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Abstract 
Reducing greenhouse gas emissions is crucial to fight climate change. A key instrument for 
reducing CO2 emissions is to increase the share of renewable energies in the power supply. 
Renewable energy sources, such as wind or solar power plants, have a fluctuating availability 
and thus lead to a transformation of the electricity market. Power demand management is 
becoming crucial for frequency control in the power grid, as electricity supply is becoming 
more volatile. Therefore, attractive economic incentives such as the balancing energy market 
and flexible electricity prices are gaining importance.  
To take full advantage of these incentives, an industrial plant's energy management system 
(EMS) must meet both timing (e.g., 24-hour electricity demand forecasting) and operational 
(e.g., short-term electricity demand reduction) requirements.  
In addition to meeting the challenges of the modern energy market, modern EMSs must fur-
ther ensure production reliability and have low implementation costs to be deployed in in-
dustrial manufacturing plants. Thermal batch processes are common (e.g., annealing, tem-
pering, pasteurization) but particularly challenging processes for EMSs because they gener-
ate peak heat loads and are usually not fully automated, leading to uncertainties in heat load 
prediction.  
Little research has been done in the field of EMSs for industrial plants with thermal batch 
processes. Therefore, it is the overarching goal of this thesis to design a broadly applicable 
EMS which enables the optimal operation of ESSs of industrial plants with thermal batch 
processes considering the modern electricity market, ensuring production reliability, and 
causing little implementation cost. 
According to this goal, multiple methods including a novel EMS-structure, a novel load-
prediction method, and a novel parametrization method for EMSs are presented in this thesis. 
The novel EMS-structure consists of a two-layer mixed-integer linear program (MILP) where 
each layer has a different sampling time, and an online load predictor (OLP). The two layers 
of the MILP allow to combine a long prediction horizon with a short sampling time. The OLP 
utilizes the novel load-prediction method and guarantees production reliability. To reduce 
implementation cost, the MILP is structured in a component-wise way, enabling a fast adap-
tation to changes of the ESS. The novel parameterization method further reduces the imple-
mentation effort and ensures the optimality of the EMS operation.  
These methods have been combined to produce an EMS that realizes all the features required 
for widespread application in industrial plants with thermal batch processes. Nevertheless, 
plant operators must have full confidence in the reliability of the methods before predictive 
and optimization-based EMSs become state of the art in industry. To approach this issue, a 
laboratory setup was designed to replicate the power systems of industrial plants with thermal 
batch processes. The laboratory setup was used to emulate two different industrial plants, 
including heat recovery systems, peaking heat loads, and industrial heat pumps. The EMS 
was tested, and its performance validated for both plants. 
In summary, this thesis presents a validated EMS for power systems considering thermal 
batch processes at technology readiness level (TRL) 4. It meets the challenges of modern 
energy markets and facilitates the implementation of renewable energy sources in industrial 
plants and the power grid. Thus, the thesis provides a significant contribution to the decar-
bonization of industry. 
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Kurzfassung 
Die Verringerung der Treibhausgasemissionen ist ein entscheidender Faktor im Kampf gegen 
den Klimawandel. Ein wichtiges Instrument zur Verringerung der CO2-Emissionen ist die 
Erhöhung des Anteils der erneuerbaren Energien an der Stromversorgung. Erneuerbare Ener-
giequellen, wie Wind- oder Solarkraftwerke, haben eine schwankende Verfügbarkeit und ra-
dikale Änderungen am Strommarkt. Der Stromverbrauch muss an die volatile Stromerzeu-
gung angepasst werden, um die Netzfrequenz zu stabilisieren. Dadurch gewinnen wirtschaft-
liche Anreize wie der Regelenergiemarkt und flexible Strompreise an Bedeutung.  
Um diese Anreize in vollem Umfang nutzen zu können, muss das Energiemanagementsystem 
(EMS) einer Industrieanlage sowohl zeitliche (z. B. 24-Stunden-Strombedarfsprognose) als 
auch betriebliche (z. B. kurzfristige Strombedarfsreduzierung) Anforderungen erfüllen.  
Neben den Anforderungen des modernen Energiemarktes müssen moderne EMS auch Pro-
duktionssicherheit und niedrige Implementierungskosten gewährleisten, um in industriellen 
Fertigungsanlagen eingesetzt werden zu können. Thermische Batch-Prozesse sind weit ver-
breitet (z. B. Glühen, Anlassen, Pasteurisieren), und stellen eine besondere Herausforderung 
für EMS dar, da sie Lastspitzen verursachen und in der Regel nicht vollständig automatisiert 
sind, was zu Unsicherheiten bei der Vorhersage der Wärmelast führt.  
Auf dem Gebiet der EMS für Industrieanlagen mit thermischen Batch-Prozessen wurde bis-
her wenig geforscht. Daher ist es das übergeordnete Ziel dieser Arbeit, ein breit einsetzbares 
EMS zu entwerfen, das den optimalen Betrieb von ESS in Industrieanlagen mit thermischen 
Batchprozessen unter Berücksichtigung des modernen Strommarktes ermöglicht, die Pro-
duktionssicherheit gewährleistet und geringe Implementierungskosten verursacht. 
Um dieses Ziel zu erreichen, werden in dieser Arbeit mehrere Methoden vorgestellt, darunter 
eine neuartige EMS-Struktur, eine neuartige Lastvorhersagemethode und eine neuartige Pa-
rametrisierungsmethode für EMSe. Die neue EMS-Struktur besteht aus einem zweischichti-
gen gemischt-ganzzahligen linearen Programm (MILP), bei dem jede Schicht eine spezifi-
sche Regelfrequenz hat, und einem Online-Lastvorhersageverfahren (OLP). Die zwei 
Schichten des MILP ermöglichen es, einen langen Vorhersagehorizont mit einer hohen Re-
gelfrequenz zu kombinieren. Der OLP nutzt die neuartige Lastvorhersagemethode und ga-
rantiert die Zuverlässigkeit der Produktion. Um die Implementierungskosten zu senken, ist 
das MILP komponentenweise strukturiert, wodurch eine schnelle Anpassung an Änderungen 
des ESS ermöglicht wird. Die Parametrisierungsmethode reduziert den Implementierungs-
aufwand weiter und gewährleistet die Optimalität des EMS-Betriebs.  
Durch die Kombination dieser Methoden entsteht ein EMS, welches alle Eigenschaften für 
einen breiten Einsatz in Industrieanlagen mit thermischen Chargenprozessen erfüllt. Dennoch 
müssen die Anlagenbetreiber volles Vertrauen in die Zuverlässigkeit der Methoden haben, 
bevor prädiktive und optimierungsbasierte EMS zum Stand der Technik in der Industrie wer-
den. Zu diesem Zwecke, wurde ein Laboraufbau entwickelt, der die Energiesysteme von In-
dustrieanlagen mit thermischen Chargenprozessen nachbildet. Der Laboraufbau wurde ver-
wendet, um zwei verschiedene Industrieanlagen und die Leistungsfähigkeit des EMS an die-
sen zu validieren. 
Zusammenfassend wird in dieser Arbeit ein validiertes EMS für Industrieanlagen vorgestellt, 
welches thermische Batch-Prozesse auf dem Technology Readiness Level (TRL) 4 berück-
sichtigt, den Herausforderungen moderner Energiemärkte gerecht wird und die Implemen-
tierung erneuerbarer Energiequellen in Industrieanlagen und im Stromnetz erleichtert. Damit 
leistet die Arbeit einen wichtigen Beitrag zur Dekarbonisierung der Industrie.  
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This introduction chapter provides the context of the publications that constitute this thesis and 
places them in the respective subject areas. First, the challenges for modern energy management 
systems (EMSs) in the manufacturing industry are summarized. The influence of the increasing 
share of volatile power sources on the energy market and their implications for energy supply 
systems (ESSs) in the industry are discussed. Next, known solutions to these challenges - the 
current state of the art in EMSs – is summarized. In Chapter 2, remaining research gaps are 
pointed out and research questions are formulated. It is the goal of the thesis to answer these 
questions. Chapter 3 outlines the methodology which were developed to investigate these ques-
tions. The results answering the research questions were published in scientific journals. There-
fore, Chapter 4 contains short summaries of these publications comprising the thesis. The intro-
duction chapter is concluded with a description of the scientific contribution of the thesis and an 
outlook.  

1 Problem Statement 
The decarbonization of industry is a core objective of the European Green Deal [1] and requires 
an increasing share of renewable energy sources in electricity generation. The fluctuating avail-
ability of electricity generation from wind, solar or hydro power leads to a transformation of the 
electricity market. This is driven by the mandatory balance between power generation and power 
consumption, which is required for stable operation of the power grid. Traditionally, power gen-
eration is adjusted to balance the grid, but this is no longer sufficient with volatile power sources. 
Therefore, adjusting the power demand to match power generation is necessary to stabilize the 
power grid. The actions taken to adjust an industrial facility's power consumption to match power 
generation are referred to as demand-side management. Incentives such as flexible electricity 
prices encourage industrial plants to use demand side management. One measure to take full 
advantage of these incentives is to implement energy management systems (EMSs) that meet the 
requirements of the modern electricity market. In addition to participating in the modern elec-
tricity market, EMSs enable industrial plants to increase energy efficiency and reduce machine 
wear and emissions by optimally operating the plant's energy supply system (ESS). Nevertheless, 
EMSs are mainly used in large industrial plants, and widespread application in the manufacturing 
industry is still hindered by remaining challenges presented in the in the following subchapter. 

1.1 Challenges for Energy Management Systems 

A major challenge for modern energy management in the industry is the high implementation 
cost [2]. A predominant part of these costs is caused by the modeling effort [3]. Models of the 
energy supply systems (ESSs) are indispensable as EMSs rely on predicting the plant's energy 
demand. Models used for EMSs need to map the energy consumption and the central states of 
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the ESSs as a function of the production schedule and other factors like the weather. The devel-
opment of suitable models is challenging. On the one hand, the model accuracy must enable a 
prediction of the ESS's main states for a prediction horizon of, say, 24 hours; on the other hand, 
the computational effort to solve the model must be small enough to enable an online optimiza-
tion. The design and parametrization of sufficient process models is time- and resource-intensive, 
adding to the implementation cost of EMSs. This challenge is enhanced by the unique character 
of ESSs in the manufacturing industry. There, ESSs are usually grown structures which are com-
monly adapted due to changes in the production process or the implementation of renewable 
energy sources. This individuality of ESSs makes it difficult to implement EMSs in a standard-
ized way and requires repeated adaptation of the model to changes in ESSs [4]. 
In addition to the model accuracy, the performance of EMSs strongly relies on the accuracy of 
underlying predictions such as the energy demand, the weather, or the energy price. Reliable 
forecasts of the energy demand are especially challenging for semi-automated manufactories 
where human operators greatly influence the processes. The human influence has to be incorpo-
rated into the EMSs to avoid critical process state conditions which could harm the production 
reliability [5].  
EMS's possible negative impact on production reliability is another major inhibitor of EMSs in 
manufacturing plants [2]. The economic impact of inferior products or reduced output often ex-
ceeds the savings potential by reducing energy costs many times over. Therefore, EMSs need to 
ensure production safety. The fear of a negative impact on production reliability is further in-
creased by the lack of validations of EMSs on real ESSs.  
A variety of ESS-structures with fundamental differences exist for manufacturing plants mainly 
depending on the type of production process. The publications this work consists of mainly focus 
on manufacturing plants, including thermal batch processes. Contrary to continuous processes, 
where machines constantly operate at specific working points, batch processes induce recurring 
start and stop maneuvers. While model-based controllers are widespread in continuous processes, 
they are rarely applied for discontinuous operations [6]. The broader research gap was decisive 
for focusing on thermal batch processes.  
Thermal batch processes frequently occur in manufacturing plants often due to heat treatment 
(HT) processes. During a HT, a product undergoes specific temperature trajectories to alter the 
chemical or physical properties of the product. Typical HT are, for example, annealing, temper-
ing, or pasteurization. Typically, HTs include heating phases where the product is brought from 
a starting temperature to an end temperature causing a short peak-shaped heat demand, as dis-
played in Figure 1 [7]. 

Figure 2: Typical structure of energy supply systems for 
thermal batch processes. Adapted from Conference Pa-
per A. 
 

Figure 1: Typical pulse-like heat loads of a batch 
consumer (BC) compared to the maximum heat 
production of the heat source (HS). Adapted from  
Conference Paper A. 
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As indicated in Figure 1, the resulting heat demand is usually higher than the maximum con-
tinous heat supply. Therefore, a thermal energy storage (TES) is needed to buffer the high short 
term energy demand. The typical ESS's basic structure usually looks as shown in Figure 2 con-
sisting of one heat source (HS), a TES and multiple batch consumers (BC). 
Thermal batch processes are often semi-automated and imply require preparation steps. This 
makes the prediction of heat demands caused by thermal batch processes challenging. The semi-
automated nature is also a barrier to implementing scheduling algorithms in EMSs for thermal 
batch processes. Scheduling enables the synchronization of heat demand with low energy costs. 
It is a powerful tool to increase the performance of EMSs. Still, it demands a highly automated 
production process which usually implies cost-intense adaptions of the logistics and production 
system. Also, logistic reasons like short-term on-demand production, available storage room, and 
available educts often hinder manufactories from executing scheduling.  
In summary, the challenge is to develop a lightweight EMS with low implementation costs and 
ease of use that ensures production reliability and optimally operates the ESS. Thereby, the de-
carbonization of manufacturing plants would be enhanced. 

1.2 State of the Art 

Numerous research groups around the world are working on energy management systems. There-
fore, first, an overview of typical different EMS concepts and applications is given. The 
weighting of the objective function has a strong influence on the ease of use and implementation 
costs. Therefore, the focus is laid on multi-objective optimization (MOO) and the scalarization 
and parametrization of multi-objective cost functions. Finally, a summary of recent publications 
concerning the performance validation of EMSs is given as it is vital to prove that production 
reliability is ensured with the EMSs. 

1.2.1 Energy Management Systems (EMSs)  

EMSs are part of the model- and optimization-based methods which are broadly applied to im-
prove manufacturing plants. As the name suggests, model-based methods require appropriate 
process models. They are used for design optimization, operation optimization, process monitor-
ing, and process control. Depending on the application and investigated process, different model 
types are applied. Still, for all model-based methods, there are two main counteracting prerequi-
sites for process models. First, they have to describe all relevant effects of the process in a suffi-
cient level of detail. Second, the computational effort has to be small enough to allow optimiza-
tion in a suitable time. The necessary level of detail and the available optimization time strongly 
depend on the application. Also, the choice of the model type (state space, linear programming 
forms, etc.) depends on the ESS. 
ESSs in manufacturing plants usually consist of multiple switching components like heat pumps, 
gas vessels, or combined power and heat plants (CHP). The method of choice to model such 
components are mixed-integer linear programs (MILP), as the integer variables are used to map 
the switching behavior. Furthermore, MILP models of the ESS have proven to be easy to imple-
ment and easily adaptable [8]. Today, solvers are sufficiently fast and robust to solve reasonable 
MILP control formulations within fractions of seconds, allowing their use in real-time plant con-
trol. MILP optimization problems consist of inputs, a set of constraints, and objectives. Typical 



6  A) 1 Problem Statement 

inputs of EMSs are predictions of the energy price, weather conditions, and heat or power de-
mands. The constraints are used to describe the operation limits and energy conversion processes. 
Among other possible objectives are energy costs, machine wear, and CO2 emissions.  
Beside the concepts of EMS we want to take a look on their fields of application. The scope of 
the application of EMSs is broad, ranging from urban energy systems [8] and heating, ventilation, 
and air-conditioning (HVAC) [9]–[12] to energy management for fuel cells [13], to name just a 
few examples. Also, in large industrial plants, EMSs are becoming more widely used [14]. May 
et al. [2] give an overview of EMSs in manufacturing plants and identify the main barriers and 
drivers for EMSs in the industry. They cite the potential negative impact on production perfor-
mance as the main barrier to the broader adoption of EMSs in manufacturing operations. It is 
essential that an EMS never violates critical production constraints during operation. Model pre-
dictive control (MPC) allows convenient implementation of constraints to ensure production re-
liability while optimizing (multiple) objectives [15]. Moreover, as its name suggests, MPC can 
consider predictions during optimization, making it a suitable tool to take full advantage of flex-
ible energy pricing. 
This advantage is also a potential weakness of the MPC. The accuracy of the predictions used as 
input to the MPC is critical to the performance of EMSs [16]. Prediction errors can lead to the 
violation of important process specifications and thus harm production reliability [5]. This chal-
lenge is particularly significant in thermal batch processes for two main reasons: first, the maxi-
mum heat flow demand of the thermal heat treatment is usually many times higher than the max-
imum heat flow that can be supplied continuously by the ESS. As a result, heat demand cannot 
always be delivered on time but must be stored promptly in the TES. Improper TES management 
can result in a discharged system which may result in the failure to provide the process heat. 
Second, thermal batch processes are usually semi-automated, and human operators cause uncer-
tainties in the production schedule.  
To avoid impacts on production reliability, EMSs are either not installed at all or operated too 
conservatively [17], [18]. When EMSs are operated conservatively, the available flexibility of an 
ESS is not fully utilized, so optimum results are not achieved in terms of reducing energy costs. 
Methods to avoid the over-conservative operation of EMSs were developed. Still, they either 
demand elaborate data preprocessing [5], [19], or they are heuristic rules with a narrow field of 
application [20]. There exists a research gap for EMSs that fully exploit the flexibility of an ESS 
with broad applicability and little implementation cost. 
Implementation costs for EMSs in the industry are mainly caused by the modeling effort, includ-
ing the estimation of model parameters. Therefore a cost-effective formulation and maintenance 
of models is crucial [3]. Further, EMSs often demand a high degree of automation and seamless 
monitoring of the ESSs. These physical adjustments to the ESSs involve implementation costs 
that are often difficult to offset by reduced energy costs. Therefore, a need for EMSs that optimize 
existing ESSs without adaptations, which only require little modeling effort exists. A significant 
challenge for the modeling process is that ESSs are usually grown structures and, thereby, unique 
[4]. Further, existing ESSs undergo a constant adaptation and development process to comply 
with changes in the production process. Thus, the model of the ESS needs to be easily adaptable. 
A modular component-wise formulation of the process model enables a cost-efficient adaption 
and development of the model. Further, the modular principle enables a broad application to 
different ESSs. Moser et al. [8] developed a modular EMS for urban multi-energy systems, but 
no such EMS has been developed for industrial applications. Still, designing the model is only 
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the first step of EMS implementation. The parameterization of the model and the resulting multi-
objective function is equally important. 

1.2.2 Multi-Objective Optimization (MOO) 

EMSs usually consider different, sometimes contradictory objectives such as increasing produc-
tion safety, reducing energy costs, and reducing machine wear. In doing so, EMSs minimize sev-
eral objective functions or an objective function in which several objectives are included. Marler 
and Arora [21] provide a condensed and comprehensive overview of MOO methods focusing on 
engineering applications. They classify MOO methods into those with an a priori articulation of 
the decision makers' preferences and those with an a posteriori articulation of the preferences 
[21]. The classification differentiates whether the weighting of the goals is executed before or 
after the optimization. A posteriori articulation of preferences is broadly applied, for example, in 
the field of combined design and process optimization [22]–[25] but has a decisive disadvantage. 
Multiple optimization runs with different weight settings must be executed to enable weighting 
after the optimization. The high computational effort makes the a posteriori articulation of pref-
erences hardly applicable for a real-time application like MPCs. 
The most common method for a priori determination of preferences is the weighted sum method, 
where the different cost functions are combined into a single cost function and weighted by a 
weighting parameter [21]. The correct choice of the weighting parameters is crucial for the per-
formance of the optimization. Still, a research gap exists, especially on the optimal choice of 
weight parameters for counteracting objectives [26]. 
 

1.2.3 Validation of EMS Performance 

Possible negative effects of EMSs on the production process and in particular on production re-
liability are a major obstacle to the widespread use of EMSs in production plants [2]. Savings in 
energy costs can rarely compensate for reduced product quality caused by malfunctions of the 
EMSs. In particular, prediction errors and the lack of countermeasures can cause such malfunc-
tions. Moreover, the solution proposed by a model-based method is never optimal in real appli-
cations due to model accuracy [27]. Validation must be performed to prove that the model and 
EMS are suitable for use in a plant. There is little literature on EMS validation in factories and 
no experimental validation for plants with thermal batch processes. This lack of validation leads 
to a lack of confidence in the EMSs by decision makers. 
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2 Goals  
From the state of the art and the outlined research gaps, the main objective was derived: to de-
velop a lightweight EMS that has low implementation costs and can be easily used in industrial 
plants with thermal batch processes. The EMS must guarantee high production safety and opti-
mize the utilization of the ESS. To condense and structure the goals the overarching objective 
was formulated: 
 
Overarching Objective:  
How to design a broadly applicable EMS which enables the optimal operation of ESSs of indus-
trial plants with thermal batch processes considering the modern electricity market, ensuring 
production reliability, and causing little implementation cost? 

This broad objective is narrowed and subdivided in the following research questions: 

Q1) How can the MILP of such an EMS be designed to meet the time and operational con-
straints of the modern electricity market? 

Q2) How can the effort of weighting the objective function of the EMS be reduced to lower 
the implementation costs as much as possible? 

Q3) How can heat loads in thermal batch processes be optimally predicted and measured us-
ing data from existing measuring equipment? 

Q4) How can production reliability be ensured when an EMS is used in production facilities 
with uncertain thermal batch processes? 

Q5) How can a laboratory setup be designed to enable performance validation of such an 
EMS? 
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3 Methodology 
The core of the methodology is the novel EMS structure shown in Figure 3 which is presented 
first [28]. Then, the different components of the EMS are presented, starting with the online load 
predictor, followed by the HLC and LLC. Then, the volatile energy prices scalarization (VEPS) 
method is presented. It provides a fast and a priori scalarization and weighting of the multi-crite-
ria cost function of the EMS. Finally, the performance of the EMS is validated using simulation 
studies and laboratory experiments. 

3.1 Energy Management System Structure 

The novel EMS structure consists of three major parts:  

1. The high-level controller (HLC), which solves a MILP optimization problem to compute 
optimal trajectories for the main ESS states, considering all objectives (e.g., emissions, 
energy costs, machine wear). 

2. The low-level controller (LLC), which also solves a MILP to calculate the optimal plant 
inputs for the ESS, considering the trajectories of the HLC and possible disturbances. The 
main goal of the LLC is production reliability. 

3. The online load predictor (OLP), which utilizes the production plan and measurement 
data to estimate the heat load for the prediction horizon. Further, the OLP deducts a min-
imal state of charge (SOC) from the load prediction. 

Together these parts shall ensure production reliability and utilize the flexibility of the ESS to 
optimize the operation in terms of all objectives. Further, major goals in the development were 
to reduce implementation costs, increase production reliability and utilize existing sensors and 
components optimally to avoid cost intense changes in the ESS. The major parts of the EMS are 
described in more detail in the following sections. 
The separation of the optimization problem into two layers is done mainly due to the high calcu-
lation effort. The calculation effort for MILP optimization problems is strongly related to the 
number of integer variables. At least one integer variable for each time step of the optimization 
horizon is required to map the behavior of switching behavior. For example, components with 
switching behavior are supply units like a heat pump or a gas boiler. Also, the charging states of 
energy storages can induce further integer variables. The modern energy market is structured in 

Figure 3: Structure of the developed energy management system (EMS) consisting of an high level controller 
C) low level controller (LLC) and an online load predictor. Adapted from Journal Paper C. 
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15 minute intervals, and the day-ahead market demands a prediction of at least 24 hours. There-
fore the prediction horizon is at least 96 time steps long.  
To react to disturbances and ensure production safety, the EMS needs a shorter sampling interval 
of about one minute. If the time horizon shall remain at 24 hours, this would cause a prediction 
horizon of 1440 steps. Considering current mainstream computing power and MILP solver per-
formance, the calculation effort for such a high number of integers would be too high to allow 
online optimization. The calculation time for a sampling interval of one minute has to be less 
than one minute. Due to this reason, the optimization problem is split into two problems with 
different sampling intervals and prediction horizons. The HLC is responsible for fully exploiting 
the energy market and has a prediction horizon of 96 steps and a sampling interval of 15 minutes 𝑇S,HLC = 15min. On the other hand, the LLC is responsible for production safety with a predic-
tion horizon of 60 steps and a sampling interval of one minute 𝑇S,LLC = 1min. 
The solution of the HLC is incorporated into the optimization problem of the LLC as desired 
trajectories of the plant inputs and outputs. The LLC tries to follow these trajectories as long as 
detected disturbances do not endanger production reliability.  
Fundamental to the assessment of whether a disturbance endangers the production reliability is 
the minimal state of charge 𝑆𝑂𝐶min. The 𝑆𝑂𝐶min defines a required minimal amount of heat 
stored and available in the thermal energy storage, ensuring production reliability. The OLP is 
responsible for the calculation of the 𝑆𝑂𝐶min bounding trajectory. Therefore, the definition and 
utilization of the 𝑆𝑂𝐶min is given in Section 3.2.2. 
Next to the calculation of the OLP is responsible for detecting deviations between measured and 
predicted heat load that could cause a violation of 𝑆𝑂𝐶min. Therefore, a load prediction method 
is utilized, fully exploiting sensors available in most ESSs. Therefore, expensive changes to the 
ESSs are avoided. As the load prediction and the 𝑆𝑂𝐶min bound are inputs into the optimization 
problem of the HLC and the LLC, first, the OLP is presented. 

3.2 Online Load Predictor (OLP) 

The OLP has the following tasks:  

1. Predict the heat load caused by thermal batch processes 

2. Define the 𝑆𝑂𝐶min which is necessary to ensure production reliability 

3. Detect load prediction errors and correct the prediction 

3.2.1 Heat Load Prediction 

To predict the pulse-like heat load caused by thermal batch processes like heat treatments (HT), 
the OLP utilizes a prediction method consisting of two steps. First, the integral heat amount of a 
single heat treatment 𝑄HT,total  is estimated, and then the typical time-domain behavior is the 
heat-flow 𝑄̇HT(𝑡) is recreated using a first-order delay element. 
This method utilizes only the a priori known temperature trajectories of the HTs and the produc-
tion plan as inputs. As the temperature trajectory is crucial for HTs, it is always known in advance. 
Further, historical data from a few measurement points are sufficient for the parameterization of 
the model. Figure 4 shows the shape of the resulting heat load prediction [7]. 
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3.2.2 Definition of SOCmin 

The quantity 𝑆𝑂𝐶min is a time-variable minimum state of charge bound for energy storage de-
vices. OLC and LLC consider it as a constraint to ensure production reliability. The 𝑆𝑂𝐶min is 
calculated as enthalpy level and not as temperature. Thereby, different temperature levels can be 
considered without inherent nonlinearities caused by the mixture of liquids with different tem-
peratures.  
The 𝑆𝑂𝐶min depends on the maximum temperature and duration of a HT, a safety margin to 
increase robustness against uncertainties, and a desired minimum temperature difference which 
ensures the driving force for heat exchange. The EMS is robust to prediction errors smaller than 
the defined safety margin. The constraint is only active when heat loads occur according to the 
production plan considering an uncertainty factor. The uncertainty factor increases the robustness 
of the EMS against differences between the scheduled and the actual starting times. Figure 5 
shows the constraint used in the HLC as red area, the predicted, and the measured 𝑆𝑂𝐶. 
Implementing the 𝑆𝑂𝐶min  ensures production safety while maximizing the flexibility of the 
EMS The flexibility of electricity demand can be used either for participation in the balancing 
energy market or in short-term electricity markets such as the intraday market or the day-ahead 
market. 

3.2.3 Prediction Error Compensation 

The OLP performs three corrective actions when the measured heat load deviates from the pre-
diction in terms of amount or timing: 

1. Shifting the starting time of all HTs to the earliest possible time: The semi-automated 
nature of thermal batch processes can cause a change in the starting time of a HT. Thereby, 
the pulse-like heat load may occur before the 𝑆𝑂𝐶 is high enough. To prevent HT from 
occurring earlier than predicted, the start times of all HTs are shifted by their maximum 
possible start time deviations. 

Figure 4: Typical pulse-like heat loads of a batch consumer (BC) and the prediction compared to the maximum 
heat production of the heat source (HS). Adapted from Conference Paper A. 
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2. The second measure counteracts the delay of HT. If an expected HT is detected to be 
delayed, the OLP automatically delays the HT load prediction by one timestep.  

3. The third measure corrects the difference between the measured and the predicted heat 
flows. At each timestep, the difference between measured and predicted heat flows is 
distributed to the remaining load prediction profile. 

Via these three measures, the OLP utilizes online measurement data to correct the load prediction 
and increase the production reliability for manufacturing plants with thermal batch processes. 

3.3 High-level Controller and Low-level Controller (HLC & LLC) 

The HLC and the LLC are both based on a component-wise defined MILP. The optimization 
problem is described component-wise by a set of constraints, inputs, and objectives. To connect 
the single components to each other, so-called nodes are used. Nodes represent the mass or energy 
balances that have to be fulfilled for connected components.  
The energy balances are interpreted as utilizable enthalpy amounts covering net heat demand on 
specified temperature layers. Thereby, nonlinearities caused by mixing two fluids with different 
temperatures are avoided. 
Due to this structure, the overall optimization problem can be assembled by stacking all con-
straints and summing up all objectives into a single MILP. Thereby, the effort of adapting the 
model due to changes in the ESS is minimized. The main remaining design effort is the correct 
choice of the weight parameters of the cost function. A novel parametrization method was devel-
oped for EMSs which seek to exploit the modern power market as described in the following 
chapter. 

Figure 5: The measured (SOCmeasured) minimal (SOCmin) and the predicted state of charge SOCpred of both 
optimization layers and the corresponding time horizons (TH). Adapted from Journal Paper A. 
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3.4 Volatile Energy Price Scalarization (VEPS) – Parameterization Method 

Modern EMSs usually consider multiple different objectives, like the reduction of energy cost, 
the reduction of machine wear, and the reduction of emissions. A balanced weighting of each 
objective is necessary to achieve optimal performance in all objectives. Due to the small calcu-
lation effort, the weighted sum method is used in the vast majority of MPC applications.  
For modular EMSs, each component has its own objective function consisting of one term for 
each considered objective (e.g., energy cost reduction, machine wear reduction). Thereby the 
objective function consists of many terms, and scalarization and weighting are necessary to 
achieve satisfying results. 
Existing scalarization and weighting methods are either cost-intensive or do not guarantee good 
overall performance. Therefore, a new method was developed: the volatile energy price scalari-
zation (VEPS) method. The VEPS method does not rely on previous simulations or test runs, 
which reduces implementation costs. The method is based on selected metrics which quantify 
the cost reduction potential caused by volatile energy prices. The definition of the scalarization 
factor is based on the assumption that ESSs with a given production plan and without energy 
carrier substitution can only reduce energy costs by storage management. 
The VEPS method introduces weighing parameters based on the scalarization factor that are 
comprehensible, meaningful, and clear to operators or technicians handling an ESS. Thereby 
implementation costs are reduced, and the optimal performance of the EMS is ensured. Another 
barrier for the acceptance of EMSs in the manufacturing industry is still low due to the lack of 
performance and reliability validations. 

3.5 Validation 

The developed EMS and its methods were validated in various simulation studies and two case 
studies executed in the laboratory. The vast majority of performance validation of EMSs in liter-
ature is executed without a detailed and validated simulation model of an existing plant and even 
more rarely with real-world hardware [Journal Paper C]. Instead, the optimization model used in 
the EMS is also used to simulate the plant. Thereby the effect of model errors is neglected during 
the performance assessment. To close this gap, a validated simulation model of an existing food 
processing manufacturing plant was developed.  
The available publications on EMS for industrial plants only rarely include laboratory applica-
tions [2]. To conduct thorough validation experiments, a laboratory setup must be designed to 
replicate a thermal batch process, including, for example, pulse like heat loads and heat recovery 
systems. Experiments that adopt the key features of factories with thermal batch processes can 
increase the confidence and applicability of EMSs in factories. To the best of the authors’ 
knowledge no laboratory experiments for EMSs in manufacturing plants with thermal batch pro-
cesses are published. Therefore, laboratory experiments with high relevance for industrial plants 
were executed. 

3.5.1 Simulation Study 

The simulation study is based on a real-world manufacturing plant that uses thermal batch pro-
cesses to alter the taste and consistency of food products and increase their shelf life. The struc-
ture of the considered production plant is displayed in Figure 6. The production line consists of 
a heat pump with 206kW heat flow at the heat sink, a water tank with a volume of 12.7m³ as 
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TES, and four batch consumers, which cause pulse-like heat loads. The maximum heat demand 
is 1367 kW and thereby 6.6 times higher than the maximum continuous heat supply. 
Figure 7 shows a validation plot for the simulation model of the plant. Industrial measurement 
data was used to evaluate the accuracy of the model and to validate the usability of the model for 
predictive control tasks. The simulation model was built component-wise in MATLAB Sim-
ulink®. The component models consider nonlinear effects like valve openings, underlying con-
trol architectures, and nonlinear fluid properties. For each time step of the simulation, this de-
tailed plant model calculates the system states for the optimized plant inputs obtained by the 
EMS. To allow a quantitative evaluation of the EMS performance, each simulation emulates a 
production plan of one month, including over 100 heat treatments. 
  

Figure 7: Validation of the simulation model. Adapted from Journal Paper A. 

Figure 6: Structure of the investigated production line of the industrial food processing plant from Journal Paper 
A. 
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3.5.2 Laboratory Validation 

To validate the performance of an EMS for manufacturing plants considering thermal batch pro-
cesses, industrial use cases need to be emulated. Two case studies considering pulse-like heat 
loads and temporarily available heat sources are created for validation.  
The laboratory setup is displayed as a scheme in Figure 8, and a picture of parts of the setup is 
shown in Figure 9. The setup consists of a heat pump, a boiler used to emulate heat recovery 
systems, an electric heater used to emulate different heat sources, a thermal storage and a heat 
sink enabling the emulation of pulse-like heat demands. To quantify the performance, the EMS 
is compared to a typical rule-based hysteresis controller.  
To enable an assessment of the multi-objective optimization, emission reduction and energy cost 
reduction are considered objectives. Current values for energy price, emission footprint, and heat 
loads deducted from industrial measurement data are used to increase the industrial relevance of 
the experiments. 
  

Figure 9: Picture of the laboratory setup from Journal Publication C. 
 

Figure 8: Schema of the laboratory setup. Adapted from Journal Publication C 
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4 Summary of scientific approaches 
In this chapter, the context and synthesis of the publications which constitute this thesis are given 
and their results are summarized. The chronological order of publications is chosen as a structure: 

4.1 Conference Paper A 

The first literature studies showed that the prediction of disturbances is crucial for the perfor-
mance of EMSs and that no such prediction method exists for heat loads caused by thermal batch 
processes. Therefore, the first publication, see Section B)5, deals with predicting pulsed heat 
loads in manufacturing plants caused by heat treatments. The application-oriented method uti-
lizes basic laws of thermodynamics to increase the prediction accuracy and, thereby, the perfor-
mance of energy management systems. The method can be applied in a straightforward way be-
cause historical data from a few measurement points are sufficient for its execution. Thereby, no 
cost-intensive changes in sensor installations are needed for the application of the method in 
industrial plants. Furthermore, the method is seen to be insensitive against measurement noise. 
The method was validated using measurement data from an actual food processing industrial 
plant. Also, the impact on the performance of a model predictive controller was investigated. The 
work was also presented as a conference presentation at the IFAC World Congress 2020. 

4.2 Conference Paper B 

Despite the precise prediction method presented in Conference Paper A), unpredictable inaccu-
racies in the heat load remain when human operators are involved. Therefore, research was con-
ducted to increase the robustness particularly against such uncertainties and presented in Confer-
ence Paper B. The publication, see Section B) 6, presents guidelines for model predictive control 
dealing with uncertain pulse-like disturbances whose uncertainties are caused by human opera-
tors. An efficient solution method base on introducing slack constraints on the minimal state of 
charge is presented. Further guidelines to calibrate a mixed-integer model predictive controller 
with industrial operating data are given. The method successfully avoids critical system states 
caused by uncertain peak-like heat loads. Using measured data from an industrial application, a 
simulation study is conducted to investigate the control parameters' influence on the controller's 
robustness and efficiency. The work was also disseminated as a conference presentation at the 
30th European Symposium on Computer Aided Process Engineering (ESCAPE30). 

4.3 Journal Paper A 

During the research for the conference papers multiple different EMS structures were tested in 
simulation studies and further optimized afterwards. Journal Paper A, see Section B) 2, presents 
the result: a modular model predictive EMS for production plants with thermal batch processes. 
Core elements of the EMS are a two-layer mixed-integer model predictive controller and an 
online load predictor (OLP). The OLP uses real-time measurement data to estimate the typical 
pulse-like heat loads of thermal batch processes. The OLP uses the prediction method and con-
straint formulations developed in Conference Papers A and B. Thereby the OLP increases pro-
duction reliability and maximizes the flexibility of the EMS. The structure of the optimization 
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problem allows modular, component-by-component definition and parameterization. The modu-
larity allows system integrators to implement the EMS without time- and resource-intensive 
modeling tasks and parameter tuning.  
The proposed methods address the two significant challenges in implementing EMSs in produc-
tion plants: high implementation cost and reduction of production reliability. The validated sim-
ulation model of an actual food processing production plant was used to validate the EMS per-
formance. Since the considered process strongly exhibits the typical characteristics of batch pro-
cesses, the results can be transferred to other thermal batch processes such as tempering, anneal-
ing, or pasteurization. 

4.4 Journal Paper B 

During the development and validation of the EMS presented in Journal Paper A, the high work-
load of correctly choosing the weight parameters and the crucial impact of these parameters on 
the optimization performance became evident. Therefore, Journal Paper B, see Section B) 3, fo-
cuses on the efficient parametrization and scalarization of multi-objective EMSs. The volatile 
energy prices scalarization method (VEPS) is introduced, enabling an intuitive weighting of 
EMSs participating in modern power markets. The VEPS method is compared to existing meth-
ods in the literature. The VEPS method outperforms methods with comparable effort and shows 
similar results to methods which higher parametrization effort. For comparison, the validated 
model of an existing food processing manufacturing plant is utilized. The case study also con-
firms the effectiveness of existing methods using prior simulation studies for tuning the weights. 
Nevertheless, economic weighting methods such as the VEPS method are helpful for the fast and 
cost-effective implementation of EMSs in the manufacturing industry. 

4.5 Journal Paper C 

Despite the validated performance and easy implementation of the EMS developed in the first 
four publications, further experiments were needed before the EMS could be applied in industry. 
The trust in the optimality and robustness of the EMS needed to be proven under industry-close 
conditions. Therefore, Journal Paper C, see Section B) 4, presents the laboratory validation of the 
EMS developed in Journal Paper A and quantifies the performance benefit for two industrial use 
cases. The laboratory setup consists of a heat pump, an electric boiler, an instantaneous water 
heater, a flexible heat sink, and a thermal energy storage system. This setup replicates industrial 
energy supply systems, including heat recovery systems. The heat sink is used to apply pulse-
like heat loads, thus emulating thermal batch processes. Actual values for volatile energy prices, 
CO2 equivalent coefficients, and heat loads from a real industrial plant make the laboratory ex-
periments highly relevant to the industrial context. The EMS outperforms the commonly used 
hysteresis controller by reducing energy costs by 5-15%, reducing CO2 emissions by 9-42%, and 
increasing production reliability. With these experiments, the practical applicability of the EMS 
is tested, and the technology readiness level (TRL) of the EMS is raised to TRL 4.  
 
Summarized, an EMS which meets the challenges of industrial plants with thermal batch pro-
cesses and the modern power market was developed and optimized throughout the publications. 
The EMS thereby reached TRL 4 as its performance was validated in the laboratory. During the 
application of the EMS, yet unseen potential for an enhanced configuration of EMS in different 
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*Pending 

process control systems was detected. The developed method was hence the basis for a patent 
application. 

4.6 Patent* 

A patent application has been filed for a method that enhances the configuration and operation 
of a model-based optimal energy controller within a process control system. The optimal energy 
controller optimizes the operation of energy supply systems and reduces energy-related costs of 
a process plant. The novelty facilitates the implementation of EMSs. 
  



A) 5 Scientific Contribution & Outlook  19 

 

5 Scientific Contribution & Outlook 
The scientific contributions of this work, organized according to the research questions and the 
publications presented in this work, are: 

Q1: How can the MILP of such an EMS be designed to meet the time and operational constraints 
of the modern electricity market? 

Journal Publication A presents a novel EMS structure consisting of the two optimization layers, 
HLC and LLC, and the online load predictor. This structure can satisfy the time constraints of the 
modern electricity market. Moreover, the MILP formulation of the optimization problem allows 
convenient implementation of the constraints typical for the modern electricity market. The plan-
ning and implementation of the control energy supply is also possible with the presented struc-
ture. 

Q2: How can the effort of parametrization and weighting of the objective function of the EMS 
be reduced to lower the implementation costs as much as possible?  

The optimization models presented in Journal Publication A enable straightforward parameter-
ization based on data sheets, allowing system integrators to implement and configure the energy 
management system without time-consuming modeling tasks and complex parameter tuning. 
Furthermore, the VEPS method presented in Journal Publication B enables effective design, 
standardization, and weighting of the multi-objective function of model-based EMSs without the 
need for prior simulations or test runs. This reduces implementation effort and cost. 

Q3: How can heat loads in thermal batch processes be optimally predicted and measured using 
data from existing measuring equipment? 

In Conference Publication A, an application-oriented prediction method for peak heat loads is 
presented based on data from a few data points typically available in industrial facilities. The 
method is validated and tested for an industrial application.  

Q4: How can production reliability be ensured when an EMS is used in production facilities with 
uncertain thermal batch processes? 

The prediction method for peak-shaped heat loads introduced in Conference Publication A is 
incorporated in the online load predictor (OLP) presented in Journal Publication A. Therefore, 
the EMS can fully exploit the existing measurement data to increase the robustness of the opti-
mization performance. Moreover, the definition of a time-dependent 𝑆𝑂𝐶min ensures process re-
liability while simultaneously maximizing the flexibility of the EMS. In Conference Publica-
tion B, a case study was conducted to investigate the impact of heat load uncertainties on the 
performance of the EMS. 

Q5: How can a laboratory setup be designed to enable performance validation of such an EMS? 

Journal Publication C presents a laboratory setup that allows emulation of an ESS with tempo-
rarily available heat sources (i.e., waste heat and renewable energy sources) and pulse-shaped 
heat demand, both typical of industrial plants with thermal batch processes. The laboratory setup 
was used to validate the performance of the EMS proposed in Journal Publication A for two 
different experimental setups. The EMS successfully and reliably optimized the operation of the 
emulated ESS and the results published in Journal Paper C. 
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In summary, the methods presented in this work allow to implement and operate an EMS for 
ESSs of industrial plants with thermal batch processes that takes into account the modern elec-
tricity market, ensures production safety and has low implementation costs. Thus, the overall 
objective Overarching objective was achieved. The developed EMS has all the features required 
for wide application in industrial plants with thermal batch processes. Nevertheless, plant opera-
tors must have full confidence in the reliability of the methods before predictive and optimiza-
tion-based EMS become state of the art in industry. 

To further increase the confidence and interest of industry decision makers, further validation of 
the EMS performance is required. The next step in the validation process is an application in 
industrial facilities. The EMS presented in this paper is currently being implemented in three 
different manufacturing plants to accomplish this step. In addition, general applicability in vari-
ous manufacturing processes must be demonstrated. The validation must be extended to other 
types of plants in addition to thermal batch processes. 

The rapid developments in the electricity market and energy markets in recent months have cre-
ated enormous incentives for industrial plants to focus on improving their energy management. 
The operation and optimization of the electricity system, ranging from the power plant to the grid 
to the household and industrial ESS, will be one of the most demanding and interesting challenges 
for control engineers in the coming decades. 
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Predictive energy management systems (EMS) enable industrial plants to participate in the mod-
ern power market and reduce energy cost. In this paper, a novel modular model predictive EMS 
specifically designed for industrial thermal batch processes is presented. The EMS consists of a 
two-layer mixed-integer model predictive controller and an online load predictor, and thus solves 
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of production reliability. The modular formulation of the optimization problem enables system 
integrators to implement the EMS without time-consuming modelling tasks and elaborate param-
eter tuning. The online load predictor estimates the typical pulse-like heat loads of batch processes 
ensuring both - reliable production and maximal flexibility of the power demand. The utilization 
of real-time data provides additional robustness against uncertainties caused by human operators. 
The performance of the EMS is evaluated in a case study of an existing food plant. 
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Abstract: 
Predictive energy management systems (EMSs) enable industrial plants to operate the energy 
supply systems at optimal efficiency, taking account of multiple objectives, including energy cost 
reduction. The performance of model-based EMSs depends on the appropriate design and correct 
scalarization of the resulting multiobjective function. This paper introduces the volatile energy 
prices scalarization (VEPS) method, which effectively designs, standardizes, and weighs the mul-
tiobjective function of model-based EMSs without the need for prior simulations or test runs. We 
present a case study, in which we compare the VEPS method to other state-of-the-art methods, 
utilizing a validated simulation model from an industrial food plant. The results show that the 
VEPS method outperforms other weighting methods with comparable tuning effort in this case-
study. Moreover, the performance of the VEPS method is close to the Pareto-optimal perfor-
mance. Economic weighting methods such as VEPS enable a fast and cost-effective implemen-
tation of EMS in the manufacturing industry.   
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Abstract: 
Predictive energy management systems (EMS) enable the optimization of industrial energy sup-
ply systems (ESS) without cost-intensive structural changes. Despite intensive research on EMS, 
few publications address industrial applications - and even fewer address practical experiments 
with industrial EMS in physical laboratory environments. This paper describes the design and 
usage of a test rig emulating an industrial ESS including temporarily available heat recovery sys-
tems and batch-type heat demands. In addition, the performance of a recently proposed modular 
two-layer EMS is assessed on this test rig. The experimental setup consists of a heat pump, an 
electric boiler, an instantaneous water heater, and a thermal energy storage system. To emulate an 
industrial ESS current values of volatile energy prices, emissions footprint and industrial meas-
urement data of heat loads are used. The experiments validate that the test rig can emulate an 
industrial ESS. Further, the results show that the EMS makes optimal use of the laboratory ESS 
and takes full advantage of temporarily available energy sources. Bottlenecks in heat supply were 
avoided, and for this specific setup energy cost-reductions of 5-12% and CO2-reductions of 9-
42% were achieved compared to a hysteresis controller.   
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Abstract: 
Predictive control is beneficial for effective energy demand management. Precise disturbance pre-
diction is a decisive factor for the performance of predictive control. This paper focuses on the 
ac-curate prediction of pulsed heat loads caused by heat treatment in manufacturing industry pro-
cesses. An application-oriented method to predict heat load peaks is developed utilizing basic 
laws of thermodynamics, validated with process data from an industrial use case, and tested with 
a model predictive controller. Two core characteristics of the method enable a straightforward 
application in industry: 1. Historic data from few measurement points are sufficient. 2. Robust-
ness against measurement noise. 
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Abstract: 
The aim of this work is to define guidelines for model predictive control dealing with uncertain 
pulse-like disturbances caused by human operators. Measurement data of an industrial use case 
is utilized to carry out a simulation study to investigate the influence of control parameters on the 
robustness and efficiency of the controller. Special focus is laid on an efficient way to introduce 
suitable slack constraint formulations into the mixed-integer model predictive controller formu-
lation to cope with uncertain peak loads. Methods to calibrate such a control structure with indus-
trial operational data are given. 
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