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Kurzfassung

Der neue Mobilfunkstandard 5G bietet viele Verbesserungen im Vergleich zu seinem
Vorgänger 4G. Während aus Sicht der Endverbraucher:innen die Erhöhung der Bandbreite
am wichtigsten ist, ist der 5G Anwendungsfall Ultra-Reliable Low Latency Communi-
cations (URLLC) für das Internet der Dinge (IoT) am wichtigsten. Das IoT besteht
aus vernetzten Geräten und Sensoren, die untereinander und mit zentralen Rechnern
Daten austauschen. Häufig darf die Kommunikation zwischen den Sensoren und einem
zentralen Rechner eine geringe Latenzzeit, z. B. 10 ms, nicht überschreiten. Während
URLLC die Latenzzeit in 5G reduziert, kann die Verbindung zu einem weit entfernten
zentralen Rechner erhebliche Latenzzeiten verursachen. Eine Lösung zur Behebung dieses
Problems besteht darin, den zentralen Rechner physisch so nah wie möglich an das 5G
Endgerät zu bringen. Dies ist das Hauptkonzept von Edge Computing in 5G.

Da ein mobiler Roboter als ein oder mehrere „Dinge“ im IoT eingestuft werden
kann, besitzt er ähnliche Anforderungen. Wenn ein Roboter sich zum Beispiel in einer
bekannten oder unbekannten Umgebung lokalisiert, stützt er sich auf Light Detection and
Ranging (LIDAR) Scans, um die Welt zu erfassen. Dieses Verfahren wird als Simultaneous
Localization and Mapping (SLAM) bezeichnet. Es ist von entscheidender Bedeutung,
dass die Messungen des LIDAR-Sensors mit geringer Latenzzeit verarbeitet werden, da
Verzögerungen die Genauigkeit der Lokalisierung beeinträchtigen können. SLAM ist
jedoch auch sehr rechenintensiv, weshalb die Auslagerung dessen sehr vorteilhaft und
manchmal auch notwendig ist, da Roboter oft an Hardwaregrenzen stoßen.

Die zugrundeliegende Hypothese dieser Arbeit ist, dass es möglich ist, einen SLAM-
Algorithmus an den Rand eines 5G-Netzwerks zu verlagern, ohne die Funktionalität und
Qualität der Lokalisierung zu beeinträchtigen. Um dies zu erreichen, werden bestehende
Ansätze von Edge Computing in 5G analysiert und verglichen. Darüber hinaus wird
die quelloffene 5G Implementierung OpenAirInterface angepasst, um den bis dahin
nicht berücksichtigen Anwendungsfall des Edge Computings zu unterstützen. Schließlich
wird ein Experiment durchgeführt, das die Genauigkeit und Funktionalität des SLAM-
Algorithmus in drei verschiedenen Einsatzgebieten vergleicht: Lokal, WiFi und 5G Edge.

Die Ergebnisse dieser Arbeit zeigen, dass eine Berechnung von SLAM am 5G-Edge
möglich ist, wobei die Genauigkeit und Funktionalität der Lokalisierung und der erstellten
Karte im Vergleich zur WiFi-Option etwas geringer sind. Obwohl vieles noch optimiert
werden kann, legt diese Arbeit den Grundstein für 5G-fähige mobile Robotik, vollständig
mit Open-Source-Software betrieben.
Keywords: 5G, Edge Computing, MEC, Robotik, ROS
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Abstract

The novel mobile telecommunications standard 5G offers many improvements compared
to its predecessor 4G. While from an end consumer perspective, the increase in bandwidth
and download speed are the most crucial, the 5G use case Ultra-Reliable Low Latency
Communications (URLLC) is the most important for the Internet of Things (IoT). The
IoT consists of connected devices and sensors that exchange data with each other and
central nodes. Often, the communication between the sensors and a central node must
not exceed a low latency, e.g., 10ms. While URLLC reduces the latency in 5G, the link
to a distant central node may introduce substantial latencies. A solution to solve this
issue is to physically move the central node as close as possible to the connected 5G
device. This is the main concept behind edge computing in 5G.

As a mobile robot can be classified as one or more "things" in the IoT, it has similar
requirements. For example, when a robot is localizing itself in a known or unknown
environment, it relies on Light Detection and Ranging (LIDAR) scans to map the world.
This procedure is called Simultaneous Localization and Mapping (SLAM). It is crucial
that the measurements from the LIDAR sensor are processed with low latency, as delays
can compromise the accuracy of the localization. However, Simultaneous Localization
and Mapping (SLAM) is also computationally expensive. Therefore, it is highly desired
and sometimes required to offload this computation to another computer, as robots are
often hardware-constrained.

The underlying hypothesis of this work is that it is possible to offload a SLAM
algorithm to the edge of a 5G network without compromising functionality and quality
of the localization. To achieve this, existing approaches to edge computing in 5G are
analyzed and compared. Further, the open source 5G implementation OpenAirInterface
is adapted to support the edge computing use case, which has not been considered in
its initial design. Finally, an experiment is conducted which compares the accuracy and
functionality of the SLAM algorithm in three different deployments: Local, WiFi and 5G
edge.

The results of this thesis show that offloading SLAM to the 5G edge is possible, whereas
the accuracy and functionality of the localization and the produced map are slightly lower
compared to the WiFi deployment. While much can still be optimized, this work lays
the foundation for 5G-enabled mobile robotics, fully operated with open source software.

Keywords: 5G, Edge Computing, MEC, Robotics, ROS
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Résumé

La nouvelle norme de télécommunications mobiles 5G offre de nombreuses améliorations
par rapport à son prédécesseur 4G. Si l’augmentation de la bande passante et de la vitesse
de téléchargement sont plus cruciales pour les consommateurs finaux, le cas d’utilisation
5G Ultra-Reliable Low Latency Communications (URLLC) est plus important pour
l’Internet des Objets (IdO). L’IdO se compose d’appareils et de capteurs connectés
qui échangent des données entre eux et avec des ordinateurs centraux. Souvent, la
communication entre les capteurs et un ordinateur ne doit pas dépasser une faible latence,
par exemple 10 ms. Bien que l’URLLC réduise la latence en 5G, la connexion à un
ordinateur central distant peut entraîner des latences substantielles. Une solution pour
résoudre ce problème est de déplacer physiquement l’ordinateur aussi près que possible
de l’appareil 5G connecté. C’est le concept principal de l’informatique en périphérie.

Comme un robot mobile peut être considéré comme un ou plusieurs « objets » à l’IdO, il
a des exigences similaires. Par exemple, lorsqu’un robot se localise dans un environnement
connu ou inconnu, il utilise des scans de Light Detection and Ranging (LIDAR) pour
cartographier le monde. Cette procédure est appelée Simultaneous Localization and
Mapping (SLAM). Il est essentiel que les mesures du capteur LIDAR soient traitées avec
une faible latence, car les retards peuvent compromettre la précision de la localisation.
Cependant, le SLAM est coûteux en termes de calcul. Par conséquent, il est fortement
souhaité et parfois nécessaire de décharger de ce calcul sur un autre ordinateur, car les
robots sont souvent limités par le matériel.

L’hypothèse sous-jacente de ce travail est qu’il est possible de décharger un algorithme
SLAM à la périphérie d’un réseau 5G sans compromettre la fonctionnalité et la qualité de
la localisation. Pour y parvenir, les approches existantes de l’informatique périphérique
dans l’architecture du réseau 5G sont analysées et comparées. En outre, l’implémentation
logicielle libre 5G OpenAirInterface est adaptée pour soutenir le cas d’utilisation de
l’informatique en périphérie, qui n’a pas encore été pris en compte. Enfin, une expérience
est menée pour comparer la précision et la fonctionnalité de l’algorithme SLAM dans
trois déploiements différents : Local, WiFi et 5G edge.

Les résultats de cette thèse montrent qu’il est possible de décharger le SLAM sur la
périphérie 5G, alors que la précision et la fonctionnalité de la localisation et de la carte
produite sont légèrement inférieures par rapport au déploiement WiFi. Même si beaucoup
de choses peuvent encore être optimisées, ce travail jette les bases d’une robotique mobile
compatible avec la 5G, entièrement avec des logiciels libres.
Keywords: 5G, Informatique en périphérie, MEC, Robotique, ROS
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CHAPTER 1
Introduction

The 5th generation of cellular broadband networks (5G) has already been commercially
launched in most European countries according to 5gobservatory.eu.[W1] One of the
most prominent features of 5G for the average user is the increase of experienced data
rates by a factor of 10 compared to 4G, as defined by the European Telecommunications
Standardization Institute (ETSI)[W2]. Although this is substantial, the promises of 5G
lay far beyond higher download speeds and better connectivity. According to Pham et al.
[1], edge computing is a key technology in 5G.

1.1 Problem Statement
Compared to the previous standard, 5G delivers an increase in performance, especially in
the areas Enhanced Mobile Broadband (eMBB), Massive Machine-type Communications
(mMTC) and Ultra-Reliable Low Latency Communications (URLLC). Even though the
bandwidth of mobile broadband services are important from a consumer’s perspective,
5G also enables many more scenarios such as interconnected factories and robotics. In
this application of URLLC the available bandwidth is not as important as the latency
and the reliability. The reality of current mobile operator’s 5G deployments is that they
are focused on eMBB as an added value for mobile data subscriptions. Successfully
adding URLLC to the 5G networks requires lower latency and higher flexibility on the
radio interface, the Radio Access Network (RAN). Additionally – and this is the focus of
this thesis – edge computing is needed.

Edge computing has been introduced to overcome latency concerns in cloud computing,
as described by Hassan et al.[2]. In cloud computing, computation-intensive tasks are
executed in data centers instead of locally on a device. This provides an efficient way
to process large amounts of data. The downside to this approach is that distant data
centers introduce substantial latencies. ETSI’s target for URLLC in 5G networks is to
have latencies of 1 ms and below.[W2] This goal cannot be met with cloud computing
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1. Introduction

and thus edge computing is introduced. Its aim is to have data centers in proximity to
the devices, as described by Shi and Dustdar[3]. One way to realize edge computing is
the ETSI Multi-Access Edge Computing (MEC) architecture[4]. MEC allows to deploy
virtualized instances in or next to mobile operator’s existing equipment such as base
stations and radio controllers.[2]

The ETSI MEC framework has been introduced in 2014, in a time where 4G networks
were being deployed and 5G was still far on the horizon. Therefore, MEC does not cover
how exactly the underlying mobile system is configured to allow edge computing, but
focuses on the orchestration and management aspects of edge computing instead. This
has led to several different implementations to enable the same goal: Route traffic to the
nearest edge data center. These approaches may or may not require interaction with the
operator’s existing mobile equipment and, therefore, do not scale well on a global scale.
Seeing this gap, the 3rd Generation Partnership Project (3GPP), which standardizes the
5G System (5GS), designed 5G with edge computing in mind from the beginning. It also
specified its own architecture, called EDGEAPP, to enable edge computing.[5]

Using the standardized approach for local traffic routing requires a specific 5G network
deployment, the Stand-Alone (SA) deployment. This comes with a new set of services to
handle user sessions, called the 5G Core (5GC). The majority of current 5G networks
use the Non Stand-Alone (NSA) deployment, which reuses the packet core of the 4G
network and inherits its limited functionality. Even though the faster, more efficient
base stations and communication protocols are used towards the user, the 4G core does
not have built-in edge computing functionalities. The new SA 5G network is currently
being deployed and according to a worldwide survey released by Enea in 2020, 37% of
operators plan to have an SA deployment in 2022.[W3] Given the expected increase of
SA deployments, there is the need for a working prototype of 5G enabled edge computing
as a basis for further research and industrial developments.

1.2 Motivation
When 5G and edge computing are covered in the news, one could assume that the Industry
4.0, autonomous connected robots and remote medical procedures using a robotic arm
are already state of the art. In reality, although solutions exist, these applications are
not yet widespread (see also Masood and Sonntag[6]). As outlined, edge computing is a
hard requirement for most of these futuristic visions. However, current edge computing
solutions in the context of mobile networks are tailored towards a specific operator or
a specific vendor of networking equipment. This is because the ETSI MEC standard
did not specify how this interaction needs to look like. Of course, commercial offers
already exist, such as AWS Wavelength, which integrates 5G edge computing with the
AWS cloud service.[W4] However, even Wavelength, driven by the most prominent cloud
operator, is currently only available for some distinct regions of specific mobile operators.

One of the design principles behind 5G is that third party developers are able to interact
with the 5GC and add services on top of the mobile network infrastructure, as described
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1.3. Expected Results

by Yang[7]. This is in contrast to Over-the-Top (OTT) vendors, which use the mobile
network only as access to the internet. Prominent examples of OTT services are Zoom,
Whatsapp and Facebook and these directly compete with the telecom operators, as
described by Farooq and Valliappan[8]. The openness of 5G together with the concept of
network slicing allows operators to offer services such as Quality of Service (QoS) to the
OTT providers as an additional source of revenue.[8]

Third party applications cannot only control QoS, but also influence traffic routing
decisions in the 5GS. This is the entry point for any edge enabler platform, as influencing
the routing is a key requirement for edge computing. In contrast to the already existing
solutions for ETSI MEC, this does not require a proprietary interface between the 5GC
and the edge platform. In reality, a proprietary interface often means a vendor lock-in
for both of these components.

To demonstrate the usability of a standardized solution, the OpenAirInterface (OAI) is
used. The OAI is an open source 5G implementation and consists of the RAN and the
5GC. It provides a standard-compliant reference implementation of a 5G SA deployment
and is used for industrial and research purposes, as described by Kaltenberger et al.[9].
One of the goals of the OAI is to provide 5G networking components for the community,
which should offer alternatives to expensive commercial vendor solutions. There are
already two MEC prototypes for the OAI, which are described in Chapter 3. However,
both of these solutions do not use the novel standardized approach. Thus, the current
implementation of the OAI does not support this traffic routing approach. To have a
reliable reference for 3GPP-compliant edge computing, the OAI should be enhanced with
this functionality.

Rao and Prasad[10] describe the vital role of 5G in the enablement of the Industry 4.0
and one of its applications: autonomous robotics. Given that there are not many edge
computing implementations available for the open source and research community, there
are to the author’s best knowledge no reliable use cases on robotics in an end-to-end 5G
enabled edge computing scenario. As autonomous robots which are connected over 5G
are an important part of the Industry 4.0, it is necessary to showcase the edge computing
possibilities with a robotics scenario. An existing implementation based on open source
software allows researchers to evaluate novel approaches to algorithms in robotics in a
realistic scenario.

1.3 Expected Results
A working edge computing prototype, integrated in an existing 5GS such as the OAI,
allows to deploy any kind of application in the edge. One of these applications could
be a computation-intensive task of an autonomous robot such as SLAM. SLAM is used
to localize the robot and create a map of its environment based on the robot’s sensors,
especially Light Detection and Ranging (LIDAR). Modern robot software such as the
Robot Operating System 2 (ROS2) allows to separate different components and have
them communicate over the network. In current ROS2 deployments, these tasks are often

3



1. Introduction

offloaded over WiFi. The underlying hypothesis of this thesis is that this is also possible
using edge computing in 5G.
Hypothesis H0: MEC in a 5G system allows to offload latency-critical robotic ap-
plications to the edge without compromising the functionality and the quality of the
output.
Based on the H0 hypothesis, the author formulates the following research questions:

• Research Question 1 (RQ1): What is a suitable edge computing architecture
for offloading latency-critical applications to the edge of a 5G network?

• Research Question 2 (RQ2): What is a feasible approach to implement a MEC
prototype and integrate it into an existing 5G system such as the OAI?

• Research Question 3 (RQ3): Given a MEC prototype and a ROS2 SLAM node,
how does offloading the node to the edge of a 5G network affect the latency and
the quality and functionality of the produced output?

The expected result related to RQ1 is an analysis of existing frameworks and archi-
tectures for edge computing and MEC in 5G. The analysis consists of three parts: (1)
Which architectures for edge computing are available, (2) how do the possible technical
realizations within the 5GS look like and (3) how do the edge computing platform and the
5GS interact. These approaches are compared based on maturity, standard-compliance
and how well they integrate into 5G and the field of robotics. This is described in detail
in Chapter 4.
The answer for RQ2 is a prototype implementation of edge computing integrated into
the OAI 5GS. The details of the integration within the OAI are described in Chapter 5.
The chosen solution for this thesis relies on standardized interfaces within and towards
the 5GC. This means that the User Plane Function (UPF) is used for traffic routing
and the decision to enforce the routing is done using the Session Management Function
(SMF), together with the policies from the Policy Control Function (PCF). Prior to this
thesis, the PCF did not exist in the OAI and has been implemented to satisfy the needs
for traffic routing. The SMF has been adapted as well to support this scenario. While
the edge computing related procedures are implemented within the OAI 5GC as part
of this thesis, the orchestration and management layer is not provided. However, an
integration with the orchestration layer is considered in the design of the PCF.
An experiment is set up to answer RQ3. A robot simulation is created based on ROS2,
as described in the ROS2 documentation[W5]. ROS2 is a framework for communication
between different independent parts of the robot, called nodes. ROS2 nodes can be local
or connected via the network in a peer-to-peer or client-server fashion. This allows to
deploy ROS2 nodes anywhere in a distributed system, as long as there is a network
connection. For the experiment, different deployment options are used and compared.
In each of these options, a ROS2 SLAM node is deployed in another location, while the
simulated environment and robot stays at the same location.
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1.4. Structure

1.4 Structure
The thesis is structured in nine chapters. This first chapter is the introduction.

Chapter 2 explains the foundations of this work, such as 5G, edge computing and cloud
computing in general, virtualization and ROS2.

In Chapter 3 the related work is discussed, which contains other approaches to MEC
in 5G, details about the used SLAM algorithm, ROS2 in the cloud and the evaluation
metrics for latency critical applications.

Chapter 4 contains the answer to RQ1 from the expected results. Different edge computing
architectures are described and evaluated. It also contains different approaches on traffic
routing for edge computing and describes how the 5GC can be instructed to create these
routes.

Chapter 5 gives a brief introduction of the OAI and describes how the traffic routing
procedures discussed in Chapter 4 are implemented and integrated into the OAI.

Chapter 6 describes the robotics use case, which is used to exemplify the usability of the
implemented edge computing prototype. It contains the underlying scenario, details on
the robot simulation and how the nodes are set up with ROS2.

In Chapter 7 the implemented prototype is evaluated against the scenario defined in
Chapter 6. It contains information about the setup, the different deployment options
and results of the evaluation.

In Chapter 8 the author provides a personal assessment of the presented edge computing
prototype and its applicability to the robotics use case.

Chapter 9 contains the conclusion of this thesis and describes potential research topics
for future work.
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CHAPTER 2
Foundations

This chapter aims to help the reader in understanding the concepts, architectures and
solutions discussed in the next chapters. Thus, an overview of the underlying technologies
and concepts 5G, edge computing, virtualization and ROS2 is given.

2.1 5G
Chapters 4 and 5 discuss different architectures for edge computing in 5G and how to
implement a prototype thereof. This section describes the fundamental design principles
behind 5G and gives an overview of the architecture.

2.1.1 About 5G
As described by Cox[11], 5G builds upon many of the principles from the previous mobile
network generations. A fundamental difference between 4G and 5G is that 5G targets a
wider range of applications. While 4G or Long Term Evolution (LTE) is mainly focused
on consumer’s applications such as mobile data and mobile voice, 5G also covers the
areas of mMTC and URLLC.[11]

The support of URLLC is a basic requirement for the use case presented in this thesis. The
flexibility of 5G leads to a more complex architecture, in the RAN, as well as in the 5GC.
As discussed by Rommer et al.[12], the requirements for 5G were first described in 2012
by the International Telecommunication Union (ITU). The ITU is the global institution
responsible for defining and regulating telecommunications and is a specialized agency of
the UN (see also Cowhey[13]). These requirements are formalized in the ITU IMT-2020
vision, the ITU Recommendation M.2083-0[14], as part of several IMT-2020 standards
that specify the next mobile network 5G. Figure 2.1 shows these and compares them
with the 4G requirements (IMT-advanced), and Figure 2.2 shows which requirements
are important for eMBB, mMTC and URLLC. It can be seen that the latency shall
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be reduced from 10 ms in 4G to 1 ms in a 5G URLLC scenario. The user experienced
data rate shall improve from 10 Mbit/s in 4G to 100 Mbit/s. The spectrum shall be
utilized three times more efficiently and the maximum mobility speed should increase
from 350 km/h to up to 500 km/h. This is especially useful in a scenario where devices
are roaming while in a high-speed train. Another aspect to be improved in 5G is the
connection density, from 100 thousand devices to one million per square kilometer.[14]
5G also improves the network energy efficiency, an aspect that is crucial to support
battery-constrained Internet of Things (IoT) devices.
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Figure 2.1: Key enhancements in the IMT-2020 standard, taken from ITU-R 2083-0[14]

In Figure 2.2 it can be seen that not all these improvements are equally important for all
5G use cases. The URLLC use case, for example, requires ultra low latency and high
mobility speeds, but the user experienced and peak data rate are not that important,
whereas the eMBB use case does not require ultra low latency. In reality, it is not feasible
to expect 5G to fulfil all these requirements simultaneously, as described by Chih-Lin et
al.[15]. Thus, 5G has to support different subscriber profiles and network configurations
which emphasize one of the use cases. This flexibility is provided by network slicing,
described in Section 2.1.6.
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Figure 2.2: Importance of IMT-2020 key enhancements for different use cases, taken from
ITU-R 2083-0[14]

2.1.2 Architecture
The 5GS consists of two major building blocks: The RAN and the core network. The 5G
RAN is often referred to as New Radio (NR). The RAN consists of the gNodeB (gNB),
the base station responsible for sending and receiving information over the air interface.
The signal processing, channel coding and resource allocation happens here. The gNB
also advertises the Public Land Mobile Network (PLMN) over a broadcast channel. This
way the mobile device, the User Equipment (UE), is able to select the correct PLMN,
matching the advertised Mobile Network Code (MNC) and Mobile Country Code (MCC)
with the information stored on the Subscriber Identity Module (SIM) card. Details
about the RAN are briefly discussed in Section 2.1.5. However, this thesis focuses on the
procedures within the 5GC. Hence, the interested reader is advised to read Cox[16][17]
or Henttonen et al.[18].

The flexibility of 5G does not only apply to the use cases, but the 5G system itself. It is
possible to have different deployment options for 5G. The NSA deployment option aims
to ease the transition from 4G to 5G. This means, that the 5G RAN is used, but the core
network is an updated version of the 4G core network, the Evolved Packet Core (EPC).
On the other hand, the 5G specification comes also with its own core network, the 5G
SA core (5GC). The concepts described in this thesis rely on a 5G SA network, hence
the EPC is not described further in this thesis. The interested reader is advised to follow
Olsson et al.[19].
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In total, there are four different ways 4G and 5G may be deployed (Rommer et al.[20]):

• LTE for signaling and user traffic

• NR for signaling and user traffic

• Combination of NR and LTE, where LTE is used for signaling and LTE and NR
for user plane (UP)

• Combination of NR and LTE, where NR is used for signaling and LTE and NR for
user plane (UP)

Considering that there are two different core networks available, there are in total eight
different deployment options, as described in Table 2.1.

Access Network

Core Network LTE only NR only LTE with NR UP NR with LTE UP

EPC Option 1 (4G) Option 6* Option 3 Option 8*
5GC Option 5 Option 2 Option 7 Option 4

Table 2.1: 4G/5G deployment options, adapted from Rommer et al.[20].
Disregarded options are marked with *.

Option 1 is the current LTE deployment and Option 6 and Option 8 were disregarded by
the 3GPP during the standardization process, as not all the advantages of NR can be
utilized, when using NR with an old core network.

In the end, the 3GPP focused on the options that had the largest market value: Option
2 and Option 3. Option 3 is the described NSA option, while Option 2 is SA. Hence, the
underlying deployment option this thesis operates on is Option 2.

Option 5 may yet be used in the future, but it is questionable why one would use a new
core network only for LTE and not for NR. The same is true for Option 7. Option 4
is interesting, as a new Mobile Network Operator (MNO) who does not own an LTE
infrastructure may use this option to support 4G and 5G radio. Altogether, one could
argue that the 3GPP has introduced too much flexibility and also complexity, because
only two or three use cases cover the vast majority of real-world scenarios.[20]

2.1.3 User Plane and Control Plane
One of the most important concepts of the 5GC and EPC architectures is the distinction
between control plane – also called signaling – and user plane, as described by Rommer
et al.[21]. The control plane consists of all the traffic that is used to control and manage
the user’s registration and Protocol Data Unit (PDU) session. A PDU session is unique
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for each of the UEs in the network and provides connectivity to a Data Network (DN).
In the vast majority of the cases, the DN is the internet, although in this thesis the
edge is also a DN. Hence, a PDU session enables the user to connect to the internet (or
another network). All the traffic that is sent over this PDU session is user traffic or user
plane, e.g., HTTP traffic. The control plane handles the registration and authentication
of the subscriber and the setup and deletion of a PDU session. For example, enabling
mobile data on a smartphone triggers signaling traffic over the control plane and once
the user is successfully connected, the subsequent traffic is sent over the user plane.
Although this logical distinction is part of mobile networking since 2G, it has not been
physically separated, meaning all the control plane and user plane terminated in the
same components. Only in an update of the EPC architecture, Control and User Plane
Separation (CUPS) has been introduced with 3GPP Release 14[W6] in 2017, mere two
years before Release 15[W7], the first 5G specification. It allows to terminate the user
plane on a different physical and logical host than the control plane. While this is optional
for the EPC, the 5GC is built around this principle. As described in Section 4.4.1, this
is an important prerequisite for 5G edge computing. Figure 2.3 shows the overall 5G
architecture. The N3 reference point between the gNB and the UPF is part of the user
plane, as well as the N6 reference point between the UPF and the DN. Of course, user
plane traffic is also sent over the RAN, as described in Section 2.1.5. All the traffic
between the other reference points is part of the control plane.[21]

Note: The user plane is often abbreviated as UP and the control plane as CP in the 5G
standardization. The author chooses to use write these out to avoid ambiguity.

Figure 2.3: 5G core network architecture, adapted from Rommer et al.[20] and 3GPP TS
23.501[22]
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Control Plane

The control plane is responsible for managing everything related to the UE’s PDU session.
There is a control layer in the RAN responsible for managing the radio conditions, as
described in Section 2.1.5. Also, the user plane and control plane traffic use different
protocols on the air interface, as depicted in Figures 2.4 and 2.5 in Section 2.1.5.

While the EPC consists of three essential components, the 5GC introduces the concept
of a Network Function (NF). Each EPC component has been split up into distinct NFs
in the 5GC. The NFs that are relevant for this thesis are described in Section 2.1.4.

The control plane interface between the core network and the UE is called Non-Access
Stratum (NAS) and is transparently passed through the RAN. The protocol used in
4G is the S1 Application Protocol (S1AP), while 5G uses the NG Application Protocol
(NGAP). As described by Chlosta et al.[23], S1AP and NGAP are very similar. Both
are binary protocols used for attachment, registration, authentication and IP address
allocation. The endpoint for NGAP in the 5GC architecture is the Access and Mobility
Management Function (AMF).

User Plane

The user plane traffic is the Uplink (UL) – from UE to DN – and Downlink (DL) – from
DN to UE – traffic sent and received by the UE. As the main concept behind the PDU
session is to enable connectivity to the internet, the PDU session type is either IPv4
or IPv6. Other types such as Ethernet are supported as well, but only for specific use
cases.[21]

The UE gets an IP address assigned by the 5GC over the control plane which it uses to
connect to the internet. As described in Section 2.1.5, the user plane between the gNB
and the UPF is IP-based. However, there is an additional layer in the protocol stack
due to the GPRS Tunneling Protocol (GTP). GTP is used to encapsulate the user’s IP
session in another IP session. This so-called GTP tunnel allows to correlate the radio
channels on the UE side with the IP world on the gNB. Whenever the UPF forwards
packets to the DN, it removes the GTP layer and adds it in DL direction.[21]

As the name suggests – General Packet Radio Service (GPRS) is the first mobile data
service from 2001 in 2G – the user plane traffic within the core network did not significantly
change during the evolution from 2G to 5G. Although different gateways are used to
terminate the GTP tunnels, the basic concept of tunneling is the same.

2.1.4 5G Core (5GC)
While the user plane routing and handling is very similar in 4G and 5G, the control
plane is vastly different. The representation of the 5GC in Figure 2.3 is called the 5G
Service Based Architecture (SBA). It does not contain all the point to point connections
between the NFs, but focuses on the producers and consumers of APIs. There is also a
reference-point based architecture, where all the NFs which communicate with each other
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are connected. However, this representation tends to be unclear and overly complex.
The 3GPP standard 3GPP TS 23.501[22] describes the basic 5G architecture and the
requirements for each of the NFs.

Each Service Based Interface (SBI) has a distinct name, which starts with the letter N and
is followed by the component’s name, e.g., Npcf. These are all RESTful interfaces. The
reference-point architecture uses a numbering scheme, e.g., N4 is the reference between
SMF and UPF. As shown in Figure 2.3, even when using SBA, some interfaces are
reference-based. These are all binary interfaces:

• N1: NAS, described in 3GPP TS 24.501[24], uses NGAP protocol (3GPP TS
38.413[25])

• N2: NGAP protocol (3GPP TS 38.413[25])

• N3: User plane with GTP, as described in 3GPP TS 29.281[26]

• N4: User plane configuration, uses Packet Forwarding Control Protocol (PFCP)

• N6: User plane without GTP, i.e., IP

Not all of the NFs from Figure 2.3 are necessary to operate the basic use cases of a 5GS.
The components AMF, SMF, Unified Data Repository (UDR), Unified Data Management
(UDM), Authentication Server Function (AUSF) and UPF offer the essential services
which are necessary to authenticate and register a UE and provide it with a PDU session,
hence connection to a DN. It thus may also be called "core of the core".[20]

Session Management Function (SMF)

The SMF is responsible for handling the PDU session of a subscriber and IP address
assignment for a given UE. It also configures the user plane routing via the N4 interface.
The PDU session API is described in 3GPP TS 29.502 [27].

Access and Mobility Management Function (AMF)

The AMF is the endpoint for the NAS signaling and is reponsible for access and mobility
management. It also selects the appropriate SMF and invokes its PDU session API. The
AMF communication API is used mainly by the SMF to inform the AMF of changes in
the PDU session and is described in 3GPP TS 29.518[28].

Unified Data Repository (UDR)

The UDR is the main subscriber database and stores various different data, from
basic subscription data such as the International Mobile Subscriber Identity (IMSI)
to cryptographic keys. It offers access to these values through the data repository API,
described in 3GPP TS 29.504[29].

13



2. Foundations

Unified Data Management (UDM)

The UDM is the frontend to the UDR and offers easy access to subscriber’s data to
the AMF and SMF. It also keeps track which AMF or SMF is used for a specific
subscriber. The UDM offers several APIs, but the most important are the subscriber data
management API and the UE authentication API, both described in 3GPP TS 29.503[30].
These two APIs are essential for the basic use case of registration and authentication.

Authentication Server Function (AUSF)

The AUSF provides an authentication service to authenticate a UE. It also generates the
temporary session keys which are used during the lifetime of a UE registration. It does
so by receiving the cryptographic master key from the UDM to derive the session keys.
The UE authentication API is described in 3GPP TS 29.509[31].

Note: 5G security is not discussed in this thesis, but Jover and Marojevic[32] provide a
security analysis of 5G and Sun and Du[33] discuss physical layer security.

Network Repository Function (NRF)

The NRF is the main repository function and enables other NFs to discover each other.
The main discovery API is described in 3GPP TS 29.510[34]. The NRF is an essential
component when the 5GC is virtualized and NFs may be spawned, moved or destroyed
during their lifecycle.

Unstructured Data Storage Function (UDSF)

The UDSF is used to store unstructured, dynamic data. Most NFs are stateful, e.g., the
SMF has to track all the PDU sessions. To fully enable cloud-native 5G core networks,
this data can be stored in the UDSF, so that the SMF does not lose all its state when it is
restarted. From a software engineering standpoint, it is comparable to a Redis database.
Its data repository API is described in 3GPP TS 29.598[35].

Policy Control Function (PCF)

The PCF handles all the different policies for the 5GC. Therefore, it is important for
configuration of different QoS parameters for different network slices, but is also necessary
for the edge computing solution presented in this thesis. It offers two main APIs, one
session management policy API towards the SMF, described in 3GPP TS 29.512[36] and
a policy authorization API towards the AF described in 3GPP TS 29.514[37]. Both these
APIs are described in more detail in Section 4.4.
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Network Slice Selection Function (NSSF)

The NSSF assists the AMF in selecting appropriate network slices. It also helps the AMF
to discover other AMFs in case the current AMF does not support the slice configuration.
Its APIs are described in 3GPP TS 29.531[38]. The concept of network slicing is described
further in Section 2.1.6.

Network Exposure Function (NEF)

The NEF is used mainly for security reasons and to abstract the complexities within the
core towards a third party NF, i.e., an AF. Its behavior and functionality is comparable to
an API GW and it supports configuration of the 5GC from external third parties as well
as providing information and forwarding events. It serves two domains: The southbound
domain (the 5GC) and the northbound domain, the external AF. The NEF provides
many different APIs. The most important northbound APIs are described in 3GPP TS
29.522[39] and southbound APIs are described in 3GPP TS 29.551[40], 29.541[41] and
29.591[42].

Application Function (AF)

The AF is not specified in great detail, as it is an abstract concept of any third-party
provided service. It interacts mostly with the NEF or the PCF, as described in greater
detail in Section 4.4. In this thesis, the AF is an Edge Enabler Server (EES) or MEC
Platform (MEP), but it may also serve other purposes for other use cases. It can offer
APIs to the core network, although this is not necessary[22].

User Plane Function (UPF)

The UPF is the NF for handling and routing the user traffic.

The UPF communicates with the SMF using PFCP. The SMF instructs the UPF how a
specific PDU session is to be routed. Therefore, it is easy to virtualize the signaling NFs,
as they do not handle any performance-critical traffic. The UPF may be a software or
hardware switch, considering that software routing still provides a significant performance
challenge, as described by Zhang et al.[43].

2.1.5 5G RAN
The 5G RAN is designed to work on different frequency ranges, from 600 MHz to 6 GHz
in the sub-6 GHz frequency bands. Additionally, 5G is able to operate in the millimeter
wave range, which corresponds to a frequency between 20 GHz and 60 GHz, as described
by Cox[44]. In Austria, several frequency bands are allocated to 5G in the low frequency
range such as 700 MHz, 800 MHz and 900 MHz, but also up to 2.6 GHz. The 3.4 GHz
- 3.8 GHz and 26 GHz frequency bands are currently under consideration.[W8] This
example shows that current 5G networks operate on the same or similar frequencies as
the previous mobile generations.
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As described in more detail in Chapter 4.2, NR supports different numerologies, resulting
in different Sub-Carrier Spacing (SCS) configurations. This allows to increase or reduce
the available bandwidth and also the latency over the air interface, supporting the
different 5G use cases.[17]

The 5G RAN operates on different protocol stacks for user plane and for control plane, as
described in 3GPP TS 38.300[45]. The control plane is used for resource control between
the UE and the gNB, but also for the underlying transport for the NAS communication.
Figure 2.4 shows the user plane protocol stack and Figure 2.5 shows the control plane
protocol stack. These figures indicate that the gNB is acting as a gateway between the air
interface and the IP domain of the core network. The gNB is connected via the backbone
of an MNO to the core network, but it is important to note that the communication is
IP-based. This is also the reason why GTP is necessary. It encapsulates another IP layer,
from the device to the final host such as a web server. The IP addresses in the IP layer
below the GTP layer belong to the gNB and the UPF.

Figure 2.4: NR protocol stack for user plane, adapted from 3GPP TS 38.300[45]

Figure 2.5: NR protocol stack for control plane, adapted from 3GPP TS 38.300[45]
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PHY

The physical layer is the backbone of the 5G NR, as described by Zaidi et al.[46]. It has
to be flexible enough to support the different – sometimes contradictory – 5G use cases
and requirements. Also, it is built to support the NR frequency range. The physical
layer handles the modulation of the signal.[46]

The physical layer also defines the waveform used in NR. In contrast to LTE, NR uses
the same waveform in UL and DL direction: Cyclic prefix Orthogonal Frequency-Division
Multiplexing (OFDM), which simplifies the design of an NR Radio Unit (RU).[46]

Another important aspect of NR is the support for multiple antennas, especially Multiple
Input Multiple Output (MIMO), which is an important feature to further increase the
throughput of the NR connection. The PHY layer also employs channel coding.[46]

Medium Access Control (MAC)

The MAC layer is mainly responsible for scheduling transmissions over the PHY layer.[17]
It provides a mapping between the logical channels of the upper layers and the physical
channels of the PHY layer. The MAC layer also performs error correction using Hybrid
Automatic Repeat Request (HARQ), a combination of forward error correction and ARQ,
which is also used in TCP.

Radio Link Control (RLC)

The RLC layer in NR does not differ significantly from the RLC layer in 4G.[17] The RLC
layer supports different modes: Transport Mode (TM), Unacknowledged Mode (UM)
and Acknowledge Mode (AM). Choosing the right mode is essential for the application.

Packet Data Convergence Protocol (PDCP)

The PDCP layer is used for the transmission of higher layer IP packets as well as
Radio Resource Control (RRC) information. It is also the layer responsible for header
compression, decompression, integrity protection, encryption and decryption of the user
plane and control plane.[17]

Note: How the cryptographic keys are generated and transported to the gNB are not
discussed in this thesis, but the inclined reader is referred to Prasad et al.[47] and 3GPP
TS 33.501[48].

Radio Resource Control (RRC)

The RRC layer is the control layer of the air interface. It configures the lower radio layers
PHY, MAC, RLC and PDCP. The RRC keeps track of the different states of an NR
connection, i.e., if the UE is idle, inactive or connected. Further, RRC is used when the
UE communicates with the CN via NAS using the NGAP protocol, as depicted in Figure
2.5.
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2.1.6 Network Slicing
As described in Section 2.1.1, 5G has to support contradicting use cases and thus its
design must be very flexible. Network slicing is one of the core concepts to handle this
flexibility, as described by Zhang[49]. The one-size-fits-all principle of LTE is not sufficient
anymore for 5G and building different physical networks with different configurations is
economically and technically not feasible. Thus, network slicing is introduced in 5G. It
allows to have logically separated instances in the same physical network.

The NSSF supports the UE to select an appropriate slice based on the requirements. The
result of this procedure is an NSSAI, a slice identifier. Then, the UE registers to the CN
with this NSSAI. The NSSAI is used to select different virtualized NFs.[49] For example,
there may be a virtualized SMF serving one specific slice and during registration the
AMF selects this SMF, which is configured to support a URLLC scenario.

Therefore, network slicing is also an important concept for edge computing in 5G. Using
network slicing, it is already possible to create 5G campus networks. A campus network
is a 5G network for subscribers affiliated with an organization, e.g., an industrial site, as
described by Rischke et al.[50]. Network slicing allows these organizations to have their
own quasi-private 5G network without having to build their own 5G infrastructure. This
also allows to deploy and select a UPF based on an SNSSAI to reduce latency, hence
supporting the edge computing and URLLC use case. Therefore, network slicing presents
an alternative solution to the approach described in this thesis, as described by Ksentini
and Frangoudis[51].

An important aspect of network slicing is that the RAN is also slice-aware. This means,
that the RAN is able to select different configurations, e.g., for scheduling.[49] This is
an important use case for URLLC, as the configuration of the layer 1 and layer 2 of the
RAN have to be configured accordingly.

2.2 Edge Computing
As described by Grover and Garimella[52], presently many IoT devices are connected to
the cloud infrastructure through either wired or wireless communication. This leads to
high costs in terms of latency, which can have a great negative impact for many real-time
applications. This leads to the paradigm of edge computing with the primary goal of
enabling these latency-critical applications.

2.2.1 About Edge Computing
The edge computing paradigm allows to dynamically allocate resources to an applica-
tion.[52] Different applications such as IoT devices, autonomous robots and VR applica-
tions have different resource constraints in terms of latency, but also computation power
and even the availability of specific hardware, such as a GPU for AR/VR. Therefore, edge
computing has to provide this flexibility in resource allocation. The different deployment
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options for edge data centers form a hierarchy. Grover and Garimella classify the different
options as follows[52]:

• Extreme edge: Local data centers in the LAN, similar to a private cloud

• Fog servers: Between the LAN and the WAN. In the context of this thesis, this is a
deployment near or within a 5G gNB and the main use case described herein

• Core: Edge data center in the WAN

• Cloud: The traditional cloud deployment model

Hassan et al[2] identify four key requirements for edge computing in 5G:

1. Real-time interaction

2. Local processing

3. High data rates

4. High availability

The first requirement is the main driver for the edge computing use case. Edge computing
must ensure low latency communication for latency-constrained applications. In 5G, this
is achieved using the URLLC features on the RAN and the different approaches discussed
in this thesis, especially in Chapter 4.

Further, local processing helps to avoid bottlenecks in the communication between a gNB
and the core network or a cloud.[2] Even if there is a global cloud available and necessary,
in many cases data is aggregated at the edge to reduce the communication overhead of
the internet.

Although not all low latency applications require high data rates, some have this require-
ments, especially in the area of AR, VR and cloud gaming.[2] Hence, this is also a key
requirement for edge computing.

High availability is a major challenge in cloud computing, as discussed by Mesbahi et
al.[53] and there are many aspects to it. For edge computing solutions to be technically
and commercially viable, they should guarantee the same availability as cloud computing.

Khan et al.[54] describe similar key requirements for edge computing, although they
focus more on the requirements on how to enable edge computing. A solution integrated
into 5G is presented in this thesis in Chapters 4 and 5.
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2.2.2 Edge Computing and Cloud Computing
Edge computing and cloud computing share many similarities. In fact, they both rely on
virtualization as underlying technology, as described by Abbas et al.[55]. In any case,
edge computing is not a replacement for cloud computing, but it is a part of the cloud
computing hierarchy. Thus, edge computing is a specific flavor of cloud computing.

Table 2.2, adapted from Bragadeesh and Arumugam[56], provides a comparison between
cloud computing and edge computing.

Characteristic Cloud computing Edge computing

Computational capacity High Medium to low
Deployment strategy Centralized Distributed
Latency Medium to High Low
Real-time possible No Yes
Long-term storage Yes No
Backbone communication High Low
Mobility Support Low High
Cloud Provider hosted Yes Yes
MNO hosted No Yes
Automated deployment May be done upfront Necessary
Devices UEs , PCs UEs, IoT devices
Network Type WAN LAN/WAN

Table 2.2: Comparison between cloud computing and edge computing[56]

2.2.3 Orchestration
Orchestration in the context of cloud computing is a framework for managing the
applications and the hardware of a cloud data center, as described by Costa et al.[57].
Orchestration is common in large cloud service providers, as it allows to help with
automatic scaling of applications and efficient resource allocation.

When applications are deployed using edge computing, the role of orchestration becomes
even more important. As described in Table 2.2, mobility is an important factor in
edge computing, especially in 5G. The distributed edge resources also tend to be more
heterogeneous. These challenges are managed with an orchestration framework. The
framework takes the role of a centralized entity to handle resource management, life cycle
management and mobility[57].

Section 4.3 describes two standardized orchestration frameworks in 5G: ETSI MEC and
3GPP EDGEAPP, whereas the orchestration aspects of ETSI MEC are more detailed.
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2.3 Virtualization
As described in Section 2.2, virtualization is the key technology behind cloud computing
and edge computing.

2.3.1 Virtual Machines and Container Virtualization
Virtualization allows to logically separate the resources of a computer into different
systems. As described by Sharma et al.[58], there are different approaches to virtualization:

• Hardware-level virtualization

• OS-level virtualization

The hardware-level virtualization operates based on a Virtual Machine (VM). As the
name suggests, a VM can run its own Operating System (OS) and applications and has
thus a great degree of independence of the underlying OS and hardware. There are two
main types of virtual machine managers. One operates on the hardware level (Type 1
Hypervisor) and the other uses a guest OS to run the virtual machine manager. Famous
examples are VMWare[W9] (Type 1 and Type 2) and Virtualbox[W10] (Type 2)

The most important distinction between VMs and containers is that containers share
the underlying host operating system, i.e., the kernel of the OS, which is why it is called
OS-level virtualization. This has the advantage that the instruction set of the hardware
does not have to be emulated, resulting in higher speed. However, the logical separation
of containers is weaker compared to VMs.

The greater flexibility of containers make them the preferred choice for edge computing
use cases[57]. Hence, the following sections describe mainly container-based virtualization
techniques.

2.3.2 Network Function Virtualization (NFV)
NFV is a framework for virtualization of networking infrastructure, standardized by
ETSI. The specification ETSI GS NFV 002[59] describes the architecture.

NFV has been created to utilize the advantages of cloud-computing without compromising
complying with standardized technology. It allows to bring virtualization into network
of MNOs in a "carrier-grade" quality and stability. Further, it not only focuses on
virtualizing applications usually deployed in the cloud such as web servers, but also on
virtualizing the networking equipment itself, as discussed by Mamushiane et al.[60].
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The NFV architecture consists of three main components[59]:

• A Virtualized Network Function (VNF) is any virtualized NF or application running
on a Network Functions Virtualization Infrastructure (NFVI)

• The NFVI is the virtualization infrastructure. It consists of the hardware and the
underlying hypervisors for virtualization.

• The NFV Management and Orchestration (MANO) is responsible for the orches-
tration and life cycle management of VNFs.

An important aspect of the Network Function Virtualization (NFV) architecture is that
it supports dynamic instantiation and deployment of VNFs. To accomplish this, the
VNFs are described in a standardized, interchangeable format.

The ETSI NFV architecture is also able to interact with the ETSI MEC architecture, as
briefly discussed in Section 4.3.1.

The open standardization of the ETSI NFV architecture led to several open source
implementations thereof, where OSM and ONAP are arguably the most prominent.[60]

2.3.3 Docker
Docker is an open source container virtualization solution, especially prominent among
software developers. It provides an exchangeable description format to build container
images, the Dockerfile. These images can be uploaded and downloaded from a central
repository. Docker also provides the user-facing frontend to run containers. Additionally,
docker-compose and Docker swarms are orchestration solutions to manage several
Docker containers, as described on the Docker homepage[W11].

2.3.4 Kubernetes
Kubernetes – also referred to as K8s – is an open source container orchestration framework.
K8s and Docker are often used together, but it is important to note that it does not
replace Docker. While Docker provides the format and the container runtime, K8s
handles the orchestration and management of containers, as described on the Kubernetes
homepage[W12].

2.3.5 Red Hat OpenShift
Red Hat OpenShift is a container orchestration platform. It is built on top of Kubernetes.
According to Red Hat[W13], it can be used to manage hybrid cloud, multicloud and
edge deployments. Openshift is built on the Red Hat Enterprise Linux and is compatible
with the Red Hat Ansible Automation platform. Thus, Red Hat is offering a complete
application package for container orchestration.

22



2.4. ROS2

2.4 ROS2

ROS is an open source robotics framework and was developed and popularized by Willow
Garage in 2007, as described by Macenski et al.[61]. It provides libraries for developing
robot applications. Furthermore, it contains a communication middleware for exchanging
data between different modules.

2.4.1 Fundamentals

The main functionality of ROS2 is to provide a rich ecosystem for robotics applications.
There are many parts of a robot’s software, from handling the sensors and actuators
correctly, implementing path planning and steering to obstacle avoidance. To support
development, ROS2 allows to logically (and physically) separate these components into
packages. Therefore, ROS2 must define how the different packages communicate with
each other, as well as define a messaging format.[61]

In ROS2, a package is organized into nodes. Each ROS2 node has a distinct functionality,
e.g., taking a steering command as input and moving the robot’s wheels. This separation
of concerns allowed developers to focus on a specific part of the robot and nowadays the
ROS ecosystem consists of many open source packages by different contributors. The
ROS2 navigation stack, as described by Macenski et al.[62] is a prominent example. Also
the Google SLAM algorithm used in this thesis is an open source ROS2 package.

ROS2 Topics

ROS2 topics is the most common communication pattern used. It is an asynchronous
exchange of messages in a publish/subscribe manner. Each ROS2 node describes which
topics it subscribes to and which topics it publishes. The topic description must be
defined and available to consumers and producers up front. This mechanism allows for
anonymous many-to-many communication over a distributed system.[61]

Services

ROS2 also supports synchronous communication using the request - response pattern.
A client sends a request to a server and waits for the response. ROS2 also supports
non-blocking client calls to support an asynchronous message handling.[61]

Actions

The action communication model is a more specific use case, which is necessary for many
procedures in a robot. It allows for a goal-oriented communication. A client sends a goal
to a server and asynchronously receives feedback on a task. This is used for long-lasting
tasks, e.g., when the robot should move to a target pose.[63]
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2.4.2 Transformations (TF)
An important concept of ROS2 is the TF tree. It provides transformation matrices from
one pose to another. Within the TF tree, there are many different reference frames. For
example, the origin of the map is a static frame. In many cases, its child reference frame
is the odometry frame. Upon start of the robot, it normally coincides with the map
frame, but when the robot is moving, there is a visible drift. When the robot is able
to locate itself, there is a transformation from the odometry frame to the robot’s base
link. Then, subsequently from the base link there are TF frames to different parts of
the robot. Altogether, to get the linear and rotational difference from one pose to the
other, all these matrices along the TF trees are used to calculate the final transformation.
ROS2 provides libraries for programmers for TF transformations. The ROS2 TF tree is
described in the ROS2 documentation[W14].

2.4.3 ROS and ROS2
ROS got a lot of traction in the last years. It had been used mainly as a research platform
and was very successful in that regard. However, as soon as some projects moved to
industrial and commercial applications, some weak points of ROS were revealed. There
were security and reliability concerns and the communication middleware was slow and
inefficient.[61]

To overcome these limitations, ROS has been redesigned from scratch and is now called
ROS2. One of the most important differences between ROS and ROS2 is the com-
munication middleware. While ROS operates on a custom-built middleware, ROS2
uses the existing Data Distribution Service (DDS) standard and relies on open source
implementations thereof. This enables peer-to-peer discovery without using a centralized
master node. Details about DDS and communication in ROS2 are discussed in Section
6.4.
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CHAPTER 3
Related Work

This chapter describes the related work of this thesis, in the areas of MEC in 5G NSA,
TSN and ROS.

3.1 MEC in 5G NSA and 4G
Ksentini and Frangoudis[51] describe MEC in 5G in combination with network slicing.
They have implemented a MEC orchestrator and a MEP (see also Section 4.3.1). The
MEP is integrated with the OAI 4G network stack, i.e., the EPC in the core network.
FlexRAN is used to interact with the RAN, the 4G eNB. FlexRAN is described by Foukas
et al.[64] and allows to configure eNBs or remotely receive RAN-level information. The
traffic rules are provisioned over the Mp2 interface. As discussed in Chapter 4.3.1, this
interface is not specified by the MEC standard. Thus, the OAI 4G core has been adapted
to support this use case. They use Open vSwitch (OVS) to configure the user plane
routing. OVS is an open source implementation of a virtual switch to enable Software
Defined Networking (SDN), as described by Pfaff et al.[65]. It is designed to fully support
the OpenFlow protocol. OpenFlow has been created to have a standardized interface for
configuring switches of different vendors, as described by McKeown[66]. The approach
presented in this thesis uses the 3GPP PFCP and the standardized scenarios in the
5G core network to achieve the same result. In fact, the PFCP protocol borrows many
concepts from OpenFlow, but has been designed with mobile networking use cases in
mind (see also Rezazadeh et al.[67]).

LL-MEC, presented by Nikaein et al.[68], is an open source low latency MEC platform.
It uses the FlexRAN[64] and OpenFlow protocol[66] as well. It provides two APIs on the
Mp2 interface: The Radio Network Information Service (RNIS) and the Edge Packet
Service (EPS). RNIS is a standardized API in the MEC architecture (see also Chapter
4), whereas the EPS is part of the LL-MEC design. It is responsible to dynamically
adjust the routing of the core network to serve the edge computing use case. LL-MEC
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targets 4G systems and due to the lack of standardized procedures in 4G to influence
traffic routing, the LL-MEC EPS needs to be integrated into an EPC. LL-MEC has also
been integrated into the OAI 4G network stack. The conducted work described in this
thesis takes concepts from both LL-MEC[68] and the MEC platform by Ksentini and
Frangoudis[51] and implements these in a standardized fashion in the OAI 5GS.

The VTT Technical Research Centre of Finland[69] has implemented a testbed which
allows companies to test new production methods in factories. They describe a proof
of concept where they conduct a similar experiment as in this thesis: A mobile robotic
platform is connected to a 5G base station. The point cloud from the robot’s 3D camera
is sent to an edge server which calculates the pose of an object. Their experiment is
conducted on the 5G Test Network (5GTN), a 5G research platform, as described by
Piri et al.[70]. According to 5GTN, the underlying 5G implementation is provided by
Nokia[70], which consisted of an NSA deployment for the VTT experiment[69].

3.2 Time-Sensitive Networking
Time-Sensitive Networking (TSN) is a new networking paradigm, as described by Finn[71].
It is based on the prevalent best-effort networking scheme. TSN allows to define a contract
between client and application. It limits a transmitter to a certain bandwidth, allowing the
network to reserve this bandwidth and scheduling resources explicitly for this participant.
This contract offers bounded latency and no congestion. Further, there is no out-of-order
delivery of packets and duplicates are removed. The latency may differ within the
boundaries described in the contract. This is in contrast to the constant-bit rate scheme,
where the jitter is essentially zero and the latency does not vary.

TSN is an important requirement for industrial control applications. These were never
able to rely on the best-effort networking offered by Ethernet and thus many different
solutions among the industry exist. TSN allows to support these applications using
best-effort solutions with a manageable overhead. As Ethernet is so widespread, the costs
are considerably lower than industrial networks. This creates an incentive for the industry
to use TSN and Ethernet to reduce the costs, but also to unify different networking
technologies and reduce the complexity.[71]

However, in the space of industrial IoT and autonomous robotics and especially cars,
TSN may not be applicable, as the mobility does not allow a fixed-net connection.
Therefore, it is possible to integrate TSN with a 5G network. The 5G Alliance for
Connected Industries and Automation discuss in a white paper[72] how TSN and 5G can
be integrated. Essentially, there is a TSN translator in the UE as well as in the UPF to
route packets from a TSN Ethernet network to a 5G network and back to a TSN Ethernet.
The 5G network acts as a TSN bridge in this scenario. This relates to edge computing in
5G in two aspects. First of all – as TSN targets latency-constrained applications – the
concepts discussed for edge computing in this thesis apply. Also for a TSN integration,
the nearest UPF shall be selected to minimize the latency as much as possible. Secondly,
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the control plane of the TSN network integrates using a 5G Application Function (AF).
This AF uses the same APIs as described in Section 4.4.

3.3 2D LIDAR SLAM
The ROS2 SLAM node used for 2D LIDAR mapping and localization in the experiment
of this thesis is the Google cartographer. The cartographer is a software package that
can be integrated with ROS, as described by the cartographer documentation[W15].

Hess et al.[73] describe the principles behind the Google cartographer. It is able to
generate 2D grids of an environment with a resolution of 5 cm. As input source, the
cartographer uses 2D LIDAR scans and optionally the robot’s Inertial Measurement Unit
(IMU) and odometry measurements. All recent laser scans are inserted into a submap.
When a submap is finished, i.e., there are no new measurements, it is considered for loop
closure. If the submap matched against the current estimated pose of the robot is good
enough, it is used as a loop constraint for the optimization problem. The optimization is
completed every few seconds. The loop closure scan matching has to finish faster than
newly added scans. To ensure that the optimization problem is executed fast enough, a
branch-and-bound approach is used.

3.4 Containerization of ROS2 Nodes
Aldegheri et al.[74] show how ROS-based robotics applications can be deployed on a cloud-
server-edge architecture and have performed a similar experiment as in this thesis. Their
work does describe the architectural setup and the way the ROS nodes are containerized
using Docker and KubeEdge. Their findings presents an important reference point for
the evaluation performed in this thesis. They conclude that the performance overhead of
containerized ROS nodes is within 5% compared to the non-containerized nodes.

Shibuya et al.[75] show that it is also possible to containerize ROS2 nodes. In their
experiment they use the Navigation2 stack and the Google cartographer SLAM node.
Their findings show that the experiment conducted in this thesis is feasible and comparable
to a non-containerized ROS2 experiment.

3.5 Evaluation of SLAM Performance
Filatov et al.[76] describe methods for comparing and evaluating performance of different
SLAM algorithms. They include different quantitative evaluations of the quality of 2D
SLAM results. However, they state that the easiest and most straight-forward approach
is to compare the estimated trajectory of the robot with the ground truth pose. This
approach is described by Huletski et al.[77] and is also chosen for the evaluation of the
SLAM quality in the different deployment options in the experiment described in this
thesis.
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3.6 Performance Metrics for Low Latency Applications
Schulz et al.[78] describe latency critical IoT applications and the requirements for the
RAN and the core network architecture to enable these. They provide a comprehensive
list of applications with their respective latency requirements. Factory automation
for example has latency requirements between 0.25 ms and 10 ms, depending on the
application. The paper also contains an experiment, measuring the latency of 4G networks
in 2017. Their findings include different concepts for the RAN such as fast UL access
and new waveforms, findings that have been mostly incorporated into the NR URLLC
requirements and features. On the core network side, they express the need for edge
computing and in particular MEC integrated in a 5G CN, as discussed in this thesis.

Voigtländer et al.[79] describe ultra-low latency control of a distributed robotics system.
As part of their findings they describe the overall performance of the distributed robotics
system connected to a 5G network, a similar approach as chosen in this thesis. However,
they use steering control to balance a ball to evaluate the low latency performance,
whereas this thesis uses an offloaded SLAM node.

3.7 Relevance
Section 3.1 describes different approaches for MEC in 5G NSA and 4G. The solutions
from Ksentini and Frangoudis[51] and Nikaein et al.[68] have been integrated into the OAI
EPC. As the EPC was not designed with edge computing in mind, the chosen approaches
are proprietary and may only work with the OAI. This is in contrast to the solutions
described in Chapter 4 and 5, which enable standard-compliant edge computing in 5G SA.
Hence, the findings presented herein can be applied to different 5GC implementations.

TSN requires low latency by design. Thus, it has similar requirements as the edge
computing use case described in this thesis. Furthermore, the procedures to enable TSN
in a 5GC follow the same concepts and also require an AF, a PCF and an SMF. While
TSN is not further elaborated in this thesis, the theoretical analysis in Chapter 4 and
the OAI implementations in Chapter 5 are prerequisites to enable TSN in the OAI.

The Google cartographer described by Hess et al.[73] is the most important ROS node
used in the experiment described in Chapter 7. Thus, an understanding of its workings
are important to setup the experiment, and are crucial to interpret the results correctly.

The studies described in Section 3.4 and the evaluation methods described in Section 3.5
are necessary to define the methodology of the experiment. While Sections 3.3 and 3.4
provide the means to conduct the experiment, Section 3.5 describes how the results can
be evaluated in a comprehensible and repeatable fashion.

The performance metrics described in Section 3.6 give valuable insights on the state-of-
the-art URLLC applications and thus were used by the author to formulate the underlying
hypothesis of this thesis.
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CHAPTER 4
Edge Computing in 5G

This chapter discusses the different available architectures, platforms and approaches
to bring edge computing into a 5GS. This includes the layer that communicates with
external applications and the 5GS as well as the procedures how the user plane traffic is
routed and how this routing is enabled via the control plane.

4.1 Overview
An end-to-end edge computing solution in a 5GS consists of several different building
blocks. The foremost requirement of edge computing is to reduce the latency between a
client and an application server.[2] In a 5G edge computing scenario, the overall response
time T is defined as (see also Choy et al.[80]):

T = tclient +
tnetwork

taccess + tmno + ttransit + tdatacenter +tserver

tclient is the processing time in the client (UE), from the application until starting the
5G transmission.

taccess is the transmission time over the air from the UE to the gNB.

tmno is the packet delay between the gNB and the UPF, hence the delay within the
operator’s network until it is sent to any DN such as the internet or an edge data center.

ttransit is the packet delay between the operator’s exit node (UPF) and the front-end
router of the data center provider. In case of cloud computing, this is the transit time of
the internet and the network is often provided by third parties and, therefore, neither in
control of the MNO nor of the cloud provider.

tdatacenter is the packet delay between the data center’s front-end router and the server
where the application service is hosted.
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tserver is the processing time in the server.

In a cloud computing scenario, an MNO can only influence taccess, tmno and to some
extend ttransit.

In edge computing, an MNO is able to reduce also ttransit and possibly tdatacenter (when
the MNO hosts the edge data center).

Figure 4.1 shows where in the 5GS the different latencies occur.

Figure 4.1: Latencies in the 5GS

To reduce the latency as much as possible for edge computing, all the following transit
networks need to be taken into account:

1. RAN (taccess)

2. Between the RAN and the UPF (tmno)

3. Between the UPF and the application server (ttransit)

4. Inside the data center (tdatacenter)

Requirements for (1) are discussed in Section 4.2.

To reduce the latency for (2), the UPF should be as close to the gNB as possible, preferably
co-hosted. In the end, this depends on the operator deployments and is also a trade-off
between operational costs and latency requirements. In case a disaggregated RAN is
used, the edge computing capabilities may be provided together with the Centralized
Unit (CU). However, in any case, the 5GC has to be flexible enough to support different
deployment use cases. This is described in Sections 4.4 and 4.5.

Requirement (3) is the reason why the cloud computing approach is not compatible with
URLLC applications. As discussed by Choy et al.[80] in 2012, the latency between the
client and a server in the cloud may be greater than 80 ms. The situation has improved
over the last years because cloud providers deploy their data centers in more and more
regions. However, in 2020, still more than 50% of users have latencies of more than 20
ms to the nearest cloud provider, as described by Charyyev et al.[81]. They also observe
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that the number of covered users differ significantly between continents. While users in
Western Europe experience low latencies in cloud services, users in Africa have mean
latencies of 100 ms and above.[81]

Even if regional cloud data centers manage to reduce the mean latency to maximum
10 ms, the requirements of URLLC are not met. As described by Schulz et al.[78], the
factory automatization use case has latency requirements between 0.25 ms and 10 ms.
This can only be met with edge computing.

Thus – depending on the requirements – the distance between the UPF and the application
service should be as small as possible. Ideally, they should be deployed in the same
physical location in the same data center, possibly even together with the gNB. Another
aspect of edge computing is mobility: As 5G is a mobile network, users may move and
be served by another gNB. To ensure ongoing edge computing services, the application
service should move together with the user. The management of deploying (and possible
re-locating) edge application servers is done by edge computing platforms. These need
to have an accurate user location and need to interact with the underlying 5G system
to receive information, but also instruct it to route the traffic to satisfy the latency
requirements. This is described in Section 4.3.

Satisfying requirement (4) is the responsibility of the data center provider and not
described in this thesis.

4.2 RAN Requirements

The 3GPP coined the requirements for URLLC in the RAN in Release 15 and has
extended them ever since, as described by Le et al.[82]. The 5G RAN features flexible
SCS and sub-slot based transmission allow to reduce the latency. It introduces the
concept of the numerology, a value that indicates SCS and the number of slots per
sub-frame. Table 4.1 shows for each numerology (µ) which SCS frequency is used and
the number of slots per frame.

No. of slots per
subframe = 2µ

No. of slots per radio
frame = 10 ∗ 2µµ SCS [kHz] slot duration [ms]

0 15 1 10 1
1 30 2 20 0.5
2 60 4 40 0.25
3 120 8 80 0.125
4 240 16 160 0.0625

Table 4.1: Numerologies in 5G, from 3GPP TS 38.211[83]
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One radio frame has the length of 10 ms. In LTE the SCS is fixed to 15 kHz and each
frame consists of 20 slots, hence the slot duration is 0.5 ms. It is worth to note that the
definition of a subframe has changed between 4G and 5G, thus the slot duration is 1 ms
in 5G with an SCS of 15 kHz. Flexible SCS decreases the time length of the OFDM
symbols[82]. A high SCS frequency reduces the duration of the slots and, therefore,
reduces the overall latency for transmission.

LTE uses slot-based transmission, meaning that transmission is started in the beginning
of the slot. Whenever a packet is received after the transmission has started, it needs to
wait for the next slot. These wait times hurt the principle of low latency communication.
5G allows to start a transmission every 2, 4 or 7 OFDM symbols, further reducing the
latency and allowing packets to be sent at additional times in the slot.[82]

5G NR has other features to reduce the latency of the transmission over the air interface
even further, such as preemption indication, configured grant transmission for UL and
adapted code rate and modulation schemes for URLLC[82].

4.3 Edge Computing Architectures
As discussed in Chapter 2.2, the concept of edge computing is very broad and involves
many different technologies, architectures and aspects. Within this chapter, the most
widely spread ETSI MEC and the novel 3GPP approach are discussed, as both are
tightly-coupled to the 5GS.

4.3.1 ETSI Multi-Access Edge Computing (MEC)
The MEC architecture is defined by ETSI in the ETSI GS MEC 003[4] standard. When
work on MEC started in 2014, the intention was to have "Mobile Edge Computing",
targeted towards 4G, as described by Sabella[84]. In later developments of the standard,
the meaning has been changed to "Multi-Access Edge Computing" and nowadays includes
4G, 5G, WiFi and also fixed net. Therefore, it is fair to say that MEC is access
agnostic.[84]

Figure 4.2 shows the MEC reference architecture from ETSI MEC 003[4], adapted by
Sabella[84], who added the categorization of the reference points. The reference points
in green color (such as the Mp1) are specified, whereas the ones in red color are not
specified, hence implementation specific. The device app may use the Mx2 reference
point to interact with the MEC system to request instantiation and termination of MEC
applications. This is done through the User Application Life Cycle Management (UA
LCM) Proxy. The CFS stands for Customer-Facing Service Portal and allows customers
to select MEC applications.[85]

The Operations Support System (OSS) and the MEC Orchestrator (MEO) in the MEC
system level are mainly responsible for orchestration and management of the MEC
system. The Mm1 reference point is used to trigger instantiation and termination of
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Figure 4.2: MEC architecture with specified (green) and unspecified (red) interfaces,
adapted from Sabella[85]

MEC applications, whereas the Mm3 reference point is used to manage the lifecycle of
the applications. The MEO has an overall view on the MEC system, including the MEC
hosts and the topology. It is responsible to select the appropriate MEC host based on
constraints (such as locality) upon app instantiation.[85]

On the host level, the MEC platform manager handles the life cycle and app instantiation
for one MEC host. The Virtualized Infrastructure Manager (VIM) receives the configu-
ration and the application images from the MEC platform manager and is responsible
to instantiate these in the virtualization infrastructure.[85] As indicated in Figure 4.2,
the interface between the virtualization infrastructure and the VIM is not specified.
In practice, this depends on the available infrastructure in the edge. In an operator
environment this is likely to be a NFVI, which is described in Chapter 2.3.2.

The components in the system level and the MEC platform manager are very important,
as they have an overview of the MEC architecture, allowing the management of virtual
machines and containers and on-demand instantiation and termination thereof. However,
the focus of this thesis lays on the MEC host and especially on the unspecified Mp2
interface and the data plane. This is due to the fact that the Mp2 interface is responsible
for interacting with the 5G SA core network and provides traffic routing information.

33



4. Edge Computing in 5G

The MEC host is the main component for interaction from an application’s perspective
(application meaning in this context an actual application on a device). The host is
deployed in the edge near the physical location of the device, for example near or next to
the gNB or in a central node connecting several gNBs from one area. The MEC system
level on the other hand may be a central component and does not need to be in the edge.
This deployment is depicted in Figure 4.3.

Figure 4.3: MEC host level and MEC system level deployment

The UE contains an application client which uses a service provided by a MEC application
in the edge cloud. In the MEC architecture, the client is normally not aware of the edge.
This is solved by providing a domain, which is resolved by a DNS. The MEC platform
adapts the resolution in the DNS accordingly to ensure that the nearest MEC application’s
IP address is resolved. As indicated in Figure 4.2, the Mp1 reference point between
MEC applications and the MEP is specified. It is used for application enablement and
allows edge applications to offer and consume services. Upon start of a MEC application,
the application registers itself on the MEP. The MEC application can instrument the
platform to activate or deactivate DNS rules and activate, deactivate or update traffic
rules. The traffic rules are used by the platform to enable the routing from the UE to
the MEC application and vice versa. The platform uses the unspecified Mp2 reference
point to interact with the underlying network, i.e., a 5G or a 4G network.[85] The Mp2
interface may differ depending on network technology and vendor and is discussed in
detail in Section 4.4 for 5G SA.

Apart from application enablement, the MEC standard also specifies a set of essential
services, which may be offered by a MEC application or the MEP itself. One of these
services is the RNIS, which provides up-to-date network information about the radio
conditions. This API may be used to improve other application services. It allows to
make applications access-aware and act accordingly, e.g., when a handover happens.
However, this is optional in the MEC architecture, as described by Sabella[86].

4.3.2 3GPP EDGEAPP
Although the ETSI MEC standard was originally aimed at 4G, there is a wide consensus
in the industry that edge computing is a key enabler for 5G (see Sabella[87], Pham et
al.[1] and ETSI White Paper #11[88]). This is indicated by the paradigm shift from
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monolithic 4G network elements to a built-in CUPS in the 5GC, as described in Section
4.4.

This flexibility in the 5GC allows for 3GPP-compliant edge computing with the MEC
architecture.[89] Nevertheless, the 3GPP has also standardized a novel edge computing
architecture in Release 17 with the TS 23.558[5]. The standardization work for Release
17[W16] started in 2019 and has been finished (frozen) in May 2022.

Figure 4.4: 3GPP edge computing architecture, adapted from TS 23.558[5]

Figure 4.4 shows the 3GPP edge computing architecture. One important thing that
comes to mind is that the transport layer is explicitly stated as 3GPP transport layer and
the standard refers to the 3GPP TS 23.501[22], which describes the 5G architecture (see
Section 2.1). It is not surprising that the 3GPP edge computing standard focuses on the
3GPP transport layer. This allows for a closer and better specified interworking between
the edge enablement layer and the transport layer. The Application Layer is a consumer
of the edge computing capabilities and the Edge Hosting Environment is not specified by
the 3GPP.[5] This relates to the Virtualization Infrastructure in the MEC architecture.

The Edge Management Layer is described in 3GPP TS 28.538[90] and is responsible to
instantiate and terminate the components of the Edge Enabler Layer such as the Edge
Application Server (EAS), EES and the Edge Configuration Server (ECS). Therefore, it
has a similar role as the OSS, MEO, MEP and VIM of the ETSI MEC architecture.

The Edge Enabler Layer is the heart of the 3GPP EDGEAPP architecture and is the
component which is responsible for interacting with the 3GPP Transport Layer. It is
responsible for the lifecycle management of deployed edge applications and influences the
routing and UPF selection in the 5GC. The architecture for the enabler layer is shown in
Figure 4.5.

The EES is the central piece of the Edge Enabler Layer. It interfaces with all the other
relevant components and provides APIs for these to interact with the server. The Edge
Enabler Client (EEC) registers on the EES and uses its API for EAS discovery. It is
also capable to trigger instantiation of an EAS on demand. Furthermore, it is the main
component to influence traffic routing within the 5GC via the EDGE-2 reference point.[5]
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Figure 4.5: 3GPP edge computing enabler architecture, adapted from TS 23.558[5]

The EEC is located within the UE, meaning that the UE is edge-aware. This is a major
difference to the ETSI MEC architecture, where normally the UE is not aware of the
edge. The Application Client (AC) is the application which consumes edge services. The
interaction between the AC and the EEC (EDGE-5) is implementation specific. From a
software developer perspective, this may be a library which helps application developers
to utilize the edge without the need to understand the whole architecture in an operator’s
network.[5]

The ECS provides supporting functions for the EEC, such as information how an EES
may be reached and which area it serves. To accomplish this, an EES registers on the
ECS. The EAS is the actual application running in the edge DN and is serving the AC.
It registers on the EES and is able to communicate time and location constraints. It
may also interact with the 5GC, but this is optional. Depending on the underlying Edge
Hosting Environment, the EAS is a container or virtual machine which can be started,
terminated and relocated on demand.[5]

The only elements providing APIs in the enabler layer are the EES and the ECS. The
other elements consume these and the APIs exposed from the 5GC.

4.3.3 Synergy between ETSI MEC and 3GPP EDGEAPP
As discussed in the Sections 4.3.1 and 4.3.2, the ETSI MEC and 3GPP EDGEAPP
are different approaches to solve similar issues. However, this does not mean that they
replace each other, but rather that there are synergies between the two architectures, as
depicted in Figure 4.6. Especially the central piece of both architectures, the MEP or
respectively the EES have very similar responsibilities.
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Figure 4.6: Synergies between ETSI MEC and 3GPP EDGEAPP, adapted from TS
23.558[5]

Therefore, an actual implementation of either could expose both APIs.[87][5] This would
allow for an interworking between the different approaches. The same applies to the
MEC application and the EAS. The advantage of supporting both architectures is that
already existing MEC applications which use the APIs from the Mp1 reference point can
be integrated into the EDGEAPP architecture.

Figure 4.6 shows that the orchestration and management components from the MEC
architecture may be used instead of the ones specified by the 3GPP. This exemplifies
the interoperability between the two approaches. Even though the underlying network
and Edge Enabler Layer is 3GPP-centric, the orchestration of these components may use
another architecture. ETSI White Paper #36[91] describes possible deployment options
to harmonize the 3GPP and the ETSI architecture. It also discusses the major difference
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between the architectures: Edge awareness. While the ETSI MEC architecture requires
to configure DNS rules to route the traffic to the correct edge application, the 3GPP
approach uses the EEC to discover a suitable EAS. According to the white paper, it
is possible to use the simpler DNS based mechanism and still support the 3GPP Edge
Enabler Architecture without using the EEC.

4.4 Interworking with the 5GS
The SA 5GC has been designed with edge computing in mind.[22] Compared to the
previous generation it offers standard-compliant procedures and interfaces how to enable
edge computing within the core network. These are described in this chapter.

4.4.1 Architecture
The initial 4G core network (EPC) architecture was centralized, meaning that the control
plane and the user plane was always co-located. In 2017, 3GPP Release 14[W6] introduced
CUPS. It allows to have the purely control plane components (such as the Mobility
Management Entity (MME) and the Home Subscriber Server (HSS)) in a central location
and split the Serving Gateway (SGW) and Packet Data Network Gateway (PGW) in
a user plane and control plane part, which can be deployed in different locations. This
architectural split is already built-in in the 5GC, namely with the separation between
SMF and UPF. This allows to deploy UPFs anywhere in the network, while the control
nodes (such as AMF, SMF and PCF) are hosted in a central location. Without CUPS,
all the user plane traffic is sent to the same central location before being routed to a
data network such as the internet. As discussed in Section 4.1, this corresponds to the
transmission time tmno. As the overall goal is to reduce the latency, the centralized
architecture contradicts this edge computing requirement.

As MEC initially targeted the centralized 4G architecture, it has been designed as an
add-on to mobile networks. The ETSI White Paper #28[89] discussed first in 2018 how
to bring MEC into an SA 5GC. As depicted in Figure 4.5, the EDGE-2 interface of
the EDGEAPP architecture is specified by the 3GPP. This is the counterpart of the
unspecified MEC Mp2 interface. In fact, the approach described by the ETSI[89] has been
standardized by the 3GPP in Release 17 in the EDGEAPP architecture[5]. The relevant
components shall be deployed as an AF in the 5GC. An AF is able to influence traffic
steering and even UPF selection, as defined in 3GPP TS 23.501 in Chapter 5.6.7[22].
Therefore, for the rest of this chapter, when not otherwise specified, "AF" could either
mean a MEC platform and/or a 3GPP EDGEAPP EES.

The AF may be a trusted or an untrusted component. Depending on the scenario, an
AF is either able to directly influence traffic routing using the PCF (trusted) or needs to
connect via the Network Exposure Function (NEF) first. Figure 4.7 depicts this scenario.
The interfaces towards the NEF are represented with dashed lines, indicating that this
component is optional. Both the AF and the NEF use the Npcf_PolicyAuthorization
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API to influence traffic routing in the 5GC. The reason to use the NEF is security: The
NEF provides authentication capabilities towards the AF and acts as an external gateway
to access 5G core functionality, similar to an API gateway. However, this is only valid
when the AF targets one distinct UE, meaning that the edge platform wants to enable
edge computing for a specific user, as specified in 3GPP TS 23.502[92]. When targeting
multiple UEs at once, for example with a pre-defined user group identifier, the architecture
depicted in Figure 4.8 shall be used.[92] Here, the AF sends a request to the NEF, which
then updates the profile of subscribers in the UDR. The UDR notifies the PCF of changes
to these subscribers.

From the author’s point of view, the architecture depicted in Figure 4.7 could be used for
both scenarios, with or without NEF. In the end, it may be possible for the AF to send
distinct requests to the PCF for each UE. However, this may result in higher overhead.
Another solution would be to adapt the standard to allow a user-group identifier in the
Policy Authorization API. Nevertheless, the update of the SMF needs to happen for each
UE in any case.

When the PCF receives the traffic influence information from the AF, it uses this
information to update the policy association towards the SMF, which is described in
Section 4.4.2. It is important to consider the timeline of the requests. In the scenarios
of Figure 4.7 and 4.8, the AF requests to influence the traffic of already existing PDU
sessions. The scenario where the Edge Enabler Layer requests traffic routing for future
PDU sessions is not covered in the standards.[22][92] The reasoning behind this may be
that the 3GPP EDGEAPP requires the EEC to interact with the EES, which can only
happen after the UE has a data connection. This scenario can, however, easily be adapted
to also support scenarios where the UE is not edge aware: The AF uses the same request
towards the PCF, which then either: (1) updates existing policy associations or (2) stores
the request information and considers it upon initial PDU session establishment.
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When the SMF receives the policy update or the initial policy rules, it needs to select
an appropriate UPF and instrument it accordingly to route the user plane traffic. The
details of this procedures are described in Section 4.5.

UE AMF UPF SMF
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Figure 4.9: Simplified PDU session establishment request with Policy Association, adapted
from 3GPP TS 23.502[92]

Figure 4.9 shows a simplified version of an initial PDU session establishment request,
adapted from 3GPP TS 23.502[92]. The session establishment happens after a UE is
already connected, registered and authenticated towards the network. For simplicity, the
RAN is omitted. All requests from and towards the UE are sent over the air interface.
The UE sends a PDU session establishment request to the AMF (1), which forwards the
essential information to the SMF (2). In step (3), the SMF sends a response to the AMF,
which indicates that the session establishment is acknowledged or rejected. It is worth
to mention that between steps (2) and (3), the SMF queries subscription data from the
UDM in case it is not locally available. The steps (4)-(7) are optional in the standard,
but are essential for edge computing. First, the SMF needs to decide which PCF to use
for the request. In the simplest case, only one is available. Otherwise, the SMF may
decide based on local configuration or information from the Network Repository Function
(NRF). In any case, the SMF sends a request to the PCF to create a Session Management
Policy Association (5). This request contains context information such as the subscriber
identity (Subscription Permanent Identifier (SUPI)), Data Network Name (DNN), and
the slice information. The PCF queries its local configuration or the subscriber profile
stored in the UDR to find a matching policy for this SUPI. In case the AF requested
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to influence traffic routing, the PCF should consider this and select the correct policy.
As noted above, this scenario is not described in the standards. The PCF replies with a
policy, as described in more detail in Section 4.4.2. Upon receiving the policy, the SMF
uses this policy to influence the selection of the UPF or multiple UPFs. This is the most
essential step to enable edge computing, as all the user plane traffic traverses through the
UPF. In order to enable edge computing, a UPF which is close or even co-located with
an edge data center should be selected. Additionally, the user location (e.g., the cell id
or Tracking Area Code (TAC)) shall be taken into account for selecting the correct UPF.
After selecting the correct UPF(s), the SMF uses the N4 reference point and PFCP to
instrument the UPF accordingly. Different options for UPF selection are described in
Section 4.5.

4.4.2 SM Policy Control API

Note: If not otherwise stated, the concepts described in this section are specified in the
3GPP TS 29.512[36].

The SM (Session Management) Policy Control API is used to provision session related
Policy and Charging Control (PCC) rules to the SMF. The PCC rules are defined in
3GPP TS 23.503[93]. A PCC rule consists of information how to identify user plane
traffic, together with a set of rules how this traffic shall be handled and charged. PCC
rules cover a wide area of applications and are, e.g., used for charging, QoS, access
network reporting, usage monitoring and AF influenced traffic steering. In the scope of
this thesis, only the AF influenced traffic steering aspect is considered as policy decisions.
The information how to differentiate the edge traffic from the internet traffic is necessary
as well in scenarios where an UL CL is used, as described in Section 4.5.3.

The SM Policy Control API is specified in 3GPP TS 29.512[36]. It is a HTTP REST
API which allows to provision PCC rules for different users and use cases. The data is
exchanged using the JSON format. The API provides routes to create, update, get and
delete policy associations. A policy association is distinct per PDU session and is created
by the SMF during PDU session establishment (see Figure 4.9). Examples for requests
and the corresponding JSON body can be found in Section A.1.

Creation of an SM Policy Association

During establishment of a PDU session, the SMF sends a request to create a policy
association with the PCF. The SMF includes information of the SmPolicyContextData
type. The context data must contain a SUPI, DNN, PDU session ID, PDU session type
(IPv4, IPv6 or dual), notification URI and slicing information.

The notification URI is an HTTP endpoint on the SMF and it indicates that the SMF
subscribes to updates from the PCF. This enables the PCF to notify the SMF in case a
policy changes.
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Apart from the mandatory information, the context contains many more optional fields.
Interesting fields from the edge computing perspective are the Radio Access Type (RAT)
and the user location information. These fields would allow the PCF to select different
policies based on the user location. It would be possible to only allow edge computing
when the UE is connected to a 5G NR, but use default traffic rules (via the internet) when
the UE is connected over WiFi or any other mobile access (such as 4G). Additionally,
the user location information may be used to select a different UPF based on the
location. This enables the PCF or the AF – using the spatial validity feature of the
Policy Authorization API – to enforce location based routing.

Upon receiving the context information, the PCF selects a policy. The standard does
not define the details of the policy selection. To enable edge computing scenarios, the
following hierarchical selection options may be considered:

• SUPI based selection: This is mandatory, as the SUPI is a key parameter in the
request.

• DNN based selection: May be used when the SUPI does not match any policies in
the PCF

• Slice based selection: May be used when neither the SUPI, nor the DNN match
any policies. This is useful in a scenario where there is a dedicated slice for edge
computing, which simplifies the provisioning for the PCF.

• Default policy: A default policy when no other policy matches. This policy is used
to prevent a failure in session establishment in case of a provisioning error. It is
arguable whether this is a good approach, as it hides errors in the provisioning
of policies in the PCF, but on the other hand does not interfere with the user
experience.

These selection methods can be enhanced to support additional features such as selecting
different policies based on the user location and/or RAT.

When the PCF has selected an appropriate policy, it sends the reply to the SMF. The
reply contains data with the SmPolicyDecision type. The policy decision consists of
a set of PCC rules together with policy decisions. For edge computing, only the policy
decision type TrafficControlData is considered. The PCC rules contain mandatory
information how to identify the traffic, a unique rule ID and a reference to the traffic
control data, which should apply for this specific traffic.

The traffic control data consists of a unique ID (which is referenced in the PCC rule) and
information how to route the traffic. Two important fields are the redirect information
and the route to locations. The redirect information allows the 5GC to redirect packets
to another IP address or even HTTP URL. As an example, requests to 1.2.3.4 are
redirected to 5.6.7.8, where the IP header is adjusted accordingly. While this is an
interesting feature, it does not satisfy the latency requirements of edge computing. The
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reason is that the redirect information does not give the SMF any indication which UPF
shall be used. In the worst case, the SMF selects a UPF in a central location, which
enforces the redirection and the packets are routed back to the edge of the network.

The route to locations information in the traffic control data allows to define for each
Data Network Access Identifier (DNAI) either route information or a policy ID. The
policy ID needs to be pre-configured on SMF, so that it has sufficient information which
UPF to select and how to set up the routing. The route information is an IP address
and port combination. Section 4.5 discusses how this information may be used to select
an appropriate UPF and set up the routing to the edge data network.

The PCF can inform the SMF that it would like to receive updates based on specific
triggers. The standard defines many triggers such as a change of the access type, IP
address, RAT type, user location or QoS. The same procedure is also used to report data
usage for charging purposes. In the context of edge computing, the change of access type,
RAT and user location can all be used to guarantee that the selected data network is
still close to the user. User mobility may trigger the relocation of an edge application
and, therefore, the routing needs to be adapted as well.

SMF Update of an SM Policy Association

The SMF is able to update an SM Policy Association. This happens when one of the
triggers subscribed by the PCF are met on the SMF. For example, when the UE receives
a new IP address, the PCF is notified. Based on this information, the PCF is able to
re-decide the policy association. The PCF response for an update is the same data
structure as for creating a policy association. The difference is that the PCF only
informs about changed values. Therefore, when the PCF decides not to change anything,
the response is an empty object. Apart from that, the same procedures apply. This
mechanism allows the PCF to enforce that the user plane is still routed to the closest
UPF, even if the device changed its location, RAT or access type. It is also possible
to enable edge computing only for a specific technology. The PCF can enforce this by
updating the PCC rules accordingly.

PCF Update Notify

As described, the SMF provides a notification URI when it requests an initial policy
association. The PCF is able to use this URI to update the SM Policy Association, hence
the PCF is acting as a client in this scenario. The content of the message is of the type
SmPolicyDecision, the same as used in the response to an update of an SM Policy
Association. Figures 4.7 and 4.8 show the scenario where this mechanism is used. The
AF instruments the PCF to enforce a specific traffic routing, as described in Section
4.4.3. When a UE that matches the criteria has an ongoing PDU session, the PCF needs
to notify the SMF so that it can update the traffic routing accordingly.

43



4. Edge Computing in 5G

PCF Termination of an SM Policy Association

The PCF can also request the termination of an SM Policy Association, using the
notification URI provided by the SMF. In this case, the SMF also triggers the termination
of the corresponding PDU session.

Deletion of an SM Policy Association

The SMF can request that the PCF deletes an existing SM Policy Association. This
scenario happens when the UE de-registers from the network and, therefore, the PDU
session is terminated.

Retrieving an SM Policy Association

The SMF can also request to receive an existing policy association based on its ID. This
may be the case when the SMF does not store the information locally or needs to retrieve
it for another reason, i.e., for failure recovery.

4.4.3 Policy Authorization API

Note: If not otherwise stated, the concepts described in this section are specified in the
3GPP TS 29.514[37].

The Policy Authorization API of the PCF is used to provide the PCF with the necessary
information for its policy decisions. It does not contain any PCC rules, but the information
from this API together with the pre-configured PCC rules of the PCF are considered in
the policy decision of the PCF. This API is defined in 3GPP TS 29.214[37]. As all the
other service-based interfaces in the 5GC, this interface is an HTTP REST API.

Creation of a Policy Authorization

The AF is able to create a policy authorization towards the PCF. In the context of edge
computing, the information contained in this request is the DNAIs used for a specific
user, identified by IP address and/or IMSI. Upon receipt of this request, the PCF has
to act accordingly. When a PDU session matching this user is not yet established, this
request shall be stored and considered in future decisions. This means that the PCF
needs a temporary storage for policy requests from an AF. As it is not defined in the
standards how the implementation shall handle this, the author proposes to have a policy
decision service in the PCF, considering the pre-configured PCC rules and the incoming
requests from an AF. These decisions shall be stored for the different users and selection
options.

When on the other hand the PCF already has an established SM policy context, it needs
to invoke the Update Notify API towards the SMF. In the case of edge computing, this
would require the SMF to eventually re-select and re-anchor different UPFs.
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Update of a Policy Authorization

The AF is able to update the policy information which it has previously given to a PCF.
A scenario where this is useful is when the AF has registered to events on the SMF.
When, e.g., the user location changes, the AF acting as an EES or MEP can move an
edge application from one DN to another. Then, it has to inform the SMF over the PCF
to re-anchor the subscriber’s PDU session.

Deletion of a Policy Authorization

The AF is able to delete its association with a PCF, eventually triggering the PCF to
remove the information from the AF and re-decide its earlier policy decision. This may
be the case when an edge application does not exist anymore due to configurations on
the orchestration level.

Notifications

The AF can subscribe to or unsubscribe from PCF notifications. There are different
notification triggers available to the AF, such as a change of access type or PLMN. When
the AF subscribes to notifications, it is required to provide an API endpoint, where the
notifications shall be received. This is an alternative configuration, where the AF does
not receive notifications from another NF (such as the SMF) directly, but over the PCF.

4.5 UPF Selection and User Plane Traffic Routing
Section 4.4 describes how the control plane is able to influence the traffic routing decision.
This process mainly involves the AF, NEF, PCF and the Npcf reference point of the
SMF. This section focuses on the interactions between the SMF and the UPF and the
different possibilities to route traffic to a local edge DN.

4.5.1 Architecture and Access Models
The 3GPP Technical Report TR 23.748[94] is a study on edge computing enhancement
in 5G. Based on this study, there are two reasonable architectures, which result in three
different deployment options.

Figure 4.10 shows the 5G architecture for edge computing using one UPF. This UPF is
located in the edge of the network. There is a GTP tunnel on the N3 reference point
between the gNB and the UPF. Traffic to and from the DN on the N6 reference point is
not encapsulated in a GTP tunnel, hence the gNB’s GTP tunnel terminates here.

Distributed Anchor Point

The distributed anchor point scenario is used in the deployment option depicted in Figure
4.10. The UPF is located near or within the edge DN.[94] The SMF is responsible to
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Figure 4.10: 5G edge computing architecture with distributed anchor point

select the correct UPF based on local configuration or PCC rules. This is described
further in Section 4.5.3.

All the traffic from the UE is routed to the edge DN.[22] Therefore, if the UE also needs
to connect to the cloud or other DNs (such as the internet), routing capabilities must be
provided within the edge DN. This may be out of scope for the MNO, when the DN is
operated by a third party.

Multiple PDU Sessions

The multiple PDU sessions scenario is an enhancement of distributed anchor point. In
this case, there is a distinct PDU session for each application.[94] This means that the
client establishes two PDU sessions, one for the edge DN with a local UPF and one for
the central DN with a central UPF. Thus, the client has two different source IP addresses
and is responsible to use the correct interface when routing traffic to the edge DN. This
scenario requires the UE to be edge-aware, as the routing tables on the device need to be
adapted accordingly. One might say that here the UE is acting as a Uplink Classifier
(UL CL), as the IP routing table in the UE is used to select the correct interface.
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Figure 4.11: 5G edge computing architecture with UL CL

Session Breakout

The session breakout scenario is depicted in Figure 4.11. It shows the 5G architecture
for edge computing using an UL CL. One UPF is acting as a UL CL and connects to the
gNB via the N3 reference point and to two other UPFs via the N9 reference point. Each
N3 or N9 reference point consists of a distinct GTP tunnel. The UPFs which connect
to the internet DN respectively the edge DN over the N6 reference point are referred to
as PDU Session Anchor (PSA). In this architecture, the UE is able to send and receive
packets from the internet, but also from the edge DN. This architecture requires having
multiple PSAs within one PDU session. This is described in 3GPP TS 23.501[22] in
Chapter 5.6.4 and requires the UL CL or the Branching Point (BP) feature.

The UL CL is able to route the UL traffic based on flow information such as the destination
IP address towards one of the PSAs.[22] It is also possible to have a default route and a
more specific route based on an application. In the context of edge computing, a specific
IP address or IP range may be routed to the edge DN, whereas all the other traffic is
routed towards the internet DN.

The BP feature also allows to route traffic to different PSAs. The crucial difference
compared to a UL CL is that the BP requires the use of IPv6 and especially IPv6
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multi-homing. This means that the client needs to have different IPv6 prefixes and the
BP routes towards one of the PSAs based on the source IPv6 prefix.[22] Therefore, the
client needs to be aware of this and send traffic destined to the edge DN with the correct
prefix.

Comparison

Table 4.2 compares these three different deployment options. When requirements are
indicated as "none", it means that there are no additional requirements related to edge
computing. The mandatory procedures for PDU session establishment on the SMF and
N3/N6 packet forwarding on the UPF are required in any case.[22][92]

Distributed
Anchor Point

Multiple PDU
Sessions Session Breakout

# UPFs 1 2 3
# GTP tunnels 1 2 3
# UPFs per PDU session 1 1 3
# PFCP messages 4 8 min 12
Edge routing direct direct via UL CL
Internet routing no direct via UL CL
UPF requirements none none UL CL feature
SMF requirements none 2 PDU sessions UL CL feature
Client edge awareness no yes, select edge DNN no

Table 4.2: Comparison between the different edge computing deployment options

The distributed anchor point is the simplest option, as there is no difference to a central
PSA from the SMF’s perspective. There is one UPF and one GTP tunnel and there
is no change in the PFCP message procedures. The sole reason why this is an edge
computing deployment is because the UPF is physically located at the edge. While the
multiple PDU sessions approach requires SMF support, it is relatively similar to the
distributed anchor point. Each PDU session is set up in the same way and also the PFCP
procedures are the same, targeting different UPFs. Further, this is a basic requirement
for any 5GC, as Voice over NR (VoNR), the 5G IP-based voice service, is using a distinct
PDU session as well. When using this option, the UE must be able to route the traffic to
the correct PDU session, i.e., it performs a classification. The session breakout option
requires substantial changes on the SMF as well as on the UPF. As depicted in Figure
4.11, the UPF deployment is more complex, increasing the required number of UPFs
per GTP tunnel from 1 to 3. Also, the UPFs have to support the N9 interface for UPF
interworking, although this is just a GTP tunnel for the UPF. While this option is
the most complex, it also provides the most flexibility, an important quality for edge
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computing. Possible solutions how the SMF can support this scenario are described in
Section 4.5.3 and the updated PFCP procedures are described in detail in Section 5.3.4.
The impact of the different deployments on real-world scenarios are discussed in Chapter
8.

4.5.2 Re-Anchoring
All the different deployment options from Section 4.5.1 have the same requirements
towards mobility: The UPF for the edge (either UL CL or PSA) might not be close to
the UE anymore when the UE changes the cell or even the tracking area. In this case,
re-anchoring should be used to route the traffic to the new local UPF. The mechanisms
for re-anchoring are the same as the ones used for Session and Service Continuity (SCC)
modes 2 and 3.[94]

In the 5GC there are three SCC modes[22]:

• Mode 1: The UPF is acting as PSA. Upon UE mobility, the PSA stays the same
and, therefore, the UE keeps the same IP address. As the UPF does not change, the
physical distance between the new gNB and the old UPF may increase and, therefore,
also the latency tmno increases. As this may contradict the edge computing latency
requirements, this mode is not usable in this context.

• Mode 2: The network releases the PDU session and instructs the UE to establish a
new PDU session towards the network. The consequence is that there is a period
where the UE does not have a PDU session and, therefore, no connection to a DN.

• Mode 3: The network instructs the UE to establish a new PDU session in parallel
to the existing one. The 5GC maintains the PDU session with the old PSA for a
defined period of time until it is released.

When the SMF decides that re-anchoring in mode 2 is required, it informs the UE that
it needs to release the PDU session via the AMF and the RAN. The message contains
a code that indicates to the UE that it shall establish a new PDU session to the same
DN.[92] Essentially, the new PDU session request by the UE triggers the SMF to start
the UPF selection anew, and the SMF is able to take the new information into account,
especially the location information. When the distributed anchor point is used, a new
UPF is selected as the PSA. In the session breakout scenario, it is likely that the internet
PSA stays the same, as there are no latency constraints on this path. However, the UL
CL and the edge PSA shall be re-located, as the selection of these is required to minimize
tmno. When using multiple PDU sessions, only the edge PDU session has to be relocated.
Therefore, if this is supported by the SMF, it is a good approach to use SCC mode 1 for
the internet PDU session and SCC mode 2 for the edge PDU session.

The scenario using SCC mode 3 is similar to SCC mode 2. The crucial difference is
that instead of releasing the current PDU session immediately, another PDU session is
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established in parallel and the old PDU session is released after a period of time. This
effectively doubles the amount of parallel PDU sessions. Therefore, if the multiple PDU
sessions access model is used, there are four PDU sessions at a certain time.[92] Again,
using SCC mode 1 for the internet PDU session can reduce this overhead. In this case,
the internet PDU session is not released. Thus, there are three parallel PDU sessions:
The unchanged internet PDU session, the old edge PDU session and the new edge PDU
session. When a UL CL is used, the SMF may select three new UPFs, one UL CL and
two PSAs. Thus, at a certain time, there may be six UPFs involved for a single UE. As
one can see, the combination of SCC mode and edge computing deployment option can
significantly increase the complexity and signaling overhead.

Table 4.3 compares the SCC modes for the three edge computing access modes. The
service interruptions are minimal for mode 1 and mode 3, as the UE keeps its PDU
session and only some packets are lost during the handover on the air interface. This
process is much faster than establishing a new PDU session. Hence, mode 2 has a more
noticeable service interruption.

SCC Mode
Mode 1 Mode 2 Mode 3

UPF changes no yes yes
Service interruptions minimal noticeable minimal
Edge relocation no yes yes
AF notifications no yes yes

Max parallel PDU sessions
Distributed anchor point 1 1 2

Max parallel PDU sessions
Multiple PDU sessions 2 2 4

Max parallel PDU sessions
Session breakout 1 1 2

Table 4.3: Comparison of the three different SCC modes for edge computing

In edge computing, the support for SCC mode 2 and mode 3 entails that the edge enabler
layer is able to relocate edge applications as well. After the re-anchoring, the user plane
traffic is routed to a new edge DN, as ttransit must be minimized. Therefore, to ensure
ongoing service, the EAS needs to be relocated before. To coordinate this process, the AF
can instrument the SMF (via the PCF) to send early or late notifications for re-anchoring
scenarios. When early notifications are used, the SMF informs the AF of the planned
change before it communicates with any other component. The AF may accept or reject
the PDU session change. Upon accept, the procedure continues as described. Upon

50



4.5. UPF Selection and User Plane Traffic Routing

reject, the SMF does not modify the PDU session. Late notifications are used to inform
the AF that a re-anchoring has happened.[22][92]

This feature allows the edge enabler layer to decide if re-anchoring should happen or not.
This may depend on different constraints. If the latency constraints are still expected to
be met even if the UE moves further away, the AF may reject the re-anchoring. As the
AF is also controlling the SMF’s UPF selection, it is able to make this decision. Also, if
the EAS is stateful and a relocation is not feasible or unsupported, the AF can reject.
This decision is a trade-off between simplicity and latency constraints.

4.5.3 UPF Selection and Instantiation
Independent of the three different deployment options described in Section 4.5.1, the SMF
should always select the closest UPF(s) for edge computing. Closest in this context means
that the UPF is in physical proximity of the base station that serves the UE. The 5G
core network standards TS 23.501[22] and TS 23.502[92] describe requirements for UPF
selection, but do not specify in detail how this shall be done. Based on the procedures
described in Section 4.4 and the standardized procedures in 3GPP TS 23.501[22] and TS
23.052[22], the author of this thesis proposes three solution options:

• Pre-configured steering policy

• Utilize N6 routing information

• Dynamic UPF selection based on NRF information

As the 5GC allows NFs to dynamically be instantiated with the help of the NRF, this is
considered as well in the solution options.

Pre-configured Steering Policy

As described in Section 4.4.2, the SM Policy API allows to specify a steering policy ID
per DNAI. One option to realize edge computing is to locally configure steering policies
on SMF. These steering policies should define the UPF endpoints which are used within
a specific policy. Additionally, the role of each UPF shall be configurable to decide if
the UPF is a UL CL, edge PSA or central PSA. This is sufficient to create a mapping
between DNAI and UPF, allowing the SMF to choose one (or multiple) UPFs based
on DNAI. However, this does not solve the requirement to select the closest UPF. It
is possible that the PCF does not take the user location into account and informs the
SMF of all the possible edge DNs by providing a list of DNAIs. In this case, the SMF
still needs to choose which DNAI shall be selected for a specific PDU session. Therefore,
there is the need to pre-configure this mapping in the SMF as well. Another solution
is that the AF or PCF receive updates to the user’s location and act accordingly. This
means that the PCF only signals the DNAIs which are in the current scope. In case of
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mobility, the PCF updates the traffic description and replaces the DNAI with the one
located closest to the user.

ul_cl_policy_1:
dnai: internet
ul_cl: true
next_hop_1: PSA1 (N9)
next_hop_2: PSA2 (N9)

edge_policy_1:
dnai: edge_dn_1
next_hop_1: Edge DN (N6)

internet_policy:
dnai: internet
next_hop_1: Internet DN (N6)

Listing 4.1: Example of a local steering policy in SMF

An example steering policy in SMF is shown in Listing 4.1. Each policy has a unique ID
and defines a DNAI. The first is used to enforce a UL CL. Here, either the internet DNAI
or the edge DNAI should be configured. The edge_policy_1 is used to create a tunnel
between the UL CL and the UPF and to enable routing in the N6 interface, where the
GTP tunnel is removed. The internet_policy is used to route traffic to the internet.
The example configuration may be used to create a scenario as depicted in Figure 4.11.

It is important to note that the SMF does not decide which rules to apply. This
configuration is only used to create a mapping between DNAI and UPFs and to configure
the architecture. The PCF uses the SM Policy API to inform the SMF which rules to
apply. The identifiers of the rules need to be contained in the traffic description in the
PolicyDecision. Also, the PCC rules contain the information how to identify traffic.

An alternative to the presented solution is to not use the DNAI as identifier, but to
configure policy steering rules on a higher level. In that case, the PCF sends only one
traffic description with a distinct rule and the SMF needs to pre-configure each possible
combination of different UPFs.

Utilize N6 Routing Information

As described in Section 4.4.2, the API allows to either define a pre-configured policy
ID or N6 routing information. In the current version, this routing information is an IP
address and a port. Therefore, there is no need to configure local steering policies in
the SMF, as the mapping between DNAI and next hop (UPF) is already defined in the
PolicyDecision data type from the PCF.
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Nevertheless, as the N6 routing information is only an IP address, much of the information
is implicit. The SMF needs a logic to decide which UPF shall be the UL CL and needs
to create the architecture based on a combination of:

• Number of next hops (DNAIs)

• Number of PCC rules (which define the traffic identification)

• Available UPFs in the system

Dynamic UPF Selection Based on NRF Information

As described in Section 2.1, the NRF has a vital role in the 5GC: It allows for discovery
of components similar to a DNS, but with the added value that each component can
define additional information.

The NF repository service is described in 3GPP TS 29.510[34]. It defines the UpfInfo
data structure, which is stored in the NRF and can be retrieved by any other NF in the
5GC. This data structure allows to define for each UPF the DNAIs it serves, together
with a mapping between DNAI and network instances. The network instance is an
identifier of a network interface of the UPF and can be signaled with the PFCP protocol.
This mapping is introduced in V16.8.0 of the standard, hence the reference is V16.8.0
instead of V16.5.0 as for most of the other core-related specifications. To enable edge
computing, each edge UPF should configure only the DNAI for the corresponding edge
DN. An example of the relevant parts of the UpfInfo can be found in Section A.2.

In this solution, the steering policy ID in the SMF can be used as well. The difference
to the pre-configured steering policy option is that the configuration in the SMF does
not define the architecture, as this is implicit in the UPF info from the NRF. The
configuration is used to indicate to the SMF how this information shall be used. For
example, a steering policy may indicate that a UL CL shall be inserted.

The UpfInfo item also allows to define the TACs that a specific UPF is serving. This
information can be used by the SMF as well to ensure that the TAC of the user corresponds
to the one of the UPF. This allows the SMF to select the UPF that is closest to the gNB,
hence reducing the time tmno.

Dynamic Instantiation of an Edge UPF

The use cases in this chapter rely on the assumption that all the components in the
5GC are controlled by a mobile operator. The nature of the edge computing enablement
layers (such as 3GPP EDGEAPP and ETSI MEC) allows for dynamic instantiation of
application servers in the edge DN. When the UPF is seen as an application server, it can
be spawned when needed. This would allow the operator of the edge DN (which might
be a different party than the mobile operator) to use its own infrastructure. For example,
when the UPF of the operator does not support the UL CL feature, the edge solution
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may instantiate one or more of its own UPFs per edge DN. This does only work when
the dynamic UPF selection solution is used, as these UPFs cannot be pre-configured in
the SMF.

Comparison

Table 4.4 compares the different UPF selection options. It is apparent that while the
pre-configured steering policy option is very simple, it is also the least flexible. The
dynamic option requires an NRF and thus also that the UPF registers towards the NRF
and that the SMF subscribes for notifications. Hence, the complexity is high. The
advantage is that this also increases the flexibility of the solution and it is the only
solution that allows for a cloud-native deployment, as UPFs may be instantiated or
terminated during the operation. The N6 routing information option is between these
two options in terms of flexibility and complexity.

Furthermore, while the pre-configured UPF selection option seems simple in this example,
its complexity increases with the number of UPFs. Manually configuring hundreds
of UPFs in one or more configuration files on the SMF is error-prone and not well
maintainable.

Option Pre-configured N6 Information Dynamic

PCF required yes yes yes
UPF configuration SMF local SMF local in UPF
NRF required no no yes
Flexibility low medium high
SMF Complexity low low high

UPF NRF
Registration no no yes

SMF NRF
Registration no no yes

Dynamic UPF
Instantiation no might yes

Table 4.4: Comparison between the three UPF selection options
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CHAPTER 5
Edge Computing Prototype in the

OAI

5.1 About the OAI
The OAI is an open source implementation of 3GPP components, supporting 4G and
5G. The goal of the OAI is to run on Common-Off-The-Shelf (COTS) hardware for
all the computation nodes and on Software Defined Radio (SDR)s such as the ETTUS
Universal Software Radio Peripheral (USRP) for all the radio communication.[9] The
USRPs are high-performing SDRs that cover frequency ranges between 3 MHz and 6
GHz, as described by ETTUS[W17].

As the OAI targets to provide a full-stack 3GPP-compliant 5GS, it consists of a 5G RAN
and a 5GC. In the context of this thesis, only the 5G aspects of the OAI are considered.

5.1.1 RAN
The OAI RAN supports several different SDRs, where the most popular ones are the
USRP devices B210, X310 and N310.[9] Other SDRs are also supported such as the
Benetel RRU[W18] for LTE and the AW2S RRUs for LTE and NR[W19].

The OAI RAN consists of the gNB, which implements the architecture described in 3GPP
TS 38.401[95]. Following this, the gNB may be split into separate components, namely
the CU, Distributed Unit (DU) and the RU. Within the OAI, the interface between the
CU and the DU is the 3GPP-standardized F1 interface. The Small Cell Forum Femto
Application Programming Interface (FAPI) interface is used between the MAC/RLC
layer and the PHY layer and the O-RAN 7.2 interface is used between the CU and the
DU, as shown in Figure 5.1.[9]
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CU

DU

3GPP F1

MAC/RLC

PHY

SCF 5G FAPI

RU

O-RAN 7.2

Figure 5.1: gNB functional split protocols, adapted from Kaltenberger et al.[9]

The OAI gNB supports all the main UL and DL channels defined in 3GPP TS 38.211[83][9]:

• Primary Synchronization Signal

• Physical Broadcast Channel (PBCH)

• Physical Downlink Control Channel (PDCCH)

• Physical Downlink Shared Channel (PDSCH)

• Physical Random Access Channel (PRACH)

• Physical Uplink Control Channel (PUCCH)

• Physical Uplink Shared Channel (PUSCH)

The MAC layer supports scheduling and uses the FAPI protocol to instrument the
PHY layer. The RLC layer has been updated from the 4G version to support the 5G
procedures.[9]

The RRC layer supports the procedures for the NSA Dual-Connectivity mode[9], especially
on the X2 interface between the 4G eNodeB (eNB) and the 5G gNB.

The OAI RAN supports the NSA as well as the SA option.[9] As this work focuses on
the interfaces inside the 5GC to enable edge computing, only the SA deployment option
is considered.
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5.1.2 5GC
The 5GC implements the basic functions which are necessary to establish a PDU session
between the UE and the 5GS. As shown in Figure 5.2, the OAI 5GC provides the "core
of the core", as described in Section 2.1.4. The NFs AMF, SMF, UDM, UDR, AUSF and
UPF are implemented. Thus, the basic use cases registration, authentication and PDU
session establishment are all supported. This fundamentally enables simulated UEs, as
well as COTS UEs to have an internet connection. Additionally, the NRF is provided,
which is a prerequisite for the solution described in this chapter. The NEF and NSSF
are not used in this thesis. The SMF has been adapted to support the underlying edge
computing use case, as discussed in Section 5.3. Further, the PCF has been created to
support the edge-computing related procedures, which is described in Section 5.2. The
author’s contribution in the PCF and the created interface between SMF and PCF is
the foundation for future use cases, such as QoS. The author has also contributed to
the UPF to enable the different configurations necessary to support the edge computing
deployment options presented in Section 4.5. The NRF was adapted to support the
DNAI configuration in the UpfInfo data structure.

NRF UDM AUSF UDR AF NSSF NEF

Nnrf Nudm Nausf Nudr Naf Nssf Nnef

AMF SMF UDSF PCF

Namf Nsmf Nudsf Npcf

UE RAN UPF DN

N1 N2

N3

N4

N6

Available in OAI
Not Available
Author's Contribution
OAI 5G RAN Project 

Figure 5.2: OAI CN architecture, adapted from openairinterface.org[W20]

Service Based Architecture (SBA)

All the 5GC NFs support the SBA, where the NFs provide services which are consumed
by other NFs. Each NF provides a SBI for other NFs to consume.[9] Thus, the NFs
communicate over the SBI, which is described in 3GPP TS 29.500[96]. The SBI provides
RESTful services, therefore, the communication protocols are HTTP or HTTP2 and
TCP. All the SBI specifications provide yaml definitions compliant with the open-api
specification provided by swagger.io[W21]. This allows to use swagger codegen to
generate code for the APIs. All the core components are developed in C++ and Pistache
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is used as REST web server. The documentation of Pistache can be found on the Pistache
GitHub repository[W22].

5.1.3 Deployment
The deployment of the OAI consists of the gNB and the 5GC.

gNB

The work conducted by Mufutau et al.[97] shows that the OAI RAN can be deployed
virtualized in a cloud environment. However, their results also show that there is a
significant performance impact. Due to this reason, the OAI gNB is mostly deployed
on bare-metal. This deployment works on any COTS hardware and it does not require
specialized hardware. The server where the OAI is deployed, however, needs access to a
radio unit, in most cases a USRP.

5GC

Due to the fact that the 5GC NFs do not significantly differ from other web micro-services,
the deployment in a virtualized environment is more straight-forward. Therefore, all the
core components can be deployed as Docker containers and Dockerfiles for each of them
exist. Also, the latest stable and development images are published in the Docker Hub
in the oaisoftwarealliance namespace[W23].

The OAI 5GCN provides docker-compose files to bring up all the different network
functions with a default configuration that can be changed by setting the environment
variables in the docker-compose files accordingly.

Apart from that, Kubernetes and Openshift are supported. The OAI 5GCN repository
provides helm charts, which are used to launch the components in a Kubernetes/Openshift
environment.

The NFs can also be deployed in a bare-metal scenario. This is useful when there are
performance concerns, especially on the UPF.

5.2 PCF Policy Decisions
As described in Section 4.4, the PCF plays a crucial role in enabling edge computing in
the 5GC. As this component did not exist in the OAI, it has been created as part of this
thesis.

5.2.1 Policy Provisioning
The standards on the PCF and policy management (3GPP TS 23.503[93], 3GPP TS
29.512[36]), 3GPP TS 29.513[98], 3GPP TS 29.514[37]) do not specify how the policy
decisions are provisioned in the PCF. In an operator’s deployment, the PCF policies
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are most likely provisioned using a custom API, which is provided to the customer and
subscriber management services. There is the standardized PCF Policy Authorization
API[37], but it does not allow to provision all the contents which may be contained in a
policy decision.

Therefore, the author decided to use file-based provisioning for the first version of the
PCF. The format of the files is YAML, but the structure and the names of fields is the
same as in the SM Policy Control API[36].

There are three different parts of the policy to enable edge computing:

1. Traffic Control Descriptions

2. PCC Rules

3. Policy Decisions

The implementation allows to create different files for each type. Therefore, three
directories need to be created, one for each type of rule. These directories are provided in
the configuration file of the PCF, which contains other configuration such as the FQDN,
port and protocol type of the SBI interface.

(1) follows the syntax of the TrafficControlData data structure and (2) follows the
syntax of the PccRule data structure from the SM Policy Control API[36]. An example
for the configuration can be found in Section B.1.

(3) uses a custom format, as the standard models do not consider this use case. The
syntax is described in Listing 5.1.
<rule-name>:

supi_imsi: <imsi>
dnn: <dnn>
slice:
sst: <sst>
sd: <sd>

pcc_rules:
- <rule1>
- <rule2>
- ...

Listing 5.1: PCF policy decisions syntax

Items described with <name> are variable fields.

The order of importance of the fields is: supi_imsi, dnn, slice. In case neither of
the SUPI, DNN or slice fields are there, the rule is considered a default rule, i.e., it
matches always when no other rule matched. The pcc_rules fields is mandatory and
must contain at least one item.
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It is important to mention that the items of the pcc_rules list need to be the same as
the ID of the PCC rules created in the PCC rules directory. The same applies for the
traffic descriptions. Each PCC rule can have a reference to a traffic description ID. This
ID must map to the one provisioned in the traffic descriptions.

The rules are loaded upon startup of the PCF. In case of an erroneous configuration, the
user is informed. The PCC rules and the policy decisions are mandatory, therefore, if not
at least one correct policy decision is available, the PCF exits. The traffic descriptions
are optional, but in case there is an error, the user receives a warning on the terminal.

For handling the filesystem and to verify if the provided directories exist and are not
empty, the boost filesystem library is used. Reading and parsing the YAML files is done
using the yaml-cpp[W24] library.

5.2.2 SM Policy Control API
The current implementation of the PCF provides the SM Policy Control API that is used
by the SMF to receive information about the PDU session.

The REST API has been auto-generated using the openapi-generator-cli tool
together with the TS29512_Npcf_SMPolicyControl.yaml file, which is provided by
the 3GPP TS 29.512[36]. The targeted framework and language for the generator is
cpp-pistache-server. The generator creates the HTTP routes together with all the
necessary model classes, which serve as Data Transfer Object (DTO) in the code.

From the procedures described in Section 4.4.2, the following have been implemented:

1. Creation of an SM Policy Association

2. Deletion of an SM Policy Association

3. Retrieving an SM Policy Association

4. SMF Update of an SM Policy Association

Thus, all the procedures where the PCF acts as a server and the SMF act as a client are
implemented in the PCF. The notification mechanism, where the PCF acts as a client
towards the SMF, are not implemented in the current release.

The SM Policy Control API uses the policy decisions, traffic descriptions and PCC rules,
which have been provisioned via file.

5.2.3 Code Structure
Figure 5.3 shows the class diagram of the relevant parts of the PCF implementation.

The sm_policy_decision, context, delete_data and update_data are auto-
generated DTOs from the API. The & indicates that a parameter is an output parameter
and only a reference is passed.
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policy_storage

+ insert_supi_decision(supi : string, pd : sm_policy_decision) 
+ insert_dnn_decision(dnn : string, pd : sm_policy_decision)
+ insert_slice_decision(slice : slice, pd : sm_policy_decision)
+ set_default_decision(pd : sm_policy_decision)
+ find_policy(context : context) : policy_decision

policy_decision

+ decide(context : context, pd : 
sm_policy_decision&) : status_code

supi_policy_decision slice_policy_decision dnn_policy_decision

0..*

policy_provsioning_file

+ read_all_policy_files() : bool

pcf_sm_policy_control

+ create_sm_policy_handler(context : context, pd: sm_policy_decision&,  id : string&) : status_code
+ delete_sm_policy_handler(id : string, delete_data : delete_data) : status_code
+ get_sm_policy_handler(id : string, context: context&,  pd : sm_policy_decision&) : status_code
+ update_sm_policy_handler(id : string, update: update_data, pd: sm_policy_decision&) : status_code

0

1

0

1

Figure 5.3: PCF class diagram

All the policy decisions are stored in a singleton policy_storage object. Upon startup
of the application, the policy_provisioning_file class takes care of reading all the
policies from the file system and inserting policy_decisions of different type into the
policy_storage. In a future PCF version, other policy sources need to be considered
as well, i.e., from the PCF policy authorization API. This design considers that and
allows for extensions.

All the sub-types of policy_decision override the decide method, allowing to have
different decisions based on the class type.

The pcf_sm_policy_control is the service class which handles all the requests from
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the auto-generated REST endpoints. As it can be seen in the class diagram, these are the
Create, Read, Update, Delete (CRUD) requests. When a policy association is created,
the find_policy method of policy_storage is called. The calling function does not
know the exact type of the decision, e.g., it could be a SUPI or a slice-based decision. The
service class calls the decide method of the sub-class, although it only has a reference
to the superclass. The decide method is thus called through dynamic binding.

5.3 UPF Selection and Traffic Steering on SMF
The PCF provides the policy rules for the SMF, as described in Section 4.4. However,
the standardized API does not allow to define an exact UPF configuration inside the
PCC rules. In fact, the only information available is the routing IDs and the DNAIs. For
the solution within the OAI, the author of this thesis has implemented the "Dynamic
UPF selection based on NRF information" option, as described in Section 4.5.3.

5.3.1 UPF Data Structure on SMF
Before exploring how the DNAIs can be mapped to a specific UPF configuration, there is
the need to consider different UPF deployment scenarios. These scenarios are – with some
exceptions – not defined by the standard, but are up to operator policy. An operator
could, e.g., decide to have a dedicated UPF in each department of a state to optimize the
internet routing. This of course depends on many factors such as the internet backbone
of the operator. Thus, the solution shall be as dynamic as possible. Figure 5.4 depicts
an example deployment scenario.

gNB UL CL

I-UPF1 A-UPF1 Internet
DN

N9 N6

A-UPF2
N9 Edge

DN
N6

A-UPF3N3 N6

Access
I-UPF1
A-UPF2

ULCL
A-UPF1

I-UPF1
Internet

ULCL
Edge

Access
Internet

N3
N9

Figure 5.4: Example UPF deployment scenario

This scenario consists of 5 UPFs. An Intermediate UPF (I-UPF) is classified as not
having an N6 connection, thus not having a direct access to any DN. The Anchor UPF
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(A-UPF) is used to anchor the PDU session and, therefore, acts as PSA.

A-UPF3 is acting as a central UPF and has an N3 interface towards the access and one
N6 interface towards the internet DN. The other UPF with an N3 interface is acting as a
UL CL and has N9 interfaces towards the I-UPF1 and the A-UPF2 respectively. The
A-UPF2 is connected to the local edge DN, whereas the I-UPF1 is connected to the
internet DN via the A-UPF1. Each UPF is configured with the DNAIs it serves. For
example, UL CL serves the DNAIS "Access", "I-UPF1" and "A-UPF2".

This example indicates that the different UPF deployment scenarios form a graph. The
previous implementation of the SMF stored all the available UPFs in a list and, therefore,
there is no indication of the hierarchy between the different UPFs. Thus, only one UPF
can be selected for any PDU session, e.g., based on DNN or slicing information. Each
UPF in SMF has a PFCP association, which is created once between SMF and UPF
when either becomes available. The PFCP heartbeat procedure ensures that the link
between the components is working.

To allow selecting multiple UPFs for one PDU session, the PFCP associations need to be
stored as a graph. Thus, the list has been replaced with an adjacency list. A new class
upf_graph is responsible for adding, deleting, getting and updating UPF associations
in the graph. The adjacency list is implemented as a hashmap of lists, where the unique
UPF node ID is the key.

Given the graph data structure, the UPF selection can be split into three phases:

1. UPF graph creation

2. UPF subgraph selection

3. PFCP session handling

5.3.2 UPF Graph Creation
There are multiple ways how the SMF may be configured which UPFs are available.
The straightforward approach is to configure one or more UPF IP addresses within the
SMF configuration. In this case, the UPF does not have an available UPF profile or
the UPF profile is very limited. In this case, the SMF is not able to read the implicit
graph configuration from the UPF profile and, therefore, each UPF is added as a vertex
without edges in the UPF graph.

The other possibility – which is also used for the prototype – is to utilize the NRF.
Upon startup, the SMF indicates that it would like to receive notifications for the NF
type UPF. This is done using the NRF NFManagement API, as described in 3GPP TS
29.510[34]. Whenever a UPF comes available, the NRF notifies the SMF and includes
the UPF profile.

The UPF profile contains an FQDN and a list of interfaces. Whenever a UPF association
is added to the graph G, the SMF verifies if one of the FQDNs in the interfaces of the

63



5. Edge Computing Prototype in the OAI

to-be-added UPF is equal to the FQDN of one of the existing UPFs. If this is the case,
an edge between these two is added. If not, the UPF is added without edges. This is
described in Algorithm 5.1

Algorithm 5.1: Algorithm to add UPF in UPF graph
1 InsertIntoGraph (NewUPF)
2 foreach UPF ∈ G do
3 foreach interface ∈ NewUPF do
4 if interface.fqdn = UPF.fqdn then
5 AddEdge(NewUPF , UPF )
6 else
7 AddNode(NewUPF )
8 end
9 end

Without considering the AddEdge and AddNode functions, the time complexity of this
algorithm is O(|V |i), where V is the number of nodes in G and i is the number of
interfaces in the new UPF. The AddNode function is O(1), as the graph is represented
as std::unordered_map, which has a constant search and insertion in the average
case. To prevent double edge insertions, the AddEdge iterates through the list of edges.
Therefore, its time complexity is O(i), when we assume that the average number of edges
is equally distributed for all UPFs.

Therefore, the total time complexity for insertion is O(V i2).

5.3.3 UPF Subgraph Selection
As described in Section 4.5.3, each UPF needs to declare which DNAIs it serves. Depend-
ing on the subscribed scenario, the PCF includes all the DNAIs that need to be served
for a specific PDU session. If, e.g., the top path from Figure 5.4 should be selected,
the policy decision contains the DNAIs "Access", "UL CL", "I-UPF1", "A-UPF1" and
"Internet". When a UL CL should be inserted, the PCF needs to send one PCC rule per
path, i.e., two when the internet DN and the edge DN need to be covered. The reason is
that the PCC rule contains the traffic description, which identifies the user plane traffic.
This is necessary for the UL CL to decide which path should be selected for a specific
user plane traffic.

Based on this information, the SMF is able to select the UPFs that serve these DNAIs
from the graph created in the previous step. The graph is traversed in a Depth-First-
Search (DFS). The starting nodes are all the nodes which have an N3 interface, also
called access nodes. Algorithm 5.2 shows a modified version of the DFS, which also takes
disconnected graphs into account.
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Algorithm 5.2: Algorithm to select subgraph based on PCC rules
1 SelectUPFNodes (PCCRules)
2 subGraph ← empty graph
3 visited ← hashmap, where ∀V ∈ G : visited[V.id] = false
4 foreach rule ∈ PCCRules do
5 ruleDnais ← all DNAIs ∈ rule
6 foreach UPF ∈ G do
7 if IsAccess(UPF ) ∧ ¬visited[UPF ] then
8 SubGraphDFS(UPF , subGraph, visited, ruleDnais)
9 end

10 if ¬V erifyGraph(subGraph, ruleDnais) then
11 reset subGraph and continue with other access node
12 else
13 subGraph is correct. Break and continue with next rule

14 end
15 end
16 allDnais ← n|∀n ∈ DNAIs from PCCRules
17 if ¬V erifyGraph(subGraph, allDnais) then
18 return Error
19 end
20 SubGraphDFS (start, subGraph, visited, dnais)
21 stack ← empty stack
22 stack.push(start)
23 while stack not empty do
24 current ← stack.pop()
25 visited[current] = true
26 if current serves any dnai ∈ dnais then
27 subGraph.AddNode(current)
28 foreach edge ∈ current.edges do
29 if ¬visited[edge] then
30 subGraph.AddEdge(current, edge)
31 stack.push(edge)
32 end
33 end
34 end
35 end
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The algorithm starts with the SelectUPFNodes function, which takes the PCC rules
from the PCF as input. The SubGraphDFS function is implementing the DFS. This
function takes an existing graph and adds nodes and edges, therefore, it is possible to
update the graph in each iteration. The VerifyGraph function ensures that all DNAIs
from the PCC rule are covered and that the graph consists of exactly one access node
(N3 interface) and at least one exit node (N6 interface). In case the verification fails,
the graph is set to the state before the last execution of SubGraphDFS. The visited
hashmap is not reset, ensuring that each node is only traversed once.

The SubGraphDFS function is a slightly adapted version of a DFS (see also Cormen et
al.[99]). The difference to the generalized DFS is that only nodes which serve any of the
given DNAIs are explored. If that is the case and an edge of the current node is not yet
visited, it is added to the stack and also added as an edge in the subgraph.

The DFS is executed for each PCC rule. The reason is that the DNAIs in different PCC
rules create different paths. To ensure that all paths are covered for each of the PCC
rules, the DFS is used to create several paths, which are merged into the same subgraph.
This requires that at the end of the algorithm, the subgraph is verified again, but with
all the DNAIs from all PCC rules. This ensures that there is still only one access node,
i.e., there is an UL CL somewhere in the path or there is only one path.

The time complexity for a DFS is O(|V | + |E|)[99], where V is the vertices (nodes) and
E is the edges of the graph. The VerifyGraph function iterates through all of the
DNAIs for each of the nodes in the graph to verify if a node serves the DNAI. Therefore,
its time complexity is O(d|Vs|), where d is the number of DNAIs and Vs is the number
of nodes in the subgraph. Each DNAI refers to a UPF, the access DNAI and one or
more exit DNAIs. There are as many exit DNAIs as PCC rules, denoted as r. Thus,
|Vs| = d − 1 − r and, therefore, the number of steps is d2 − d − rd. As rd is significantly
smaller as d2, the time complexity is O(d2).

The VerifyGraph function is executed as many times as the DFS algorithm. Thus, the
total time complexity for the algorithm is O(r(d2 + (|V | + |E|)).
In a realistic scenario, r is assumed to be very small and it is unlikely that it is ever
greater than 10 (which would mean 10 different paths for a PDU session). The same
applies for d. The number of DNAIs/UPFs per PDU session is likely to be in the same
magnitude. Therefore, even though the time complexity is quadratic in number of DNAIs,
the quadratic part of the algorithm is always small in a realistic deployment. The number
of UPFs in the total graph, however, can be very large and traversing through these is
done in linear time.

5.3.4 PFCP Session Handling
3GPP TS 23.502[92] defines the flow of a PDU session establishment. From the perspective
of the SMF, it can be divided into two parts: (1) UL procedure and (2) DL procedure.
Figure 4.9 shows the UL procedure. The communication protocol between the SMF and
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the UPF over the N4 interface is PFCP, which is defined in 3GPP TS 29.244[100]. In the
UL procedure, the SMF instructs the UPF to create a GTP tunnel in UL direction, from
the UE to the DN. One important aspect of the GTP protocol is that each tunnel has a
unique ID, the Fully Qualified Tunnel Endpoint Identifier (F-TEID). 3GPP TS 29.244
Chapter 5.5[100] specifies that this ID must be created by the user plane components.
Hence, the SMF is not allowed to create F-TEIDs. This restriction requires that the SMF
creates the session for each of the UPFs in a specific order. For session establishment in
UL, the SMF needs to traverse the graph from the exit nodes.

In DL, the procedure is inverted, i.e., the SMF starts at the access nodes. It sends session
modification requests to the UPFs to create the rules for the DL direction.

Note: The abbreviations in Figures 5.5, 5.6, 5.7, 5.8 and 5.9 are: Network Instance
(NWI), Packet Detection Rule (PDR) and Forwarding Action Rule (FAR)

SMF UPF

PDR:
          NWI Access
          Create F-TEID
          Outer Header Removal
FAR:
          NWI DN

UPF_FTEID_UL

1) PFCP Session
Establishment Request

3) PFCP Session
Modification Request
PDR:
          NWI DN
FAR:
          NWI Access
          Create GTP Header:
              gBN_FTEID_DL

2) PFCP Session
Establishment Response

4) PFCP Session
Modification Response

Figure 5.5: PFCP messages for a central UPF scenario

Figure 5.5 describes the call flow for a central UPF scenario or an edge UPF scenario
using the distributed anchor point access model in UL and DL direction. This is the
most common and simple case, when one UPF is used to route the user plane. The NWI
uniquely identifies a network interface and is used by the UPF to install the PDRs and
FARs correctly. In message (1), the PFCP session is established with a PDR matching
the NWI Access. Although this NWI can be chosen freely on the UPF, it is a good
practice to have a naming scheme.
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In these examples the following naming scheme has been used:

• "Access" : N3 interface towards gNB

• "DN": N6 interface towards a DN

• "UPF": N9 interface to the next UPF, coincides with UPF name

It is worth to note that according to 3GPP TS 29.244[100], the NWI is an optional field.
In this case, the UPF uses other information from the PFCP protocol to identify the
interface, i.e., there is a flag indicating UL or DL direction. This is sufficient for the
scenario depicted in Figure 5.5, but as soon as more than one UPF is part of the PDU
session, the NWI is necessary to correctly identify the interfaces. This is especially true
for the UL CL scenario, as the UL CL has two N9 interfaces and without the NWI it is
impossible to properly select the correct one.

The PDR of message (1) instructs the UPF to remove the outer header, as the GTP
tunnel terminates here and forwarded packets must not contain a GTP header. Also, the
UPF is instructed to create an F-TEID in UL direction. The response (2) contains the
created F-TEID UPF_FTEID_UL.

In the PDU session establishment flow, the UPF_FTEID_UL is communicated to the gNB
via the AMF. Then, the SMF receives a PDU session SM context modification request
which contains the F-TEID of the gNB, called gNB_FTEID_DL in the call flows. This
procedure is not shown in Figure 5.5, but it is happening between messages (2) and
(3). In message (3), the SMF installs the rules in the DL direction. The NWI in the
PDR is DN, indicating that traffic is coming from the DN (e.g., the internet). There is
no need to create an F-TEID or remove an outer header, but it is required to add a
GTP header using the gNB’s F-TEID. This is the content of the FAR. Message (4) is the
acknowledgment that the rules of message (3) have been successfully installed.

Figure 5.6 shows the call flow using one I-UPF and one A-UPF in UL. This example
indicates that the order of the PFCP messages matter. Message (1) is used to create
the rules in UL for the A-UPF, meaning the packets should be forwarded to the DN.
However, the NWI is the I-UPF in the PDR. Also, an F-TEID is created and the outer
header is removed. The A-UPF replies with the created F-TEID A-UPF_FTEID_UL in
message (2). In message (3) the I-UPF is instructed in the PDR to use the NWI Access
(the gNB) and also create an F-TEID. It also has to remove the outer GTP header. This
is because there is a distinct GTP tunnel between gBN and I-UPF and between I-UPF
and A-UPF. The FAR in message (3) configures the UPF to create a GTP header using
the previously created A-UPF_FTEID_UL. Therefore, at this point the UPF removes the
GTP header from the gNB and adds a new GTP header with the F-TEID of the A-UPF.
Message (4) contains the newly created F-TEID I-UPF_FTEID_UL. One can see that
the F-TEID created by the A-UPF is required in message (3). Thus, it is crucial that
the messages are sent in this order.

68



5.3. UPF Selection and Traffic Steering on SMF

SMF I-UPF

PDR:
          NWI I-UPF
          Create F-TEID
          Outer Header Removal
FAR:
          NWI DN

1) PFCP Session
Establishment Request

A-UPF

2) PFCP Session
Establishment Response
A-UPF_FTEID_UL

3) PFCP Session
Establishment Request
PDR:
          NWI Access
          Create F-TEID
          Outer Header Removal
FAR:
          NWI A-UPF
          Create GTP Header
              A-UPF_FTEID_UL 

I-UPF_FTEID_UL

4) PFCP Session
Establishment Response

Figure 5.6: PFCP messages for an I-UPF/A-UPF N9 scenario in UL direction

Algorithm 5.2 selects the subgraph for this specific PDU session. In the case depicted
in Figure 5.6, two UPFs have been selected. The underlying graph structure implicitly
defines if a UPF acts as I-UPF or A-UPF, as the presence of an N6 interface indicates an
A-UPF and the presence of an N3 interface indicates an I-UPF. In case both are present,
it is a central UPF scenario as depicted in Figure 5.5. Therefore, before sending the
first message, it is already known how the scenario should look like. This is the main
reason why the PFCP session handling and the UPF subgraph selection are split into two
different stages. The scenario in Figure 5.6 shows that the algorithm has to start at the
A-UPF. To accomplish this, the subgraph is traversed with a DFS as well. The crucial
difference is that for PFCP session handling the DFS is asynchronous. Upon receiving
the PDU session establishment request from the AMF, the SMF starts the asynchronous
DFS. Then the SMF performs a similar procedure as the SubGraphDFS function outlined
in Algorithm 5.2. The major difference is that instead of going through all the nodes in
the graph, only the current node is returned and the neighbors are only pushed to the
stack, but not processed. This is achieved by declaring the stack as a member variable.
Therefore, only one asynchronous DFS procedure can be active for each UPF graph. Upon
receiving a PFCP Session Establishment/Modification Response, the SMF continues
the DFS, starting with the first edge from the previous UPF. This is repeated until all
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nodes in the graph are covered. Only then, the PDU Session Establishment/Modification
Response is sent to the AMF.

SMF I-UPF

PDR:
          NWI DN
FAR:
          NWI I-UPF
          Create GTP Header
              I-UPF_FTEID_DL 

7) PFCP Session
Modification Request

A-UPF

8) PFCP Session
Modification Response

5) PFCP Session
Modification Request
PDR:
          NWI A-UPF
          Create F-TEID
          Outer Header Removal
FAR:
          NWI Access
          Create GTP Header
              gNB_FTEID_DL 

I-UPF_FTEID_DL

6) PFCP Session
Establishment Response

Figure 5.7: PFCP messages for an I-UPF/A-UPF N9 scenario in DL direction

Figure 5.7 is the scenario depicted in Figure 5.6 in DL direction. It can be seen that in
DL, the algorithm starts at the I-UPF. Analyzing the content of the messages reveals the
reason. In message (5), the I-UPF is instructed to create an F-TEID for the NWI A-UPF.
Also, as this is the DL direction, the I-UPF is instructed to create a GTP header using
the F-TEID of the gNB. Message (6) contains the created F-TEID I-UPF_FTEID_DL.
In message (7), the GTP tunnel between I-UPF and A-UPF is set up. The A-UPF is
instructed to match packets on the DN NWI and to forward them to the I-UPF. Here, it
creates a new GTP header using the I-UPF_FTEID_DL created in message (7). Message
(8) is the acknowledgment of message (7).

The reason the author has chosen to implement the different UPF scenarios as nodes in
a graph is flexibility. The I-UPF/A-UPF scenario contains one I-UPF, but it is possible
that several UPFs are linked together and that more than one I-UPF is part of the graph.
However, for each branch only one A-UPF is present. The implemented DFS allows to
cover all these scenarios without any configuration or code change. The representation of
the UPFs is implicit in the graph and, therefore, most scenarios are covered. There are
some exceptions though, especially when it comes to branching. In the current version,
starting from the access nodes, branching out is supported, as shown in Figures 5.8 and
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5.9, but it is not supported to merge branches. In short, the graph must be acyclic.
However, there are valid scenarios where the UPF graph is cyclic. Thus, the author chose
a general graph structure and not a tree. Enhancing the SMF to support this scenarios
is possible without having to change the underlying data structure.

SMF UL CL

PDR:
          NWI UL CL
          Create F-TEID
          Outer Header Removal
FAR:
          NWI DN1

1) PFCP Session
Establishment Request

A-UPF1

2) PFCP Session
Establishment Response
A-UPF1_FTEID_UL

5) PFCP Session
Establishment Request
PDR 1:
          NWI Access
          Create F-TEID

     Choose ID
          Outer Header Removal
          SDF Filter of A-UPF1 
PDR 2:
          NWI Access
          Create F-TEID

     Choose ID
          Outer Header Removal
          SDF Filter of A-UPF2
FAR 1:
          NWI A-UPF1
          Create GTP Header
              A-UPF1_FTEID_UL 
FAR 2:
          NWI A-UPF2
          Create GTP Header
              A-UPF2_FTEID_UL 

6) PFCP Session
Establishment Response

A-UPF2

PDR:
          NWI UL CL
          Create F-TEID
          Outer Header Removal
FAR:
          NWI DN2

3) PFCP Session
Establishment Request

4) PFCP Session
Establishment Response
A-UPF2_FTEID_UL

Figure 5.8: PFCP messages for a UL CL scenario with two N9 A-UPFs in UL direction
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Figure 5.8 shows the call flow for a UL CL scenario in UL direction. As with the previous
examples, the algorithm starts at the A-UPF. As there are two A-UPFs, one of them
is chosen, whereas the order does not matter. Messages (1) and (2) are analogous to
the corresponding messages in Figure 5.6. At this point, the DFS continues with the
unvisited neighbors of A-UPF1, which is the UL CL. However, the point of the UL CL is
to have a distinct GTP tunnel towards A-UPF1 and one towards A-UPF2. The SMF
already has the F-TEID for the A-UPF1, but not for the A-UPF2. There are two possible
solutions to this problem:

• Continue with the UL CL and make a tunnel for the A-UPF1

• Skip the UL CL for now and continue with the A-UPF2

The author has implemented both options in the OAI SMF, but finally the latter became
part of the official code base. The former requires an additional PFCP message. As – at
this point – the UL CL has a tunnel only to the A-UPF1, at a later stage, there is the
need for a PFCP Session Modification Request to add the tunnel to the A-UPF2. This
happens after the A-UPF2 has been instructed to create its F-TEID.

Due to the increased complexity and the additional message in UL, the author chose the
option as depicted in Figure 5.8. After message (2), the algorithm identifies that the UL
CL has unvisited N9 neighbors (in this case the A-UPF2). The UL CL is removed from
the stack and the DFS algorithm starts again from the A-UPF2. It is safe to remove the
UL CL at this point from the stack, as it is also a neighbor of A-UPF2, hence it is added
to the stack again. Message (3) and (4) have the same purpose and nearly the same
content as (1) and (2) with the exception that different F-TEIDs are created. Naturally,
the SMF has to store these accordingly in the graph data structure.

Message (5) is interesting, as it differs from the Session Establishment Requests of the
previous examples. It can be seen that it contains two PDRs and two FARs. The NWI
for both PDRs is Access, as this is the UL direction. Both contain the instruction to
create an F-TEID. However, this UPF is an UL CL, meaning it has one N3 interface
to the gNB and two N9 interfaces to A-UPF1 and A-UPF2, respectively, as depicted in
Figure 5.4. Therefore, it has to use the same F-TEID towards the gNB. This is indicated
using the Choose ID option. The PFCP protocol defines that when this flag is set, the
UPF creates the same F-TEID for both PDRs. Another important difference is the SDF
Filter. SDF stands Service Data Flow and must not be confused with the Simulation
Description Format (SDF) described in Chapter 6. Section 4.4 discusses the PCF PCC
rules and how traffic can be identified. The SDF filter is a representation thereof. It is a
string describing the IP address and network mask. Listing B.3 shows an example of an
SDF filter in the PCC rules. The exact same rule from the PCC rules is applied here on
the PFCP layer. Therefore, the information how to identify traffic, originated from the
PCF, is enforced on the UL CL. The FARs in message (5) instruct the UPF to forward
the traffic with a new GTP header, using A-UPF1’s or A-UPF2’s F-TEID created in
messages (2) and (4).
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SMF UL CL A-UPF1

10) PFCP Session
Modification Response

8) PFCP Session
Modification Response

A-UPF2

9) PFCP Session
Modification Request

PDR 1:
          NWI A-UPF1
          Create F-TEID
          Outer Header Removal
PDR 2:
          NWI A-UPF2
          Create F-TEID
          Outer Header Removal
FAR 1:
          NWI Access
          Create GTP Header
              gNB_FTEID_DL 
FAR 2:
          NWI Access
          Create GTP Header
              gNB_FTEID_DL

ULCL_FTEID_DL1
ULCL_FTEID_DL2

7) PFCP Session
Modification Request

PDR:
          NWI DN1
FAR:
          NWI UL CL
          Create GTP Header
              ULCL_FTEID_DL1 

11) PFCP Session
Modification Request
PDR:
          NWI DN2
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          NWI UL CL
          Create GTP Header
              ULCL_FTEID_DL2 

12) PFCP Session
Modification Response

Figure 5.9: PFCP messages for a UL CL scenario with two N9 A-UPFs in DL direction

Figure 5.9 shows the call flow of the PFCP messages for the UL CL scenario in DL
direction. Message (7) is similar to message (5) from Figure 5.7. The difference is that
there are two N9 interfaces in this scenario, thus two PDRs and two FARs are required.
The PDRs are again used to create an F-TEID for the A-UPFs. However, in the FAR the
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same F-TEID is used, namely the gNB_FTEID_DL, as the traffic from both the A-UPF1
as well as the A-UPF2 shall be forwarded to the same gNB. Messages (9) to (12) are
analogous to messages (5) and (6) from Figure 5.7.

Note for the inclined reader: The 3GPP specifications on the SDF format are not easy to
locate. 3GPP TS 29.244[100] references the PCC rules specification 3GPP TS 29.212[101],
which describes the "Flow-Description AVP" in the Gx reference point, an interface from
the 4G EPC. However, the format’s specification is found in IETF RFC 6733[102], which
describes the Diameter Base Protocol. Diameter has been used in 4G for parts of the
control plane, which is signaled with REST in 5G. Still, some message definitions remain
the same, such as the SDF format

The time complexity of this procedure is O(|V | + |E|), not considering the networking
delay and the procedures at the UPF.

5.4 Traffic Filtering and Forwarding in the UPF
There are two different UPFs available in the OAI: The first one is the SPGWU, which
has been upgraded from a 4G SGW/PGW to support 5G procedures. The second is
the VPP-UPF, which is based on the VPP-UPG from Travelping[W25]. Vector Packet
Processing (VPP) is a Linux Foundation based project that aims to provide fast and
reliable routing and switching capabilities, as described by Cerović et al.[103]. The VPP
platform is dynamic and can be extended using plugins[103]. In fact, the VPP-UPG
consists of plugins for the VPP platform.

For the described solution, the VPP-UPF is used, as it supports more features than the
OAI SPGWU. The current version V1.4 of the VPP-UPF supports all the scenarios and
PFCP procedures described in this chapter. However, as discussed in Chapter 7.4, a
performance issue on the VPP-UPF prevented the use of the VPP-UPF for the robotics
use case. Therefore, the experiment is conducted using the SPGWU. As this UPF does
not support all PFCP procedures, the option described in Figure 5.5 is used, forcing the
deployment to follow the distributed anchor point access mode.

The configuration for the VPP-UPF needs to be adapted, especially the UPF profile
and – depending on the deployment scenario – the UPF init configuration. Examples
of the configuration can be found in Section A.3. As the configuration of the different
UPF scenarios can become complex for the user, the author has provided a Python
script that generates the configuration based on the environment variables set in the
docker-compose files.
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5.5 Code Contributions
The author’s contributions described in this chapter can be found in the official OAI
5GC GitLab project’s repository: https://gitlab.eurecom.fr/oai/cn5g.

All the contributions for the NFs SMF, PCF, VPP-UPF and NRF are merged into the
master branch of the respective repositories and are part of the OAI 5GC v1.5 release.
Table 5.1 shows how the individual merge requests from the author can be found on
the OAI 5GC GitLab repositories. The "federated" repository oai-cn5g-fed is used to
host documentation and docker-compose files, which are relevant for all NFs.

Repository Merge Requests URL

SMF 6
https://gitlab.eurecom.fr/oai/cn5g/oai
-cn5g-smf/-/merge_requests?state=merged&
author_username=spettel

PCF 9
https://gitlab.eurecom.fr/oai/cn5g/oai
-cn5g-pcf/-/merge_requests?state=merged&
author_username=spettel

NRF 1
https://gitlab.eurecom.fr/oai/cn5g/oai
-cn5g-nrf/-/merge_requests?state=merged&
author_username=spettel

VPP-UPF 1
https://gitlab.eurecom.fr/oai/cn5g/oai
-cn5g-upf-vpp/-/merge_requests?state=mer
ged&author_username=spettel

Federated 1
https://gitlab.eurecom.fr/oai/cn5g/oai
-cn5g-fed/-/merge_requests?state=merged&
author_username=spettel

Table 5.1: OAI GitLab repositories with merge requests from the author

An overview of the author’s activity in all the OAI 5GC repositories can be found at the
following location:
https://gitlab.eurecom.fr/spettel.
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CHAPTER 6
Use Case: Robotics

This thesis is motivated by the robotics use case. As described in Section 1.3, the hypoth-
esis is that edge computing in 5G allows to offload latency-critical robotic applications.
This chapter describes how the robotics use case can profit from edge computing in 5G
and how the robot simulation is set up.

6.1 Scenario
The underlying scenario for the robotics use case is a factory with autonomous robots.
As it is the case for nearly all robotics use cases, the robot has the task to create a map
of its environment. Although other solutions exist, such as fixed paths in the factory hall,
using SLAM for navigation allows the robot to locate itself and navigate freely in the
world.

SLAM is chosen as an algorithm to exemplify the edge computing use case, as it is very
essential on the one hand and also latency-constrained on the other hand. Showing that
offloading SLAM algorithms in a 5G connected factory is possible can lead to other use
cases such as pose estimation, path planning or robot steering.

For successfully offloading nodes of the robot, the robot has to have a network connection.
As a fixed-net option is not feasible, two different scenarios are compared: WiFi-enabled
scenario and 5G-enabled scenario. Other wireless IoT technologies such as Zigbee,
Bluetooth or LoRa are not considered, as neither of them provide the necessary bandwidth
for this scenario, as described by Sanchez-Gomez et al.[104].
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6.1.1 WiFi-Enabled Scenario
In the WiFi-enabled scenario the factory is equipped with multiple WiFi Access Points
(AP) in infrastructure mode. As an average factory is larger than the typical reach of
one WiFi AP, they are configured to use WiFi roaming, essentially allowing the handover
of a session over the serving area of one AP.

6.1.2 5G-Enabled Scenario
The 5G-enabled scenario replaces the WiFi APs with gNBs. Depending on the size of
the factory, one cell may be enough. It is also possible that the factory is equipped with
several 5G micro-cells.
The advantage of this scenario compared to WiFi is that the handover support is more
robust. While cellular networks are built upon mobility, many WiFi devices do not
support handover correctly, which may lead to interruptions. Also, the larger range of
5G networks ease the deployment.
In this use case it does not make a difference whether a private 5G network is used,
where the factory operators provide their own 5G network. In that case most likely the
RAN and the 5GC is deployed in the same physical network, together with the edge
data center where the SLAM algorithm is executed. However, the solution described in
Chapter 4 and the OAI implementation in Chapter 5 target edge computing enabled in a
public 5G network offered by an MNO.

6.2 Simulation in Gazebo
ROS2 and the simulation tool Gazebo allow to simulate a robot with its actuators and
sensors and its environment (world). Gazebo was initially developed in the year 2001, as
described by Koenig and Howard[105], but has gained a lot of traction in the last twenty
years and is the most important open source simulator in the ROS ecosystem, as they
are tightly coupled.
The Gazebo version used for the simulation is 11.10.2. For this use case, the classic
Gazebo has been used. Since 2019, Gazebo is being modernized in a new project called
Ignition Gazebo, as described in the Ignition documentation[W26] and the classic Gazebo
documentation[W27].
The characteristics of the world and the robot, such as which sensor plugins to load and
how the world is built are described with the SDF. As stated by the SDF documenta-
tion[W28], it is an XML format that allows to define the environment, the used models,
the lighting and the size and shape of a robot as well as the actuators and sensors.

6.2.1 Environment and World
A realistic scenario for 5G edge computing and robotics are factories. Therefore, the
simulated environment shows a factory setting. The world SDF files, meshes and models
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are from the Automatic Addison blog[W29] and from the warehouse simulation GitHub
repository[W30]. The GitHub repository also contains examples for navigation and
SLAM, but these have not been used for this simulation. The reason is that these
files are built upon ROS, the predecessor of ROS2 and are not compatible. It also
contained moving obstacles, which have been reduced to increase the reproducibility
of the performed experiments. Figure 6.1 shows the world in a perspective view and
Figure 6.2 shows the outline of the world in an orthographic view from the top. The
orthographic view can be used to assess the quality of the produced map of the SLAM
algorithm. It is possible to compare the map of the simulation with the generated map.
However, this requires that the scale of both images is the same.

The simulated world has the dimensions 20x20 m and is thus relatively small to depict
a factory hall. Nevertheless, given that the robot is 10 cm in diameter and there are
several obstacles present in the world, it is sufficient for the underlying experiment. Also,
the corners and pillars can be used to show that the SLAM algorithm correctly maps
these. A comparison with the produced maps in Figures 7.6, 7.7 and 7.8 in Section 7.4
shows that this is the case.

Figure 6.1: Factory world in perspective view
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Figure 6.2: Factory world in top-down orthographic view

6.2.2 Robot Platform
The robot used in the simulation is a turtlebot3, which uses the burger robot model.
The source code is available on the turtlebot3 GitHub repository[W31], which also
contains the SDF file for the robot.

The evaluation of the accuracy of the SLAM algorithm requires a ground truth pose,
which is the accurate pose of the robot in the environment. To allow this, a ground truth
plugin has been added to the robot’s SDF, as described in Listing 6.1. The Gaussian
noise is set to 0 to acquire an exact pose.
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<plugin name="p3d_base_controller" filename="libgazebo_ros_p3d.so">
<ros>
<remapping>odom:=ground_truth/odometry</remapping>
</ros>

<always_on>true</always_on>
<update_rate>50</update_rate>
<body_name>base_footprint</body_name>
<gaussian_noise>0.00</gaussian_noise>
<frame_name>world</frame_name>
<xyz_offset>0 0 0</xyz_offset>
<rpy_offset>0 0 0</rpy_offset>
</plugin>

Listing 6.1: Ground truth plugin for the turtlebot3 robot

Actuators

The burger model of the turtlebot3 has a cylindrical shape as base with two attached
wheels. The motion of the wheels are simulated using the turtlebot3_diff_drive
plugin. Thus, the robot has a differential drive. As described by Klančar et al.[106],
this means that the robot is non-holonomic. A robot is holonomic when the degree of
controllable and total degrees of freedom is equal. Due to its two wheels, the burger
model is not able to rotate around the z-axis while driving in a specific direction. It also
has a castor wheel to prevent tipping, although this is not visualized in the simulation.

Sensors

The most important sensor in this setup provided by the turtlebot3 is the LIDAR
sensor. It uses the libgazebo_ros_ray_sensor plugin and publishes ROS2 messages
of type sensor_msgs/LaserScan on the scan topic. It uses rays of light to detect
the distance to close objects in a 360 ◦ radius. The minimum range is 0.12 m and the
maximum range is 3.5 m. Topics are published 5 times per second. There is a Gaussian
noise on the values with a mean of 0 and a standard deviation of 0.01.

The second sensor of the turtlebot3 is an IMU. As described by Norhafizan et al.[107],
an IMU is used to measure velocity, orientation and gravitational force. This is used by
the robot to estimate its current pose based on previous angular and linear velocities.
This process tends to become more inaccurate over time, as the inaccuracy of each velocity
adds up over time. It is published on the topic imu with type sensor_msgs/msg/Imu
200 times per second. The angular velocity measurements have a Gaussian noise with
mean 0 and standard deviation 2 · 10−4, whereas the standard deviation is 1.7 · 10−2 for
the linear velocity.

Topics and Robot Description

Based on the sensors and actuators, the turtlebot3 is publishing several topics. Figure
6.3 shows all the ROS2 nodes and topics published when the simulation is running and
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the turtlebot3 has been spawned. An ellipsoid is a ROS2 node and a rectangle is
a topic. The turtlebot3_diff_drive subscribes to the cmd_vel topic. This topic
has the type geometry_msgs/Twist and contains a 3D vector for the linear and a 3D
vector for the rotational speed. The robot cannot linearly move in the Z axis and it can
only rotate around the Z axis. Figures 6.4a and 6.4b show the linear and rotational axes.
The X axis is depicted in red, the Y axis in green and the Z axis in blue.

Figure 6.3: turtlebot3 and Gazebo nodes and topics

(a) Linear axes (b) Rotational axes

Figure 6.4: Axes of the turtlebot3 robot
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6.3 SLAM Node

The SLAM algorithm used in the experiment is provided by the cartographer-ros
node from Google and uses the cartographer software for localization and mapping. It
supports 2D and 3D SLAM, although initially only 2D was supported, as described by Hess
et al.[73]. The cartographer-ros package officially does not support ROS2, although
binary packages are available for Ubuntu. However, the newest ROS2 distribution
"Humble Hawksbill" – which supports Ubuntu 22.04 – does not contain the packages.
Thus, the SLAM node is running in a Docker container which uses the ROS2 distribution
"Foxy Fitzroy". This is the second latest LTS release and supports Ubuntu 20.04.
Therefore, even in the local deployment option described in Chapter 7, the SLAM node is
running in Docker. The cartographer-ros package is configured using a LUA script
and the description of the parameters is in the official documentation[W15]. Listing 6.2
shows the cartographer configuration.

include "map_builder.lua"
include "trajectory_builder.lua"

options = {
map_builder = MAP_BUILDER,
trajectory_builder = TRAJECTORY_BUILDER,
map_frame = "map",
tracking_frame = "imu_link",
published_frame = "base_footprint",
odom_frame = "odom",
provide_odom_frame = true,
publish_frame_projected_to_2d = true,
use_odometry = true,
use_nav_sat = false,
use_landmarks = false,
num_laser_scans = 1,
num_multi_echo_laser_scans = 0,
num_subdivisions_per_laser_scan = 1,
num_point_clouds = 0,
lookup_transform_timeout_sec = 0.2,
submap_publish_period_sec = 0.15,
pose_publish_period_sec = 30e-3,
trajectory_publish_period_sec = 30e-3,
rangefinder_sampling_ratio = 1.,
odometry_sampling_ratio = 1.,
fixed_frame_pose_sampling_ratio = 1.,
imu_sampling_ratio = 1.,
landmarks_sampling_ratio = 1.,

}

MAP_BUILDER.use_trajectory_builder_2d = true

TRAJECTORY_BUILDER_2D.min_range = 0.12
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TRAJECTORY_BUILDER_2D.max_range = 3.5
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 3.
TRAJECTORY_BUILDER_2D.use_imu_data = false
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true

return options

Listing 6.2: Cartographer configuration

The configured map frame is map and the odometry frame is odom. The
provide_odom_frame parameter is set, as the robot does not provide an odometry
frame. The cartographer also provides a TF frame from odom to base_footprint.
Based on this configuration, the cartographer uses the laser scan and the robot odometry
as input, but does not consider the IMU values. Also, the configurations of the simulated
LIDAR scanner such as minimum and maximum range are set accordingly. The robot’s
pose is published in the TF tree with a period of 30 · 10−3 s, thus the frequency is 33.3 Hz.

Figures 6.5 and 6.6 show the TF tree without and with SLAM node. The graph is created
with the view_frames tool of the tf2_tools ROS package. The rate of the map and
odom frames in Figure 6.6 is approximately 33 Hz, indicating that the desired frequency
is met in the SLAM node.

base_footprint

base_link

caster_back_link imu_link base_scan wheel_left_link wheel_right_link

Average rate: 1000.0

Average rate: 1000.0 Average rate: 1000.0 Average rate: 1000.0 Average rate: 1000.0

Average rate: 1000.0

Figure 6.5: TF frames without SLAM

Figure 6.7 depicts the ROS nodes and topics after the SLAM node has been started,
omitting the nodes and unused topics from the robot from Figure 6.3. The graph shows
that the scan and odom topic are subscribed from the cartographer_node. The
cartographer_occupancy_grid_node is using the input from the cartographer and
publishes the global map of type nav_msgs/msg/OccupancyGrid.
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base_footprint

base_link

odommap

caster_back_link imu_link base_scan wheel_left_link wheel_right_link

Average rate: 1000.0 Average rate: 1000.0 Average rate: 1000.0

Average rate: 1000.0

Average rate: 1000.0

Average rate:
32.857

Average rate:
32.857

Average rate: 1000.0

Figure 6.6: TF frames with SLAM

Figure 6.7: Cartographer nodes and topics

6.4 Communication of ROS2 Nodes

One of the most important differences between ROS and ROS2 is the way how the
communication between nodes is handled. In the previous version – ROS – one node
acts as ROS master and as a middleware for the publishers and subscribers. Thus, even
though the communication of topics is decentralized in ROS, the centralized ROS node is
mandatory for lookup between nodes.[63] ROS2 is based on the DDS, an open standard
for decentralized distributed communication.[61] In the current ROS distributions, many
DDS middleware implementations are available and can be exchanged. The default
DDS middleware implementation in ROS2 is eProsima Fast DDS. Therefore, ROS uses
its own protocol and communication middleware, whereas ROS2 builds upon existing
DDS implementations. Profanter et al.[108] compared the performance of Fast DDS and
the ROS communication protocol and found that Fast DDS has a significantly better
performance.
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By default, the discovery of nodes is done in a decentralized fashion. This is achieved by
using multicast messages. However, as described in the Fast DDS documentation[W32],
this approach has two drawbacks:

• It does not scale well, as the amount of messages grows rapidly when new nodes
are introduced

• It may not work well in certain environment such as WiFi, the 5G use case or with
virtualization

In the setup described in this thesis, the issue is that WiFi and 5G is used as communi-
cation layer between different ROS2 nodes. Additionally, some of the components are
hosted in Docker containers. Thus, the multicast mechanism does not work and discovery
fails. There are two solutions to this problem: (1) Use an overlay network such as a VPN
or (2) use the Fast DDS discovery server. The discovery server acts in a similar fashion
as the ROS master from the previous ROS version. It is hosted in a central location and
assists the client in discovering the different publishers and subscribers. In this thesis,
the discovery server approach has been chosen. The main reason is that the goal is to
evaluate low latency solutions and a VPN may add additional latencies.
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CHAPTER 7
Evaluation of Robotic Application

and MEC Prototype

In this chapter the edge computing prototype is evaluated using the simulated robotics
experiment described in Chapter 6. Herein, the different deployment options are de-
fined, together with the evaluation criteria. Furthermore, the results of the latency
measurements and of the SLAM accuracy are reported and discussed.

7.1 Setup of the Experiment
Research Question 3 (RQ3 ) asks how offloading a ROS2 SLAM node to the edge of a 5G
network affects the latency and the quality and functionality of the produced output. To
show this, the SLAM node is deployed in different physical locations. The local deployment
is considered the baseline scenario, having negligible latency between the ROS nodes.
To answer RQ3, the SLAM node is deployed in the edge using the edge computing
prototype with the OAI, which has been created as part of this thesis (see Chapters 4
and 5). Furthermore, the performance is compared to a WiFi based deployment, as this
is currently the most common used method of offloading resource-intensive tasks in ROS.
Table 7.1 shows these deployment options.

Containerization of the SLAM node

As described in Table 7.1, the simulation nodes always run on a client, either on a WiFi
terminal or on a 5G terminal. In fact, this can be the same hardware, therefore, the
simulation setup does not need to be moved to other locations. The SLAM node on the
other hand has to be deployed on different servers. Thus, it is containerized using Docker
to ease the deployment.

Details about the Dockerfile are described in Section C.1 in Appendix C.
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Deployment Option Simulation nodes SLAM nodes Expected Latency [ms]

local, baseline local local <1
5G edge 5G terminal 5G edge <15
WiFi WiFi terminal 1 WiFi terminal 2 <10

Table 7.1: Deployment options for the simulation nodes and SLAM nodes for the
experiment

Hardware Specifications

Table 7.2 shows the hardware specifications of the different servers and computers used
for all the deployment options.

Name CPU model Cores Speed [MHz] RAM [GB]

simulation_computer AMD Ryzen 7 5800H 16 4460 16
gnb_server Intel Xeon Gold 6154 36 3000 64
cn_server Intel Xeon E5-2690 20 3000 64
wifi_server AMD Ryzen 7 3700X 16 4400 16

Table 7.2: Hardware specifications of the computers used in the deployment options

Local Deployment

In the local deployment, all the ROS nodes are running on the same machine, the
simulation_computer from Table 7.2. The Fast DDS discovery server and the ROS2
SLAM node are running in Docker containers.

Deployment in the 5G Edge

Executing the experiment in the edge of the OAI 5G has several pre-requisites:

1. Deploy the OAI 5G CN on a server

2. Deploy the OAI gNB

3. Establish a PDU session using a 5G terminal

4. Deploy the SLAM node in the edge
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Figure 7.1: Robotics experiment 5G edge deployment setup

The setup is depicted in Figure 7.1. The CN consisting of SPGWU, AMF, SMF, UDR,
AUSF, UDM, PCF and NRF is deployed on one single server in EURECOM’s server
network, the cn_server. It is deployed using docker-compose, as described in the
OAI documentation[W33].

The OAI gNB is deployed in another server in the same network. The gNB uses band n78
in UL and DL with a 20 MHz channel bandwidth. SCS is set to 30 kHz, thus numerology
1 is used. Seven slots are reserved for DL and two slots for UL. As RU the AW2S[W19]
is used. The gNB is running on the server gnb_server from Table 7.2 on bare-metal.

The 5G terminal used for the experiment is a Quectel RM500Q. The modem configuration
has been changed to allow the configuration of custom PLMNs and DNNs. The driver
used for the Quectel modem was not supported on Ubuntu 22.04. Thus, another
computer with Ubuntu 20.04 is used as 5G UE. Both computers are connected using
a WiFi hot-spot and configuring NAT and port forwarding on the 5G UE. This adds
additional latencies, as reported in Section 7.4. The simulation is running on the computer
simulation_computer from Table 7.2.

The SLAM node and the Fast DDS discovery server are deployed on the same server as
the 5GC (cn_server) using docker-compose.

The scenario depicted in Figure 7.1 uses the distributed anchor point access model. There
is one UPF – the SPGWU – deployed directly at the edge. The core network is also
deployed at the edge, although this is not a requirement. The reason this deployment
has been chosen for the experiment is a performance issue on the VPP-UPF. When the
VPP-UPF is deployed as Docker container, the maximum DL bandwidth is around 1.5
Mbit/s. As this bandwidth is not sufficient for exchanging the ROS messages between
the SLAM node and the simulation_computer, the VPP-UPF could not be used for
this setup. As the SPGWU does not support the UL CL scenario, the setup only works
with the distributed anchor point access model.
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Nevertheless, the author’s additions in the SMF and the PCF described in Chapter 5
are used for the deployment, although strictly speaking not necessary. In this setup, the
UL CL is not required, as the whole 5GC is deployed at the edge. Thus, the latency
tmno is not a concern. Additionally, the ROS nodes are deployed on the same machine as
well, resulting in a negligible ttransit and tdatacenter. While this scenario is sufficient to
showcase the 5G edge computing use case and provides valid data, it does not cover all
use cases. The setup depicted in Figure 7.1 can serve as an example for a private 5G
network, where a company operates its own 5G network and deploys the gNB and the
5GC on-premise. The disadvantage of this approach is that it misses the ubiquity of
edge computing. The setup may work for this specific setup, but as soon as a second
production site is introduced to the company, the limits of this solution become apparent.

Even without the support of the UL CL on the UPF, the author’s contributions on the
PCF and the SMF allow to select different UPFs and thus different edge DNs by changing
the PCC rules on the PCF, without the need to reconfigure the 5GC.

WiFi Deployment

The simulation is running on the computer simulation_computer with a WiFi 2.4GHz
connection using the IEEE 802.11n (WiFi 4) standard. The SLAM node is running on
the computer wifi_server. The wifi_server uses an Ethernet connection, but is
located in the same LAN as the simulation_computer.

When deploying the Fast DDS discovery server and ROS2 nodes in a docker network,
there is an issue with networking due to the used Real Time Publish Subscribe Protocol
(RTPS). The ROS2 nodes advertise their IP addresses in the protocol towards the Fast
DDS discovery server. When this is done inside a Docker container, the IP address of the
Docker network is used. Thus, all the containers in this Docker network can communicate
with each other. However, this IP range is not routed in the host network. Therefore, to
have communication between the nodes on the wifi_server and with the nodes on the
simulation_computer, the discovery server is not used. The Docker containers use
the host network mode and the multicast discovery mechanism, as described in Section
6.4.

7.2 Considered Performance Metrics
For each of the different deployment options, the latency and available bandwidth has
been measured. The latency is measured using the ping utility with an interval of 0.01
seconds and 1000 sent packets. The bandwidth is measured using the iperf3 tool with
a 20 seconds transmit interval and one second between periodic throughput reports.

The measured latency and bandwidth are just an indicator that the setup works as
intended. The latency measurements with ping are not reliable enough, because it gives
the latency when the network is not under load. Bandwidth measurements with iperf3
on the other hand utilize the capacity of the network, but do not use real data. Thus, the
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metrics of the robotic simulation need to be analyzed as well. For each of the experiment
runs, ROS bags are recorded. They allow to store all the exchanged messages from all
the topics in a ROS-specific format. As described in Section 7.3, the ground truth pose is
published together with the estimated pose. The ground truth can be used as a baseline
to evaluate how well the localization of the SLAM algorithm performs. Different results
from the deployment options are evaluated towards the baseline and the performance is
compared.

The results are reported in Section 7.4.

7.3 Evaluation with Robotics Experiment
Section 6.2 describes how the robot simulation is set up. This is sufficient to qualitatively
evaluate the performance by analyzing the visualization provided by the rviz tool, as
described by the rviz GitHub repository[W34]. This tool is capable of visualizing the
created map together with the current robot position. However, this approach is an
estimate and may only be used to evaluate if everything is working as expected.

One approach to measure the accuracy of the localization is by comparing the pose of
the ground truth with the estimated pose. The ground truth is published by Gazebo
as nav_msg/Odometry message, and the estimated pose is published in the TF tree,
the transformation from the global map frame to the odom frame and to the base
footprint frame. To correlate these, the author has written a ROS2 node that subscribes
to the ground truth as well as the TF tree. Based on this information, the topics
ground_truth/pose and real_pose/pose are published. Both have the message
type geometry_msg/PoseStamped. This is a ROS2 message that contains a timestamp
and a pose. This timestamp allows to align the different poses for the evaluation.

As the experiment shall be repeatable, the robot should follow the same path for each
execution of the experiment. This is not a trivial task. Due to the inherent inaccuracies of
the drive and the sensors, it cannot be guaranteed that the robot follows the exact same
route. Usually, the map is created by manually steering the robot until the generated
map "looks good" in rviz, meaning that all the obstacles are drawn in the map. Then,
the ROS2 navigation stack can be used to navigate the robot in the world and avoid
obstacles. At this stage, the localization and the quality of the map may be compared.

This approach is not feasible, as the robot should follow the exact same route. To
accomplish this, two methods are available:

• Write a ROS2 steering node that follows a given path using the cmd_vel topic

• Use the ROS2 navigation stack and provide it with a fixed path
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Both of these methods have advantages and disadvantages. The first method requires
that a steering algorithm is implemented. As described by Macenski et al.[62] – who
created the ROS2 navigation stack – robust robot steering requires handling several
different use cases and scenarios. For example, it is not enough to give the robot a linear
velocity and expect that it reaches a certain pose in the map eventually. The current
pose of the robot has to be taken into account. Even then, when steering for example one
meter straight ahead and the robot orientation is only some degrees off of the expected
value, the robot might never reach the target. Therefore, steering algorithms need to
have a subroutine to approach a target, which includes error correction.

The ROS2 navigation stack performs best on an existing map. Using it to steer in an
unmapped environment may create significant challenges. The navigation stack uses local
and global costmaps to generate a path to a target. However, when these costmaps do
not exist yet and are continuously updated, the robot might get stuck and has to execute
a strategy, such as returning to the last known position. These movements might be
abrupt and include a lot of angular movements. This can negatively impact the quality
of the produced map.

For the evaluation of the prototype, both approaches have been used, although only the
first approach is used for a quantitative comparison. The reason is that the behavior of
the navigation stack is too nondeterministic. In several runs of the experiment the robot
might follow the intended path, but in some it may get stuck, resulting in unexpected
behavior. Due to the complexity of implementing a full steering solution, the robot
follows a very simple path for the quantitative analysis.

For each deployment option, the experiment is executed in a reproducible and compre-
hensible fashion. A ROS2 launch file is used to launch all the ROS2 nodes in the specified
order. Additionally, a rosbag is generated. This file allows to store all exchanged ROS2
messages for the duration of the experiment. The tool evo is a tool to quantitatively
analyze the accuracy of SLAM algorithms, as described by its documentation[W35]. It is
used to print the graphs of the absolute pose error reported in Section 7.4. Section C.3
in Appendix C provides details how evo is used to calculate the absolute pose error and
generate the graphs.

7.4 Results
In this section, the latency and bandwidth measurements are reported, together with the
accuracy of the SLAM node in the different deployments.

7.4.1 Latency

Table 7.3 shows the latency measurements between different hosts. For the WiFi
deployment option, only the first row is relevant. It can be seen that the WiFi deployment
has a very low tmean and σt.
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The last three rows in Table 7.3 are all relevant for the 5G edge deployment. As described
in Section 4.1, the overall response time consists of different transmission times, most
importantly taccess, tmno and ttransit. The latency between the gnb_server and the
cn_server corresponds to tmno. The latency for ttransit is not measured, as the edge
application is running on the same physical machine as the core network and thus the UPF.
The latency tmno is negligible with tmean of 0.1 ms. Thus, it can be concluded that the
latency measurement between simulation_computer and cn_server is approximately
taccess. As described, taccess includes the latency between simulation_computer and
nat_host, the 5G terminal.

The latency taccess has a relatively high standard deviation σt. Also, the maximum latency
of 23 ms is very high, even when considering that it also includes a WiFi connection.
Dürre et al.[109] have reported a similar phenomenon in the OAI RAN, where the latency
is relatively high for the first packet and then gradually decreases. At the lowest point,
the latency abruptly increases to the starting value and decreases again. This pattern
has also been observed during this experiment, explaining the comparably high σt.

Client Server tmin [ms] tmax [ms] tmean [ms] σt [ms]

simulation_computer wifi_server 0.8 4.5 1.7 0.4
simulation_computer cn_server 7.1 23.2 10.6 2.8
simulation_computer nat_host 0.7 4.2 1.2 0.3
gnb_server cn_server 0.1 0.1 0.1 0.002

Table 7.3: Latency measurements between hosts

The latency measurements for the 5G scenario are higher than expected. While tmean
is 10.6 ms and thus below the expected latency of 15 ms described in Table 2.1, tmax
is 8.2 ms higher than the expected value. One of the reasons why this is the case
may be a non-optimized gNB configuration. While the author configured the gNB to
his best knowledge, there may be different configurations or experimental branches to
further optimize the latency. Additionally, the gNB is in constant development and some
URLLC features are not yet implemented. Furthermore, as the example of the VPP-UPF
indicates, containerizing a UPF can result in unexpected performance losses. Initial, not
yet published, experiments by the OAI RAN engineers have shown that a great source of
jitter is the SPGWU and the Quectel UE. The results show that there is a lot of potential
for further research and improvements in the OAI.

7.4.2 Bandwidth
The bandwidth is measured between the same hosts as the latency. There is one
measurement in the UL and in the DL direction between each host. The reported
bandwidth is the mean bandwidth over the measurement period of 20 seconds. The
measurement results are described in Table 7.4. It can be seen that the DL bandwidth
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in the WiFi and the 5G deployment is nearly identical. There is a crucial difference in
the UL direction, though. While WiFi is synchronous, the gNB configuration allocates
more resources in the DL than in the UL direction. Thus, the UL bandwidth in the 5G
scenario is approximately 10 Mbit/s.

Client Server UL [Mbit/s] DL [Mbit/s]

simulation_computer wifi_server 57.8 54.4
simulation_computer cn_server 9.8 53
simulation_computer nat_host 105 106
gnb_server cn_server 939 941

Table 7.4: Bandwidth measurements between hosts

As the gNB is using a 20 MHz channel bandwidth, the bandwidth results for the 5G
deployment are slightly lower than expected. According to the OpenAirInterface roadmap
presentation from July 2022[W36], a DL bandwidth of 131 Mbit/s and a UL bandwidth
of 21 Mbit/s has been achieved using a 40 MHz channel bandwidth with the same DL
and UL slot configuration. One would expect that doubling the channel bandwidth would
result in a 200% increase in bandwidth. While this is approximately the case for the UL
direction (from 9.8 Mbit/s to 21 Mbit/s), the DL bandwidth measured in this experiment
is slightly lower. The expected value is 65.5 Mbit/s. However, the different measurements
use different RUs. While the AWS2 RU is used in this thesis, the reported 131 Mbit/s
are achieved using a USRP N310. As the RU is a crucial factor in gNB performance, it
may not be reasonable to expect the same linear correlation between channel bandwidth
and bandwidth for different RUs.

The bandwidth requirements for the robot simulation have been measured using the local
deployment. As the SLAM node and the Fast DDS discovery server are running in their
own Docker network, the bandwidth of the docker bridge can be measured using the Linux
nload utility[W37]. During the execution of the experiment, the UL bandwidth never
exceeds 7 Mbit/s with the sole exception of the start of the simulation, before starting
the SLAM node, where the UL bandwidth spikes at 10 Mbit/s. The DL bandwidth never
exceeds 5 Mbit/s. Therefore, the measured bandwidths in the WiFi and 5G deployment
option are no limiting factor for the experiment.

7.4.3 SLAM accuracy
The accuracy of the SLAM node is measured by the absolute pose error between the
ground truth pose and the estimated pose. As described in Section 7.3, the simulated
robot is programmed to follow the exact same path for each of the deployment options.
Hence, the results are comparable.

Figure 7.2a shows the absolute pose error of the local deployment and Figure 7.2b shows
the trajectory of the robot.
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Figure 7.2: Results of the local deployment

It can be seen in Figure 7.2a that the absolute pose error is minimal for the first minute
of the experiment, whereas the pose error steeply increases in the last 10 seconds of the
experiment. Figure 7.2b gives an indication where in the map this happens. The robot
drives straight for 7 meters with a very accurate localization. At this point, the robot
turns 90 °, and the accuracy rapidly declines. As the robot did not create a map in
this unexplored part of the environment, the SLAM algorithm can solely rely on the
robot’s measurements, i.e., the odometry. This is an example why SLAM is such an
important task in robotics, as the odometry can become highly inaccurate over time.
As the odometry measures how far the robot’s wheels have turned, this can become
even more inaccurate after and during a rotational movement, as the wheels are also
moving. As this is observed in the local deployment without any additional latencies, the
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latency factor can be excluded in reasoning why this happened. Even though the results
of the SLAM algorithm are not optimal, they can nevertheless be used to assess whether
SLAM can be off-loaded to the 5G edge, one of the underlying research questions of this
thesis. The Umeyama alignment is used to compare the similarity of the trajectories, as
described by Umeyama[110].

Figures 7.3a and 7.3b show the absolute pose error and the trajectory for the WiFi
deployment, respectively.
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Figure 7.3: Results of the WiFi deployment

Comparing the local (Figure 7.2) and the WiFi deployment (Figure 7.3) shows that
the accuracy of the localization is very similar. The absolute pose error as well as the
trajectory follow the same pattern. In the first minute, the absolute pose error is between

96



7.4. Results

0.5 cm and 3 cm. In both experiments there is a small spike in the pose error between
10 and 30 seconds, and then the pose error is stable around 1 cm. An absolute pose
error of 1 cm is very accurate, especially considering that the robot itself has a radius
of 10 cm. Thus, the minimum pose error is around 10% of the size of the robot. The
comparison also shows that the WiFi deployment scenario performs slightly better. There
is only one spike up to nearly 3 cm accuracy, whereas the local deployment has several
spikes at around 15 seconds. The same is true for the last 10 seconds of the experiment,
where the accuracy deteriorates rapidly in both scenarios. The maximum pose error
in the local deployment is 6.6 cm and in the WiFi deployment it is 6 cm. Given that
the same configuration is used for both scenarios, it cannot be concluded with certainty
why the WiFi scenario performs slightly better. As the experiment is running on a
non-deterministic simulation with a lot of built-in randomness, this might just be a result
of this fact. On the other hand, the simulation and the SLAM node use a lot of processing
power. Therefore, it may also be the case that the localization is more accurate, as
the offloaded SLAM node is able to match its desired loop closure rate better when
running on wifi_server. What can be concluded without doubt is that off-loading
of the SLAM algorithm over WiFi did not have any significant negative impact on the
functionality and the quality of the SLAM localization.

The results for the absolute pose error and the trajectory of the 5G edge deployment are
shown in Figures 7.4a and 7.4b.

While the fact that the WiFi deployment does not have a negative impact on SLAM is
an important finding, the goal of this thesis is to offload SLAM to the 5G edge. Thus,
the local (Figure 7.2) and 5G edge deployment (Figure 7.4) are compared as well. It
can be seen that the edge deployment follows the same trend as the local and WiFi
deployment. However, there are some significant differences. First of all, the overall pose
error is higher than in the local deployment. This is especially true for the stable pose
error between 30 and 60 seconds. While the local deployment has an error of around 1
cm, in the 5G edge deployment this error is slightly under 2 cm. Also, the first spike
between 10 and 30 seconds shows that the highest absolute pose is above 3 cm, which is
never the case for the local deployment. The maximum pose error after the 90 ° turn is
very similar to the local deployment and is around 6.6 cm. While a median absolute pose
error of 1.8 cm may still be acceptable – depending on the scenario – there is no doubt
that the offloading of the SLAM algorithm to the 5G edge has a negative impact on the
functionality and the quality of the SLAM localization. There are two reasons why this
is the case. First of all, when comparing the latencies described in Table 7.3, one can see
that the mean latency of the 5G edge deployment is 10.6 ms, which is approximately 6
times higher than the mean latency of the WiFi deployment. Also, there is a considerable
jitter, the deviation of the packets from the mean value. While the standard deviation
is only 0.4 ms in the WiFi deployment, it is 2.8 ms in the 5G edge deployment. As
discussed, this behavior has been observed before in the OAI 5G. This shows that the
latency itself as well as the jitter has an impact on the accuracy of the SLAM localization.
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Figure 7.4: Results of the edge deployment

Figure 7.5a shows the minimum, maximum, mean, median, standard deviation and root-
mean-square error of the different deployments and Figure 7.5b compares the distribution
of the absolute pose error. Figure 7.5b shows very well that the absolute pose error is
higher in the edge deployment.

Table 7.5 shows the numeric values for the absolute pose error depicted in Figure 7.5a.
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Figure 7.5: Comparison between the deployment options

rmse [cm] mean [cm] median [cm] σ[cm] min [cm] max [cm]

local 2.1 1.7 1.3 1.1 0.5 6.6
edge 2.6 2.3 1.8 1.2 0.9 6.5
wifi 1.9 1.5 1.1 1.1 0.4 6

Table 7.5: Numerical values for the absolute pose error

As depicted in the trajectories in Figures 7.2b, 7.3b and 7.4b, the experiment does not
end at exactly the same position. This is because the inaccuracy of the robot position
after the turn made it impossible to reach the target pose with the simplified steering
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algorithm. Thus, the experiment had to be manually stopped. As depicted in Figure 7.4a,
in the edge experiment the trajectory where the localization is not accurate anymore
continued longer than for the other experiments. While this has a negative impact on
the mean accuracy, the figures clearly show that the pose error is larger compared to the
local deployment before the turn.

One of the reasons why the accuracy degrades is that the rotational movements are not
correctly aligned with the real robot’s position. It can be seen in the trajectories that
the linear movement did not cause large pose errors. The increase of the pose error
started after the 90 ◦ turn. There may be several reasons why this is the case. First
of all, the naive steering implementation does not take the robot’s non-holonomic drive
into account. Further, the SLAM algorithm does not consider the robot’s IMU. However,
even enabling reading the IMU measurements did not increase the accuracy. This may
be due to a high inaccuracy of the IMU sensor. In that case, the SLAM algorithm can be
configured to weight the IMU measurements less than other sensors such as LIDAR. In
any case, as the robot is driving through unmapped territory, the SLAM algorithm can
only localize based on the robot’s sensors. In case the robot drives back to the original
starting point, the SLAM algorithm is able to localize the robot based on the created
map and correct the pose offset.

Even considering the inaccuracy of the last part of the experiment and the slightly worse
performance of the edge computing deployment, it can be concluded that the offloading of
the SLAM node worked and the results are comparable with a local or a WiFi deployment.
However, the hypothesis that the quality and the functionality of the SLAM algorithm is
not affected is refuted by this results. Even though the slight offset may be considered
acceptable, it is clear that the WiFi deployment option performed better. Whether the
drop in accuracy is acceptable or not depends on the robot platform, the environment and
the requirements. The median absolute pose error is 63% higher in the edge deployment
w.r.t. the WiFi deployment. Although this increase is substantial, in absolute numbers
it is 0.7 cm, a relatively small value. What this experiment has shown without doubt is
that an increase in latency and high jitter negatively affects the quality of a ROS2 SLAM
node.

Created Map

Figure 7.6 shows the robot visualization including the map created in the 5G edge
deployment option shortly before the turn. The red arrow is the ground truth pose and
the violet arrow is the estimated pose. Figure 7.7 is the visualization from the same
experiment, shortly after the turn.

While the map itself is not quantitatively compared between the different deployment
options, it gives a good qualitative estimate on how well the SLAM algorithm performs.
In the representation from the rviz tool in Figures 7.6 and 7.7, the black edges represent
obstacles and the grey area is explored and marked as obstacle-free. The red dots are
the visualized LIDAR scans. However, the confidence is not great (indicated by a darker
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Figure 7.6: rviz visualization before the turn

Figure 7.7: rviz visualization after the turn
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gray), as the robot only moved once in a straight line. Figure 7.7 shows that the certainty
of the map increases when the robot rotates. This behavior is one of the reasons why
mapping is often done manually. The robot is manually steered through the world until
the map "looks good". However, the map in Figure 7.6 is relatively accurate. This is
indicated by the fact that there are no distortions of the edges, i.e., all the edges are
parallel and straight. In case the robot’s localization becomes too inaccurate, the SLAM
node publishes a new transformation from the map frame to the odom frame in the tf
tree. This may result in a shift of the already explored map and the mentioned distortions.
This is slightly visible in Figure 7.8, although the map is still of an arguably high quality,
given the fact that robot moved only through unmapped territory so far.

Figure 7.8: rviz visualization of experiment using the navigation stack
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Furthermore, it can be seen that the ground truth pose and the estimated pose coincide
very well in Figure 7.6, while Figure 7.7 shows an offset between the two arrows. While
the offset does not look significant in this visualization, it relates to the 6 cm offset
depicted in Figures 7.2, 7.3 and 7.4. These figures visually support the author’s claim why
the worsened quality of the 5G edge deployment can still be considered as functional. The
increased median absolute pose error of 0.7 cm in the edge deployment is barely visible
in this visualization. This does not mean that there is no negative effect on the overall
quality of the map and the localization, but in a real-world robotics scenario inaccurate
localization is a common issue and most steering algorithms and navigation stacks are
capable of circumventing this issue to a certain extent. Nevertheless, the simulated
environment is large compared to the robot and there are no particularly difficult spots
such as tight space. As described, it depends on the actual field of operation of the robot
whether the increase in pose error is acceptable or not.

Figure 7.8 shows the created map in a scenario where the navigation stack has been used
to navigate through the map in the local deployment. The small green arrows in the map
are the target poses of the navigation stack. It proved to be more stable when the next
goals are not further apart than one meter while the map is not yet available.

103





CHAPTER 8
Discussion

The author of this thesis has provided an analysis of edge computing architectures in 5G
in Chapter 4. Although the topic itself has gained a lot of traction, the different standards
and white papers provided by ETSI and the 3GPP do not give a clear indication how
an edge computing solution should look like. As discussed, the ETSI MEC framework
uses an unspecified interface between the MEC platform and the 5G core network and
thus there may be several different approaches in solving this challenge. The novel 3GPP
EDGEAPP architecture on the other hand specifies this interface. However, the related
standards are part of Release 17 and have been released during the time of writing of this
thesis. Thus, it is expected that they may lack some maturity. Based on the available
standards, the author has proposed different options in creating an end-to-end edge
computing solution.

Nevertheless, the expected adaptations and challenges are great. On the one hand, the
existing 5G implementations need to be adapted, be it in the RAN or the 5GC. In the 5GC,
at least the SMF, the UPF and the PCF must be updated to support this specific use case.
On the other hand – on the edge enabler side – either the MEC framework or the 3GPP
EDGEAPP may be used. The MEC framework has a level of maturity and is already
adopted. Still, the weak standardization of the interworking between MEC and 3GPP
may result in several incompatible implementations by vendors. The 3GPP EDGEAPP
is a novel approach and there is the need of a prototype implementation to showcase the
usability of the solution. Another challenge is bringing application developers on board.
Due to the edge-awareness of the devices in the EDGEAPP architecture, application
developers who want to utilize edge capabilities need to consider this in the design and
implementation. In the author’s opinion, there is the need for a library for iOS and
Android, but also for embedded systems, to support developers in using the edge. This
allows to hide the complexity of the edge computing solutions and give developers a
straight-forward interface. As the interface between the edge enabler client and the
application itself is not specified, there is the need for the open source community and
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the industry to come together to create a robust library which interacts with an edge
enabler client.

It remains to be seen which architecture and technical solution for 5G edge computing
will prevail. As discussed in Section 2.1.6, network slicing may be a competitive solution
to the one presented in this thesis. However, in the author’s opinion, the network slicing
solution is not flexible enough to support all edge computing use cases. Also, creating
a network slice for each campus network of each customer may turn out to be overly
complicated and resource inefficient. Furthermore, although edge computing has many
great applications, it is not decided yet if the commercial incentives are high enough for
edge computing as discussed in this thesis to be broadly adopted in the future. It may
also be the case that industry leaders prefer a private 5G solution with a private cloud,
as it is simpler to deploy and it gives them a certain freedom w.r.t. MNOs. Nevertheless,
there are still open issues in these scenarios such as a robust support for mobility.

As discussed in Chapter 4, there are different approaches in enabling edge computing
within the 5GC. First and foremost, there are three architectures how an edge computing
AF can interact with the 5GC: (1) Directly with the PCF, (2) Using the NEF, which
interacts with the PCF and (3) Utilizing the UDR. While option (1) is the simplest, it is
likely that option (2) will be adopted in commercial networks. The main reason is that
MNOs do not trust 3rd-party equipment. Thus, the NEF is used as a security gateway.
Option (3) seems overly complex, but it has the advantage that the AF is able to persist
its decisions in the database of the UDR. This again depends on the use case and the
MNO network at hand. 5G edge computing vendors will most likely have to support all
options, further increasing the complexity and development effort of an already difficult
topic. Also, in the author’s opinion, the decision of the 3GPP to have options (1) and
(2) support individual UEs and option (3) multiple UEs is not justified. There is no
technical reason why this is necessary. This exemplifies one of the major issues with
3GPP mobile networks: The standardization is unnecessarily strict at certain points,
while it gives too much freedom at other places. Although this freedom seems beneficial,
it can easily lead to incompatible implementations by different vendors, resulting in a
vendor lock-in for MNOs. This is one of the reason why open source approaches such as
the OAI are so valuable. Application developers have the possibility to use a 5G network
"as-is", without the need to read thousands of pages of standards just to understand in
theory how a 5G network shall operate. Although there are different ways for an AF-5GC
interaction, the PCF plays a vital role in all of these. While this design decision is
understandable, it breaks the micro-services approach. The PCF has one large API used
for QoS, edge computing, TSN and other policies. There is the danger that the PCF is
being implemented as a monolithic policy component. It may be a good approach to split
the different policies into micro-services and let an API gateway act as a monolithic PCF
towards the 5GC. However, as there is only one API towards the SMF, this approach
requires substantial engineering effort to split the large PolicyDecision model into
several parts. For readers with knowledge of the 4G equivalent – the Policy and Charging
Rules Function (PCRF) – it becomes apparent that the PCF is an incremental update of
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the PCRF, whereas REST is used instead of Diameter. In the author’s opinion, this is a
missed chance for a true cloud-native 5G NF.

Another example where the standard gives much freedom are the different UPF edge
computing deployment options, as described in Table 4.2. The distributed anchor point
is the simplest option, but it has some drawbacks. The most crucial is that all the user
traffic is routed to the edge DN. This is especially apparent when looking at the example
of a Content Delivery Network (CDN). One can imagine a scenario where, e.g., Netflix
uses edge computing in 5G to pre-fetch and buffer their video streams. This means, that
Netflix has to deploy a proxy at the edge locations. Solving this using distributed anchor
point would mean that all the UE’s traffic is routed to Netflix’s edge DN. This is an issue
in privacy as well as in performance. The same applies to a certain extent to the session
breakout mode, using the UL CL. While the UL CL is able to route only Netflix’s traffic
to their DN, the UL CL itself receives all the traffic. Thus, it should not be operated
by Netflix, but by a trusted entity, preferably the MNO itself. However, the latency
requirements mandate that the UL CL is as close as possible to the UPF in the edge
DN. One can see that this can create substantial operational difficulties. The option
to use multiple PDU sessions is most probably the most straight-forward, as a similar
approach is already used for VoNR. However, it requires the UE to classify the traffic. It
must possess rules when to use the Netflix PDU session and when to use the common
internet PDU session. While this is hard-wired by the device manufacturers for voice,
this may become a challenge for application developers. Android already offers a way for
operators to configure network slicing parameters and traffic routing, as described by
Android[W38]. A similar approach for more fine-grained edge computing rules may be a
promising solution. Nevertheless, another potential drawback is that each PDU session
increases the control plane traffic. A solution for the privacy issue for the distributed
anchor point and the session breakout option is to have a trusted entity such as a cloud
or edge computing provider operate the edge data center. In this case, the edge provider
operates the edge UPF and uses IP routing within the edge data center to route the
Netflix traffic to the Netflix proxies and forward the other traffic to the internet. However,
this requires much trust in the edge provider and it is also questionable whether MNOs
are willing or legally able to give away the control of the user plane. As one can see, there
are still many open questions which have to be answered when applying the concepts
presented in this thesis in a productive system.

The author has contributed to several important parts of the OAI code base, especially
in creating the PCF and adapting the SMF. However, the performance issue on the
VPP-UPF shows that the solution requires additional engineering effort to achieve the
desired stability. The approach chosen in the SMF to use a graph of UPF associations
might have been too generic for the use case of a UL CL. Other implementation methods
could have been to fixate the scenario to one or more specific UPF deployment options.
Nevertheless, the current solution in the SMF provides a flexibility and is thus more
future proof. As the graph is already implemented, other graph search algorithms such
as the Dijkstra algorithm or A* may be integrated to find the shortest path in the graph.
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The work done on the PCF is a solid foundation for future improvements. The lack of an
API between the PCF and the AF breaks the automation of an edge computing scenario
and should be added to the PCF, so that the OAI CN is able to handle standardized
edge computing enabler layer implementations.

The implementation described in Section 5.3 is not trivial. While the creation of the UPF
graph is fairly straight-forward, selecting the subgraph based on the DNAIs was a complex
task to solve. The main reason is that during development, the author has identified
several situations where the data structures given by the specifications did not fit well
to the task at hand. This required to implement additional abstraction layers. This is
especially true for the PolicyDecision model class. As discussed, it contains many
fields which are not relevant and the relevant fields are hidden in the object’s hierarchy.
During the implementation it becomes apparent that the API has not been designed
with this specific task in mind. Sometimes there are also inconsistencies in the naming.
For example, an important field for the presented solution is the dnaiNwInstanceList
from the UPF information in the NRF. However, this field is not a list, but a map. While
this is just a small inconvenience, it exemplifies that the 3GPP did not make it easy for
software developers to follow their specifications.

The PFCP procedures and call flows have to follow a strict pre-defined order. There is
one reason why this is the case: The PFCP standard, described in 3GPP TS 29.244[100],
specifies that the F-TEID is generated by the UPF. While there is no reasoning present
for this decision, it may be to simplify the F-TEID handling on the SMF. However, this
prevents a more elegant solution for creating PFCP sessions with multiple UPFs. If the
SMF would be allowed to generate the F-TEID, it could send the PFCP messages in any
order. Even more important, the procedures could be executed in parallel. While it is
not possible to change this for 5G, it may be used as a consideration for the upcoming
specification of 6G. Another example of – in the author’s opinion – unnecessary complexity
is the presence of the NGAP protocol in the SMF. While it is reasonable that the UE uses
a binary protocol for communication with the 5GC, there is no reason why this protocol
should not terminate on the AMF, the first point of contact for the UE. In its current
state, the AMF forwards the content of the NGAP protocol over HTTP to the SMF.
There is no reason why the AMF cannot act as a gateway and translate the required fields
from NGAP to JSON and vice versa. Even more astounding, the AMF communicates
with the SMF using JSON as well as NGAP. Further, in the author’s opinion the UL
and DL procedures could be combined. The CN could receive a preliminary F-TEID
from the gNB in the PDU session request, which is used to create the UL and DL GTP
tunnels in the same PFCP message. It has to be analyzed whether this approach would
contradict any requirements in the RAN or the UE. Again, this may be considered for
the 6G specification.

The work described in Chapter 5 has also shown how important open source reference
implementations of 5G networks are. The OAI – but also other open source networking
equipment – gives researchers the possibility to conduct their experiments with a low
entry barrier. Also, and this is arguably more important, the software itself can be
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adapted to one’s use without requiring the (commercial) support of a third party. Given
the complexities of implementing a standard-compliant 5GC, it can also be used to
explore different, more efficient and more innovate, solutions. However, as a reference
implementation, an open source 5GC must also be compliant with the 3GPP standards.

As described in Chapter 7, the robotics scenario does successfully execute on the edge
of the 5G network, but the quality and functionality of the produced output is affected.
Therefore, the answer to RQ3 has to be that – at least currently – offloading a SLAM
algorithm in the edge of a 5G network can impact the usability of the solution. In the end,
it has to be considered by robotic application developers whether a deployment where
the median pose error is 7 mm worse is feasible. Given that current robot localization
software is often inaccurate, this may be acceptable.

The results presented in Section 7.4 show that the Google cartographer is relatively
robust w.r.t. latency and jitter. While it is apparent that the SLAM node performed
worse in the 5G edge deployment than in the WiFi deployment, the difference is less then
expected. As reported in Table 7.3, the mean latency is more than six times higher in the
5G edge deployment. Then, the median absolute pose error is 63% higher, approximately
10% of the latency increase.

The results presented in Section 7.4 show that there is still room for improvement in
the OAI. While it may be unrealistic to expect an open source reference implementation
to perform as well as a commercial solution, the latency measurements are higher
than expected. The end-to-end latency also includes the WiFI connection between the
simulation_computer and the nat_host, which adds at least 0.7 ms and up to 4.2
ms latency. While the results are not yet published, the engineers at the OAI RAN project
are working on reducing the end-to-end latency and have already discovered that the UE
as well as the SPGWU contribute to the jitter and the high latency. It is expected that
the situation improves in future versions of the OAI. Furthermore, there is engineering
effort necessary to make the Quectel RM500Q reliably compatible with Ubuntu 22.04.
In the author’s estimation, these efforts promise to reduce the latency significantly and a
tmean of 6 ms with a σt below 1 ms is realistic. When these performance milestones have
been reached, the conducted experiment should be repeated to compare the absolute
pose error. Nevertheless, there is still a lot of work necessary to reach the desired latency
of 1 ms.

The solution used in the experiment does not use a real-life edge computing scenario. As
the core network is deployed in the same machine as the SLAM node, the edge enabler
layer is not used at all. Further improvements and implementations in the OAI are
necessary to repeat the experiment in a more realistic edge computing scenario. However,
this basic deployment can still be taken as a reference for private 5G networks. A private
5G network does neither need a UL CL, nor the AF influence on traffic routing, as most
likely all the CN components are already deployed at the edge. Nevertheless, the OAI
should cover private 5G as well as edge computing in a public 5G network.

The accuracy of the estimated pose after the turn of the robot is too bad for a real-
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life robotics use case. However, this does not relate to the edge deployment, as this
issue also persists in the local deployment. One of the reasons might be that ROS2 is
used. Although ROS2 offers great improvements compared to its previous versions, not
all ROS2 packages have yet reached the maturity of ROS packages. One example is
cartographer-ros, as it is not officially supporting ROS2 distributions. Another is
the new navigation stack. In the binary packages for the humble release is a bug at
the time of writing of this thesis. The costmaps are not published on the topics, which
leads to collisions. The author chose ROS2 instead of ROS because of the new approach
to networking. ROS uses random ports to communicate between nodes, making the
deployment in Docker or over firewalls difficult. DDS uses a dynamic, but predictable
port range. This eases the deployment over network boundaries. However, the multicast
mechanism does not always work reliable. The mitigation for this issue, the discovery
server, does not work together with NAT, as the IP address is written in the application
layer and thus not exchanged by a NAT gateway. The deployment of ROS2 nodes over
network boundaries remains a significant challenge and the easiest solution may be to
use an overlay VPN network. While this solves the issue of node communication, a VPN
can introduce additional latencies, and a decentralized solution should be chosen.

The presented 5G approach has the advantage that it can support ROS2 networking
without using an overlay VPN network. While many MNOs use NAT at the border of
their core network (i.e., at the UPF), this is not mandatory. 5G uses GTP tunnels to
route traffic to and from the UE, hence the UPF is able to route the UE IP address. If
the edge DN configures an IP route to forward the UE IP address to the UPF, direct
communication is possible. In the other direction, all the traffic is routed to the UPF in
any case. It is also possible that the servers in the edge DN use the same IP subnet as the
UEs. However, the SMF has to be configured accordingly to not assign UE IP addresses
which are used in the edge DN to avoid conflicts. An option is that the SMF does not
assign the addresses itself, but uses an external Dynamic Host Configuration Protocol
(DHCP) server. While this is not standardized, one could imagine an SMF feature which
uses different DHCP servers for different network slices. While this example is inspired
by the ROS2 communication challenges, it inherently describes a VPN. If the UPF is
deployed in the network of a company and the edge DN is the company-internal network,
the 5G UEs can easily be integrated into the internal network. In this example, the
company is using a public 5G network, but the IP packets between the 5G UEs and
other hosts never leaves the company network. While the robotics use case is definitely
a very interesting and important driver of 5G networks, this example shows that the
flexibility of 5G can enable many more use cases.
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CHAPTER 9
Conclusion and Future Work

This thesis discusses the topics of edge computing in 5G and how it relates to the fields
of robotics and Industry 4.0. Thus, the author formulates three research questions in
Section 1.3:

• Research Question 1 (RQ1): What is a suitable edge computing architecture
for offloading latency-critical applications to the edge of a 5G network?

• Research Question 2 (RQ2): What is a feasible approach to implement a MEC
prototype and integrate it into an existing 5G system such as the OAI?

• Research Question 3 (RQ3): Given a MEC prototype and a ROS2 SLAM node,
how does offloading the node to the edge of a 5G network affect the latency and
the quality and functionality of the produced output?

Before RQ1 can be answered, the broader concepts of 5G, edge computing and robotics
have to be defined. The author has provided this in Chapter 2. While this is sufficient for
the presented topic of edge computing in 5G, much more can be written about 5G and
edge computing. However, there is enough literature available with the sole purpose of
explaining these concepts. As this work relies heavily on these, the foundations chapter
serves as an introduction to the reader.

The answer to RQ1 is presented in Chapter 4. It defines the requirements for edge
computing in 5G on the RAN, but especially on the 5GC. The author describes the two
standardized edge computing frameworks, ETSI MEC and 3GPP EDGEAPP. While
ETSI MEC is the older, more mature, standard, its adoption is not great in current 5G
networks. The author argues that this is mainly due to the fact that the interworking
with the underlying mobile network is not specified, resulting in different, incompatible
implementations. 3GPP EDGEAPP tries to bridge the gap between the orchestration

111



9. Conclusion and Future Work

and management aspects of ETSI MEC and the internal procedures of the 5GC. However,
as the standard is very novel, reliable prototypes and experiments are not yet available.
Therefore, the author describes a solution which incorporates the mature ETSI MEC
architecture within the tightly-coupled 3GPP EDGEAPP architecture, which is able to
utilize the advantages of both approaches. Furthermore, in Chapter 3, non-standardized
approaches and prototypes of edge computing in 5G NSA are described.

Additionally, the possibilities how an external edge enabler layer such as the 3GPP
EDGEAPP architecture can influence the 5GC are discussed. Hereby, the author
focuses on a standard-compliant solution, which should prevent the aforementioned
incompatibilities. Therefore, the EES from 3GPP EDGEAPP or the MEP from ETSI
MEC are acting as a 5G AF. The APIs how the AF can influence the UPF selection
and traffic steering are discussed in great details. In situations where the standards
does not specify the details, the author has proposed different solution options. These
options are devised in a manner as to not contradict or violate the specifications, while
having an added value. An example thereof are the different UPF selection options in
the SMF. Each of this option utilizes the available standardized APIs, but their possible
implementations have different prerequisites and require different 5GC deployments. The
comparison of these proposed options also considers impacts on a cloud-native 5GC.

Altogether, the author provides two different suitable edge computing architectures and
describes different options how these may be integrated into the 5GC. Each approach
has its own field of use. The author chose one of the presented solutions to answer RQ2.

The findings in Chapter 4 also reveal much potential for future work. Foremost, the
need for a prototype implementation of the 3GPP EDGEAPP architecture becomes
apparent. Further, the analysis of the standardized APIs and specifications has shown
that there are many different approaches. While this work explores and compares these
theoretically, there is the potential to perform experiments on each option together with
an edge enabler layer to, e.g., assess which approach is best suited in combination with
an NFV MANO.

RQ2 is explored in Chapter 5. It describes a concrete implementation of the procedures
discussed while answering RQ1. The author contributed to the OAI 5GC to support the
edge computing use case. There are significant changes in the OAI SMF. Previously to
these, the SMF supported only one UPF per PDU session and the UPF selection was
based on the network slicing information and the DNN. The author replaced the list
of available UPFs with a graph, which embeds the inherit hierarchy of different UPF
deployments. Additionally, the flexibility of the graph allows to support many cases of
deployment options. This is reflected in the novel UPF selection method. It allows to
select a UPF based on information received by the PCF, an essential feature for edge
computing. Further, the author has proven that the time complexity of the UPF graph
creation and selection is linear w.r.t. the amount of UPFs and thus scales well in a large
network.

In addition to the changes in the SMF, the PCF has been created. While it does not
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support the interface to the AF, it supports influencing the UPF selection and traffic
steering on the SMF. The software architecture of the PCF is designed with future use
cases in mind, especially adding support of the AF interface. Other important features of
the policy frameworks such as QoS are considered in the design. Furthermore, the author
contributed to the VPP-UPF to support the different UPF deployment configurations
and to the NRF.

This thesis shows that standard-compliant edge computing can be implemented in an
open source 5G CN. The additions to the SMF code base prove that graph data structures
and algorithms are a good design pattern for the edge computing requirements in the
SMF. However, the lack of the AF interface on the PCF prevents an end-to-end use
case. The dynamic provisioning of the policies using the file system is not sufficient for a
realistic edge computing solution. The implementation lays the foundation for such a use
case, but it is not explored further herein. Thus, a potential for future work is to take a
3GPP EDGEAPP prototype and integrate it with the OAI 5GC. This would allow to
showcase the ubiquity of edge computing and show that the presented work has been
designed with this in mind.

While the answers to RQ1 and RQ2 give valuable insights to 5G and edge computing,
one may ask what the real-world implications are. As described in Chapter 1, the robotics
use case is an important driver for 5G edge computing. Also, the increased automation
of factories poses new challenges in the fields of robotics. The experiment described in
Chapter 6 to answer RQ3 shows that 5G edge computing is a viable solution to some of
these challenges.

The conducted experiment showed that offloading a ROS2 SLAM node to the 5G edge
is possible. Although the reported results from Chapter 7 show that the quality of the
localization is negatively affected, the functionality itself was not impacted. Nevertheless,
the underlying hypothesis of this work is that offloading the SLAM algorithm to the
edge does not negatively impact the quality w.r.t. a WiFi deployment. Therefore, this
hypothesis is refuted. Whether the reported deterioration of the accuracy is acceptable
depends on the use case.

As described in Chapter 8, there are ongoing efforts to reduce the latency and the jitter
in the OAI. Thus, the experiment presented in this thesis should be reproduced after
this improvements will be implemented in the OAI. The author expects that the SLAM
accuracy will be closer or even equal to the WiFi deployment in an improved version of
the OAI.

Further, the results show that the used Google cartographer SLAM node performed
well given the unexpected high latency and jitter. While SLAM and robotics is often
classified as latency-sensitive applications in research, the author was unable to find
reliable studies examining the real limits. Also, to the author’s best knowledge, there
is no study which explores how the pose error correlates with the latency. A potential
future work is to conduct such an experiment with popular ROS2 SLAM nodes. The
findings given by such a study could greatly benefit the understanding of the latency
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requirements of different SLAM nodes.

ROS2 is inherently a distributed system and the offloading of the SLAM algorithm served
as a latency-critical example. Thus, there are many possibilities for offloading other
parts of the robot, such as the navigation stack, path planning and pose estimation.
Also, a 3D-SLAM instead of a 2D-SLAM may be offloaded to the edge and compared
based on its accuracy. After the underlying 5G implementation has reached a certain
maturity, components with even higher latency requirements such as steering and obstacle
avoidance may be offloaded to the edge as well. The presented findings in this thesis
provide a guideline how this potential future work can be conducted.

Ultimately, the author provides an analysis how edge computing can be enabled in a 5G
network and also a prototype implementation thereof. The conducted experiment shows
that is possible to move a latency-critical ROS2 node to the 5G edge. Thus, this work
lays the foundation for further research in 5G-enabled open source mobile robotics.
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APPENDIX A
API Details

This appendix contains details and examples about the APIs described in this thesis.
When URIs are used in this context, the host name is always the name of the network
function (e.g., "pcf" for a PCF).

A.1 PCF SM Policy Control API
This chapter provides examples for the PCF SM Policy Control API.

A.1.1 Example Body of a SM Policy Association CREATE Request
Listing A.1 shows the JSON body of a default SM Policy Control CREATE Request.
The corresponding URI of the request is:
http://pcf:port/npcf-smpolicycontrol/v1/sm-policies/ and the method is
POST.

1 {
2 "supi": "imsi-208950000000032",
3 "pduSessionType": "IPV4",
4 "pduSessionId": 42,
5 "dnn": "default",
6 "notificationUri": "http://smf:port/12345",
7 "sliceInfo": {
8 "sst": 222,
9 "sd": "123"

10 }
11 }

Listing A.1: Example body of SMPolicyControl CREATE request

115



A. API Details

The request in Listing A.1 does only contain the mandatory fields, hence the PCF can
only decide based on these. This means that either a policy for SUPI, DNN or slice
should be available on the PCF.

A.1.2 Example Body of a SM Policy Association CREATE Response
Listing A.2 shows an example of the body of a response to the SMF when the SM Policy
creation was successful. The PCF creates a unique ID for each SM policy association. This
ID is not communicated in the body, but is located in the Location header of the response:
http://pcf:port/npcf-smpolicycontrol/v1/sm-policies/<id>. This URL is
used to query, update and delete policy associations.

The response contains two different PCC rules. The rule "supi-rule-edge" is used for edge
computing, whereas the "supi-rule-internet" is used for internet traffic. This example
shows that it is possible to have different routes for the same subscriber and even the
PDU session. This may be implemented on the SMF by enforcing a UPF to be a UL
CL. The flow description of the edge rule targets one specific IP address (8.8.8.8) and
refers to the traffic rule "edge-traffic". The precedence 9 indicates that it has a higher
precedence than the other rule. Therefore, the internet rule is applied whenever the edge
rule does not match. Its flow description matches any IP traffic.

There are two traffic control descriptions: "default-traffic" and "edge-traffic". In this
example, each has its dedicated DNAIs and an associated routing profile ID, which is
enforced by the SMF.

1 {
2 "pccRules": {
3 "supi-rule-edge": {
4 "flowInfos": [
5 {i
6 "flowDescription": "permit out ip from 8.8.8.8 to

assigned"
7 }
8 ],
9 "pccRuleId": "supi-rule-edge",

10 "precedence": 9,
11 "refTcData": [
12 "edge-traffic"
13 ]
14 },
15 "supi-rule-internet": {
16 "flowInfos": [
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17 {
18 "flowDescription": "permit out ip from any to

assigned"
19 }
20 ],
21 "pccRuleId": "supi-rule-internet",
22 "precedence": 10,
23 "refTcData": [
24 "default-traffic"
25 ]
26 }
27 },
28 "traffContDecs": {
29 "default-traffic": {
30 "routeToLocs": [
31 {
32 "dnai": "internet-dn",
33 "routeProfId": "route-internet"
34 },
35 {
36 "dnai": "ulcl",
37 "routeProfId": "route-internet"
38 },
39 {
40 "dnai": "aupf1",
41 "routeProfId": "route-internet"
42 },
43 {
44 "dnai": "access",
45 "routeProfId": "route-internet"
46 }
47 ],
48 "tcId": "default-traffic"
49 },
50 "edge-traffic": {
51 "routeToLocs": [
52 {
53 "dnai": "edge-dn",
54 "routeProfId": "route-edge"
55 },
56 {
57 "dnai": "ulcl",
58 "routeProfId": "route-edge"
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59 },
60 {
61 "dnai": "aupf2",
62 "routeProfId": "route-edge"
63 },
64 {
65 "dnai": "access",
66 "routeProfId": "route-edge"
67 }
68 ],
69 "tcId": "edge-traffic"
70 }
71 }
72 }

Listing A.2: Example body of SMPolicyControl CREATE response

A.2 NRF NF Discovery Service
This chapter provides an example of the UPF information stored by and exchanged
through the NRF used in this thesis.

A.2.1 Example of UPF Info in the NRF
The example described in Listing A.3 show how the mapping between DNAI from an AF
or PCF and network instance locally configured on the UPF can be achieved through
the NRF UPF info.

1 {
2 "sNssaiUpfInfoList": [
3 {
4 "sNssai": {
5 "sst": 222,
6 "sd": "123"
7 },
8 "dnnUpfInfoList": [
9 {

10 "dnn": "default",
11 "dnaiList": [
12 "edge_dn_1"
13 ],
14 "dnaiNwInstanceList": {
15 "edge_dn_1": "DN_1_N9"
16 }

118



A.3. UPF Configuration

17 }
18 ]
19 }
20 ]
21 }

Listing A.3: UPF info example

A.3 UPF Configuration
The Listing A.4 from this chapter shows the VPP-UPF configuration that is used to
configure the UPF as a UL CL with an N3, an N4 and two N9 interfaces.

1 {
2 ip table add 1
3 ip table add 2
4 ip table add 3
5
6 create host-interface name n9-1
7 set interface mtu 1500 host-n9-1
8 set interface ip table host-n9-1 3
9 set interface ip address host-n9-1 @N9_1_IPV4_ADDRESS_LOCAL@/24

10 set interface state host-n9-1 up
11
12 create host-interface name n9-2
13 set interface mtu 1500 host-n9-2
14 set interface ip table host-n9-2 1
15 set interface ip address host-n9-2 @N9_2_IPV4_ADDRESS_LOCAL@/24
16 set interface state host-n9-2 up
17
18 create host-interface name n4
19 set interface mtu 1500 host-n4
20 set interface ip table host-n4 0
21 set interface ip address host-n4 @N4_IPV4_ADDRESS_LOCAL@/24
22 set interface state host-n4 up
23
24 create host-interface name n3
25 set interface mtu 1500 host-n3
26 set interface ip table host-n3 2
27 set interface ip address host-n3 @N3_IPV4_ADDRESS_LOCAL@/24
28 set interface state host-n3 up
29
30 ip route add 0.0.0.0/0 table 2 via @N3_IPV4_ADDRESS_REMOTE@

host-n3
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31 ip route add 0.0.0.0/0 table 0 via @N4_IPV4_ADDRESS_REMOTE@
host-n4

32 ip route add 0.0.0.0/0 table 1 via @N9_2_IPV4_ADDRESS_REMOTE@
host-n9-2

33 ip route add 0.0.0.0/0 table 3 via @N9_1_IPV4_ADDRESS_REMOTE@
host-n9-1

34
35 upf pfcp endpoint ip @N4_IPV4_ADDRESS_LOCAL@ vrf 0
36 upf node-id fqdn gw@GW_ID@.vppupf.node.5gcn.mnc@MNC03@.mcc@MCC@

.@REALM@
37
38 upf nwi name @NWI_N3@ vrf 2
39 upf nwi name @NWI_N9_1@ vrf 3
40 upf nwi name @NWI_N9_2@ vrf 1
41
42 upf specification release 16
43
44 upf gtpu endpoint ip @N3_IPV4_ADDRESS_LOCAL@ nwi @NWI_N3@ teid

0x000004d2/2
45 upf gtpu endpoint ip @N9_1_IPV4_ADDRESS_LOCAL@ nwi @NWI_N9_1@

teid 0x000004d2/1
46 upf gtpu endpoint ip @N9_2_IPV4_ADDRESS_LOCAL@ nwi @NWI_N9_2@

teid 0x000004d2/3
47 }

Listing A.4: VPP-UPF configuration for a UL CL scenario
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Prototype Configuration Details

This appendix contains examples on how to configure the edge computing prototype
described in Chapter 5.

B.1 PCF Policy Provisioning
As described in Section 5.2, each of the three policy control types needs to be stored in a
separate directory. These directories are configured in the pcf.conf file as follows:

1 {
2 PCC_RULES_DIRECTORY ="/openair-pcf/policies/pcc_rules";
3 TRAFFIC_RULES_DIRECTORY ="/openair-pcf/policies/traffic_rules";
4 POLICY_DECISIONS_DIRECTORY ="/openair-pcf/policies/

policy_decisions";
5 }

Listing B.1: Example of PCF policy directories configuration

When the PCF is started using docker-compose, there are four environment variables
to set:

• POLICY_BASE_DIR: e.g., /openair-pcf/policies/

• PCC_RULES_DIR: e.g., pcc_rules

• TRAFFIC_RULES_DIR: e.g., traffic_rules

• POLICY_DECISIONS_DIR: e.g., policy_decisions
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These environment variables create the same configuration as outlined in Listing B.1.

In the TRAFFIC_RULES_DIRECTORY, one or more files of the type TrafficControlData
can be stored. Listing B.2 shows an example:

internet-scenario1:
routeToLocs:
- dnai: access
- dnai: iupf1
- dnai: aupf1
- dnai: internet

edge-scenario1:
routeToLocs:
- dnai: access
- dnai: aupf2
- dnai: edge

Listing B.2: Example of PCF traffic rules

The PCC_RULES_DIRECTORY must contain files of the type PccRule. Listing B.3 shows
an example:

internet-rule:
flowInfos:
- flowDescription: permit out ip from any to assigned
precedence: 10
refTcData:
- internet-scenario1

edge-rule:
flowInfos:
- flowDescription: permit out ip from 8.8.8.8 to assigned
precedence: 9
refTcData:
- edge-scenario1

Listing B.3: Example of PCF PCC rules

The policy decisions follow the syntax as described in Section 5.2. Listing B.4 shows an
example:

decision_supi:
supi_imsi: "208950000000031"
pcc_rules:
- internet-rule
- edge-rule
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decision_dnn:
dnn: default
pcc_rules:
- internet-rule

decision_default:
default: true
pcc_rules:
- internet-rule

decision_slice:
slice:
sst: 222
sd: "123"

pcc_rules:
- internet-rule

Listing B.4: Example of PCF policy decisions

B.2 UL CL Tutorial
A tutorial describing how the UL CL solution presented in Chapter 5 can be used in the
OAI is available on the OAI GitLab repository located at:

https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed

It contains a tutorial and a docker-compose file for the UL CL scenario.
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APPENDIX C
Simulation and Experiment

Details

This appendix contains details on how the robotic simulation and the experiment is set
up and executed.

C.1 Dockerfile for the SLAM node
The SLAM node Docker image uses the base image ros:foxy-ros-base-focal. Then,
the package ros-foxy-cartographer-ros is installed and the local ROS workspace
is copied into the image and built. The local workspace contains the launch files for
the SLAM node as well as additional configuration such as the lua file used by the
cartographer. The image used for the experiment is available on the Docker Hub with
the tag stespe/ros-cartographer-node:latest.

It is worth to note that the simulation uses the ROS2 humble distribution, as the local
operating system is Ubuntu 22.04 and the ROS2 foxy distribution does not support this
Ubuntu release.

The Dockerfile for the image is shown in Listing C.1.
FROM ros:foxy-ros-base-focal
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -q -y \

--no-install-recommends ros-foxy-cartographer-ros
COPY ./edge_ws /workspace
WORKDIR /workspace
RUN . "/opt/ros/$ROS_DISTRO/setup.sh" && colcon build
COPY ./ros_entrypoint.sh /ros_entrypoint.sh
ENTRYPOINT [ "/ros_entrypoint.sh" ]

Listing C.1: Dockerfile for the SLAM node
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The entrypoint is the generic ROS2 entrypoint. Thus, to start the SLAM node, the com-
mand ros launch edge_slam_node slam.launch.py needs to be executed. Also,
the environment variable ROS_DISCOVERY_SERVER has to be set to the IP address and
port of the Fast DDS discovery server. To ease the deployment, a docker-compose file
is used, as described in Section C.2.

C.2 Docker-compose File Used in the Experiment
Listing C.2 describes the docker-compose file used to deploy the SLAM and Fast DDS
discovery server nodes.
version: ’3.8’
services:

ros-slam-node:
container_name: ros-slam-node
image: stespe/ros-cartographer-node:latest
environment:
- ROS_DISCOVERY_SERVER=192.168.130.4:11811

command: ["ros2","launch","edge_slam_node","slam.launch.py"]
networks:
ros-network:

ipv4_address: 192.168.130.2

fastdds-discovery:
container_name: fastdds-discovery
image: stespe/ros-cartographer-node:latest
command: ["fastdds", "discovery", "-i", "0"]
ports:
- "11811:11811/udp"

networks:
ros-network:

ipv4_address: 192.168.130.4

networks:
ros-network:

name: ros-network
ipam:
config:

- subnet: 192.168.130.0/24

Listing C.2: docker-compose file to deploy the SLAM and Fast DDS nodes
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C.3 Comparing the Absolute Pose Error using Evo
The evo tool supports reading files in the rosbag format. As the experiment is running
on ROS2, the format of the ROS bags changed. To prepare the input for evo, first
the topics of interest need to be extracted from the ROS2 bag. Then, the ROS2 bag
is converted into a ROS bag format. The ros2 bag convert tool is used to extract
the pose topics. The convert tool is configured using a yaml file. This configuration is
shown in Listing C.3.

output_bags:
- uri: pose_bags # required

storage_id: sqlite3 # required
max_bagfile_size: 0
max_bagfile_duration: 0
storage_preset_profile: ""
storage_config_uri: ""
all: false
topics: ["/ground_truth/pose", "/real_pose/pose"]

Listing C.3: YAML configuration to extract the poses from a ROS2 bag file

The tool to convert from ROS2 bags to ROS bags is rosbags-convert. Then, the evo
tool is used to generate the plots based on the converted bag, as shown in Listing C.4

ros2 bag convert -i <ros2bag> -o convert.yaml
rosbags-convert pose_bags

evo_ape bag pose_bags.bag -va --plot /ground_truth/pose \
/real_pose/pose --save_results result.zip

Listing C.4: Converting the ROS bags and plotting the absolute pose error
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