renshaw and Mote [11] and, more recently, by
Wang et al. [17], who, with the help of Hamiltonian mechanics, found that the string does not possess a
divergence instability due to a weak interaction of the imaginary eigenvalue pairs. However, the equivalent
beam model exhibits both divergence and flutter instabilities in the supercritical range.

These characteristic differences between the beam and string models arise due to the governing PDE for
the beam being of forth order:

∂2t w + 2v ∂t∂xw + a ∂4xw = (c2 − v2)∂2xw, (5)

where a is proportional to the bending stiffness of the beam, again see [16]. Kong and Parker [18], motivated
by the fact that many applications feature slender structures with small flexural stiffness, employed the phase
closure principle, see Mead [19], to study the transition between the beam and string model. Indeed, at small
bending stiffness the problem (5)maybe approachedwithmethodsof singular perturbation theory, seePellicano
and Zirilli [20], and is also suitable for the application of the method of matched asymptotic expansions, see
Schneider [21] in the context of transverse vibrations of a rectangular plate as well as Özkaya and Pakdemirili
[22] for the vibration analysis of an axially accelerating beam. In this context, Seitzberger et al. [23] consider
a simplified static problem of a conveyor system with emphasis on the importance of local bending effects in
proximity to the support positions.

As established in a brief note byMote [24] for the nonlinear vibration of an axially moving string, the appli-
cability of geometrically linear dynamic analysis is limited to high-tension and low-velocity levels, because the
geometrically nonlinear effect of tensioning due to transverse deflections is not negligible at higher transport
rates. In an effort to cover the complete range of sub- and supercritical velocities, Wickert [25] deduces an
extended integro-differential equation that accounts for the stretching due to transverse vibrations by means
of a cubic nonlinearity and utilizes the asymptotic method of Krylov and Bogoliubov to solve this augmented
problem. Pellicano and Vestroni [26] apply the Galerkin method to cast the coupled equations of transverse
and longitudinal vibrations presented in [25] into a set of ordinary differential equations. Simplifications of this
coupled system frequently serve as the basis of studies on transverse vibrations, see for example: Ghayesh and
Amabili [27], who make use of the Galerkin method to study post-buckling bifurcation and forced vibrations
of a simply supported beammoving at high speed, or Yang et al. [28], who apply the invariant manifold method
to perform a nonlinear modal analysis in a similar setting.

Shear deformations and rotary inertia are typically neglected in traditional studies that rely on theBernoulli–
Euler beam theory, but may become essential in cases of less slender structures as well as in dynamic problems
that feature higher frequencies. Thus, Timoshenko beam theory is adopted by, among others, Ding et al. [29]
for a study on equilibrium bifurcations at supercritical speeds and Yan et al. [30] for the numerical analysis of
the nonlinear dynamics of a viscoelastic beam. Kim and Chung [31] use Galerkin’s method to study coupled
transverse vibrations of an elastically supported belt drive system under significant simplifying assumptions
regarding the contact interaction between belt and pulleys, see also Pan et al. [32] for a similar analysis of an
automotive serpentine belt drive. Concerning different material models of the moving structure, Marynowski
[33] considers both the Kelvin-Voigt and the Maxwell rheological model to investigate the effect of internal
damping on the nonlinear dynamics of an axially moving viscoelastic beam; Mockensturm and Gua [34] study
the nonlinear vibrations of a viscoelastic, parametrically excited string. The effects of an external damping on
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Fig. 2 Extended prototype setup to study transverse deformations of travelling membranes, plates or shells: the structure moves
across a fixed spatial domain with constant transport rate v, idealised support conditions are imposed at the boundaries x = 0, L

the stability of axially moving structures are covered in the extensively cited papers on band saw vibrations
by Mote and Ulsoy [35,36].

2.1.2 Vibrations and stability of axially moving membranes, plates and shells

The just referenced article by Ulsoy and Mote [36] is one of the first to cover dynamics of an axially moving
two-dimensional structure. Transverse vibrations and stability of an axially moving Reissner–Mindlin plate
are investigated using global Ritz approximations as well as the finite element method, which, since then, has
evolved to become one of the primary tools to treat sophisticated problems in solid mechanics in general and
of axially moving structures in particular, see Sect. 2.4 related thereto.

Having said that, a great variety of different solution techniques remains applicable for the typically con-
sidered simplified model setup, which comprises a material surface (membrane, plate, shell) with rectangular
reference configuration that travels at constant speed between two ideal support edges, see Fig. 2.

Aside from the early studies on band saw vibrations like the one cited above, a significant number of
publications featuring this configuration are concerned with moving paper webs. In their papers [37–39]
published in close succession, Lin and Mote investigate the mechanics of such webs with regard to stationary
deflection and stress distribution, static wrinkling due to a distributed edge loading as well as free vibrations
and stability, respectively. In account for the smallness of the flexural stiffness, the methods of asymptotic
matching between inner and outer expansions are employed in [37] to obtain the solution for an axially
moving von Kármán plate under transverse loading; the comparison against results with membrane or linear
plate theory shows the impact of bending rigidity and geometric nonlinearity. In [39], the author determines
the critical speeds for divergence buckling and supercritical flutter instabilities of an axially moving plate in the
geometrically linear range. Both dynamic and static buckling analyses, the latter determining the critical state
by seeking a non-trivial equilibrium, yield the same critical speed of divergence buckling, which is identified
as the propagation speed of transverse waves; the results are further compared to string and beam solutions
of the reduced one-dimensional problem. Banichuk et al. [40] revisit this problem and deduce an analytic
formula for the first critical speed, which in [39] was established as the root of a transcendental equation. In
addition, [40] features extensive parameter studies and it is remarked that the transverse deflections of the
first symmetric buckling mode are localised at the free side edges. The latter conclusion is also reflected by
the results presented in Shin et al. [41], wherein transverse vibrations of an axially moving membrane are
treated with the Galerkin method for two different cases of kinematic boundary conditions. Likewise, Luo
and Hamidzadeh [42] apply the same solution strategy in combination with perturbation expansions to study
buckling of an axially moving plate with special account for in-plane Coriolis terms and shear.

Further topics on axially moving two-dimensional structures like: internal resonances of transverse vibrat-
ing axially moving plates [43], alternative material models and internal damping [44,45] or control design for
axially moving webs [17,46], are covered in the aforementioned review paper authored by Marynowski and
Kapitaniak [15].
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2.1.3 Parametric resonance and self-excited vibrations

Axially moving structures are susceptible to parametric resonance, as demonstrated in an early paper by
Elmaraghy and Tabarrok [47]. Moreover, sources of parametric excitation appear frequently in technical
applications, for example: in the form of torque ripple in electric motors, see Arrasate et al. [48], as the result
of the interaction between camshaft and timing belt in a combustion engine, see Hirmann and Belyaev [49],
or as crankshaft oscillations that cause tension fluctuations in an automotive serpentine belt drive.

The latter case motivated the study by Mockensturm et al. [50]: The authors extend the aforementioned
integro-differential equation for the axially moving extensible string, see [25,26], with a harmonic excitation
term in account for a timevariation of the axial tension. The complex-valued eigenfunctions of the geometrically
linear free vibration problem of an axially moving string serve as ansatz functions for the Galerkin procedure
that is used to compute the stability boundaries of the linear parametrically excited problem. Furthermore,
a weakly nonlinear system based on a series expansion of the original nonlinear problem is investigated to
derive analytic expressions for the amplitudes of the limit cycles about the instabilities. Pellicano et al. [51]
reconsider this problem and apply a singlemodeGalerkin expansion based on the same class of ansatz functions
considered in [50]. The stability analysis of the derived nonlinear ordinary differential equations in the complex
amplitude and its conjugate complex counterpart is carried out with normal form theory; a physical test setup
is devised to validate the analytic results. In conformity with the experimentally investigated two-pulley belt
drive setup, the computational model is further extended with respect to the elastic tensioning of the opposite
span, see Pellicano et al. [52].

Certain practical applications (e.g. crankshaft oscillations) feature parametric excitations with a rich fre-
quency content. In such cases, the consideration of a single harmonic excitation, as done in the above references,
does not suffice to capture the dynamics of the mechanical system. Hence, Parker and Lin [53] extend the
just considered benchmark problem by inclusion of multi-frequency fluctuations of the belt tension and of the
transport speed. It is found that the typical primary instability at the 2:1 frequency ratio ceases to exist in the
case with multiple sources of parametric excitation. Secondary resonances are obtained with the linear model,
and the limit cycle amplitude of the primary instability is derived by means of the multiple scales method.
Recently, Zhang et al. [54] have considered a similar problem of an axially moving viscoelastic beam subject
to a two-frequency tension fluctuation and tuned to a 1:3 internal resonance. A viscoelastic string model with
parametric variation of the tension level is considered by Mockensturm and Guo [34]. The authors emphasize
the importance of a physically accurate modelling of viscoelasticity for the axially moving structure, which
amounts to a discussion on the differences between material and spatial time derivatives in travelling systems.
The related discrepancies to earlier works are highlighted, and the nonlinear stability analysis is performed
with the method of multiple scales.

An interesting case of self-excited instability of an axially moving structure is investigated by Spelsberg-
Korspeter et al. [55]. The model comprises an Euler–Bernoulli beam that moves across a spatial domain with
linear guides at the boundaries and is in point-contact with frictional pads in the middle; the setup serves as a
prototype problem for break squeal. The beam thickness is consistently taken into account through a careful
modelling of the contact kinematics. Divergence and flutter instabilities are investigated by means of a stability
analysis with perturbation techniques.

Owing to the small flexural stiffness and low specific mass, paper webs are particularly susceptible to
self-excited vibrations caused by a fluid–structure interaction with the surrounding medium. In related studies,
the governing equations of the travelling web are typically augmented with prescribed excitation terms in
account of the aerodynamic response, see Niemi and Pramila [56], Banichuk et al. [57] or Yao et al. [58].
Problems of fluid–structure interaction, as discussed in detail by Païdoussis [59,60], are closely related to
those of axially moving structures in general. The most prominent example to demonstrate this similarity is the
fluid conveying circular tube with supported ends, which is governed by (5) just like the transverse vibrations
of the travelling beam, see Païdoussis [61]. This equivalence is well illustrated by Pieber et al. [62] who address
extended versions of these problems with a single finite element scheme. The flow induced bifurcation of the
cantilevered fluid conveying tube (garden hose) is addressed by several authors, see [63] for a comprehensive
overview. Stangl et al. [64] employ an alternative approach based on the Lagrangian equations of motion for
non-material volumes as presented by Irschik andHoll [65] and compare the numerical results against solutions
found in the literature.
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2.1.4 Large deflection problems of axially moving cables and beams

Having focussed on the dynamics of taut structures with straight reference configuration, we now turn our
attention to large deflection problems of travelling structures. The prominent example of axially moving
cables for ropeways was studied in the thesis by Renezeder supervised by Steindl [66]. The author investigated
dynamics of the sagged catenary of a single rope field between two ideal eyelets or two circular rollers,
employed perturbation techniques in account for a small flexural stiffness of the cable and applied a standard
material finite element procedure to conclude on the resonance phenomenon of sag-oscillations in a multi-field
ropeway system. A promising multi-body ALE alternative that should resolve most of the inherent difficulties
encountered with classic Lagrangian finite element approaches in this context, is proposed by Pieber et al. in
their recent publication [62] on the stability of fluid conveying pipes and axially moving beams. The study on
transverse vibrations of axially moving strings and beams by Vetyukov [67] further emphasises the advantages
of a mixed kinematic description in the numerical treatment of problems with large support motions.

An analytic model to study three-dimensional vibrations of elastic sagged axially moving cables in the field
of gravity is established and experimentally validated in two papers by Perkins andMote [68,69]. The equations
ofmotion linearised about stationary catenary configurations of the travelling cable are solvedwith theGalerkin
method, previously reported effects of curve veering and mode crossing of eigenvalues are ascertained and
the speed tensioning phenomenon to stabilise the standing (arched) equilibrium configuration of the rope is
verified experimentally. Wolfe’s treatise on the same problem in [70] is based on an alternative mathematical
formulation that allows to derive the exact analytical solution. The results agree to those reported in the above
cited earlier works; special attention is paid to the stabilisation of the arched equilibrium configuration due to
speed tensioning.

The observation that, under certain operation conditions, a cable moving between two eyelets possesses
multiple steady-state configurations is studied by O’Reilly [71]. A closed-form solution for an arbitrarily
sagged elastic cable under uniform loading is reported by Luo and Mote [72], see also Miroshnik [73] for a
study on the phenomenon of steady-state contour motion of axially moving strings under gravity in a viscous
medium.

Cable dynamics in absence of a steady-state equilibrium configuration are studied by Wang and Luo [74].
The authors investigate the periodic large amplitude oscillation of an inextensible axially moving cable and
present an extended system that allows a superposition of elastic vibrations. The stability of the in-plane
vibration of the inextensible model is established, and it is shown that at ever increasing speed the vibration
amplitude diminishes and that the configuration approaches a stationary configuration at the limiting case of
infinite speed.

2.1.5 Axially moving structures of variable length

Axially moving structures of time-varying length are encountered in numerous technical applications, such
as: wire drawing, plastic extrusion, industrial robots, sheet paper printing, hoist and elevator systems. The
prototype example of a string or beam of finite length that is retracted through an orifice was dubbed “the
spaghetti problem” by Carrier [75] in allusion to the rather embarrassing culinary experience of sucking in a
spaghetti noodle too quickly. For the similar setup of a cantilevered beam with harmonically varying length,
Zajaczkowski and J. Lipiński [76] employ Galerkin’s method to analyse the parametric instability. In the
reverse spaghetti problem, on the other hand, the direction of motion is flipped such that the structure is now
pushed out of the guide. Mansfield and Simmonds [77] study this inverse problem for a horizontal setup with
relation to paper printing. Approximate analytic solutions are obtained as a series expansion and numerical
results are obtained by means of the finite element method; see also Wang et al. [78] for the use of Galerkin’s
method to perform the vibration analysis of an unshearable plate with variable length.

In the aboveprovided references, the authors acknowledge the usefulness of a coordinate switch to transform
the system of variable length to a problem in a domain of constant size in a stretched coordinate. This change
of variable allows to formulate the kinematic boundary conditions at fixed points in the new coordinate, which
proves particularly beneficial for the application of numerical schemes like the Galerkin projection or the finite
element method. In their elaborate article, Vu-Quoc and Li [79] extend the so-called sliding beam formulation
to the geometrically nonlinear regime. The aforementioned switch to a stretched coordinate is performed
twofold: directly from the usual material description and, secondly, via the introduction of an intermediate
configuration. In addition to the traditional spaghetti and reverse spaghetti problems, a superimposed rigid
body rotatory motion of the sliding beam is considered in resemblance of a robotic system. This seminal work
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presents a primary reference for the continued development of the sliding beam formulation in the articles by
Humer [80,81], Steinbrecher et al. [82] and Humer et al. [83]. In [80], an elliptic integral solution is presented
for the large transverse deflection problem of a beam that is clamped on its left and clamped but free to move
axially on the right (linear guide). As bending of the structure through an external transverse force progresses,
additional material enters the control volume through the linear guide owing to the coupling of axial and
bending deflections in the geometrically nonlinear range. A limiting force level is found at which the static
equilibrium ceases to exist, which amounts to the onset of and infinite sliding motion of the beam. A slightly
modified version of the sliding spaghetti problem is revisited in [81] as a benchmark example to validate a beam
finite element model, whose advantages in comparison with more traditional schemes for beams and solids
are further highlighted in [82]. The primary feature of this model in the absolute nodal coordinate formulation
and of its generalisation presented in [83] is the switch to a set of stretched coordinates that represent different
segments of the complete material volume. In particular cases, where the axial transport of material across
the spatial boundaries is not kinematically prescribed but solution dependent, the coordinate transformation
becomes solution dependent as well.

Recently, Boyer et al. [84] proposed a different kinematic description to model sliding beams that is based
on a co-deforming non-material envelope; the rod coincides with this surrounding tube at all times such that
its relative motions are limited to sliding in axial direction and rotations about the axis. Concerning numerics,
the authors employ a Ritz reduction of strains, see Boyer et al. [85], from which displacements are recovered
by means of a spatial integration.

Zhu andNi [86] employ energy criteria to conclude on the stability of small transverse vibrations of a sliding
beam with an attached tip mass. Additional effects considered are: external and material damping as well as a
non-constant transport rate, which dynamically impacts the axial tension. The two analysed examples resemble
a flexible robot arm and a hoist cable in a high-rise elevator. The latter is modelled as vertical string in the field
of gravity; see also Wang [87] for the impact of gravity on the vibrations of an axially moving heavy string.
Reeving systems, see Escalona andMohammadi [88] for a numerical treatment, are a prominent research topic
in general. In particular, high-rise elevator systems, encountered in skyscrapers or deep mine shafts, receive
much attention as they exhibit a rich dynamical behaviour and are frequently subjected to external excitations
like building sway. A significantly simplifiedmodel of a vertically translating string with an attached rigidmass
is analysed analytically by Sandilo and Horssen [89]. Perturbation methods are used to obtain approximate
solutions for the cases of linearly and of harmonically varying hoist cable length. Different kinds of stochastic
excitations of a vertical cable due to the sway of the host structure are analysed Kaczmarczyk and Iwankiewicz
[90]. Arrasate et al. [48] develop a computational model for axial vibrations induced through torque ripple of
the drive system of an elevator and put it to the test against a physical experiment. A comprehensive multi-
body elevator model is considered by Crespo et al. [91] to investigate the interaction of the mechanical hoist
and guide system in the event of a low frequency building sway; a quasistatic analysis is performed with
the Galerkin method and frequency veering as well as internal resonances are obtained as the position of the
elevator cabin changes.

2.2 Axially moving structures in problems involving distributed contact

The following discussion on problems of axially moving structures that involve distributed contact is focussed
on “unified approaches”, that is, attempts to model the axially moving structure of the complete system with
a single structural theory. In particular, we do not focus on discrete multi-body models of the axially moving
structures, see for example Kubas and Harlecki [92]. In terms of the physical contact model, we restrict our
attention to the most familiar case of Coulomb dry friction and refer to the extensive review paper by Berger
[93] for a presentation of alternative models as well as to Yastrebov [94] for methods of implementation
of frictional contact in numerical frameworks. The general aspects of frictional contact problems of axially
moving continua are examined by Hetzler [95]. Originating from Hamilton’s principle, which presents a
convenient starting point for weak formulations, the author considers exact and penalty methods of contact
enforcement and elaborates on the different approaches of kinematic modelling based on either a material
reference configuration or an intermediate spatial frame.

Since the invention of belt creep theory by Reynolds [96] problems related to belt drive mechanics stand
in focus of most literature sources concerning the treatment of distributed contact problems with structural
theories. In particular, belt creep theory states that, as the belt passes through the contact zone with a pulley,
it first adheres to the pulley surface and at some point begins to slip, see Fig. 3.
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Fig. 3 Prototype example of a flat belt transmission system with a single pulley; the solution is reminiscent of belt creep theory:
at a constant material transport rate v (steady state), the velocity of the pulley surface ωR determines the position of the transition
point between stick zone and slip zone; the contact forces depend on the modelling decisions regarding the contact interaction
and the structural theory for the belt

The occurrence of slip is referred to as “belt creep”, which relates to a shortening or lengthening of the
belt in account for the tension adjustment between the slack and the tight span.

The applicability of belt creep theory relies on the axial extensibility of the belt, a prerequisite that is
not met by modern V-belt designs that feature rubber-embedded, virtually inextensible tension cords. For this
kind of setup, Firbank [97] developed “belt shear” theory, to be later extended by Gerber [98]; see also the
papers by Frendo and Bucchi [99,100] with respect to the similar “brush” contact model usually utilized for
pneumatic tires. As the name implies, power transmission is achieved by means of shear deformation of the
rubber envelope that deforms according to the velocity difference between pulley surface and inextensible
cords. Contrary to belt creep theory, the arc of adhesion contributes to the transmission and a slip zone is not
required, but still occurs if the frictional tractions reach their limiting value along the way. Alciatore and Traver
[101] compare both theories, discuss their applicability and remark on the correct formulation of compatibility
conditions needed to extend the procedures to multi-pulley belt drives.

After this brief recap of classic ways of contact modelling for axially moving structures, we shall survey the
available literature and highlight issues and deficiencies encountered when applying classic structural theories
to problems of distributed frictionless or frictional contact. In this regard, the prototype example of a one-pulley
belt drive, depicted in Fig. 3 and recently considered by Scheidl and Vetyukov [102], shall serve as reference
case that already captures most of theses challenges.

2.2.1 Axially moving structures at contour motion

The term “contour motion” designates a particular solution that is identified by a spatially fixed deformed
configuration of the axially moving structure; all material particles follow the same trajectory (contour) that
determines the outer appearance of this seemingly statically deflected state.

Provided transverse vibrations are disregarded, transmission belt drive systems operate at contour motion.
Bechtel et al. [103] considered this kind of model for the analysis of a two-pulley belt drive at steady-state
operation. In contrast to preceding studies, the proposed model includes inertia effects due to an accelerated
stretching of particles in axial direction, which is of particular importance in drawing processes of textile or
polymer fibres. A Newtonian approach is taken to derive the governing system based on the application of
balance laws to free-body diagrams of the belt in the contact zone and the free span. In contrast, the related
analysis of amulti-pulley belt drive byRubin [5] emanates from the governing equations of the nonlinear theory
of extensible strings, see Antman [104] or Eliseev [105]. Particular attention is paid to the correct formulation
of the “compatibility condition” required to close the system of equations. In essence, this algebraic constraint
ensures that the computed total length of the belt equals the prescribed one, a corresponding remark can
be found in [101] as well. The effects of linear viscoelasticity and large axial strains on the transmission
characteristics of a flat belt drive are examined by Morimoto and Iizuka [106].

Eliseev and Vetyukov [107] adopt a fully Eulerian kinematic parametrisation to describe the steady-state
operation of a two-pulley belt drive. The assumption of perfect adherence between belt and pulley throughout
the contact zones leads to a contradiction that is resolved by the account for concentrated interactions (jump of
the axial force) at the run-off points, where the belt disengages from the pulleys. This presents a limiting case
for belt creep theory kind of solutions (e.g. Rubin [5]), where the sliding zone degenerates to a single point; in
practice steel conveyor belts may exhibit this behaviour owing to their high membrane stiffness, see Scheidl et
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Fig. 4 Normal contact responses of a beam pressed against a rigid stamp and subjected to axial tension with a force F (second-
order theory): a unshearable Euler-Bernoulli theory—constant interior pressure level q and concentrated interactions at the
boundaries P; b Timoshenko theory—the pressure q reaches its maximum values at the boundaries, as the shear compliance
mitigates the concentrated boundary effects of the unshearable theory

al. [2]. The model considered in [107] is extended by Vetyukov et al. [108] with respect to transient dynamics
(belt drive start-up) and, in continuation, by Oborin et al. [109] with respect to distributed dry friction contact.
In the latter reference, solutions for the transient start-up of the drive are obtained threefold by means of:
a semi-analytical integration of a delay differential equation, simulations with a non-material finite element
scheme as well as computations with conventional Lagrangian finite elements, whose weaknesses become
apparent in comparison.

With regard to the kinematics of the contact interaction, the taut string model considered in the above cited
references is convenient, because the free segments connect the pulleys in the form of straight lines and, thus,
the contact zones are fully determined by the geometric setup. The inclusion of the flexural stiffness of the belt,
see Kong and Parker [6], or of large transverse deflections due to gravity, see Scheidl [110], further complicates
the problem, since the positions of the contact zone boundaries become solution dependent. In particular, the
account for bending deflections of the belt in the single-pulley problem, considered in [102] and depicted in
Fig. 3, implies that the start and end of the contact zone are unknown at first and are to be determined as part
of the solution. Consequently a boundary value problem with variable domain is obtained for the individual
segments (free spans, stick zone, slip zone). An appropriate coordinate transformation then allows to formulate
the problem in standard formwith fixed domains; the positions of the transition points belong to the general set
of the unknowns with respective equations that complete the system. The extension of the prototype problem
depicted in Fig. 3 to the usual two-pulley belt drive setup, as considered by Belyaev et al. [111] as well as
by Scheidl and Vetyukov [112], is not trivial owing to additional continuity requirements for the closed loop
structure. The semi-analytical and mixed finite element procedures proposed in [112] facilitate the search for
belt creep theory type of solutions that may only exist in a narrow parameter range.

2.2.2 Constrained theories of rods in frictionless contact problems

Contrary to contact problems in general solid mechanics (see Yastrebov [94]), the contact detection between
the axiallymoving structure and the surrounding parts is usually a fairly straightforward task, owing to typically
considered simple geometric setups. However, what proves challenging is the accurate resolution of the contact
response of the employed structural theories that does not always comply with the behaviour of the underlying
continuum. Consider, for example, the small-deflection problem (second-order theory) for the transverse
deflections w of a beam with flexural stiffness a that is tensioned by an axial force F and pressed against
a rigid stamp as depicted in Fig. 4. Assuming frictionless contact and a shear-deformable Timoshenko beam,
it is governed by:

a
(

w′′′′ − ψ ′′′) − Fw′′ + Q′ = 0, Q′ + q = 0, Q = ψ/b, (6)

where q denotes the distributed contact pressure. The constitutive relation, which connects the transverse force
Q to shear angle ψ and shear compliance b, is meaningless for the corresponding Bernoulli–Euler problem
(unshearable theory), which due to ψ = 0 reduces to q = −Fw′′; i.e.: the constant contact pressure equals
tensile force divided by the curvature radius of the rigid stamp, see Denoël [113].

The corresponding contact force distributions for the entire structure are depicted in Fig. 4a for the Euler–
Bernoulli beam and in Fig. 4b for the Timoshenko theory. In (a), the constant pressure level in the interior
is complemented by two concentrated contributions at the ends of the contact zone, whereas the pressure
distribution for the shear-deformable beam remains finite throughout the contact zone with its maxima at the
boundaries. These maxima degenerate to Dirac-impulses in the limiting case of vanishing shear compliance,
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thus yielding the result of Fig. 4a. However, owing to their kinematic limitations, none of the two theories
reproduce the result of the continuum solution, which predicts the contact pressure to vanish at the contact
zone boundaries. A very similar problem of a straight beam pressed against a circular surface is considered by
Gasmi et al. [114], who compare the results obtained for different structural theories based on a polynomial
expansion with respect to the transverse coordinate against reference computations obtained with continuum
finite elements. A common strategy to avoid these peculiarities of the structure to rigid body interaction is to
either replace the rigid counterpart by a prescribed pressure distribution, see e.g. Lorenz and Ams [115] or the
related thesis by Lorenz supervised by Ams [116] on wire-sawing of silicium ingots, or to utilize a compliant
counterpart, see e.g. Hetzler andWillner [117], who model friction pads as viscoelastic winkler foundations in
a study on break squeal. As concluded by Essenburg [118] as well as by Naghdi and Rubin [119], the structural
theory needs to account for transverse normal strains, i.e. thickness compression of the cross-section, in order
to comply with the continuum solution. In [119], the authors consider different constrained theories based on
Naghdi’s generalised director formulation to compare their response in a distributed contact problem and to
emphasize that, as seen from Fig. 4b, the account for transverse shear does not suffice to obtain a physically
meaningful pressure distribution.

The classic theories of rods, beams as well as plates and shells exhibit these deficiencies, which arise as
localised effects at the transitions between contact zones and the free regions. Like in singular perturbed prob-
lems, the accurate resolution of the mechanics in this “edge layer” requires a different asymptotic expansion.
However, despite their local inaccuracies, these theories remain applicable for problems of distributed contact
as long as the analysis is focussed on the global picture, e.g.: Batista [120] and Belyaev et al. [121] analytically
consider the static frictionless contact problem of a circular belt being stretched by a relative displacement of
two pulleys for the belt modelled with unshearable and shear-deformable extensible rod theory, respectively.
Vetyukov et al. [122] develop a semi-analytic and a non-material finite element procedure to solve the large
deflection problem of a weakly-tensioned belt hanging on two pulleys. The same problem setup and solution
strategy are reconsidered by Scheidl and Vetyukov [112] for the steady-state motion of the belt modelled as
a Cosserat rod. As depicted in Fig. 4, the limiting case of vanishing shear compliance is studied numerically
to conclude on the formulation of appropriate boundary conditions for the unshearable theory. In this regard,
the shear compliance may be viewed as a numerical regularisation parameter: As it tends to zero, the problem
becomes numerically stiff and increasingly harder to solve. Evidently, though localised and negligible in many
cases, the particular contact effects of the structural theories possess the potential to deteriorate numerical
solutions.

2.2.3 Problems of distributed contact involving friction

A typical simplification in the modelling of contact problems is the neglect of the thickness of the axially
moving structure: As a matter of fact, in Fig. 3, not the middle line but the lower fibre of the belt is in contact
with the rotating pulley. As pointed out by Belyaev et al. [111], the offset action of the frictional force requires
transverse shear to be incorporated in the structural theory. This is due to the fact that an unshearable Kirchhoff
type of theory, owing to its kinematic coupling of cross-sectional rotation with the bending deflections, cannot
adjust to the geometry of the pulley and, at the same time, account for the distributed moment at the centre
line induced by the frictional tractions. Oborin and Vetyukov [123] studied the effect of this offset action of
frictional forces in the simplified setting of a straight beam in contact with a travelling surface. In continuation,
Oborin [124] treated the geometrically linearised problem of a one-pulley belt drive analytically and compared
the results against [102], where the geometrically nonlinear setup of Fig. 3 is considered but the contact is
applied at the centre line. In conclusion, the account for an eccentric action of frictional forces is found to have
a significant impact on the contact response.

Nordenholz and O’Reilly [125] apply the generalised director formulation, see Naghdi and Rubin [126],
to steady-state contact problems of axially moving rods; transverse normal strains and the eccentric action
of contact forces are accounted for. Another reference worth mentioning with respect to the latter aspect is
the analysis of divergence buckling of an edge-loaded axially moving beam by Mote [127]. The considered
problem of flexural-torsional buckling of band saw blades is exceptional owing to the three-dimensional
nature of the buckling mechanism. On a side note, the coupling of torsional rigidity and axial tension known as
Wagner effect, see Schmidrathner et al. [3] or Manta and Gonçalves [128], is important to consider for coupled
deformations of thin-walled structures of open profile at high-tension levels.

As reflected by the references provided so far, studies on planar, two-dimensional problems of axially
moving structures prevail in the literature. However, moving flat structures exhibit the phenomenon of lateral
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motion, that is, an undesirable movement in direction of the pulley or drum axes, which is sometimes called
“run-off”. Corresponding three-dimensional models relate to, for example, moving webs, see Shelton and
Reid [129] or Benson [130], magnetic tapes, see Raeymaekers and Talke [7,131], or steel conveyor belts, see
Schulmeister [132], Scheidl et al. [2] or Schmidrathner et al. [3]. The importance of an accurate account for the
frictional contact interaction depends on the process under investigation. Distributed frictional contact may be
disregarded, like in the above cited articles concerning webs, replaced with approximate models for the sake of
computational efficiency, as done in [2,3] for steel belts with high membrane stiffness, or become particularly
important, as pointed out in an experimental study by Taylor and Talke [133] concerning flexible magnetic
tapes.

Moreover, the classic structural theories are known to exhibit unexpected behaviour in frictional contact
problems with rough surfaces. The cooling of railway rails after hot rolling was analysed by Nikitin et al.
[134], who adopted the model of a semi-infinite Euler–Bernoulli beam resting on a rough surface (Coulomb
friction) and loaded by a thermally induced distributed bending moment. The derived analytic solution shows
that the transition between the deflected free end and the undeformed rest of the structure happens in the
form of an infinite series of self-similar solutions with ever flipping signs of the friction forces between
subsequent regions. This peculiar result is a consequence of the struggle of the kinematically limited theory to
accommodate to the boundary conditions at the transition to the undeformed rest of the structure. Stupkiewicz
and Mróz [135] treated the similar case of monotonic and cyclic loading of the tip of a semi-infinite beam
supported by a rough surface. We shall refer back to this article for the analytic treatment of the example
considered in Sect. 3, where novel transient solutions for a beam travelling over a rough surface between two
laterally offset prismatic joints are presented. As recently established by Vetyukov [1], self-similar sliding
segments constitute the steady-state solution of this problem much like in the above references. The simplicity
of the setup facilitates its use as a prototype example to study different structural theories in combination with
various contact models in the future. In addition, the accurate resolution of the frictional contact response
proves particularly difficult with established finite element schemes, which highlights their weaknesses and
leaves room for a further advancement of these methods.

2.3 Kinematic description and governing equations for axially moving structures

At the beginning, we considered the problem of transverse wave propagation in an axially moving string
from the Lagrangian and the Eulerian perspectives, see Fig. 1. Owing to the geometric linearity, the axial
and transverse deflections decoupled and the switching between the different descriptions given in (2) was
particularly easy. This simplicity is lost if large deformations are considered and one must carefully distinguish
between the variants of material, spatial and mixed kinematic parametrisations. In addition, the preferred way
to account for the material transport at constant rate v through a change of variable in analogy to (2) is limited
to steady operation of the axially moving structure, see Nordenholz and O’Reilly [136].

In contrast to the usual setup of solid mechanics with a closed material volume of particles, problems of
axially moving structures are formulated for spatial control domains with fluxes of material and energy across
the boundaries. These quantities balance out at steady-state motion, but not in general. Thus, the familiar
variational principles and derivatives thereof (Hamilton’s principle, Lagrangian equations) must be augmented
accordingly.

In viewof these aspects,we shall first consider a variety of establishedmethods of kinematic parametrisation
for travelling structures based on the geometrically nonlinear problem of an extensible string and, secondly,
elaborate on the proper formulation of the governing equations for systems with spatial control domains.

2.3.1 Kinematic description of axially moving structures

The position vector to a material particle of an axially moving, extensible string in the total Lagrangian
formulation may be written as

r = r(s, t), (7)

where s denotes the material arc coordinate of the undeformed reference configuration. Now, suppose the
structure is moving across a spatial control domain at a constant material transport rate v, which determines
the “amount” of material particles entering and leaving the domain per time unit. Then, we can identify the
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Table 1 Different variants of kinematic parametrisation for the position vector r of an extensible string; stretch and material time
derivatives are related to the Lagrangian coordinate s of the undeformed reference state

Parametrisation Axial stretch Material derivative

r(s, t)
∣
∣ ∂ r
∂s

∣
∣ ṡ = 0

r(σ − vt, t) ≡ R(σ, t)
∣
∣ ∂R

∂σ

∣
∣ σ̇ = v

r(s(x, t), t) ≡ R(x, t)
∣
∣ ∂R

∂x

∣
∣
(

∂s
∂x

)−1
ẋ = v

(
∂s
∂x

)−1

particles of the structure currently contained in this confined space (these particles comprise the active material
volume) by means of the transformation

s = σ − vt. (8)

This time-variable transformation maps the active material volume onto a fixed intermediate coordinate σ .
We call the corresponding description “updated Lagrangian”, which is equivalent to (2) in the geometrically
linear setting, where the spatial coordinate x and material coordinate σ are indistinguishable. It is important
to note that this simple explicit transformation relies on the operation at constant transport rate v and is to be
replaced with the implicit form s = s(σ, t) in general. Since the arrangement of particles in axial direction is
usually unknown even in the stationary case, only an implicit formula can be provided for the transformations
to a truly Eulerian coordinate x :

s = s(x, t), (9)

which poses no restrictions on the actual provenance of the spatial coordinate. For example, x may denote a
simple Cartesian coordinate or represent a curvilinear one if the path of the axial motion is not straight, as it
is the case for looped belt drives. Evidently, in contrast to (2), the Eulerian coordinate x and the intermediate
one σ are to be distinguished in general.

At a given constant transport rate v, the just introduced different kinematic descriptions are contrasted in
Table 1 with respect to the axial stretch and the material time derivatives both defined with respect to the arc
coordinate of the reference configuration s. Corresponding position vectors R are introduced for each row to
denote the representation of r in the particular kinematic descriptions. At steady-state motion, the updated
Lagrangian description R(σ, t) is preferred over the Eulerian one by many authors, see the analytical studies
[5,6,106] as well as Laukkanen [137] for a corresponding plate finite element implementation to simulate
axially moving paper webs. However, a fully spatial parametrisation becomes advantageous for the treatment
of transient dynamics, see [108,109] as well as Huynen et al. [138] for an alternative application in the static
problem of an elastic rod constrained by a surrounding tube.

Koivurova andSalonen [139] discuss amixed kinematic approach for geometrically nonlinear problems that
constructs the actual deformed state via the deflection from an intermediate stationary configuration. Naturally,
the use of this special intermediate state poses certain restrictions on the applicability of this scheme with
regard to the flow of material particles through the control domain. Such advanced parametrisation strategies
are efficient in the development of finite element schemes in the general framework of ALE methods, which
shall be topic of Sect. 2.4.

2.3.2 Governing equations for open systems

The second determining factor that, apart from the particular choice of kinematic parametrisation, affects the
mathematical expression of the basic principles of mechanics is the choice of the control volume. The use of
a material control volume that contains an invariable set of material particles is typical for solid mechanics
in general, and the standard forms of the Lagrangian equations of motion as well as of D’Alembert’s and
Hamilton’s principle reflect that. However, it is usually more efficient to study problems of axially moving
structures in spatial control domains, that feature a flux of particles, momentum and energy across the domain
boundaries, which has to be accounted for by means of a consistent augmentation of the principles.

It turns out that Hamilton’s principle and Lagrangian equations require special attention, while the balance
of momentum and D’Alembert’s principle, i.e. the principle of virtual work, remain mostly unaffected by
the change of perspective. This preservation of the latter two relates to the fact that both can be applied for
the material currently contained in the control domain (active material volume) at a given instant and then
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merely need to be, with the words of Renshaw et al. [140], “continuously re-applied at every instant”. To put
it differently, these formalisms hold for open domains in unchanged form, because they may be applied to the
active material volume at any time, which is not impeded by a variable material contents. The cited remark
from [140] refers to the balance of momentum; the paper itself is concerned with the formulation of conserved
quantities for axially moving strings and beams, for which it is concluded that only the Eulerian functionals
qualify asLyapunov functions for stability analysis. Chen et al. [141] demonstrate that the (formally unchanged)
principle of virtual work for non-material control volumes is equivalent to the appropriately extended version
of Lagrange’s equations, as stated by Irschik and Holl [65]. The study in [141] also features a corresponding
implementation of an ALE cable finite element and an instructive numerical example.

The discussion of the appropriate extension of Hamilton’s principle and of the Lagrangian equations for
open systems dates back toMcIver [142] and, since the publication of the aforementioned article by Irschik and
Holl [65], has been carried forward primarily in the journal Acta Mechanica. Casetta and Pesce [143] derive
the augmented Hamilton’s principle with the help of Reynold’s transport theorem, establish correspondence
with the extended Lagrangian equations proposed in [65], andmention that the version presented in [142] lacks
a term that relates to the flux of kinetic energy across the boundaries of the spatial domain. Remarkably, in
relying on [142], Hetzler [95] disregards this term aswell. In continuation of their earlier work, Irschik andHoll
[144] again employ the method of fictitious particles to derive the extended version of Lagrangian equations,
but this time based on the Lagrangian kinematic description, in contrast to the Eulerian perspective adopted
in [65]. In addition, Casetta [145] considers the inverse Lagrangian problem for a spatial control volume, i.e.
the task of deriving a Lagrangian functional based on a given system of equations of motion; the analysis is
limited to systems with one degree of freedom.

The primary results of the above given references concerning Hamilton’s principle are collected, unified
and extended further in the recently published paper by Steinböck et al. [146]. The authors formulate the
principle for all possible combinations of Lagrangian or Eulerian kinematic descriptions with material or
spatial control volumes. The simple example of an axially moving elastic bar is used to verify the equivalence
of these formulations and to emphasize their importance for practical applications. Here, we present the
standard expressions of Hamilton’s principle for the Lagrangian description in a closed material volume:

∫ t2

t1
(−δT + δEV + δES − δWnc) dt = 0, (10)

as well as the one for the Eulerian description in an open volume, owing to its significance for axially moving
structures:

∫ t2

t1
[−δcT + δcEV + δcES − δcWnc

+
∫

∂Vc
ρ (δū · ν̄) (ν̄ − νc) · nc dA

−
∫

∂Vc
ρ

(
1

2
ν̄ · ν̄ − eV

)

(δū − δcuc) · nc dA
]

dt = 0. (11)

For an application of (11), we refer to the aforementioned article by Boyer et al. [84]. Both versions are
taken directly from Steinboeck et al. [146], where the corresponding mixed formulations can be looked up
as well. The uppercase letters denote integral quantities, namely: the kinetic energy T , potential energy of
strains and volumetric forces EV , potential energy of surface tractions ES and the work of non-conservative
forces Wnc. The first line of (11) replicates (10) with the variational operator δc that corresponds to the fixed
spatial control volume Vc in contrast to the material variational operator δ, which implies holding the material
volume constant. Additional surface integrals arise in (11) owing to the net flux of momentum and to the net
virtual shift of the kinetic energy minus potential energy eV across the control volume, respectively; ρ denotes
the mass density. Apart from the particle motions in Eulerian description (deflection ū, particle velocity ν̄)
this general formulation also accounts for a potential motion of the spatial boundary (deflection uc, velocity
νc, normal vector nc). Naturally, in case of a stationary state the additional fluxes must balance out and the
extended principle reduces to the standard form.

In case of a system with a finite number of degrees of freedom, which typically results from a discretisation
of the continuous system by means of a Ritz or a finite element approximation, an extended version of the
Lagrangian equations can be formulated that is equivalent to (11), see [65,143]:
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Qk = d

dt

∂cT

∂q̇k
− ∂cT

∂qk

−
∫

Vc

1

2
ρv2

(
∂ ν̄

∂q̇k
− ∂νc

∂q̇k

)

· nc dA

+
∫

Vc
ρν̄ · ∂ ν̄

∂q̇k
(ν̄ − νc) · nc dA, (12)

which specifies the equation for the generalised coordinate qk and is taken from Casetta and Pesce [143] with
an appropriately adapted notation; in this regard d/dt denotes a total material time derivative and, like δc above,
the operator ∂c is introduced to indicate that the differentiated quantity is computed for the fixed control volume
Vc. As remarked in [146], the contributions of conservative and non-conservative forces are not distinguished
in [143] and, thus, are merged into a single virtual work component that enters (12) bymeans of the generalised
force Qk . Recent contributions that feature (12) as the basis of ALE finite element implementations for axially
moving structures are authored by, for example, Pechstein and Gerstmayr [147] or Pieber et al. [62].

2.4 Arbitrary Lagrangian–Eulerian FEM for axially moving structures

The major issue in the computational analysis of axially moving flexible structures is that the traditional
material (Lagrangian) kinematic description of structural mechanics becomes inefficient because material
particles enter and leave the control domain. Finite elements that are strictly tied to material particles must
continuously pass through the boundaries of the domain, atwhich kinematic conditions need to be applied. Even
when the structure is looped like a belt drive (e.g. Duvfa et al. [148]), the finite elements are moving between
qualitatively different domains all the time: from the free spans to the contact zones and back. This results
in numerically induced oscillations, such that obtaining a stationary solution becomes impossible, see Oborin
et al. [109], where the deficiencies of the traditional Lagrangian description are highlighted in comparison
to a Eulerian alternative. A less obvious, but still important issue is that one cannot refine the mesh locally
near the contact zones to better resolve the complicated friction processes developing there: Because of the
axial motion, the finer part of the mesh would move along and coarser elements would eventually arrive in the
contact zone. Attempts to treat mentioned issues with the existing methods of computational mechanics like
mortar approach or re-meshing techniques result into cumbersome and potentially non-robust formulations.

An effective alternative is the application of the Eulerian kinematical description, which traditionally
belongs to the field of computational fluid mechanics. Evidently, the mentioned difficulties can be resolved by
writing the mechanical fields such as displacements, strains or stresses as functions of the spatial coordinate
in the direction of the axial motion. The overwhelming advantage is that the stationary contour motion, at
which the structure retains its shape from the viewpoint of a spatially fixed observer, can be described as
time-independent with no numerically induced oscillations.

Historically, the development of respective Arbitrary Lagrangian–Eulerian formulations for structural
mechanics was motivated by problems like automobile crash tests and high strain rate metal forming opera-
tions, which pose the risk of an excessive distortion of the Lagrangian element mesh and are thus capable of
pushing the conventional finite element approach beyond its limit, see Benson [149] for one of the early works
and Davey and Ward [150] for an application to the metal forming process of ring rolling. One of the initial
intentions of ALE was to evade mesh distortion by detaching the finite elements from the material particles
and to thereby enable a time evolution of the finite element mesh to the advantage of the problem at hand.
The basic idea of the classical form of ALE, summarized later by Donea et al. [151], is to split the operator
of the problem. The partial differential equations disintegrate into two systems that are solved sequentially
within a time increment. In terms of the implementation in the finite element procedure, it means that each
time increment is performed in two steps: The first one is the conventional Lagrangian step, in which the
equations of motion are integrated implicitly or the new equilibrium is sought if the problem is quasistatic,
but with the account for the distributions of stress, mass density and possibly inelastic variables, accumulated
from the previous time increments. The second step is the Eulerian one, at which the solution is projected back
to the spatially fixed non-material mesh according to the small displacement increments obtained during the
Lagrangian step, which means performing a single step of time integration of an advection equation. Recently,
this formalism has been applied to modelling the roll forming process by Crutzen et al. [152]: both the contact
and the material nonlinearities need to be accurately resolved for the elastoplastic analysis of a metal strip that
is incrementally bent to a final cross-sectional profile as it passes through a succession of roll stands.
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The main drawback of this very general approach is that the re-mapping of the field variables during
the Eulerian step degrades the solution quality as the advection equation is difficult to integrate accurately
over time. Certain problem-specific variants of the method are suggested in the literature, which make the
Eulerian step obsolete or at least less important. For example, Askes, Kuhl and Steinmann [153,154] propose a
“monolithic” version ofALE for hyperelastic continua that gets rid of the Eulerian convective update altogether.
Others employ an appropriate variable transformation, like Nackenhorst [155], who adapts the ALE formalism
for the problem of rolling with contact and friction: The deformations are superimposed upon the rotation of
the wheel, and the differential relations of the theory are determined by the relative kinematic description.
The underlying motion of material particles because of the rotation is pre-defined, and a stream-line-upwind
technique is only needed for the integration of the evolution law for inelastic internal variables. A rare example
of the use of isogeometric approximation technique in the context of non-material kinematic description is
provided by Garcia and Kaliske [156], also in the context of the rolling contact.

For thin structures, such as beams and cables, variants of the approach with redundant nodal coordinates
were suggested by several authors. The field of application comprises: petroleum drilling operations [157],
pipe reeling [158,159], sliding joints that appear in ropeways [160] or arresting cable systems ofmarine aircraft
carriers [161] as well as reeving systems [88,162,163]. See also Hyldahl et al. [164] for an extension to plate
finite elements. Featuring both the spatial and the material coordinates among the nodal degrees of freedom
such models impose additional constraints, which complete the system of equations and provide a possibility
to control, whether a specific node behaves as a Eulerian one, a Lagrangian one or as a hybrid thereof. Special
methods of numerical time integration, typical for simulations in the field of multi-body system dynamics, are
required to accommodate the high number of constraint conditions. The increased number of unknowns and
the need to integrate differential-algebraic equations may impact the numerical efficiency of this otherwise
highly flexible technique.

As a “light” version of ALE, we can classify various models, in which the axial material flow takes place
in the background, in the spirit of R(σ, t), see Table 1. It does not affect the elastic response of the flexible
structure andmanifests itself just in the form of several possibly nonlinear additional terms in the kinetic energy,
which are either postulated or derived under certain kinematic assumptions. On occasion, the Ritz method is
applied to either the extended version of Hamilton’s principle (11), see Stangl et al. [64], or the Lagrangian
equations of motion, see Ghayesh et al. [165], who study the dynamics of an axially moving von Kármán
plate. The inherent difficulty to satisfy the C1 continuity condition for unshearable theories of Kirchhoff or
von Kármán plates complicates the formulation of related finite element schemes, see Vetyukov [166]. Hence,
many authors resort to theReissner–Mindlin theory,which features additional degrees of freedom in account for
transverse shear, to formulate finite elements for travelling plates, see Wang [167] or Laukkanen [137]. These
elements are susceptible to shear locking, which is alleviated using the method of “mixed interpolated tensorial
components” (MITC) in the above cited papers. Alternatively, shear deformations may be restrained artificially
to mimic the kinematics of the unshearable Kirchhoff theory, see Luo and Hutton [42] for the development
of triangular finite elements for axially moving discrete Kirchhoff plates. The spectral element formulation
presents a viable alternative for the modal analysis of axially moving plates as long as the considered domain
remains geometrically simple, see Kim et al. [168]. The framework of “light” ALE, employed in the above
references, allows to investigate specific dynamical effects, but is generally restricted to moderately small
deformations and does not fully address the question of the interaction between the parts of the structure
within the control domain and outside of it.

TheMixedEulerian–Lagrangian (MEL) kinematic description is actively promoted by the authors’ research
group. The MEL formalism is based on the variable transformation to a mixed set of Eulerian and Lagrangian
coordinates in the spirit of Sect. 2.3.1. Thus, large vibrations of an axially moving beam or string with coupled
longitudinal and transverse deformations are captured by two functions of space and time, namely the material
coordinate s and the finite transverse deflection w [67]:

s = s(x, t), w = w(x, t). (13)

In each spatial point in the axial direction x = const, the relations (13) identify a specific material particle and
its transverse deflection. Consequenlty, the position vector r in the planar Cartesian basis {i, j} features the
spatial coordinate x to mark the axial position of a point and the material one w to grasp its deflection:

r = x i + w(x, t) j , (14)

which emphasises the mixed Eulerian and Lagrangian nature of the formulation. In the special case of a
constant transport rate v, the kinematics of this description are governed by the last line in Table 1 for the
position vector given as R(x, t).
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Fig. 5 Flexible beam travelling in frictional contact with a moving rough surface

In recent years, the authors’ group and related researchers have published a substantial number of articles
in conjunction with the MEL kinematic approach: In [67], it is demonstrated how the semi-implicit variable
transformation (13) gives rise to an efficient non-material finite element scheme both bymeans of the variational
equation of the principle of virtual work and with the help of Lagrange’s equations of motion. Large vibrations
of axially moving beams and strings are accurately described with just a few finite elements in the control
domain 0 ≤ x ≤ L . An extension to multi-dimensional continua like plates and shells builds upon a two-
stage mapping from the material reference configuration to the deformed actual one: all mechanical fields
are considered functions of coordinates in an abstract intermediate configuration, and a geometrically exact
formulation is achieved with the multiplicative decomposition of the deformation gradient tensor [169].

Featuring the minimal set of unknowns, the approach is very convenient for elastic problems and allows
treating variable distributions of the material influx and outflux rates at the boundaries of the control domain.
The practical application to the hot rolling process in [170] required the transport conditions of the inelastic
variables to be treated within the Eulerian step of each time increment; see also [171] for the simulation of the
roll forming process. In continuation of Vetyukov et al. [122], the frictional contact with a rotating pulley as the
source of the axial motion of the belt stand in focus of the research in [102]. A compound coordinate system,
consisting of Cartesian and polar domains, allows to generalize MEL to looped structures like belt drives by
introducing the Eulerian coordinate in the circumferential direction of the machine. The possibility to refine
the mesh in the important domain of contact of the moving belt with a rotating drum makes it possible to
investigate the stick and slip behaviour, which is important for estimating the efficiency of power transmission
[110,112]. For the practically relevant study of the phenomenon of lateral run-off of flat belt drives because of
geometric imperfections in the 3D setting, see [2,3,172] for rod and shell models of the travelling structure.

Other authors pursue kinematic approaches in the framework of ALE that are closely related to MEL:
Synka and Kainz [173] adopt the MEL concept for the development of continuum finite elements to simulate
steady-state hot rolling. The aforementioned formulation proposed by Koivurova and Salonen [139] and put
to use by Kulachenko et al. [174] utilises a stationary configuration for the purpose of parametrising the actual
state. Gerstmayr and co-workers [62,147] employ an explicit variant of (13) that is closely related to what
we called “updated Lagrangian” in terms of Sect. 2.3.1, see also Grundl et al. [175] for an extension of this
formalism with respect to continuous variable transmission belt drive systems.

3 Benchmark problem: partially sliding beam travelling across a rough surface

As a representative example of an axially moving flexible structure, we consider an endless beam, travelling
in contact with a rough surface, moving with the velocity v, see Fig. 5.

We focus the consideration on a control domain, bounded by two guides seen as prismatic joints. The
beam enters the domain through the entry guide such that the axis of the beam coincides with the direction
of the surface velocity v, and it leaves the domain through the exit guide in the same direction. The relative
lateral misfit between the guidesw0, which can be seen as a (possibly time dependent) geometric imperfection,
triggers sliding of the beam in at least part of the control domain because the particles of the beammust acquire
a lateral velocity component to reach the exit guide. The transverse deflections decouple from the axial motion
of the beam in the geometrically linear setting, such that the axial transport rate of particles always equals the
surface velocity v. This mechanical system can be considered a prototype for various technical processes like
the motion of a metal strip on a roller table of a rolling mill or as a “flattened” version of the problem of contact
of a flat belt with a cylindrical rotating drum of a belt drive.
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Fig. 6 Stationary contour motion of an endless beam travelling across the control domain 0 ≤ x ≤ � between two misaligned
prismatic joints

The essentially nonlinear character of the dry friction contact law results into a non-trivial transient dynamic
behaviour of the system even at very slow motion, when the inertia effects are negligible and the beam is in
equilibrium at each time instant. Complicated patterns of sliding zones develop in time. The existence of the
zone of sticking contact over longer time intervals depends on the parameters of the model. In this example
problem, we consider a Bernoulli–Euler beam, ignore inertia and remain under the assumptions of geometric
linearity (small deformations) and Coulomb’s dry friction law. The discussion begins with a brief recap of the
analytical solution for the stationary motion, recently presented by Vetyukov in [1]. Transient solutions as well
as a numerical approach featuring the Mixed Eulerian–Lagrangian formulation are considered later on.

3.1 Stationary solution for the boundary value problem

At stationary contour motion, the lateral positions of the guides are fixed and the deformed axis of the beam
retains its outer appearance, i.e.: each particle of the beam follows the same trajectory across the control domain
over time. The deflection is a function of the spatial axial coordinate, w = w(x) with ẋ = v and ∂tw = 0, and
the direction of the sliding friction force q0 depends on the sign of the lateral velocity of a particle ẇ = vw′,
see Fig. 6.

The material velocity of a particle ẇ again follows from the variable transformation (2) with ∂tw = 0 for
the stationary case. We use w′ = ∂xw, as the material coordinate s no longer appears in the present context.

The deformed line of the beam, which is in equilibrium at each time instant, follows as a solution of the
essentially nonlinear boundary value problem

aw′′′′ = q, q =
⎧

⎨

⎩

−q0, w′ > 0
0, w′ = 0
q0, w′ < 0

,

w(0) = 0, w′(0) = 0, w(�) = w0, w′(�) = 0

(15)

with � being the length of the control domain, a the bending stiffness of the beam and q the distributed friction
force, whose sign depends on the sign of the slope w′. If there exists a continuous zone of stick with w′ = 0,
then the sticking friction force must vanish there as a consequence of the beam equation. Isolated points, in
which the slope changes the sign and w′ turns to zero, can be ignored in the definition of q .

As long as the sliding friction force q0 is small, the deformed line of the beam shall look similar to the
one, depicted in Fig. 6 with w′ > 0 and q = −q0 everywhere; an analytical solution of (15) is easy to
find. At growing q0 the beam would bend downwards more and more, until w′ becomes zero at some point,
specifically at the left end x = 0. A naive expectation is that at higher values of q0 a zone of stick with w = 0
would emerge from the entry to the right, followed by a zone of sliding upwards in obedience to the boundary
condition w(�) = w0. It is, however, easy to realize that this kind of solution is impossible. Indeed, there shall
act no concentrated forces nor moments at the boundary between the zones of sticking and sliding, which
means that the deflectionw, the slopew′, the bending moment aw′′ and the transverse shear force−aw′′′ shall
be continuous there—and they all vanish in the zone of stick. This results into 6 boundary conditions for the
zone of sliding, as two more need to be imposed at x = �, which cannot be fulfilled because the differential
equation is of the 4th order.

The contradiction is resolved in [1]: As soon as q0 exceeds the first critical value q0,1 = 72aw0/�
4, w′

changes sign in the vicinity of the entry point and the solution features two segments of sliding: in the first
one, the particles are sliding downwards and q > 0, and in the subsequent one the situation is the opposite
with q < 0. The coordinate of the switching point in dependence on q0 follows from a system of nonlinear
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Fig. 7 Structure of the initial stage of the transient solution for the beam travelling at constant rate v subjected to an upward
motion of the left entry joint; we introduce local segment-wise coordinates xi for the sequence of N sliding segments with lengths
li and transition points Xi

algebraic equations. Further growth above the second critical value q0,2 ≈ 219.177aw0/�
4 leads to the solution

comprising three segments of sliding, and so on. The sequence converges to the ultimate critical value,

lim
n→∞ q0,n = q0,∞ = 168

√
5 aw0/�

4. (16)

At q > q0,∞, the deformed beam comprises a zone of sticking contact, followed by infinitely many segments
of sliding with alternating directions of friction. These segments of sliding form a self-similar structure, where
each segment is a copy of the neighbouring one, scaled in both directions; for details, we again refer toVetyukov
[1]. Such self-similar solutions were previously known for static beam problems with friction [134,135], now
we observe this situation for an axially moving structure. Questions remain open, how the account for the finite
thickness of the beam (which additionally features frictional moment interaction between the beam and the
moving surface and requires higher-order beam theory or 2D modelling) or the inertia terms would affect the
obtained solution. We, however, remain with the idealization of the Bernoulli–Euler beam theory and with the
assumption of quasistatics in the following and focus on the transient behaviour of the structure.

3.2 Analytical solution for the initial stage of transient motion

The transient setup of the problem considered in the following is depicted in Fig. 7.
The beam is again transported across the domain at constant rate v, but the lateral misfit of the entry and

exit joints grows linearly over time owing to a transverse motion of the left boundary with velocity c:

w|x=0 = ct, (17)

such that the beam is straight initially at t = 0. Stupkiewicz and Mróz [135] analysed the related case of a
semi-infinite beam resting on a rough surface and loaded by a time-variable concentrated force or bending
moment at its tip. In fact, we follow a similar solution procedure, because the governing ODE is equivalent
and the account for axial transport and the kinematic loading at the entry joint amounts to a modification of the
boundary and transition conditions. In doing so, we assume the region of non-trivial transverse deflections to
always remain smaller than the length of the control domain l. This guarantees that no complicated interactions
at the exit joint can occur and that the boundary conditions there can be ignored, which renders the problem
analogous to one of a semi-infinite beam.

As a consequence, the distance between the joints l is no longer a characteristic length and we instead
introduce alternative scales:

L = (a/q0)
1/3 , T = L/c, V = L/T, (18)

to normalise the variables and parameters accordingly:

ŵ = w/L , x̂ = x/L , t̂ = t/T, v̂ = v/V, q̂ = q/q0. (19)
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For the sake of simplicity, we suspend with the explicit designation of dimensionless quantities and reuse the
usual operators to denote derivatives with respect to the new variables.

The transformed nonlinear transient boundary value problem reads:

w′′′′ = q, w|x=0 = t, w′|x=0 = 0

ẇ = ∂tw + vw′, q =
⎧

⎨

⎩

−1, ẇ > 0
(−1, 1), ẇ = 0
1, ẇ < 0

,
(20)

where the frictional state with corresponding traction q is determined by the sign of the transverse particle
velocity ẇ, which in the previously considered stationary case was related to the slope w′, see (15).

In accordance with the conclusions drawn in [1,135], the attempt at a solution with one sliding region
on the left that somewhere transitions to a trivial stick zone is in vain. Instead, as Fig. 7 already insinuates,
we seek the transverse deflection in a continuous zone of sliding as a piecewise sequence wi of 0 ≤ i < N
segments with alternating directions of the friction force, which is reminiscent of the self-similar stationary
solution above. To this end, we define local coordinates xi for each segment to allow a uniform description of
the individual solutions:

wi = wi (xi , t), xi = x − Xi , 0 ≤ xi ≤ Xi+1 − Xi ≡ li , (21)

where Xi = Xi (t) and li = li (t) denote the time-variable positions of the transition points and the correspond-
ing segment lengths, respectively, see Fig. 7; derivatives with respect to x and xi are exchangeable. Since the
entry joint is moving upwards with w|x=0 = t , the frictional traction q must act downwards in the segment
i = 0, i.e. ẇ1 > 0 and q = −1, which sets the starting direction for the sequence of ODEs in the sliding zone:

w′′′′
i = (−1)i+1 , (22)

with the general solution

wi = (−1)i+1 x4i
24

+ Qi
x3i
6

+ Mi
x2i
2

+ 	i xi + Wi . (23)

The uppercase letters denote the unknown constants obtained in the course of sequential integration. They
equal wi and its derivatives up to third order at xi = 0 and are named according to their physical counterparts,
namely, in order of appearance in (23): transverse force, bending moment, slope and deflection.

In absence of concentrated forces and moments, the solution must remainC3-continuous within the sliding
zone:

wi (li , t) = wi+1(0, t), w′
i (li , t) = w′

i+1(0, t),

w′′
i (li , t) = w′′

i+1(0, t), w′′′
i (li , t) = w′′′

i+1(0, t).
(24)

Moreover, the corresponding smooth transition to the trivial stick zone at the rightmost point XN requires w
and its derivatives to vanish identically:

wN−1(lN−1, t) = 0, w′
N−1(lN−1, t) = 0,

w′′
N−1(lN−1, t) = 0, w′′′

N−1(lN−1, t) = 0.
(25)

By evaluation of these continuity conditions with (23), we first determine the unknown integration constants
in the rightmost segment and, in sequence, work our way back from right to left until we finally arrive at a
unified series representation:

Qi =
N−1
∑

k=i

[

(−1)klk
]

Mi =
N−1
∑

k=i

[

(−1)k
l2k
2

− Qklk

]
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	i =
N−1
∑

k=i

[

(−1)k
l3k
6

− Qk
l2k
2

− Mklk

]

Wi =
N−1
∑

k=i

[

(−1)k
l4k
24

− Qk
l3k
6

− Mk
l2k
2

− 	klk

]

. (26)

The same result, albeit for a slightly modified notation, is found in [135], where the derivation is also covered
in greater detail. The main advancement of (26) is that it determines the solution (23) up to the unknown, time-
variable lengths of the individual segments li (t). These are to be determine such that the kinematic conditions
at the entry joint and at the intermediate transition points are fulfilled:

w|x=0 = t, w′∣∣
x=0 = 0,

ẇ|x=Xi
= ∂tw|x=Xi

+ v w′∣∣
x=Xi

= 0, 1 ≤ i ≤ N − 1. (27)

The constraints collected in the second line require the sliding velocity of the particles instantly residing in
transition points Xi to vanish. In other words: If a particle is currently sliding upwards or downwards, it cannot
be situated at a boundary between two segments with opposite sliding direction. In total, (27) constitutes N +1
constraints for only N lengths li , i.e. we lack one unknown. Hence, the system is overdetermined, which gives
us a hint that the actual analytic solution requires an infinite number of segments N → ∞, see [1,134,135].

In order to write (27) in terms of the solutions at the transition points, we need to expand the partial time
derivative ∂tw, which, in contrast to uppercase quantities specified in (26), relates to the global Cartesian
coordinate x . With ∂t x = 0 and (21), we obtain

∂t xi = −Ẋi , (28)

for the local coordinate, where Ẋi is just the time derivative of the function Xi (t). Now, we can rewrite the
corresponding derivative of the deflection at a transition point (x = Xi or xi = 0) in a form suitable for
substitution by means of (26):

∂tw|x=Xi
= −w′

i (0, t) Ẋi + ∂wi (0, t)

∂t

∣
∣
∣
∣
xi=const

. (29)

The transformed system (27) reads:

Ẇ0 = 1, 	̇0 = 0,

	i
(

v − Ẋi
) + Ẇi = 0, 1 ≤ i ≤ N − 1, (30)

where the algebraic equations of the first line in (27) have been differentiated to obtain a systemofODEs.Again,
the time derivatives of the uppercase quantities simply relate to the differentiation of time-variable functions.
Recalling that the segment lengths were introduced in (21) as a mere abbreviation, i.e. li = Xi+1 − Xi , we see
that (30) presents an (overdetermined) system of nonlinear ODEs for the evolution of the transition points Xi .

The initial conditions for the reference state of the straight undistorted beam are trivial, but, at the same time,
the transition points adopt an infinite velocity as soon as the entry prismatic joint starts moving in transverse
direction:

Xi |t→0 = 0, Ẋi |t=0 → ∞, 1 ≤ i ≤ N , (31)

which poses a problem for the numerical integration. In fact, the analytic investigation under the assumption of
a self-similar solution along the lines of Stupkiewicz [135] shows that Ẋi |t→0 ∝ t−3/4 holds asymptotically.
Understandably, the finite rate of axial transport v has no impact on this result. Thus, the static self-similar
solution for v = 0, which is easy to construct by analogy to Stupkiewicz [135], holds initially regardless of
the chosen value for v. We thus begin the time integration at a small but positive time instant with non-trivial
initial values of Xi , set up accordingly to the analytically known solution of the static case.

To facilitate a simple numerical solution of the initial value problem, we merely truncate the sequence
at a finite number N and regard the last constraint of (30) for i = N − 1 as a residual error to judge the
accuracy of the approximation. For all practical purposes and in view of the later comparison against finite
element simulations, the choice N = 4 is sufficiently accurate. The corresponding time evolutions of Xi and
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Fig. 8 Time evolution of transition point positions Xi and their velocities Ẋi as obtained from the semi-analytic solution for
N = 4 sliding segments; the lengths of subsequent sliding segments diminish rapidly; the initially infinite velocities decrease
monotonously and become equal to the axial transport rate v at characteristic time instances

Ẋi for a specified transport rate v = 100 (i.e. the joint moves in transverse direction 100 times slower than the
underlying surface to the right) are computed with the help of Wolfram Mathematica1 and depicted in Fig. 8.

As can be seen from the left picture, every additional segment added by increasing N decreases in length
significantly and its impact on the solution diminishes accordingly. This contributes to the rapid convergence
of the approximate solution with respect to N , which is verified by the decay of the residual error in the
numerical experiments. The initially infinite extension rates Ẋi , presented in the plot on the right with a
logarithmic ordinate, decrease monotonously and hit the transport rate v at the marked points. According to
(30), these time instances are potentially critical and may cause a characteristic change of the solution. Though
the extension rate of the first point Ẋ1 crosses the line first, this occurrence has no significant impact: What
happens is that material particles begin to cross the boundary X1 of two adjacent slip segments and, in the
process, switch their sliding direction. This does not impede the sustainability of the solution.

However, a truly critical state is reached once previously sliding particles start to cross the boundary XN
to the stick zone, which amounts to the establishment of a non-trivial zone of stick. In the present case, this
occurs at t∗ = 1.58446× 10−3. To further analyse this state, we take a look at the expanded version of the last
transition condition of (30) for the rightmost segment:

ẇ|x=XN−1
= 1

6
(−1)N−1 l3N−1

(

v − Ẋ N
) = 0. (32)

This constraint is regarded as residual error of the numerical solution, which tries to approximate the analytic
result lN−1 → 0 in the limiting case of N → ∞. At the critical instant t∗ the root Ẋ N = v is reached. With
this result in hand, we proceed to evaluate the remaining transition conditions sequentially in descending order
from i = N −1 downwards. In doing so, we always substitute the preceding steps to simplify the expressions;
the findings may be conveniently summarised in the following sequence:

ẇ|x=Xi−1
= 1

3
(−1)i−1 l3i−1

(

v − Ẋi
) = 0, N − 1 ≥ i ≥ 2,

ẇ|x=0 = 1

3
l30

(

v − Ẋ1
) = 1. (33)

The last expression must not vanish owing to the prescribed motion of the entry prismatic joint (ẇ|x=0 = 1);
it yields Ẋ1 = v − 3l−3

0 < v in accordance with Fig. 8. However, owing to the first line of (33), Ẋi = v
holds for all i ≥ 2. Reinserting this result in the expression for the particle velocities, we find that ẇi must
vanish at t∗ not only at the transition points but throughout all sliding segments except for the first one. The
intriguing observation that only the first segment must necessarily remain in sliding state motivates us to
attempt a continuation beyond t∗, see Sect. 3.4.

1 https://www.wolfram.com/mathematica.

https://www.wolfram.com/mathematica
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3.3 Finite element analysis

It is an easy task to develop an explicit numerical solution scheme for the transient boundary value problem
(20) based on the finite differences discretization with a regularized dry friction law that enables a small “drift"
in the zone of stick. Experience shows, however, that while the solutions appear physical at the first glance,
the algorithm does not possess sufficient accuracy and robustness even at very fine grids and time integration
with very small steps. The non-material finite element scheme presented in the following behaves significantly
better. It features an implicit time integration and the technique of augmented Lagrange multipliers, see Simo
and Laursen [176], for the dry friction law. The aim of the finite element simulation is to validate the above
analytical solution and to draw conclusions regarding further stages, when a non-trivial zone of stick appears
or the kinematic condition at the exit prismatic joint starts playing a role. Moreover, the academic example at
hand allows to optimize the numerical algorithm and to better understand its strong and weak points, which is
crucial for practically relevant, more complicated cases.

We divide the dimensionless control domain 0 ≤ x ≤ 1 into n equally long finite elements, each bounded
by two nodes. Choosing the non-dimensional deflection w and the slope w′ as nodal degrees of freedom, we
use cubic approximation within an element, see Vetyukov [177], and obtain the necessary C1 interelement
continuity. Along with the time evolution of the displacement field w(x), we also consider the distribution of
the transverse friction force q(x) as part of solution; q = −1 in the segments currently sliding upwards and
q = 1 in the segments sliding downwards. The field q(x) is determined by the values in the two Gaussian
integration points of each finite element. In the zones of sticking contact, q plays the role of a Lagrange
multiplier for the imposed kinematic constraint ẇ = 0 and assumes values in the range −1 < q < 1.

The Lagrangian step of each time increment t → t+
t features a fixed-point iterations loop for obtaining
a new equilibrium state, which is the substantial difference from the numerical scheme presented in [1]. In the
spirit of the technique of augmented Lagrange multipliers, we first solve the linear equilibrium problem

∫ 1

0

(
1

2
w′′2 − qw + 1

2
P(q)(w − wprev)

2
)

dx → min . (34)

The minimization is performed with respect to w(x), i.e. the nodal degrees of freedom are updated. The first
term under the integral corresponds to the strain energy of the beam, which we integrate analytically. The
second term answers to the potential of the current distribution of the friction forces, which we integrate
according to the Gaussian quadrature rule for the current distribution of q(x). The third term penalizes the
violation of the sticking condition w = wprev. Here

P(q) =
{

P0, −1 < q < 1
0, q = −1 or q = 1 (35)

is the artificial penalty stiffness, which takes on the large value P0 in the zones with current sticking behaviour.
The values wprev are relevant only in the domains of sticking and are computed at the end of the previous time
increment. The second part of the step features the augmentation of the Lagrange multipliers according to

qtrial = q − P0(w − wprev),

q =
⎧

⎨

⎩

−1, qtrial < −1
qtrial, −1 ≤ qtrial ≤ 1
1, qtrial > 1

. (36)

Note that this update rule fully covers the conditions of switching from the sliding state to stick and back.
Sequentially updating w(x) and q(x), we eventually obtain a converged state.

TheEulerian step of the time increment consists of the projection of the deformed state after the Lagrangian
step back to the spatially fixed finite element mesh, which provides us with the reference values wprev for the
condition of stick during the subsequent time increment. Approximating ∂tw locally using a simple finite
difference, we perform a single step of the advection equation ẇ = ∂tw + vw′ = 0 and store the results in the
integration points:

wprev = w − vw′
t. (37)

Note that the slope w′ is directly available from the finite element approximation.
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Fig. 9 Comparison of finite element and semi-analytic results: time evolution of the transition points Xi (left); distribution of
contact tractions q at t = t∗ (right)

The simulation was implemented within the Wolfram Mathematica environment. An equidistant, fine
mesh with 400 elements covers the spatial domain of unit length to guarantee a smooth resolution of the
contact zone evolution. Simulations are carried out with the time step 
t = 10−6 and the contact penalty
P0 = 106. Numerical ill-conditioning prevents the use of even higher penalties, which, in turn, would benefit
the convergence of the iterative update of the contact forces (36). Owing to this limitation, the fixed-point
iterations for the integration point tractions q proceeds slowly; in particular, a total of Nq = 200 steps are
performed for each time step.

Finite element results for the particular choice v = 100 of the axial transport rate are compared against the
semi-analytic reference solution of Sect. 3.2 in Fig. 9.

We depict the evolution of the sliding zone boundaries Xi (t) on the left and the distribution of the contact
tractions at the critical time instant q(x, t∗) on the right. Regions of stick or sliding are shaded in grey andwhite,
respectively. Evidently, the finite element solution reproduces the assumed solution shape of a finite number
of sliding segments with alternating sliding direction followed by a single (trivial) stick zone. It captures the
first three sliding segments with good accuracy, while those with diminishing length towards the transition to
the stick zone become increasingly harder to resolve. In contrast to the analytic solution, where q = 0 must
hold identically in the trivial stick zone, the finite element solution retains some compliance there owing to the
penalty approximation of the contact response. A more accurate resolution of the transition may be obtained
with excessive computational effort regarding mesh refinement and contact iteration steps Nq .

Regardless of these local effects, the global results remain in good agreement up to the critical instant t∗.
The analytical solution of Sect. 3.2 ceases at this point, but the finite element simulation can be carried further,
and thus provides a basis for a continuation of the analytical solution past t∗.

3.4 Analytical solution for a non-trivial segment of sticking contact

Both the analytical solution in Sect. 3.2 and the finite element simulations convince us that the transient
behaviour qualitatively changes after the critical time instant t∗, when the velocity of the switching point
between the segments of sliding and the “pre-historic” zone of sticking contact Ẋ N (t) drops below the velocity
of themoving surface v. Figure 9 demonstrates that during this supercritical stage t > t∗ the remaining segment
of sliding 0 ≤ x ≤ X1(t) is immediately followed by a zone of sticking contact x > X1(t), in which the
deformed beam is merely transported by the surface. While complicated scenarios with growth and shrinking
of secondary sliding segments far behind X1(t) as well as the interaction with the exit prismatic joint at the
right end of the control domain are possible, we focus at the time evolution of the size of the initial sliding
zone under the stated assumption: sticking contact at x > X1(t).

Seeking an analytical solution for the coordinate of the switching point, we denote byw1(x, t) the deflection
in the initial segment of sliding at x ≤ X1(t), where the unit friction force is acting downwards. Accounting
for the boundary conditions at x = 0, we solve w′′′′

1 = −1 and write:

w1(x, t) = t − x4

24
+ c1(t)

x3

6
+ c2(t)

x2

2
; (38)
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the integration constants c1 and c2 change in time. The deflection in the segment of stick w2(x, t) must fulfil
ẇ2 = ∂tw2 + vw′

2 = 0 at x > X1, which immediately implies

w2(x, t) = f (x − vt), (39)

with some yet unknown function f . Continuity conditions in the switching point result into:

w1(X1(t), t) = w2(X1(t), t) = f (X1(t) − vt), w′
1(X1(t), t) = f ′(X1(t) − vt),

w′′
1(X1(t), t) = f ′′(X1(t) − vt), w′′′

1 (X1(t), t) = f ′′′(X1(t) − vt), (40)

because computing derivatives of w2 with respect to x means differentiating f with respect to its single
argument. Now we address the time derivative of the deflection in the switching point (note that it is neither
the material time derivative ẇ nor the local one ∂tw, as the switching point is moving on its own and is not
bound to any material point):

d

dt
w1(X1(t), t) = d

dt
f (X1(t) − vt) = f ′(X1 − vt)(Ẋ1 − v) = w′

1(X1, t)(Ẋ1 − v). (41)

Computing the same time rate using (38) with x = X1(t) and equating both expressions, we find the first
differential equation for the unknown functions of time X1, c1 and c2:

6 + 6vc2X1 + (3vc1 + (ċ1 − v)X1 + 3ċ2)X
2
1 = 0. (42)

The second equation makes use of the second time derivative of the deflection in the switching point, in which
we again utilize the continuity conditions (40):

d2

dt2
w1(X1, t) = d

dt

(

f ′(X1 − vt)(Ẋ1 − v)
)

= f ′′(X1 − vt)(Ẋ1 − v)2 + f ′(X1 − vt)Ẍ1

= w′′
1(X1, t)(Ẋ1 − v)2 + w′

1(X1, t)Ẍ1. (43)

We compute the second time derivative once more using (38), compare the two expressions and obtain the
second differential equation, which we do not present here because of its lengthiness. The third, even more
lengthy differential equation follows after repeating the procedure for the third time derivative of the deflection
at the switching point and making use of the continuity of the third spatial derivative in (40).

Further simplifications with the help of Wolfram Mathematica allow bringing the equations to a concise
form:

ċ1 = v + 2vc2
X2
1

, ċ2 = −vc1 − 2vc2
X1

, vc2X1 = 3. (44)

In the following, we eliminate the integration constants and remain with the sought for single differential
equation:

3X1 Ẍ1 − 6(v − Ẋ1)
2 + v3X3

1 = 0. (45)

Interestingly, this equation allows for a stationary solution:

X1(t) =
(
6

v

) 1
3 = const . (46)

If the control domain is long enough, the initial sliding segment will eventually retain a constant length.
Regarding the initial conditions at the time t = t∗, we know X1(t∗) from the semi-analytical solution for

the initial stage, while Ẋ1(t∗) is easy to obtain through a transformation of (44):

Ẋ1 = 1

3
(6v − v2c1X

2
1). (47)

The related values for the integration constants c1 and c2 can be taken from the initial stage as well:

lim
t→t−∗

w′′′∣∣
x=0 = c1(t∗), lim

t→t−∗
w′′∣∣

x=0 = c2(t∗), (48)
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Fig. 10 Extension of simulation results and continuation of X1(t) past t∗: Evolution of sliding regions and non-trivial regions
of stick for the complete time span (left); detail picture in proximity to t∗ to conclude on the convergence of finite element
simulations with respect to the number of fixed-point iterations Nq for the contact state

where the left-sided limits indicate an approaching from the past (t ≤ t∗). According to the last algebraic
condition in (44), the constant c2, which relates to the bending moment at the entry prismatic joint, and the
current length X1 remain inverse proportional throughout. As verified numerically, the semi-analytic solution
of the initial stage also satisfies this condition at t∗.

Integrating the nonlinear initial value problem numerically over time, we compare with the results of the
finite element analysis over a longer time period in Fig. 10.

The finite element contact resolution becomes increasingly fragile in the secondary regions of sliding and
sticking. In addition, complicated interactions with the exit prismatic joint at x = 1 appear once the trivial
stick zone has vanished. These effects, however, do not impact the solution in the first sliding segment due
to the decoupling quality of the intermediate non-trivial segment of stick. Consequently, the solution retains
correspondence to the case of a semi-infinite beam and, thus, is in agreement with the just constructed analytic
result. The detail picture on the right of Fig. 10 visualises the transition process from the initial solution stage to
the late stage for two finite element solutions with different number of fixed-point iterations Nq in comparison
with the analytic result. The numerically induced steep dip at t∗ observed for Nq = 25 slowly diminishes as
the number of iterations is increased. Moreover, the time instant of this occurrence gradually shifts towards the
semi-analytically determined limit of t∗ as well. Both observations indicate convergence of the finite element
scheme towards the analytic reference solution, albeit at an undesirable slow rate that clearly demonstrates the
limitations of the standard update procedure (36) for the contact states.

4 Conclusion and perspectives

The main objective of the present review paper is to summarize the state of knowledge on the modelling and
simulation of axially moving structures with special focus on problems involving distributed contact that are
frequently encountered in all kinds of technical applications. We present an extensive survey on the available
literature and emphasize particularly challenging topics to highlight unresolved issues and conclude on future
perspectives of the research in this lively field with great practical relevance.

Mechanical models of axially moving structures typically comprise a travelling slender body that is moving
across a spatially fixed domain at some axial transport rate v with particles continuously entering and exiting
through the domain boundaries. As such, these problems constitute open systems, which is unusual in the
general context of solid mechanics and needs to be addressed with care and approached with appropriately
modified mechanical principles. In the latter regard, we devote an entire section to the proper formulation of
Hamilton’s principle, the principle of virtual work and the Lagrangian equations of motion for open systems.

Owing to the unusual characteristics of axially moving structures, it has long been recognised that the
Lagrangian point of view is inferior compared to an at least partially Eulerian perspective when it comes to the
kinematic parametrisation. This is due to the strict attachment of Lagrangian (material) coordinates to material
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particles, which does not allow to decouple the axial motion from the kinematic description and has significant
drawbacks that become particularly severe in connection with numerical simulation models. In response,
different variants of the nowadays well-established Arbitrary Lagrangian–Eulerian (ALE) approach have been
developed, which typically finds use in application-oriented finite element codes. Traditional forms of ALE
rely on an operator split of the governing partial differential equations that allows for a sequential solution in
terms of a Lagrangian and a Eulerian step. The re-mapping of field variables onto the spatially fixedmesh at the
second stage, which amounts to the numerical integration of an advection problem, is potentially destabilising
and may degrade the solution quality. Modern approaches, like the Mixed Eulerian–Lagrangian description
put to use in the benchmark problem of Sect. 3, resolve these numerical issues successfully. Nowadays, the
category of ALE approaches has matured to a sizeable degree such that scientists may adapt or simply pick a
suitable variant from the pool of established formalisms and related solution algorithms.

Even with these evolved techniques at hand, the consistent account for distributed frictional contact in
problems of axially moving structures remains a difficult task. While the typically employed numerical models
are generally appropriate to resolve contact for a continuum bodies, the classic structural theories of strings
and rods or membranes, plates and shells exhibit some peculiar effects that require special attention. Despite
their deficiencies and additional numerical challenges in contact problems, discussed in the respective sections,
the classic structural theories remain attractive due to their computational efficiency and thus are sometimes
without alternative for the development of complicated application-oriented simulation schemes.

In view of the state of knowledge, it is evident that there is still significant potential to improve the numerical
methods of contact treatment in simulationmodels of axiallymoving structures. The results presented in Sect. 3
for the prototype example of a partially sliding Bernoulli–Euler beam highlight the limitations of the state-
of-the-art finite element scheme with respect to accuracy, convergence rate and numerical efficiency. In the
authors’ opinion, these issues may in future be approached from two distinct vantage points: First, one could
pursue a continued development of the established contact algorithms. In this regard, it is particularly important
that the physical contact model, its numerical implementation and the adopted structural theory are properly
matched. Secondly, one could strive for an improved, more consistent modelling of the contact kinematics. In
doing so, it is important to be aware of the potential drawbacks of kinematically enriched structural theories,
namely: increased number of unknowns and the potential risk of additional numerical issues like shear locking.
In addition, the accurate geometric representation of the structure-to-solid contact, for example by means of
the isogeometric analysis, could alleviate some of the problems related to the kinematic limitations of standard
finite elements with polynomial shape functions.

In conclusion, it is our firm belief that the continued research on axially moving structures shall rest upon
a proper combination of established methods in the general framework of computational solid mechanics. In
this respect, we sincerely hope that the present review paper provides a substantial knowledge base to aid
scientists in their research endeavour.
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