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Abstract
Improving the sample efficiency of Reinforcement Learning (RL) algorithms plays
a crucial role for their application in situations where data is scarce or expensive
to collect. This thesis presents Local Cluster Experience Replay (LCER), an
algorithm that aims to mitigate this problem by synthetic sample generation. LCER
forms clusters within the replay-buffer of off-policy RL algorithms. It creates
new and unseen state transitions by interpolating between samples from the same
cluster, ensuring that interpolation only occurs on transitions that are adjacent in
the state-action space. Conceptually, LCER creates locally linear models between
different samples in the replay-buffer, allowing interpolation between various episodes
and enhancing policy generalizability. We combine our approach with state-of-the-art
RL algorithms and evaluate on continuous locomotive and continuous robotic control
environments. LCER demonstrates significant improvement in sample efficiency
over baseline RL algorithms in both environment domains. Additionally, LCER can
effectively handle large and complex environments, making it a promising approach
for improving the sample efficiency of a wide range of RL applications.
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Kurzzusammenfassung
Die Verbesserung der Stichprobeneffizienz von Reinforcement Learning (RL)
Algorithmen spielt eine entscheidende Rolle für deren Anwendung in Situationen,
in denen Daten knapp oder schwer zu erheben sind. In dieser Arbeit wird mit
Local Cluster Experience Replay (LCER) ein Algorithmus vorgestellt, der dieses
Problem durch synthetische Stichprobengenerierung schmälert. LCER bildet Cluster
innerhalb des Replay-Buffers von Off-Policy RL Algorithmen. Er erzeugt neue und
ungesehene Stichproben durch Interpolation zwischen Übergängen aus demselben
Cluster, wodurch sichergestellt wird, dass die Interpolation nur zwischen Zustands-
übergängen erfolgt, die im Zustands-Aktionsraum benachbart sind. Konzeptionell
erstellt LCER lokal lineare Modelle zwischen verschiedenen Übergängen im Replay-
Buffer, die eine Interpolation zwischen verschiedenen Episoden ermöglichen und die
Verallgemeinerbarkeit von Entscheidungsstrategien verbessern. Wir kombinieren
unseren Ansatz mit modernen RL Algorithmen und evaluieren ihn in kontinuierli-
chen Fortbewegungs- und Robotersteuerungsumgebungen. LCER zeigt signifikante
Verbesserungen in der Stichprobeneffizienz gegenüber RL Standardalgorithmen in
beiden Umgebungsdomänen. Darüber hinaus ist LCER in der Lage, große und
komplexe Umgebungen effektiv zu handhaben. Damit ist er ein vielversprechen-
der Ansatz für die Verbesserung der Stichprobeneffizienz einer Vielzahl von RL
Anwendungen.
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1 Introduction
In modern society, data is often considered a valuable commodity. It drives many of
the technological advancements we see today, from self-driving cars to personalized
recommendations on e-commerce websites. However, collecting data can be time-
consuming and costly, especially in situations where large amounts of data are
required. This is where sample efficiency becomes important.

Sample efficiency refers to the ability of a learning algorithm to learn from a smaller
amount of data. This is especially relevant in situations where data is scarce or hard
to obtain, such as in real-time control tasks or in situations where data collection is
expensive or impractical. With real hardware, data is extremely tedious to generate
and the process is time-consuming, which often is infeasible for small research teams.

In Reinforcement Learning (RL), an agent learns to make decisions by performing
actions in an environment and receiving rewards or penalties in return. Sample
efficiency is a crucial factor in RL, because of the data-driven nature of the field.
The RL agent must learn from a sufficient number of samples in order to accurately
learn the optimal strategy for a given task. The larger the dataset required for
training, the more computational resources are required, which can also be a limiting
factor. Therefore, it is highly desirable to have an RL agent that is sample efficient,
i.e., that can learn effectively with fewer samples.

1.1 Motivation
A major part of the existing RL methods are model-free and therefore, do not make
any assumption about the underlying dynamics of the system. These methods are
referred to as Model-Free Reinforcement Learning (MFRL). They are very flexible,
as they can be applied to a wide variety of tasks and environments. However, this
flexibility comes at a cost, as MFRL algorithms often require an immense amount
of data to learn effectively.

One reason for this behavior is because model-free RL does not have a priori
knowledge about the dynamics of the system it is learning from. It has to explore
the environment extensively to learn the optimal policy. Another reason why
model-free RL is data intensive is that MFRL often uses function approximation to
represent the value function or policy. Function approximation can be very powerful,
but it also requires a large number of samples to be effective. Despite sample
inefficiency, learning through exploration and interaction with the environment

1



1 Introduction 1.2 Problem Statement 2

in particular often leads to good asymptotic performance, which is one of the
advantages of model-free RL algorithms.

Model-Based Reinforcement Learning (MBRL) mitigates the need for training
samples by maintaining a model of the system. This can be known or learned and
predicts the next state of the environment, given the current state and an action.
One application is to utilize the system model to generate synthetic data that can be
used to train the policy. However, an additional model of the system also comes with
its own set of challenges. For example, there is the additional computational effort
required to learn and maintain the system model, which can be time-consuming and
resource-intensive. Additionally, the system model is prone to errors, such as model
uncertainty and model inaccuracy that can negatively impact the performance of
the policy. Careful attention must be paid to these errors to ensure that the agent
is able to accurately control the system.

Experience replay is another, powerful technique used in reinforcement learning to
improve the sample efficiency and learning speed of the agent. For this purpose,
past experiences are stored in a replay-buffer, so that the agent can learn from
them. This allows past experiences to be reused and avoids the need to explore
the same states multiple times, as they were generated while interacting with the
environment. Thus, the agent can learn from a much larger number of experiences
than it could by learning from just the most recent interactions alone. It also allows
the agent to learn from a diverse set of experiences, rather than being limited to
the most recent ones.

However, traditional experience replay, as used in almost all RL methods, has
its limitations and can still be sample inefficient. This is because the agent may
still need to explore a large number of states to learn effectively. In addition, the
experiences stored in the replay-buffer may not always be representative of the
current state of the environment. This can happen if the agent has not explored a
wide enough range of states, or if the environment itself is changing over time.

1.2 Problem Statement
The goal of this thesis is to investigate ways to improve the sample efficiency of
model-free RL, i.e., the agent’s ability to learn from a smaller number of interactions
with the environment. This is important because the training process in RL can
be time-consuming and resource-intensive, and in some cases, it is not practical to
wait for the agent to learn over a long period of time or to collect a large amount of
data. By improving the sample efficiency of model-free RL, we aim to make the
training process more efficient and practical for a wider range of applications while
benefiting from good asymptotic performance.
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1.3 Contributions of this Thesis
In this thesis, we propose to extend the model-free RL concept by integrating
Local Cluster Experience Replay (LCER) to increase its sample efficiency. LCER
introduces k-Means clustering and mixup sampling (Zhang et al. [1]) to the replay-
buffer of off-policy RL algorithms. It forms clusters within the replay-buffer and
interpolates new, unseen environment interactions that are used in the training
process of the RL agent. Figure 1.1 schematically depicts LCER from a higher-level
perspective.

EnvironmentOff-Policy Agent

interact with the environment
according to the agent's policy 

experience new transitions
and store to replay-buffer

train/optimize the agent on
interpolated experience

Local Cluster Experience Replay (LCER)

Replay Buffer
(real experiences)

form clusters of 
transitions within 
the replay-buffer

interpolate new and 
unseen environment 
transitions per cluster

λ
1-λ

Figure 1.1: LCER from a higher-level perspective: Experience is generated by the off-
policy RL agent while interacting with the environment. It is collected
and stored in a replay-buffer. LCER forms clusters of transitions within
the replay-buffer and interpolates new, unseen environment interactions.
These are used to train the RL agent.

This approach combines the advantages of learning on real environment samples while
exploiting the superior asymptotic performance of model-free RL. Conceptually,
LCER is inspired by and therefore closely related to Neighborhood Mixup Experience
Replay (NMER) (Sander et al. [2], [3]), although the concepts used are considerably
different. The following points summarize the contribution of this thesis.

Sample Efficiency: The main focus of this thesis is to improve the sample efficiency
of model-free RL algorithms, which refers to the ability to solve a given task using
fewer interactions with the environment. This is important, as it allows for more
efficient and cost-effective learning and decision-making processes. Improving sample
efficiency can also have significant practical benefits, such as reducing the amount of
data that needs to be collected and processed, or the amount of time and resources
needed to train a model.
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RL and k-Means Clustering: LCER introduces clustering to the field of RL,
in particular to the replay-buffer. In our implementation we utilize the k-Means
clustering algorithm, which allows simple and fast grouping of adjacent environment
interactions that are further used as interpolation pairs. To the best of our knowledge,
this particular combination is a novel approach.

Intuitive Usage: This is important when it comes to implementing and using new
algorithms. The additional overhead in terms of implementation effort and compu-
tational power can be a significant burden, especially for complex algorithms that
require a considerable amount of resources to run. LCER achieves this requirement
by design. It acts as a wrapper around the standard replay-buffer of off-policy RL
algorithms, making it easy to integrate into existing RL workflows without having
to make significant changes to the codebase.

Open Source: The code for Local Cluster Experience Replay is open source and
freely available at https://github.com/szahlner/lcer.

1.4 Chapter Organization
Chapter 2 introduces the algorithms, methods, and concepts used in this thesis.
Starting from the basic principles of RL, it describes actor-critic algorithms, a
commonly used type of RL agents, which is also implemented and utilized in this
thesis. Further, concepts on experience replay and replay-buffers are elaborated,
followed by a section on dynamics models of the system and a section on k-Means
clustering. Other approaches from the field of RL, especially concerning model-based
RL, are discussed in Chapter 3. Chapter 4 describes the implementation of LCER
and both of its variants. The experiments with LCER are presented in Chapter 5,
as well as the obtained results. Chapter 6 concludes this thesis, and possibilities for
future work are discussed.

https://github.com/szahlner/lcer


2 Background
This chapter explains the methods, algorithms, and software components used in this
thesis. Beginning with reinforcement learning, its classification into model-based
and model-free approaches, the experience stored in replay-buffers, right up to
world-models are explained and discussed, as well as the utilized RL algorithms. At
the end, a section on unsupervised learning with a focus on clustering concludes
this chapter. The following sections contain numerous statements that are based on
Achiam [4], hence, not every reference is explicitly stated.

2.1 Reinforcement Learning
Reinforcement learning refers to a subset of Machine Learning (ML). Together with
supervised and unsupervised learning, RL is one of the three main pillars of ML.
Figure 2.1 illustrates the usage of supervised and unsupervised learning with typical
use cases. In contrast to learning with a labeled training set (supervised learning)
or pattern detection in unlabeled data (unsupervised learning), RL learns to act
based on feedback.

(a) (b)

Class B

Class A

labeled
Data

unlabeled
Data

Figure 2.1: Supervised and unsupervised learning use cases: (a) object classification
with already labeled data, (b) clustering similar data based on certain
conditions.

RL is the study of agents, learning specific tasks by interacting with their envi-
ronment. The idea is based on a reward system that emphasizes good behavior
and punishes bad behavior. The goal is to learn a set of rules, a policy, that is
used to decide which actions to take. For each interaction the environment returns
an immediate reward, which can be used in the decision-making process of the
agent, to maximize the cumulative sum of rewards. This is equivalent to optimizing
the agent’s sequential series of decisions to increase or decrease the probability of
repeating or forgoing certain behavior in the future.

5



2 Background 2.1 Reinforcement Learning 6

This work considers a standard RL setup consisting of an agent interacting with
an environment in discrete timesteps as shown in Figure 2.2. At each timestep t,
the agent receives an observation xt and a scalar reward signal rt. Based on the
observation the agent takes an action at according to its learned policy1.

Agent

Environment

rt+1

xt+1

state
observation reward

xt rt
action
at

Figure 2.2: Interaction loop between agent and environment in RL: Based on the
current observation xt the agent takes an action at in the environment
and receives back the next observation xt+1, as well as a scalar reward
signal rt+1. Adapted from Sutton and Barto [5].

It is assumed that all environments are described by a Markov Decision Process
(MDP) (Bellman [6], Puterman [7]) by the tuple {S, A, T , R, p(s0)}. The transition
function T : S × A → p(S) is the probability of transitioning into state st+1, when
starting in state st and taking action at. The reward function R : S × A × S → R
returns a scalar reward signal rt of the current transition and p(s0) denotes the
initial state distribution.

Starting with the first state s0 ∼ p(s0), the state s1 is observed conditioned by
choosing the action a0 at timestep t = 0. Further, taking the action at the
environment returns the next state st+1 ∼ T (·|st, at) and the associated reward
rt = R (st, at, st+1). An additional binary signal dt, symbolizing the last transition
in a sequential series of transitions can be added2. The transitions T can be denoted
as quintuples

T =
�
st, at, st+1, rt, dt

�
, (2.1)

where

1This also includes random actions that are used for exploration.
2This binary signal dt does not distinguish between termination or truncation of the current

transition series.
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st, st+1 ∈ S and S ⊆ Rdobs ,

at ∈ A and A ⊆ Rdaction ,

rt ∈ R and R ⊆ R,

dt ∈ {0; 1}.

Temporally connected transitions are also referred to as episodes, trajectories, or
rollouts and represent the agent’s experience, denoted as

τ =
�
Tt

�N

t=0
=

�
st, at, st+1, rt, dt

�N

t=0
, (2.2)

where N ∈ N is the amount of transitions in this particular rollout.

In addition, the states are assumed to be completely observable for all environments.
Here st = xt is valid, different from the general case, where the MDP dynamics may
be partially observable, so that the state can only be described by the entire history
of the observation and action pairs st = (x1, a1, ..., at−1, xt).

The behavior of the agent is defined by its policy π. This is a set of rules that maps
states to actions π : S → A, whereby only real-valued actions are considered in this
thesis. In reinforcement learning, the policies are parameterized. Thus, in order to
solve a given task, these parameters need to be optimized accordingly.

To emphasize the policy’s dependency on its parameters, it is often written with an
appropriate subscript θ as

at = µθ(st), at ∼ πθ(·|st), (2.3)

where µ denotes a deterministic and π a stochastic policy. Typical examples of the
parameters are the weights and biases of a Neural Network (NN).

The cumulative sum of rewards of a single rollout can be formalized as

R(τ) =
N�

t=0
γtrt, (2.4)

where N is the horizon of the environment, which denotes the maximal amount of
actions to take. The discount factor γ ∈ [0, 1] allows to apply weighting, and thus
assigns greater importance to more recent rewards in terms of time.
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The expected sum of rewards J(π), refers to the expectation E [R(τ)] of getting a
specific cumulative sum of rewards by acting according to the policy π. This can be
denoted as

J(π) = E
τ∼π

�
R(τ)

�
=


τ

P (τ |π)R(τ), (2.5)

with P (τ |π) being the probability of a rollout with N timesteps. It is decomposed
into a chain of probabilities by the MDP assumption, where the next action only
depends on the current state and the next state only depends on the current state
and action

P (τ |π) = p0(s0)
N−1�
t=0

P

st+1|st, at

�
π(st|at). (2.6)

With the preceding equations, the core problem of reinforcement learning, namely
maximizing the expected sum of rewards, or the cumulative reward, can be denoted
as

π∗ = arg max
π

J(π), (2.7)

where π∗ is the optimal policy.

Depending on the utilized RL algorithm, there is also a value function V : S → R
or action-value function Q : S × A → R respectively. It approximates the value of
states or state-action pairs and is used to guide the policy towards a high cumulative
reward. The value of a state or state-action pair is the expected sum of rewards,
starting in that particular state or state-action pair, and acting according to the
policy forever after.

The focus of this work is on reinforcement learning algorithms that use an action-
value function Qπ (s, a). Similar to the value defined before, the action-value is a
measure of the expected cumulative reward, starting in state s, taking an arbitrary
action3 a and acting according to the learned policy π forever after, or at least until
hitting the environment horizon N . This can be formalized as

Qπ(s, a) = E
τ∼π

�
R (τ)

��� st = s, at = a
�
,

= E
τ∼π

� N�
t

γtrt

��� st = s, at = a

.

(2.8)

3This first action may not be according to the policy π. It can be completely random.
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The goal is to find an optimal policy π∗ that maximizes the action-value function
Qπ(s, a)

π∗ = arg max
π

Qπ (s, a) , (2.9)

which, in turn, is associated with the maximum sum of expected rewards.

Vice versa, the optimal action-value function Q∗ (s, a) can be defined as

Q∗(s, a) = max
π

E
τ∼π

� N�
t

γtrt

��� st = s, at = a

. (2.10)

The reason why this work focuses on RL algorithms utilizing the action-value
function Qπ(s, a) is because a value function V π(s) cannot be used stand-alone to
decide on a policy. It either needs a separate policy function π(·|s) for which it is
used as a value function, or it is possible to derive a policy from the value function.
However, the latter requires full access to the environment’s distribution model
P (τ |π) (see Equation 2.6), which is not available in many cases.

The relationship between the two Equations 2.8 and 2.10 is

Q∗ (s, a) ≥ Qπ (s, a) . (2.11)

It can be shown, that there is at least one optimal policy π∗ which is better or equal
to all other policies (Sutton and Barto [5]). Following this idea, it can be concluded,
that there is at least one optimal action-value function Q∗ (s, a).

The Equations 2.8 and 2.10 obey a special self-consistency that allows the starting
point to be moved arbitrarily. Its value is the expected reward for starting at this
very point, plus the associated reward of the next state, given by the action of the
policy. This fact is denoted in the Bellman equations (Bellman [6]) and can be
formalized as

Qπ(s, a) = E
st+1∼T (·|st,at)


r(s, a) + γ E

at+1∼π(·|s)
[Qπ (st+1, at+1)]

	
, (2.12)

or, considering the optimal action-value function

Q∗(s, a) = E
st+1∼T (·|st,at)

�
r(s, a) + γ max

at+1
Q∗(st+1, at+1)


, (2.13)

with the right-hand side, namely the reward plus the next value, being the Bellman
backup for a state-action pair.



2 Background 2.2 Types of Reinforcement Learning 10

2.2 Types of Reinforcement Learning
The landscape of modern reinforcement learning algorithms is very broad and it is
hard to give an accurate taxonomy that is all-encompassing and contains all types
and spin-offs. Figure 2.3 tries to give an overview as a tree-diagram.

Model-Free RL

RL algorithms

Model-Based RL

Policy Optimization
On-policy

Q-Learning
Off-policy

TRPO

Learned Model Given Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

MBPO

Figure 2.3: Non-exhaustive taxonomy of modern RL algorithms. The algorithms
utilized in this thesis are marked blue and red. The red ones are used
for comparison purposes only. Adapted from Achiam [4].

2.2.1 Model-Based and Model-Free Reinforcement Learning
One important classification characteristic of reinforcement learning algorithms is
the distinction between model-based RL and model-free RL.

The main difference between MBRL and MFRL is the access to a model of the
MDP dynamics. This is an additional function that predicts the transitions and
their associated rewards. The model can be known (e.g., hard-coded) or it is learned.
It enables the agent to query the MDP at any desired state-action pair without
requiring a specific order, the access to the MDP dynamics is reversible.

Furthermore, model-based RL agents are able to generate their own sets of rollouts
and transitions without any environmental interactions. MBRL algorithms can
be distinguished into algorithms with a known or a learned model of the MDP
dynamics.
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• MBRL with a known model: The model can be queried right from the
beginning of the training process. As an example, this can be achieved by an
analytical and hard-coded solution of the MDP dynamics.
Prominent representatives of this type of reinforcement learning are Expert
Iteration (ExIt) (Anthony et al. [8]) and AlphaZero (Silver et al. [9]).

• MBRL with a learned model: The model is learned in the course of the
training process, in contrast to the first type. A common choice to represent the
model is a neural network that is optimized by minimizing the reconstruction
loss. This is a measure that determines how well a model is able to reconstruct
a given input.
Examples of this type are Dyna (Sutton [10]) and World Models (Ha and
Schmidhuber [11]).

Known models of the MDP dynamics are precise and accurate, however, they are
limited in their usage, due to the scope of the analytical solution of the environment.
Approaches with learned dynamics typically are confronted with the problem of
model uncertainty. In a lot of cases, it is also not possible to learn a model of the
complete dynamics, due to partial observability or non-stationarity. In addition,
there are other issues that have to be addressed such as stochasticity, possible
multi-step prediction, state-abstraction, and temporal abstraction as described in
Moerland et al. [12].

In MFRL algorithms, the agent is tied to the specific order of the state-action pairs
in which it visits them. Taking an action at in the state st leads to the next state
st+1, whereby this trace in the environment can only be queried again in the exact
same order. The RL agent has irreversible access to the MDP dynamics.

MFRL algorithms train the policy with the experiences given by its transitions and
rollouts and thus need a large number of interactions with the environment.

2.2.2 On-Policy and Off-Policy Reinforcement Learning
Model-free RL algorithms can be further divided into agents that learn on-policy
and agents that learn off-policy. The main difference between these two approaches
is the experience that is being used to optimize the policy.

• On-policy RL: Data collected with the most recent version of the policy is
used to train the agent (online).
This subgroup includes algorithms such as Trust Region Policy Optimization
(TRPO) (Schulman et al. [13]) and Proximal Policy Optimization (PPO)
(Schulman et al. [14]).
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• Off-policy RL: The collected experience is stored in a replay-buffer. This
allows replaying the data at any point during the optimization. Thus, the
available experience does also include trajectories sampled with older versions
of the policy.
Deep Q-Networks (DQN) (Mnih et al. [15]) and Categorical 51-Atom DQN
(C51) (Bellemare et al. [16]) are two prominent algorithms from this group.
Figure 2.4 depicts the off-policy reinforcement learning approach.

Replay Buffer

Critic NetworkActor Network

Off-Policy Agent Environment

interact with the environment
according to the agent's policy 

experience new transitions
and store to replay-buffer

sample stored experience
and train/optimize the agent

Figure 2.4: Model-free off-policy actor-critic reinforcement learning: The experience
is generated by the agent while interacting with the environment. It
is collected and stored in a replay-buffer. This replay-buffer allows the
agent to replay the data at any point during the policy optimization
process. The agent is realized in an actor-critic fashion, consisting of
two networks, one for the actor and the other for the critic respectively.

Both on- and off-policy reinforcement learning algorithms have their strengths
and weaknesses. Maintaining a replay-buffer is more sample efficient, but it only
indirectly optimizes the agent because of the transitions taken from previous policy
generations. On-policy RL algorithms directly optimize the agent but are less
sample efficient (Achiam [4]).

2.3 Policy Gradient and Actor-Critic Algorithms
RL policies are parameterized, as aforementioned and formalized in Equation 2.3.
The goal in reinforcement learning is to tune the parameters of the agent, or adjust
the policy accordingly, to maximize the expected sum of environment rewards, the
cumulative reward, J(πθ) (see Equation 2.5).
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Neural networks are a popular choice to represent the policy. NNs consist of a set
of computational neurons that can approximate arbitrary functions (Goodfellow et
al. [17], Schmidhuber [18]). This also includes nonlinear functions. The learning
process is done by optimizing the weights and biases that connect the neurons, using
training data from the interactions with the environment.

Policy gradient is one possible strategy to optimize the parameters. It executes a
direct gradient update on the policy by performing gradient ascent on θ

θt+1 ← θt + α ∇θJ (πθ)|θt , (2.14)

with ∇θJ(πθ) being the gradient of the policy’s performance.

This work focuses on locomotive and robotic control tasks with continuous and high
dimensional state and action spaces, which makes it essential to choose appropriate
RL algorithms. A common choice for this type of tasks are Deep Determinis-
tic Policy Gradient (DDPG) (Lillicrap et al. [19]), Twin Delayed DDPG (TD3)
(Fujimoto et al. [20]) and Soft Actor-Critic (SAC) (Haarnoja et al. [21]). All of
them are model-free, off-policy, and use policy gradient, as well as the particularly
salient actor-critic implementation to optimize their agent.

Actor-critic learning is an RL technique that learns a value or action-value function
(V π(s), Qπ(s, a)) in addition to the policy π. The policy represents the actor: It
makes decisions and predicts the best actions according to the current environment
state. The action-value function takes the role of the critic: It gives feedback,
comprising the value of the state-action pair that helps to lead the expected sum of
rewards to a maximum. Figure 2.4 shows the combination of actor and critic within
the off-policy agent.

The actor-critic RL technique has shown great performance (Achiam [4], Raffin [22],
Wang et al. [23]) and can be seen as a fusion between policy gradient and Q-learning.
Therefore, a subset, namely DDPG and SAC are explored in further detail in the
subsequent subsections below.

2.3.1 Deep Deterministic Policy Gradient
Deep Deterministic Policy Gradient is a model-free, off-policy reinforcement learning
algorithm, which simultaneously learns a deterministic policy µθ and a Q-function
value estimator (Achiam [4], Lillicrap et al. [19]).

Based on the Bellman Equation 2.12, DDPG learns to approximate the optimal
action-value function Q∗ (s, a) with its Q-function value estimator, which, in turn,
is used to learn and guide the policy towards a high cumulative reward4.

4The influence of Q-learning is clearly evident: If the optimal action-value function Q∗ (s, a) is
known, then the optimal action a∗ (s) can be found by solving a∗ (s) = arg maxa Q∗ (s, a).
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DDPG in its original implementation is particularly adapted for continuous action
spaces only. This allows computing the optimal action given a state to estimate the
value

max
a

Q (s, a) → Q (s, µ (s)) . (2.15)

Additionally to the actor-critic implementation, DDPG uses another RL technique,
namely target networks. Target networks are an exact copy of the original network,
but they are less frequently updated. They lag behind the original network, serving
as a stable target. In the further course of this work, the actor, or policy, is
parameterized by θ and the critic, or Q-function(s), by ϕ.

DDPG updates its targets utilizing polyak averaging according to

θtarg ← ρactorθtarg + (1 − ρactor)θ,

ϕtarg ← ρcriticϕtarg + (1 − ρcritic)ϕ,
(2.16)

where ρactor ∈ (0, 1) and ρcritic ∈ (0, 1) are the polyak coefficients for the actor and
critic respectively. They determine the amount of new information that should be
considered during the target update.

DDPG optimizes its Q-function by minimizing the Mean-Squared Bellman Error

LMSBE(ϕ, D) = E
(s,a,r,s′,d)∼D

�
Qϕ(s,a) − y(r, s′, d, a′)

�2
	

, (2.17)

with the target being

y(r, s′, d, a′) = r + γ(1 − d) max
a′ Qϕ(s′,a′). (2.18)

Because of the special self-consistency of the Bellman equations, it is possible to
learn in an off-policy manner. Regardless of the specific state-action pairs, the
Bellman equations should be satisfied.

The policy µθ is optimized by performing gradient ascent on

max
θ

E
s∼D

�
Qϕ


s, µθ(s)

�
, (2.19)

where the critic’s parameters ϕ are treated as constants.
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Since DDPG uses a deterministic policy, noise is added to the predicted actions of
the actor during training to ensure a balance between exploration and exploitation
of the state and action spaces. During evaluation, the noise is removed, which allows
for measuring the actor’s plain performance.

In DDPG, both the actor and the critic, as well as their target networks are
implemented with neural networks. The weights and biases of the critic are optimized
using stochastic gradient descent, according to

ϕ(t+1) ← ϕ(t) − αcritic∇ϕJcritic(ϕ), (2.20)

∇ϕJcritic(ϕ) = ∇ϕ
1

|B|
�

(s,a,r,s′,d)∈B

�
Qθ(s, a) − y(r, s′, d)

�2
, (2.21)

where y(r, s′, d) is the target value, which is computed with the target networks
resulting in

y(r, s′, d) = r + γ(1 − d)Qϕtarg


s′, µθtarg(s′)

�
. (2.22)

The policy is updated similarly using stochastic gradient ascent

θ(t+1) ← θ(t) + αactor∇θJactor(θ), (2.23)

∇θJactor(θ) = ∇θ
1

|B|
�
s∈B

Qθ


s, µθ(s)

�
. (2.24)

Algorithm C.1 depicts a pseudo-code implementation of DDPG.

2.3.2 Soft Actor-Critic
Soft Actor-Critic is a model-free, off-policy, and stochastic reinforcement learning
algorithm, implemented in an actor-critic fashion. It utilizes entropy regularization,
a squashing function, and the double-Q trick to ensure a robust learning process
(Achaim [4], Haarnoja et al. [21]).

Entropy regularization is one of the core features of SAC. As a measure of ran-
domness, it is closely related to the trade-off between exploration and exploitation,
whereby a higher entropy results in more exploration.

Let x be a random variable with probability mass or density function P , the entropy
H of x is computed from its distribution P according to
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H(P ) = E
x∼P

�
− log P (x)

�
. (2.25)

In SAC, the RL agent receives an extra reward at each timestep that is proportional
to the entropy of the policy at the current timestep5. Thus, the reinforcement
learning problem (see Equation 2.7) changes to

π∗ = arg max
π

E
τ∼π


N�

t=0
γt


R(st, at, st+1) + αH


π(·|st)

�	
, (2.26)

where α ∈ R+ denotes the entropy regularization coefficient. It is responsible for
the trade-off between encouraging exploration and return optimization.

The action-value function Qπ(s, a) also includes the entropy bonus for every timestep,
except for the first6. This can be formalized as

Qπ(s,a) = E
τ∼π


N�

t=0
γtR(st, at, st+1) + α

N�
t=1

γtH

π(·|st)

�����s0 = s, a0 = a

	
. (2.27)

Unlike DDPG, SAC learns two Q-functions instead of one and uses the smaller of
the two Q-values to form the target in the Mean-Squared Bellman Error

LMSBE(ϕi, D) = E
(s,a,r,s′,d)∼D

�
Qϕi

(s,a) − y(r,s′,d)
�2

	
, (2.28)

with the target being

y(r, s′, d) = r+γ(1−d)
�

min
j=1,2

Qϕtarg,j
(s′, ã′) − α log πθ(ã′|s′)

�
, with ã′ ∼ πθ(·|s′).

(2.29)

Using the smaller Q-value for the target and progressing towards that value, helps
to avoid overestimating the Q-function.

Additionally, SAC utilizes a squashing function, namely tanh(·), to compress the
output of the policy to the finite range (−1, 1). However, this also changes the

5Generally, this applies to all entropy-regularized RL algorithms.
6The entropy bonus is not added to the first timestep, since the first action can be arbitrary and

does not need to be according to the policy.



2 Background 2.3 Policy Gradient and Actor-Critic Algorithms 17

distribution of the policy output from being a factored Gaussian before the squashing
function, to a clipped, distorted Gaussian after the tanh(·).
The fourth trick being used in Soft Actor-Critic is called the reparameterization
trick. It allows bypassing the dependence of the expectation over actions on the
policy parameters as given by

E
a∼πθ

�
Qπθ(s, a) − α log πθ(a|s)


. (2.30)

SAC draws actions from the policy πθ(·|s) according to

µθ(s) + σθ(s) ⊙ ξ, with ξ ∼ N (0, I), (2.31)

where µθ(s) and σθ(s) denote measures for the mean and standard deviation of
the action, depending on the state and with respect to the policy parameters. ξ is
sampled from a Gaussian distribution.

Based on the preceding facts, an action ãθ(s, ξ), drawn from πθ(·|s), can thus be
notated as

ãθ(s, ξ) = tanh

µθ(s) + σθ(s) ⊙ ξ

�
. (2.32)

This allows to rewrite the expectation over actions into an expectation over noise,
finally bypassing the dependence on the policy parameters

E
a∼πθ

�
Qπθ(s,a) − α log πθ(a|s)


= E

ξ∼N

�
Qπθ


s,ãθ(s,ξ)

�
− α log πθ


ãθ(s,ξ)

���s�
, (2.33)

leading to the target according to which the policy is optimized

max
θ

E
s∼D,ξ∼N

 min
j=1,2

Qϕj


s,ãθ(s,ξ)

�
− α log πθ


ãθ(s,ξ)

���s�. (2.34)

During the training process, both critic networks are optimized using stochastic
gradient descent

ϕ(t+1) ← ϕ(t) − αcritic∇ϕJcritic(ϕ), (2.35)

∇ϕJcritic(ϕ) = ∇θ
1

|B|
�

(s,a,r,s′,d)∈B


Qθ(s, a) − y(r, s′, d)

�2
, for i = 1,2, (2.36)
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with the Q-function target, y (r, s′, d), according to Equation 2.29.

The policy is updated similarly using stochastic gradient ascent

θ(t+1) ← θ(t) + αactor∇θJactor(θ), (2.37)

∇θJactor(θ) = ∇θ
1

|B|
�

(s)∈B

�
min
i=1,2

Qϕi


s, ãθ(s)

�
− α log πθ


ãθ(s)

���s��
. (2.38)

Algorithm C.2 depicts a pseudo-code implementation of SAC.

2.4 Experience and Replay-Buffer
Experience replay is one of the core components of off-policy reinforcement learning
algorithms. The ability to store and reuse previous transitions proves to be sample
efficient and also enhances the stability of the training process (Sander et al. [2],
Fedus et al. [24]).

The experience from the interactions with the environment is stored in a replay-
buffer. This is usually implemented in the form of a ring buffer with a fixed
maximum number of stored transitions. When the buffer is full, the oldest transition
is overwritten, thus, a cycle is generated to guarantee a balance between old and
new data. This concept also takes into account that the agent perpetually explores
the environment with its actions, generating new data to learn with every single
interaction.

An important property of replay-buffers in combination with off-policy RL algorithms
is the possibility to use high update-to-data ratios (Chen et al. [25]). This allows
doing multiple policy updates per environment transition. Typically the number of
policy gradient steps per environment sample is 1 or 2. In most cases, however, the
replay-buffer contains a large number of transitions, even though they were generated
with older policy versions. The usage of higher update-to-data ratios without any
additional mechanisms generally results in unstable training behavior. However,
with appropriate mechanisms and algorithms, this works well and can improve the
sample efficiency of the learning process. Prominent examples, that make use of this
fact are Neighborhood Mixup Experience Replay (Sander et al. [2]), Randomized
Ensemble Double Q-Learning (REDQ) (Chen et al. [25]) and Model-Based Policy
Optimization (MBPO) (Janner et al. [26]).

In the context of the replay-buffer, there are several approaches that try to improve
the training process of reinforcement learning. A handful of promising examples
include Prioritized Experience Replay (PER) (Schaul et al. [27], Horgan et al. [28]),
n-step return (Sutton and Barto [5], Fedus et al. [24]), Neighborhood Mixup
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Experience Replay (Sander et al. [2]) and Hindsight Experience Replay (HER)
(Andrychowicz et al. [29]). Due to their strong performance in a wide range of con-
tinuous state and action locomotive and robotic environments, these RL algorithms
are briefly outlined below. HER is particularly noteworthy because it is one of a few
algorithms that can deal with sparse rewards, as described in Plappert et al. [30].

2.4.1 N-step Return
N-step return belongs to Temporal Difference (TD) learning and addresses the
question of how many steps to include in the value function estimation during an
update in Q-learning.

Considering the Bellman Equation 2.12, n-step methods target the Bellman backup,
i.e., the right-hand side of the equation. They determine how many steps per
update are to be included and range within the interval [1, ∞) ∈ N, or at least the
environment horizon.

1-step TD methods perform the update for each state using the next reward and
the estimated value of the next state as an approximation for the following rewards.
This can be generalized and denoted as

Gn
t = rt + γrt+1 + γ2rt+2 + ... + γnQπ(st+n, at+n). (2.39)

Monte Carlo (MC) methods, however, perform the update using the entire sequence
of rewards that are observed during a rollout. In this sense 1-step TD methods
can be thought of using shallow backups and MC methods using deep backups as
described in Sutton and Barto [5]. Figure 2.5 illustrates this difference.

1-step TD
and TD(0)

2-step TD

3-step TD

...

n-step TD ...

...

...
...

∞-step TD
and Monte Carlo

...

...

Figure 2.5: Backup diagrams of n-step methods. These methods range from
1-step TD methods to Monte Carlo methods. Adapted from
Sutton and Barto [5].
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2.4.2 Prioritized Experience Replay
Prioritized Experience Replay is based on the idea of differently important ex-
periences. It addresses the prioritization of important transitions, and thus the
more frequent selection of them. This is in contrast to standard sampling, which is
uniformly random.

Using PER, the probability P (n) of replaying a particular transition n from the
replay-buffer is proportional to its priority pn > 0 according to

P (n) = pα
n�

k pα
k

, (2.40)

where α denotes how much prioritization is used. α = 0 corresponds to the uniform
case, as described by Schaul et al. [27].

The priority pn is commonly set with respect to the magnitude of the transition’s
TD error δn and a small constant ϵ > 0, to ensure the possibility of resampling this
particular transition

pn = |δn| + ϵ. (2.41)

In Q-learning, the correlations of the observations are removed by sampling uniformly
random from the replay-buffer. Further, it is assumed that the optimal value
estimator is updated with data from the same distribution as the expectation. Using
PER changes this distribution in an uncontrolled fashion and may also establish
correlations in the state space. It introduces bias because it does not sample
transitions uniformly at random due to the sampling proportion corresponding to
the TD error (Schaul et al. [27]).

To circumvent this bias, PER utilizes importance sampling weights according to

wn =
� 1

N
· 1

P (n)

�β

, (2.42)

with N being the number of transitions used in an update and β denotes how
much to compensate for the non-uniform sampling. Choosing β = 1 results in full
compensation.

These weights are further utilized in the Q-learning update by using wnδn instead
of δn. Algorithm C.4 depicts a pseudo-code implementation of PER.
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2.4.3 Neighborhood Mixup Experience Replay
Neighborhood Mixup Experience Replay is a strategy for efficiently using experiences
stored in the replay-buffer of a model-free and off-policy RL agent. It creates locally
linear models around different transitions by interpolating between nearby samples
using mixup sampling (Sander et al. [2]).

Mixup sampling introduces new experiences as a linear combination of existing
transitions (Zhang et al. [1], Sander et al. [2]). They are generated according to

xinterpolated = λxsample + (1 − λ)xneighbor, (2.43)

where λ is sampled from a β-distribution or uniformly chosen from the interval [0, 1).
x represents each member of the transition quintuple, except for the terminal flag
dt, as they are all joined by the same factor.

NMER ensures the proximity of the transitions used in Equation 2.43, based on
their L2 distance, measured in the dimensions of the standardized state-action space,
further called z-space. Figure 2.6 depicts the z-space, as well as the neighborhood
around a sample transition.
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Figure 2.6: NMER nearest neighbors and mixup sampling. The nearest transi-
tion in the replay-buffer is chosen according to the nearest neighbors
in the z-space (standardized state-action coordinates). A new transi-
tion is created by interpolation using mixup sampling. Adapted from
Sander et al. [2], [3].

This replay strategy introduces new, unseen experiences to the agent and allows
the use of high update-to-data ratios without making the training unstable. In
addition, this mechanism can prevent the agent from overfitting to a particular
transition outcome. By using different nearest neighbors, near identical inputs
produce different outcomes (Sander et al. [3]).

Algorithm C.5 depicts a pseudo-code implementation of NMER.
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2.4.4 Hindsight Experience Replay
Hindsight Experience Replay follows the approach of Universal Value Function
Approximators (Schaul et al. [31]) and optimizes a model-free, off-policy agent to
achieve multiple different goals7. This presupposes that the policies and action-value
functions additionally take a goal g ∈ G as input, which can be formalized as
π : S × G → A and Q : S × G × A → R respectively.

HER assumes that each goal g ∈ G corresponds to a predicate fg : S → {0, 1},
whereby it is the agent’s goal to get to any state that satisfies fg(s) = 1. Further,
this can be generalized into a mapping from states to goals

m : S → G s.t. ∀s∈S fm(s)(s) = 1, (2.44)

to find a goal g according to a given state s that yields in fg(s) = 1.

Hindsight Experience Replay can be combined with any off-policy RL algorithm, as
long as it maintains a replay-buffer. Additionally to storing the experience generated
by the agent while interacting with the environment, HER also stores the same
experience with a subset of different goals. This procedure proves to be valid, since
the intended goal influences the agent’s actions, but not the MDP dynamics of the
environment.

A crucial design parameter of HER is the set of additional goals used for the
experience replay. Following the simplest version of HER, each member of a rollout
gets assigned the goal that is achieved in the final state of this very episode, as
explained by Andrychowicz et al. [29].

Algorithm C.6 depicts a pseudo-code implementation of HER.

2.5 MDP Dynamics Model
The following section covers model-based reinforcement learning with learned models.
Here, a model of the environment is learned in the course of the training process
and further represented as a neural network.

Generally, learning a model of the environment’s MDP dynamics is a supervised
learning problem. It is based on learning transitions from observed data. Given
the transition quintuple {st, at, st+1, rt, dt}, the model learns to predict the next
state st+1 starting from the current state st and taking action at. Additionally, it
is assumed that the reward function is unknown and, therefore, is also predicted
as a function of the current state and action. The resulting forward model can

7This also includes the special case, where there is only one goal.
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be formalized as M : S × A → S × R. For the scope of this thesis, the terminal
function is considered to be known. Hence, dt does not need to be predicted by the
model.

A common choice to implement the model of the MDP dynamics is a neural network.
This mainly stems from the fact that NNs learn quickly and impress with outstanding
performance (Janner et al. [26], Nagabandi et al. [32], Chua et al. [33]). Another
quite popular possibility to represent the environment dynamics are Gaussian
Processes (GPs) (Sutton and Barto [5], Wang et al. [34], Gadd et al. [35]), even
though they are not considered in the context of this thesis.

In the remainder of this work, the environmental model structure as proposed in
Model-Based Policy Optimization (Janner et al. [26]) is utilized as a base framework
to compare.

2.5.1 Model-Based Policy Optimization
Model-Based Policy Optimization (Janner et al. [26]) is a model-based, off-policy RL
algorithm that uses SAC to optimize its policy. Additionally, it utilizes probabilistic
neural networks as an MDP dynamics model, which outputs a parameterized
Gaussian distribution with diagonal covariance. This can be formalized as

M(·|st, at) = N

µ(st, at),

�
(st, at)

�
, (2.45)

resulting in

�st+1, �rt ∼ M(·|st, at), (2.46)

where µ denotes the mean value, � refers to a diagonal covariance matrix and �st+1,�rt are the predicted next states and the associated rewards.

MBPO is designed and implemented, to deal with the problem of model uncertainty.
On the one hand, it accounts for aleatoric uncertainty, which is the noise in the
outputs with respect to the inputs. On the other hand, it addresses the problem
of epistemic uncertainty, or the uncertainty in the model parameters, which is
particularly dominant in regions where data is scarce.

To cope with the latter problem, the dynamics model of MBPO utilizes a bootstrap
ensemble of neural networks M = {M1, ..., Mn}, whereby any model of the ensemble
members is selected uniformly at random to make a prediction. This allows sampling
transitions from different dynamics models during a single rollout.
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The probabilistic settings of each individual member of the bootstrap ensemble
account for the aleatoric uncertainty.

Replay Buffer

Critic NetworkActor Network

Soft Actor-Critic Agent Environment

interact with the environment
according to the agent's policy 

experience new transitions
in the real environment
and store to replay-buffer

sample stored real experience
and train/optimize the agent

(real experiences)

Replay Buffer
(virtual experiences)

Environment Model
sample stored real experience
and train/optimize/rollout the
environment model

experience new transitions
in the virtual environment
and store to replay-buffer

sample stored virtual experience
and train/optimize the agent

st
an

da
rd

 m
od

el
-f

re
e,

 o
ff
-p

ol
ic

y 
ap

pr
oa

ch
M

B
PO

 e
xt

en
si

on
Figure 2.7: Model-Based Policy Optimization: The experience, generated by the

agent while interacting with the environment, is collected and stored
in a replay-buffer. Based on this data, the model of the environment’s
MDP dynamics is optimized. This model is used to perform virtual
rollouts, starting from a set of arbitrary real states. During the agent’s
optimization routine, real and virtual experiences are used.

Model-Based Policy Optimization utilizes its MDP dynamics model to generate
artificial rollouts. MBPO starts from real states, sampled from the replay-buffer,
and performs many short horizon rollouts to circumvent large cumulative errors
from extended virtual trajectories. This strategy yields a large amount of additional
experience that can be used in the SAC policy optimization routine. In fact, it allows
taking many more policy gradient steps per real environment sample than is typically
stable in model-free RL algorithms. Typically the number of policy gradient steps
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per real environment sample is 1 or 2, whereby MBPO uses between 10 and 40
(Sutton and Barto [5], Chen et al. [25], Janner et al. [26]). Figure 2.7 schematically
depicts the implementation and inner processes of MBPO and Algorithm C.3 shows
a pseudo-code implementation.

2.6 Unsupervised Learning
Unsupervised learning is another important branch of machine learning besides RL.
It is used to detect patterns and structures in unlabeled data. The most popular
unsupervised learning algorithm is clustering, wherein data points are grouped into
different sets or clusters based on their degree of similarity.

On a higher-level description, the various types of clustering are hierarchical clus-
tering and partitioning clustering. The first one uses tree-like structures and can
be further divided into agglomerative and divisive approaches. Figure 2.8 shows a
visual representation of both methods.

• Agglomerative clustering is a bottom-up approach. It starts by splitting
the dataset into singleton nodes, sequential merging them into bigger nodes
based on their mutual distance, until there is only one node left, representing
the entire dataset (Müllner [36]).

• Divisive clustering is a top-down approach. Initially, the entire dataset
belongs to one single node. Moving down the hierarchy, splits are performed
until the dataset is partitioned into singleton nodes (Roux [37]).
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Figure 2.8: Hierachical clustering dendrogram: Agglomerative clustering (blue) as
a bottom-up approach and divisive clustering (orange) as a top-down
approach. Adapted from Roux [37].
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Partitioning clustering classifies the information within the data into multiple
groups right from the beginning. These groups are based on the characteristics and
similarity of the data, where each partition represents a cluster and its particular
region. Depending on the clustering algorithm, the number of partitions can either
be computed or chosen by the user. Prominent examples of these unsupervised
learning algorithms are k-Means (Agarwal et al. [38], Arthur and Vassilvitskii [39])
and k-Medoids (Newling and Fleuret [40]). This work sets its focus on the k-Means
algorithm, which will be outlined further.

2.6.1 k-Means
The k-Means problem is to find a set C with |C| = k cluster centers cc ∈ Rd and
their associated partitions of the finite dataset X ⊆ Rd, with d denoting the numbers
of features. The cluster centers follow the objective function

min
�
x∈X

������f(C, x) − x
������2, (2.47)

where f(C, x) returns the nearest cluster center cc ∈ C to x, measured with the
Euclidean distance (Sculley [41]).

The most popular implementation of k-Means is Llolyd’s algorithm (Lloyd [42]). It
consists of an assignment step and an update step, which are executed alternately.
In the update step, each cluster center cc is set to the mean of the partition assigned
to it. During the assignment step, the centers are frozen and each new data point is
assigned to its nearest cluster center. Llolyd’s algorithm is considered to be a local
algorithm, where distant centers do not affect each other. Therefore, it has a tendency
to terminate in poor minima if not well initialized (Newling and Fleuret [40]).

This work is primarily concerned with the field of reinforcement learning. Therefore,
already existing implementations of the k-Means algorithm, provided by and based
on the scikit-learn library from Pedregosa et al. [43], are utilized. For a detailed ex-
amination of the initialization method, reference is made to more in-depth literature
(Arthur and Vassilvitskii [39], Newling and Fleuret [40]).



3 Related Work
The previous chapter covers all methods, algorithms, and software components
that are utilized in this thesis. Further, their basic components and derivations
are described and a possible classification of reinforcement learning is included. In
contrast, other approaches from the field of RL, especially concerning model-based
RL, are explained in this chapter. Since they are not implemented in this work,
they are not discussed in the same detail.

Starting with model-based reinforcement learning and its various applications, the
joint usage of MBRL and model-free RL, also known as hybrid approach, is addressed.
In the subsequent course, different combinations of MBRL with planning aspects
are described. At the end, possible problems regarding model-based reinforcement
learning are discussed, followed by a final section on Randomized Ensemble Double
Q-Learning (Chen et al. [25]), a promising, fast learning and model-free RL
algorithm.

Although model-based RL has shown great potential in recent years, this strategy
dates back quite a while, e.g. Miller et al. [44] and Schmidhuber [45]. In general,
MBRL has many possible advantages compared to model-free reinforcement learning
approaches. The main focus of this context is on sample efficiency, planning aspects,
and the ability to generalize to new tasks in the environment, without having to
retrain the agent (Whitney and Fergus [46]).

These benefits arise from the accessibility of a model of the MDP dynamics, which,
in turn, is associated with additional implementation effort and computational
power. Maintaining such a model allows the generation of artificial rollouts and
transitions without interacting with the environment. Regardless of the MBRL type
(learned or known model), this proves to be sample efficient since the majority of
the training data can be generated synthetically (Sutton and Barto [5], Kaelbling et
al. [47], Buckman et al. [48]).

Janner et al. [26] and Deisenroth and Rasmussen [49] are both examples that
utilize an MDP dynamics model to train an agent and significantly reduce the
interactions with the environment. They only use a handful of real experiences
to train a dynamics model, which generates up to 95% of the training data for
the agent. This allows increasing the policy gradient steps per environmental step
beyond a point that is typically unstable in model-free RL. Hence, they solve
the task faster than traditional MFRL algorithms in terms of steps taken in the
environment. Even so, the wall time (the actual time taken from the start of the

27
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training process to the end) of the entire process is poor, due to the frequent need
to refit the MDP dynamics model. In contrast, our LCER approach also generates
synthetic experiences from which the agent learns. However, this is done without
the additional need for a dynamics model. LCER and its two variants, LCER-CC
and LCER-RM, interpolate between adjacent transitions in the replay-buffer. This
allows the creation of new and unseen transitions, and further, increasing the policy
update ratio with a reduced risk of unstable training behavior.

Nagabandi et al. [32] is another model-based RL approach with promising results.
They utilize a neural network as their dynamics model for robotic tasks and use
it in tandem with the real environment to take actions. In addition to a standard
model-free policy, a second model-based policy is trained, based on the MDP model,
and further utilized to accelerate the training of the model-free policy with imitation
learning concepts.

Besides neural networks, other options to represent MDP dynamics models are
Bayesian Neural Networks (BNNs) and Gaussian Processes. Depeweg et al. [50] is a
representative of the former. They utilize a BNN that includes additional stochastic
input variables to capture statistical patterns within the model dynamics. This
model is combined with stochastic optimization for policy learning and obtains
promising results in real-world scenarios and an industrial benchmark.

One disadvantage of BNNs is their computational complexity. This can be intensive,
especially when compared to traditional feed-forward neural networks. Another
drawback is the model selection. It involves choosing appropriate values for various
hyperparameters such as priors and posterior functions (Jospin et al. [51]). LCER
is an extension for replay-buffers of off-policy RL algorithms. Therefore, it is not
limited to any particular policy structure. However, in this work, we refrain from
using BNNs to avoid the problems mentioned above and focus on the essential
features.

Gaussian Processes are non-parametric models, that are a popular approach with
the benefit of low sample complexity and the ability to explicitly represent epistemic
uncertainty. Consequently, they are becoming more and more widely used. Successful
representatives of model-based RL with GPs are Wang et al. [34], Deisenroth
and Rasmussen [49] and Kocijan et al. [52]. Gadd et al. [35] use GPs with
increased depth to rise the model capacity and, in turn, the model complexity. They
also incorporate prior knowledge of the dynamics to further improve performance
concerning smoothness and structure. In addition, this approach addresses the
problem of accumulating model errors and inaccuracies during virtual rollouts, which
are exclusively executed on the MDP dynamics model.

A drawback of the MBRL approach with GPs, is the inevitable choice of a kernel,
which might not scale to large and high-dimensional data settings. This also leads to
potentially severe smoothing constraints and limits the asymptotic performance of
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the model. In comparison, LCER is designed to work with both small and large data.
For small sets, the benefit of local interpolation is exploited, whereas, for large sets,
clustering provides additional advantages. Further, the local interpolation mecha-
nism utilizes mixup sampling, which facilitates the processing of high-dimensional
data.

In general, a combination of model-based and model-free methods turns out to be
very auspicious. Model-based RL algorithms are sample efficient and model-free RL
methods are superior regarding the asymptotic performance (Nagabandi et al. [32],
Chua et al. [33]). Several approaches have proposed to learn the MDP dynamics
model using a handful of real rollouts and further utilize the model to train a
model-free policy (Janner et al. [26], Nagabandi et al. [32]).

The joint combination of MBRL and MFRL is also commonly used in the field
of planning, where trajectories are calculated (planned) and optimized before
interacting with the environment. These trajectories are utilized to solve the
given task. Generally, this domain strongly benefits from model-based RL. The
MDP dynamics model can be used to calculate the optimal trajectories, without
the need to interact with the real environment. Chua et al. [33] and Deisen-
roth and Rasmussen [49] are prominent approaches that incorporate MBRL in
the planning domain. The latter maintains a GP model to train a Radial Bias
Function (RBF) network policy using the conjugate gradient method or the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Chua et al. [33]
utilize an ensemble of neural network models to represent the MDP dynamics and
generate optimal trajectories with the help of Model Predictive Control (MPC).
Maintaining an ensemble of dynamics models accounts for epistemic uncertainty, or
the uncertainty in the model parameters, which is particularly dominant in regions
where data is scarce.

These planned trajectories or rollouts can further be used to train a model-free
RL policy. Levine et al. [53] fit locally linear models around rollouts and train
a neural network policy to follow trajectories, which are found by an iterative
Linear Quadratic Regulator (iLQR) (Todorov and Li [54]). Silver et al. [55] learn
an implicit model of the dynamics for implicit planning via value estimation and
Tamar et al. [56] utilize value iteration networks that can learn to plan and are
suitable for predicting outcomes that involve planning-based reasoning. The concept
of training a fast reactive (deep neural network) and a slow, non-reactive policy,
that can plan multiple steps ahead, in compound, is also used by Sun et al. [57]
and analyzed with a focus set on convergence.

As the previous examples show, planning methods using model-based RL are
very popular. In this context, algorithms with simple planners have emerged
and shown great performance. Especially model predictive or receding horizon
control (Mayne and Michalska [58]) is widely used. Ranging from replacing the
standard PI controller in chemical processes (Draeger et al. [59]), through control
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strategies of existing thermoelectric power plants (Grancharova et al. [60]), up to a
differentiable policy class for reinforcement learning in continuous state and action
spaces (Amos et al. [61]).

Another, simple planning algorithm that is commonly used in combination with
model-based RL is the Cross Entropy Method (CEM) (Botev et al. [62]). CEM
approximates the optimal importance sampling estimator. It works with two
probability distributions, where one acts as the working distribution and the other
one as the target. Samples are drawn from the working distribution in order
to minimize the cross entropy with respect to the target distribution to produce
better samples. Pourchot and Siguad [63] utilize this method in combination with
Twin Delayed DDPG to achieve great performance on robotic locomotive control
tasks. They use the experiences, generated from planned rollouts, to train the TD3
algorithm. Chua et al. [33] is another prominent example. They utilize CEM in
their implementation, which serves as the basis for their MPC. It exclusively acts
in the virtual world, provided by an ensemble of MDP dynamics models.

All of the above-mentioned MDP dynamics models have in common that they need
to deal with a variety of model errors. Typical problems are model uncertainty,
model bias, and the lack of real data to learn a complete model of the dynamics
(Moerland et al. [12]). This is also true for the planning domain, especially, where
the task is learned based on trajectories generated by a planning algorithm. Here, it
is essential for the agent to also experience bad actions, to understand which actions
are better and which actions are worse. This issue is demonstrated and addressed
by Gu et al. [64]. They utilize their own off-policy algorithm, called Normalized
Advantage Functions (NAF), which is a variant of Q-learning, and combine it with
an iterative Linear Quadratic Gaussian (iLQG) planner.

As a result of these additional problems, inevitably associated with maintaining an
MDP dynamics model of the environment, other strategies to cope with the sample
inefficiency of model-free algorithms have emerged. Chen et al. [25] achieve great
performance on continuous control tasks with their implementation of Randomized
Ensemble Double Q-Learning. They utilize a Soft Actor-Critic algorithm with
an ensemble of critics, allowing them to raise the number of policy updates per
environment step to values that normally yield unstable training. Their results are
comparable to state-of-the-art model-based approaches, due to the high update-to-
data ratio.

One disadvantage of REDQ, however, arises from its core feature, the ensemble
of critics. It requires individual updates of each member and leads to increased
computation and poor wall time. The use of LCER circumvents the necessity of
additional critics to ensure a stable training behavior. The utilized interpolation
strategy allows both variants, LCER-CC and LCER-RM, to generate new and
unseen transitions, reducing the risk of overfitting and unstable training.



4 Local Cluster Experience Replay
We combine the components described in Chapter 2 to create Local Cluster Ex-
perience Replay (LCER). LCER is an extension for replay-buffers to increase the
sample efficiency of off-policy reinforcement learning algorithms. It is inspired by
and therefore has a close connection to the implementation of Neighborhood Mixup
Experience Replay (NMER).

The goal is to reduce the number of required interactions with the environment to
maximize the per-step reward and, in turn, the cumulative reward. At the same
time, the additional overhead in terms of implementation effort and computational
power should be kept at a minimum.

In order to cope with these requirements, LCER is designed as a wrapper around
the standard replay-buffer. Figure 4.1 depicts a schematic representation of LCER
and its two variants Local Cluster Experience Replay Cluster Center (LCER-CC)
and Local Cluster Experience Replay Random Member (LCER-RM).

The same figure also shows the introduction of k-Means clustering and mixup
sampling to the replay-buffer, which is the main idea of LCER. Further, it can be
seen that we use Soft Actor-Critic RL agents. This reinforcement learning algorithm
is chosen, due to its strong performance across a wide range of applications and
environments (Achiam [4], Haarnoja et al. [21], Wang et al. [23]).

In this chapter, starting with the idea, the implementation of LCER is described.
Section 4.1 covers LCER-CC and Section 4.2 describes LCER-RM, which are both
variants of LCER. The necessary extension to use Local Cluster Experience Replay
with HER is part of Section 4.3 and at the end, the relationship to NMER, as well
as mixup sampling and the utilized local, linear interpolation are discussed.

4.1 Local Cluster Experience Replay Cluster Center
Local Cluster Experience Replay introduces k-Means clustering and mixup sampling
to the replay-buffer of off-policy RL algorithms. LCER-CC forms clusters within the
replay-buffer and interpolates new, unseen transitions between sampled transitions
and their assigned cluster centers. Conceptually, LCER-CC creates locally linear
models between different transitions in the replay-buffer and their associated cluster
centers.
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Figure 4.1: LCER and its two variants LCER-CC and LCER-RM. The experi-
ence, generated by the agent while interacting with the environment, is
collected and stored in a replay-buffer. To train the agent, a sample tran-
sition is randomly chosen from the replay-buffer and assigned to a cluster
in the z-space (standardized state-action coordinates). LCER-CC: A
new transition is created by interpolation between the sample transition
and its assigned cluster center, using mixup sampling. LCER-RM: A new
transition is created by interpolation between two transitions from the
same cluster as the sample transition belongs to, using mixup sampling.
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The usage of clustering algorithms to identify and group adjacent transitions within
the replay-buffer allows the handling of even large buffers. Clustering algorithms can
divide the data into smaller, more manageable groups, allowing them to process the
samples faster and more efficiently. In addition, LCER does not rely on a ranking
of nearest transitions, which favors grouping by clustering.

LCER-CC utilizes mini-batch k-Means as the underlying cluster algorithm. It is a
variation of the standard k-Means method that enables online clustering. As such,
mini-batch k-Means is designed to process data in a stream-like fashion. Small
batches of input data are used to partially update the clusters and their centers.
Similar to vanilla k-Means, mini-batch k-Means alternates between two steps, which
are repeated until convergence, or a maximum of iterations is reached.

1. In the first step, random samples are drawn from the dataset and mini-batches
are formed.

2. In the second step, the cluster centers are updated.

In contrast to standard k-Means, this is done on a per-sample basis. For each sample
in the mini-batch, the associated cluster center is updated by taking the running
average of all previously assigned samples and the new sample. This decreases the
rate of change for a cluster center over time (Pedregosa et al. [43]). Algorithm C.7
depicts a pseudo-code implementation of the utilized mini-batch k-Means method.

The clustering for LCER is done in the dimensions of the standardized (zero mean,
unit variance) state-action space, further called z-space. This guarantees to group
transitions with similar inputs and addresses the problem of changing environment
states and corresponding policy actions over time. It is also designed to keep the
additional computational overhead as low as possible. Figure 4.2 schematically
depicts the clusters within the z-space.
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Figure 4.2: LCER clusters in the state-action space.
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From a conceptual point of view, the implementation of LCER-CC consists of two
major steps.

1. In the cluster update step, a batch of new environment transitions is added
to the replay-buffer. These are utilized to

a) update the running average µz and standard deviation σz that are used
to standardize states and actions.

b) update the mini-batch k-Means algorithm, utilizing the standardized
states and actions.

c) update the data structures to calculate the running averages µ(lc) and
standard deviations σ(lc) for all clusters containing all members of an
environment transition quintuple, except for the terminal flag dt

µ(lc) ← MEAN(sb, ab, rb, s
′
b),

σ(lc) ← STD(sb, ab, rb, s
′
b),

(4.1)

where the subscript b represents the batch of new environment transitions
and lc denotes the corresponding cluster label.

The cluster update step is typically done at the end of an episode rollout.

2. The cluster sampling step is performed right before the update step of the
RL policy and is used to provide a batch of training samples Btrain from the
replay-buffer. LCER-CC performs the following steps for this purpose

a) Sample a batch B uniformly at random from the replay-buffer D,

B iid∼ U (D). (4.2)

b) Standardize states and actions of the sampled transitions (zero mean,
unit variance).

c) Query the associated cluster labels lc for each sampled transition in the
batch B, utilizing the mini-batch k-Means algorithm1.

d) Query associated running averages µ(lc) and standard deviations σ(lc),
based on the cluster labels.

1The utilized mini-batch k-Means implementation does not store and update the associated
cluster labels for each cluster member. Thus, this step is necessary, but may be omitted with
other implementations.
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e) Calculate cluster centers xcc for all components of an environment transi-
tion

xcc = µ(lc) + α N (0, 1) σ(lc), (4.3)

where α ∈ R+ denotes a weighting factor. This step is significant because,
in addition to moving the cluster centers during the cluster update step,
it superimposes extra noise, which emphasizes exploration.

f) For each transition in the batch B sample a mixup coefficient λ ∼ U [0, 1)
and interpolate between the sampled transition and the corresponding
cluster center xcc

xi = λxcc + (1 − λ)xs. (4.4)

g) Add the interpolated samples xi to the training batch Btrain and return
Btrain.

Algorithm 4.1 depicts these steps as pseudo-code. Figure 4.3 gives a schematic,
visual representation of LCER-CC, whereby the focus is set on the clustering and
the interpolation.
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Figure 4.3: LCER-CC clusters and mixup sampling. The sample transition is ran-
domly chosen from the replay-buffer and assigned to a cluster in the
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Algorithm 4.1 Local Cluster Experience Replay Cluster Center (LCER-CC).
1: Input: off-policy RL algorithm A (e.g. DDPG, SAC), replay-buffer D, maximum

timesteps T , horizon N , mini-batch k-Means object KMO, arrays µ and σ for running
averages and standard deviations, hyperparameter α ∈ R+ and counter n

2: Initialize A, replay-buffer D, k-Means object KMO, µ, σ and counter n = 0
3: Observe initial state s0
4: for t = 0, T − 1 do
5: Choose action at ∼ πθ(st)
6: Observe st+1, rt, dt and store transition (st, at, rt, st+1, dt) in D
7: Increase counter n
8: if (t mod N = 0) ∨ (dt = true) then
9: Update ZScore with state and actions, ZScore(st−n:t, at−n:t)

10: Standardize states and actions

(�st−n:t, �at−n:t) ← ZScore(st−n:t, at−n:t)

11: Update clusters with standardized states and actions, KMO(�st−n:t, �at−n:t)
12: Update running averages µ(lc) and standard deviations σ(lc)

µ(lc) ← MEAN(st−n:t, at−n:t, rt−n:t, st+1−n:t+1)
σ(lc) ← STD(st−n:t, at−n:t, rt−n:t, st+1−n:t+1)

13: Reset counter n = 0
14: end if
15: if it’s time to update then
16: for however many updates do
17: Sample batch B uniformly from replay-buffer, batch size K

B =
�

(sk, ak, rk, s
′
k)

�K

k=1

iid∼ U (D)

18: Standardize states and actions of sampled transitions

(�sk, �ak) ← ZScore(sk, ak), ∀sk, ak ∈ B

19: Get associated cluster labels lc ← KMO(�sk, �ak)
20: Get associated running averages (slc , alc , rlc , s

′
lc

) ← µ(lc)
and standard deviations (slc , alc , rlc , s

′
lc

) ← σ(lc)
21: Determine cluster centers

xcc = (slc , alc , rlc , s
′
lc) + α N (0, 1) (slc , alc , rlc , s

′
lc)

22: Sample mixup coefficient λ ∼ U [0, 1)
23: Interpolate sampled transitions xs and cluster centers xcc

xi = λxcc + (1 − λ)xs

24: Add interpolated samples xi to training batch Btrain ← xi

25: end for
26: end if
27: end for
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4.2 Local Cluster Experience Replay Random Member
Similar to LCER-CC, LCER-RM also forms clusters within the replay-buffer. How-
ever, it utilizes a standard and Graphics Processing Unit (GPU) accelerated k-Means
algorithm. LCER-RM randomly samples two transitions from the same cluster as
the sampled transition and interpolates between them to generate new and unseen
transitions. In the same way, as with LCER-CC, locally linear models between
different transitions in the replay-buffer are created.

LCER-RM is designed to prevent possible disadvantages of LCER-CC. Unlike
LCER-CC, LCER-RM recalculates the clusters in each cluster update step. This
overcomes the problem of a potentially worse fit of the clusters by only being
adjusted. LCER-RM also mitigates the problem of the one-directional interpolation
towards the cluster center only, as well as the need to keep a reference of data
structures used to calculate the running averages µ(lc) and standard deviations σ(lc).

The implementation of LCER-RM consists of two major steps.

1. In the cluster update step, a batch of new environment transitions is added
to the replay-buffer. These are utilized to

a) update the running average µz and standard deviation σz that are used
to standardize states and actions.

b) update the k-Means algorithm and recalculate the clusters, utilizing the
standardized states and actions of the entire replay-buffer.

This step is typically done at the end of an episode rollout.

2. The cluster sampling step is performed right before the update step of the
RL policy and is used to provide a batch of training samples Btrain from the
replay-buffer. LCER-RM performs the following steps for this purpose

a) Sample a batch B uniformly at random from the replay-buffer D,

B iid∼ U (D). (4.5)

b) Standardize states and actions of the sampled transitions (zero mean,
unit variance).

c) Query the associated cluster labels for each sampled transition in the
batch B, utilizing the k-Means algorithm.
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d) Randomly chose two transitions, xcm1 and xcm2, from the same cluster
as each sampled transition in the batch B, utilizing the cluster labels2.

e) For each transition in the batch B sample a mixup coefficient λ ∼ U [0, 1)
and interpolate between the two previous chosen transitions

xi = λxcm2 + (1 − λ)xcm1. (4.6)

f) Add the interpolated samples xi to the training batch Btrain and return
Btrain.

Algorithm 4.2 depicts these steps as pseudo-code. Figure 4.4 gives a schematic,
visual representation of LCER-RM, whereby the focus is set on the clustering and
the interpolation.
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Figure 4.4: LCER-RM clusters and mixup sampling. The sample transition is
randomly chosen from the replay-buffer and assigned to a cluster in
the z-space (standardized state-action coordinates). A new transition is
created by interpolation between two randomly chosen transitions from
the same cluster as the sample transition, using mixup sampling.

2Randomly choosing two transitions mitigates the problem of choosing the same transition
multiple times.
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Algorithm 4.2 Local Cluster Experience Replay Random Member (LCER-RM).
1: Input: off-policy RL algorithm A (e.g. DDPG, SAC), replay-buffer D, maximum

timesteps T , horizon N , k-Means object KMO and counter n
2: Initialize A, replay-buffer D, k-Means object KMO and counter n = 0
3: Observe initial state s0
4: for t = 0, T − 1 do
5: Choose action at ∼ πθ(st)
6: Observe st+1, rt, dt and store transition (st, at, rt, st+1, dt) in D
7: Increase counter n
8: if (t mod N = 0) ∨ (dt = true) then
9: Update ZScore with state and actions, ZScore(st−n:t, at−n:t)

10: Standardize states and actions of entire replay-buffer D

(�s, �a) ← ZScore(s, a), ∀s, a ∈ D

11: Update clusters with standardized states and actions, KMO(�s, �a)
12: Reset counter n = 0
13: end if
14: if it’s time to update then
15: for however many updates do
16: Sample batch B uniformly from replay-buffer, batch size K

B =
�

(sk, ak, rk, s
′
k)

�K

k=1

iid∼ U (D)

17: Standardize states and actions of sampled transitions

(�sk, �ak) ← ZScore(sk, ak), ∀sk, ak ∈ B

18: Get associated cluster labels lc ← KMO(�sk, �ak)
19: Randomly choose two transitions per cluster label lc

xcm1 = (s1, a1, r1, s
′
1) ← D(lc), xcm2 = (s2, a2, r2, s

′
2) ← D(lc)

20: Sample mixup coefficient λ ∼ U [0, 1)
21: Interpolate previous chosen transitions xcm1 and xcm2

xi = λxcm2 + (1 − λ)xcm1

22: Add interpolated samples xi to training batch Btrain ← xi

23: end for
24: end if
25: end for
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4.3 Local Cluster Experience Replay and Hindsight
Experience Replay

Hindsight Experience Replay presupposes the additional input of a goal in the
policies and action-value functions, see Section 2.4.4. LCER takes this into account
by including the goal in the z-space. This increases the dimensions of the clustering
from the standardized state-action coordinates to the standardized state-goal-action
coordinates.

Further, concerning LCER-CC, the data structures to calculate the running averages
µ(lc) and standard deviations σ(lc) for all clusters and all components of environment
transitions (see Equation 4.1) also need to be extended

µ(lc) ← MEAN(sb, gb, ab, agb, s
′
b, ag

′
b),

σ(lc) ← STD(sb, gb, ab, agb, s
′
b, ag

′
b),

(4.7)

where gb and agb denote the goal and the achieved goal, respectively.

This provides all the additional components needed to use LCER in combination
with HER.

4.4 Local Cluster Experience Replay and
Neighborhood Mixup Experience Replay

LCER is closely related to NMER, although there are clear differences in the
utilized methods. NMER uses the L2 distance, measured in the dimensions of the
standardized state-action space, to compute the nearest neighbors and to ensure
the proximity between transitions in the replay-buffer, see Section 2.4.3. LCER,
in contrast, provides the same characteristic by utilizing k-Means clustering. This
applies to both LCER-CC and LCER-RM.

Although the k-Means clustering used in LCER is also based on the L2 distance
between two transitions, it offers two significant advantages in its application and
processing. The k-Nearest-Neighbor (k-NN) algorithm requires a lot of compu-
tational power to calculate and sort the distances to all transitions in the buffer.
This is true, even if it is done only once per environmental episode. LCER-CC
utilizes mini-batch k-Means, a special variant for stream-like input data, to reduce
the computational overhead. Here, only the L2 distances to the existing cluster
centers, which are fixed in number, have to be calculated. Even with the additional
need to refit the cluster centers, mini-batch k-Means is significantly faster than the
standard k-NN approach. LCER-RM, in contrast, benefits from a standard but
GPU accelerated k-Means variant, which is responsible for the fast computation.
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The second advantage of using k-Means instead of the k-NN algorithm stems from
the additional introduced exploration. NMER utilizes a pool of the first few nearest
neighbors (typically 5 to 10)3, from which an interpolation partner is randomly
chosen. LCER-RM, on the other hand, provides clusters that contain only proximal
transitions. Thus, the number of participants in the pool increases towards the
number of members in the cluster. LCER-CC achieves this behavior by always
interpolating towards the cluster center. Due to the periodic refit of the centers and
the additional application of noise, an increased exploration is ensured.

Figure 4.1 schematically depicts the implementation and inner processes of both
LCER variants, LCER-CC and LCER-RM.

4.5 Mixup Sampling and Local, Linear Interpolation
In this final section, the combination of clustering with mixup sampling and local
linear interpolation is discussed. The need for adjacent transitions and the continuous
state and action spaces used with advantage are addressed. Furthermore, potential
situations where the presented strategy may have problems are described, as well as
how LCER deals with them.

Mixup sampling is an interpolation mechanism used to improve the generalizability
of a reinforcement learning agent. It generates interpolated samples by taking convex
combinations of previously experienced transitions, which can be used to support
the policy. Further, mixup sampling assumes that linear combinations of adjacent
state-action pairs result in the same linear combinations of the corresponding reward
and next state pairs. This assumption is known as a prior (Sander et al. [2]).

This assumption, or prior, is exploited in LCER, which only interpolates between
samples within the same cluster. The assignment for each transition sample to its
corresponding cluster is done during the cluster update step in the standardized
dimensions of the state-action space and ensures close proximity in the z-space.
Invoking the prior, the interpolation concept of LCER starts from similar initial
pairs in the z-space, and thus, in turn, leads to similar pairs of rewards and next
states.

In this work, only agents with continuous state and action spaces are considered.
This fact benefits the prior, which, although strong in some settings, is also valid
even when the linear assumption only approximately holds. Mixup sampling can be
particularly useful when the transitions in the replay-buffer form a convex manifold.
This is because mixup sampling generates convex combinations of experiences, which
ensures that the interpolated transitions lie within this manifold (Sander et al. [2]).

3These numbers were determined empirically and may differ. For a more detailed examination,
please refer to Sander et al. [2], [3].
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The assumption of a convex transition manifold does not hold in many real-world
environments. This is especially true for continuous control tasks with complex
dynamics, high-dimensional state and action spaces, and settings with nonlinear
rewards (e.g. sparse rewards). LCER addresses this issue during the cluster sampling
step, where interpolation is only done between sampled transitions from the same
cluster. The proximity within one cluster ensures that linear interpolation is a
suitable approximation for interpolation between adjacent transitions.

The goal of LCER is a simple implementation, as well as to keep the additional
computational power as low as possible. Therefore, the mixup sampling parameter
λ in the Equations 4.4 and 4.6 is sampled uniformly at random λ ∼ U [0, 1), rather
than from a β-distribution, as it is the case in Zhang et al. [1] and Sander et al. [2].



5 Experiments
In this chapter, the experimental setup and results are described. It is grouped
into experiments with continuous locomotive control tasks, in Section 5.2, and
experiments with continuous robotic control tasks, in Section 5.3. The results are
evaluated and compared with state-of-the-art reinforcement learning algorithms, in
particular, to quantify the sample efficiency of Local Cluster Experience Replay.
The two variants LCER-CC and LCER-RM are considered separately. At the end
of this chapter, the additional computational effort, added by the use of LCER, is
further discussed and compared to existing implementations.

5.1 Experimental Setup and Evaluation Metrics
Local Cluster Experience Replay benefits from continuous control tasks where
both the state and action spaces are continuous. The environmental experiments
include a handful of commonly used OpenAI Gym (Brockman et al. [65]) MuJoCo
(Todorov et al. [66]) environments and environments from ShadowHand-Gym
(Zahlner [67]), which utilize PyBullet (Coumans and Bai [68]) as their underlying
physics engine. This covers simple tasks, such as swinging a pendulum, moderately
difficult tasks, like moving rigid bodies, to very complex tasks, such as rolling a block
within a high-dimensional robotic hand. Table B.1 depicts the names of the utilized
environments along with their corresponding state and action space dimensions and
their maximum episode lengths, measured in timesteps.

The sampling efficiency of Local Cluster Experience Replay and its variants LCER-CC
and LCER-RM is compared to a set of state-of-the-art model-free and model-based
reinforcement learning algorithms. As with LCER, these algorithms are applied
to the same environments, tested and their performance is evaluated. Table 5.1
provides the used baseline algorithms and additional notes on the implementations,
as well as the codebases.

The performance comparison of reinforcement learning agents using LCER with
standard RL agents is done using the evaluation reward or evaluation success rate at
fixed timesteps. Which of the two metrics is used, is determined by the environment.
Results are reported as average reward or success rate and interquartile range,
where each result is averaged over 3 different seeds, each evaluated for 10 episodes.
Exponential moving average, based on exponential smoothing, is utilized to smooth
the results, whereby a factor of 0.75 is used.

43
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RL algorithm Implementation note
SAC vanilla implementation, code based on pranz24 [69]
SAC utd x vanilla SAC with x policy gradient steps per environment step
SAC nub x vanilla SAC with x policy gradient steps per environment episode
PER vanilla implementation, code based on MrSyee [70]
PER utd x vanilla PER with x policy gradient steps per environment step
MBPO vanilla implementation, code based on Xingyu-Lin [71]
NMER vanilla implementation, code based on rmsander [72]

HER+SAC vanilla SAC, adapted to work with HER, code based on
TianhongDai [73]

HER+SAC nub x
vanilla HER+SAC with x policy gradient steps per
environment episode

HER+MBPO vanilla MBPO, adapted to work with HER
HER+NMER vanilla NMER, adapted to work with HER

Table 5.1: Baseline RL algorithms and additional notes on the implementations
used in the experiments. Supplementary, the codebases are also listed.

5.2 Continuous Locomotive Control Environments
This section details the experiment results for the continuous locomotive con-
trol environments, which are all members of the OpenAI Gym MuJoCo suite.
The included environments are InvertedPendulum-v2, Hopper-v2, Walker2d-v2,
AntTruncated-v2 and HalfCheetah-v2. They are briefly described below, adapted
from OpenAI Gym [65].

InvertedPendulum-v2: This setup consists of a cart that is capable of linear
movement. It has a pole attached on one end and the objective is to balance the
pole by applying forces to the cart through pushing it left or right.

Hopper-v2: The hopper is a two-dimensional, one-legged figure. It is comprised
of four main components: a torso at the top, a thigh in the middle, a leg at the
bottom, and a single foot serving as the base of support. The objective is to move
forward (to the right) by making hops, achieved through applying torque on the
three hinges linking the four body parts.

Walker2d-v2: The walker is a two-dimensional figure with two legs. It consists of
seven main body parts: a single torso, two thighs located below the torso, and two
legs positioned below the thighs. Two additional feet serve as the base of support.
The task is to move forward (to the right) by coordinating the limbs, achieved by
applying torque on the six hinges of the walker.

Ant-v2 and AntTruncated-v2: The ant is a three-dimensional robot comprised of
a single torso, a freely rotating body, and four legs attached to it. Each leg has two
links. The goal is to move forward (to the right) by coordinating the motion of the
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four legs. This is accomplished through the application of torque to the eight hinges
that connect the two limbs of each leg and the torso. In the conducted experiments,
a truncated and simplified version of this environment is used, as described below.
AntTruncated-v2 is a special variant of the standard Ant-v2 environment, where
the contact forces, normally applied to the center of mass of each of the links, are
not considered. These forces are specified in the observation in the last 84 elements,
which are therefore truncated.

HalfCheetah-v2: The cheetah is a two-dimensional robot consisting of nine links
and eight joints, including two paws. The objective is to maximize the forward
(right) speed of the cheetah by applying torque to the joints. The performance of
the cheetah is evaluated based on the distance traveled in the forward direction,
with positive rewards given for forward motion and negative rewards for backward
motion. The torso and head of the cheetah are fixed. Torque can only be applied
to the remaining six joints, connecting the front and back thighs to the torso, the
shins to the thighs, and the feet to the shins.

Figure 5.1 shows a visual representation of the described environments and Table 5.2
depicts the corresponding dimensions of the state and action spaces. In Figure 5.2
the mean reward for all five continuous locomotive control environments is shown.
The Tables 5.3, 5.4, 5.5 and 5.6 provide additional per-timestep evaluations. Detailed
hyperparameters, used in the experiments, can be found in Appendix B.

(a) (b) (c) (d) (e)

Figure 5.1: OpenAI Gym MuJoCo (Brockman et al. [65], Todorov et al. [66])
continuous locomotive control environments: (a) InvertedPendulum-v2,
(b) Hopper-v2, (c) Walker2d-v2, (d) AntTruncated-v2 and
(e) HalfCheetah-v2. Adapted from Brockman et al. [65].

Environment No. of actions No. of states
AntTruncated-v2 8 27
HalfCheetah-v2 6 17
Hopper-v2 3 11
InvertedPendulum-v2 1 4
Walker2d-v2 6 17

Table 5.2: State and action space dimensions for the locomotive control OpenAI
Gym MuJoCo (Brockman et al. [65], Todorov et al. [66]) environments.
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Figure 5.2: Evaluation results for the InvertedPendulum-v2, Hopper-v2,
Walker2d-v2, AntTruncated-v2 and HalfCheetah-v2 OpenAI Gym
MuJoCo (Brockman et al. [65], Todorov et al. [66]) environments.
Results are reported as average reward (line) and interquartile range
(shaded area).
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Timesteps
RL agent 5k 10k 15k

µ IQR µ IQR µ IQR

In
ve

rt
ed

Pe
nd

ul
um

LCER-CC 901 36 1000 0 1000 0
LCER-RM 903 71 872 156 999 1
MBPO 942 8 1000 0 1000 0
NMER 967 5 999 2 1000 0
PER 97 15 115 54 960 29
PER utd 10 901 70 812 279 998 2
SAC 92 12 77 14 948 27
SAC utd 10 964 5 961 58 998 2

Table 5.3: Evaluation results for the InvertedPendulum-v2 OpenAI Gym MuJoCo
(Brockman et al. [65], Todorov et al. [66]) environment for 5k, 10k
and 15k timesteps. Results are reported as average reward (µ) and
interquartile range (IQR).

Timesteps
RL agent 30k 60k 90k 120k

µ IQR µ IQR µ IQR µ IQR

Ho
pp

er

LCER-CC 931 558 2248 926 2789 534 3074 135
LCER-RM 1537 462 2879 304 2847 336 2814 20
MBPO 1183 437 2886 653 2781 873 2400 1386
NMER 1335 367 2798 164 2843 855 2838 777
PER 426 93 837 141 2173 612 2667 756
PER utd 20 576 200 1007 93 1485 72 2469 449
SAC 389 110 582 189 808 372 1378 1248
SAC utd 20 493 165 1439 105 1574 187 2195 609

Table 5.4: Evaluation results for the Hopper-v2 OpenAI Gym MuJoCo
(Brockman et al. [65], Todorov et al. [66]) environment for 30k, 60k,
90k and 120k timesteps. Results are reported as average reward (µ) and
interquartile range (IQR).
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Timesteps
RL agent 75k 150k 225k 300k

µ IQR µ IQR µ IQR µ IQR
An

tT
ru

nc
at

ed
LCER-CC -92 122 -238 506 142 114 303 234
LCER-RM 840 239 2544 231 3651 855 3886 1173
MBPO 2465 741 3969 1115 4867 471 5113 88
NMER 1030 1051 2944 1915 3750 1656 4339 1127
PER 690 91 1225 311 2365 1103 2995 941
PER utd 20 -84 51 46 39 -6 20 30 39
SAC 671 89 1142 265 2036 281 2376 641
SAC utd 20 1 17 -21 53 -19 2 59 144

Wa
lk

er
2d

LCER-CC 1009 504 2391 388 4257 1305 3793 1644
LCER-RM 2448 358 4037 456 4317 609 4554 572
MBPO 2963 1100 3651 927 4204 521 4352 513
NMER 1100 633 3766 752 4671 1096 5168 694
PER 655 363 1782 882 2731 651 3116 168
PER utd 20 193 51 936 517 2636 519 2554 728
SAC 492 141 1024 512 2562 476 3191 545
SAC utd 20 131 41 394 22 1589 906 3585 1160

Table 5.5: Evaluation results for the AntTruncated-v2 and Walker2d-v2 OpenAI
Gym MuJoCo (Brockman et al. [65], Todorov et al. [66]) environments
for 75k, 150k, 225k and 300k timesteps. Results are reported as average
reward (µ) and interquartile range (IQR).

Timesteps
RL agent 100k 200k 300k 400k

µ IQR µ IQR µ IQR µ IQR

Ha
lf

Ch
ee

ta
h

LCER-CC 4689 3310 8735 763 9784 564 10512 303
LCER-RM 8362 1532 9470 1802 10239 1785 11251 2025
MBPO 9859 1436 10790 1978 11627 2746 11618 2305
NMER 6927 1819 6086 5211 6939 4716 9350 1607
PER 5682 481 7283 920 8292 1110 9006 1179
PER utd 40 3945 37 6001 436 7383 1105 8108 1474
SAC 5291 120 7153 165 8306 95 9338 87
SAC utd 40 4299 105 5776 2615 8084 1739 9023 2009

Table 5.6: Evaluation results for the HalfCheetah-v2 OpenAI Gym MuJoCo
(Brockman et al. [65], Todorov et al. [66]) environment for 100k, 200k,
300k and 400k timesteps. Results are reported as average reward (µ) and
interquartile range (IQR).
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InvertedPendulum-v2 clearly is a very simple environment and can easily be solved
by all eight methods. Only vanilla SAC and PER need a bit more timesteps to
swing up the pendulum. The remaining algorithms have in common that they all
use an increased update-to-data ratio and thus solve the task in very few timesteps.
The update ratio for this environment is 10 policy updates per environmental step,
which is only moderately increased and leads to a stable training behavior for all
utilized algorithms.

On the Hopper-v2 and Walker2d-v2 environments, LCER-RM clearly outperforms
the other model-free configurations. This is especially true for the Walker2d-v2
environment. Compared to MBPO, a state-of-the-art model-based reinforcement
learning algorithm, LCER-RM is in no way inferior to it and achieves the same
sample efficiency. Local Cluster Experience Replay Random Member also surpasses
NMER in the first few timesteps but achieves the same asymptotic convergence.
LCER-CC, on the other hand, solves both tasks faster than the SAC and PER
configurations and is on equal terms with NMER.

AntTruncated-v2 is the environment with the highest number of observation di-
mensions, regarding the continuous locomotive control tasks. Here, Model-Based
Policy Optimization clearly is the best algorithm. However, LCER-RM and NMER
are right behind MBPO and LCER-RM achieves about the same performance as
NMER. Interestingly, LCER-CC performs worse in this environment and is not
able to successfully solve the task. In fact, LCER-CC does not learn how to move
the ant. There are many possible reasons why this is the case. This ranges from a
bad cluster initialization to a faulty calculation of the cluster centers, as described
in Equation 4.3, to the simple cause of three bad seeds. These reasons certainly
apply to both variants of LCER. LCER-CC specific reasons for this behavior can
be found first in the mini-batch k-Means algorithm and second in the interpolation
of the cluster members to the cluster center only. Unlike LCER-RM, LCER-CC
only adjusts the cluster centers but does not recalculate them each cluster update
step. This can lead to a worse fit of the clusters and thus lower the learning curve.
The behavior is also supported by the one-directional interpolation towards the
cluster center, which was mentioned before.

The last environment of this section, HalfCheetah-v2, is the environment with the
highest update-to-data ratio. For this task, an update rate of 40 policy updates per
environmental step is used. The results are similar to that of the AntTruncated-v2
environment. Model-Based Policy Optimization is the best algorithm, closely
followed by LCER-RM. This time, however, LCER-CC ranks third. NMER shows
a drop in the evaluation reward at about 150k timesteps. This is caused by a single
bad seed that has a strong impact. The same is true for LCER-CC at about 100k
timesteps.

The overall evaluation of Local Cluster Experience Replay and its two variants
LCER-CC and LCER-RM is consistently strong. Vanilla SAC and PER are com-
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pletely outperformed. LCER-CC and LCER-RM are both on par with the perfor-
mance of NMER. However, in comparison with Model-Based Policy Optimization,
LCER does turn out slightly worse. Nevertheless, comparable results can be seen
here as well, especially on the Hopper-v2 and Walker2d-v2 environments. An
important feature of LCER is the short computation-time, especially compared to
MBPO. This is not evident from the results in Figure 5.2 but will be discussed in
Section 5.4.

5.3 Continuous Robotic Control Environments
This section details the experiment results for the continuous robotic
control environments. Included are FetchReach-v1, ShadowHandReach-v1,
ShadowHandReachHard-v1 and ShadowHandBlock-v1, where the first one is part of
the OpenAI Gym MuJoCo suite and the latter ones are PyBullet environments from
ShadowHand-Gym. Below follows a brief description of the utilized environments,
adapted from Plappert et al. [30] and Zahlner [67].

FetchReach-v1: This setup consists of a 7 degree-of-freedom Fetch robotic arm1,
which is equipped with a two-fingered parallel gripper. The objective is to move the
gripper to a randomly specified 3-dimensional target position, given in Cartesian
coordinates.

ShadowHandReach-v1 and ShadowHandReachHard-v1: These environments are
based on the Shadow Dexterous Hand2, which is an anthropomorphic robotic hand
with 24 degrees-of-freedom. 20 of these can be independently controlled, while the
remaining ones are coupled. The task is a simple reaching task, in which the goal
is to move the fingertips of the hand to a specific 15-dimensional target position,
denoted by the target Cartesian coordinates of each fingertip.

ShadowHandBlock-v1: Like the ShadowHandReach environments, this environment
is based on the Shadow Dexterous Hand. The block manipulation task is to
manipulate and position a block on the palm of the hand to reach a specific target
pose. The objective has 7 dimensions and is composed of the desired target position
(in Cartesian coordinates) and rotation (in quaternions). The task is considered
solved when the block reaches a certain orientation, regardless of its position above
the hand palm.

In contrast to the previous section, the environments considered here focus more
on typical robotic tasks, such as aligning a robot or a robot interacting with an
object. Therefore, the rewards are binary and sparse, with a score of 0 given if
the objective is achieved and -1 otherwise. In addition, it is also possible to define

1https://fetchrobotics.com/
2https://www.shadowrobot.com/dexterous-hand-series/

https://fetchrobotics.com/
https://www.shadowrobot.com/dexterous-hand-series/


5 Experiments 5.3 Continuous Robotic Control Environments 51

several different tasks within one environment, such as different robot end-effector
positions that have to be reached.

The sparse reward setup benefits the use of Hindsight Experience Replay, as
described in the Sections 2.4 and 2.4.4. Hence, all further used algorithms are jointly
combined with HER. This also allows comparing to HER+SAC, which is one of
the state-of-the-art RL algorithms for environments using sparse rewards. Vanilla
SAC is only added as a baseline algorithm.

Figure 5.3 shows a visual representation of the described environments and Table 5.7
depicts the corresponding dimensions of the state and action spaces. In Figure 5.4
the mean success rate for all four robotic control environments is shown. The
Tables 5.8, 5.9 and 5.10 provide additional per-timestep evaluations, comparing
LCER and the other utilized RL algorithms. Detailed hyperparameters, used in the
experiments, can be found in Appendix B.

(a) (b) (c)

Figure 5.3: OpenAI Gym MuJoCo (Plappert et al. [30], Brockman et al. [65],
Todorov et al. [66]) and ShadowHand-Gym PyBullet
(Zahlner [67], Coumans and Bai [68]) continuous robotic
control environments: (a) FetchReach-v1, (b) ShadowHandReach-v1
and (c) ShadowHandBlock-v1. Adapted from Plappert et al. [30] and
Zahlner [67].

Environment No. of actions No. of states
FetchReach-v1 4 16
ShadowHandBlock-v1 20 67
ShadowHandReach-v1 20 70
ShadowHandReachHard-v1 20 70

Table 5.7: State and action space dimensions for the robotic control OpenAI Gym
MuJoco (Brockman et al. [65], Todorov et al. [66]) and ShadowHand-
Gym PyBullet (Zahlner [67], Coumans and Bai [68]) environments.
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Figure 5.4: Evaluation results for the FetchReach-v1 OpenAI Gym
(Plappert et al. [30], Brockman et al. [65]) environment, which
is part of the MuJoCo (Todorov et al. [66]) suite. ShadowHandReach-v1,
ShadowHandReachHard-v1 and ShadowHandBlock-v1 are PyBullet
(Coumans and Bai [68]) based environments from ShadowHand-Gym
(Zahlner [67]). Results are reported as average success rate (line) and
interquartile range (shaded area).
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Timesteps
RL agent 10k 20k 30k

µ IQR µ IQR µ IQR

Fe
tc

hR
ea

ch

HER+LCER-CC 99 0 100 0 100 0
HER+LCER-RM 99 0 100 0 100 0
HER+MBPO 0 0 0 0 0 0
HER+NMER 99 0 100 0 100 0
HER+SAC 87 7 100 0 100 0
HER+SAC nub 200 99 0 100 0 100 0
SAC 2 2 26 25 99 1
SAC nub 200 35 24 67 50 67 50

Table 5.8: Evaluation results for the FetchReach-v1 OpenAI Gym MuJoCo
(Plappert et al. [30], Brockman et al. [65], Todorov et al. [66])
environment for 10k, 20k and 30k timesteps. Results are reported as
average success rate (µ) and interquartile range (IQR).

Timesteps
RL agent 10k 20k 30k 40k 50k

µ IQR µ IQR µ IQR µ IQR µ IQR

SH
R

HER+LCER-CC 98 1 100 0 100 0 100 0 100 0
HER+LCER-RM 99 0 100 0 100 0 100 0 100 0
HER+MBPO 0 0 0 0 0 0 0 0 0 0
HER+NMER 91 12 93 9 91 14 93 11 93 10
HER+SAC 84 9 100 0 100 0 100 0 100 0
HER+SAC nub 200 65 12 80 22 80 20 79 23 80 23
SAC 0 0 0 0 0 0 0 0 1 2
SAC nub 200 0 0 0 0 0 0 0 0 0 0

SH
R

Ha
rd

HER+LCER-CC 98 1 100 0 100 0 100 0 100 0
HER+LCER-RM 99 0 100 0 100 0 100 0 100 0
HER+MBPO 0 0 0 0 0 0 0 0 0 1
HER+NMER 96 1 100 0 100 0 100 0 100 0
HER+SAC 65 2 97 1 100 0 100 0 100 0
HER+SAC nub 200 73 12 97 3 100 0 100 0 100 0
SAC 0 0 0 0 0 0 0 0 0 0
SAC nub 200 0 0 0 0 0 0 0 0 0 0

Table 5.9: Evaluation results for the ShadowHandReach-v1 (SHR)
and ShadowHandReachHard-v1 (SHR Hard) PyBullet
(Coumans and Bai [68]) based ShadowHand-Gym (Zahlner [67])
environments for 10k, 20k, 30k, 40k and 50k timesteps. Results are
reported as average success rate (µ) and interquartile range (IQR).
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Timesteps
RL agent 350k 650k 950k 1250k 1500k

µ IQR µ IQR µ IQR µ IQR µ IQR
SH

B HER+LCER-RM 46 7 57 10 68 10 74 3 87 4
HER+SAC 20 8 35 7 40 8 54 11 56 12
HER+SAC nub 400 11 5 23 11 48 7 65 2 69 8

Table 5.10: Evaluation results for the ShadowHandBlock-v1 (SHB) PyBullet
(Coumans and Bai [68]) based ShadowHand-Gym (Zahlner [67])
environment for 350k, 650k, 950k, 1250k and 1500k timesteps. Results
are reported as average success rate (µ) and interquartile range (IQR).

FetchReach-v1 is the continuous robotic control environment with the low-
est state and action space dimensions compared to the ShadowHandReach-v1,
ShadowHandReachHard-v1 and ShadowHandBlock-v1 environments. In the same
way, but not conditioned to this, the task to be solved is the simplest one. Therefore,
six out of eight methods are able to successfully solve the problem. Vanilla SAC
with an increased update-to-data ratio is not able to fully learn the task within
the given timesteps. Only HER+MBPO fails to make any progress at all. This is
interesting since MBPO shows strong performance in the continuous locomotive
control environments, see Section 5.2. The poor performance of HER+MBPO in
most of the environments in this section is due to the use of sparse rewards, which
are based on whether a target condition is met or not. The synthetic transitions
taken from the dynamics model to evaluate the target condition can lead to incorrect
rewards because of inaccuracies in the model. This can cause both false positive
and false negative rewards, thus hindering proper learning.

The ShadowHandReach-v1 and ShadowHandReachHard-v1 environments both ad-
dress the same task, the difference being in the details. In the former environ-
ment, five finger position patterns are specified as goal configurations. Chang-
ing the goal changes the entire pattern of all five fingers at once. In the
ShadowHandReachHard-v1 environment, the finger position patterns of each finger
are randomly changed, allowing for complex poses. Nevertheless, the results for both
are very similar. HER+LCER-CC and HER+LCER-RM perform the best, closely
followed by HER+NMER. All three require significantly fewer timesteps to learn
the task than vanilla HER+SAC. Again, as with FetchReach-v1, HER+MBPO
does not solve the task. On top of the already mentioned sparse rewards, the high
dimensions of the state and action spaces (see Table B.1) cause additional problems,
amplifying the model uncertainties.

The ShadowHandBlock-v1 environment is the most complex environment considered
in this thesis. This is due to the use of the complex robot and the fact that it has to
interact with an external object. It requires the longest training period, both in terms
of time and number of timesteps, hence only HER+LCER-RM and HER+SAC in
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two configurations are trained, tested, and compared. HER+LCER-RM clearly
outperforms the other two competitors right from the start and performs consistently
strong. This is due to the additional exploration that comes from mixup sampling
within the different clusters. Increasing the update-to-data ratio of the vanilla
HER+SAC policy improves the performance after 800k timesteps. However, it is
still considerably worse than with LCER-RM.

As for the locomotion tasks from the previous Section 5.2, Local Cluster Experience
Replay and especially LCER-RM show advantages for the considered robotic control
environments. HER+LCER clearly outperforms vanilla HER+SAC and demon-
strates at least the same, if not better performance as HER+NMER. In comparison,
MBPO outperformed all other algorithms in the locomotion tasks, however, it was
not able to solve most continuous robotic control environments. The experiments
with the ShadowHandReach-v1 and ShadowHandReachHard-v1 environments show
that LCER has no problems with high state and action space dimensions and the
ShadowHandBlock-v1 environment indicates that LCER can handle complex tasks
very well.

5.4 Comparison of Computation-Time
In this final section, we want to compare the additional effort in terms of computation-
time of the different proposed approaches. All methods from previous sections use
the same underlying RL algorithms. The main difference is, how they process data
of the replay-buffer to generate new and unseen transitions. Since this step has to
be repeated at regular intervals, we want to compare how much computation-time it
requires. The considered algorithms and operations can be summarized as follows.

LCER-CC: The first step involves constructing and standardizing the z-space,
based on the latest batch of transitions from the environment. Next, the clusters
are updated using the mini-batch k-Means algorithm. Finally, the data structures
(µ(lc) and σ(lc)) to compute cluster centers containing all components of a transition
quintuple, except for the terminal flag dt, are updated3. The cluster update step of
LCER-CC is described in Section 4.1.

LCER-RM: In a first step, similar to LCER-CC, the z-space is constructed and
standardized. In contrast, all states and actions of the replay-buffer are used. Then,
utilizing a standard, but GPU accelerated k-Means algorithm, the clusters are
completely recomputed, based on these standardized states and actions. In the last
step, references to the transitions in the replay-buffer are grouped, according to their
cluster labels4. The cluster update step of LCER-RM is described in Section 4.2.

3These data structures are necessary to allow interpolation and mixup sampling with cluster
centers, containing all components of environment transitions in a later step.

4This allows for easier access later on.
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NMER: The considered operational steps of NMER include the construction and
standardization of the z-space and the computation of the nearest neighbors of every
transition within the replay-buffer. The algorithm is described in Section 2.4.3.

MBPO: The computation-time comparison focuses only on the update step of the
MDP dynamics model. This includes sampling real experiences from the replay-
buffer, that are further utilized to train and optimize the dynamics model. For
simplicity, we limit our analysis to this model update step, as the inclusion of virtual
rollouts would add a number of parameters that require tuning and may distort the
results. For more information about MBPO, see Section 2.5.1.

The computation-time comparison is done using three environments, each with
a different amount of state and action space dimensions. This ranges from
the low-dimensional InvertedPendulum-v2 environment, to Hopper-v2, up to
ShadowHandReach-v1, which is a representative of high-dimensional environments.

The baseline implementations of the mini-batch k-Means and the k-NN algorithms
are both provided by the scikit-learn framework as described in Pedregosa et al. [43].
The same is true for the mini-batch k-Means accel variant, which uses another, faster
approach to maintain the additional data structures µ(lc) and σ(lc). In contrast, the
GPU accelerated k-Means algorithm is based on the fast-pytorch-kmeans library
from Omer [74], and MBPO uses its own approach, provided by the authors
Xingyu-Lin [71]. Additionally, we also compare a GPU accelerated and tuned k-NN
algorithm, as it is used in the implementation of NMER5 and provided by the
Facebook AI Similarity Search (FAISS) library from Johnson et al. [75].

At this point, it should be explicitly noted that scikit-learn only provides Central
Processing Unit (CPU) based implementations. In the further course of this section,
these are compared with GPU implementations, which highlights the advantages and
disadvantages of both variants. Regarding MBPO, it is worth mentioning that on
average the MDP dynamics model is adjusted more often than the recalculation of
the clusters or nearest neighbors is performed. This is necessary to obtain a dynamics
model that is as accurate as possible. In this experiment, the dynamics model is
adjusted at the same ratio as the clusters and nearest neighbors are updated, but in
practice, this varies across environments. This also increases the computation-time
of MBPO by this factor. Figure 5.5 depicts the results and Table 5.11 provides
additional per-timestep evaluations. Table B.1 shows the corresponding environment
state and action space dimensions for reference.

It is noticeable that mini-batch k-Means (LCER-CC) outperforms most of its
competitors and its accelerated variant (mini-batch k-Means accel) is comparable
to FAISS k-NN (NMER). Mini-batch k-Means is faster in all three environments,

5The implementation of NMER includes both a variant with k-NN from scikit-learn and a variant
with k-NN from FAISS.
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Figure 5.5: Evaluation results of the computation-time comparison. Results
are reported as median computation-time over a corresponding
amount of timesteps. The results are evaluated based on the
OpenAI Gym MuJoCo (Brockman et al. [65], Todorov et al. [66])
environments InvertedPendulum-v2 and Hopper-v2 and the PyBullet
(Coumans and Bai [68]) environment ShadowHandReach-v1 from
ShadowHand-Gym (Zahlner [67]). These range from low up to high
state and action space dimensions, see Table B.1 for reference.
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except for the initial states with only a few timesteps. However, these are of little
importance in reinforcement learning. The speed-up in computation-time from
its design for stream-like input data is undeniable and the reason for its superior
performance.

Algorithm Timesteps
10k 20k 30k 40k 50k

IP

mini-batch k-Means (LCER-CC) 2.15 3.35 4.45 5.54 6.64
mini-batch k-Means accel (LCER-CC) 0.82 0.92 0.96 0.98 1.00
k-Means (LCER-RM) 7.30 16.89 26.94 37.09 47.40
GPU k-Means (LCER-RM) 0.43 2.23 5.82 11.68 20.42
k-NN (NMER) 0.14 0.73 1.94 3.84 6.47
FAISS k-NN (NMER) 0.60 0.67 0.70 0.72 0.75
fit dynamics model (MBPO) 19.62 55.55 121.38 214.53 340.07

Ho
pp

er

mini-batch k-Means (LCER-CC) 2.12 3.23 4.25 5.26 6.27
mini-batch k-Means accel (LCER-CC) 0.81 0.92 0.95 0.98 1.01
k-Means (LCER-RM) 7.68 18.37 29.68 41.15 52.75
GPU k-Means (LCER-RM) 0.49 2.45 6.48 12.72 21.52
k-NN (NMER) 1.39 10.14 31.23 69.81 126.11
FAISS k-NN (NMER) 0.61 0.69 0.75 0.98 1.38
fit dynamics model (MBPO) 55.00 117.62 193.77 255.93 327.03

SH
R

mini-batch k-Means (LCER-CC) 2.07 2.73 3.25 3.79 4.34
mini-batch k-Means accel (LCER-CC) 0.98 1.13 1.20 1.26 1.32
k-Means (LCER-RM) 9.15 22.51 37.05 51.81 66.90
GPU k-Means (LCER-RM) 0.74 3.55 8.09 14.07 21.42
k-NN (NMER) 2.15 18.60 66.51 163.41 335.75
FAISS k-NN (NMER) 0.62 0.72 0.91 1.23 1.63
fit dynamics model (MBPO) 26.21 43.14 64.75 93.56 132.21

cumulative Time in Seconds

Table 5.11: Evaluation results of the computation-time comparison. Results are
reported as cumulative computation-time for 10k, 20k, 30k, 40k, and
50k timesteps. The results are evaluated based on the OpenAI Gym
MuJoCo (Brockman et al. [65], Todorov et al. [66]) environments
InvertedPendulum-v2 (IP) and Hopper-v2 and the PyBullet
(Coumans and Bai [68]) environment ShadowHandReach-v1 (SHR) from
ShadowHand-Gym (Zahlner [67]). These range from low up to high
state and action space dimensions, see Table B.1 for reference.

The computation-time of the baseline k-NN implementation can only keep up with
the other approaches in the low-dimensional InvertedPendulum-v2 environment.
However, in Hopper-v2 and ShadowHandReach-v1, the time required to compute
and sort the distances to all transitions in the replay-buffer significantly exceeds
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the time required to rearrange the cluster centers, as in mini-batch k-Means, or
compute entirely new clusters with the (GPU) accelerated k-Means variant.

The update of the dynamics model of MBPO in the InvertedPendulum-v2 en-
vironment is clearly outperformed by all other implementations. This outcome
is expected as the environment has a low dimensionality, which favors the other
approaches. However, as the state and action space dimensions increase, MBPO
benefits from its model update strategy. It trains the dynamics model as long as
there is improvement. In higher dimensions, the model accuracy decreases and so
does the improvement. Despite the faster computation-time, the dynamics model is
less accurate, hence, it needs to be updated more frequently, resulting in a higher
overall computation-time.

The advantage of mini-batch k-Means is supported by the computational complexity
of the considered methods. The standard k-NN algorithm has a complexity of
O(nd + kd), where n is the number of samples, d is the number of features, and
k is the number of nearest neighbors. On the other hand, baseline k-Means has
an average complexity of O(knid), where i additionally denotes the number of
iterations. Meanwhile, mini-batch k-Means has O(k(n/b)id), with b being the batch
size (Sculley [41], Pedregosa et al. [43]). For a large number of samples n, the
complexity of k-NN grows linearly with the number of samples, while the complexity
of k-Means grows sublinearly. This indicates that the relative performance of k-NN
compared to k-Means decreases as the number of samples increases. Since mini-batch
k-Means is less complex than k-Means, this is also true for this algorithm.

The performance and efficiency gain of the (GPU) accelerated and modified versions
of the baseline algorithms is also evident in the experiments. This can be verified by
the speed-up of FAISS k-NN compared to the standard k-NN algorithm. Further
confirmation of this fact can be observed with the k-Means algorithms. Although the
GPU k-Means is not the fastest in terms of performance, it still shows improvement
compared to the baseline. However, it was not our goal to develop and implement a
(mini-batch) k-Means algorithm that outperforms all others, as that would exceed
the scope of this work. Nevertheless, we would like to point out that the utilized
algorithms have been chosen with care, even if there is room for further improvement.

These experiments show that the computational overhead added by extending a
standard replay-buffer with LCER is very low. This is true for both variants of
LCER, and especially for environments with moderate to high state and action
space dimensions. Compared to MBPO, both LCER-CC and LCER-RM show their
advantages in terms of computation-time. Regarding NMER, the implementation
of LCER-CC is at least equivalent in terms of required computation-time. This is
also true compared to the implementation with FAISS k-NN.



6 Conclusion
In this thesis, Local Cluster Experience Replay, an extension for replay-buffers
of off-policy reinforcement learning algorithms, was introduced. The goal was to
increase the sample efficiency of model-free RL algorithms by reducing the number
of required interactions with the environment to maximize the cumulative reward.
At the same time, the additional overhead in terms of implementation effort and
computational power should be kept at a minimum. In this chapter, the strengths
and weaknesses of the introduced approach, as well as possible future work are
discussed. It is divided into topics concerning the implementation and results
achieved with LCER.

6.1 Implementation
To address the need for low implementation and computational overhead, LCER was
designed as a wrapper around the standard replay-buffer. This is true for both of
its variants LCER-CC and LCER-RM. The introduction of k-Means clustering and
mixup sampling to the replay-buffer of off-policy RL algorithms is a novel approach
that creates locally linear models between different transitions. These allow new
and unseen data to be synthetically generated by interpolation. The additional
transitions can be used to support the policy and to increase the policy updates per
environmental step to numbers that are typically unstable in model-free RL. In our
implementation, we use between 10 and 40 policy update steps per environment
step without the risk of becoming unstable.

LCER-CC interpolates between transitions and their corresponding cluster centers.
This approach works well but has two disadvantages. First, the utilized mini-batch
k-Means algorithm only adjusts the cluster centers but does not recalculate them in
each cluster update step. This can lead to a worse fit of the clusters and thus lower
the learning curve. Second, the interpolation of new data is always directed towards
the according cluster centers. LCER-RM avoids these problems by recalculating
the clusters in each cluster update step. Further, LCER-RM arbitrarily takes two
transitions from the same cluster and interpolates between them. This also increases
the exploration rate, resulting in better overall performance. Despite the need to
refit the clusters in regular intervals, LCER-RM is still extremely fast in terms of
wall time, due to the utilized GPU accelerated clustering algorithm.

60
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6.2 Results
Local Cluster Experience Replay and its two variants LCER-CC and LCER-RM
show promising results. This is true for both tested environment domains. In the
first domain, represented by continuous locomotive control tasks such as Hopper-v2,
Walker2d-v2 or HalfCheetah-v2 from the OpenAI Gym suite, LCER performs
consistently strong. It clearly outperforms the vanilla implementations of SAC and
PER in almost all tested environments. In general, LCER-RM has better results
than LCER-CC. This is due to the way the clusters are formed (complete refit vs.
adjustments only) and which interpolation pairs are used (two random members vs.
one-directional towards the center), see Sections 4.1, 4.2 and 6.1.

LCER is inspired by the implementation of Neighborhood Mixup Experience Replay.
Based on the reward or success rate evaluations of the experiments, LCER is on par
with NMER. The advantage of LCER comes into play in the time-based experiments.
Here, the benefits of clustering over the k-NN algorithm are clearly evident, at
least considering the baseline algorithms. This is supported by the computational
complexity of both methods and is especially true for a large number of samples
and environments with high-dimensional state and action spaces. Nevertheless, this
advantage over NMER is reduced by the use of accelerated and modified versions of
the baseline algorithms, such as FAISS k-NN.

Both variants of LCER are also compared to a state-of-the-art model-based RL
algorithm, namely Model-Based Policy Optimization. Although LCER-RM achieves
results equal to MBPO in the environments Hopper-v2 and Walker2d-v2, it gen-
erally performs slightly worse. Nevertheless, LCER offers the advantage of faster
computation-time, since it avoids the need to maintain an MDP dynamics model
of the environment. Furthermore, this also bypasses the additional challenges,
inevitably associated with a dynamics model.

In the second domain of the tested environments, of continuous robotic control
tasks such as FetchReach-v1 from the OpenAI Gym suite or ShadowHandBlock-v1
from ShadowHand-Gym, LCER also demonstrates a strong performance. For these
experiments, LCER was combined with Hindsight Experience Replay. On the
one hand, this allows showing the possibility of combining these two methods,
demonstrating the versatility and flexibility of LCER. On the other hand, it allows
a fair comparison of HER+SAC and HER+LCER.

In all tested environments, including FetchReach-v1, ShadowHandReach-v1,
ShadowHandReachHard-v1 and ShadowHandBlock-v1, HER+LCER clearly out-
performs vanilla HER+SAC. The experiments with the environments from
ShadowHand-Gym show that LCER has no problems with high state and ac-
tion space dimensions and especially the ShadowHandBlock-v1 environment clarifies
that LCER can handle complex tasks very well. This is in contrast to the results of
HER+MBPO, which was not able to solve any of the robotic control tasks.
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6.3 Future Work
In this section, suggestions for further improvement of Local Cluster Experience
Replay are presented. LCER is capable of processing data from a wide range
of sources, regardless of its origin. Whether the data is generated internally or
externally, LCER is able to seamlessly integrate and utilize it. This is particularly
useful when working with pre-generated data. The data may originate from an
expert (e.g. a human operator) or other sources like an MDP dynamics model of
the environment. This allows the incorporation of additional knowledge and insights
that may not be available otherwise and can further lead to an improvement in
sample efficiency.

Expert data that contains complete trajectories, or step-by-step solutions to a given
problem or task, is considered especially valuable and promising in this regard. By
providing the algorithm with a clear road map, these types of data can help guide
the system to a successful solution with a minimum of trial and error. This not
only saves time but also allows the system to avoid unnecessary mistakes or detours
that could lead to sub-optimal solutions. In this context, LCER can be combined
with behavioral cloning methods. As an example, two prominent representatives
Vecerik et al. [76] and Nair et al. [77] are mentioned. The former use demonstration
data to pre-train the agent to perform well right from the beginning of the learning
process. The latter introduce a separate loss function that takes into account and
incorporates the data from demonstrations. In both cases, LCER could potentially
provide a significant increase in sample efficiency.

Similarly, LCER could also be used in combination with model-based RL algorithms.
Here, LCER could provide data in addition to the MDP dynamics model, or it
could provide data for learning the environment model. Which of the two mentioned
variants is better could be investigated in future work.
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A Software Components
The implementation of this thesis is based on a handful of selected packages, which
are briefly listed below. The code of LCER is open source and freely available at
https://github.com/szahlner/lcer.

• CUDA (NVIDIA et al. [78]): Used for GPU based hardware acceleration.

• MuJoCo (Todorov et al. [66]): A physics simulator that is used in the
OpenAI Gym environments.

• NumPy (Harris et al. [79]): A library for numerical calculations. It is mainly
used for processing arrays and all non-tensor-related objects.

• OpenAI Gym (Brockman et al. [65]): A collection of environments
for RL. Among them, we use the continuous locomotive control envi-
ronments InvertedPendulum-v2, Hopper-v2, Walker2d-v2, Ant-v2 and
HalfCheetah-v2, and FetchReach-v1 from the robotic environments.

• PyBullet (Coumans and Bai [68]): A physics simulator that is used in the
ShadowHand-Gym environments.

• PyTorch (Paszke et al. [80]): A fully featured framework for building deep
learning models with Python. It is used for processing all tensor-related
objects.

• Scikit-Learn (Pedregosa et al. [43]): A library for predictive data analysis. It
is mainly used to create the k-Means objects, as well as the nearest neighbor
object.

• ShadowHand-Gym (Zahlner [67]): A collection of environments for RL.
Among them, we use ShadowHandReach-v1, ShadowHandReachHard-v1 and
ShadowHandBlock-v1 in our implementation.

• TensorFlow (Abadi et al. [81]): An open source framework for performing
machine learning and other statistical and predictive analysis tasks. This
implementation uses only the Tensorboard library of this framework.
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B Hyperparameters
This section specifies the parametrization for the RL agents and algorithms used
in the experiments. Table B.2 depicts the hyperparameters for the OpenAI Gym
continuous locomotive control environments and Table B.3 shows the parametrization
for the OpenAI Gym MuJoCo and ShadowHand-Gym PyBullet continuous robotic
control environments.

Table B.1 depicts the state and action space dimensions for all OpenAI Gym MuJoCo
and ShadowHand-Gym PyBullet environments, as well as the maximum episode
length, measured in timesteps.

Environment No. of No. of Max. episode
actions states length

AntTruncated-v2 8 27 1000
HalfCheetah-v2 6 17 1000
Hopper-v2 3 11 1000
InvertedPendulum-v2 1 4 1000
Walker2d-v2 6 17 1000
FetchReach-v1 4 10 + 3 + 3 = 16 50
ShadowHandBlock-v1 20 40 + 13 + 7 + 7 = 67 100
ShadowHandReach-v1 20 40 + 15 + 15 = 70 50
ShadowHandReachHard-v1 20 40 + 15 + 15 = 70 50

Table B.1: State and action space dimensions and maximum episode length, mea-
sured in timesteps, for the OpenAI Gym MuJoco (Brockman et al. [65],
Todorov et al. [66]) and ShadowHand-Gym PyBullet (Zahlner [67],
Coumans and Bai [68]) environments.
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RL agent Hyperparameter Value

LCER
Gradient steps per environment step 10 20 40
k-clusters 1000
Noise weight (α) 0.01

MBPO

Epoch length 1000
Gradient steps per environment step 10 20 40
Model activation function Swish
Model hidden units [200, 200, 200, 200, 200]
Model retain epochs 1
Rollout max epoch 15 150 100 150
Rollout min epoch 1 20
Rollout max length 1 15 1 25 1
Rollout min length 1
Rollout samples 100000
Update model every steps 250
V-ratio 0.95

NMER Gradient steps per environment step 10 20 40
k-neighbors 10

PER
Alpha (α) 0.4
Beta (β) 0.6
Priority eps 1 · 10−6

SAC

Actor, Critic activation function ReLU
Actor, Critic hidden units [256, 256]
Actor, Critic learning rate 3 · 10−4

Alpha learning rate 3 · 10−4

Clip actions False
Entropy target -0.05 -1 -3 -4 -3
Gamma (γ) 0.99
Initial entropy (α) 0.2
N-step 1
Normalize actions False
Polyak coefficient (τ) 5 · 10−3

Replay-buffer size 1 · 106

Target network update per gradient step 1
Training batch size 256
Twin-Q True

Environment IP Hop W2d Ant HC

Table B.2: Evaluation hyperparameters for the InvertedPendulum-v2 (IP),
Hopper-v2 (Hop), Walker2d-v2 (W2d), AntTruncated-v2 (Ant) and
HalfCheetah-v2 (HC) OpenAI Gym MuJoCo (Brockman et al. [65],
Todorov et al. [66]) environments.



B Hyperparameters 72

RL agent Hyperparameter Value

HER

Gradient steps per environment episode 20
Normalizing states and goals False True
Replay k 4
Replay strategy future

LCER
Gradient steps per environment episode 200 400
k-clusters 50 100
Noise weight (α) 0.01 -

MBPO

Epoch length 1000 -
Gradient steps per environment episode 200 -
Model activation function Swish -
Model hidden units [200, 200, 200, 200, 200] -
Model retain epochs 1 -
Rollout max epoch 1 -
Rollout min epoch 0 -
Rollout max length 3 -
Rollout min length 3 -
Rollout samples 100000 -
Update model every steps 250 -
V-ratio 0.95 -

NMER Gradient steps per environment episode 200 -
k-neighbors 10 -

SAC

Actor, Critic activation function ReLU
Actor, Critic hidden units [256, 256, 256]
Actor, Critic learning rate 1 · 10−3

Alpha learning rate 1 · 10−3

Clip actions False
Entropy target 0.2 0.01
Gamma (γ) 0.98
Initial entropy (α) 0.2 0.01
N-step 1
Normalize actions False
Polyak coefficient (τ) 5 · 10−3

Replay-buffer size 1 · 106

Target network update per gradient step 1
Training batch size 256
Twin-Q True

Environment FR SHR SHRH SHB

Table B.3: Evaluation hyperparameters for the FetchReach-v1 (FR) OpenAI
Gym MuJoCo (Brockman et al. [65], Todorov et al. [66]) and
ShadowHandReach-v1 (SHR), ShadowHandReachHard-v1 (SHRH) and
ShadowHandBlock-v1 (SHB) ShadowHand-Gym PyBullet (Zahlner [67],
Coumans and Bai [68]) environments.



C Algorithms

C.1 Deep Deterministic Policy Gradient

Algorithm C.1 Deep Deterministic Policy Gradient (DDPG).
Adapted from Achiam [4].

1: Input: initial policy parameters θ, Q-function parameters ϕ, empty replay-buffer D
2: Set target parameters equal to main parameters θtarg ← θ, ϕtarg ← ϕ
3: repeat
4: Observe state s and select action a = clip (µθ (s) + ϵ, aLow, aHigh), where ϵ ∼ N
5: Execute a in the environment
6: Observe next state s′, reward r and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, d) in replay-buffer D
8: If s′ is terminal, reset environment state
9: if it’s time to update then

10: for however many updates do
11: Randomly sample a batch of transitions B = {(s, a, r, s′, d)} from D
12: Compute targets

y (r, s′, d) = r + γ (1 − d) Qθtarg

�
s′, µθtarg (s′)

�
13: Update Q-function by one step of gradient descent using

∇θ
1

|B|
�

(s,a,r,s′,d)∈B
(Qθ (s, a) − y (r, s′, d))2

14: Update policy by one step of the gradient ascent using

∇θ
1

|B|
�
s∈B

Qθ (s, µθ (s))

15: Update target networks with

ϕtarg ← ρϕtarg + (1 − ρ)ϕ
θtarg ← ρθtarg + (1 − ρ)θ

16: end for
17: end if
18: until convergence
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C.2 Soft Actor-Critic

Algorithm C.2 Soft Actor-Critic (SAC).
Adapted from Achiam [4].

1: Input: initial policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay-buffer
D

2: Set target parameters equal to main parameters θtarg,1 ← θ1, ϕtarg,1 ← ϕ1
3: repeat
4: Observe state s and select action a ∼ πθ (·|s)
5: Execute a in the environment
6: Observe next state s′, reward r and done signal d to indicate whether s′ is terminal
7: Store (s, a, r, s′, d) in replay-buffer D
8: If s’ is terminal, reset environment state
9: if it’s time to update then

10: for however many updates do
11: Randomly sample a batch of transitions B = {(s, a, r, s′, d)} from D
12: Compute targets for the Q-functions:

y (r, s′, d) = r + γ (1 − d)
�

min
i=1,2

Qϕtarg,i (s′, ã′) − α log πθ (ã′|s′)
�

, ã′ ∼ πθ (·|s′)

13: Update Q-functions by one step of gradient descent using

∇θ
1

|B|
�

(s,a,r,s′,d)∈B
(Qθ (s, a) − y (r, s′, d))2

, for i = 1,2

14: Update policy by one step of gradient ascent using

∇θ
1

|B|
�

(s)∈B

�
min
i=1,2

Qϕi (s, ãθ (s)) − α log πθ (ãθ (s) |s)
�

where ãθ (s) is a sample from πθ (·|s) which is differentiable w.r.t. θ via the
reparameterization trick

15: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1 − ρ) ϕi, for i = 1,2

16: end for
17: end if
18: until convergence
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C.3 Model-Based Policy Optimization

Algorithm C.3 Model-Based Policy Optimization (MBPO).
Adapted from Janner et al. [26].

1: Initialize policy πθ, predictive model pθ, environment dataset Denv, model dataset
Dmodel

2: for N epochs do
3: Train model pθ on Denv via maximum likelihood
4: for E steps do
5: Take action in environment according to πθ; add to Denv

6: for M model rollouts do
7: Sample st uniformly from Denv

8: Perform k-step model rollout starting from st using policy πϕ; add to
Dmodel

9: for G gradient updates do
10: Update policy parameters on model data

ϕ ← ϕ − λπ∇̂ϕJπ (ϕ, Dmodel)
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C.4 Prioritized Experience Replay

Algorithm C.4 Prioritized Experience Replay (PER).
Adapted from Schaul et al. [27].

1: Input: mini-batch k, step-size η, replay period K and size N , exponents α and β,
budget T

2: Initialize replay-buffer D, ∆ = 0, p1 = 1
3: Observe s0 and choose a0 ∼ πθ(s0)
4: for t = 1 to T do
5: Observe st, rt, γt

6: Store transition (st−1, at−1, rt, γt, st) in D with maximal priority pt = maxk<t pk

7: if t ≡ 0 mod K then
8: for n = 1 to m do
9: Sample transition

n ∼ P (n) = pα
n�

k pα
k

10: Compute importance-sampling weight

wn =
 1

N
· 1

P (n)
�β

· 1
maxn wn

11: Compute TD-error

δn = Rn + γnQtarg

sn, arg max

a
Q(sn, a) − Q(sn−1, an−1)

�
12: Update transition priority pn ← |δn|
13: Accumulate weight change

∆ ← ∆ + wnδn∇θQ(sn−1, an−1)

14: end for
15: Update weights θ ← θ + η · ∆, reset ∆ = 0
16: From time to time copy weights into target network θtarg ← θ
17: end if
18: Choose action at ∼ πθ(st)
19: end for
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C.5 Neighborhood Mixup Experience Replay

Algorithm C.5 Neighborhood Mixup Experience Replay (NMER).
Adapted from Sander et al. [3].

1: Input: replay-buffer D, mixup hyperparameter α > 0, batch size N
2: Output: interpolated training batch Btrain
3: Sample batch B uniformly from replay-buffer

B =
�

(st, at, rt, s
′
t)

�N

t=1

iid∼ U (D)

4: Pre-allocate training batch Btrain ← array()
5: for t in N do
6: Sample transition for NMER

(ss, as, rs, s
′
s) ← B[t]

7: Standardize states and actions of sampled transition

(�ss, �as) ← ZScore(ss, as)

8: Standardized local neighborhood of sampled transition

Ks ← NN

(�ss, �as), B

�
9: Sample neighboring transition from local neighborhood

(sn, an, rn, s
′
n) ∼ U (Ks)

10: Sample mixup coefficient λ ∼ β(α, α)
11: Sampled transition features xs ← (ss, as, rs, s

′
s)

12: Neighboring transition features xn ← (sn, an, rn, s
′
n)

13: Interpolate sampled and neighboring transitions using mixup

xi = λxs + (1 − λ)xn

14: Add interpolated sample to training batch Btrain[t] ← xi

15: end for
16: return Btrain
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C.6 Hindsight Experience Replay

Algorithm C.6 Hindsight Experience Replay (HER).
Adapted from Andrychowicz et al. [29].

1: Given:
• an off-policy RL algorithm A (e.g. DDPG, SAC)
• a strategy S for sampling goals for replay (e.g. S(s0,...,sT ) = m(sT )),
• a reward function r : S × A × G → R (e.g. r(s,a,g) = −[fg(s) = 0]).

2: Initialize A, replay-buffer D
3: for episode = 1, M do
4: Sample a goal g and an initial state s0
5: for t = 0, T − 1 do
6: Sample an action at using the behavioral policy from A

at ← πθ(st||g)

7: Execute the action at and observe a new state st+1
8: end for
9: for t = 0, T − 1 do

10: rt := r(st, at, g)
11: Store the transition (st||g, at, rt, st+1||g) in D
12: Sample a set of additional goals for replay G := S(current episode)
13: for g′ ∈ G do
14: r′ := r(st, at, g′)
15: Store the transition (st||g′, at, r′, st+1||g′) in D
16: end for
17: end for
18: for t = 1, N do
19: Sample a mini-batch B from the replay-buffer D
20: Perform one step of optimization using A and mini-batch B
21: end for
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C.7 Mini-batch k-Means

Algorithm C.7 Mini-batch k-Means.
Adapted from Sculley [41].

1: Given: k, mini-batch size b, iterations t, dataset X
2: Initialize each cc ∈ C with an x picked randomly from X
3: v ← 0
4: for n = 1 to t do
5: M ← b examples picked randomly from X
6: for x ∈ M do
7: d[x] ← f(C, x) // Cache the center nearest to x
8: end for
9: for x ∈ M do

10: cc ← d[x] // Get cached center for this x
11: v[cc] ← v[cc] + 1 // Update per-center counts
12: η ← 1

v[cc] // Get per-center learning rate
13: cc ← (1 − η)cc + ηx // Take gradient step
14: end for
15: end for
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