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While past in-stream experiments of solute transport were mostly conducted during low flow 

conditions, Chapter 3 presents results from 31 in-stream tracer experiments carried out in the 

Weierbach over three hydrologie years that comprise both low flow and high flow conditions. The 

spatially dense groundwater data from Chapter 1 are used to estimate the extent of the 

groundwater zone receiving streamwater during each experiment, while the iterative modelling 

approach from Chapter 2 allows robust estimation of the model parameters for each tracer 

experiment. The analyses show that the streamwater-groundwater exchange has a decreasing 

influence on water and solute transport in the stream corridor with increasing discharge. This is 

because of the relatively lower localised water losses from the stream channel to the adjacent 

groundwater. Model parameter interaction increases with discharge, due to the dominance of 

advection-dispersion parameters over transient storage parameters. 

Overall, the thesis advances our understanding of hydrological and solute transport processes in 

stream corridors. The research highlights the role of both morphological and hydrological factors 

in stream corridor processes, and the dynamics of near-stream water flow directions during the 

hydrologie year. The results reported in this thesis pave the way for a holistic understanding of 

water movement through the torrent corridor and contribute to accurate model predictions under 

different hydrological conditions. 
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Abflussbedingungen zu simulieren. Die Ergebnisse zeigen, dass die Methode in der Lage ist, 

identifizierbare Modellparameter zu bestimmen, was in früheren Arbeiten nicht der Fall war. Die 

Analysen zeigen auch, wie die Kalibrierung der Parameter ohne Bewertung ihrer Identifizierbarkeit 

zu unsicheren Vorhersagen des Transportes gelöster Stoffe im Flusskorridor führen kann. Die neue 

Methode verbessert somit die Prozessinterpretation der Parameter. 

Während frühere Experimente zum  Stofftransport in  Fließgewässern meist bei 

Niederwasserbedingungen durchgeführt wurden, werden in Kapitel 3 die Ergebnisse von 31 

Tracerexperimenten im Weierbach vorgestellt, die über drei hydrologische Jahre hinweg 

durchgeführt wurden und sowohl Nieder- als auch Hochwasserbedingungen umfassen. Die räumlich 

dichten Grundwasserdaten aus Kapitel 1 werden verwendet, um die Ausdehnung jener 

Grundwasserzone abzuschätzen, die während jedes Experiments Bachwasser aufnimmt, während 

der iterative Modellierungsansatz aus Kapitel 2 eine robuste Schätzung der Modellparameter für 

jedes Tracerexperiment ermöglicht. Die Analysen zeigen, dass der Flusswasser-Grundwasser- 

Austausch mit zunehmendem Abfluss einen abnehmenden Einfluss auf den Wasser- und 

Stofftransport im Flusskorridor hat. Dies ist auf die geringen relativen Wasserverluste aus dem 

Bachlauf in Richtung des angrenzenden Grundwassers zurückzuführen. Die Interaktion der 

Modellparameter nimmt mit dem Abfluss zu, da die Advektions-Dispersions- Parameter gegenüber 

den Parametern der instationären Speicherung dominieren. 

Insgesamt trägt die Arbeit zu einem besseren Verständnis der hydrologischen Prozesse und des 

Stofftransports in Flusskorridoren bei. Die Untersuchungen unterstreichen die Rolle sowohl 

morphologischer als auch hydrologischer Faktoren für die Prozesse in Flusskorridoren und die 

Dynamik der Strömungsrichtung im bachnahen Grundwasser über das gesamte hydrologische Jahr 

hinweg. Die in dieser Arbeit berichteten Ergebnisse ebnen den Weg für ein ganzheitliches 

Verständnis der Wasserbewegung durch den Wildbachkorridor und tragen zu genauen 

Modellvorhersagen unter verschiedenen hydrologischen Bedingungen bei.



Endowed with the essences of Howers, 

Eisht precious minerals does he eat. 

Astride dragons, he hides within the torrent, 

Flowing onwards, the sea-god Ruo to meet. 

Indeed he is a Transcendent of the waters: 

“Lord ofthe River” is his name, complete. 

— Gsuo Pu, presentation of Hebo, the Yellow River God





other studies also highlighted that streamwater can flow vertically through the streambed in pool- 

and-riffle sections (Bencala, 1983) and that it can also mix laterally with the adjacent groundwater 

(Triska et al., 1989) before returning into the stream channel. This process goes under the name of 

hyporheic exchange, where the hyporheic zone can thus be defined as the saturated area that is 

physically influenced by the water exchange between the stream channel and the adjacent 

groundwater (Triska et al., 1989; White, 1993; Cardenas and Wilson, 2007). While the oceurrence 

of the hyporheic zone as a buffer area between the streamwater and the groundwater was already 

well recognized by ecologists and biologists before the 19608, it was fully acknowledged in stream 

hydrology only a few decades later (J-NABS, special issue 1993). This finding changed dramatically 

the way stream hydrologists viewed rivers, which from that: moment on were not seen as distinct 

and separate units from the catchment, but rather as part of a much larger continuum comprising 

stream channels, together with fluvial deposits, riparian zones, and floodplains: the stream corridor 

(National Research Council, 2002). 

The conjoint action of dead-zones, in-stream eddies, and hyporheic exchange on the streamwater 

transport within the stream corridor goes under the name of "transient storage process” and it can 

thus be seen as the fourth process governing the movement of water in river networks together 

with advection, dispersion and dilution (Gooseff et al., 2008). Being able to understand and model 

the mechanisns governing the transient storage in streams not only allows one to predict the 

transport of water downstream, but also improves the understanding of the processes governing 

water quality in river networks. Transient storage processes increase the residence time of solutes 

and pollutants in the stream channel, thus enhaneing oxygen distribution, nutrient cyeling, and 

contaminant removal (Vaux, 1962; Smith, 2005; Harvey & Gooseff, 2015: Krause et al., 2017). In 

particular, the hyporheie zone is naturally a buffer area between the stream water and the 

groundwater. Thus, the hyporheic zone exhibits slower flow velocities in comparison to surface flow, 

and faster velocities when compared to groundwater (Krause et al., 2011). The hyporheie zone also 

displays temperature and chemical gradients between streamflow and groundwater (Triska et al., 

1989a, 19896; Brunke and Gonser, 1997; Datry & Larned, 2008). These pecnliar physical and 

chemical properties make the hyporheie zone a fundamental ecotone for riverine biology, leading 

to a rich distribution of various riverine microorganisms such as bacteria, benthic autotrophs, and 

nest-building vertebrates (Cummins 1980; Boulton et al., 2010). 

Despite the importance of transient storage processes on both controlling water transport and its 

quality in stream channels, the current state ofthe art is unable to fully capture the spatio-temporal 

variability of the drivers regulating it. This inconsistent understanding of the underlying 

mechanisms controlling water movement in stream channels is the consequence of three major 

issues. 

First, a common approach in the design of fieldwork experiments consists in assuming a certain 

process to be predominant compared to the others. As a result, there are several studies specificallv 

focusing on hyporheie transport (Wondzell 2006; Fabian et al., 2011: Rathore et al., 2021), or on 

in-stream dead-zones (Davis et al., 2000; Weitbrecht, 2004; Gooseff et al., 2005). This research 

design does not allow capturing the conjoint action of different mechanisms participating in the 
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Figure I. A timeline of significant publications contributing to increasing the understanding of water 

movement in river networks, streamwater-groundwater (SW-GW) exchange and the significance of the 

hyporheic zone (HZ). 
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the identifiability of TSM parameters is independent of discharge conditions, and ii) higher 

discharge stages have a lower influence on both hyporheic exchange and in-stream transient storage 

compared to lower discharge conditions. The outcomes of this study provide a clear process 

interpretation of water movement at the study site. Also, this work offers a promising approach for 

future research addressing transient storage processes via different and more complex TSM 

formulations or over more complex stream morphologies. 

To test: the hypothesis of this thesis, an exhaustive fieldwork campaign has been conducted from 

2018 to 2021 to monitor groundwater table dynamics and solute transport along a 55 m stream 

reach in the Weierbach catchment. The Weierbach catchment is a 0.42 km? experimental site 

located in the North-West of the Gran Duchy of Luxembourg (49’49'38" N, 5°47'44"E). The climate 

is semmi-oceanic with an annnal precipitation depth equal to 958.32 mm (2009-2019, Hissler et al., 

2020). The catchment is forested and dominated by a combination of Fagus sylvatica (European 

beech), Quercus petraea (Sessile vak), Pseudotsuga menziesii (Douglas fir) and Picea abies (Norway 

spruce) species. 

The stream channel at, the study site is unvegetated, characterized by a pool-and-riflle morphology 

and with an average slope of =6%. The reach was equipped with 36 wells and seven piezometers 

drilled via a portable rotative drilling system and a percussion hammer. The groundwater 

monitoring network was designed to investigate the groundwater dynamics in the streain channel 

and on the left and right stream banks. A total of 31 in-stream tracer injections were conducted 

from December 2018 to June 2021 via sodium chloride solutions covering both wet and dry 

hydrologie conditions. 

Several studies have investigated runoff generation at the study site (Wrede et al., 2015; Glaser et 

al., 2016; Martinez-Carreras et al., 2016; Rodriguez & Klaus, 2019; Antonelli et al., 2020). The 

catehment hillslopes in the Weierbach catchment are characterized by a regolith layer with a 

relatively high hydraulic conductivity compared to the fractured bedrock layer beneath (Glaser et 

al., 2016, 2020). The subsurface structure does not promote shallow lateral flow toward the stream 

channel (Klaus & Jackson, 2018), and precipitation water percolates vertically toward the 

groundwater table in the fractured bedrock (Rodriguez & Klaus, 2019). Discharge is generated by 

both a fast and a slow response to precipitation events. The fast response of stream discharge to 

precipitation events largely consists of event water, both in dry and wet hydrologic conditions 

(Wrede et al., 2015). This has been interpreted as surface runoff of event-water over the saturated 

organic soll in the riparlan zone toward the stream channel or by direct precipitation in the stream 

channel (Wrede et al., 2015; Glaser et al., 2016; Antonelli et al., 2020). The slow response occurs 

when the amount of water from precipitation events exceeds the storage capaeity at the hillslope. 

When this happens, the groundwater is laterally redistributed over the fractured bedrock from the 

hillslopes toward the stream channel causing an increase in discharge and a double-peak behaviour 

in the hydrograph (Martinez-Carreras et al., 2016).





And oft as swift-footed, goodly Achilles strove to make stand against him and 

to learn ifall the immortals that hold broad heaven were driving him in rout, 

so often would the great flood of the heaven-fed Stream beat upon his shoulders from above; 

and he would spring on high with his feet in vexation of spirit, 

and the Stream was ever tiring his knees with its violent How beneath, 

and was snatehing away the ground from under his feet. 

— Homer, Iliad, Chapter 21.



Chapter 1: Flow directions of stream-groundwater 

exchange in a headwater catchment during the 

hydrologic year 

The present chapter corresponds to the following scientific publication: 

Bonanno, E., Blöschl, G., and Klaus, J. (2021). Flow directions of stream-groundwater exchange 

in a headwater catehment during the hydrologic year. Hydrological Processes, 35(8), 1-18. 

https: //doi.org/10.1002/hyp.14310 

Graphical abstract 

This work investigates the drivers of near-stream groundwater dynamics and stream-groundwater 

exchange across the hydrologie year. Our results stress the time-variant role of the position of the 

groundwater table with respect to the fractured bedrock, preeipitation depth and intensity, upslope- 

footslope connectivity and streamwater level in determining the flow dynamics. 
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preeipitation characteristics (Dhakal & Sullivan, 2014; Fannin et al., 2000), and antecedent 

conditions (Detty & MeGnuire, 2010a). However, compared to hillslopes, near-stream groundwater 

dynamics are also affected by the local aceumulation of finer soil material in the riparian zones 

(Rinderer et al., 2017; Scheliga et al., 2018), streamwater infiltration (Dudley-Southern & Binley, 

2015), and changes in gradients due to streambed morphology (e.g., pool-and-riffle sections, 

Buffinston & Tonina, 2009). Studies investigating the near-stream and hillslope groundwater also 

highlighted the higher degree of varlability of groundwater flow direction in the near-stream domain 

compared to upslope locations (Burt et al., 2002; Hinton et al., 1993; Rodhe & Seibert, 2011; Von 

Freyberg et al., 2014). 

Despite groundwater dynamics and flow direction being recognized as strongly variable in the near- 

stream domain, many studies have focussed on the spatiotemporal differences between near-stream 

and upslope groundwater and assumed that a small number of wells close to the stream are 

representative of the near-stream domain. As a result, data and observations in the stream corridor 

are often fragmented (Burt et al., 2002; Rodhe & Seibert, 2011) and do not: provide a complete 

description of the processes controlling streamwater-groundwater exchange (Ward & Packman, 

2019). One limitation of most experimental studies that may contribute to the diversity of results 

is the design of the observation networks. Most studies relied on near-stream well networks on only 

one side of the stream channel (Burt et al., 2002; Heeren et al., 2014) or on a low temporal 

measurement resolution (monthly or biweekly) (Vidon & Hill, 2004; Vidon & Smith, 2007). While 

important understanding has been obtained from these studies, such measurement desiens do not 

capbure the high frequency evolution of near-stream groundwater level and flow directions. Another 

limitation amongst studies is the lack of observations across the full range of hydrologie conditions. 

Although precipitation characteristics and hydrologie conditions play a inajor role in groundwater 

dynamics, past studies mostly focussed on shorter periods at baseflow conditions (Ward, 2016) or 

on a limited number of preeipitation events (Dudley-Soutbern & Binley, 2015; Heeren et al., 2014; 

van Meerveld et al., 2015; Vidon, 2012; Voltz et al, 2013). Consequently, we lack long-term 

observations in the near-stream domain across different flow conditions. This hampers our ability 

to address spatiotemporal changes in groundwater flowpaths in the stream corridor. Responding to 

calls from Ward and Packman (2019) on the need to deeipher the time-varlant role of the drivers 

controlling the streamwater-groundwater exchange, we investigated a stream corridor with a 

network of 36 wells and 7 piezometers over a period of 18 months, to address the following research 

questions: 

1. How and why does the near-stream groundwater table dynamic vary in different hydrologic 

conditions? 

2. How and why does the near-stream groundwater Now direction change in different 

hydrologie conditions? 

1.3 Study site 

The study site is a 55 m-long corridor along a headwater stream in Luxembourg (449'38"N, 

5-47'44"'E) downstream ofthe Weierbach experimental catchment (Hissler et al., 2021; Figure A3). 

The geology consists of Devonian slate and quartzite bedrock, covered by Pleistocene periglacial 
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slope deposits. The climate is semi-oceanic with precipitation rather uniformly distributed 

throughout the year. Higher evapotranspiration rates in summer induce streamflow seasonality 

with its lowest values (potential no-flow) between July and October. Streamflow generation is 

controlled by the interplay of surface flowpaths from abundant riparian wetlands (Antonelli et al., 

2020; Glaser et al., 2016; Glaser et al., 2020) and deeper flowpaths with longer travel times 

(Rodriguez et al., 2021; Rodriguez & Klaus, 2019). 
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Figure 1.1. (a) Study reach, location and name of the wells/piezometers (blue circles) with stream 

d 

channel (blue), riparian wetland (ochre), hillslopes (green) and contour lines (m a.s.l.) (red); (b) bedrock 

surface topography (colours) from electrical resistivity tomography (ERT) survey and red contour lines 

showing surface topography, both expressed in metres above reference plane (m a.r.p.). The flow 

direction of the stream is from top to bottom on the map. 

The stream channel is unvegetated and consists of deposited colluvial material and fragmented 

schists (up to 50 cm depth) with underlying fractured slate bedrock that sporadically forms the 

streambed. The average channel slope is =6% and a 50 cm step riffle sits between wells 7W1 and 

7W2 (Y = 36 m, Figure 1.1(a)). The regolith (i.e., the unconsolidated material deriving from the 

degeneration of the bedrock in situ, Merrill (1906)) in the Weierbach catehment can be subdivided 

into solum and subsolum (Gourdol et al., 2021; Juilleret et al., 2016; Moragues-Quiroga et al., 

2017). The solum, that is, the upper part of the regolith where pedogenic processes are dominant 

and biota play an important role consists of an O horizon (highly decomposed organic material) 

above a silty clay Ah Horizon and a silty clay loam B Cambie horizon (Juilleret et al., 2016; 
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Moragues-Quiroga et al., 2017). The solum is characterised by a loam texture with high porosity 

(from 61% to 45%, Glaser et al., 2016; Gourdol et al., 2021) and low volumetrie content of rock 

fragments (from 13% to 27%, Moragues-Quiroga et al., 2017; Gourdol et al., 2021). The subsolum, 

that is, the lower part of the regolith where the original rock structure or fabrie of the bedrock is 

preserved consists of loam 2Cgl and sandy loam 2Cg2 horizons above a 3CR saprolithic horizon 

(Juilleret et al., 2016; Moragues-Quiroga et al., 2017). It is characterised by sandy-loam texture 

(Gourdol et al., 2021) with abundant rock fragments (from 25% to more than 80%, Gourdol et al., 

2021) and decreasing porosity (from 30% to 15%, Glaser et al., 2016). The fractured bedrock below 

the subsolum consists of Devonian slate and phyllites fractured bedrock (3R horizon, paralithic 

material; Juilleret et al., 2016; Moragues-Quiroga et al., 2017) where porosity decreases with depth 

(from 15% to 10%, Glaser et al., 2016) and the volumetrie 

to 90% (Gourdol et al., 2021). The drastic decrease of porosity with depth is also reflected by a 

:ontent of rock fragments increases up 

  

decrease in storage capacity observed in the field investigations, where the volumetrie water content 

in the solum was almost double that in the subsolum during drainage conditions (Martinez-Carreras 

et al., 2016). The properties of the solum, subsolum, and fractured bedrock are summarized in 

Table 1. A riparian wetland (Figure 1.1(a)) is located beside the stream channel. Such wetlands 

account for 1.2% of the Weierbach catchment (Antonelli et al., 2020) and consist of shallow organic 

clay-loamy soil over the fractured bedrock (Leptosols, Glaser et al., 2016). 

Table 1.1. Subsurface layers in the study site and their properties. 

  

ERT - Profile P1 Layer 

45| Topographie surface Properties Solum Subsolum Fractured bedrock 
= = -Solum-Subsolum interface 7 

e- = = -Subsolum-Fractured bedrock interface =2 Rock fragments 13%-27% 25% to more than 80%° 90%-100% 

—% & volumetric 
5 g 10 content 

wE 
Porosity 45%-61%"  15%-30%° 10%-15%° 

5 Composition Loam texture® Sandy-loam texture with  Devonian slate and 
30 abundant rock phyllites 

fragments® fractured bedrock 

  

(paralithic layer)“ 

Moragues-Quiroga et al. (2017). 
bGlaser et al. (2016). 

“Gourdol et al. (2021). 

1.4 Methods 

1.4.1 Observation of the groundwater table 

We installed 36 wells and seven piezometers (Figure 1.1(a)). We placed the piezometers directly 

into stream channel boreholes drilled with a percussion hammer (Cobra TT, Eijkelkamp, 

Netherlands). Wells were drilled with a portable drilling system (Gabrielli & MeDonnell, 2012) 

down to fresh bedrock and cased the wells with a 4 em diameter PVC pipe screened at the bottom 

(Table B). We filled the space between the borehole and the pipe with gravel and sealed the 

borehole with bentonite at the top. We observed the water level every 15 min at 22 of the 36 wells 

with a water level sensor (Orpheus Mini, OTT, Kempten, Germany, resolution of 1 mm and 

accuracy of +0.05% FS) and approximately biweekly in all wells and piezometers via manual 

measurements. Measurements started in July 2018 and continued until February 2020. Inflow into 

the study section was measured using a steam gauge (Figure 1.1(a)) with a pressure transducer 

(ISCO 4120 Flow Logger). Discharge was derived from a water level-discharge rating curve that





dry days). We correlated the spatial differences in the average groundwater response time and 

increase per well with the regolith depth above the fractured bedrock and with the distance from 

and the elevation above the streambed using the Spearman rank correlation coefficient (Rs). 

Significance was evaluated with the Mann-Whitney test (significance level: p-value < 0.05). We 

computed groundwater flow directions by assuming that they were equal to the slope of a planar 

groundwater table determined by three adjacent wells. We quantified the direction by angle « 

(degrees) on the xy plane (cf. Rodhe & Seibert, 2011). The stream is oriented with -72° on the xy 

plane (cf. Figure 1.2(b)). &values pointing towards the stream channel indicate that the stream is 

gaining conditions, whereas & pointing away from the channel suggests losing conditions. "The 

subsurface groundwater flow direction was calculated every 15 min. For the wells equipped with 

continuous water level loggers (Figure 1.2(a), 29 triangles), and for all wells every 2 weeks (Figure 

1.2(b), 65 triangles). For every triangle, we also derived the direction of the fractured bedrock fall 

line (defined as the direction on the xy plane [degrees] of the slope of the fractured bedrock surface) 

and the direction of the surface topography fall line (defined as the direction on the xy plane 

[degrees] of the slope of the topographie surface) using the same approach used for obtaining the 

direction of the groundwater table. Data analysis has been conducted with MATLAB R2020a (The 

Mathworks, Natick, MA). 
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Figure 1.2. (a) Triangles for the calculation of the groundwater flow direction from wells with continuous 

measurements, and (b) from manual groundwater monitoring; the direction of angle a is reported at the 

top of the panel. Example triangles are indicated with a red perimeter and their number. 
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1.5 Results 

1.5.1 Groundwater and streamflow dynamics 

Streamflow varied widely (Figure 1.3, arithmetic mean of 6.51/s, median of 1.71/s, interquartile 

range of 9.11/s, St.Dev. of 11.52 1/s), with extended no-flow periods during summer (no discharge 

for a total of 194days during the study period), persistent streamflow during winter and spring, 

and variable event responses. We defined three different hydrologie conditions (dry, intermediate, 

wet) based on streamflow and groundwater levels (shown as grey shades, Figure 1.3; details in 

Table 1.2) to classify groundwater behaviour. 

We defined wet conditions when discharge @ exceeded O1/s for 14 consecutive days regardless of 

the groundwater elevation in the wells. Intermediate conditions were only defined when they 

immediately occurred before or after the wet conditions. Intermediate conditions were specified 

when @ = 0 or Q> 01/s lasted less of 14 consecutive days, and when the monitored groundwater 

in at least 17 (75%) of the wells was above the subsolum-fractured bedrock. Dry conditions were 

specified when Q@ =D or Q>Ol/s lasted less than 14 consecutive days and when the monitored 

groundwater in less than 17 (75%) of the wells was above the subsolum-fractured bedrock. 
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Figure 1.3. (a) Preeipitation (blue) and streamflow (black); (b) groundwater level for a selection of wells 

in the east footslope (7W1, blue), west footslope (9W6, red) and riparian wetland (10W2, green). Dark 

grey areas indicate dry hydrologic conditions; light grey, intermediate hydrologic conditions; and white 

areas, wet hydrologic conditions. 

Table 1.2. Periods of dry-intermediate-wet conditions and their duration, fraction of time with streamflow, 

total number of precipitation events, total depth of precipitation and rainfall characteristics (depth per event, 

inter-arrival time, duration). 

Precipitation Precipitation Duration of 

depth per inter-arrival precipitation 

  

Number of Totaldepthof  ovent(mm) time (days) events (h) 
Hydrologic Fraction of time precipitation precipitation 

Period classification with streamflow (%) events (mm) Mean St.dev. Mean St.dev Mean St.dev 

25/07/2018-30/10/2018 Dry 4.97 18 111.8 6.21 9.43 454 541 5.01 692 

30/10/2018-24/11/2018 Intermediate 26.05 12 57.3 477 625 199 252 5.39 3.52 

24/11/2018-29/06/2019 Wet 100 94 584.6 6.22 9.07 226 451 71 8.28 

29/06/2019-23/07/2019 Intermediate 36.18 0 0 /! // N // /! /! 

23/07/2019-24/09/2019 Dry 4.71 19 102.5 5.39 5.02 300 5.21 479 4.78 

24/09/2019-08/10/2019 Intermediate 46.87 17 113.2 6.66 7.23 045 049 6.66 6.57 

08/10/2019-05/02/2020 Wet 100 71 523.7 7.37 7.78 129 188 929 7.71 
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Figure 1.4. Groundwater response to precipitation events. Average magnitude of the minimum 

precipitation depth needed to trigger a groundwater level response of at least 1 cm for each well in dry 

(a), intermediate (b), and wet (c) conditions; average lag time between the beginning of preeipitation 

and groundwater level response of at least 1 cm for dry (d), intermediate (e), and wet (f) conditions; 

average lag time between the beginning of a discharge increase (when present) and a groundwater level 

response of at least 1 cm for dry (g), intermediate (h), and wet (i) conditions. Negative numbers indicate 

a groundwater response earlier than the recorded discharge increase. 
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Dry conditions (dark grey shading, Figure 1.3, 28.7% of the observation period) (Table 1.2) had 

no-flow for 95.3% of the time. The average streamflow in this period was 0.011/s. Groundwater 

(Figure 1.3(b)) displayed flashy and short-lived increases after preeipitation. The groundwater table 

in the east and west footslopes (wells 7W1 and 9W6, Figure 1.3(b)) showed larger increases and 

faster recessions than tables in the riparian wetland (well 10W2, Figure 1.3(b)). During 

intermediate conditions (light grey shading, Figure 1.3, 11.0% of the observation period, Table 1.2), 

preeipitation occurred more frequently and with higher amounts; no-Fow persisted for 67.4% of the 

time (Table 1.2) and average streamflow was 0.121/s. During wet conditions (white shading, Figure 

1.3), which covered 60.3% of the observation period (Table 1.2), streamflow was persistent (average 

discharge was 10.81/s with a maximum of 1181/s). 

To quantify the drivers of groundwater dynamics, we analysed the average response time and 

increase after preeipitation events for groundwater and streamflow (Figure 1.4). During dry 

conditions, a groundwater response was triggered in all wells by small preeipitation depths (<3 mm 

for 21 of the 22 wells; median = 2.2mm, min = Imm, max = 3.5mm, Figure 1.4{a)). This 

groundwater rise occurred a few hours after the onset of precipitation (<3h, for 17 of the 22 wells; 

median = 2.48h, min = 1.21h, max = 5.15, Figure 1.4(d)). If streamflow was generated following 

precipitation, it appeared several hours after the rise of the groundwater table (between 0.25 and 

2.95h; median = 1.75h, Figure 1.4(g)). During dry conditions and before precipitation events 

(Figure 1.5(a)), the groundwater table in the footslopes (e.g. wells 5W2, 5W3) was below the 

streambed elevation (Figure 1.5(d)) in the fractured bedrock (Figure 1.5(g)). The groundwater 

table in the riparian wetland (e.g. well 7W3) was above the subsolum-bedrock interface and - for 

some wells - above streambed elevation (Figure 1.5(d),(g)). In response to precipitation events, 

groundwater in the footslopes rose rapidly from the fractured bedrock into the subsolum — and in 

a few instances - above streambed elevation. After events, the groundwater level decreased rapidly 

towards the pre-event. level. 

During intermediate conditions, the minimum preeipitation depth necessary for a groundwater 

response was <3mm for 21 of the 22 wells (median = 15mm, min = 13mm, max = 3.37 mm, 

Figure 1.4(b)). Groundwater rise usually occurred less than 5 h after the beginning of a precipitation 

event for ınost wells (median = 3.56h, min = 2.17 h, max = 6,53; Figure 1.4(e)). In response to 

precipitation, streamflow increased (or re-appeared) almost synchronously with the groundwater 

table (Figure 1.4(h)). During intermediate conditions, the groundwater table was above the 

fractured bedrock and rose within the subsolum layer after the events and decreased to the pre- 

event level within 2-3 days (Figure 1.5(h)). The groundwater in the riparian wetland was always 

above the streambed elevation before and after precipitation events, while the groundwater in the 

footslopes was inostly at the level of the streambed (Figure 1.5(e)). 

During wet conditions, the groundwater table was always above streambed elevation (Figure 1.5(f)) 

and in the upper subsolum or the solum (Figure 1.5(1)). The groundwater table variation in the 

footslopes mirrored streamflow variations (Figure 1.2(a),(b)), while the groundwater table in the 

riparian wetland was more stable with less frequent and smaller peaks (Figure 1.2(b)). The 

'ecipitation depth necessary to trigger an Increase in the groundwater level was highest in wet recipitation depth necessary to trigger an increase in the groundwater level was highest in wet 
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conditions (median = 3.24mm, min = 1.81 mm, max = 4.1 mm, Figure 1.4(c)) and the groundwater 

response to precipitation events was more delayed compared to dry and intermediate conditions 

(median = 5.58h, min = 2.35 h, max = 12.68h Figure 1.4(f)). In contrast to dry and intermediate 

conditions, streamflow response occurred before groundwater response (median = 4.54h, min = 

1.26h, max = 11.41, Figure 1.4(i)). In the riparian wetland, the groundwater table reached the 

surface in several wells (8.5%, 6.83%, 14.6%, and 50.3% of the time for wells 7W2, 7W3, 9W3, and 

10W2, respectively). Some wells displayed artesian behaviour for extended periods of time (46.5% 

and 14.9% of the time for wells 7W3 and 10W2, respectively). 
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Figure 1.5. Event precipitation (blue) and streamflow (black) for selected events during dry (a), 

intermediate (b), and wet (c) conditions; groundwater level relative to the streambed elevation for the 

same three events during dry (d), intermediate (e) and wet (f) conditions; groundwater level relative to 

different subsurface layers for dry (g), intermediate (h), and wet (i) conditions. Wells 9W2, 11W3, and 

7W3 are located respectively on the east footslope (blue line), west footslope (red line), and riparian 

wetland (green line), Figure 1.4. 

We conducted a correlation analysis for every well to determine whether precipitation 

characteristics and initial groundwater table elevation drove temporal variability of groundwater 

dynamics in different hydrologie conditions (Figure 1.6 and Appendix C). The increase in the 

groundwater level was always positively correlated with preeipitation depth (Figure 1.6(a)), and it 

was positively correlated with precipitation intensity for the whole study period and for 

intermediate and wet conditions (Figure 1.6(b)). The increase in the groundwater level was also 

negatively correlated with the initial groundwater level for most wells during the whole study period 

(Figure 1.6(d)). We found no significant correlation between groundwater increase and number of 

antecedent dry days (Figure 1.6(c)). The observed groundwater response time was always 

negatively correlated with preeipitation intensity (Figure 1.6(f)) and the correlation was significant 

for the whole study period and for intermediate and wet conditions. For the whole study period, 
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the groundwater response time was also significantly positively correlated with initial groundwater 

levels for most wells (Figure 1.6(h)). We found that only a few wells had a significant correlation 

between groundwater response time and precipitation depth or the number of antecedent dry days 

(Figure 1.6(e,g)). 

We conducted a correlation analysis to determine whether the regolith thickness and distance from 

and elevation above the stream channel drove spatial variability in groundwater dynamics for 

different hydrologie conditions. During wet conditions, the average groundwater increase and 

response time were significantly positively correlated with regolith thickness above the fractured 

bedrock and elevation above and distance from the streambed. During dry conditions, the average 

groundwater increase and response time were respectively significantly correlated with elevation 

above the streambed and regolith thickness above the fractured bedrock (Appendix C). 
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Figure 1.6. Histograms of the number of wells that have a significant positive (blue histogram) and 

significant negative (red histogram) Spearman relationship between the groundwater increase (AGW,y) 

and groundwater response time (AGW;) for (a, e) precipitation depth, (b, f) preeipitation intensity, (c, 

g) number of antecedent dry days, and (d, h) initial groundwater level. The results are reported for the 

entire observation period (TOT) and for dry, intermediate and wet conditions (intervals reported in 

Table 1.2). 

1.5.2 Spatiotemporal dynamics of groundwater flow direction 

a showed spatial patterns with clear differences between the east footslope, west footslope and the 

riparian wetland. The patterns are illustrated for two sets of 2days using manual level 

measurements before and after precipitation events (Figure 1.7). The first example of 2 days relates 

to dry conditions (Figure 1.7(a),(c),(e)). Before the event (falling limb, 26 August 2019), @ pointed 

towards the stream channel on the east footslope and towards the hillslope on the west footslope 

(Figure 1.7(e), red arrows). Observed groundwater levels were mostly below the streambed 

(mediangw wais = 7.2cm and mediancw_ pie. = 11cm below the streambed) with groundwater in the 

stream channel generally at the same level or below groundwater in the footslopes (e.g., the level 

differences between the piezometers AP1 and the adjacent well AW1 was AGWipuwı = —A.Tcm). 

In the riparian wetland, & pointed towards the stream channel. The event on 7 September led to 
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an increase in the groundwater level throughout the study reach (mediancw weas = 1.1cm, 

mediancw_pieo = 1.8cm below the streambed on 9 September 2019; Figure 1.7(a),(c),(e), blue 

arrows). As a result, groundwater in the streambed rose above the level of the adjacent groundwater 

in several sections (e.g., AGWipııwı = 15.3cm) and @ pointed towards the footslopes in some 

sections of the stream corridor (Figure 1.7(e)). 
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Figure 1.7. Preeipitation and streamflow time series for (a) dry conditions and (b) wet conditions and 

groundwater levels on the east footslope (blue), the west footslope (red), and the riparian wetland 

(green). Bottom panels: Groundwater flow directions at the time of manual inspections for (e) dry and 

(f) wet conditions. The times of inspection are indicated as blackdotted lines in (a, b, c). 

The second example relates to wet conditions (Figure 1.7(b),(d),(f)). Before the event (falling limb, 

25 February 2019), the groundwater table was above the streambed elevation (mediancw weis = 

7.8cm, medianaw pie» = 3em above the streambed in the wells). Yet, groundwater in some 

piezometers was above that of the adjacent wells (e.g., AGWepra.sw» = 3.5 cm), and at the same 

level or below the streamwater level (e.g., AGWsprssw = —lem). @ pointed towards the hillslope 

on the west footslope and in a few locations close to the stream channel on the east footslope 

(Figure 1.7(f), red arrows). However, & pointed towards the stream on the east footslope upstream 

of the stream riffle and in the riparian wetland. This occurrence of both gaining and losing 

conditions in different sections of the stream was not persistent during wet conditions. After a series 
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of precipitation events (total precipitation = 49 mm between 1 and 8 March 2019) the groundwater 

level increased and @ pointed towards the stream channel throughout the study reach (8 March 

2019, mediangw wer = 16.6cm, medianaw_pieo» = 5.2cm above the streambed; Figure 1.7(f), blue 

arrows). Groundwater in the piezometers was generally below the adjacent groundwater in the 

footslopes (e.g., AGWepaswa = —6cm) and at the same level or above the streamwater level (e.g., 

AGWepsw = Dem). An exception was the east footslope close to the riffle, where local gradients 

pointed away from the stream channel. 
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Figure 1.8. Boxplots of groundwater flow direction a for a selection of triangles (Figure 1.2). (a) East 

footslope dry conditions, (b) west footslope dry conditions, (c) riparian wetland dry conditions, (d) east 

footslope intermediate conditions, (e) west footslope intermediate conditions, (f) riparian wetland 

intermediate conditions, (g) east footslope wet conditions, (h) west footslope wet conditions, and (i) 

riparian wetland wet conditions. Boxes indicate 25% 75% quantiles, whiskers, minima and maxima. The 

dry, intermediate and wet conditions analysed here refer to the intervals reported in Table 1.2 and 

shown in Figure 1.3. 

The analysis of groundwater flow directions with continuously-monitored wells is generally 

consistent with the biweekly data and provided clear short-term dynamics of @ and the duration 

of the gaining and losing conditions for different sections of the stream corridor (Figure 1.8). On 

the east footslope, & pointed towards the stream channel in dry, intermediate, and wet conditions 

in most triangles for most of the time (Figure 1.8(a),(d),(g)). However, during intermediate and 

dry conditions, @ occasionally pointed away from the stream channel (Figure 1.8(a),(d)). On the 

west footslope, the groundwater flow direction towards the stream channel became relatively more 

important compared to the groundwater flow direction pointing away the stream channel with 

increasing wetness conditions (Figure 1.8(b),(e),(h); Tr2, Tr19). Here, spatial differences were 

observed in triangles closer to the stream, where & pointed mostly parallel (= — 72°) to the stream 

channel (Figure 1.8(b),(e),(h); Tr17), and in triangles closer to the riparian wetland, where a 

pointed constantly towards the stream channel (Figure 1.8(b),(e),(h); Tr4). In the riparian wetland, 

a nearly continuously pointed towards the stream channel for different hydrologic conditions 

(Figure 1.8(c),(f),(i)) with some exceptions close to the stream (cf. Triangle 22). 
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The continuously observed groundwater wells allowed us to capture the behaviour of @ during the 

transition from dry to wet. conditions (Figure 1.9(a)-(d)) and during events (Figure 1.9(e)-()}). The 

transition was accompanied by a gradual change in @ towards the stream on the east (Figure 

1.9(b)) and west (Figure 1.9(c)) footslopes and partly in the riparian wetland (Figure 1.9(d)). « 

also varied between the directions of the fall line of the surface topography and the direction of the 

fall line of the factured bedrock surface for the majority of the continuously monitored wells. 

The continuous measurements offered insights into event-based changes of a@. During dry 

conditions, precipitation events were followed by sporadic re-appearance of the streamflow in the 

channel (from Q= 0 to Q>OL/s for 3h Figure 1.9(a),(e)) and a shift of groundwater flow direetion 

on the east footslope, with @ pointing towards the stream between events and towards the hillslope 

after events (Figure 1.9(b),(g)). On the west footslope, @ always pointed towards the hillslope 

(Figure 1.9(c)) and was almost perpendicular to the stream channel (@ -—160°) after events 

(Figure 1.9(1)). During wet conditions, preeipitation events were followed by an increase of 

streamflow (Figure 1.9(f}) and a more pronounced groundwater flow direction towards the stream. 

While this variation did not considerably change @ on the east footslope (Figure 1.9(b),(h)), it 

caused a change in the groundwater flow direction on the west footslope. Here, & shifted from 

pointing towards the footslope during recessions to pointing towards the stream during and few 

days (up to 3days) after events (Figure 1.9(c),(j)). In the riparian wetland, @ always pointed 

towards the stream channel (Figure 1.9(d)) and approached the direction of the surface fall line 

after sporadie precipitation events in dry conditions (Figure 1.9(k)) and persistently during wet 

conditions (Figure 1.9). 

1.6 Discussion 

1.6.1 Drivers of near-stream groundwater dynamics 

1.6.1.1 Role of depth-dependent storage capacity on groundwater response 

We observed clear differences in groundwater response to preeipitation between dry, intermediate, 

and wet conditions with the most pronounced and fastest: increase of groundwater levels during drv 

conditions, and more delayed and less pronounced increases during wet conditions (Figure 1.4). 

Our results suggest that a decrease in porosity and storage capacity with depth act as critical 

controls on the average precipitation depth necessary to trigger a groundwater level increase and 

groundwater response times. This is supported by the Spearman correlation coefficients, which 

suggest that the deeper the initial groundwater table is, the faster and the higher the groundwater 

table response to precipitation (Figure 1.6(d),(h), Appendix C). This is due to the subsurface 

layering in the Weierbach, with high porosity and storage capacity in the solum and subsolum, and 

lower porosities and storage capacity in the fractured bedrock below (Glaser et al., 2016; Martinez- 
{ Carreras et al., 2016). When groundwater levels were located in the low porous fractured bedrock 

(-10% - 15%, Table 1.1), the same amount of preeipitation led to a more pronounced increase 

compared to higher groundwater stages where porosity was higher (15% - 30% in the subsolum 

and 45% - 61% in the solum, Table 1.1). 
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The role of variable storage capacities in the subsurface has been highlighted at other catchments, 

where groundwater response was faster and more pronounced in locations characterised by soils 

with low storage capacities compared to deeper soils with higher storage capacities (Penna et al., 

2015; Rinderer et al., 2016; Rinderer et al., 2017; Rodhe & Seibert, 2011). These studies showed a 

spatial effect of storage capacity leading to a spatially non-unison response across hillslopes. Adding 

to this, we showed that the vertical decrease in storage capacity leads to clearly different 

groundwater responses between events in different hydrologie conditions. Our results hishlight the 

relevance of covering the full range of hydrologie conditions in order to capture the effect of a 

decrease of subsurface storage capacity with depth on seasonally different groundwater responses. 
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Figure 1.9. (a) Precipitation and streamflow during transition from dry to wet conditions. Groundwater 

flow direction (a) for a selection of triangles on (b) the east and (c) the west footslope, and (d) the 

riparian wetland. (el) Zoom on streamflow and the change in groundwater flow directions for selected 

precipitation events during dry and wet conditions. 

1.6.1.2 Role of precipitation characteristics on groundwater response 

The increase of the groundwater level following events was significantly correlated to precipitation 

depth for dry, intermediate, and wet conditions and for the entire study period (Figure 1.6(a), 
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regolith. As a result, groundwater in shallower soils close to the stream quickly rose into the upper 

and more porous soll and displayed a lower increase than groundwater further from the stream. 

This result is consistent with observations at other sites, where the water table rose more in 

locations characterised by thicker soils further from than stream than in locations characterised by 

shallower soils (Penna et al., 2015). 

When the groundwater level is below the fractured bedrock surface (i.e., dry conditions), the derived 

correlations indicate that groundwater further from the stream responds with a delayed and less 

pronounced increase compared to groundwater loser to the streain (Table C3). This result can be 

explained by inflow from the stream channel into footslopes. This is also consistent with 

groundwater levels below the dry streambed, which increased above the adjacent groundwater after 

preeipitation events (Figure 1.7(e)). 

During intermediate conditions, the correlation analysis was not able to decipher different drivers 

controlling the groundwater dynamic in the system (Table C3). This might be explained by the 

fact that the increase of the groundwater table above the fractured bedrock is neither in unison in 

time nor uniform in space during the transition from dry to wet conditions (and vice versa). 

Therefore, the groundwater dynamic for some wells might be controlled by regolith depth, as 

observed during wet conditions, while the groundwater table response to events might be controlled 

by streamwater inflow for other wells, like during dry conditions. 

1.6.2 Drivers of near-stream groundwater flow directions depending on hydrologic 

conditions 

1.6.2.1 Role of upslope-footslope connectivity and streamwater level 

The more pronounced groundwater flow direction observed towards the stream channel with 

increasing wetness conditions can be explained by seasonal groundwater dynamics in the hillslopes. 

In the Weierbach catehment, high evapotranspiration in summer depletes storage in the regolith 

(Glaser et al., 2016) and groundwater tables in the hillslopes decrease into the fractured bedrock 

(Rodriguez & Klaus, 2019). During the wet-up, the groundwater table rises across the hillslope into 

more conductive layers and contributes increasingly to streamflow (Rodriguez & Klaus, 2019). 

Despite the lack ofan extended groundwater monitoring network across hillslopes, the groundwater 

flow direction observed towards the stream channel, together with previous modelling results 

(Glaser et al., 2020), indicate persistent hydrologic connectivity between near-stream and upslope 

groundwater during wet conditions. This interpretation is in agreement with several studies on 

hydrological connectivity in different landscapes, which  consistently found  near-stream 

groundwater flow direction pointing towards the stream when the inflow from upslope locations 

maintained high levels of near-stream groundwater (Rodhe & Seibert, 2011; van Meerveld et al, 

2015; Vidon & Hill, 2004). 

However, @ did not pomt uniformly towards the stream channel during wet conditions, and in 

some sections of the reach, groundwater flow direction pointed towards the stream channel only 

after precipitation events (Figures 1.7(f) and 1.8(b),(e)). Here, groundwater flow direction shifted 

from pointing towards the stream after events to pointing towards the footslopes during recessions 
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out. Therefore, our work highlights the importance of a spatially dense monitoring network in 

capturing the marked variability characterising streamwater-groundwater mixing. 

1.6.2.2 The role of surface topography and anisotropic hydraulic conductivity of the fractured 

bedrock 

During dry conditions, groundwater on the west and east; footslopes decreased below the streambed 

into the fractured bedrock, and streamflow ceased (Figure 1.5(d)). At this stage, the groundwater 

flow direction showed a diverse pattern and pointed away from the stream at some locations and 

towards the stream at others (Figure 1.7(e)). This might be explained by a strong anisotropic 

hydraulic conductivity of the fractured bedrock. The weathering of bedrock can be heterogeneous, 

leading to the presence of preferential flowpaths (Gabrielli et al., 2012) and local changes in 

hydranlie conduetivity (Hopp & McDonnell, 2009), resulting in spatial differences in the 

groundwater table (Welch & Allen, 2014). Moreover, bedrock fractures do not necessarily imply 

connectivity between wells and we do not necessarily expect the groundwater flow to exactly follow 

the observed gradients. This is reflected in Darev's law if the conduetivity tensor has large off- 

diagonal coefficients. The impact of fractured bedrock on groundwater flow directions is also evident 

once the groundwater rises above the fractured bedrock, then the groundwater table direction 

approaches the fractured bedrock fall line. This is apparent after precipitation events in dtv 

conditions, when groundwater in some stream sections Tose above the adjacent groundwater (Figure 

1.7(e)), groundwater flow direction pointed towards the bedrock depression in the footslopes, and 

a approached the fractured bedrock fall line after events at several locations (Figure 

1.90b),(e),(g),(D). These results are in line with observations in hillslope studies that showed that 

groundwater flow direction reflected the bedrock fall line during dry conditions (Hutchinson & 

Moore, 2000; van Meerveld et al., 2015). However, the information available on @ in intermediate 

and wet conditions also demonstrated no significant correlation between & and the groundwater 

elevation above the fractured bedrock (results not shown). This is probably because inflow from 

upslope groundwater and the stream channel to stream corrido groundwater quickly fills the 

bedrock depressions in wetter conditions, interrupting their influence on the groundwater tlowpaths. 

1.6.3 Implications for runoff generation and hydrological connectivity 

Without additional data on groundwater flow direction, one may have interpreted the observed 

response of groundwater before streamflow response in dry conditions at the study site as 

groundwater contributing to streamflow generation. Such an interpretation would be in agreement 

with hillslope-stream connectivity studies, which concluded that streamflow generation is driven 

by groundwater inflow when groundwater responds to events before streamwater (Beiter et al., 

2020; Hanght & Van Meerveld, 2011: Rinderer et al., 2016). However, & and the detailed pattern 

of the groundwater level, that was consistently below the streamwater level, clearly showed that 

groundwater tlow direction pointed towards the hillslope during and after precipitation events in 

dry conditions. This is evidence for the lack of groundwater contributions to streamflow generation 

in the study reach. 

a and groundwater level above the streamwater level jointly revealed that groundwater 

contributes to streamflow generation both before and after preeipitation events during wet 
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While the lag time between groundwater and streamtlow response to events can be used as indicator 

for groundwater contribution to streamflow generation and hillslope-stream connectivity, the 

observed groundwater flow directions were important to avoid result misinterpretation and allowed 

us to decipher different streamflow-generation processes in dry and wet conditions. The water 

flowpaths observed have important implications for solutes, nutrients and dissolved oxygen 

transport in the stream corridor with a strong potential for the development of hot-spots and hot- 

moments both in dry and wet hydrologic conditions. In conclusion, the results presented in this 

work offer new insights into the spatial heterogeneity and the time-variant role that different drivers 

exert on stream-groundwater exchange across a wide variety of precipitation events and hydrologie 

conditions. Additionally, our results highlight the pivotal importance of long-term observations in 

the stream corridor domain, since the lack of spatially-dense and hish-frequeney measurements can 

cause misinterpretation in the streamflow generation process, streamwater-groundwater exchange 

and hillslope-stream connectivity. 
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“Let us imagine a man who, while standing on the street, would say to himself: 

“It is six o’clock in the evening, the working day is over. Now I can go for a walk, or I can go to 

the club; I can also celimb up the tower to see the sunset; I can go to the theatre: I can visit this 

friend or that one; indeed, I also can run out ofthe gate, into the wide world, and never return. 

Al of this is strictly up to me, in this I have complete freedom. But still I shall do none of these 

things now, but with just as free a will I shall go home to my wife”. 

This is exactlv as if water spoke to itself: 

“Tcan make high waves (yes! in the sea during a storm), I can rush downhill (yes! in the river 

bed), I can plunge down foaming and gushing (yes! in the waterfall), I can rise freely as a stream 

of water into the air (ves! in the fountain), I can, finally boil away and disappear (yes! at a 

sertain temperature): but I am doing none of these things now, and am voluntarily remaining 

quiet and clear water in the reflecting pond.” 

— Arthur Schopenhauer, Essay on the Freedom of the Will











1. How does the identifiability of model parameters change in the random sampling of TSM 

when velocity is considered as a calibration parameter and when it is assumed fixed and 

equal to Vpear? 

2. Does the identifiability analysis on specific sections of the BTC reduce the parameter non- 

identifiability in random sampling of TSM? 

3. How much does the identifiability of model parameters in random sampling approaches 

depend to the used parameter range and on the number of parameter sets? 

With the outcomes of these questions we will address: 

4. How does the hydrologie interpretation of TSM results vary when model parameters are 

identifiable and when they are not? 

2.2 Study site and methods 

2.2.1 Study site and tracer data 

The studied stream reach (49°49'38"'N, 5°47'44"'E) is located in western Luxembourg, downstream 

of the Weierbach experimental catehment (Hissler et al., 2021; Fabiani et al., 2021). The stream 

channel is unvegetated with a slope of =6% and consists of deposited colluvium material and 

fragmented schists (up to 50 cm depth) with local outerops of fractured slate bedrock in the 

streambed. The flow regime is governed by the interplay of seasonality between precipitation and 

evapotranspiration (Rodriguez and Klaus, 2019; Rodriguez et al., 2021) with a persistent discharge 

between autumn and spring, and little to no discharge during summer months (discharge arithmetic 

mean equal to 6.5 1/s, median of 1.7 1/s, St.Dev. of 11.52 1/s between Aug 2018 and Feb 2020; 

Bonanno et al., 2021). To answer our research questions, we utilise three tracer experiments with 

an instantaneous tracer injection at three different flow (@) conditions: 6th December 2018, Q = 

2.52 1/s (El); 23rd January 2019, @ = 9.05 1/s (E2); 28th January 2019, Q = 22.79 \/s (E3). For 

each experiment, we prepared a NaCl solution using 2 | of stream water and 100 g of reagent-grade 

NaCl. We injected the solution into a turbulent pool at the beginning of the stream reach to assure 

complete mixing in the stream water. Electrie conductivity (EC) was measured via a portable 

conductivity meter (WTW) 55 m downstream of the injection point. Automatic compensation of 

stream temperature occurred (nLF, according to EN 27 888). EC-CT conversion was obtained using 

a known-volume sample of stream water taken before tracer injection at the measurement location 

and adding known quantities of a solution with a known concentration of Na-Cl. Conversion into 

Cl- concentration was obtained via an EC-CH regression line (R? = 0.9999). Discharge was 

calculated for every slug injection via the dilution gauging method using the CI concentration 

obtained for each BTC (Beven et al., 1979; Butterworth et al., 2000). 

2.2.2 Advection-dispersion equation and Transient Storage Model formulation 

The one-dimensional Fickian-type advection and dispersion equation describes the combined effect 

of flow veloeity and turbulent diffusion on solute transport (Beltaos and Day, 1978; Taylor, 1921, 

1954). The differential form of ADE reads: 

dc ac 10 dc | 
3 —Ua+za(ADa) Eq.l 
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where ¢ is time [T], x is the distance from the injection point along the stream reach [L], A IL? is 

the cross-sectional area of flow, v [L/T] is the average flow velocity, D [L?/T] is the longitudinal 

dispersion coefficient, and C is the concentration of the observed tracer above background levels 

[M/L?]. The solution of the differential form of ADE for an instantaneous solute injection at x = 0 

[L] reads: 

M 

A(4nDt)1/2 
  Cd) = _ nn 

xp | 4Dt 
Eq. 2 

where M is the injected solute mass [M], t is time [T], and L is the length of the investigated reach 

IL]. 

The TSM describes the solute transport in streams by combining the advection-dispersion process 

in the stream channel throush a hydrologic exchange with an external storage zone. The model 

equations read (Bencala and Walters, 1983): 

ac ac 10 dc 
= -vZ+-—(4DE) + a(Cys -C) Boa 

ITS __a(c —0) N 
ot Ars“ 15 

where the hydrologic exchange with the transient-storage zone is driven by the exchange coefficient 

a |1/T] and the area of the transient storage zone, Ars [L?]. Here, we will refer to A, v, and Das 

“advection-dispersion parameters” and to Arsand @ as “transient storage parameters”. The solute 

concentrations in the main channel and the transient storage zone are Cand Os [M/L?], respectively. 

The performances of both ADE and TSM results are evaluated using the Root Mean Squared Error 

objective function (RMSE). RMSE is an equivalent form of Residual Sum of Squares (RSS) and 

Mean Absolute Error (MAE) objective functions that are used in OTIS-P (the most frequently 

adopted inverse modelling approach for TSM, Runkel, 1998) and by the dynamie identifiability 

analysis (Wagener et al., 2002). RMSE allowed us a comparison of our TSM results with OTIS-P 

and with dynamic identifiability analysis consistently to previous studies (Wlostowski et al., 2013; 

Ward et al., 2017). 

2.2.3 Random sampling and global identifiability analysis 

Several sampling approaches were previously used to estimate parameter identifiability in TSMs, 

such as Monte Carlo sampling (Wagner and Harvey, 1997; Wagener et al., 2002; Ward et al., 2013), 

Latin hypercube sampling (LHS, Ward et al., 2018; Kelleher et al., 2019), and Monte Carlo coupled 

with a behavioural threshold (Kelleher et al., 2013; Ward et al., 2017). Here, we use LHS to sample 

from the selected parameter range, due to LHS’s higher efficiency compared to the classic Monte 

Carlo approach (Yin et al., 2011). A single combination of model parameters (A, v, and Dfor ADE 

and A, v, D, Ars, and @ for TSM) obtained from the random sampling approach is herein referred 

to as “parameter set”. 

To obtain reliable TSM results, Ward et al. (2017) suggested a minimum amount of parameter sets 

between 10,000 and 100,000. Thus, in each TSM iteration we simulated 115,000 parameter sets. 

Results of each 'TSM iteration include RMSE values for the 115,000 parameter sets, and results of 

identifiability analysis of the model parameters. The identifiability analysis includes parameter vs 
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RMSE plots (Wagener et al., 2003), parameter distribution plots (Ward et al., 2017), regional 

sensitivity analysis (Wagener and Kollat, 2007; Kelleher et al., 2019), and parameter distribution 

plots (Wagener et al., 2002; Ward et al., 2017). Since the above-mentioned identifiability analysis 

refers to model performance (RMSE) evaluated on the entire BTC, we refer to it as “global 

identifiability analysis.” Globally identifiable parameters satisty the following criteria: a univocal 

peak of performance in parameter vs RMSE plots and in parameter distribution plots (Ward et al., 

2017) and cumnulative distribution function (CDF) corresponding to the best: 0.1% of the results 

deviating from the 1:1 line and from parameter CDF corresponding to the best 10% of the results 

(Kelleber et al., 2019). We selected these behavioural thresholds (top 0.1% and top 10%) to assure 

consistency with previous work (Wagener et al., 2002; Wlostowski, 2013; Ward 2013; Ward 2017; 

Kelleher 2019). Parameter identifiability is usnally evaluated via visual inspection of the plots from 

the global identifiability analysis (Wagener et al., 2002; Wlostowski et al., 2013; Ward et al., 2017; 

Ward et al. 2018; Kelleher et al., 2019). To couple visual inspection with a numerical measure able 

to express the degree of identifiability of a certain parameter, we evaluated the two-sample 

Kolmogorov-Smirnov (K-S) test that: caleulates the maximum distance K and the corresponding p- 

value between two cumulative distribution functions, F{P,.) and F{P.), by: 

[K,p] = max|F(Po.1) — F(Pio)| . 4 

Where F{P,;;) and F{P') are the eumulative distribution function of a parameter P respectively 

for the best 0.1% and the best 10% of the results. Following the approach of Ouyang et al. (2014), 

we grouped parameter identifiability in four categories: highly identifiable (K > 0.25, p < 0.05), 

wnoderately identifiable (0.1<K< 0.25, p < 0.05), poorly identifiable (K < 0.1, p< 0.05), and non- 

identifiable (p > 0.05). 

2.2.4 Identifiability analysis on specific sections of the BTC 

100 best-performing parameter sets for each iteration were analysed with the DYNamie 

Identifiability Analysis (DYNIA, Wagener et al., 2002) to address the role of model parameters on 

different sections of the BTC. Compared to the global identifiability analysis, the dynamic 

identifiability analysis evaluates the identifiability of a parameter on a moving window along the 

BTC. Following the approach of Wagener et al. (2002), we used a window size of three time steps 

(-1 min for Bl and E2, and -15 secs for B3). The dynamie identifiability analysis identifies regions 

of the observed data that. are identifiable (or not) to the investigated model parameter, and it can 

be used to test model structure, to design specific experiments, and to relate the model parameters 

to a specific simulated model response (Wagener et al., 2004). The dynamie identifiability analysis 

yields the distribution of the likelihood (i.e. mean absolute error, Wagener and Kollat, 2007) as a 

function of the parameter values and the information content of the parameters over time. The 

information content is expressed as one minus the width of the 90% confidence interval over the 

entire parameter range (Wagener et al., 2002). A wide 90% confidence interval indicates that 

various parameter values are associated to equally good performances resulting in low information 

content. Conversely, narrow 90% confidence intervals and corresponding high information content 

values suggest that the best-performing parameters are contained in a relatively narrow range 

compared to the feasible range. To evaluate the degree of identifiability of a certain parameter on 
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specific sections of the BTC, we grouped parameter identifiability in three categories: highly 

identifiable (information content > 0.66), moderately identifiable (0.33< information content < 

0.66), and poorly identifiable (information content < 0.33). We also specified sections of the BTC 

as follows: “peak” ofthe BTC is the section ofthe BTC corresponding to a neighbourhood interval 

of three time steps (+ —1 min for El and E2, and # -15 secs for E3) around the maximum observed 

concentration; “rising limb” and the “tail” are respectively the BTC sections before and after the 

peak. A detailed deseription of how to read the plots used to address the global identifabilitv 

analysis and the description of the dynamic identifiability analysis algorithm are reported in 

Appendix D. 

2.2.5 Iterative approach to achieve model identifiability 

We simmlated our tracer experiments with the ADE to avoid initial assumptions on advechion- 

dispersion parameters that could affect the identifiability of transient storage parameters (Figure 

2.1). The RMSE value of the best-performing ADE parameter set is referred to as RMSEsnr. After 

obtaining identifiable advection-dispersion parameters, we simulated the observed BTC with the 

TSM by sampling advection-dispersion parameters from a parameter range defined based on the 

ADE results, while the transient, storage parameters were based on literature values (Table 2.1). 

This first TSM simulation over 115,000 parameter sets is referred as to first TSM iteration. 

Similar t0 the Monte Carlo approach coupled with behavioural thresholds (Kelleher et al., 2013; 

Ward et al., 2017) starting from the result of the first TSM iteration, we simulated the three tracer 

experiments through a step-wise approach with n TSM iterations (rı is the number of iterations, 

Figure 2.1). The rı TSM iterations sampled 115,000 parameter sets via LHS over parameter ranges 

defined by the results of the previous TSM iteration. Namely, it the global identifiability analysis 

from the previous TSM iteration indicated that the investigated parameter is identifiable, the best 

10% of the results were used to define its parameter range in the successive TSM iteration (Figure 

2.1). When the identifiability eriteria were not met, the parameter range investigated in the 

successive TSM iteration was increased or, for the case of Ars and @, it was reduced based on the 

dynamic identifiability analysis result (information content above 0.66 on the BTC tail). This 

condition was chosen by the evidence that transient storage parameters Ars and @ are often non- 

identifiable via global identifiability analysis (Camacho and Gonzälez, 2008; Ward et al., 2013: 

Ward et al., 2017: Kelleher et al., 2019), but are identifiable on the tail of the BTC (Wagener et 

al., 2002; Kelleher et al., 2013; Wlostowski et al., 2013). 

While the first 'TSM iteration was conducted to investigate the identihiability of all the possible 

combinations in the feasible parameter range reported in the literature and from the results of ADE 

(Table 2.1), the successive iterations excluded pairs of v and A whose product was outside the 

value of the discharge evaluated via dilution gauging +10%. This condition was chosen to respect 

results from Schmadel et al. (2010), who reported that the discharge error from the dilution gauging 

method is =8%. The same approach (Figure 2.1) was used also in the case where v was assumed 

fixed and equal tO Yreae = Lftpem Where Era 18 the arrival time of the concentration peak. This 

choice was motivated by the fact that Var IS commonly adopted as a valne for velocity in many 

transient storage studies (Ward et al., 2013; Kelleher et al., 2013; Wlostowski et al., 2017; Ward et 
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al., 2017; Ward et al., 2018). The modelling was finalized once every model parameter indicated 

global identifiability via the enunciated criteria and the Kolmogorov-Smirnov test resulted in K > 

0.l and p S 0.05 for each model parameter. 

Table 2.1. Parameter names, abbreviations, and units together with a summary of publications that address 

identifiability of model parameters with random sampling approaches. We reported the used number of 

parameter sets and the parameter ranges, while in parenthesis it is reported the method used for the 

parameter sampling. “Double step” indicates that the sampling procedure was divided into two steps. In the 

first step, A varied across a broad range and in the second step, it was varied across a narrower range to 

cover the most sensitive range of the parameter domain. Each of the two steps investigated a number of 

parameter sets equal to half of the total number indicated in the table. 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Parameters Units Symbol 

Streamflow velocity [m/s] v 

Stream channel area [m A 

Longitudinal dispersion coefficient | [m?/s] D 

Stream-storage zone exchange rate | [1/s] o 

Transient storage area ng Ars 

Authors Number of parameter sets Range of TSM parameters 

Wagner and Harvey, 1997 800 (Monte Carlo) A 0.02 - 0.6 

D 0.025 - 0.8 

Ars 0.01-2 

o 0.000005 - 0.001 

Wagener et al., 2002 1,000 (Monte Carlo) A 0.3 - 1.05 

D 0.1 - 0.225 

Ars 0.1 - 0.5 

o 0.00035 - 0.0025 

Wlostowski et al., 2013 2,000 (Monte Carlo) A 0.5 - 1.0 

D 0.5 - 1.5 

Ars 0.05 - 0.5 

o 1074 _ 10° 

Kelleher et al., 2013 42,000 (Double step Monte | | A 0.01 - 1.0 (in the 

Carlo) second step, limits 

chosen via the top 

1,000 results of first 

step) 

D 0.001 - 1.0 

Ars 0.001 - 0.01 

o 10°? _ 10° 

Ward et al., 2013 100,000 (Monte Carlo) A +50% Apeak 

D 0.0001 - 5 

Ars 0.01 - 10 

o 10° - 10" 

Ward et al., 2017 100,000 (Double step Monte | | A 0.1- 1 (0.3-0.5 in the 

Carlo) second step) 

D 0.01 - 10 

Ars 0.01-1 

o 10° - 10° 

Kelleher et al., 2019 27,000 (LHS) A 1.0 - 3.0 

D 0.001 - 10                 
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Ars 0.01 -1 

o 10° - 10° 

This manuscript Second step ADE - 35,000 (LHS) v Vpeak - 0.8 - velocity of 

the first increase of 

concentration 

A + 20% Apeak 

D 0.0001 - Dress © 1.2 

This manuscript First TSM iteration - 115,000 v + 50% vape 

(LHS) A + 50% Aapr 

D 0.0001 - Dane © 2 

Ars 0.00001 - 20 

o 0.00001 - 0.1                 

2.2.6 Number of parameter sets, parameter range, and identifiability of model 

parameters 

For each TSM iteration, we randomly extracted N parameter sets and their corresponding results. 

We then computed the mean and standard deviation of the top 10% of model performance results 

(RMSE) considering only the extracted subset of parameters N instead of the total 115,000. N 

increased from 1,000 to 115,000 with intervals of 1,000 parameter sets. We then evaluated the 

change in model performance with the changing number of sampled parameter sets for the different 

TSM iterations for the three experiments. A continuous decrease of the mean and the standard 

deviation of the top 10% model performance results (RMSE) with increasing N shows that the 

number of chosen parameter sets clearly affects the performances of the random sampling approach 

for the investigated parameter range. On the contrary, a constant mean and standard deviation of 

the top 10% model performance results over increasing N points to the inability of the model and 

modelling procedure to increase the performances with an increasing number of parameter sets for 

that investigated parameter range (Pianosi et al., 2015). 

2.2.7 Comparison with an inverse modelling scheme and a Monte Carlo random 

sampling approach 

We compared our results with both inverse modelling results (OTIS-P) and the most-common 

random sampling approach for TSMs (OTIS-MCAT). OTIS-P is an inverse modelling scheme that 

minimises the residual sum of squares between the modelled and the observed BTC. OTIS-P model 

estimates the best-fitting model parameter values and their identifiability via the 95% confidence 

interval. We carried out multiple OTIS-P iterations starting from different initial parameter values 

to avoid a local minimum and interrupted the iterations when parameter values calibrated via 

OTIS-P changed less than 0.1% between subsequent runs (Runkel, 1998). OTIS-MCAT solves the 

TSM for the selected number of parameter sets and addresses their identifiability with a global 

identifiability analysis (Ward et al., 2017). Compared to our approach, OTIS-MCAT considers 

Monte Carlo parameter sampling instead of LHS, velocity equal t0 Vper and it does not foresee 

iterative parameter sampling from results of dynamic identifiability analysis. Thus, we here indicate 

as "OTIS-MCAT results” the results we obtained after the first TSM iteration when v was assumed 

fixed and equal to Vpeak. 
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Figure 2.1: Conceptual modelling workflow. The parameters have the following unit of measurements: 

velocity v [|m/s|, cross-sectional area A [m?], longitudinal dispersion coefficient D [m?/s], exchange 

coefficient & [1/s], area of the transient storage zone Ars [m?]. 
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2.2.8 Metrics and hydrologic interpretation of TSM results 

The model parameter sets obtained from OTIS-P, OTIS-MCAT, and the proposed iterative TSM 

approach were used to compute some hydrologic metrics relate to solute transport in streams. Here 

we computed the average distance a molecule travels in the stream channel before entering the 

transient storage zone (L, |[L], Mulholland et al., 1997): 

v 

LS = E Eq5 

The average time spent by a molecule in the transient storage zone (T, [T]) is evaluated as 

(Thackston and Schnelle, 1970): 

Toro = 22 Eq.6 

We computed the average water flux through the storage zone per unit length of the stream channel 

to interpret the magnitude of flux between the stream channel and the transient storage zone. Then 

we multiplied the obtained value by the reach length L to obtain the total water flux through the 

storage zone for the entire stream reach (q; [L’/T], modified from Harvey et al., 1996): 

qs = aAL Eq.7 

However, the metrics L., Tk, and ¢ do not encompass both the role of advective transport and of 

the transient storage. Thus, we also caleulated Fiurn F] that accounts for the median travel time 

due to advection-dispersion and transient storage and for the travel time only due to advection- 

dispersion (Runkel, 2002): 

a 
~ —L—) AT 

ArstA 

Increasing values of Furn have to be interpreted as increasing the relative importance of the storage 

zone in the solute transport downstream (Runkel, 2002; Gooseff et al., 2013). 

2.3 Results 

2.3.1 ADE parameters 

The global identifiability analysis showed a clear peak of performance toward univocal values for 

v, A, and D for all three tracer experiments (El, E2, E3, cfr. paragraph 2.1, plots reported in figure 

D3). The model performances varied between RMSEıor equal to 0.989 mg/l (E3, Q = 22.79 1/s) 

and RMSEıor equal to 1.942 mg/l (El, Q = 2.52 1/s). 

2.3.2 TSM parameters 

2.3.2.1 Identifiability of model parameters when velocity is considered as a calibration 

parameter 

After the first 'TSM iteration, the global identifiability analysis indicated that v, D, and o 

parameters are identifiable with a unique performance peak (K of K-S test always > 0.22 and p < 

0.05 for each tracer experiment). However, A and Ars appeared non- or poorly identifiable for the 

three investigated BTCs (Figure 2.2, green dots, p-value of the K-S test for Ars > 0.05 for each 

tracer experiment). 
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The global identifiability of model parameters increased with increasing iterations. In the TSM 

iterations where Ars or @ were poorly or non-identifiable (p-value of the K-S test for Ars > 0.05), 

TSM performances approached at best RMSE\ıor (Figure 2.2, green, yellow and blue dots). After 

four (for El and E2) or five (for E3) TSM iterations, the parameter values plotted against the 

corresponding RMSE values showed a univocal increase in performance toward unique values for 

v,A,D, @, and Ars (Figure 2.2, orange dots), and the RMSE of the best-performing parameter 

sets decreased below RMSEuıor (Figure 2.2, black horizontal line). Also, the CDF corresponding to 

the best 0.1% of the results deviated both from the 1:1 line and from the parameter CDF 

corresponding to the best 10% of the results (results not shown). These conditions, coupled with 

the K of K-S test always larger than 0.1 (average K for all the model parameters equal to 0.36, and 

p-value < 0.05) indicated parameter identifiability and the finalization of the iterative TSM 

approach. 
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Figure 2.2. Parameter values plotted against the corresponding RMSE values for the TSM results 

conducted for the tracer injections (a-e) El, (£j) E2, and (k-o) E3. (a-j) Green, yellow, blue and orange 

dots indicate results respectively for the first, second, third, and fourth TSM iterations. (k-o) Green 

dots indicate results for the first and second TSM iterations, while yellow, blue and orange dots indicate 

results respectively for the third, fourth, and fifth TSM iterations. Bach TSM iteration was conducted 

via 115,000 parameter sets. The red dots indicate OTIS-MCAT results (best parameter set after the 

first TSM iteration for v equals vpeak) while the black dots indicate the best-performing parameter 

value after the used iterative TSM approach. The horizontal black line indicates the RMSEADE (Table 

2.2). Vertical dashed red line indicates OTIS-P results, while the 95% confidence range for OTIS-P 

results are indicated via vertical grey areas. 

2.3.2.2 Identifiability of model parameters when velocity is set equal to Vpeak 

The global identifiability of model parameters increased considerably through the iterative model 

approach also when velocity was not considered a calibration parameter. After the third TSM 

iteration, the best-performing parameter sets approached unique parameter values (Figure 2.3, blue 

dots) and the CDF corresponding to the best 0.1% of the results deviated from 1:1 line and from 
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the CDF of the best 10% of the results (results not shown). These conditions, together with K of 

K-S test always > 0.25 and p-value < 0.05 for each model parameter and tracer experiment, showed 

a clear increase in identifiability compared to the results after the first iteration (Figure 2.3, green 

dots). The increase in parameter identifiability was followed by a sharp increase in model 

performance, with the best-performing parameter sets at the end of the iterative approach having 

RMSE values below RMSEıor for all the investigated BTCs (Figure 2.3, blue dots and black line). 
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Figure 2.3. Same as Figure 2.2, but reporting TSM results when velocity was considered equal t0 Vpeak- 

2.3.3 Dynamic identifiability analysis 

2.3.3.1 Dynamic identifiability analysis when velocity is considered as a calibration parameter 

The dynamic identifiability analysis provided clearer insights into the identifiability of the model 

parameters for different sections of the BTC compared to the global identifiability analysis (plots 

shown only for El). After the first TSM iteration, vand & proved to be the most identifiable and 

informative parameters on the rising limb, the peak, and the tail of the BTC (information content 

> 0.66; Figure 2.4a, b, g, h). A and D were mostly identifiable and informative during the rising 

limb and the tail of the BTC (Figure 2.Ac-f). Ars was non-identifiable and poorly informative in 

most sections of the BTC (information content < 0.33; Figure 2.4i, j). However, the identifiability 

of Ars increased on the tail of the BTC, where the information content was above 0.66 for Ars 

between 0.77 m’ and 5.35 m? (Figure 2.4i, j). Results from E2 and E3 showed that @ and Ars were 

highly identifiable (information content > 0.66) for smaller sections of the tail of the BTC when 

the experiments were conducted at higher discharge stages (information content of Ars > 0.66 for 

51% of the tail of the BTC for El, for 23% for E2, and for 19% for E3, results not shown). 
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Figure 2.4. Dynamic identifiability analysis of model parameters for E1 when v was considered as a 

varying model parameter. Results report for the (a-j) first TSM iteration and the (k-t) last TSM 

iteration. (a), (c), (e), (8), (i), (k), (m), (o), (q), (s) likelihood distribution as a function of parameter 

values at each time step. Black lines indicate the observed BTC, and dashed black lines indicate the 

90% confidence limits. (b), (d), (f), (h), (j), (1), (n), (p), (r), (t) indicate parameter information content 

(red bars) at each time step while the black lines indicate the observed BTC. 

The dynamic identifiability analysis for the last TSM iteration showed that the advection-dispersion 

parameters were important in controlling the rising limb and the tail of the BTC (Figure 2.4k-p), 

while & was particularly important for controlling the tail (Figure 2.4q, r) and Ars for controlling 

the rising limb and the tail of the BTC (Figure 2.4s, t). Dynamic identifiability analysis after the 

last TSM iteration for E2 and E3 showed comparable results (not shown). 

2.3.3.2 Dynamic identifiability analysis when velocity is set equal to Vyeak 

After the first TSM iteration, the dynamic identifiability analysis indicated that A was poorly 

identifiable on the entire BTC (results reported only for El, Figure 5a, b), while D was moderately 

identifiable (information content between 0.66 and 0.33) on the rising imb and on the tail of the 
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BTC (Figure 2.5c, d). Ars displayed high information content on the entire BTC (Figure 2.5g, h), 

with a narrow confidence interval on the tail of the BTC for values between 0.0014 m* and 0.43 

m’. @ was non-identifiable on the majority of the BTC (Figure 2.5e), however, it showed high 

information content for values between 7.06 10° 1/s and 0.0074 1/s at the tail of the BTC (Figure 

2.5f). The dynamie identifiability analysis for the BTC of E2 and E3 yielded similar results, with 

narrow confidence intervals for both Arsand @ on the tail ofthe BTC and no clear trend between 

information content and discharge (results not shown). 
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Figure 2.5. Same as Figure A, but reporting dynamic identifiability results for El when velocity was 

considered equal tO Vpeak- 

The dynamic identifiability analysis for the last TSM iteration of El indicated that D controls the 

tail and the rising limb of the BTC while A controls only the tail of the BTC (Figure 251-1). @ 

acted both the rising limb and the tail of the BTC (Figure 2.5m-n) and Ars controlled mostly the 

tail of the BTC (Figure 2.50, p). For E2 and E3, results after the last TSM iteration showed lower 

information content of Ars on the tail of BTC for increasing discharge stages compared to El, while 

the information content of & was above 0.33 on the entire BTC (results not shown). 
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2.3.4 Role of the used parameter range and the number of parameter sets for the 

identifiability of model parameters 

When a rather wide parameter range was used (first TSM iteration, green dots Figure 2.2), the 

performance of the global identifiability analysis was strongly dependent on the chosen number of 

sampled parameter sets. This can be derived from the strong decrease of the mean and the standard 

deviation of the top model results with the number of sampled parameter sets N (results reported 

only for El, Figure 2.6a). Also, for less than 97,000 parameter sets, the error between model 

performance using N parameter sets and using 115,000 parameter sets was always above 5% 

(vertical black lines, Figure 2.6a). 
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Figure 2.6: Mean (red lines, left axes) and standard deviation (blue lines, right axes) for RMSE values 

relative to the top 10% of the modelling results as a function of the number of parameter sets used in 

the TSM. The results are reported for the (a) first TSM iteration and the (b) last TSM iteration (E1). 

Vertical black lines indicate the number of parameter sets needed to have the shown percentage 

difference between the mean RMSE value caleulated at the indicated number of parameter sets and at 

115,000 parameter sets. Eg: In plot (a) only using at least 50,000 parameter sets there is less than 25% 

difference in the top 10% RMSE values compared to results using 115,000 parameter sets. 

Our results showed that TSM results were poorly dependent by the sampled number of parameter 

sets when the model performance was studied for a narrow parameter range around the peak of 

performance (last TSM iteration, orange dots Figure 2.2). This was derived by the rather constant 

mean and standard deviation of the top model results with the number of subset N. Also, for a 

number of parameter sets 

  

\ above 11,000 the error between model performance using N parameter 

sets and using 115,000 parameter sets was always below 2% (vertical black line, Figure 2.6b). 

2.3.5 Comparison with OTIS-P and OTIS-MCAT results 

Compared to results from our identifiability analysis, outcomes of OTIS-P were consistent with the 

best parameter sets obtained at the end of the iterative modelling approach (Table 2.2). The 

parameter sets obtained via OTIS-P (Figure 2.2, 2.3, red vertical dashed line) were approaching 

the best fitting results obtained at the end of the used iterative approach, regardless of whether 

=
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flow velocity was considered as a calibration parameter (Figure 2.2) or was considered equal t0 Vi 

(Figure 2.3, Table 2.2). 

The results of OTIS-MCAT showed low p-values for each model parameter after the K-S test (p 

< 0.05, K > 0.12) indicating parameter identifiability. However, compared to our results at the 

end of the iterative modelling approach, the global identifiability analysis of the OTIS-MCAT 

showed that the distribution of model parameters did not converge towards univocal and optimal 

parameter values suggesting that model parameters were rather non-identifiable with the TSM 

performing less than the ADE (Figure 2.3, green dots). 

Table 2.2. Summary of the TSM results. OTIS-MCAT results refer to the case v = vpeak without any 

successive modification of the parameter via dynamic identifiability analysis results. “Iterative TSM” 

indicates the best parameter sets obtained after the iterative TSM approach presented in Figure 2.1 and 

applied for the cases v considered as a calibrated parameter (v = calib.) and when it was considered fixed 

and equal to vpeak (v = vpeak). The best TSM results are indicated in bold font. 

  

  

  

v [m/s] A [m?] D [m?/s] a [1/s] Ars [m?] RMSE 

ADE 0.0681 0.0395 0.0965 - - 1.942 

OTIS-P 0.0739 0.0364 0.0637 0.006 0.0074 0.616 

= OTIS-MCAT 0.0739 0.0351 0.1339 0.0119 0.0051 2.742 

Iterative TSM v = calib. | 0.0728 0.0369 0.0522 0.0013 0.0073 0.723 

V = Vpeak 0.0739 0.0359 0.0534 0.0013 0.0077 0.768 

ADE 0.1746 0.054 0.1599 - - 0.998 

OTIS-P 0.1774 0.0509 0.1151 0.0016 0.0077 0.415 

ei OTIS-MCAT 0.1774 0.0604 0.1271 0.0137 0.0033 1.443 

Itorativo TSM v= calib. | 0.179 0.0526 0.1131 0.0018 0.0067 0.338 

V = Vpeak 0.1774 0.0528 0.1154 0.0015 0.0065 0.369 

ADE 0.262 0.0874 0.2525 - - 0.989 

OTIS-P 0.275 0.081 0.1404 0.005 0.0144 0.254 

i OTIS-MCAT 0.275 0.0849 0.2441 0.0259 0.0073 1.261 

Iterative TSM v = calib. | 0.2861 0.0818 0.1286 0.0064 0.0145 0.269 

V = Vpeak 0.275 0.083 0.1603 0.0037 0.0123 0.311                 

2.3.6 Variation of transport metrics with increasing identifiability of model parameters 

The evaluated transport metrics showed high uncertainty as long the model parameters were poorly 

or non-identifiable (Figure 2.2, 2.3, green and yellow dots). This was particularly evident after the 

first and second 'TSM iterations, when the 100 best-performing parameter sets showed T’. values 

spanning over nine orders of magnitude (Figure 2.7d-f), while both L, and q, spanned over three 

orders of magnitude (Figure 2.7a-c, g-1). When the model parameters were poorly identifiable, the 

values of the transport metrics showed clear differences between simulations that were obtained 

with streamflow velocity as a calibration parameter (Figure 2.7, blue boxplots, first TSM iteration) 

and between simulations with streamflow velocity set equal to Vpear (OTIS-MCAT, Figure 2.7, 

orange boxplots, first TSM iteration). When v was considered as a calibration parameter, the best- 

performing parameter sets after the first TSM iteration showed a non-negligible role of transient 

storage in solute transport for the investigated tracer experiments. This was indicated by the values 

of L, (from -2 km for El to -69 m for E3), by the simulated exchange flux q; (from 0.06 1/s for El 
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to 8.8 1/s for E3), and by the solute residence time in the storage zone T, (ranging from ~ 140 

days for E1 to ~ 15 hrs for E3). Clearly different values for the transport metrics were obtained 

when v was set equal to ... In this case, the results after the first TSM iteration showed a non- 

negligible exchange flux of the active stream with the transient storage zone (g. ranged from ~23 

l/s for El to -121 1/s for E3), a rather similar L, for the three tracer experiments (-10 m), and 

that T.., decreased between the experiments with increasing discharge (from 12 sec for El to -3 

sec for E3). 
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Figure 2.7. Boxplots of the investigated transport metrics for the best 100 parameter sets for the three 

simulated experiments. (a-c) L,, (d-f) Tyo, (8;i) 9 (j-1) Fneg. Results are reported for (a, d, g, j) El, (b, 

e, h, k) E2, and (ce, f, i, 1) E3. On the x-axis, we indicated the n-th TSM iteration. Blue and orange 

boxplots indicate results when velocity was a varying model parameter and when it was kept fixed and 

equal t0 Vpeax, respectively. Red dots indicate the transport metric values obtained via the parameter 

sets with lower RMSE. The red and the black horizontal dashed lines indicate respectively the transport 

metrie obtained using the OTIS-P results and OTIS-MCAT results (first TSM simulation when veloeity 

was kept fixed and equal to Voear)- 

However, when the model parameters were identifiable, the transport metrics converged toward 

constrained values and were consistent with OTIS-P results (Figure 2.7). This was achieved with 

a calibrated and a fixed (as in the OTIS-MCAT model) streamflow velocity. Results of the last 

TSM iteration showed that the investigated transport metries have low dispersion around the 

median and that the median almost coincides with the result of the best-performing parameter set 

for the majority of the experiments and of the investigated metries (Figure 2.7, red dots). The only 

exception is L, for El when velocity was a varying model parameter, where the median of the best 

100 parameter sets reported an L, 46m higher than the one obtained considering the best-performing 

parameter set. When all model parameters were identifiable for each of the three tracer experiments, 

the transport metries showed increasing q; (from ~2.7 1/s for El to -23 1/s for E3), increasing L. 

(from -50 ın for El to -100 m for E3), and decreasing T. (from -150 s for El to -33 s for E3) 

with increasing mean discharge of the experiments (from El to E3). Fyurp did not change widely 
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between the TSM iterabions since the median of the best-performing 100 parameter sets varied 

always between 0.04 and 0.2 (Figure 2.7j-). However, together with q, Is, and Ta. transport 

inetrics, the dispersion of Finn values around the median decreased with increasing identifiability 

of model parameters. 

2.4 Discussion 

2.4.1 The role of velocity in random sampling approaches for 'TSM 

Our results showed that v interacts with @ and Ars in transient storage models. This was 

particularly evident when v was considered as a calibration parameter, and the non-identifiability 

of Ars was conpled with identifiable vand @ (Figure 2.2, green and yellow dots). On the contrary, 

Ars was found to be identifiable and @ to be non-identifiable when v was fixed equal t0 Vieak 

(Figure 2.3, yellow dots). It is known that a separate evaluation of the advection-dispersion 

parameters from the transient storage parameters can result in misestimation of transient storage 

parameters due to the high parameter interaction (Knapp and Kelleher, 2020). Several studies 

addressed the identifiability of model parameters, yet, no study so far investigated the role of the 

flow velocity on the identifiability of @ or Ars, and studies rely on a flow velocity equal to Voss IN 

random sampling approaches for TSMs (Ward et al., 2013; Kelleher et al., 2013; Wlostowski et al., 

2017; Ward et al., 2017; Ward et al., 2018). The practice of setting v equal to Vs: in past studies 

was justified by the notion that Vpa, can be considered as a reasonable good approximation for the 

advection process in the stream channel (Ward et al., 2013; Wlostowski et al., 2017) and by the 

modelling advantage that assuming vequals vaar would reduce model dimensionality (Knapp and 

Kelleher, 2020). While reducing the number of model parameters is advantageous for reduced model 

dimensionality, considering v as a calibration parameter is a needed testing strategy in TSMs. This 

is because measurement uncertainty is inevitable in determining discharge or flow velocity, thus we 

don’t know how big the effect of measurement uncertainty is on model performance, especially 

considering parameter interaction. Also, constraining the advection-dispersion parameters A and D 

already proved to affect the identifiability of the other model parameters (Lees et al., 2000; Kelleher 

et al, 2013; Ward et al., 2017), but no study assessed the role of veloeity on parameter 

identifiability. 

Our results provide valuable guidance for future studies addressing parameter identifiability in 

TSM. Specifically, our results support the current praxis of considering velocity fixed and equal to 

Yoeak,; especially when research aims at evaluating the distribution of “behavioural” parameter sets 

in TSMs (i.e. parameter sets satisfying certain performance thresholds). This is due to the fact: that 

using velocity as calibration parameter leads to the same parameter identißability compared to the 

case when velocity is considered fixed at the end of iterative modelling approach (Figure 2.2, 2.3, 

Table 2.2). Yet, setting veloeity equal t0 Var, requires a considerably lower amount of 

computational power due to the lower degrees of freedom of the TSM. However, when research 

aims to evaluate the control of the model parameters on the shape of the BTC, our results suggest 

that increasing the model complexity by considering velocity as a varying model parameter can 

offer more detailed insishts into the role of advection-dispersion processes on the tail of the BTC 

and of the transient storage parameters on the rising limb and peak of the BTC (Figure 2.4, 2.5). 
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Indeed, our dynamic identifiability analysis underestimated the role of A and Ars on the rising limb 

and peak ofthe BTC and overestimated the role of Dand @ on the rising limb of the BTC for 

the case v equals va. compared to the case when v was a calibration parameter (Figures 2.4, 2.5). 

The assumption used in previous work of streamflow velocity equalling Ars implies that ve. should 

encompass the effect of advection on the entire BTC or at least in the rising limb and peak of the 

BTC (Ward et al., 2013; Kelleher et al., 2013; Wlostowski et al., 2017; Ward 2018). However, when 

v was used as a calibration parameter, our results showed that v is one of the least meaninsful 

parameters for simulating the peak of the BTC at low discharge (Figure 2.4k, i), while higher 

information content for v is obtained at higher discharge rates for values larger than Ver at the 

peak of the BTC (dymamie identifiability plots not shown). 

2.4.2 Control of model parameters on the rising limb, the peak, and the tail of the 

BTC 

The results of our dynamic identifiability analysis showed that both the advection-dispersion and 

the transient storage parameters control solute arrival-time and solute retention in stream channels. 

This outcome is in contradiction with the common interpretation of model parameters, where it is 

assumed that the advection-dispersion parameters control the solute arrival time, while transient- 

storage parameters are assumed to control the tail ofthe BTC (Bencala, 1983; Bencala and Walters, 

1983; Runkel, 2002; Smith, 2005; Bencala et al., 2011). Following this common interpretation of 

the role of model parameters on the BTC, some authors decomposed the BTC into an advective 

part, and a transient, storage part (Wlostowski et al., 2017; Ward et al., 2019). This decomposition 

allowed them to quantify the role of advection-dispersion and transient storage embedded in the 

BTC. However, this modelling strategy also implicitiy assumes a negligible role of advection- 

dispersion pararmeters on the tail ofthe BTC and of transient-storage parameters on the rising limb 

and peak ofthe BTC, which is in not consistent with our findines (Figures 2.4, 2.5, 2.3). ) u = 3 3 

Several studies addressed how different model parameters affect the shape of the BTC and showed 

partly similar but also contrasting outcomes to our findings (Figure 2.8g-1, Wagner and Harvey, 

1997; Wagener et al., 2002; Scott et al., 2003; Wlostowski et al., 2013; Kelleher et al., 2013). Past 

studies found that the rising limb of the BTC was controlled by the stream channel area A alone 

(Wagener et al., 2002), by the combination of A and the longitudinal dispersion coefficient D 

(Wagner and Harvey, 1997; Wlostowski et al., 2013; Kelleher et al., 2013), or bv A, D, and Ars 

(Scott et al., 2003). The peak of the BTC was found to be controlled by advection-dispersion 

parameters in most past TSM applications (Wagener et al., 2002; Wlostowski et al., 2013; Scott et 

al., 2003: Kelleher et al., 2013). However, Wagner and Harvey (1997) reported a non-negligible role 

of the transient storage parameters @ and Ars in controlling the arrival time of the peak 

concentration (Figure 2.88). Eventually, while the majority of the studies found the transient 

storage parameters @ and Ars to control the tail of the BTC (Wagner and Harvey, 1997; Scott et 

al., 2003; Wlostowski et al., 2013), results reported by Wagener et al., (2002) and by Kelleher et 

al. (2013) highlight the role of the stream channel area A on controlling a large portion of the tail 

of the BTC.
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Figure 2.8. Qualitative plots of the TSM parameter influence on different sections of the BTC. (a) and 

(b) qualitative parameter information content on the BTC for El, (c, d) E2, and (e, f) E3. In plots (a- 

f) solid lines indicate an information content above 0.66 while dashed lines indicate an information 

content between 0.33 and 0.66. (g) Wagner and Harvey, 1997; parameter influence described via 

sensitivity evaluation (cfr. p. 1733, Wagner and Harvey, 1997), therefore the parameter influence is 

described using only solid lines. (h) Wagener et al., (2002); Plot (h) has been modified from Figure 7 in 

Wagener et al., (2002) in order to fit our 0.66 and 0.33 threshold classification in term of information 

content. (i) Scott et al., (2003); parameter influence described via dimensionless sensitivity (cfr. Table 

1 in Scott et al., 2002), therefore the parameter influence is described using only solid lines. (j) 

Wlostowski et al., 2013; Plot (j) describes the parameter influence after the dynamic identifiability 

analysis, however information content plots were not reported by the authors, therefore the solid lines 

indicate the areas for the best-performing parameters as indicated in Figure 2 of Wlostowski et al. 

(2013). (k) Kelleher et al., (2013) for the case of a dispersive mountain stream (Case 1) and (l) Kelleher 

et al., (2013) for the case of a small low-flow mountain stream (Case 2); Plots (k) and (l) indicate by 

solid and dashed lines if the parameters influence the model output by itself or through interactions 

(cfr. Section 6.1 Kelleher et al., 2013). 

The observed identifiability of model parameters in different sections of the BTC in past work and 

the differences compared to our findings (Figure 2.8a, c, e) might be driven by different physical 

settings or discharge conditions of the study sites, by the methods used to account for parameters 

identifiability, by the parameter sampling procedure, or by the strategy used to obtain the best- 

fitting parameter sets (Wagner and Harvey; 1997; Scott et al., 2003; Kelleher et al., 2013). For 

example, the identifiability of the TSM to & and Ars is expected to increase for dispersive streams 

and alluvial stream channels, compared to mountain reaches with low or null hydrologic exchange 

with the hyporheice zone (Kelleher et al., 2013). However, our analysis also suggests that the 

different results on the importance of model parameters for certain sections of the BTC (Figure 
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2.8) could be driven by the selected random sampling approach and the non-identifiability of model 

parameters. 

Plots ofthe parameter values against the corresponeling objective function in Wagener et al. (2002) 

and the regional sensitivity analysis in Wlostowski et al. (2013) do not indicate parameter 

identifiability for Ars, Dand a. These results together with our identifiability plots when model 

parameters were poorly identifiable (Figures 2.2, 32., green and yellow plots) suggest that the range 

and the number of the parameter sets chosen in different studies could have been insufficient to 

obtain global sensitivity and identifiability of. D, Ars, and @ parameters. Similar to the results by 

Wagener et al. (2002) and Wlostowski et al. (2013), our dynamie identifiability analysis showed no 

influence of Ars on the majority ofthe BTC, when Ars was non-identifiable (Figure 2.4, j). 

Compared to our results, the different roles of the model parameters in controlling the shape of the 

BTC in previous studies (e.g. Kelleher et al., 2013) could be driven by the different approaches 

used for evaluating the sensitivity (ie. Sobol’ sensitivity analysis). However, our results suggest 

that the number of parameter sets (42,000) selected by Kelleher et al. (2013) might not have been 

sufficient to obtain identifiability of the model parameters with the rather wide parameter range 

chosen for their Monte Carlo sampling (Table 2.1). Results by Kelleher et al., (2013) are very 

similar to our 'TSM iterations for cases where @ was non-identifiable (v equals to Ypsr, Figure 2.3 

yellow dots, dynamic identifiability plots not shown). We also demonstrated that our results after 

the first and second TSM iterations are not sufficient for interpreting the transient storage process, 

because of the non-identifiability of the model parameters and the low model performances (RMSE 

> RMSEapz (Figure 2.3a-], green and yellow dots). 

This study offers significant insights in understanding which model parameter inflnence the shape 

ofthe BTC, suggesting that only behavioural parameter sets should be considered in models aiming 

to understand the control of model parameters on the rising limb, peak, and tail ofthe BTC. Future 

work should address the interaction of model parameters on controlling different sections of the 

BTC for more complex model formulations (e.g. TSM with two or several transient storage zones, 

Choi et al., 2002; Bottacin-Busolin et al., 2011). 

2.4.3 On the importance of parameter range, parameter sets, and challenges associated 

to parameter identifiability in TSM 

The applied iterative approach was effechive in drastically improving parameter identißability with 

the increase of TSM iterations. The identifability of parameters in TSMs is commonly studied via 

random sampling approaches using between 800 and 100,000 parameter sets sampled from a 

parameter range spanning several orders of magnitude (Table 2.1). Despite a large number of 

parameter sets used in previous studies, model parameters were found identifiable only in a few 

studies (Ward et al, 2017, 2018), while at least, one model parameter was found to be non- 

identifiable in the majority of current TSM studies. Many authors found identifiable Ars coupled 

with non-identifiable & (Camacho and Gonzälez, 2008; Kelleher et al., 2013; Wagener et al., 2002; 

Wlostowski et al., 2013), while other TSM applications found «@ to be identifiable coupled with 

non-identifiability for Ars (Kelleher et al., 2019), or @ and Ars to be both non-identifiable



(Camacho and Gonzälez, 2008: Ward et al., 2013; Ward et al., 2017). Our results offer a possible 

explanation for the observed non-identifiability of model parameters in published work. Our study 

demonstrated that it is unlikely to reach parameter identifiability via a random sampling approach 

using less than 100,000 parameter sets when a rather wide range of model parameters is used (Table 

2.1, Figure 2.6a). While the range and the order of magnitude of advection-dispersion parameters 

can be estimated by using the ADE, the ranges where @ and Ars are identifiable are not known 

a-priori and random sampling approaches need to target a parameter range wide enough to capture 

the distribution of transient storage parameters on their entire feasible range (Ward et al., 2013; 

Kelleher et al., 2013; Ward et al., 2017). We here proved that using multiple iterations to calibrate 

TSM parameters is more effective in achieving identifiable TSM parameters than just having a 

single sarnpling a large number of parameter sets on a wide parameter range (Figure 2.6). The peak 

of performance for the transient storage parameters can be so narrow that it can be missed by the 

random sampling approach or by only a low number of selections when the sampled parameter 

range spans many orders of magnitude. Similar conclusions have been obtained by Ward et al. 

(2017), who found by using the OTIS-MCAT model via 100,000 parameter sets that the model 

parameters were identifiable only for one of the three investigated BTCs. Other studies coupled 

random sampling approaches with behavioural thresholds to reduce parameter non-identifiability, 

yet this was done to constrain only the range of A (Kelleher et al., 2013; Ward et al., 2017). Here, 

we demonstrated the importance of the parameter range over the number of parameter sets in 

random sampling approaches for TSMs (Figure 2.6). The adopted identifiability analysis was 

effective in finding behavioural parameter sets after a few iterations regardless of the modelling 

approach used (OTIS-MCAT as well as considering v as a calibration parameter). Of particular 

interest is our finding that high information content (> 0.66, e.g. Figure 2.4j. 2.50) of @ and Ars 

on the tail ofthe BT after the dynamic identifiability analysis can be used to reduce the parameter 

range in successive 'TSM iterations. This result is in agreement with the recent findings of Rathore 

et al (2021), who found the tail of the BTC to contain fundamental information for transient 

storage processes and the parameters describing it. 

The adopted iterative approach allowed us to achieve parameter identifiability and to obtain 

physically realistic transport metries. However, this approach is based on the specific objective 

function used (RMSE) and on the subjective thresholds to control the refinement of the parameter 

range for successive iterations (top 10% results for the global identifiability analysis, and 

information content > 0.66 for the dynamic identifiability analysis). Future work should explore 

the impact of the selection ofthe thresholds and different objective functions on the physical realism 

of the modelling results and the identifiability of the parameters. 

Our simwlations with OTIS-P resulted in excellent model performances for the investigated BTCs, 

with low RMSE values and with calibrated model parameters comparable to the behavionral 

parameter populations obtained via our global identifiability analysis (Figure 2.2, 2.3). While the 

obtained performances of the OTIS-P calibration are certain)y specific to the investigated BTCs, 

the use of OTIS-P alone would have not provided enoush information to address the reliability of 

the obtained model parameters. This, in turn, would have raised concerns abont the credibility of 
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the transport metrics obtained, eventually compromising the robustness of the derived physical 

process involved at the study site. Compared to random sampling approaches coupled with global 

identifiability analysis, inverse inodelling approaches are often considered not. as meaningful for 

interpreting modelling ontcomes (Ward et al., 2013: Knapp and Kelleher, 2020). This is because 

parameters calibrated via inverse modelling might be non-identifiable despite an overall good model 

performance (Kelleher et a., 2019) and because identifiability analysis informs on a behavioural 

parameter set which is a preferable and more informative outcome for hydrological models than a 

single set, of parameter values (Beven, 2001; Wagener et al., 2002). Thus, our identifiability analvsis 

over different investigated parameter ranges can offer an explanation about why in past studies 

identifiability analysis over a probably t00 large parameter range indicated non-identifiability and 

lack of convergence with OTIS-P results (Ward et al., 2017). 

Eiventually, even if random sampling appronches are generally considered more informative than 

the inverse-modelling approach (Ward et al., 2013; Ward et al., 2017; Ward et al., 2018; Knapp 

and Kelleher, 2020), our results indicate that random sampling ontcomes that show non- 

identifiability oftransient storage parameters should not be used for process interpretation in TSM. 

This was evident from TSM iterations showing non-identifiability of @ and Ars, with the best 

model performances approaching the RMSEasne (Figure 2.2, 2.3, black line) indicating an 

underestimation of the transient storage process with the optimal modelled BTCs having the same 

(or worse) performances of the ADE. 

2.4.4 Implications of identifiable model parameters for hydrologic interpretation of 

modelling results 

Our results demonstrated that poor or non-identifiability of model parameters can result in a wrong 

hydrological interpretation of the processes controlling solute transport: in streams. Additionally, 

our results showed that with increasing discharge conditions L,and q, increased, Ta, decreased, and 

Fur was rather stable for simulations where the model parameters were identifiable (cfr. paragraph 

3.2). The low uncertainty and the values of the investigated transport metries suggested that the 

transient storage at the experimental site was most probably controlled by in-stream dead zones 

(Boano et al., 2014; Smettem et al., 2017). Our modelling outcomes are also in line with the physical 

understanding of the studied stream reach. The study site is equipped with a dense network of 

groundwater monitoring wells that showed that the stream channel is almost entirely in gaining 

conditions for the investigated tracer injections with the groundwater gradients pointing toward 

the stream channel (Bonanno et al., 2021). This is in line with the obtained TSM transport metrics 

that indicate a very limited or even a lack of hyporheie exchange (e.g. T., between 335 and 1508, 

cfr. 2.3.6). Other modelling and experimental studies also outlined that the stream above the study 

section is dominated bv inflow of groundwater or surface water from wetlands (Antonelli et al. 

2020a; Glaser et al., 2016, 2020). The observed link of L., q, and Ta. values with discharge (Figure 

2.7) also suggested that the transient storage at our site became less important in controlling solute 

transport with increasing discharge. The decrease of Ars and T;, with increasing discharge has been 

argued to indicate an increase of groundwater gradients toward the stream channel with a 

consequent deerease in the hyporheic zone at different, study sites (Morrice et al., 1997; Fabian et 
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modelling approach. Our results showed that the value of stream veloeity interacts with the 

transient storage parameters. Namely, when stream velocity was a randomly sampled calibration 

parameter (within a physically reasonable range), we found non-identifiable Ars and identifiable 

a. On the contrary, when stream velocity was assumed to be equal t0 Von Ars was found 

identifiable and @ non-identifiable. We proved that such a non-identifiability of transient storage 

parameters can result in the modelled BTC having the same performances as the ADE. Our work 

demonstrates that both transient storage and advection dispersion parameters control the shape of 

the BTC, when these model parameters are identifiable. This is contrary to previous studies that 

reported that advection-dispersion parameters control the rising limb and the peak ofthe BTC and 

that the transient storage parameters control the tail of the BTC. We also showed that non- 

identifiable model parameters could severely misestimate the solute retention time in the transient 

storage zone (T,.) and the exchange flux between the stream channel with the transient storage 

zone (gs). The differences of Ta, and gs between identifiable and non-identifiable parameters were 

up to four and two orders of magnitude, respectively 

The modelling approach in this study constrained the parameter range iteratively. This strategy 

successfully reduced model dimensionality and allowed us to obtain identifiable model parameters 

for the three tracer experiments. As a complement to the existing body of literature, our work 

shows that the non-identifiability of model parameters in past studies might be related to the rather 

small number of sampled parameter sets compared to the investigated parameter range. The low 

uncertainty of the model parameters and the derived transport metrics were pivotal for obtaining 

a robust assessinent ofthe hydrological processes driving the solute transport at the study site. On 

the contrary, using non-identifable model parameters, or relying on OTIS-P results alone, would 

have led to uncertain (in the case of OTIS-P) or rather different (in the case of non-identifiable 

random-sampled parameters) process interpretation at the study site. 

Our study provides enhanced understanding on the relevance of identifiable parameters of TSM 

models. We also provide insishts how parameter calibration without an assessment of their 

identifiability likely results an unrealistic conceptualization of processes and unrealistic values for 

different solute transport: metrics. 
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Chapter 3: Discharge, groundwater gradients, and 

streambed micro-topography control the temporal 

dynamics of transient storage in a headwater reach 

The present chapter corresponds to the following scientific publication in its original form: 

Bonanno, E., Blöschl, G., and Klaus, J.: Discharge, groundwater gradients, and streambed micro- 

topography control the temporal dynamics of transient storage in a headwater reach, Water 

Resources Research, in review, 2022. 

Key Points: 

1. Integrating groundwater data and streambed micro-topography can improve the 

interpretation of transient storage model results; 

2. Parameter interaction in transient storage models increases with discharge; 

3. The hyporheic zone and in-stream dead-zone have a decreasing influence on transient 

storage with higher discharge. 

3.1 Abstract 

Contradicting interpretations of transient storage modeling (TSM) results in past studies hamper 

the understanding of how hydrologie conditions control the transport of solutes in streams. In this 

study, we estimate transient storage model parameters from 31 tracer experiments in the Weierbach 

stream in Luxembourg. We interpret the change of the parameters with discharge in terms of 

changing size of the hyporheic zone and the submerged area of streambed sediments. During low 

discharge, transient storage at the study site is controlled by both in-stream transient storage and 

hyporheic exchange processes. This is because of the large extent of the hyporheic area receiving 

water [from the stream channel and the relatively low water level compared to the measured size of 

the slate fragments on the streambed. The hyporheie zone has a decreasing influence on transient 

storage with increasing discharge due to the relatively lower localized water losses from the stream 

channel to the adjacent groundwater. The higher stream water level causes the in-stream dead- 

zones to get submerged and become part of the advective channel. However, higher stream water 

levels and water velocities also caused an increase of turbulence in the water column, suggesting 

that transient storage is mainly controlled by eddies generated by the water frietion with the 

streambed sediments under high discharge conditions. The understanding of the relative importance 

of hyporheic area and dead zones for transient storage obtained here assists in clearer process 

interpretations and in estimating TSM parameters more accurately. 
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The need to understand how different hydrological processes can influence water chemistry, 

biological activity, and the ecological richness of stream networks has motivated a range of studies 

over the past 30 years (Boulton et al., 2010; Stanford & Ward, 1988; Ward, 2016). Here, TSMs 

have been adopted to characterize hyporheie exchange and in-stream water storage in a multitude 

of streams (Bencala et al., 2011; Bencala & Walters, 1983; Butturini & Sabater, 1999; Gooseff et 

al., 2005, 2008; Hart et al., 2002; Ward et al., 2018; Wörman, 1998). TSM assumes a uniform, 

steady-state, 1-D flow modeled via the advection-dispersion equation (ADE) with a first-order 

mass transfer exchange @ between the advective fow channel and a finite-sized storage zone with 

Ars dimensions (Bencala & Walters, 1983). Knowing how the transient storage parameters @ and 

Ars change with different hydrologie conditions is erucial as larger transient storage zones and 

longer residence times are key factors in enhaneing nutrient eycling (Argerich et al., 2011) and 

degrading pollutants (Moser et al., 2003) in stream networks. The simplified, yet informative 

structure ofthe TSM can thus offer valuable insichts into the potential development of hot spots 

and hot moments that control water quality in surface waters (Krause et al., 2017; Smith, 2005). 

Despite the pressing need to decipher the role of different hydrological processes and conditions on 

solute transport in streams, current research led to a collection of idiosyncratic studies with 

conflieting model predichions and interpretations (Ward & Packman, 2019). Higher discharge have 

been linked to higher (Bencala & Walters, 1983; Lees et al., 2000; Schmid et al., 2010; Ward et al., 

2018; Wlostowski et al., 2013) and lower (Harvey et al., 1996; Karwan & Saiers, 2009; Marti et al., 

1997; Morrice et al., 1997; Valett et al., 1996; Ward et al., 2017; Wondzell, 2006) values of the 

transient storage area Ars, or to show no clear relationships (Edwardson et al., 2003; Fabian et al., 

2011; Hall et al., 2002; Jin & Ward, 2005; MeKnight et al., 2004; Ward, Payn, et al., 2013; Zarnetske 

et al., 2007). Sinilarly the rate of exchange a between the advective flow channel with the 

transient storage zone was higher (Fabian et al., 2011; Gooseff et al., 2003; Hart et al., 1999; Harvey 

et al., 1996; Lees et al., 2000; Schmid et al., 2010; Ward et al., 2018; Wondzell, 2006), lower 

(Gonzälez-pinzön et al., 2015; Karwan & Saiers, 2009; Ward, Kelleher, et al., 2017), or showed no 

clear relationship with discharge (Bencala et al., ns Bencala & Walters, 1983; Butturni & 

Sabater, 1999; D’Angelo et al., 1993; Edwardson et al., 2003; Gooseff et al., 2013; Hall et al., 2002: 

Jin & Ward, 2005; Legrand-Mareq & Laudelout, 1085: Marti et al., 1997: MeKnisht et al., 2004 

Morrice et al., 1997; Scott et al., 2003, Ward, Payn, et al., 2013). 

The inconsistency in the relation between the values of TSM paranmeters with discharge in previous 

studies (Table 3.1) might derive from the specific characeteristies of the different study sites. For 

example, stream channels with a relativelv high hydraulic conductivity of the streambed material 

(sand and gravel) would allow the inflow of water from the stream toward the adjacent groundwater 

with higher discharge (Dudley-Southern & Binley, 2015), leading to a more pronounced tail of the 

BTC (Schmadel et al., 2016). In contrast, stream channels confined by fresh bedrock 

characterized by material with low hydraulie conduetivity would exhibit a rather reduced hyporheic 

zone area at high discharge and are thus more likely to show a reduction in transient storage area 

with higher discharge (Wondzell, 2011). Nevertheless, conflieting or absent relationships between 

TSM parameters and stream discharge could also be due to limitations that are common in studies 
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investigating solute transport in streams with tracer experiments (Table 3.1). First, the calibration 

of parameters in TSM has been performed iteratively to visually fit the modeled BTC over the 

observed BTC (Bencala et al., 1990; Bencala & Walters, 1983; D’Angelo et al., 1993; Legrand- 

Marcq & Laudelout, 1985; Valett et al., 1996), or by inverse modeling (Edwardson et al., 2003; 

Fabian et al., 2011; Gooseff et al., 2013; Jin & Ward, 2005; Lees et al., 2000; MeKnight et al., 2004; 

Schmid et al., 2010: Wondzell, 2006). However, the identifiability of model parameters has generally 

not been taken into account in most 'TSM studies (Table 3.1), leading to a lack of certainty about 

the modeling results and their physical interpretation. (Knapp & Kelleher, 2020). When TSM 

parameters are non-identifiable, they are hishlv interdependent, meaning that changes in one 

parameter would be balanced by a proportional change of one or more other parameters leading to 

the same model performances (Camacho & Gonzalez, 2008; Kelleher et al., 2013; Wagener et al., 

2002). Identifiability is a crucial issue for the interpretation of TSM results, as most studies that 

have addressed the identifiability of TSM parameters have found that they were non-identifiable 

(Kelleher et al., 2019; Wagener et al., 2002; Camacho & Gonzalez, 2008; Ward, Kelleher, et al., 

2017; Wlostowski et al., 2013). Non-identifiability of TSM parameters does not only affeet model 

performance, but it can result in the modeled BTC mimicking the advection-dispersion equation, 

leading to a misinterpretation of the processes governing transient storage at the study site 

(Bonanno et al., 2022). A growing number of studies addressed parameter identifiability in TSMs 

via random sampling approaches (Kelleher et al., 2019; Ward et al., 2017, 2018; Knapp & Kelleher, 

2020; Table 3.1). However, no study to date has directly investigated the identifiability ofthe TSM 

parameters under multiple hydrologie conditions, which may improve our understanding of why 

TSM parameters were identifiable in some studies (Ward et al., 2018; Ward, Kelleher, et al., 2017) 

and not in others (Camacho & Gonzälez, 2008; Kelleher et al., 2013; Wagener et al., 2002; 

Wlostowski et al., 2013; Ward, Kelleher, et al., 2017). 

There is also a second limitation that may cause an unclear correlation between TSM parameters 

and discharge, thus hindering the physical interpretation of the model results, namely the scarcity 

of information about the stream reach and the relatively small number of tracer experiments. 

Studies analyzing a section of a stream under different hydrological conditions, or studving hisher 

stream discharge at snecessive monitoring stations, rarely investigated more than four stages of 

discharge (Table 3.1) with the tracer experiments being mostly conducted at baseflow conditions 

(Ward, 2016). A relatively low number of investigated discharge stages hampers the ability to 

observe a robust relationship between discharge and @ and Ars, resulting in a poor understanding 

of the processes controlling transient storage in stream reaches (Ward & Packman, 2019). 

Investigating the link between TSM parameters across different discharge stages is also not, enough 

for assoeiating specific hydrological processes with certain hydrologie conditions. This is because 

higher discharge can cause larger and lower hyporheic exchange and in-stream transient storage 

depending on the stream morphology and the groundwater gradients at the study site (Jin & Ward, 

2005; Bonanno et al., 2021; Dudley-Southern & Binley, 2015; Gooseff, Bencala, et al., 2008; Marti 

et al., 1997; Schmid et al., 2010). A clearer perception of the physical processes of stream reaches 

fosters a robust interpretation of TSM results. As an example, the measurements of the 

groundwater levels adjacent to the stream channel can be used to infer if the near-stream 
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groundwater is receiving stream water, thus offering valuable information on the potential 

development of hyporheic zones at the study site (Bonanno et al., 2021; Voltz et al., 2013; Wondzell, 

2006). Likewise, the size and distribution of the sediments making the streambed topography can 

be a crucial resource for the interpretation of TSM results, since streambed sediments and in-stream 

obstructions can create recirculation zones resulting in a non-negligible role for in-stream transient 

storage (Hart et al., 1999; Montgomery & Buffington, 1997; Jackson et al., 2013). Without a 

comprehensive knowledge of the groundwater levels and the streambed topography, it is difficult 

to distinguish whether a certain transient storage area can be related to a specific transient storage 

process or whether it is simply the result of a mathematical fit of the TSM parameters without a 

realistic role for solute transport at the study site. 

In this manuscript we address the following research questions: 

i. Does the identifiability of TSM parameters change with discharge? 

ii. How do transient storage processes change under different hydrologic conditions? 

To answer these questions and to overcome the limitations mentioned above in TSM studies we 

performed 31 in-stream tracer experiments and we: (i) investigated the identifiability of TSM 

parameters by combining global identifiability analysis with dynamic identifiability analysis in an 

iterative approach obtaining identifiable TSM parameters (cf. Bonanno et al., 2022); (ii) we 

recorded the groundwater elevation at the study site through a groundwater monitoring network 

of 43 wells that allowed us to infer the extent of the hyporheic zone during each experiment; (iii) 

we obtained the micro-topography of the streambed via a laser scan and we compared the 

distribution of the height of the slate fragments in the streambed to the surface water level to infer 

the role of in-stream transient storage in different hydrologie conditions. 

Table 3.1. Relationships between transient storage parameters a and ATS and stream discharge Q in 

published literature. (+) and (-) symbols indicate respectively positive and negative relationships between 

stream discharge with the transient storage parameters a and ATS. The “unclear” term means that both 

positive and negative relationships have been observed between discharge and @ and ATS. The slash symbol 

(/) indicates no results, due to non-reported results or a null evaluation of the parameter. When a study 

investigated multiple stream reaches, we reported only the reaches investigated at different hydrologie 

conditions. We here also reported studies using only one tracer injection, but where higher discharge was 

studied via multiple reaches with tracer measurement location located at increasing distance from the tracer 

injection point. 

Study Site name Number and/or | Number of/ArsvsQ| «vs Q| Fitting Identifiabilit 

name of the sub- | experiments y analysis 

reaches per reach 

Legrand- Rieu 1 13 () Unclear | Visual No 

Marcq & | d'Ostenne 

Laudelout, 

1985 

Bencala & | Uvas Creek 5 1 (+) Unclear | Visual No 

Walters, 

1983 
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Bencala et | Snake river | 5 1 Unclear |Unclear | Visual No 

al., 1990 (upstream 

Deer creek) 

Snake river | 3 1 Unclear |Unclear | Visual No 

(downstream 

Deer creek) 

Artificial 2 (Dogwood and | 2 (summer - | / / 

streams Oak) winter) 

1-order site |2 (Pine and | 2 (summer - | (+) (+) 

Hardwood) winter) 

Gradient site | 4 (from 1" to 4" | 1 (summer) | Unclear |Unclear 

D’Angelo order) Visual No 

et al., 1993 | 5" Order site | 2 (reaches 4 and | 2 (summer - | (-) Unclear 

- 7) winter) 

unconstraine 

d 

5" Order site | 2 (reaches 1, 2,3, , 1 (summer) | Unclear |Unclear 

- constrained | 5, 6) 

Valett et | Gallina creek | 1 4 () / Visual No 

al., 1996 
Harvey et | St. Kevin | 1 2 ) (+) Nonlinear | No 

al., 1996 Gulch least 

squares 

regression 

Morrice et | Gallina Creek | 1 4 () Unclear | Visual No 

al., 1997 
Marti et | Sycamore 1 8 () Unclear | Visual No 

al., 1997 Creek 

Butturini Riera Major | 1 15 Unclear |Unclear | Direct No 

& Sabater, | stream fitting 

1999 (sensu 

Hart, 1995) 

Hart et al., | West Fork of | 1 11 (*H) and | Unclear |(+) Direct No 

1999 Walker 9 (CI) fitting 

Branch (sensu 

Hart, 1995) 

Lees et al., | Mimram 2 1 (+) (+) OTIS-P Non-unique 

2000 River (sensu convergence 

Runkel, of aand Ars 

1998) parameters. 

Hall et al., | Hubbard 1 (Bear brook) 4 Unclear |Unclear 

2002 Brook 1 (Cone Pond | 2 (+) (+) 

Experimental | Outlet) Direct 

Forest 1 (Hubbard | 3 Unclear |Unclear | fitting No 

brook) (sensu 

1 (Paradise | 2 (+) (+) Hart, 1995) 

brook) 

W2 stream 3 (+) Unclear 
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W3 stream 6 Unclear |Unclear 

W4 stream 3 Unclear |Unclear 

W5 3 (+) Unclear 

W6 5 Unclear |Unclear 

West inlet to | 3 Unclear |Unclear 

mirror lake 

Edwardson | Imnavait Site 1 2 (+) ) OTIS-P No 

et al., 2003 | creek Site 2 2 () (+) (sensu 

Blueberry Site 1 4 Unclear |(+) Runkel, 

Creek Site 2 4 Unclear |Unclear | 1998) 

Toolik  Inlet | Site 1 2 (+) (+) 

Stream 

Oksrukuyik | Site 1 2 () (+) 

Creek 

Kuparuk Site 1 6 Unclear |Unclear 

River Site 2 6 Unclear |Unclear 

Gooseff et | Lookout LO411 2 ) (+) UCODE | No 

al., 2003 Creek plus manual 

watershed modificatio 

n of the 

parameters 

to visually 

match the 

tail of the 

BTC. 

Scott et al., | Uvas Creek 5 1 () Unclear | UCODE No 

2003 (unable to 

calibrate o 

and Ars for 

two over 

five BTCs) 

McKnight | MeMurdo 4 1 Unclear |Unclear | OTIS-P No 

et al., 2004 | Dry  Valleys (sensu 

(Green Runkel, 

Creek) 1998) 

Jin & | Payne Creek | 1 9 (constant- | Unclear |Unclear | OTIS-P No 

Ward, rate) (sensu 

2005 6 (slug) Unclear |Unclear | Runkel, 

1998) 

Wondzell, | WS1 1 (Upper) 2 () (+) OTIS-P No 

2006 1 (Lower) 2 (-) (+) (sensu 

WS3 1 (Upper) 2 ) () Runkel, 

1 (Lower) 2 () (+) 1998) 

Zarnetske | Northern 1 (A2) 3 (+) (+) STAMMT-| No 

et al., 2007 | foothills of| ı (Pl) 4 Unclear |(+) L  (sensu 

Alaska’s 1 (AP) 4 Unclear |(+) Haggerty et   Brooks Range             al.. 2002)   
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Karwan & | Wangum 1 3 (2) () () Levenberg- | No 

Saiers, Brook Marquardt 

2009 nonlinear 

least 

squares 

algorithm 

(unable to 

calibrate o 

and Ars 

under high 

discharge 

stages) 

Schmid et | Mödlingbach | 1 12 (+) (+) OTIS-P No 

al., 2010 Torrente S-1 4 (+) (+) (sensu 

Lura S-I1 7 (+) (+) Runkel, 
D-G 5 (+) (+) 1998) 

Fabian et | Prieta Creek | 1 3 Unclear |(+) OTIS-P No 

al., 2011 (sensu 

Runkel, 

1998) 

Mason et | Silver Bow | 1 58 / / / Identifiabilit 

al., 2012 Creek y analysis — 

a and Ars 

non- 

identifiable 

Ward et | Stringer 28 4 Unclear |Unclear | OTIS + Identifiabilit 

al., 2013 Creek Monte y analysis — 

Carlo a and Ars 

simulations | non- 

(100°000) | identifiable 

Gooseff et | Uvas Creek | 5 (+10 sub-reach | 1 (+) Unclear | OTIS + No 

al., 2013 combinations) UCODE (suspected 

(sensu Scott) non- 

et al., 2003), identifiabilit 

y for some 

results) 

Gonzälez- | Shaver Creek | 2 1 (+) () OTIS + No 

pinzön et Shuffled 

al., 2015 Complex 

Evolutionar 

y aleorithm 

Wlostowsk | Alaska’s I8 inlet 4 Unclear |Unclear | OTIS + No 

i et al,| NorthSlope | Peat inlet 3 (+) (+) Shuffled 

2017 Complex 

Evolutionar 

y algorithm 

Ward et | Tenderfoot 2 (100 m - 2500 | 1 () () OTIS + Identifiabilit 

al., 2017 Creek m) Monte y analysis — 
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Experimental Carlo D, A, o and 

Forest simulations | Ars non- 

(100°000) | identifiable 

Ward et | Fawn River Unrestored reach | 4 (+) (+) OTIS + Identifiabilit 

al., 2018 Restored reach 4 (+) (+) Monte y analysis — 

Carlo D, A, o and 

simulations | Ars 

(100°000) | identifiable 

3.4 Methods 

3.4.1 Study site 

The study reach is located in western Luxembourg, downstream of the Weierbach experimental 

catchment (49°49'38"'N, 5°47'44"E) (Hissler et al., 2021). The stream reach is 55 m long and it is 

characterized by a riffle morphology, has an average slope of =6%, is unvegetated, and consists of 

deposited colluvium of fragmented slates over a fractured bedrock layer (Bonanno et al., 2021, 

Figure 3.1). Previous work outlined the oceurrence of several hydrological processes controlling 

stream water generation in the Weierbach catchment. The hillslopes at the study site are 

characterized by a regolith layer with a relatively hish hydraulic conductivity compared to the 

fractured bedrock layer beneath (Glaser et al., 2016, 2020). The subsurface structure does not 

promote shallow lateral flow toward the stream channel (Klaus & Jackson, 2018), and precipitation 

water percolates vertically toward the groundwater table in the fractured bedrock (Rodriguez & 

Klaus, 2019). The water movement through and above the fractured bedrock from the hillslopes 

maintains a rather steady and shallow groundwater level in the near-stream domain throughout 

the year (Fabiani et al., 2021), and the organic soil areas composing part of the riparian area are 

almost constantly saturated (Bonanno et al., 2021). Discharge is thus generated by both a fast- 

and a slow-response to precipitation events. The fast-response is controlled by the surface runoff of 

event-water over the saturated organic soil in the riparian zone toward the stream channel (Wrede 

et al., 2015; Antonelli et al., 2020a; Bonanno et al., 2021). The slow-response oceurs when the 

amount of water from precipitation events exceeds the storage capacity at the hillslope. When this 

happens, the groundwater is laterally redistributed over the fractured bedrock from the hillslopes 

toward the stream channel causing an increase in discharge and a double-peak behavior in the 

hydrograph (Martinez-Carreras et al., 2016; Bonanno et al., 2021). 

3.4.2 Tracer experiments 

We performed a total of 31 in-stream instantaneous tracer experiments between December 2018 

and June 2021. For each experiment, we prepared a NaCl solution using 2 | of stream water and 

an amount of NaCl between 50 g and 250 g (Table 3.2). We selected slug injections over constant- 

rate injections to minimize the influence of varying discharge on the BTC measurements (Ward, 

Gooseff, et al., 2013) and because they contain the same information as a constant-rate injection 

for conservative tracers (Gooseff, Payn, et al., 2008; Payn et al., 2008). We injected the tracer 
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solution in a turbulent pool at the beginning of the study reach, assuring complete mixing. We 

measured electrie conductivity (EC) at the end of the investigated reach (55 m from the injection 

point) via a portable conductivity meter (WTW TetraCon 3310) providing a resolution of 0.1 

ıS/em from 0 pS/em to 199 1S/em and 1 1S/cm from 200 pS/cm to 1999 1S/em (accuracy + 

0.5% of the value and temperature automatically compensated). Calibration of EC to chloride 

concentration was conducted in the laboratory using a known volume of water sampled at the 

measurement location before the tracer injection. 

Table 3.2. List of the in-stream instantaneous tracer injections, date, discharge from dilution gauging, and 

amount of injected NaCl. 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

ID number | Date Discharge Q [l/s] | Amount of NaCl [eg] 

E01 06" December 2018 | 2.5 100 

E02 11" December 2018 | 14.0 100 

E03 08" January 2019 | 4.5 100 

E04 11" January 2019 3.8 100 

E05 23" January 2019 9.0 100 

E06 24" January 2019 7.9 100 

E07 28" January 2019 22.8 100 

E08 04" February 2019 | 17.0 100 

E09 05" February 2019 | 17.1 100 

E10 08" February 2019 | 15.9 100 

Ell 25" February 2019a | 5.3 100 

E12 25" February 2019b | 4.9 100 

E13 25" February 2019e | 4.7 100 

E14 08" March 2019 28.6 100 

E15 11" March 2019 23.2 100 

E16 05" February 2020 | 75.0 100 

E17 14" February 2020 | 36.7 250 

E18 06" May 2020 1.3 150 

E19 18" June 2020 0.9 100 

E20 22"! June 2020 0.4 100 

E21 06" November 2020 | 4.7 100 

E22 29" March 202la 5.1 100 

E23 29" March 2021b 5.0 100 

E24 30" March 2021a 4.8 100 

E25 30" March 2021b 4.7 100 

E26 31" March 202la 4.7 50 

E27 31" March 2021b 4.6 100 

E28 31" March 202le 4.6 150 

E29 31" March 2021d 4.1 200 

E30 11" June 2021a 2.8 100 

E31 11" June 2021b 2.9 100           
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Figure 3.1. (a) Study reach and location of the wells and piezometers. The Y direction corresponds to 

the direction of the geographic north; thus the stream reach defines an “east footslope” on the right side 

of the map, and a “west footslope”, on the left side of the map. (b) Transects of the stream channel 

were extracted from four LIDAR scans at a 1 cm resolution and at 15 cm distance between each other. 

The white areas between the scans are missing data due to the local presence of water and shadow 

zones. Blue, green, and red lines indicate the length of the wetted perimeter in each transect for the 

three reported discharge stages. (c) Flow duration curve and (d) probability density function for the 

recorded discharge at the Weierbach outlet for the period January 2018 - December 2021, 55 m upstream 

of the study site. The vertical red lines indicate the discharge stages investigated during the slug tracer 

injections. 

3.4.5 Formulation of the Transient Storage Model 

The formulation of the TSM reads (Bencala & Walters, 1983): 

  %c__,9C, 19 IC _ ) %rs _ _ A _ 
ra (AD 5.) +a(Crs =€) ot Y. (Crs = €) 

Eg. 1 

where t is time [T], x is the distance from the injection point along the stream reach [L], A IL? is 

the stream discharge cross-sectional area, v [L/T] is the flow velocity, D [L’/T] is the longitudinal 

dispersion coefficient, C and Crs are the concentration of the observed tracer in the stream channel 

and in the storage zone, respectively [M/ L?], & [1/T] is the exchange coefficient between the stream 

channel and the storage zone and Ars [L?] is the area of the transient storage zone. Three primary 

assumptions are associated with the formulation of the TSM (Harvey et al., 1996): (i) negligible 

transport in the hyporheic zone parallel to the stream, (ii) exponential residence time distribution 

(RTD) in the transient storage zone, and (iii) in-stream water storage and hyporheic exchange are 

jointly described by the transient storage parameters «and Ars. 

3.4.6 Calibration and identifiability of Transient Storage Model parameters 

TSM parameters are usually obtained via visual fitting or inverse modeling approaches, such as 

OTIS-P (Table 3.1). Despite the good model performances that can be obtained from inverse 
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modeling approaches, the parameters might be non-identifiable (Kelleher et a., 2019) and may not 

capture the underlying processes well. Thus, several authors advocated the identification of a 

“behavioral” parameter population in TSMs via identifiability analysis (i.e. parameter sets 

satisfying certain performance thresholds) since this is a preferable and more informative outcome 

than a singular best: set of parameter values (Beven, 2001; Kelleher et al., 2019; Wagener et. al., 

2002; Wagener et al., 2002; Ward et al., 2017, 2018; Wlostowski et al., 2013). 

The “identifiability” term is used to indicate how certain a parameter is in a model application. If 

a good model performance oceurs in only a relatively narrow parameter interval compared to the 

distribution of its possible values, then the parameter can be considered identifiable. On the 

contrary, if a good model performance is distributed across a relatively large parameter interval 

compared to the distribution of its possible values, then the parameter can be considered non- 

identifiable (Ward et al., 2017). In studies where the identifiability of TSM parameters has been 

investigated via random sampling approaches, o and Ars have proved to be rarely identifiable 

(Kelleber et al., 2013; Ward et al., 2013, 2017). 

We obtained TSM parameters and their identifiability via a novel iterative modeling approach that 

combines random sampling with global identifiability analysis and dynamic identifiability analysis 

(Bonanno et al., 2022). The used iterative modeling approach requires a certain number of 

parameter sets and the corresponding model performance when compared to the observed BTC. 

By “parameter set” we refer to a specific combination of v, A, D, o, and Ars parameter values, 

while by “parameter space” we refer to the range of a parameter between the selected lower and 

the upper bounds in the random parameter sampling. Model performance was evaluated with the 

Root Mean Squared Error objective function (RMSE) commonly used in solute-transport studies 

(Liao et al., 2013; Ward, Payn, et al., 2013; Ward, Schmadel, et al., 2017: Wlostowski et al., 2017). 

We selected RMSE because it allows consistency between the dynamic identifiability analysis and 

global identifiability analysis used in the iterative modeling approach (Wagener et al., 2002; 

Bonanno et al., 2022). Global identifiability analysis addresses the identifiability of the TSM 

parameters using as model performances the RMSE evaluated on the entire BTC, while the 

dynamic identißability analysis addresses the identifiabilitv of the TSM parameters over time, 

meaning that identifiability is studied along a moving window over the BTC (Wagener et al., 2002). 

Global identifiable parameters satisfy the following criteria (Ward et al., 2017; Kelleher et al., 2019; 

Bonanno et al., 2022): (1) univocal peak of performance in parameter vs objective function plots; 

(i) cumulative distribution function (CDF) corresponding to the best 0.1% of the model results 

deviating from the 1:1 line and from parameter CDF corresponding to the best 10% of the model 

results; (li) the two-sample Kolmogorov-Smirnov (K-S) test indicating a statistically relevant 

difference in the CDF corresponding to the bets 0.1 and 10% results (p < 0.05): 

[K,p] = max|F(Pg.1) — F(Pıo)| Eq. 2 

Where F(P;;) and F{P;s) are the eumulative distribution function of a parameter P respectively 

for the best 0.1% and the best 10% of the model results. Dynamic identifiability analysis indicates 

the 90% confidence interval of a parameter compared to the considered parameter space over 
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different sections ofthe BTC. The evaluation ofone minus the width of the 90% confidence interval 

over the entire parameter range indicates the “information content” of a certain parameter over 

the BTC. Information content values close to 1 indicate stronger parameter identifiability in that 

IA section of the BTC compared to lower information content values (Wagener et al., 

02; Wagener et al., 2002; Bonanno et al., 2022). 

Our approach is iterative, meaning that a successive TSM iteration depends on the results of the 

identifiability analysis of the previous iteration. This is similar to previous studies that used a 

random sampling approach combined with behavioral thresholds (Kelleher et al., 2013; Ward, 

Kelleher, et al., 2017). For each iteration, we randomly sample 35,000 parameter sets via Latin 

Hypercube sampling. This number of parameter sets was chosen because 35,000 parameter sets 

were proven to have always less than 2% error in the mean and standard deviation of the top 10% 

results compared to 115,000 parameter sets, when the identifiability conditions are met (Bonanno 

et al., 2022). The first TSM iteration evaluated the TSM performance over a relatively large 

parameter space initially defined by literature valnes and the result ofthe best-ftting ADE against 

the observed BTC (Table 3.1, Bonanno et al., 2022). The following iterations rely on a constrained 

parameter space depending on the best-performing upper and lower bound obtained by the results 

of the global and dynamic identifiability analysis. The dynamic identifiability analysis is used to 

provide information for redueing the upper or lower bound for a and Ars since it. indicates the 

parameter limits with high identifiability (information content > 0.66) on the BTC tail (Bonanno 

et al., 2022). 

We finalized the iterative modeling procedure once all model parameters (v, A, D, a, and Ars) 

satisfied the global identifiability conditions defined above in their selected parameter space. We 

repeated the sampling of 35,000 parameter sets over the parameter space that indicated parameter 

identifiability until we obtained at least 1,000 parameter sets that perforın better than the ADE 

(RMSE < RMSEipr). This was done to: (i) obtain a statistically relevant number of parameter 

sets with satisfactory model performances; and (ii) only TSM parameter sets with RMSE < 

RMSEsos should be used for the interpretation of model results (Bonanno et al., 2022). The 

successive analysis of the transient storage process and transport metrics were condueted only on 

the behavioral parameter sets (RMSE < RMSEasn:). 

After every model iteration, we evaluated the mean and standard deviation of the top 10% RMSE 

for all the modeling results and behavioral parameter sets only. This is because the top 10% of the 

results are often used as a behavioral threshold in several studies addressing the identifiability of 

TSM parameters (Kelleher et al., 2019; Wagener et al., 2002; Ward, Kelleher, et al., 2017). 

Following Pianosi et al. (2015) and Bonanno et al. (2022), we interpreted a decrease in the mean 

and standard deviation of RMSE with an increasing number of TSM iterations as an increase in 

model identifiability. On the contrary, the constant mean and standard deviation of RMSE with 

an increasing number of iterations have been interpreted as the model is unable to increase TSM 

performances with increasing 'TSM iterations. 
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We here compared our results to the more traditional inverse modeling approach, OTIS-P. OTIS- 

P uses a non-linear regression scheme to minimize the residual sum of squares between the modeled 

BTC and the observed BTC and returns the 95% confidence interval for the estimated TSM 

parameters. Following Runkel (1998), we carried out multiple OTIS-P iterations starting from 

different initial parameter values (A = Aapg, D = Dappand @ = Ars = 0.1; &= Ars = 0.01; o = 

Ars = 0.001, where ADE subscript indicates the best-fitting model parameter obtained after the 

BTC fitting using the advection-dispersion equation; see Bonanno et al., 2022). This was done to 

avoid false model convergence to a local minimum. We applied OTIS-P in consecutive steps, setting 

the results obtained from the previous modeling output as starting parameter values of the 

successive software application. We finalized the use of OTIS-P when parameter values changed 

less than 0.1% between subsequent runs (Ward, Kelleher, et al., 2017). When OTIS-P was not able 

to converge to a unique set of parameter values or indicated convergence errors, we discarded its 

results. 

Table 3.3. List of calibration parameters and used initial ranges for the first iteration of the random sampling 

of TSM parameters. The subscript ADE indicates the best-fitting model parameter obtained after the BTC 

fitting using the advection-dispersion equation 

  

Abbrev. Parameter Lower bound | Upper bound 

v [m/s] Flow velocity 0.5vane 2VapE 

A [m?] Advective channel cross-sectional area | 0.5 Aaoe 2 Aue 

D [m?/s] Longitudinal dispersion coefficient 10 2 Daor 

a |[1/s] Transient storage exchange rate 10° 0.1 

Ars [m?] Transient storage cross-sectional area | 10° 1 

3.4.7 Metrics characterizing solute transport in stream 

We computed several metrics from the best-performing parameter sets (RMSE < RMSEapg) related 

to solute transport and storage in the study reach. The average distance a molecule needs to travel 

in the stream channel before entering the transient storage zone L; [L] (Mulholland et al., 1997) is: 

v 
LS = E Eq.3 

The average residence time of a tracer molecule in the transient storage zone (RT, [T]) and the 

average time a tracer molecule remains in the stream channel before passing into the storage zone 

(RTo [T]) were evaluated (Thackston and Schnelle, 1970, Runkel, 2002): 

RTg == Eq.4 

RTg = 218 Eq.5 

We obtained the total water flux exchanged between the stream channel and the storage zone by 

multiplying the average water flux through the storage zone per unit length of the stream channel 

by the reach length L (q; [L’/T], modified from Harvey et al., 1996): 

qgs=a-A-L Eq.6 
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We evaluated the hydrological retention factor (Ry [T/L]), which is a useful metric to compare 

transient storage among reaches and under different discharges, since it quantifies the storage zone 

residence time of water per unit of stream reach traveled (Morrice et al., 1997): 

ATS Ry =— Eq.7 H= 1 

We evaluated Fur -]| which incorporates the role of advective transport and transient storage 

processes (Runkel, 2002): 

X 
I A 

Fuep = (1 - e( ”))—TS Eq.8 
ArstA 

Fuep indicates the relative influence of transient storage on the median transport time of solute 

along a reach, thus increasing values of Furn have to be interpreted as relatively larger importance 

of the transient storage processes on the solute transport. 

From the measured water depth in the stream channel and other streambed characteristics we 

evaluated the Darcy-Weisbach friction factor (f Fl), which has been related to streambed 

complexity and in-stream transient storage zones (Thackston and Schnelle, 1970; Bencala and 

Walters, 1983; Hart et al., 1999): 

8g-d-S 

v2 
f = Eq.9 

Where g [L/T?] is the gravitational constant, S [L/L] is the slope of the energy grade line estimated 

from the stream channel slope (Zarnetske et al., 2007), d [L] is the average water depth measured 

in the stream channel. 

We evaluated Manning’s roughness coefficient n F] to evaluate if an increase in transient storage 

area could be linked to an increase of friction with in-stream sediments due to a larger contact area 

with the streambed fractured slate: 

  
2 ı 

n- &% Eq.10 
% 

3.5 Results 

3.5.1 Transient storage model parameters and their identifiability 

The iterative modeling approach was effective in identifying the model parameter for the 31 tracer 

experiments regardless of the hydrologie conditions (Figure 3.2). The best-fitting parameter sets 

obtained at the end of the TSM iterations outperformed results from OTIS-P for 20 of the 31 

experiments (Appendix F). OTIS-P also proved ineffective in calibrating the TSM parameters for 

four tracer experiments, due to convergence errors in the inverse modeling scheme. 
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Figure 3.2. Results of the iterative modeling approach are reported as parameter values plotted against 

the corresponding RMSE values. Black and red dots indicate parameter sets and corresponding model 

performances with lower (black) and higher (red) performance than the ADE. Green dots indicate 

calibration results via OTIS-P and the grey arcas indicate the corresponding 95% parameter confidence 

limits. The blue triangles indicate the best-performing parameter set obtained via the iterative modeling 

approach. The horizontal red line indicates the adopted behavioral threshold (RMSEyAn«). Results are 

reported for five different experiments with higher values of discharge: E30 = 2.8 1/s; E04 = 3.8 1/s; 

E06 = 7.9 1/s; E10 = 15.9 1/s; E14 = 28.6 1/s. 

The distribution of the model errors for the top 10% of model results with RMSE < RMSEınr 

indicates that higher discharge during an experiment is linked to a better performance of the TSM 

compared to experiments with lower discharge (boxplots, Figure 3.3). This is observable in the 

results from the iterative modeling approach and OTIS-P (blue triangles and green dots in Figure 

3.3). The difference in performance between the TSM results and the RMSEior is smaller for 

experiments with higher discharge compared to experiments with low discharge (red squares, Figure 

3.3). Our results also show that after four or five TSM iterations the mean and standard deviation 

of the model errors for the top 10% of model results and for the top 10% of model results with 

RMSE < RMSEıpr are constant with the increasing number of iterations (Figure 3.4). This 

outeome shows that the high number of iterations only matters for obtaining the best-fitting 

parameter sets (red dots in Figure 3.2; blue triangles in Figures 3.2 and 3.3) but does not control 

the distribution of the behavioral parameter sets. This is because model performances for the top 

10% of model outceomes converge toward unique values after a few TSM iterations and do not 

decrease considerably with the number of iterations (Figure 3.4). 

Our iterative modeling approach also shows that under low discharge there is a sharp decrease in 

model errors with the number of TSM iterations, and that the behavioral threshold of obtaining at 

least 1000 parameter sets with RMSE< RMSE\pr is satisfied after a few iterations (< 10 iterations, 

blue lines Figure 3.4). On the contrary, under higher discharge, the iterative modeling approach 

shows a smoother decrease of model performances with the increasing number of model iterations, 
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and the behavioral threshold of obtaining at least 1000 parameter sets with RMSE < RMSEıne is 

satisfied only after a large number of iterations (> 10 iterations, red lines Figure 3.4). 
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Figure 3.3. Left y-axis: Boxplot of the distributions of model error for the 10% best-performing parameter 

sets (RMSE < RMSEsD:). Blue triangles and green dots indicate model performances obtained via the 

iterative modeling approach and OTIS-P respectively. The bottom x-axis reports the ID code of the 

tracer experiments, while the upper x-axis indicates the corresponding discharge conditions [l/s]. Right 

y-axis: the red squares indicate the difference between RMSEınz and the RMSE of the best-performing 

parameter sets via the iterative modeling approach. Red crosses on the bottom x-axis indicated 

ineffeetive application of OTIS-P (false convergence). 
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Figure 3.4. Dependency of (a) mean and (b) standard deviation of model error for the top 10% of the 

modeling results on the number of TSM iterations. Results have been shown for three experiments (E30 

= 2.78 1/s; E12 = 4.88 1/s; E08 = 16.97 1/s). Each TSM iteration includes model performances for 35,000 

parameter sets. An increase in TSM iterations has to be interpreted as an increase in the total number 

of parameter sets considered for the evaluation of mean and standard deviation of RMSE values (e.g. 

10 TSM iterations include model results for 350,000 parameter sets). 
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Figure 3.5. Contraction and extension of the size of the hyporheic zone exemplified for two experiments 

with (a) 75.0 l/s (E16) and (b) 0.4 1/s (E20). Colors of (a) and (b) indicate the groundwater flow 

direction normalized with the respect to the direction of the stream channel on the xy plane (flow 

direction of 00 equal to -720 on the xy plane). Green areas indicate groundwater flow direction flowing 

parallel to the stream channel; blue areas indicate groundwater pointing away from the stream channel]; 

red areas indicate groundwater pointing toward the stream channel; dashed yellow areas indicate area 

of the hyporheie zone receiving stream water, while dashed blue areas indicate the area od the hyporheic 

zone returning water to the stream channel. The black line indicates the perimeter of the maximum size 

of the hyporheic zone conditional to the well network. (c) Orange dots, dependency of the evaluated 

size of the hyporheie zone with discharge. The subplot (green dots) reports the dependency of the 

percentage of the near-stream groundwater area pointing away and returning to the stream channel 

with discharge. (d) Dependency of the evaluated volume of the hyporheie zone with discharge. 
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Figure 3.6. Evaluation of (a) hydraulic radius Hr, (b) Darcy-Weisbach friction factor f, (c) Manning’s 

roughness coefficient n, and percentage of the stream reach where the (d) hydraulic radius or the (e) 

stream water level was higher than the 5-percentile, average, 95-percentile and maximum height of the 

slate fragment that makes up the streambed against discharge for the 31 tracer experiments. Horizontal 

black lines indicate the 5- and 95-percentile limits of discharge for the top 10% TSM results with RMSE 

< RMSEuor. Vertical black lines indicate the 5 and 95 percentile limits of Hr, f, and n evaluated for 

the total LIDAR transects. 

3.9.3 How does transient storage change between experiments? 

Results from the iterative modeling approach show that advection-dispersion parameters increase 

with discharge (Figure 3.7a, c, e). The increase of v with discharge follows a linear and quadratic 

function (R? = 0.967, R? = 0.968, respectively; p-value < 0.01), the increase of A and D with 

discharge follows a quadratic function (R’ = 0.807 and R? = 0.862, for A and D respectively; p- 

value < 0.01). The TSM parameters also increase with discharge. & (Figure 3.7b) follows a linear 
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(R? of 0.872, p-value < 0.01) and a quadratie fitting function (R? = 0.94, p-value < 0.01) and Ars 

(Figure 3.74) show high variability (R? < 0.377 for a quadratic and linear fit despite the statistical 

relevance (p-value < 0.01). For discharge stages lower than 4.9 1/s the Ars parameter is poorly 

correlated to discharge (R? = 0.005, p-value > 0.9 on 16 experiments), while for values above 4.9 

1/s Ars parameter linearly and significantly increases with discharge (R’ = 0.88, p-value < 0.01 on 

15 experiments). The correlation of Ars with discharge results in a similar behavior of Ars/A (Figure 

3.7). The ratio Ars/A shows a sharp decrease with discharge for values lower than - 4 1/s (linear 

R? = 0.796, p-value < 0.01), no clear pattern for values between - 4 and - 5 1/s (scattering around 

the median value of 0.161, R? = 0.007, p-value = 0.82), and significantly increases with discharge 

for values above - 5 1/s (R’ = 0.552, p-value < 0.01). 
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Figure 3.7. TSM parame 

flow veloeity, (c) advec! 

; in relation to discharge during the experiments. Plots are reported for (a) 

  

   > channel cross-sectional area, (e) longitudinal dispersion coefficient, (b) 

  

    
transient storage exchange rate, (d) trans: storage cross-sectional area, and (f) ratio between transient 

  

storage cross-sectional area and advective channel cro tional area. Dots show the best parameter 

  

set, obtained from the iterative modeling approach. Vertical and horizontal black lines indicate 5 and 95 

percentile limits of the top 10% results with RMSE < RMSEıor. Gradient colors indicate the percentage 

of the near-stream groundwater area pointing away from the stream channel (cfr. Figure 3.5). 
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Figure 3.8. Same as Figure 3.7, but reporting (a) the average distance a water molecule needs to travel 

in the stream channel before entering the transient storage zone, (b) the fraction of median travel time 

due to transient storage, (c) the hydrological retention factor, (d) the total water flux exchanged between 

the stream channel and the storage zone, (e) the average residence time of a tracer molecule in the 

stream channel, and (f) in the transient storage zone transport metrics as a function of discharge. 

The transport metries show different patterns against discharge (Figure 3,8). The average distance 

a molecule traveled downstream the main channel before entering the storage zone (Ls) shows a 

linear decrease with discharge (R? = 0.139, p-value = 0.04, Figure 3.8a). The Fyrp metrie shows 

high variability (R? = 0.236 for a linear fit) despite the statistical significance (p-value < 0.01, 

Figure 3.8b). The hydrologie retention factor (Rı) decreases with increasing discharge (Figure 3.8c) 

following an exponential decrease function (R’ = 0.71, p-value < 0.001). The total water flux 

exchanged between the stream channel and the storage zone (q;) increases with discharge and was 

well approximated by both a linear and a cubie function (R > 0.894 and p-value < 0.01, Figure 

3.8d). The average residence time in the stream channel (RTo) and the transient storage zone 

(RTs) are negatively correlated with discharge (Figure 3.8e, f). The decrease of RTy with Q can be 

approximated by both linear (R? = 0.284), quadratic (R? = 0.451), and exponential (R? = 0.541) 
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decrease (p-value < 0.001). However, the decrease of RTs with discharge is satistactorily simulated 

(p-value < 0.01) by exponential decrease only (R’ = 0.471). 

3.6 Discussion 

3.6.1 Parameter identifiability in the Transient Storage Model depends on discharge 

during the tracer experiments 

When TSM parameters are non-identifiable they are interdependent and a change of a certain 

parameter would be balanced by a proportional change of other parameters, eventually leading to 

the same model performances (Camacho & Gonzälez, 2008; Kelleher et al., 2019; Wagener et al., 

2002; Wlostowski et al., 2013). Our results indicate that the interdependency of TSM parameters 

increases with higher discharge during the experiment. This is visible from the less pronounced 

peak of performances of v, A, and D (red dots, Figure 3.2) and the limited increase of TSM 

performance compared to ADE performance with higher discharge (red squares, Figure 3.3). Also, 

the space of the advection-dispersion parameters showing satisfactory model performances (RMSE 

< RMSEson) increased with the discharge (Figure 3.2) resulting in a larger 5- and 95-percentile 

Iimits of the top 10% TSM results compared to experiments with low discharge, where advection- 

dispersion parameters showed a rather narrow peak of performances (Figure 3.2; black lines, Figure 

3.7). These results corroborate the interpretation that greater parameter interactions cause poorer 

parameter identifiability and model performances (Kelleher et al., 2013; Ward, Payn, et al., 2013). 

As addition to the existent body of literature, our outcomes also show the predominant role ofthe 

advection-dispersion process on the BTC under hish discharge stages that hampers the 

identification of a clear peak in model performance, due to the proportionally greater importance 

ofv, A, and Din controlling the BTC compared to lower discharge. 

Compared to previous studies, our study shows that the difference between RMSEınz and RMSE 

obtained via the iterative modeling approach decreases with discharge (red dots, Figure 3.3). This 

result means that the advection-dispersion pararmeters explain largely the shape of BTC during 

high discharge and that the transient storage process added to the advection-dispersion equation 

contributes to a modest improvement of model performances compared to the ADE. No previous 

study direct!y addressed the identifiability of TSM parameters for a set of tracer experiments across 

a wide range of discharges. Our results are consistent with studies that reported that: the advection- 

dispersion process becomes predominant over the transient storage processes during higher 

discharge. For example, Wagner and Harvey (1997) were the first to point toward the role of the 

advection-dispersion process for the identifiability of the transient storage parameters while 

Kelleher et al., (2013) and Bonanno et al., (2022) demonstrated advection-dispersion parameters 

control progressively larger portions of the BTC under higher discharge, while transient-storage 

parameters control progressively larger portions of the BTC under lower discharge. 

Our results offer an explanation on why the identifiability analysis in previous studies was 

sometimes effective and sometimes ineffective for achieving parameter identifiability for TSMs. We 

believe that the advection-dispersion process was not predonyinant at study sites with relatively 

low discharge meaning that & and Ars were explanatory of large portions of the BTC. As a result 
3y 

105



the TSM improved substantially performances compared to ADE due to the pronounced tail of the 

BTC, and the identifiability of TSM parameters was achieved via two iterative random sampling 

for a total of 100,000 parameter sets (Ward et al., 2018; first BTC in Ward, Kelleher, et al., 2017). 

On the other hand, headwater reaches characterized by steep channel gradients and relatively short, 

investigated reaches indicated non-identifiability of TSM parameters (Kelleher et al., 2013: Ward, 

Payn, et al., 2013; second and third BTCs in Ward, Kelleher, et al., 2017). This is probably because 

the advection-dispersion process at these studv sites dominated the tracer transport and the 

investigated parameter space and/or the used number of parameter sets (often < 100,000) did not 

allow to target RMSE < RMSEsnz for a sufficient number of parameter sets to show identifiability. 

The iterative modeling approach used in this work can also demonstrate that selecting a narrow 

(< two orders of magnitude) parameter interval in a random-sampling approach can cause an 

“apparent” non-identihability in TSM. If we had sampled a parameter from a narrow space around 

the peak of performance (e.g. & between 0.001 and 0.003 1/s, E06, results not shown), the 

identifiability analysis results would lead us to the conclusion that the parameter was non- 

identifiable. However, this same interval shows optimal performances when a wider parameter space 

is sampled (Figure 3.2). This can explain why previous studies investigating a narrow range of 

TSM parameters have never achieved parameters identifiability (Wagener et al., 2002; Camacho 

& Gonzälez, 2008; Wlostowski et al., 2013) preciselv because a narrow parameter space does not 

allow for a clear increase of ınodel performances. This, in turn, would “hide” the identifiability of 

a parameter, especially when not enough parameter sets are sampled (< 100,000, Ward et al., 2017: 

Bonanno et al., 2022). We here proved that the iterative modeling approach introduced by Bonanno 

et al (2022) can address model performances and parameter identifiability regardless of the 

discharge during the tracer experiment and over a parameter space spanning several orders of 

magnitudes, which is in agreement with recent recommendations for identifiability analysis (Pianosi 

et al., 2016) and previous work (Kelleher et al., 2019; Ward, Payn, et al., 2013: Kelleher et al., 

2013; Ward, Kelleher, et al., 2017). 

Our OTIS-P simulations showed good model performance, as the calibrated TSM parameters were 

in the same parameter space as the results ofthe iterative modeling approach (Appendix F, Figure 

3.2). However, the best-fitting parameter sets obtained from our iterative modeling approach 

ontperformed the OTIS-P results for most tracer experiments and allowed us to obtain 

identifiability of TSM parameters even for those BTCs where the OTIS-P failed to converge. The 

performances of OTIS-P and the iterative modeling approach used in this study are certainly typical 

of the study site. Future research is needed to apply the used iterative modeling approach in other 

stream reaches as well, since tracer experiments conducted in different geomorphological settings 

proved to have a strong influence on the shape of the BTC and TSM performances (D’Angelo et 

al., 1993; Edwardson et al., 2003; Hall et al., 2002, Zarnetske et al., 2007). Furthermore, the 

obtained identifiability of model parameters could be controlled by the simplistic formulation of 

the model, which characterizes transient storage as a single storage area with a solute residence 

time that follows an exponential decay. Future work is needed to test this iterative modeling 

approach using numerical nodifications of TSM that would increase the number of TSM 
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parameters, thus their interaction and non-identifiability (Knapp & Kelleher, 2020). Among the 

diverse TSM formulations aiming for a more realistic description of solute transport in streams, the 

used iterative modeling approach should be used in TSMs with multiple transient storage areas 

(Choi et al., 2000; Fabian et al., 2011), in TSMs with different residence time distribution laws 

(Bottacin-Busolin & Marion, 2010; Gooseff et al., 2005; Haggerty et al., 2002), or for BTCs of non- 

conservative solutes (Kelleher et al., 2019). 

3.6.2 Dynamics of transient storage processes under different hydrologic conditions 

The significant correlations between vand A and discharge are not surprising in TSM and it has 

been observed in previous work (Hall et al., 2002; Hart et al., 1999; Schmid et al., 2010). The higher 

longitudinal dispersion coefficients D in experiments with higher discharge are also in line with the 

TSM formulation and with the observed increase of the Reynolds number with discharge (between 

2.99- 10° and 2.22- 10°, linear and quadratic function fit with R > 0.99, p-value < 0.01, plots not 

shown). D is responsible for the longitudinal spreading of the tracer above and behind the center 

of the solute pulse, thus it is expected to increase with increasing streambed roushness and channel 

complexity (Gooseff, Bencala, et al., 2008). 

The trend ofthe Ars/A ratio for discharge below - 5 1/s (Figure 3.70), together with the high values 

of the hydrologic retention factor Ry (> 1 s/m Figure 3.80), FMED (> 0.1, Figure 3.8b), and the 

negative correlation of RTs and RTo with discharge (Figure 3.8e, f) suggest a non-negligible 

contribution of hyporheic exchange to transient storage for experiments with low discharge (< 5 

\/s) compared to experiments with higher discharge. This interpretation is supported by the large 

potential size of the hyporheie zone assessed through groundwater measurements (Figure 3.5c) and 

by the increasing volume of the hyporheic zone volume for discharge lower than 5 1/s (Figure 3.5d). 

This is consistent with previous studies where gradients from the stream channel toward the 

adjacent groundwater have been linked to hyporheie transport (Gonzälez-Pinzön et al., 2015; 

Harvey & Bencala, 1993; Kasahara & Wondzell, 2003). However, our findings also indicate a 

significant role of in-stream transient storage during low discharge (< 5 1/s). This can be deduced 

from the high values of the frietion factor fand the roughness coefficient n obtained for experiments 

with low discharge and the fact that the hydraulic radius Hz was at its ıninimum at Q = 5.1 1/8. 

These results indicate that the wetted perimeter increases more than the wet stream area for higher 

discharge between 0.41 and 5.1 l/s. This in turn causes a greater proportion of the streambed 

material to be submerged, but not completely (Figure 3.6d, e). This partial submergence of larger 

areas of the streambed material causes the development of secondary flowpaths among the slate 

fragments and turbulences in the shaded area immediately downstream causing an increase in the 

in-stream transient storage. Our results show that transient storage during experiments under low 

discharge at the study site (Q < 5 1/s) cannot be explained by hyporheic exchange or in-stream 

transient storage alone, but as a combination of both. 

Higher discharge at the study site is characterized by an increase in gradients from the adjacent 

groundwater toward the stream channel, indicating hillslope-stream connectivity on the west and 

the east hillslopes (Bonanno et al., 2021). This is consistent with our results indicating a decrease 

of the size of the groundwater area and volume receiving water from the stream channel (Figure 
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2/ 3.4c, d) for experiments with discharge higher than 5 1/s. These results show that the hyporheic 

exchange decreases with higher discharge suggesting that transient storage is mainly controlled bv 

in-stream transient storage. However, the observed hish percentage of slate fragments in the stream 

channel that are entirely submerged below the water table with higher discharge (Figure 3.6d, e) 

indicates that the secondary flowpaths and shadow zones controlling in-stream transient storage at 

lower discharge are now part of the advective stream channel. Also, the observed trend of the 

hydraulic radius with discharge shows that the wet area increases more than the wet perimeter for 

discharge higher than 5 \/s (Figure 3.6a-c). These results provide additional evidence that also in- 

stream transient storage becormes less important: for solute transport with higher discharge at the 

study site. 

The reduction of the groundwater area receiving water from the stream channel and the inelusion 

of the streambed slate fragments into the advective stream channel show that higher discharge has 

a lower potential for both hyporheie and dead-zones transient storage compared to lower discharge. 

However, the decrease of the roughness n and frietion factor f (Figure 3.6b, c) indicate that the 

transient storage at the studv site for higher discharge is controlled by increasing spatial 

heterogeneities of the velocity gradients in the water column mostly due to the increasing wetted 

area (Figure 3.7c) and the increasing shear velocity u” on the streambed (1™ x gdS, as in Eq. 9, 

see Fisher et al., 1979). This interpretation is also in line with the simulated rapid hydrologie 

exchange a (Figure 3.7b) causing a solute retention time in the transient storage zone no longer 

than a few seconds (Figure 3.8f). This outcome is consistent with research at other sites 

characterized by low hyporheic exchange, where higher discharge during tracer experiments resulted 

in relatively lower in-stream transient storage compared to lower discharge (Marti et al., 1997: 

Zarnetske et al., 2011), due to a proportionally larger impact of advection-dispersion and due to a 

lower contact area with the streamberd (Gooseff, Payn, et al., 2008; Jackson et al., 2013). 

Compared to the extension of the hyporheic zone area and volume (Figure 3.4c, d), the deduced 

order of magnitude of Ars and gs (Figure 3.7d, 3.8d) indicates that we were likely unable to capture 

longer Dowpaths and residence time of the stream water into large areas of the hyporheic zone as 

evaluated via the groundwater measurements. Instantaneous injections are capable of returning 

model information comparable to that of continuous injections for conservative tracers (Gooseff, 

Payn, et al., 2008; Payn et al., 2008). However, they are also limited by the available "window of 

detection”, which is biased towards faster transient storage processes and shallow hyporheic 

exchange (Harvey & Wagner, 2000; Jun & Ward, 2005; Wondzell, 2006). As a result, we only 

caleulated an Ars below 0.1 m” and a tracer residence time in the transient storage zone below 10° 

s (Figure 3.8), despite the large size of the inferred hyporheie zone when discharge was low (Figure 

3.4). The obtained TSM metrics are biased toward shorter residence times and shallow hyporheie 

exchange and are thus unable to capture the full spectrum of available flowpaths at the investigated 

discharge. The direct observation of groundwater levels from the monitoring well network provided 

valuable support to bypass the “window of detection” issue typical of tracer experiments. IF we 

would have based our model result on TSM parameters alone we would probably have ruled out 
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the presence of a hyporheie zone always lower than 0.1 m?, whereas the groundwater measurement 

revealed a size of the groundwater area receiving water from the stream of several m”. 

The interpretation of modeling results in tracer studies lacks the combination of data on near- 

stream groundwater gradients and streambed micro-topography. In addition to the state of the art, 

our results provide novel insishts into the role of the in-stream transient storage generated through 

streambed miero-topography and of the extension of the hyporheic zone generated through varying 

near-stream groundwater table. Basing process interpretation on TSM results alone, would have 

resulted in different conclusions. As an example, the observed increase of exchange rate a with 

discharge could have been interpreted as an increase of turbulence and eddies in the stream channel 

(D’Angelo et al., 1993; Elliott & Brooks, 1997; Zametske et al., 2007), but also as a higher 

contribution of the hyporheic flow (Schmid et al., 2010). Conversely, the observed increase of 

transient storage area Ars with discharge could have been interpreted as both a larger size of the 

hyporheic zone (Dudley-Southern & Binley, 2015; Heeren et al., 2014), and an increase of in-stream 

transient storage due to an increase of in-stream dead-zones (Gooseff, Bencala, et al., 2008). 

Eventually, the trend of Ars/A ratio with discharge could have been explained as the surface water 

interacts more with the streambed sediments (Marti et al., 1997), but also with the hyporheie zone 

(Butturini & Sabater, 1999) under lower discharge. 

Our study is the first study to our knowledge that is addressing the concurrence of different 

processes controlling the transient storage via the use of TSM parameters, the near-stream 

groundwater levels, and the streambed micro-topography under several hydrologie conditions. We 

recogmize that the adopted strategy is not without criticism. As an example, the groundwater 

monitoring well network is not designed to capture pressure gradients at the surface water- 

streambed interface that is recognized to be a non-negligible source of hyporheic flowpaths with 

increasing burbulence and discharge (Cardenas & Wilson, 2007; Packman & Bencala, 2000). In 

addition, the LIDAR scans might not be representative of the streambed micro-topography and 

slate distribution above the talweg across the relatively long investigated period (from December 

2018 to June 2021) and more scans could have provided more robust results. Despite some 

limitations, our approach bypassed the “window of detection” problem typical of tracer injections 

and assessed the dynamic role of hyporheie exchange and in-stream transient storage on water 

transport, across the hydrologic year. 

3.7 Conclusion 

Answering how and why transient storage processes change with different hydroloeie conditions 

can bring a comprehensive assessment of their spatial and temporal role in regulating water quality 

in streain networks. In this study, we used an iterative modeling approach to obtain identifiability 

for the parameters of the transient storage model for 31 tracer breakthrough experiments at 

different discharges in a headwater stream reach. We combined the model results, groundwater 

table observations, and measurements of strearmbed micro-topography to support the interpretation 

of different processes concurring with the transient storage of streamwater through a wide range of 

hydrological conditions. Our work showed that the parameter space where advection-dispersion 

parameters were identifiable was wider under higher discharge, thus increasing the parameter 

109



interaction in the TSM. Our outcomes can thus explain the lack of parameter identifiability in 

several previous 'TSM studies and open up new challenges to address parameter identifiability in 

other model formulations implemented with many transient storage areas or with different residence 

time distributions. The introduction of the streambed micro-topography and groundwater table 

measurement provided valuable data for interpreting the TSM parameters and the transport 

metrics describing solute transport at the study site. Our model results showed that hyporheie 

exchange and in-stream transient storage control the transient storage of stream water during low 

discharge. Under higher discharge, the hyporheic zone and the in-stream dead zone become 

progressively less important in controlling transient storage, which is rather driven by eddies and 

turbulences in the stream water column. Because of the obtained clear trends between TSM 

parameters and discharge, our results also suggest that it could be possible to prediet TSM 

parameters and the underlying processes at the study site prior to tracer experiments. Future work 

should combine tracer injections with streambed micro-topography and groundwater measurements 

in stream reaches characterized by different morphologies and hydrologie regimes. The combination 

of derived patterns between discharge, byporheic area, stream water elevation, and streambed 

microtopography in several study sites would be key for understanding the spatial and temporal 

variation of transient storage processes in stream networks and across scales. 
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Rivers have always attracted me. The charm is perhaps in their continuous passing while 

remaining unchanged, in their leaving while remaining, in their being a sort of physical 

representation of history, which is, as it passes. Rivers are History. 

— Tiziano Terzani, Buonanotte, signor Lenin







While the iterative modelling approach proved to be effective in obtaining identifiable model 

parameters in Chapters 2 and 3, its efficacy depends on the specific objective function used (root 

inean squared error, RMSE) and on the specifie residence time distribution (RTD) used to simulate 

water retention in the stream corridor. Otber objective functions such as normalized RMSE 

(Kelleher et al., 2019), Nash-Sutcliff effieieney (Fabian et al., 2011), or log-RMSE (Ward et al,, 

2017) could have returned different interpretations of the model outeomes and the identifiability of 

the parameters. Also, the choice of the exponential RTD might be inadequate to simulate long- 

term residence time in the stream corridor, which could be better simulated by a power-law 

(Haggerty et al., 2002) or a log-normal RTD (Wörman et al., 2002). The iterative modelling analysis 

introduced in Chapter 2 should be generalized and applied to other model formulations, where the 

increasing number of parameters can cause higher parameter interaction and non-identihability, as 

well as enhance physical realism. 

Hydrological models in stream hydrology are an essential tool for understanding the spread of 

solutes and pollutants in river networks. The iterative modelling approach presented in this thesis 

can be used to improve awareness of the transient storage of these substances in the stream channel 

and in the adjacent groundwater. This approach can also be applied in other hydrological models 

seeking a stronger physical realism, but influenced by the curse of dimensionalitv derived from an 

increase in the number of parameters. Also, this thesis improves the understanding of the drivers 

controlling streamwater-groundwater exchange via the use of spatial-dense and high-frequency 

measurements. The present work highlights the role of both morphologie and bydrologie drivers on 

the stream corridor, and their dynamic role in near-stream water flow direction across the 

hydrologie year. The results reported in this thesis are useful for interpreting the non-identifiability 

in past studies and for enhancing the understanding of the physical processes controlling water 

movement in the stream corridor. 
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Appendix A 

ERT measurement 
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Figure Al. (a) Location of the electrical resistivity tomography (ERT) transeets and position of the 

wells (red dots) and (b) resistivity of the ERT transect P2 with the indication of regolith interfaces by 

the use of the maximum resistivity change following Gourdol et al. (2021). 
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Electrical resistivity tomography (ERT) measurements have been carried out along eight transects 

in the stream corridor and on the adjacent footslopes (Figure Ala, blue lines) that allowed to 

identify the subsurface structure. ERT measurements were carried on following the protocol of 

Gourdol et al. (2021) using an IRIS Instruments resistivity meter (Syscal Pro 120, ten-channel) 

with multicore cables equipped with 120 stainless steel rod electrodes using 50 em spacing 

increments and obtained the precise location of every electrode using a Trimble DR3300 Total 

station. The subsurface regolith interfaces were assumed to be located at the maximum change in 

the resistivity in space (Figure Alb). 

  
Figure A2. Visual determination of the interface between subsolum and solum in the riparian wetland 

by the use of a hand-drilling probe. 

In-situ inspections and a hand-drilling campaign have been carried out to determine subsurface 

layers in the riparian zone. The interface between solum and subsolum has been derived by visual 

inspections (brown vs grey texture, indicating intermittent saturation for the solum and an almost 

persistent saturation in the subsolum, Figure A2) of drill cores. Subsolum was identified by hand 

drilling and is characterized by an increase of tangential resistance during drilling due to the higher 

presence of rock fragments compared to solum. The interface between subsolum and fractured 

bedrock has been assigned to a depth where hand-drilling was not able to proceed. 
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Figure A3. Map of the Weierbach catchment. The red triangle indicates the location of the stream 

gauge, and coincides with the beginning of the investigated stream reach (red triangle in Figure 1.1) at 

coordinates 49°49’38” N, 5°47’44” E. The elevation lines go by increments of 5 m from 460 to 510 m.a.s.l. 
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Appendix B 

Table B. Details for the groundwater and piezometer network at the study site. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

Well/piezometer | Topographica | Well depth | Solum- Subsolum- Depth Depth Screened 

l elevation (m | from the | subsolum fractured surface- surface- well length 

a.r.p.) topographica | interface bedrock subsolum fractured | (m) 

| surface (m) | elevation interface (m) bedrock 

(m a.r.p.) elevation (m) 

(m a.r.p.) 

1w1 6.23 0.71 6.15 6.09 0.08 0.14 0.50 

1W2 6.12 0.56 6.10 6.0 0.02 0.12 0.50 

2W1 5.96 0.67 5.96 5.69 0.00 0.27 0.50 

2W2 5.87 0.7 5.86 5.69 0.01 0.18 0.50 

3W1 5.7 0.77 5.7 5.24 0.02 0.48 0.50 

3P1 5.33 0.29 5.33 5.33 / / / 

3W2 5.56 0.69 5.44 5.18 0.12 0.38 0.50 

4W1 5.59 1.1 5.59 5.00 0.00 0.59 1.00 

4P1 5.12 0.39 5.12 5.12 / / / 
4W2 5.39 0.76 5.22 4.85 0.17 0.54 0.50 

5W1 6.21 2.29 5.50 4.60 0.71 1.61 2.00 

5W2 5.26 1.38 5.10 4.60 0.16 0.66 1.00 

5W3 5.15 0.75 5.00 4.51 0.15 0.64 0.50 

5W4 6.30 2.6 5.90 4.20 0.40 2.10 2.00 

6W1 4.85 0.81 4.70 4.30 0.15 0.55 0.50 

6P1 4.7 0.53 4.7 4.70 / / / 

6P2 4.72 0.63 4.72 4.72 / / / 
6W2 5.42 1.38 5.15 4.35 0.27 1.07 1.00 

6W3 6.22 2.08 5.77 4.16 0.45 2.06 2.00 

TW1 4.71 1.24 4.50 4.15 0.21 0.56 1.00 

7W2 4.63 0.68 4.57 4.25 0.06 0.38 0.50 

7W3 4.67 0.69 4.65 4.35 0.02 0.32 0.50 

SW1 4.24 0.97 4.10 3.87 0.14 0.37 0.80 

8P1 3.82 0.39 3.82 3.82 / / / 

SW2 4.23 0.80 4.15 3.88 0.08 0.35 0.50 

SW3 4.38 0.96 4.05 3.70 0.33 0.68 0.60 

SW4 4.59 0.81 4.15 4.00 0.44 0.59 0.50 

8WH 5.95 2.53 5.56 4.10 0.39 1.85 2.00 

9W1 4.86 2.29 4.25 3.70 0.61 1.16 2.00 

9W2 4.04 1.06 3.80 3.55 0.24 0.49 0.70 

9P1 3.61 0.46 3.61 3.61 / / / 

9W3 3.96 0.88 3.90 3.65 0.06 0.31 0.60 

9W4 4.21 0.92 4.02 3.55 0.19 0.66 0.70   

136 

 



  

  

  

  

  

  

  

  

  

    

IW5 4.49 0.97 3.90 3.80 0.59 0.69 0.80 
IW6 5.59 2.32 5.35 4.15 0.24 1.44 2.00 
10W1 3.79 0.90 3.63 3.33 0.16 0.46 0.70 
10W2 3.56 0.64 3.53 3.35 0.03 0.21 0.50 
10W3 3.68 0.77 3.40 3.10 0.28 0.58 0.60 
10W4 3.99 1.01 3.30 3.00 0.69 0.99 0.80 
11W1 3.31 1.13 3.21 2.88 0.10 0.43 0.80 
11P1 2.95 0.39 2.95 2.95 / / / 
11W2 3.25 0.64 3.17 2.86 0.08 0.39 0.50 
11W3 3.32 0.83 3.2 2.85 0.10 0.47 0.70                 
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Appendix C 

Spearman Rank correlation coefficients (in time) between the groundwater increase (AGWy, Table 

C1) and groundwater rising time (AGW;,, Table C2) after a precipitation event of a specific well 

(e.g. 5W1, 5W2) with precipitation characteristics (depth and intensity), and the initial 

hydrological status of the system (antecedent dry days and initial groundwater level at the same 

well). Bold font: significant correlation (p-values of Mann-Whitney test less than 0.05). Spearman 

Rank correlation coefficients are evaluated for the whole time series (TOT) and in different 

hydrologice conditions: dry, intermediate, and wet. Note that precipitation events that did not 

trigger a groundwater level increase had AGW;=NaN and were discarded for the Spearman 

  

  

  

  

  

correlation. 

Table C1. 

Precipitation Precipitation Antecedent Initial GW 

depth intensity dry days level 

TO 

T 0.4298 0.2033 -0.2368 -0.2294 

5W1 | AGWy | Dry 0.7815 0.2704 -0.2492 -0.1648 

Int 0.4498 0.2179 -0.0570 -0.1243 

Wet 0.4009 0.1136 -0.3412 -0.0919 

TO 

T 0.5695 0.5135 0.0070 -0.4100 

5W2 | AGWy | Dry 0.8077 0.2606 -0.1464 -0.1801 

Int 0.7758 0.7541 -0.0763 -0.4476 

Wet 0.5805 0.3214 -0.1991 -0.1164 

TO 

T 0.6308 0.4105 -0.0610 -0.2561 

5W3 | AGWy | Dry 0.6543 0.3622 -0.0684 -0.3307 

Int 0.9037 0.6541 -0.0346 -0.3053 

Wet 0.6363 0.3210 -0.0860 -0.1146 

TO 

T 0.5644 0.3023 -0.1688 -0.0972 
5WA AGWy 

Dry 0.7771 0.2219 -0.1347 -0.3049 

Int 0.8798 0.6991 -0.1441 -0.2330                   
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Wet 0.4935 0.2052 -0.2805 0.0060 

TO 

T 0.5105 0.3893 -0.0293 -0.3985 

6W1 AGWy Dry 0.6310 0.0802 -0.2022 -0.2133 

Int 0.8148 0.6379 0.0507 -0.2650 

Wet 0.9393 0.3336 -0.1480 -0.0813 

TO 

T 0.0031 0.4064 0.0083 -0.4566 

6W2 | AGWy Dry 0.8224 0.2140 -0.0777 -0.2412 

Int 0.8789 0.7009 0.0071 -0.3269 

Wet 0.9741 0.3098 -0.1392 -0.2461 

TO 

T 0.9030 0.2723 -0.2091 -0.1414 

6W3 | AGWy Dry 0.7567 0.0686 -0.1123 -0.3073 

Int 0.7877 0.6150 -0.0995 -0.1149 

Wet 0.5184 0.2322 -0.2709 -0.0845 

TO 

T 0.0384 0.3805 0.0042 -0.4032 

7W1 AGWy Dry 0.7422 0.0928 -0.0362 -0.3249 

Int 0.8764 0.9870 0.0533 -0.4101 

Wet 0.0001 0.3175 -0.1446 -0.1433 

TO 

T 0.4647 0.3471 0.0751 -0.9693 

TW2 | AGWy Dry 0.7987 0.1885 0.0489 -0.3956 

Int 0.8621 0.6813 0.0259 -0.3230 

Wet 0.4234 0.2347 -0.0302 -0.4985 

TO 

T 0.4203 0.2959 -0.1494 -0.3689 

TW3 | AGWy Dry 0.7776 0.4047 -0.3341 -0.1180 

Int 0.8444 0.6830 -0.0737 0.0363 

Wet 0.3485 0.1489 -0.1491 -0.2193 

TO 

T 0.9394 0.3465 -0.0168 -0.2862 

8W1 AGWy Dry 0.7497 0.0719 0.1360 -0.3336 

Int 0.8979 0.6040 -0.0496 -0.3764 

Wet 0.4876 0.2514 -0.1798 -0.0686 

TO 

T 0.4490 0.3011 0.0663 -0.5092 

SW2 | AGWry Dry 0.7961 0.1935 -0.0329 -0.3337 

Int 0.8177 0.9795 0.1712 -0.5420 

Wet 0.4483 0.2417 -0.0935 -0.2597  



  

TO 

  

  

  

  

  

  

  

                

T 0.5859 0.3174 -0.1128 -0.3179 

SW5 | AGWi Dry 0.8359 0.1866 -0.0424 -0.3338 

Int 0.8933 0.9689 0.1699 -0.2841 

Wet 0.9440 0.2641 -0.2048 -0.2258 

TO 

T 0.6280 0.3792 -0.0188 -0.2785 

9W1 AGWy Dry 0.6960 0.2869 0.0869 -0.2273 

Int 0.9008 0.6602 0.0301 -0.2722 

Wet 0.9870 0.2771 -0.1215 -0.2091 

TO 

T 0.6179 0.4009 -0.0254 -0.2709 

OW2 | AGWy Dry 0.7755 0.3788 0.1574 -0.5172 

Int 0.8150 0.7610 -0.0026 -0.2273 

Wet 0.9778 0.2795 -0.1443 -0.1798 

TO 

T 0.4127 0.4276 0.1351 -0.7218 

OW3 | AGWy Dry 0.7736 0.2816 0.1133 -0.4225 

Int 0.8195 0.6568 -0.0376 -0.1907 

Wet 0.3660 0.3268 0.0606 -0.7866 

TO 

T 0.7213 0.4849 -0.0629 -0.1998 

OW6 | AGWy Dry 0.8229 0.2203 -0.1583 -0.1735 

Int 0.8684 0.7051 -0.0794 -0.2401 

Wet 0.7015 0.4457 -0.1241 -0.0802 

TO 

T 0.6159 0.3667 0.0444 -0.3061 

" AGWry Dry 0.5832 0.1120 0.1587 -0.5110 

Int 0.8649 0.6849 0.0080 -0.2289 

Wet 0.5997 0.3103 -0.0463 -0.2951 

TO 

T 0.3480 0.3336 0.2436 -0.7617 

AGWry Dry 0.7814 0.2432 0.1178 -0.4913 

Int 0.8316 0.9144 0.2623 -0.5817 

Wet 0.3887 0.2260 0.1790 -0.5699 

TO 

T 0.5791 0.3990 0.0038 -0.3615 

u AGWry Dry 0.9910 0.1195 0.2181 -0.5416 

Int 0.8475 0.6743 -0.0175 -0.1678 

Wet 0.9933 0.2972 -0.1771 -0.1612 

11W TO 

2 aa T 0.7208 0.5152 0.1127 -0.2638 
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Dry 0.4790 0.0775 0.3445 -0.6901 

Int 0.8933 0.6472 0.0239 -0.3232 

Wet 0.7803 0.4893 -0.0095 -0.0543 

TO 

T 0.8007 0.5148 0.0455 -0.1619 

. AGWy | Dry 0.7124 0.2760 0.0018 -0.1611 

Int 0.8995 0.6708 0.0020 -0.2242 

Wet 0.8143 0.4768 0.0049 -0.0907 

Table C©2. 

Precipitation Precipitation Antecedent dry | Initial GW 

depth intensity days level 

TO 

T -0.0879 -0.1328 0.3423 0.1935 

5W1 AGW Dry -0.2283 -0.1157 0.3021 0.1248 

Int -0.2386 -0.4572 0.5768 -0.0445 

Wet -0.0714 -0.0549 0.4268 0.0221 

TO 

T -0.2870 -0.3843 -0.0298 0.2680 

5W2 AGW Dry -0.1526 -0.6086 0.3857 -0.5936 

Int -0.4286 -0.7143 -0.1160 0.4554 

Wet -0.4327 -0.2089 0.0887 -0.0593 

TO 

T -0.2659 -0.3684 0.1942 -0.0293 

5W3 AGW Dry -0.3934 -0.4711 0.4153 -0.1452 

Int -0.1427 -0.4789 0.1789 0.1839 

Wet -0.2863 -0.3640 0.1125 -0.0559 

TO 

T -0.0317 -0.1852 0.2145 0.0247 

bW4 AGW Dry -0.1089 -0.1612 0.4551 -0.0449 

' Int -0.4616 -0.4819 0.5034 0.0901 

Wet -0.0032 -0.1081 0.2625 -0.2280 

TO 

T -0.0330 -0.4192 0.0007 0.1972 

6W1 AGW Dry -0.0437 -0.2573 0.1318 -0.1578 

' Int -0.2205 -0.3835 -0.0178 -0.0168 

Wet -0.0879 -0.4487 0.0803 -0.0709 

TO 

AGW | T -0.0771 -0.4388 0.0112 0.4044 

oWz t Dry -0.0834 -0.4572 0.3639 -0.2186 

Int -0.1592 -0.3298 0.3117 0.2272         
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Wet -0.1684 -0.4290 0.0798 0.1907 

TO 

T 0.0454 -0.1794 0.2061 0.1570 
AGW 

6W3 Dry 0.1378 -0.1094 0.6958 0.1071 

Int 0.8071 0.3088 0.6837 -0.1522 

Wet -0.0425 -0.1804 0.1856 -0.0733 

TO 

T -0.0947 -0.3023 -0.0664 0.3824 
AGW , 

TW1 Dry -0.0051 -0.2608 -0.0434 -0.0732 

Int -0.1797 -0.2831 -0.1400 0.1362 

Wet -0.2120 -0.2413 0.1208 0.0216 

TO 

T -0.0782 -0.3539 -0.0568 0.3600 
AGW , . : 

7W2 Dry -0.3005 -0.2607 -0.0619 0.3076 

Int -0.3309 -0.5402 0.2024 -0.1207 

Wet -0.0439 -0.3032 -0.0048 0.3819 

TO 

T -0.1647 -0.3577 0.2817 0.1115 
AGW , 

7W3 Dry -0.3918 -0.4978 0.0676 -0.1286 

Int 0.1559 -0.2447 0.6432 -0.5746 

Wet -0.1504 -0.3136 0.1544 -0.0099 

TO 

T -0.1316 -0.2912 0.0473 0.3210 
AGW , 

8W1 Dry -0.2568 -0.3185 0.0241 0.3215 

Int -0.2774 -0.2809 0.1972 0.5499 

Wet -0.1016 -0.2347 0.0998 0.1601 

TO 

T -0.1471 -0.3450 0.0330 0.2029 
AGW , 

8W2 Dry -0.1300 -0.3816 0.0860 -0.0450 

Int -0.4503 -0.5029 0.1081 0.4134 

Wet -0.1161 -0.2650 0.1234 0.0971 

TO 

T 0.0150 -0.2307 0.1817 0.1938 
AGW , 

8W5 Dry -0.2137 -0.6076 0.1846 0.0151 

Int 0.0718 -0.4586 0.6777 -0.0572 

Wet -0.0050 -0.1532 0.1900 0.0796 

TO 

T -0.1933 -0.3412 -0.0189 0.3092 
AGW up 

9W1 Dry -0.1920 -0.2616 0.0478 0.4134 

Int -0.3793 -0.4364 0.0413 0.3697 

Wet -0.1973 -0.3062 0.0098 0.2607                 
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TO 

  

  

  

  

  

  

        

AGW T -0.0718 -0.4329 -0.1122 0.3048 

9W2 Dry -0.1642 -0.3000 -0.2350 0.3539 

Int -0.4474 -0.9983 0.2895 0.1007 

Wet -0.0772 -0.3583 -0.0250 0.1640 

TO 

T 0.0384 -0.3818 -0.0702 0.3247 

IW3 AGW Dry -0.0497 -0.1052 -0.2453 0.0662 

Int 0.0426 -0.1832 0.2381 -0.3919 

Wet 0.0317 -0.4144 -0.0348 0.4677 

TO 

T -0.1455 -0.4532 0.0825 0.1662 

I9W6 AGW Dry -0.1149 -0.2056 0.0033 0.1902 

Int -0.4762 -0.6497 0.3189 -0.0384 

Wet -0.1779 -0.4760 0.2064 -0.1144 

TO 

ow lacw T -0.0667 -0.1999 0.0543 0.1658 

| Dry -0.0734 0.1472 0.0096 0.4517 

| Int -0.2594 -0.4543 0.0805 -0.1819 

Wet -0.0597 -0.2170 0.1109 0.1079 

TO 

ow lacw T 0.0109 -0.3087 -0.1520 0.9059 

) Dry -0.0228 -0.4176 -0.1048 0.0627 

| Int -0.3114 -0.2370 -0.1421 0.3116 

Wet 0.0253 -0.2071 -0.0729 0.5667 

TO 

uw | acw T -0.1188 -0.2731 -0.0063 0.1605 

| Dry -0.0112 -0.2077 0.0339 0.2557 

| Int -0.0854 -0.5224 -0.0405 0.3062 

Wet -0.2169 -0.2592 0.1061 -0.0102 

TO 

ıw lacw T -0.0623 -0.4665 -0.0906 0.1674 

) Dry 0.1118 -0.3827 0.1918 0.1734 

| Int -0.2040 -0.4069 0.1075 -0.0510 

Wet -0.1359 -0.4714 -0.0508 -0.0196 

TO 

uw | acw T -0.1937 -0.4618 0.0240 -0.0598 

3 Dry -0.0198 -0.1138 0.1093 -0.0071 

| Int -0.9846 -0.5139 0.2009 0.1064 

Wet -0.1422 -0.5397 -0.0064 0.0411           
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Table 03 Spearman Rank correlation coefficients (in space) between the average precipitation depth that 

does not trigger a groundwater increase >Icm, the mean lag-time of the groundwater response after the 

beginning of a precipitation event (AGWt), and the mean groundwater increase following an event (AGWH) 

with local characteristics of the groundwater-monitoring network (regolith thickness between the topographie 

surface and the surface of the fractured bedrock, the resolith thickness between the topographic surface and 

the surface of the subsolum, elevation above and distance from the streambed). Bold font: significant 

correlation (p-values of Mann-Whitney test less than 0.05). Spearman Rank correlation coefficients are 

evaluated for different hydrologie conditions: dry, intermediate and wet. 
  

  
  

  

  

  

Dept! 
Depth surface- M Well topographic Distance 

fractured 1 ". elevation above from the 
subsolum 

bedrock (cm) the streambed stream (m) 
(cm) 

Average precipitation depth | Dry 0.2264 0.1647 -0.0855 -0.0894 

that does not trigger a Int 0.3977 0.4650 0.3087 -0.0896 

groundwater increase Wet -0.3660 -0.2775 -0.2588 0.1687 

Dry 0.4512 0.4197 0.3841 0.2830 

AGW, Int 0.2569 0.2800 0.1542 -0.0198 ( 
Wet 0.6793 0.6239 0.5168 0.4308 

Dry -0.1914 -0.3767 -0.4355 -0.1942 

AGWy Int -0.1417 -0.2178 -0.0683 0.1245 ( 
Wet 0.4270 0.3765 0.3977 0.1931           
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parameter interval where the model is more sensitive to that parameter. The measure of the local 

gradient of the cumulative distribution will be represented by the height of the bar plot in each 

equally-sized bin across the parameter range. Higher bars and steeper gradients of the CDF line 

indicate greater model performances in that parameter range and, therefore, parameter sensitivity 

and identifiability (Figure Dig). On the contrary, equal eight of the bars and similar gradients of 

the CDF line indicate that the parameter is insensitive and non-identifiable (Figure DIh). 
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Figure D1: Examples of the four types of visualizations intended for parameter identifiability and 

sensitivity with the plots in the first column (a, c, e, and g) reporting an example of plots for sensitive 

and identifiable parameter and plots in the second column (b, d, f, and h) reporting an example of plots 

for insensitive and non-identifiable parameter. (a) and (b) parameter vs likelihood plots; (c) and (d) 

parameter distribution plots for the top 20, 10, 5, 1, and 0.1% of the results; (e) and (f) regional 

sensitivity analysis plots from the top 1% to the top 10% of the results; (g) and (h) identifiability plots 

for the top 1% of the model results. 
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The plots used to address the global sensitivity analysis indicate parameter identifiability and 

sensitivity on the entire observed BTC, however they are unable to address if the i-th parameter 

describes the process it is meant to represent or if the role of the i-th parameter on the model is 

constant in time (Wagener and Kollat, 2007). To address identifiability and sensitivity of the i-th 

parameter on the different sections of the BTC we applied dynamic identifiability analysis which 

steps are reported in Figure D2 (Wagener et al., 2002). 
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Figure D2. Dynamic identifiability analysis algorithm flowchart. (a) The BTC is subdivided in moving 

windows (size equal to three times the BTC timestep, Wagener et al., 2002); (b) In each moving window 

the likelihood (efficiency) of every TSM simulation is evaluated via mean absolute error (Wagener and 

Kollat, 2007); (c) an efficieney-threshold is chosen (e.g. top 10%); (d) for the chosen model results, the 

cumulative distribution function is built for each investigated parameter; (e) steps from (b) to (d) are 

repeated for each moving window and model likelihood for the investigated parameter is plotted over 

time (white: minimum likelihood; black: maximum likelihood). (f) eumulative distribution function of 

the parameter distribution is plot vs the observed BTC together with 90% confidence limits. Narrow 

limits indicate identifiable parameter while wide limits indicate unidentifiable parameter. (g) a second 

plot reports the metrie of one minus the normalized distance between the 90% confidence limits. Small 

values of this metrie indicate that the selected time window contain a narrow identifiability range for 

the investigated parameter and, therefore, that it is informative on that part of the BTC (Wagener et 

al., 2002). 
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top 10% latin hypercube results Slug injection 06/12/2018 
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Figure D3. Parameter values plotted against the corresponding RMSE values for the ADE results for 

El, E2, and B3. 
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Appendix E 

The figure E1 shows the observed BTC for the three tracer experiments plotted against the top 

100 simulated BTC obtained using the proposed iterative approach. The observed poor visual fit 

on the tail of the BTC obtained at the end of the iterative modelling approach (Figure Eld, e, f) 

is controlled by two factors: (i) the modelling structure of the TSM which assumes an exponential 

residence time distribution and (ii) the chosen objective function. By using alternative residence 

time distributions, TSM proved to have a more accurate fitting on the tail of the BTC (Haggerty 

et al., 2002; Bottacin-Busolin et al., 2011). Also, the RMSE could not be the best objective function 

for addressing a model fit on the tail of BTC because it gives higher importance on the sections of 

the BTC with higher concentration values (peak of the BTC) compared to the sections of the BTC 

with low concentration values (at the tail of the BTC). As an example, the best-fitting BTC 

obtained at the end of the second TSM iteration (El) shows a visually better fit on the BTC tail 

(Figure E2) despite the large RMSE (1.5197 mg/)). 
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Figure El: Observed BTC (red line) together with the grey arca comprised between the top 100 

simulated BTCs and the best-fitting BTC (blue dashed line) for (a, d) El, (b, e) E2, and (ce, f) E3. 

Results reported for the first (a, b, c) and last (d, e, f) TSM iterations. 
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Figure E2: Observed BTC (red line) together with the grey area comprised between the top 100 

simulated BTCs and the best-fitting BTC (blue dashed line) for the second TSM iteration (El). 
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Appendix F 

Table F. Comparison between modelling results via iterative modelling approach and OTIS-P for 31 slug 

tracer experiments. 

  

v A D « Ars RMSE 

OTIS-P 0.0733 | 0.0364 0.0637 0.0006 0.0074 0.6159 

i Identifiability analysis| 0.0729 | 0.0370 0.0523 0.0014 0.0073 0.7230 

OTIS-P 0.2619 | 0.0540 0.1498 0.0052 0.0189 0.5375 

k2 Identifiability analysis| 0.2732 | 0.0543 0.1111 0.0078 0.0182 0.4462 

OTIS-P 0.1236 | 0.0374 0.0705 0.0016 0.0066 0.6745 

i3 Identifiability analysis| 0.1220 | 0.0392 0.0758 0.0017 0.0057 0.6517 

OTIS-P 0.11 0.0356 0.0738 0.001 0.0064 0.6289 

t Identifiability analysis| 0.1111 | 0.0365 0.0673 0.0017 0.0056 0.6852 

OTIS-P 0.1774 | 0.0509 0.1151 0.0016 0.0077 0.4152 

1 Identifiability analysis) 0.1863 | 0.0531 0.0927 0.0037 0.0076 0.2897 

OTIS-P 0.1667 | 0.0479 0.09209 | 0.0025 0.0071 0.4917 

16 Identifiability analysis) 0.1755 | 0.0479 0.0759 0.0051 0.0083 0.6057 

OTIS-P 0.275 0.081 0.1404 0.005 0.0144 0.2544 

i Identifiability analysis| 0.2894 | 0.0793 0.1189 0.0069 0.0159 0.2844 

OTIS-P 0.2292 | 0.0728 0.1752 0.0031 0.0122 0.3406 

1 Identifiability analysis) 0.2440 | 0.0741 0.1440 0.0055 0.0140 0.2344 

OTIS-P 0.2444 | 0.0689 0.1475 0.0045 0.0123 0.3490 

” Identifiability analysis) 0.2550 | 0.0674 0.1259 0.0062 0.0142 0.3570 

OTIS-P 0.2245 | 0.0723 0.1778 0.0025 0.0104 0.3923 

ro Identifiability analysis) 0.2503 | 0.0685 0.0984 0.0102 0.0176 0.3262 

OTIS-P 0.1250 | 0.0439 0.1566 0.0003 0.0071 0.5482 

en Identifiability analysis) 0.1206 | 0.0434 0.1566 0.0003 0.0076 0.6337 

OTIS-P 0.1279 | 0.0401 0.1475 0.0003 0.0059 0.6228 

"2 Identifiability analysis) 0.1226 | 0.0403 0.1483 0.0009 0.0052 0.6584 

OTIS-P NaN NaN NaN NaN NaN NaN 

3 Identifiability analysis) 0.1210 | 0.0425 0.1557 0.0003 0.0032 0.3840 

OTIS-P 0.3438 | 0.0871 0.2694 0.0020 0.0162 0.3823 

nA Identifiability analysis) 0.3486 | 0.0900 0.1984 0.0050 0.0130 0.2075 

15 OTIS-P 0.3235 | 0.0800 0.2775 0.0029 0.0139 0.4007 

Identifiability analysis) 0.3506 | 0.0785 0.1816 0.0102 0.0177 0.1953 
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E16 

E17 

E18 

E19 

E20 

E21 

E22 

E23 

E24 

E25 

E26 

E27 

E28 

E29 

E30 

E31 

92 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

OTIS-P 

Identifiability analysis 

0.6707 

0.8239 

NaN 

0.3858 

0.0591 

0.0583 

NaN 

0.0480 

0.0308 

0.0296 

NaN 

0.0537 

0.1413 

0.1518 

0.1447 

0.1433 

0.1447 

0.1444 

0.1410 

0.1414 

0.1392 

0.1399 

0.1390 

0.1389 

0.1375 

0.1399 

0.1341 

0.1319 

0.0917 

0.0966 

0.0902 

0.0893 

0.1112 

0.0973 

NaN 

0.1043 

0.0224 

0.0221 

NaN 

0.0206 

0.0140 

0.0137 

NaN 

0.0913 

0.0362 

0.0364 

0.0359 

0.0371 

0.0341 

0.0340 

0.0346 

0.0364 

0.0331 

0.0334 

0.0339 

0.0341 

0.0341 

0.0335 

0.0319 

0.0337 

0.0307 

0.0311 

0.0286 

0.0305 

0.8761 

0.4599 

NaN 

0.2582 

0.0332 

0.0346 

NaN 

0.0181 

0.0213 

0.0200 

NaN 

0.0575 

0.0924 

0.0716 

0.1093 

0.1006 

0.0957 

0.0910 

0.1025 

0.0943 

0.0734 

0.0896 

0.0939 

0.0808 

0.0922 

0.0759 

0.1215 

0.1052 

0.0508 

0.0378 

0.0582 

0.0468 

0.0105 

0.0420 

NaN 

0.0097 

0.0012 

0.0012 

NaN 

0.0012 

0.0005 

0.0005 

NaN 

0.0007 

0.0017 

0.0041 

0.0012 

0.0016 

0.0018 

0.0026 

0.0013 

0.0022 

0.0028 

0.0022 

0.0015 

0.0022 

0.0015 

0.0025 

0.0008 

0.0011 

0.0009 

0.0023 

0.0006 

0.0011 

0.0226 

0.0403 

NaN 

0.0283 

0.0082 

0.0082 

NaN 

0.0074 

0.0068 

0.0074 

NaN 

0.0534 

0.0060 

0.0066 

0.0058 

0.0051 

0.0055 

0.0055 

0.0054 

0.0044 

0.0063 

0.0050 

0.0056 

0.0057 

0.0056 

0.0061 

0.0085 

0.0049 

0.0044 

0.0052 

0.0048 

0.0041 

0.2009 

0.1172 

NaN 

0.3986 

1.9087 

2.2046 

NaN 

2.0557 

2.9360 

2.8272 

NaN 

0.3799 

0.7511 

0.4699 

0.6109 

0.4291 

0.6294 

0.6104 

0.5383 

0.5968 

0.4404 

0.4481 

0.5713 

0.4866 

0.8518 

0.9389 

1.2004 

0.8392 

0.7416 

0.7226 

1.1638 

0.5656


