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Abstract

This thesis discusses an advanced learning control for quasi-static (QS) MEMS mirror
to enhance the scanning accuracy from the induced errors in switching operation. QS
MEMS mirrors are small mirrors that are used to deflect laser beams. They have
the ability to hold a static position or track an arbitrary motion. Their actuation
principle makes it necessary to switch the inputs during usage. This switching operation
introduces unwanted oscillation around the resonant frequency to the trajectory. This
thesis proposes two methods to reduce the oscillation.
First, the MEMS scanning system is analyzed for its different error sources with the
help of dynamic error budgeting (DEB). Then a frequency-domain iterative learning
control (ILC) is designed for QS MEMS mirror to reduce the oscillation by switching
operation. The ILC are evaluated for sawtooth reference trajectories with various rates
and amplitudes, demonstrates error reduction of the oscillations. At its best in terms
of the final RMS errors, the ILC reduces the RMS error to 1.2 millidegree from the 84.8
millidegree in feedforward only case for 2 Hz sawtooth trajectory, reducing by a factor
of 69.9. Adding a time-variant Q-filter to the ILC only improved the convergence for
the different saw-tooth parameters. As proof of concept, a combination of input shaping
and ILC with a lower bandwidth to reduce model error is used. Input shaping is applied
by adding impulses shortly after the input switching. The input shaping reduces the
oscillation but is not performing as well as the ILC with a wide bandwidth. Combining
the ILC with a PD feedback controller also improved reduction of the RMS errors
for some cases of scan rates and amplitudes that was not compensated well only with
feedforward control while the reduced RMS errors is worse for some cases as well. In
conclusion, ILCs and input shaping successfully demonstrate the feasibility of reducing
the oscillation introduced by input switching operation of the QS MEMS mirror and
DEB confirms that the reduction can reach the limitation of the optical feedback.
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Zusammenfassung

Quasistatische MEMS-Spiegel sind kleine Spiegel, die zur Ablenkung von Laserstrahlen
verwendet werden. Sie haben die Fähigkeit, eine statische Position zu halten oder
eine beliebige Bewegung zu verfolgen. Ihr Aktuator Prinzip macht es erforderlich, die
Eingänge während der Nutzung umzuschalten, welches eine unerwünschte Oszillation
in der Höhe der Resonanzfrequenz erzeugt. Diese Arbeit schlägt zwei Methoden vor,
um die Oszillation zu reduzieren.
Im ersten Schritt wird das System mit Hilfe von DEB auf seine verschiedenen Fehlerquel-
len analysiert. Die erste Methode zur Reduzierung der Oszillation ist eine frequenzbereich
iterativ lernende Regelung (ILR). Insgesamt trägt der ILR dazu bei, die Oszillation
zu reduzieren. Im besten Fall reduziert es den RMS-Fehler auf 1,2 Milligrad von 84,8
Milligrad im Fall der reinen Steuerung, was zu einem Faktor von 69,9 führt. Das Hin-
zufügen eines zeitvarianten Q-Filters zum ILR verbesserte nur die Konvergenz für die
verschiedenen Sägezahnparameter. Als Machbarkeitsnachweis wird eine Kombination aus
Input Shaping und ILR mit geringerer Bandbreite zur Reduzierung von Modellfehlern
verwendet. Input Shaping wird angewendet, indem kurz nach der Eingangsumschaltung
Impulse hinzugefügt werden. Input Shaping reduziert die Oszillation, ist aber nicht so
effektiv wie der ILR mit einer höheren Bandbreite. Die Kombination des ILR mit einem
PD-Regler verbesserte auch die Reduzierung von RMS-Fehlern für die einige Frequenz
und Amplituden Kombinationen. ILR und Input Shaping demonstrieren erfolgreich
die Machbarkeit der Verringerung der Schwingung, die durch Eingangsumschaltung
in einem quasistatischen MEMS-Spiegel eingeführt wird, und DEB bestätigt, dass die
Verringerung die Begrenzung der optischen Rückkopplung erreichen kann.
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CHAPTER 1

Introduction

MEMS mirror stands for micro-electro-mechanical system mirror, which means that
through an electrical signal the mirror can be moved around different axes. These
mirrors can perform a high dynamic and precise beam position for various applications
such as light deflection and ranging (LIDAR) [6], laser projectors[7] or endoscopy [8].
The benefits are small sized mirros and the possibility of manufacturing the mirror from
a single silicone chip through a fully compatible CMOS process [9]. There are many
actuation concepts for the mirror. In most concepts, an electrostatic force [10, 11] is used,
but other concepts such as electromagnetic [12], electrothermal [13] or piezoelectric [14]
are considered and applied. One state of the art mirrors are the electrostatic resonant
mirror [9]. These mirrors oscillate in their resonance frequency, which can go up to
50 kHz[15]. The disadvantage of the resonance mirror is that one dimensional mirrors
only have a sinusoidal trajectory and the two-dimensional the Lissajous figure. The
quasi-static MEMS mirror does not have this disadvantage but has a lower resonance
frequency. The design concept makes it possible to hold a static position or track an
arbitrary motion. These mirrors are typically driven with a triangular or sawtooth
trajectory for line-scanning motion. One of the problems of the quasi-static mirror
is the low damping of the system, which makes it necessary to use a controller. The
quasi-static mirror with electrostatic force as an actuation concept can be produced in
CMOS-compatible processes, which is well established in the industry. The actuation
works by applying a voltage at one input of the mirror. The electrostatic force then
pulls the mirror to one side. To rotate the mirror to the other electrode, a voltage has
to be applied to the input on the other site. Therefore, during driving the mirror with
wide angle trajectories, it is necessary to switch the input. This switching of the input
introduces unwanted oscillation, around the resonance frequency, in the trajectory of
the mirror. This work focuses on the design of two controller designs to reduce these
unwanted oscillations. As a scanning trajectory, a sawtooth signal is used for typical line
scanning behavior of the mirror. Since in scanning applications repeating trajectories
are used, one of the reduction methods is going to be an iterative learning controller. A
second method for repeating trajectories is input shaping. Also, an important step for
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1 Introduction

(a) (b)

Figure 1.1: (a) example for electromagnetic mirror [1]. (b) example for piezoelectric
mirror [2]

designing a controller is the analysis of the different error sources. Therefore, in this
work, the system is analyzed by dynamic error budgeting. This provides the possibility
of seeing the best performances, which can be achieved for the system.

1.1 State of the Art
1.1.1 MEMS Mirror
For micro-electro-mechanic system (MEMS) mirrors, there are various types of actua-
tion such as electromagnetic, electrostatic or piezoelectric actuation. Electromagnetic
actuation works on the principle that the scanner has metal coils on it and is disposed in
a static magnetic field generated by a permanent magnet [16]. These type of mirror have
the benefit of high torque compared to electrostatic actuation, which can be used to in-
crease the opening angle and robustness of the device [17]. The drawbacks are increased
power consumption and a bulkier design due to integrated magnets [18]. Example for
a electromagnetic mirror can be seen in 1.1(a). MEMS mirrors with a piezoelectric
actuator work by having an outer frame with a piezoelectric ceramic film. Applying
voltage to this film deforms it, which then moves the mirror on the inner frame [19].
They have the benefit of providing high force with low power consumption and do not
require additional bulky elements and do not have a large displacement compared to the
other actuation method. The piezoelectric mirror also requires adding the piezoelectric
film, which adds to the production cost [20]. Example for a piezoelectical mirror can be
seen in 1.1(b). Although electrostatic actuated mirrors require high voltages, they still
have good displacement and can be quite compact [21]. Since they can be produced
through CMOS-technology, they are quite often used in the industry [22].

Electrostatic Resonant MEMS Mirror

Figure 1.2 shows a structure of a resonant MEMS mirror. The mirror has a movable
part, which include the mirror and combs electrodes on each end. The movable part is
connected to the static part over springs. The stator part has the opposing electrode.

2



1 Introduction

The mirror is actuated by applying a voltage between the stator combs electrodes and

static
electrode

static
electrode

static
electrode

static
electrode

movable
electrode

mirror

θ

C(θ)

C(θ)

C(θ)

C(θ)

U

U

U

U

movable
electrode

spring spring

Top-View

Side-View

Figure 1.2: Resonant MEMS mirror design. The rotor and the stator electrode are on
the same level

the combs electrodes of the movable part. As typical for electrostatic actuation the
generated torque can be described through a non-linear function,

τ = 1
2

∂C(θ)
∂θ

u2. (1.1)

The design of the mirror in combination with the actuation principle only allows a
pulling force to the rest position of the mirror. This behavior can be seen as a voltage
controllable spring with a positive nonlinear stiffness, where the total mirror stiffness
is a combination of the mechanical stiffness and electrostatic stiffness coming from
the electrostatic force. By a applying a nonlinear voltage the total stiffness of the
system can be manipulated and the mirror start to oscillated. This phenomena is called
parametric excitation [23]. These parametric oscillator response with a large amplitude
for a small excitation, when operated at frequencies around 2fc/n, where fc is the
natural frequency of the system and n ∈ N is the order of parametric resonance. The
mirror response always with an oscillation close to fc independently of the parametric
order, but for the first order the mirror has the highest response. The best result is
achieved when the driving voltage is switch on at the maximum deflection and switch
off a the zero crossing [24].
Typical behavior of these mirror is that the have multiple stable and unstable frequency
responses. The frequency response shows hysteresis between up- and down-sweep and
also jumps (bifurcations) [3]. This behavior can be seen in Figure 1.3. The mirror can
be treated as a single degree of freedom (DOF) system with the general equation of
motion [23]

Jθ̈ + b(θ)θ̇ + k(θ)θ = τ(θ), (1.2)
where J is the torque inertia of the mirror. b(θ) as damping therm and k(θ) as stiffness
term. All term except the torque inertia are nonlinear function depending on the
deflection angle [25].

3



1 Introduction

Figure 1.3: Frequency response of the resonant mirror. The mirror shows jumps at
certain frequencies [3].

Electrostatic Quasi-static MEMS Mirror

The quasi-static MEMS mirror with electrostatic actuation principle is manufactured
from a single silicone chip through a fully compatible CMOS process [9]. Figure 1.4
shows a structure of quasi-static MEMS mirror. The mirror consists of a movable
part and four stator electrodes. The movable part contains the mirror itself and the
rotor electrodes. The springs on the end connect the moving part to the rest of the
mirror. The stator electrodes are one level down. Together with the rotor electrode,
the stator electrode builds a comb-shaped structure. The mirror layers are first created

Figure 1.4: Quasi-static MEMS mirror design. The rotor and the stator electrode are
on different level. [4]

on the same level and then pressed down with the help of a stamp, which is visible in
Figure 1.5 [26]. This procedure is quite delicate and is one reason for uncertainties in
the mirror model. From the four stator electrodes the two on the same side build an

4



1 Introduction

Figure 1.5: Process of creating the different layer for the mirror. The rotor and stator
level are first created on the same level. The rotor layer is then pressed
down to a different level with the help of a stamp.[26]

input pair, which altogether gives two inputs for the mirror. The mirror is actuated by
an electrostatic force. By applying a voltage between the stator electrode pair and the
rotor electrode, the mirror will be pulled to the other side, 1.6(b). The springs at the

(a)

(b)

Figure 1.6: Concept of the electrostatic comb drive. (a) show the mirror when no
voltage is applied between the electrode. The stator and actor electrode
have to be on different levels. (b) When a voltage is applied between the
two electrode, a electrostatic torque rotates the mirror to onr side. The
springs on the rotor apply a counter torque. [4]

edges produce a torque directed in the opposite direction, which allows one to hold the
mirror at an arbitrary angle. Since the electrostatic force is only a pulling force, two
inputs are necessary. One input is to tilt the mirror with a positive angle, and one is to

5



1 Introduction

tilt the mirror with a negative angle. The torque, which is generated from the comb
drive, is proportional to the change of capacitance of the stator and rotor electrode,

τ = 1
2

∂C(θ)
∂θ

u2. (1.3)

The capacitance derivative of the mirror used in this project can be seen in Figure 1.7
The mirror itself can be modelled as a spring mass damper system with the electrostatic
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Figure 1.7: Capacitance derivative of the two input from the mirror.

force as an external torque.

Jθ̈ + bθ̇ + k0θ = 1
2

∂C1(θ)
∂θ

u2
1 + 1

2
∂C2(θ)

∂θ
u2

2, (1.4)

where J is the torque inertia of the mirror. b describe the damping coefficient, k0 the
spring constant and C1 and C2 the capacitance between the stator and rotor electrodes.
The mirror is a low-damped system with a high Q-factor around 90.

Resonance Shift

One important characteristic of the mirror is that it experiences a softening or stiffening
of the overall stiffness of the system depending on the current tiling angle [4]. This
effect can be seen in the transfer function. To obtain the transfer function, Equation 1.4
is approximated with a Taylor series at the current operation point θop and uop. Only
one input force is used because the mirror is always driven by applying voltage to one
of the inputs.

J∆θ̈ + b∆θ̇ + k0∆θ = kel∆θ + Kel∆u, (1.5)
with the local linear parameter,

kel = 1
2

∂2C(θ)
∂θ2 u2

#####
θ=θop,u=uop

, (1.6)
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1 Introduction

as electrostatic stiffness and

Kel = ∂C(θ)
∂θ

u

#####
θ=θop,u=uop

, (1.7)

as the voltage coefficient. Equation 1.5 is then Laplace transformed to get the transfer
function at the operation point,

G = Kel

Js2 + bs + k0 − kel

, (1.8)

where k0 − kel is the total stiffness of the system. Since kel depends on the tilt angle,
the stiffness changes at different operating points. Together with the stiffness, the
resonance frequency of the mirror also changes. The shift of the resonance frequency
adds a challenge to the designing of a controller.
Figure 1.8 shows the resonance frequency at different operating points, together with
the electrostatic stiffness. It first drops to a minimum at 0.5◦ and then increases again.
The resonance frequency was determined by measuring the mirror transfer function ( cf.
subsection 4.2.1. kel was calculated with the measured mirror parameters.
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Figure 1.8: Measured resonance frequency chances over the tilting angle and the esti-
mated electrostatic stiffness kel from the capacitance measurements.

MEMS Mirror Controller Methods

Similar to the actuation principle, there exist various controller methods for MEMS
mirrors. The first controller design implemented for MEMS mirrors is a PID [11, 27].
Both papers use two PID controllers for each axis of a 2D electrostatic MEMS mirror.
The PID controllers are compared to a steady-state feed-forward controller. Both PIDs
have a faster settling time and a lower overshot for an angular step signal. A possibility
of better linearization is to use a square root block between the PID controller and
mirror [11].
As an other controller method an integral sliding mode control (ISMC) for a electromag-
netic actuated polymer MEMS mirror is proposed [12]. ISMC is a non-linear feedback
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controller. Its benefits are a fast system response and insensitivity to plant uncertainties.
The idea behind ISMC is that the error trajectory in the error state-space slides along a
certain surface to the origin. During this sliding, the error oscillates around this surface,
an example for the sliding can be seen in Figure 1.9 To decrease the steady-state error,

Reaching
mode

Sliding
mode

Sliding
surface

e'

e

Figure 1.9: Example for Sliding mode controller. In the reaching mode, the error tra-
jectory move to the sliding surface. In the sliding mode the error trajectory
oscillate around the sliding surface to the origin

an integrator part is added. The ISMC is compared to the feed-forward open-loop
system, where the new controller shows an improvement of the settling time from 50
ms to 10 ms, without overshoot. Also, compared to a closed-loop PID controller, an
improvement could be seen by a lower position error. The performance of the ISMC
for tracking the ability of a triangular trajectory is also evaluated. The test result also
shows an improvement in performance compared to the open-loop and PID controller. A
disadvantage of the sliding mode controller is high frequency actuation, called chattering,
due to the fast change of the input signal along the sliding surface [28, 29]. In the
previous paper [29] a feed-forward controller based on steady-state signal is used to
show the performance of the sliding mode controller. In [10] an advanced feed-forward
controller for electrostatic MEMS mirror is introduced by using the property that the
input and system states can be written as functions of the output and its derivatives,
which is called differential flat. Through the flat output, the necessary input for a
desired trajectory can be calculated. On the contrary to the steady-state feed-forward
controller, this method is also useful for dynamic trajectories. The flatness-based
feedforward controller shows a mean error of 30 millidegrees for a triangular trajectory
with 10 Hz and 5◦ amplitude. This result was then improved by adding a closed-loop
PID controller to the system. This reduced the mean error down to 7 millidegrees

8
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1.1.2 Iterative Learning Control
Iterative learning control (ILC) is a type of learnt feed-forward control. The basic idea
is that the performance of the system, which executes the same task repeatedly, can be
improved by learning from the previous execution. This method makes the ILC ideal
for reducing repeating error. [30, 31]
The ILC learning algorithm is often described as

ui+1(k) = Q(q)[ui(k) + L(q)ei(k)], (1.9)

where i is the iteration index, k is the time index and q is the forward time-shift operator
qx(k) ≡ x(k + 1). e is the error between the desired system output yd and the measured
output ym,

ei(k) = yi,m(k) − yi,d(k). (1.10)
The block diagram of ILC can also be seen in Figure 1.10.
L(q) is the learning filter or learning function described as a proper rational function of
q and Q(q) is the called Q-filter.

Memory

+
L

Learning
Filter

Q
Filter

Memory

+

Figure 1.10: Block diagram of ILC concept. The input signal for the new iteration step
depends on the error of the last iteration step.

Learning Filter
The learning filter defines behavior of the the ILC and its conversion rate. There are
many methods for designing the learning filter. The PD-Type uses the well-known
concept of the PID-Controller. Similarly to the PID-controller, the PD learning filter is
often just tuned in and, therefore, does not require an accurate model of the system. In
contrast to the PID-controller the learning filter normally does not use an integration
part, because the learning algorithm already has an integration behavior. [32, 33].

Inverse Model Learning Filter
The idea to use the inverse model P −1 as learning filter comes from the solution to set

the of the error evolution equation zero. The error evolution equation for ILC in the
frequency domain is

Ei+1(z) = (1 − P (z)L(z))Ei(n). (1.11)

9
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As a note, this is the simplified error evolution equation, where Q-filter Q(z) = 1. The
learning filter is typically designed as L(z) = ρP̂ −1(z), where P̂ (z) is the designed
system model and ρ the learning gain with the characteristic that for a smaller learning
gain the robustness to model error increases. One of the major challenges in using the
inversion based design lies on stable inversion of a non-minimum phase plant model. To
guarantee a stable learning filter two methods can be used, the zero phase approximation
[34] and the time delay approximation [35]. The zero phase approximation method is
based on the zero phase error tracking control. It is assumed that the plant model can
be represented as

P (z) = Bu(z)Bs(z)z−kd

A(z) , (1.12)

where Bs(z) are the minimum phase zeros, Bu(z) the non-minimum phase zeros, A(z)
the poles of the plant and z−kd a time delay. The zero phase approximation of the
model inversion is then

P̂ −1
zp (z) = A(z)Bu(z−1)zkd

(Bu(1))2Bs(z) . (1.13)

Through the inversion, the time delay changes to a time advance. Since the ILC works
with a recorded measurement, the time advance can be implemented by shifting either
the input signal or the output signal. An example of the effect of the zero phase
approximation can be seen in Figure 1.11. The zero phase approximation gives a good
approximation for the model phase, but clearly diverges from the plant magnitude at
higher frequencies. In the case of the time delay approximation the system with the
non-minimum phase zeros is approximated with a system with only minimum phase
zeros and a time delay.

P̂ −1
td (z) = A(z)zkd+ka

B̂u(z)Bs(z)
, (1.14)

where B̂u(z) are an approximated minimum phase zeros and ka is an additional input
delay for phase correction. The effect of this method can be seen again in Figure 1.11.
This time the method gives a good approximation for the magnitude but shows a phase
error. Also visible is an example for the time delay approximation without the addition
time delay, where the phase error is much greater.
A typically the inverse model method is used in the time domain. However, the time
domain has the disadvantages that for a stable inverse the previously discussed methods
have to be used for non-minimum phase systems and every time the next iteration is
calculated a convolution together with signal padding have to be done. A better solution
is to use the inverse model method in the frequency domain since in the frequency
domain non-minimum phase system can be used without mentioned extra steps [37].

Frequency-domain ILC
The idea of the frequency-domain ILC is based on the desired output signal yd and

the input signal for every iteration ui being periodic with length N, the signal can be
represented by a limited number of harmonic frequencies of the fundamental frequency
fr = fs/N with fs as the sample rate [38]. The ILC can then be design in frequency
domain,

Ui+1(n) = Ui(n) + ρ(jω)P̂ −1(n)Ei(n), (1.15)

10
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Figure 1.11: Example for the effect of the stabilisation methods for inverse models. The
original model is a galvanometer scanner [36]

where the capital letters represent the discrete Fourier transform coefficients defined as

Xi(n) =
N−1!
k=0

xie
−j 2π

N
nk, (1.16)

and n is the index of harmonic frequencies for the fundamental frequency 2π
N

. ρ(jω)P̂ −1

is the learning filter which uses measured inversion of the system P̂ −1(jω) and a learning
gain ρ(jω). The learning gain is so selected that

ρ =
r for ω ≤ ωB

0 for ω > ωB,
(1.17)

with r ≤ 1 and ωB as cutoff frequency, which is selected as a frequency higher than the
highest frequency component of the error signal. r decided the convergence rate of the
ILC, but also it robustness.

Model-Free ILC
Model-Free ILC incorporates the system identification during learning. This removes

11
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the need for a dynamic system model and the related modelling process [39]. This
method of ILC is used when a reasonable frequency response cannot be measured
[40]. The model-free ILC algorithm often treats the plant as a linear system, like the
secant method [41]. There are also algorithms for certain nonlinear systems. In [42] an
algorithm based on the Newton method is proposed, which can also handle nonlinearity
to a certain degree. A steepest-descent algorithm for nonlinear systems is proposed in
[43].

Q-Filter
The Q-filter is used to reject learning from non-repeating disturbance and measurement
noise and increase the robustness of the ILC. It comes with the trade-off of reduced
performance. The simplest Q-filter is a low-pass filter to reject the higher frequency
part, which is not included in the repeating error and would only include noise.

Time-Variant Q-Filter
Time-variant Q-filters have the combined characteristics of different filters. They give the
enhanced robustness of low bandwidth filter, while taking advantage of the performance
of high bandwidth Q-filter [44]. In [45] a linear time-variant Q-filter is proposed for a
micro-scale robotic deposition system. The mix of motion with high acceleration and
constant velocity for high precision makes it necessary to have a filter with changing
bandwidth. To design the time-variant low-pass filter, the ILC learning algorithm from
Equation 1.9 is written in the lifted-system representation Equation 1.18, which is
described in more detail in [33]. The components of the vector are the values at different
time steps. i is the iteration index. The components of the matrix are the impulse
response components. Non-zero values in the upper triangular means that the filter is a
zero-phase filter. Since ILC uses a sequence of N-sample, an acausal filter can be used
and would also be recommended to not have a time delay in the calculated signal.


ui+1(0)
ui+1(1)

...
ui+1(N − 1)


� �� �

ui+1

=


q0 q−1 . . . q−(N−1)
q1 q0 . . . q−(N−2)
... ... . . . ...

qN−1 qN−2 . . . q(0)


� �� �

Q

·




ui(0)
ui(1)

...
ui(N)


� �� �

uj

+


l0 l−1 . . . l−(N−1)
l1 l0 . . . l−(N−2)
... ... . . . ...

lN−1 lN−1 . . . l(0)


� �� �

L


ei(0)
ei(1)

...
ei(N)


� �� �

ej



(1.18)

Since the rows in the filter matrix describe the values at different time steps to
obtain a filter which has a certain characteristic at a certain time step, the component
of the impulse response has to be in the right row. The matrix Equation 1.19
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Q =



q1
0 q1

−1 . . . q1
−(N−1)

q1
1 q1

0 . . . q1
−(N−2)

q2
2 q2

1 . . . q2
−(N−3)

... ... . . . ...
q2

N−1 q2
N−2 . . . q2

(0)

 , (1.19)

shows an example of a time variant filter, which is combined with different filters. The
upper indices 1 and 2 are the filter indices for filter 1 and 2.

Problem with Model Error for ILC
The ILC is asymptotically stable if and only if"""Q(jω)

	
1 − ρ(jω)L̃(jω)P (jω)

""" < 1, ∀ω. (1.20)

Entering the measured inverse system transfer function P̂ −1(jω) for L̃(jω) leads to

L̃(jω)P (jω) = P̂ −1(jω)P (jω) = (P (jω) + ∆(jω))−1P (jω) = ∆m(jω)ej∆θ(ω). (1.21)

Since the measured model always has a certain error, we get the gain error ∆m(jω) and
the phase error ej∆θ(ω). For a Q-filter Q(jω) = 1 the phase error must be ∆θ(ω) < 90◦.
Instability can occur for non-linear systems, where the resonance frequency depends on
the operation point. In Figure 1.12 the transfer functions of the quasi-static MEMS
mirror are shown for two operation points, −1◦ and −4◦. If one of the transfer functions
is used as the inverse system P̂ −1(jω) in ILC, because of the low damping of the mirror,
in a certain frequency range, the error between the two transfer functions would be 180◦

and therefore lead to an unstable ILC. This could lead to a performance problem with
the ILC. Adding an Q-filter beside the trivial Q(jω) = 1 would increase the convergence
radius[46].

ILC for Optical Scanning Application
Optical scanning devices usually use a repeating pattern as their scanning trajectory,
which makes the use of learning-type control algorithms like ILC ideal. The use of
ILC can reduce the need for real-time feedback control by training the device a priori
and saving the resulting waveform in the MEMS controller [47]. Some usage of ILC in
optical scanning application can be, reduction of overshot and settling time for near-field
scanning optical microscope [48] and improving the profile tracing for selective laser
melting application [49].

1.1.3 Dynamic Error Budgeting
Dynamic Error Budgeting (DEB) is a tool to calculate the effect of different noise
sources on the output of a system. DEB makes it possible to combine stochastic signals
(disturbance) with Bode plots[50, 51]. When working with normal distributed stochastic
signals, the system performance is typically measured with the standard deviation σ of
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Figure 1.12: Resonance frequency shift of the MEMS mirror depending on the angular
operation point. This leads to a phase difference of 180◦ for a certain
frequency range between the different transfer functions

the signal x(t), which is the square root of the variance,

σ2 = ∥x − x∥2 = lim
T →∞

1
2T

� T

−T
(x(t) − x)2 dt. (1.22)

For the DEB the DC components x are normally not considered, and therefore can be
set to 0. Using Parseval’s theorem, the standard deviation is connected to the frequency
domain. Parseval’s theorem also states that the energy in the time domain equals the
energy in the frequency domain,

σ2 = ∥x∥2 = lim
T →∞

1
2T

� T

−T
x(t)2 dt =

� ∞

0
PSD(f) df. (1.23)

PSD(f) describes the single-sided power spectral density function of x(t). In a power
spectral density (PSD) plot is it difficult to decide if a small peak at a higher frequency
or a broad bulge at lower frequency has more or less energy. By calculating the
cumulative power spectrum (CPS)

CPS(f) =
� f

0
PSD(v) dv, (1.24)

this problem is solved. f is the frequency. The goal of DEB is to get the final
performance of the system. For this, it is necessary to understand the way individual
PSDs propagate through the system and are combined at the output. For uncorrelated
disturbances, this can be calculated by

PSDouput(f) =
!

i

Hi(f)2PSDi(f). (1.25)
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Hi is the transfer function from the disturbance PSDi to the output. In Figure 1.13
an example of a block diagram of a system can be seen for the DEB analysis with the
different disturbances PSD. To determine the standard deviation of the final error, the
root of the total CPS value must be taken [52].

C DAC P

SADC

+

+

+

+

PSDADC PSDSensor

PSDDAC PSDext

y

Figure 1.13: Block diagram of a system for DEB analysis

For a non-linear system, an extra step is necessary to calculate the DEB. DEB
assumes that the system is linear. The non-linear signal-transformations must therefore
be linearized. An example is given in [53], where a performance estimation for a
direct-drive permanent magnet synchronous motor is analyzed by DEB. The transfer
function and noise function are transformed into the same coordination system. Due
to the linearization, the transformation depends on the operating point of the system,
therefore DEB is calculated for the zero velocity case and for the constant velocity case.

1.1.4 Input Shaping
Input shaping is a method in which the shape of the input signal is chanced in a way that
reduces the excitation of unwanted system dynamics or counters external disturbance.
The shaping always occurs in an interval half of the period of the system resonance
frequency Tc

2 . These chances of the original input signal can be seen as a convolution
of impulses [54]. A simple example of this concept can be seen in Figure 1.14. At
first the system undergoes an impulse at its inputs, this could come from an external
disturbance or system uncertainties during the design of the input signal. The system
responses with an oscillation at the resonance frequency. If second impulses, with lower
amplitudes, with an interval that is half of the period of the resonance frequency occur,
the system again responds with an oscillation at the resonance frequency. The second
oscillation has a phase shift of 180◦ to the first. The two oscillations cancel each other
out.
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Figure 1.14: Response of system for two input impulses. If the impulses are correctly
timed, the two impulses-responses are 180◦ shifted and cancel each other
out.

In general, input shaping can be seen as a convolution of the desired input signal
with an impulse sequence [55]. The new input signal is not limited to adding impulses
to the signal. Through the convolution sharp chances are added to the new input signal.
In [56] the triangular trajectory was cut at the top and so two new sharp chances with
in a distance of Tc

2 , were introduced. Figure 1.15.
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Figure 1.15: Input shaping for triangular signal. (a) show the desired signal befor input
shaping was used. (b) shows the out of the system with the undesired
oscillation. (c) show the desired signal after input shaping with the added
sharp chances. (d) shows the new output where the undesired oscillation
was reduced. [56]
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1.2 Problem Formulation and Research Goal
The electrostatic force, coming from the actuation signal, can only pull the comb drives
together, which means that for scanning trajectory like a sawtooth, it is necessary
to switch the input when going from negative angle value to positive or the other
way around. However, during the input switching, oscillations around the resonance
frequency are excited. This effect can be seen in Figure 1.16. In the example, a sawtooth
signal is used as the desired trajectory.

0 0.2 0.4 0.6 0.8 1
time [s]

-1

-0.5

0

0.5

1

an
gl

e 
[d

eg
]

angle reference signal
error signal mirror

Figure 1.16: Example for oscillation introduce through input switching

Every time the trajectory goes through zero, the input switches and an oscillation is
exited. The oscillation then slowly decays due to the low damping of the mirror. This
effect is much more visible in the fast turnaround of the saw-tooth signal. In the linear
region, the oscillation is only slightly increasing.
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Due to their cheap manufacturing and flexibility with the driving trajectory, quasi-
static MEMS mirrors with electrostatic actuation principle, receive much attention by
the industry [22]. To make it possible to be used in the varied applications, the mirrors
control need a high precision. A method is required to compensate for the introduced
oscillation through input switching. To understand the efficiency of the used method, it
is also necessary to know the limitation of the test-bench setup. Therefore, two research
questions are raised.

What are the limitations of a quasi-static MEMS mirror controlled with optical
feedback and where are the bottlenecks in the system?

Can iterative learning control or input shaping reduce the oscillation, introduced
through input switching in a quasi-static MEMS mirror?

The idea of a basic feed-forward and feedback controller and a mirror test-setup
is discussed in Chapter 2. Chapter 3 deals with the DEB and its results. The two
methods to reduce the oscillation and the results are discussed in Chapter 4. Finally,
the Chapter 5 conclude the thesis.
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CHAPTER 2

Experimental Setup and Control Design for QS MEMS Mirror

This chapter describes the setup of the mirror, parameter identification, the flatness-
based feedforward controller, which is used as the basic controller, and the feedback
controller.

2.1 Experimental Setup
The measurement setup can be seen in Figure 2.1. The setup is similar to the one
described in [57]. The input signal for the mirror is provided from the DAC of a dSpace
MicroLabBox, which goes through square root(sqrt) circuit. The sqrt-circuit calculates
the square root from Equation 2.11. After the sqrt-circuit, the signal goes through a
high voltage gain and then to the mirror input. The mirror itself is placed on a six
degree of freedom (DOF) stage to adjust the mirror plane to the position sensitive
device (PSD) plane. Together with a laser, which is aimed at the mirror, and the PSD
the tilted angle of the mirror can be measured. The tilt angle is obtained by

θ = arctan(udiff

usum

lP SD

2d
). (2.1)

where udiff is the difference voltage of two PSD output voltages and usum is the added
PSD voltage. lP SD is the length of the PSD and d the distance between the PSD and
the mirror. The PSD is placed on a 1 DOF stage to calibrate the distance d. The
picture of the setup can be seen in Figure 2.2.

2.1.1 PSD-Mirror Distance Calibration
To extract the mirror tilt angle it is necessary to know the distance d between the
mirror and PSD . The distance is calculated using a similar approach as in [57], but
adjusted for QS MEMS mirrors. The PSD is going to be set to zero position. Then
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Figure 2.1: Block diagram of the Mirror setup. The mirror reflects a laser beam to as
PSD, which is then used to measure the tilting angle of the mirror. The
mirror signal is generated through a DAC from a dSpace system, which
then goes through a sqaure root circuit and a high voltage gain.

an input voltage signal from −60 V to 60 V with a fixed step size is applied. For every
step a short pause is set to let the mirror get to steady state before the position of the
laser beam on the PSD is saved. When the signal is completed, the PSD is moved a
certain step dstep and the process is repeated. In Figure 2.4 the process is displayed for
a fixed angle. The blue dots are measured positions on the PSD.

The measured points with the same input voltage are then linear interpolated. The
distance of the mirror is then extrapolated by the point where every line crosses each
other with the least square method because of measure uncertainties the lines are not
going to cross each other at the same point. The results of the interpolated lines for
every measured point can be seen in Figure 2.5. The red dot indicates the position of
the mirror to the starting point of the PSD.
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Figure 2.2: Photo of the real setup.
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Figure 2.3: Block diagram of the setup with ILC together
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Figure 2.4: Calibration process of the PSD Setup. The individual lines calculated by
extrapolated ever point on the PSD with the same input voltage. The Point
where all line crossed each other is the position of the mirror.
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Figure 2.5: Calibration process of the test bench. The individual lines calculated by
interpolated ever point on the PSD with the same input voltage. The Point
where all line crossed each other is the position of the mirror, which is
indicated with a red dot.
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2.2 Parameter Identification
Manufacturing tolerances make it necessary to identify certain mirror parameters. This
section describes the identification of the spring constant, damping coefficient, and the
capacitance derivative curve, which is described in more detail in [4]. The torque inertia
value can be taken from the manufacturer’s information due to the low production
tolerance.

2.2.1 Identification of Spring Constant and Damping Coefficient
The impulse response of a mass spring damper system with a constant damping
coefficient decays exponentially with a cosine oscillation, which can be described as

θT = θ̂0e
−δtcos

��
1 − d2

0ω0t
�

, (2.2)

where θ̂0 is the starting deflection angle, δ the decay constant and d0 the Lehr’s damping
with the connection

δ = d0ω0 = b

2J
. (2.3)

To identify the spring constant and damping coefficient, an impulse with the duration
of 1/f0, with f0 as eigenfrequency of the mirror and an amplitude of 25 V is applied
to one of the mirror inputs. The decay curve is measured, and the Equation 2.2 is fit
to the measurement. In Figure 2.6 the measured decay curve together with the fitted
curve can be seen.

2.2.2 Identification of Capacitance Derivative
For the identification of the capacitance derivative the static voltage-deflection-angle
curve is used together with mirror equation Equation 1.4, where the dynamic parts are
set to zero θ̇ = 0 and θ̈ = 0 and

C
′
1(θ) = 2τ(θ)

u2
1

for θ > 0◦, (2.4a)

C
′
2(θ) = 2τ(θ)

u2
2

for θ < 0◦. (2.4b)

The static voltage-deflection-angle curve is measured by applying a sinus voltage with a
frequency much smaller than the eigenfrequency f0/1000 to one of the mirror inputs,
depending on the angle. For small input voltages, the values u1, u2 the Equation 2.5
diverge, because of measurement uncertainties. For a continuous curve, a polynomial
is going to be fitted on the calculated capacitance derivative curve. For identifing C

′
1

for θ < 0 and C
′
2 for θ > 0 it is necessary to apply a voltage to both inputs. The
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Figure 2.6: Decay curve of mirror after voltage impulse (a). (b) shows the zoomed in
part of the decay curve.

capacitance derivative can be calculated with

C
′
1(θ) = 2τ(θ)

u2
1

− C
′
2(θ) 1

k2
u

for θ < 0◦, (2.5a)

C
′
2(θ) = 2τ(θ)

u2
2

− C
′
2(θ) 1

k2
u

for θ > 0◦, (2.5b)
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where ku is the voltage ration

ku =


u1
u2

for θ < 0,
u2
u1

for θ > 0,
(2.6)

with ku = 0.9. The calculated capacitance derivative curve, together with the fitted
curve, can be seen in Figure 2.7. The fitted curve give a good approximation of the
measured. Only around the 0◦ a different between the fitted curve differ from the
measured curve. This difference could lead to error in the input signal coming from the
flatness based feedforward-controller around the 0◦. This could be the reason for the
oscillation introduced through the input switching operation.
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Figure 2.7: Capacitance derivative curve

2.3 Flatness-Based Feed-Forward Controller
As a Basic controller a flatness-based feedforward controller [10] is used for the mirror
setup.
A system is differentially flat when the input v and the state vector x can be written as
a function of the output and its derivatives. To show that the mirror system is flat,
Equation 1.4 is going to be written in the state-space representation with the state
x = (x1, x2) = (θ, θ̇),

ẋ1 = x2, (2.7a)

ẋ2 = b

J
x2 − k

J
x1 + C ′

1(θ)
2J

u2
1 + C ′

2(θ)
2J

u2
2, (2.7b)

y = x1. (2.7c)
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The two inputs are to be combined into a new input v

v = C ′
1(θ)
2J

u2
1 + C ′

2(θ)
2J

u2
2. (2.8)

Together with Equation 2.7 and Equation 2.8 the input can be written as

v(y, ẏ, ÿ) = ÿ + b

J
ẏ + k

J
y. (2.9)

For the flatnessbased feed-forward controller the output in Equation 2.9 is just
replaced with the desired trajectory (θ̈d, θ̇d, θd)

v(y, θ̇d, θ̈d) = θ̈d + b

J
θ̇d + k

J
θd. (2.10)

Mirror comb drives can only produce a pulling force. Therefore, only one of the two
inputs is active at a time. The voltages u1, u2 for the two inputs are calculated with
the following relation.

u1(vd, θd) =


 

2Jvd

C′
1(θd) for vd > 0,

0 for vd ≤ 0,
(2.11a)

u2(vd, θd) =


0 for vd > 0, 

2Jvd

C′
2(θd) for vd ≤ 0,

(2.11b)

where comb 1 is active for a positive tiled and comb 2 for a negative tiled.

2.4 Feedback Controller
PD feedback controller and oberserver together with the feed-forward controller are
designed based on [9]. The PD controller equation is

Λ(e, ė) = Pe + Dė. (2.12)

e is the position error e = θd − θ̂ with θd as the desired angle and θ̂ as the calculated
angle from the observer and ė is the velocity error e = θ̇d − ˙̂

θ The parameters P and D
are set according to the eigenfrequency ω02πf with the constant kλ > 0

P = 3λ3, D = 3λ, λ = kλω0 (2.13)

The velocity signal cannot be directly derived from the angle signal because of the
noise in the angle signal. A Luenberger observer is used to get the velocity and position
for the feedback controller. The observer is implemented as follows

˙̂
θ =

�
θ̈d + Λ(e, ė) + l2(θ̂ − θ) dt θ̂ =

� ˙̂
θ + l1(θ̂ − θ) dt. (2.14)
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The observer gain l1 and l2 are placed with the Ackermann formula at

l1 = 2λ̂, l2 = λ̂2, λ̂ = kλ̂ω0, kλ̂ > 1. (2.15)
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CHAPTER 3

Dynamic Error Budgeting for QS MEMS Mirror

This chapter describes the DEB for the QS mirror system. It explains the calculation
of the different parts of the system, it discusses the end result, and a way to reduce the
main disturbance source.
Figure 3.1 shows the block diagram of the system for DEB analysis. It consists of
the sensor, ADC, DAC, PD feedback controller and G(s). For the ADC, DAC and
feedback controller the MicroLabBox dSpace system is used. G(s) contain the square
root circuit, the high voltage gain, and the mirror system. An important note is that
the mirror system of Equation 1.4 is here divided into two parts. The voltage square
component V 2 part described that the input voltage is squared in the mirror system.
External vibrations are not affected by the input Equation 2.9 and therefore are set after
the V 2 part. For the transfer function G(s), it is necessary that the system is linear.

PD DAC √10 HV V² Mirror

SensorADC

+ + +

++

PSDDAC PSDsqrt PSDVib

PSDSensorPSDADC

θ

Mirror-SystemSqrt-CircuitController

Mirror-System

G(s)
R(s)

S(s)

Figure 3.1: Block diagram of the system for DEB analysis

The sqrt-circuit cancels the squaring of the input voltage, so only the angle-dependent
capacitance would remain as non-linear part. The mirror sqrt-circuit system could be
linearized similar to Equation 1.5, but since DEB is used to approximate the total
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3 Dynamic Error Budgeting for QS MEMS Mirror

output error, another method would be to set the derivative of the capacitance to a
constant value, so that the error would maximise, leading to

G(s) = 1
2

C ′
max

√
10HV 2

gain

Js2 + bs + k
. (3.1)

R(s) the transfer function of the controller, a PD controller with values P = 1.35 · 105

and D = 635.89 and S(s) is the transfer function of the sensor, which is set to S(s) = 1
since the PSD acts as a low-pass filter with a bandwidth higher than the interesting
frequency for the mirror system.
The next sections describes the contribution of each sources of errors.

3.1 ADC / DAC Noise Model
ADC and the DAC both have similar approaches to calculate the PSD [58, 59]. In
general, the ADC and DAC error source can be split into quantization noise and thermal
or electrical noise. Quantization noise can be calculated with

σquan = LSB√
12

, (3.2)

where LSB is the least significant bit, calculated with

LSB = vr

2B
, (3.3)

where vr is the voltage range of the ADC or DAC and B the Bit range. Both the ADC
and the DAC have a voltage range of 20 V and a bit range of 16 Bits. This give

σquan = LSB√
12

= LSB√
12

=
20 V
216√
12

= 8.8097 · 10−05 Vrms. (3.4)

Electrical noise can be estimated with,

σel = LSB/2/
√

2
10SNR

20
(3.5)

with SNR as the signal-to-noise ratio. In addition to calculating the PSD, it can also
be measured. For this, the ADC input of the dSpace system is short-circuited, and
the output is measured. For the DAC, the input is set to 0 V and the output is also
measured with the help of the ADC input of the dSpace system. The total σ of ADC
and DAC can then be calculated with

σadc/dac =
�

σ2
quan + σ2

el. (3.6)

The value of the ADC is used to calculate the rotation angle of the mirror. The
same transformation from voltage to degree has to be done with the PSD of the ADC.
The idea behind the transformation can be seen in Figure 3.2. To calculate the σ of
the ADC for the position value, it is necessary to calculate the way sum signal and the
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Sensor

ADC

ADC

L/2 *∆/Σ

L/2 *∆/Σ

arctan(l/d)+

σ_∆

σ_Σ

σ_l σ_θ  
 

Figure 3.2: Block diagram of the σadc conversion to angular signal

difference signal of the sensor propagate through the position equation.

P (∆, Σ) = L

2
∆
Σ , (3.7)

with Σ as the sum signal and ∆ as the difference signal. In the first step, the expected
value of P (∆, Σ) is defined as

E (P (∆, Σ)) ≈ P (µ∆, µΣ), (3.8)

where µ∆ and µΣ the operation point is. The variance of P (∆, Σ) is then calculated
with,

Var (P (∆, Σ)) = E
�
[P (∆, Σ) − E (P (∆, Σ))]2

�
≈ E

�
[P (∆, Σ) − P (µ∆, µΣ)]2

�
≈ P ′2

∆ (µ∆, µΣ)Var(∆)
+ 2P ′

∆(µ∆, µΣ)P ′
Σ(µ∆, µΣ)Cov(∆, Σ)

+ P ′2
Σ (µ∆, µΣ)Var(Σ),

(3.9)

where
P ′

∆(µ∆, µΣ) = ∂P (∆, Σ)
∂∆

#####
∆=µ∆,Σ=µΣ

= L

2
1

µΣ
(3.10)

and
P ′

Σ(µ∆, µΣ) = ∂P (∆, Σ)
∂Σ

#####
∆=µ∆,Σ=µΣ

= −L

2
µ∆

µ2
Σ

. (3.11)

The disturbances of the two ADC are uncorrelated Cov(∆, Σ) = 0, together with
Equation 3.9, Equation 3.10 and Equation 3.11

σlen = 1/2
�

L2σadc
2

µΣ2 + L2µ∆2σadc
2

µΣ4 . (3.12)

The angular PSD follows a similar step, which in the end leads to

σθ =

 1
d

�
l20
d2 + 1

�


2

σlen. (3.13)
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Finally, the transfer functions for ADC and DAC are.

Hadc (s) = − G (s) R (s)
1 + G (s) R (s) S (s) (3.14)

Hdac (s) = G (s)
1 + G (s) R (s) S (s) (3.15)

3.2 Square-root-Gain Circuit Noise Model
The disturbance of the Square-root(sqrt) circuit PSDsqrt influences the system after
the circuit itself. This means that to get the transfer function, the system has to be
linearized again. Similarly to G(s) the derivative of the capacitance is set to a constant
value, so only the squared input has to be linearized, hence follows

G√(s) =
C ′

maxHV 2
gainur

Js2 + bs + k
, (3.16)

with ur as the operation point voltage.
The PSDsqrt from sqrt-circuit is measured by applying an input voltage between 0 V to
10 V to get different PSD for different operating points and the output is measured
with the dSpace ADC.

3.3 Sensor Noise Model
As a sensor, a position sensitive device is used. The PSD of the sensor is obtained by
aiming a laser beam at the sensor and measuring the sum and difference voltage signal
with the dSpace ADC. The two signals are then used to calculate the angle-time signal.
From the angle-time signal the PSDsensor is determined. This process is done for every
5mm on the PSD to get different operation points. The transfer function is as follows

Hsensor (s) = − G (s) R (s)
1 + G (s) R (s) S (s) . (3.17)

3.4 External Vibration Model
One of the main applications for the mirror is going to be used as LIDAR in automotive.
Therefore, it is also interesting to see the affects of external vibration of the road on the
total error. As an external force, a vibration profile similar to [60] is used, namely Profile
D from LV124 [5]. This vibration profile is chosen to simulate a typical vibration load
for automotive lidar applications. The spectrum of vibration can be seen in Figure 3.3.

This vibration profile simulates that the mirror is mounted on the front of the car.
Also similar to [60] the acceleration is assumed to be normal to the surface of the mirror
plate. Since the vibration profile describes an acceleration a, it is necessary to calculate
the resulting torque on the mirror. The torque on the mirror is the result of a mismatch
of L between the center of rotation and the center of mass m [61], which can be seen in
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Figure 3.3: Spectrum of the vibration load LV124[5]
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Figure 3.4: Vibration torque model of the mirror

Figure 3.4. The generated torque depends on the direction of the vibration. In this case,
a vibration direction parallel to the stator comb is selected, which is the worst-case
scenario. The resulting torque is then,

τ = Lm · cos(θ) · a = T (s), (3.18)

where a = 2 · 10−14 is selected. The transfer function of the vibration disturbance is
then,

Hvibration (s) = T (s) Gm (s)
1 + G (s) R (s) S (s) . (3.19)

Gm(s) describes the transfer function of the torque to angle, which is just the transfer
function of the mirror without the electrical torque,

Gm(s) = 1
Js2 + bs + k

. (3.20)
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3.5 Simulation Result of DEB
Together with the calculated PSDs and the transfer functions for the various com-
ponents of the system, the PSDs for the individual part of the output of the system, and
with Equation 1.25 the total PSD can be calculated, which can be seen in Figure 3.5.
The calculations are done for the operation point at 0◦ and 4◦ to show that the operation
point of the mirror does not really change the outcome. In the PSD it is already visible
that the sensor has a spike at 50 Hz. However, as already mentioned in the PSD is
it hard to decide how much this spike is contributing to the overall error. Therefore,
the CPS also has to be calculated. The result for both operating points can be seen in
Figure 3.6. The CPS shows that the 50 Hz spike does not contribute that much to the
error. The sensor error slowly rises over the frequency and at the end is the biggest
error source. A possibility to reduce the overall error in the system is to reduce the
bandwidth to 1 kHz. The standard deviation for both operation points is 1.3 mdeg for
a bandwidth up to 25 kHz.
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Figure 3.5: PSD of the different disturbance sources at the output (a) shows the PSDs
for 0◦ operation point. (b) shows the PSDs for 4◦ operation point
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Figure 3.6: CPS of the different disturbance sources at the output. A spike at 50 Hz is
visible. (a) shows the CPS for 0◦ operation point. (b) shows the CPS for 4◦

operation point
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CHAPTER 4

Iterative Learning Control for QS MEMS Mirror

In this chapter the design of frequency-domain iterative learning control (ILC) is ex-
plained and the result for the ILC used in the setup is discussed.

4.1 Frequency-domain Analysis of the Oscillation
Induced by Switching

For designing a better method to reduce the oscillation, it is necessary to have a better
understanding of the error, which is exited through the input switching. Therefore,
an FFT is going to be used for the error signal. As desired signal, a sawtooth with
different frequency and amplitude settings is used and 10 periods are measured and
then transformed to have higher resolution. The result of the FFT can be seen in
Figure 4.1 and Figure 4.2.

From subsubsection 1.1.1 it can already be expected that the frequency of the exited
oscillation is between 105 Hz and 120 Hz. For the sawtooth signal with the amplitudes
1◦ and 2◦ the highest peak is around 108 Hz to 112 Hz. For the amplitudes 3◦ and 4◦ the
error shifts to higher frequencies with up to 115 Hz. However, at the higher sawtooth
frequencies the peak is about the same value. In general, the frequencies components of
the oscillation of the error signal are between 102 Hz and 115 Hz. So the bandwidth of
the controllers should go up to minimum of 115 Hz.

4.2 ILC with Feed-Forward Control
Figure 4.3 shows the whole ILC setup. The starting input signal u0 is calculated through
the flatness-based feed-forward controller.
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(a)

(b)

Figure 4.1: FFT of the error signal for different frequencies and different amplitudes.
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(a)

(b)

Figure 4.2: FFT of the error signal for different frequencies and different amplitudes.
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Figure 4.3: Block diagram of the ILC setup

4.2.1 Transfer Function
As learning algorithm, the frequency-domain ILC is used, which use the inverse of the
system. For measuring the transfer function, the empirical transfer function estimate
(ETFE) is used [62]. As input signal a chirp signal with a trapeziform windowing is
used.

u(k) = r(k) sin
�

ωstartkTa + ωend − ωstart

NTa

(kTa)2

2

�
(4.1)

r(k) = ûsat

�
10k

N

�
sat

�
10(N − k)

N

�
(4.2)

sat(k) =


1 for k ≥ 1
k for − 1 < x < 1
1 for k ≤ −1

(4.3)

The different angular operation point was set by calculating the constant input signal
with the same method as the flatness-based feedforward controller use. The concept
can be seen in Figure 4.4. As the amplitude for the chirp signal û = 100 is used and as
the starting and stopping frequency ωstart = 2π0.1 ωend = 2π300.
By testing different inverse system transfer functions, the best is selected. The transfer
function for different operation points can be seen in Figure 4.5

4.2.2 Result with Simple Lowpass Filter
For the learning gain ρ = 0.1 is selected and for the cutoff frequency of the learning
gain ωB = 2π · 200 is selected to still include all frequencies from the error signal.
Figure 4.6 shows a comparison between feedforward only case and the flatness-based
feedforward control with ILC. As reference signal a sawtooth signal with an amplitude
of 2◦ and a frequency of 2 Hz is used. The errors before the learning process,4.6(b),
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Figure 4.4: Block diagram of the setup for measuring the transfer function of the mirror
at the different angular operation points for the ILC input signal.
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Figure 4.5: Comparison of transfer function for differen operation point.

clearly show the excited oscillation after zero crossing. The model error from the
flatness-based feedforward controller is visible by the slight offset of the error signal,
which becomes much greater at the fast turnaround of the sawtooth signal. The ILC
reduces the error that comes from the model uncertainties and the oscillation at the
eigenfrequency. The RMS error is reduced from 84.8 millidegrees for the feedforward
only case to 1.21 millidegrees with the ILC, which coincides with the calculated RMS
error from the DEB in Chapter 3. This is an RMS reduction by a factor of 69.9. Only
around the fast turnaround is a small oscillation visible, 4.6(c). For the rest of the
signal, the oscillation is complicity rejected. The error converges in about 80 iterations.
This slow convergence comes from the low learning gain ρ = 0.1. The minimum is found
at 148 iterations
In Figure 4.8 the RMS error diagram can be seen, showing the lowest RMS error for

the feedforward controller with ILC for a variety of sawtooth reference signals ranging
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from 1 to 10 Hz and 1◦ to 4◦. Each pixel represents one result for one sawtooth reference
signal. For comparison the RMS error diagram if the feedforward only case can be seen
in Figure 4.7. In general, the comparison shows that the ILC reduces the RMS error.
The variety test shows that the error reduction decreases as the sawtooth parameters
increase. In the range around 1 Hz-2 Hz and 1◦ − 2◦ the oscillation is almost completely
rejected. An example of this can be seen in 4.10(a). For parameters in the middle
range, the RMS error increases by a factor of 10 compared to the low range parameters.
The ILC still shows an improvement of the oscillation, but not as good as in the low
parameters. At the edge of the parameters, the RMS error again increases by a factor
of 10. An example of this can be seen in 4.10(b). In this area, the ILC often only
improves the model error but does not reduce the oscillation. An example for this can
be seen in 4.10(c). The input signal after learning can be seen in Figure 4.11. For all
cases, the ILC shifts the chance of the input to an early point of time.
The d and c in Figure 4.9 shows at which sawtooth parameters the ILC converges
and at which the ILC becomes unstable. A c in the diagram means that the ILC did
converge, which was verified by letting the ILC run for 150 iterations and a d that the
ILC diverge. The ILC does convergence for the parameters where the algorithm also
get a low RMS error. By achieving convergence at the other sawtooth trajectories, an
overall performance improvement of the ILC at the whole range could be possible. This
convergence could be achieved by changing the Q-filter to a more specified filter.
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Figure 4.6: Result of the ILC for sawtooth trajectory with an amplitude of 2◦ and a
frequency of 2 Hz. (a) shows the measured angle signal before and after
learning process together with the reference signal. In (b) the error between
measured angle and reference signal from before learning as well as after
learning. (c) is the enhanced error from the read box. The RMS error of
the learning iteration can be seen in(d). The learning converge at about 75
iterations 43
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Figure 4.7: RMS error for the feedforward only case.
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Figure 4.8: RMS error for the feedforward only case.
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Figure 4.9: RMS error after the learning process for different amplitude and frequency
settings. Green c shows that the ILC did converge and red d shows that
the ILC diverge
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Figure 4.10: 3 different result for the ILC with simple Q-filter. (a) shows an example for
one of the best results for the ILC.(b) shows a an example in the middle
parameter set range. (c) shows an example in the higher parameter set
range.
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Figure 4.11: 3 different input signal for the ILC with simple Q-filter. (a) shows an
example of the input signal for one of the best results for the ILC.(b) shows
an example of the input signal in the middle parameter set range. (c)
shows an example of the input signal in the higher parameter set range.
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4.3 ILC with Time-Variant Q-filter
The result of the previous section shows that the ILC with a simple low-pass Q-filter
does not converge for most sawtooth parameters. Performance improvement could be
achieved by achieving convergence for all parameters. Through introducing a Q-filter,
which is more specific for the problem, the ILC could converge in all areas.
Figure 4.9 shows that for amplitude lower than 2◦ ILC achieves a good error reduction
and converges for lower frequencies. The idea is to use two different low-pass filters. One
with a high bandwidth for part of the angle signal, which is between −2◦ and 2◦ and one
with a lower bandwidth for the other part of the angle signal. A time-variant low-pass
filter can be designed to have exactly this characteristic. The two filter characteristic
combined in the time-variant Q-filter uses a zero-phase Butterworth filter with an
order of 7 as base. The high bandwidth filter has a crossover frequency at 160 Hz.
These values are selected, so that the frequency components of the error signal are still
included, described in section 4.1. The lower bandwidth filter has it crossover frequency
at 100 Hz, so that the resonance frequencies are reduced around 3 dB. A high reduction
would guarantee a more stable ILC, but at the cost of efficiency of error reduction.

Figure 4.12 shows the RMS error diagram together with the convergence diagram
of the new ILC. With the time-variant Q-filter the ILC does now converge for most of
the sawtooth parameters. An example of convergence due to the new Q filter can be
seen in Figure 4.13. Only for an amplitude of 0.5◦ and one frequency at 3◦ does the
ILC become unstable. The efficiency of the ILC with the new Q-filter can be seen in
the performance factor diagram Figure 4.14, which shows the value of the performance
factor for the different sawtooth trajectories.

performancefactor = 20log10

�
RMS error old

RMS error new

�
, (4.4)

with RMS error old as the lowest resulting RMS error from the ILC with simple lowpass
filter and RMS error new as the resulting RMS error from the new method.Values
above 0 mean that the new ILC method has a lower RMS error. This is only true for
some edge value. The error signal for sawtooth 1◦ and 2 Hz shows an example for a
negative performance factor and can be seen in 4.15(a). The new Q-filter decreases
the performance of the ILC so much that nearly no error is reduced. In 4.15(b) the
error signal for 4◦ and 1 Hz can be seen. Here the time-variant Q-filter does help with
reducing the RMS-error furthermore. By adding a time-variant Q-filter to the ILC the
convergence is improved from 29.5% of all cases to 78.4% of all cases, but 87.5% of
all cases have a decrease of performance. The reduction of the performance could be
the result of a non-optimal Q-filter algorithm. Analysis of the filter algorithm shows
that it introduces some small error in the filtered signal. Due to the lack of time while
conducting the project, the filter algorithm cannot be improved.
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Figure 4.12: RMS error for time variant Q-filter after the learning process for different
amplitude and frequency settings. Green one shows that the ILC did
converge and red zero shows that the ILC diverge.
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Figure 4.13: Comparison of convergence of ILC with lowpass filter and time-variant
Q-filter for a sawtooth with 1.5◦ and 10 Hz. The RMS error is always taken
from the lowest point.
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Figure 4.14: Performance factor diagram. Comparison between the RMS error after
the learning between ILC with simple low-pass filter and the time variant
low-pass filter. The factor where calculated with Equation 4.4. A factor
value > 0 means that the time variant low-pass filter has a lower RMS
error value, then the simple low-pass filter.
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Figure 4.15: Two different results for the time variant Q-filter. (a) shows an example
where the new Q-filter reduced the efficiency of the ILC. (b) shows an
example where the new Q-filter increased the efficiency of the ILC
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4.4 Input Shaping with ILC
Input shaping is implemented by adding impulses shortly after zero crossing. An
example of this method can be seen in 4.16(c). The impulse can only reduce the
oscillation, which is excited through the switching of the input. The error from the
model uncertainties in the flatness-based feedforward controller would remain. In
addition to input shaping, a frequency-domain ILC is used. The ILC should only reduce
the error from the model uncertainties and not the oscillation, so the learning gain
ρ(jω) bandwidth is set to a lower value than the switching oscillation,

ρ =
0.5 for ω ≤ 2π100

0 for ω > 2π100
. (4.5)

The lower bandwidth of the ILC eliminates the problem with convergence of the ILC.
The error reduction of the angle signal is done in two steps. First, the ILC reduces the
error of the model uncertainties until the RMS error converges. Afterwards, the ILC
algorithm is stopped, and the impulses are added to the new input signal.
The efficiency of input shaping is verified with a sawtooth signal with an amplitude
of 2◦ and frequency of 2 Hz as reference signal, 4.16(a). In the error signal,4.16(b) the
oscillation was reduced with the help of the added impulses. The error before the added
impulses already includes the ILC, as a result there is no model error visible. Compared
with the feedforward control only case, the RMS error was reduced from 84.8 mdeg
to 12.1 mdeg. Input shaping is used only as a proof of concept, therefore the impulse
parameters, such as position and amplitude, are set manually. The best position of the
impulses is most of the time a little bit after zero-crossing. Normally, the best position
would be around the distance half of the period of the resonance frequency from the
zero crossing. This difference could be because the oscillation, which is excited through
the input shaping, is not the same as the oscillation from the input switching, but
already a 180◦ shifted signal.
Figure 4.17 shows the RMS error before implementing the input shaping with ILC

and Figure 4.18 shows the RMS error after using input shaping with ILC. Comparing
these two figures shows that input shaping with ILC reduces the the RMS error.
Figure 4.19 shows the performance diagram compared to the ILC with simple low-pass
filter from subsection 4.2.2. The factor is calculated with Equation 4.4. The comparison
shows that the input shaping does not produce a similar or better result as the ILC
method. About 80% of all sawtooth trajectory cases have a reduction in performance
Figure 4.20 and Figure 4.21 show four performance examples of the ILC combined
with the input shaping compared to the ILC with simple low-pass Q-filter. The top
left shows an example where the performance of the input shaping is much worse than
the performance from the previous ILC. The oscillation error, especially around the
fast turnaround, is only reduced by a small part. Top right shows an example where
input shaping performance is not as good as ILC from the previous chapter. Bottom
left shows an example where input shaping performance is a little bit better than ILC
from the previous chapter. However, the reduction of the oscillation error with input
shaping is not uniform. The bottom right shows an example, where the input shaping
performance is better than the ILC performance from the previous chapter. Here, a
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Figure 4.16: Result of the input shaping combined with ILC for sawtooth trajectory with
an amplitude of 2◦ and a frequency of 2 Hz. (a) shows the measured angle
signal before and after adding the impulses together with the reference
signal. In (b) the error between measured angle and reference signal from
before as well as after adding the impulses to the input signal. The input
signal can be seen in (c). The two impulse are add slightly after the
zero-crossover.

reduction of the oscillation error is clearly visible.
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Figure 4.17: RMS error for the feedforward only case.
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Figure 4.18: RMS error for the feedforward wiht input shaping and ILC case.
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Figure 4.19: Performance-diagram for input shaping. Comparison between the RMS
error after the learning between ILC with simple low-pass filter and ILC
combined with input shaping. The factor was calculated with Equation 4.4.
A factor value > 0 means that the input shaping has a lower RMS error
value, then the simple low-pass filter.
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Figure 4.20: Four different sawtooth parameter angle signal comparison between ILC
with simple low-pass Q-filter and ILC combined with input shaping. Top
left shows an example, where the input shaping performance is much worse
than the ILC from previous chapter. Top right shows an example, where
input shaping performance is not as good as ILC from previous chapter.
Bottom left shows an example, where input shaping performance is a
little bit better then ILC from previous chapter. Bottom right shows an
example, where input shaping performance better than ILC performance
from previous chapter.
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Figure 4.21: Four different sawtooth parameter error signal comparison between ILC
with simple low-pass Q-filter and ILC combined with input shaping. Top
left shows an example, where the input shaping performance is much worse
than the ILC from previous chapter. Top right shows an example, where
input shaping performance is not as good as ILC from previous chapter.
Bottom left shows an example, where input shaping performance is a
little bit better then ILC from previous chapter. Bottom right shows an
example, where input shaping performance better than ILC performance
from previous chapter
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4.5 ILC with Feedback Control
Combining feedback controller together with the ILC is a good practice to increase the
overall performance of the system. The feedback controller does help to compensate
nonrepeating error, which the ILC cannot compensate. Additionally, by using a PD
controller as feedback controller, the resonance peak from the mirror can be reduced,
making the system easier to handle and, therefore, increasing the performance of the
ILC. As feedback controller, a PD controller is used together with an observer, which is
described in [9].
The controller values are

kP = 13478. (4.6)
kD = 635.8874. (4.7)

The observer gain is selected as

l1 = 2λ = 11305, (4.8)

l2 = λ2 = 3.1949 · 107. (4.9)

The complete block diagram of the feedback controller together with the feed forward
signal can be seen in Figure 4.22. Since by adding the feedback controller, the transfer
function of the system is changed for the ILC. The transfer function is again measured
with the same method as described in subsection 4.2.1.
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Figure 4.22: Block diagram of the feedback controller together with the feed forward
signal. The feed forward signal is calculated through the flatness based
feed forward controller and ILC.

Figure 4.23 shows the RMS error for the feedforward with feedback only case and
Figure 4.24 shows the RMS error after adding the ILC to the system. By adding the
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Figure 4.23: RMS error for the feedforward with feedback only case.
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Figure 4.24: [RMS error for the feedforward with feedback and ILC ca

ILC to the feedforward and feedback case, it is possible to obtain a reduction in the
RMS error in all cases. Similarly to the case without feedback, the effect of the ILC
variant to the different sawtooth cases.
Also interesting to see is if adding the feedback controller significantly increases the
performance. Figure 4.25 show the performance factor between the RMS error after
the ILC learning process with a simple low-pass filter and the ILC combined with the
feedback controller. In high parameter ranges, adding the feedback controller to the
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system helps to further reduce the RMS error. An example of this can be seen in
4.26(b), where the error signal is drawn. Here, it is visible that the oscillation error
was further reduced. For the lower parameter set of the sawtooth signal, the feedback
decreases the efficiency of the ILC. An example can be seen in 4.26(a). In the middle
parameter range, the factor is around 0, which means that the ILC performance is about
the same, when the feedback controller is added. By adding the feedback controller, an
improvement in performance of 63.6% of all cases compared to the ILC without the
feedback controller can be achieved.
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Figure 4.25: Performance factor diagram. Comparison between the RMS error after the
learning between ILC with simple low-pass filter and feedback combined
with ILC with simple low-pass filter. The factor was calculated with
Equation 4.4. A factor value > 0 means that the feedback system has a
lower RMS error value, then the simple low-pass filter.

4.6 Discussion
In general, the results of the four methods demonstrate the feasibility of compensating
the error of the trajectory from the model uncertainty and oscillation at the eigenfre-
quency from the input switching problem. For a 2 Hz sawtooth reference trajectory
with a 2◦ amplitude, the flatness-based feedforward only case has an RMS error of
84.8 millidegrees. The flatness-based feedforward control with ILC can reduce the
RMS error by a factor of 69.9 down to 1.2 millidegrees. Analyzing the performance for
a variety of sawtooth reference signals shows that the performance decreases as the
frequency and amplitude increase and for most cases the ILC diverges. The flatness-
based feedforward control with ILC and time-variant Q-filter has an RMS error of
7.6 millidegrees for the 2 Hz and 2◦ amplitude case. Adding the time-variant Q-filter
can increase convergence from 29.5% of all cases to 78,4%, but it comes with the
cost of a reduction of performance for 87.5% of all sawtooth cases. Flatness-based
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Figure 4.26: Two different results for the feedback with simple low-pass Q-filter. (a)
shows the worst example where by adding the feedback, the ILC efficiency
was reduced. Only the model error in the fast part of the sawtooth was
reduced. (b) shows an example where adding the feedback increased the
efficiency of the ILC

feedforward control with ILC with lower bandwidth and input shaping has an RMS
error of 12.1 millidegrees for the 2 Hz and 2◦ amplitude case. Testing this method
with different sawtooth cases shows that the RMS error can be reduced for all cases,
but the performance also decrease for increasing sawtooth parameters. Comparing
the different sawtooth cases shows a reduction of performance for 80% of all cases.
The flatness-based feedforward control with PD-feedback controller and ILC has a
RMS error of 1.6 millidegrees for the specific sawtooth case of 2 Hz frequency and 2◦

amplitude which is not the best of all methods, but by adding the feedback controller,
the performance increase can be achieved for 63.6% of all cases compared to the first
method, but some cases are also show a decrease in performance. By adding the ILC
to the feedforward with feedback controller case a reduction of the RMS for the tested
sawtooth is achieved, but the feedforward with ILC only case still has the sawtooth
case with the smallest RMS error. All ILC-based methods can reduce the oscillation
from the switching inputs and model errors regardless of high nonlinearity of the QS
MEMS mirror, demonstrating the potential of the ILC for the precise and accurate
control of the QS MEMS mirror.
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CHAPTER 5

Conclusion and Outlook

5.1 Conclusion
The quasi-static (QS) MEMS mirrors have the advantage of holding a static position or
tracking an arbitrary motion in spite of using simple and CMOS-compatible electrostatic
actuation. Since the electrostatic force is only a pulling force, however, the QS MEMS
mirror is necessary to switch between two electrodes for scanning trajectories with the
whole range. This input switching can introduce an unwanted oscillation around the
resonance frequency of the MEMS mirror. This thesis focuses on reducing the oscillation
as much as possible and iterative learning control and input shaping are investigated as
a solution.
Before implementing the different reduction method, the QS MEMS mirror system
is analyzed by dynamic error budgeting. A QS MEMS mirror with a PD feedback
controller under an external vibration is assumed for calculation, where the vibration
profile of LV124 is used for the evaluation. The cumulative power spectrum (CPS)
shows that the errors of the system does not depend on the angular operation point of
the mirror, and the most error is contributed by the PSD sensor and vibration influence
is negligible.
As first method to reduce the oscillation, a frequency-domain iterative learning control
combined with a flatness-based feedforward controller is proposed, where the ILC use a
simple lowpass Q filter with 200 Hz bandwidth. For a sawtooth reference trajectory
with an amplitude of 2◦ and a frequency of 2 Hz the RMS error is reduced from 84.82
mdeg to 1.2 mdeg, which is a reduction by a factor of 69.9. The reduced RMS error
coincides with the RMS error result of the DEB of 1.3 mdeg. Testing the ILC for a
variety of sawtooth references from 1◦ to 4◦ and 1 Hz to 10 Hz shows that the ILC
performance decreases with increasing sawtooth amplitude and frequency. As the next
ILC method, a time-variant Q-filter is used for the ILC to achieve convergence for all
parameters as a mean to increase the performance. The time-variant Q-filter based
on the Butterworth-filter with crossover frequency at 160 Hz and 100 Hz is used. The
time-variant Q-filter shows an improvement in convergence from 29.5% of all cases to
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78.4% but has a reduction in performance up to 87.5%. As next method, input shaping,
in form of adding impulses to the input signal, in combination with ILC from the first
method with lower bandwidth is used. Comparing the input shaping method with the
first method shows a reduction of performance for 80% of all sawtooth trajectory cases
for the input shaping method, but still has a reduction of the RMS error for all tested
sawtooth cases. As last ILC method, the frequency-domain ILC is combined with a
feedback PD controller. The ILC with the feedback control improves the RMS error for
63.6% cases of all sawtooth trajectories compared to the ILC with feedforward control.
Comparion of the results of all methods shows that the feedforward with ILC only
case has the sawtooth case with the lowest RMS error while general RMS reduction
performance is better with feedback control. The time-variant Q filter and input shaping
also shows the benefits but only for special cases and specific aspects such as convergence
and simplicity. In conclusion, ILC and input shaping successfully demonstrate the
feasibility of reducing the oscillation introduced through input switching in a quasi-static
MEMS mirror and DEB confirms that the reduction can reach the limitation of the
optical feedback.

5.2 Outlook
Possible next steps can be raised as follows:

• Further tests of the time-variant Q-filter algorithm showed that the algorithm
may introduce some errors in the system. Improving the algorithm could improve
the performance with time-variant Q-filter

• The best RMS reduction gives the setup with a simple low-pass filter. Trying
another method of Q-filter could resolve in better convergence and better perfor-
mance. This could also improve the result of the ILC with feedback controller.

• In the current setup for the input shaping method, the position and strength of
the impulse is manually set. For a better result, a heuristic finding algorithm
could be used or a reinforcement learning algorithm.
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Appendix A

Figure 1 to Figure 5 shows the RMS error in milidegree for different sawtooth reference
signal for the 5 different cases. Flatness-based feedforward case only, flatness-based
feedforward control with ILC, flatness-based feedforward control with ILC and time-
variant Q-filter, input shaping with ILC and flatness-based feedforward control with
ILC and PD-feedback controller.
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Figure 1: RMS error in milidegree of the feedforward control only case
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Figure 2: RMS error of the flatness-based feedforward control with ILC
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Figure 3: RMS error in milidegree of the flatness-based feedforward control with ILC
and time-variant Q-filter
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Figure 4: RMS error in milidegree of the input shaping with ILC
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Figure 5: RMS error in milidegree of the flatness-based feedforward control with ILC
and PD-feedback controller
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