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1 Abstract

Over the past few decades the interest in quasi two dimensional Van der

Waals materials such as highly oriented pyrolytic graphite (HOPG) increased

significantly, especially the electronic structure is of great interest for many

applications. This work aims to investigate the unoccupied band structure above

the vacuum level of HOPG by means of double di↵erential inelastic very low

energy electron di↵raction (IVLEED) measurements in the energy range of 0 to

200eV primary energy in 30° and 60° specular reflection geometry. This allows

to study the band structure with elastically and inelastically back scattered

primary electrons as well as measuring the secondary electron emission. Using

the matching formalism, a correlation between the elastic peak intensities and

the band structure was established. The link with inelastic intensities provides

a qualitative description of the penetration depth of the primary electrons in

the crystal. The acquired IVLEED data revealed the existence of a novel and

atypical feature, in which primary electrons occupy a preferred final state,

resulting in the emission of electrons with fixed energy. Two kinetic models for

inelastic di↵raction of electrons on crystals have been implemented, in which

the sequence of inelastic and elastic di↵raction lead to Bragg peaks at di↵erent
energies. The results are in good agreement with quantum field theory models

and experimental data for high energies [1–5].

1



Contents

1 Abstract 1

2 Introduction 4

3 Theory 5
3.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Electron yield . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Band structure of graphite . . . . . . . . . . . . . . . . . . . 16

3.2 The surface barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Laue and Bragg theorem . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Determination of the inner potential of HOPG . . . . . . . 24

3.3 Inelastic constructive interference . . . . . . . . . . . . . . . . . . . 25

3.3.1 Di↵raction before loss (D+L) . . . . . . . . . . . . . . . . . . 26

3.3.2 Loss before Di↵raction (L+D) . . . . . . . . . . . . . . . . . 27

4 Methods 31
4.1 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Electron source . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.4 Analysers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.5 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.6 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Energy scale of Reference . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Contact potential . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Acceleration Voltage . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Thermionic emission of electrons . . . . . . . . . . . . . . . 47

4.2.4 Potential distribution in the SE2ELCS . . . . . . . . . . . . 48

5 Experimental results 51
5.1 Single HOPG energy spectrum . . . . . . . . . . . . . . . . . . . . . 51

5.2 Very low energy electron di↵raction . . . . . . . . . . . . . . . . . . 53

5.2.1 TEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 IVLEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Inelastic VLEED . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Secondary electrons . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 Atypical Peak . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.4 Sharp transition: band structure - Bragg-like . . . . . . . . 75

2



6 Conclusion 76

Appendices 85

A 2dfit and h2d Source code 85

3



2 Introduction

Over the past few decades and especially after the discovery of graphene in

2004, the interest in quasi two-dimensional Van der Waals (VdW) materials such

as highly oriented pyrolytic graphite (HOPG) increased vastly. The possible

applications range from microelectronic devices, material science, applied

chemistry and medicine to biology. A quasi 2D VdWmaterial consists of stacked

atomic layers, which are bound by weak Van der Waals forces. This results in

a high symmetry along the c-axis of the crystal, which allows one to reduce the

dimensionality of the investigated system [6].

The electronic band structure of a material is of vital interest regarding its

potential applications. It provides information about the allowed energies that

electrons can have within the crystal and thus which electronic transitions

are allowed. This allows for an understanding, for instance, of the electrical

resistance, superconductivity, molecular adsorption and optical absorption

processes. The band structure also provides the foundation for solid state

devices like transitors, optoelectronics and solar cells. This work is dedicated

to the investigation of the unoccupied band structure above the vacuum level of

HOPG. For this purpose, inelastic very low energy electron di↵raction (IVLEED)

experiments were performed in the energy range up to 200eV in two geometries.

The data were collected at the secondary electron energy loss coincidence

spectrometer (SE2ELCS) at the Technical University Vienna.

The main goal of this work is to investigate the unoccupied band structure

above the vacuum level. The investigation is based on a theoretical treatment

and on experimentally collected data. The theoretical analysis includes in

chapter 3.1 the matching formalism, which describes how the wave functions

of incoming electrons couple with allowed Bloch wave functions inside the

crystal. Essentially, Bloch states must exist in the solid whose Fourier coefficients

match the Fourier coefficients of the incoming particles. If not, in a first

approximation, the electrons cannot penetrate the solid. By including higher

order approximations, it is shown that electrons can indeed penetrate the solid,

but their wave function is exponentially damped in the solid. Chapter 3.3

deals with the di↵raction phenomena of electrons that are inelastically as well

as elastically scattered. Two kinetic models were created in which the primary

electron is assumed to be scattered either elastically or inelastically first and

followed by the opposite type of scattering. These models describe the expected

positions of Bragg peaks for primary electrons that su↵er energy loss in the
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solid. Good agreement is found with theoretical and experimental studies at

high primary energies [1–5]. Furthermore, in chapter 4.2 the influence of the

electron source on the energy scale in experiments is demonstrated [7–14]. It was

found that the work function di↵erneces between two surfaces and the electron

generation processes can severely change the energy scale of reference by up to

1eV and therefore, it is not negligible especially in the study of very low energy

electrons (VLEE).

The experimental data in this work were collected with a time-of-flight (TOF)

analyser in 30° specular reflection geometry and with a hemispherical mirror

analyser (HMA) in 60° specular reflection geometry, respectively. In each

case, full range energy spectra were measured at landing energies between

3 and 200eV. The TOF analyser achieves a high energy resolution for low-

energy electrons. The HMA provides a constant energy resolution in the

full energy range, which enables one to investigate discrete energy losses, for

instance, energy losses caused by the excitation of plasmons. In chapter 5.2

the intensity of the elastic peak is interpreted with the matching formalism.

This allows one to determine areas in the band structure in which primary

electrons cannot penetrate the solid surface. Furthermore, it is shown by using

single reflected electron energy loss spectra (REELS) that electrons can also

penetrate into forbidden regions of the band structure (i.e. band gaps), but

are strongly damped. In chapter 5.3 the double di↵erential inelastic very low

energy electron di↵raction (IVLEED) spectra are analysed and discussed. In

particular, a qualitative description of the penetration depth of primary electrons

into di↵erent regions of the band structure and the secondary electron emission

are discussed.

3 Theory

3.1 General considerations

Since the discovery of the electron in 1897 by Joseph John Thomson, the

interest in beams of electrons remained high. In the past century, electron

beams (EBs) played a vital role in many areas of scientific and daily life. For

example, the electron tube radio receivers (invented in 1924) and the tube

television (black-white TV invented 1926) rapidly established themselves in

many households. With the invention of the electron microscope in 1931 it was

possible to achieve better resolution by orders of magnitude than with regular

light microscopes [15]. Nowadays, beams of electrons are used in countless
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technical, analytical, and medical applications. On an industrial scale, EBs are

used, for instance, to produce high-purity metals and in some cases exotic alloys

in electron beam furnaces. In the semiconductor sector, EBs are used to create

fine structures in wafer disks by means of lithography. Medical applications are

the sterilisation of health-care products or the treatment of cancer using small

electron accelerators (linacs) [16]. EBs are an excellent tool for many analytical

techniques. Their properties, such as energy, direction, intensity, and beam-

diameter, are easily manipulated and controlled, since charged particles can be

controlled by electromagnetic fields. Due to the small penetration depth of slow

electrons, they can be used to study the electronic and crystalline structure near

the surface and hence, are used in this work to study the surface of a graphite

sample.

The bombardment of surfaces with electron beams gives rise to some particles

Figure 1: Electron beam trajectories and interaction mechanisms of inelastically
(left) and elastically scattered electrons. The left side shows an example
trajectory of an incoming electron, while undergoing a sequence of elastic an
inelastic collisions. It should be noted that Auger electrons (AE) and secondary
electrons (SE)can only leave the target in the outermost few atomic layers. The
deeper in the solid such an electron was generated, the less likely it is to still
have sufficient energy on its way to the surface to overcome the surface barrier.
The unlabeled blue arrow designates such an electron. Inelastic collisions can
also lead to the generation of characteristic x-ray radiation via x-ray fluorescence
or cathodoluminescence (CL). The right side schematically illustrates the elastic
scattering on a single atom.

of the beam to transmit through, to scatter back from or to be absorbed within

the solid. Inside the solid, impinging electrons interact with the nuclei and
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Figure 2: Process of excitation of an inner-shell electron. A primary electron(red)
excites an inner-core electron (blue) and the vacancy can be reoccupied by
two competing e↵ects: x-ray fluorescence (green) or Auger-Meitner e↵ect, as
explained in the main text.

atomic and solid state electrons via a sequence of elastic and inelastic collisions,

as seen in figure 1. In an elastic collision, the electron will be scattered on

the electrostatic potential of the screened positively charged nuclei. The energy

transfer from the electron to the nucleus can be neglected, since the mass of an

electron is atleast three to four orders of magnitudes smaller than the mass of the

nucleus. However, elastic collisions give rise to large directional changes of the

impinging electrons [17]. In single crystals, elastic scattering on the lattice causes

the creation of constructive interference patterns, a phenomenon known as Bragg

scattering. Inelastic collisions cause a transfer of energy and momentum from

the impinging electron to the collision partner. Figure 2 shows the process of

such collisions. First, an incoming primary electron (red) liberates an inner-shell

electron (blue), leaving an inner-shell hole (purple) behind. Now, the vacancy

can be reoccupied by a higher shell electron in two competing ways, the emission

of a characteristic x-ray photon (green) or the emission of an Auger electron (AE)

(cyan). In the first case, the energy di↵erence ~! = E2 − E1 between the inner

(1) and outer (2) shell determines the energy of the photon. Within the Auger-

Meitner e↵ect1, the released energy is not transferred to a photon, but to a third

bound electron, which will then escape from the atom. Solid state electron can

acquire energy through inelastic collisions with primary electrons. If the energy

is sufficient to overcome the surface barrier, the solid state electron can leave

the target as secondary electron (SE). However, if the energy of the solid state

electron is too low, it will remain inside the solid as a so called hot electron. A
1The e↵ect is named after Lise Meitner and Pierre Victor Auger. Although this e↵ect was first

discovered by Meitner, most of the credit was given to Auger. Only in more recent publications
does Meitner also receive some of her deserved recognition.
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further possibility for the incoming primary electron to interact with the solid

is the excitation of plasmons. When a charged particle enters a solid, it attracts

oppositely charged particles and repels equally charged ones. This results in a

displacement of the charge carriers in relation to each other. The repulsive force

causes oscillations in the charge density with associated quasi-particles called

plasmons. In the case of incoming electrons, the plasmons can thus be seen as

a collective oscillation of the solid state electrons. Most of the energy of the

incoming electron is eventually lost in the form of phonons and heat in a cascade

of inelastic collisions [18]. Because of strong inelastic scattering, the inelastic

mean free path of low energy electrons (E < 10keV ) is only in the order of the

atomic spacing in crystals. Therefore, the penetration depth of electron beams in

this energy range is only a few atomic layers and hence, EB’s are highly sensitive

to the surface properties

In the following section, several analytical techniques will be presented.

Low energy electron di↵raction

The wave-particle dualism is one of the most important theories in modern

physics. Its founder is Louis de Broglie, who in his dissertation in 1924

postulated that electrons are particle waves with a wavelength λ = p
h , where

p is their momentum and h is Planck’s constant. Only three years later, in

1927, Clinton Davison and Lester Halbert Germer confirmed his hypothesis by

measuring di↵erent electron di↵raction patterns of poly-crystalline nickel with

and without an oxide layer. In such experiments, an electron beam is focused

on the surface of a crystal. The acquired intensity of the elastically scattered

electrons measured as a function of the incident energy is referred to as the

(elastic) IV-curve. In the following, the di↵raction of electrons in the energy

range of a few 100eV to keV will be briefly discussed. The measurement of the IV

curve is also known as low-energy electron di↵raction (LEED). Due to the small

penetration depth of only a few atomic layers in this energy range, this technique

is very sensitive to the chemical and crystalline composition of the surface [19].

As so often in scientific history, the discovery of Davison and Germer was based

on an accident. They measured a change in the IV curve, since an oxide layer

formed on the nickel surface. This was caused by a leak in the vacuum chamber.

[20].

From interference studies of crystals with X-rays, it is known that constructive

interference occurs when the path di↵erence between two waves is an n-fold

multiple of the wavelength λ. Figure 3 shows that the path di↵erence of a
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Figure 3: Illustration of scattering of x-rays (left) and electrons (right) from
a crystalline surface. While photons of sufficient energy are not refracted at
the vacuum-solid interface, electrons feel the inner potential and change their
perpendicular component of the momentum.

di↵racted wave corresponds to the well-known Bragg condition for constructive

interference 2dsin(↵) = nλ. Because of the wave character of electrons, it was

expected that they would also follow Bragg’s condition. However, numerous

experiments in the late 1920s showed this was not the case, but that the

di↵raction maxima were shifted towards lower energies. In 1928, Hans Albrecht

Bethe solved this issue by introducing an electrostatic potential energy step

between vacuum and the inside of a crystal [21]. According to Schrödinger’s

equation, electrons change their momentum when they travel through areas

with di↵erent potentials. This means the momentum shifts when penetrating

the surface of the crystal. Bethe called the potential di↵erence between vacuum

and solid inner potential Ui with values of the order of the valence band width

(˜15eV). LEED is a well-established technique to study the inner potential.

Chapter 3.2 deals with this topic in more detail.

Very low energy electron di↵raction

For energies in the range of 1-100eV, one speaks of very low energy electron

di↵raction (VLEED). With VLEED, the kinematic models used in LEED lose their

applicability and quantum mechanical e↵ects, such as the band structure of the

target, must be considered. VLEEDmeasurements provide information about the

allowed and forbidden states in the unoccupied band structure. A section later

in this chapter deals with the band structure of graphite in more detail.
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Very low energy electron di↵raction is a well-established technique to investigate

the electronic structure E(~k) above the vacuum level and is usually done

at perpendicular incidence angle of the electron beam. Elastically scattered

electrons are used to create a link between the wave functions in vacuum and

the Bloch wave functions in a crystalline solid [22–24]. Schrödinger’s equation

describes particles in vacuum as plane waves and in periodic potential wells

as Bloch waves. Therefore, penetrating the surface changes the wave function

of electrons. An impinging free electron enters the target as a plane wave

and is forced to adapt a Bloch state in the solid and vice versa, for secondary

electrons. This is also called coupling of the wave functions and is described by

the matching formalism.

Matching formalism

The matching formalism is a simple and straight-forward method for creating a

causal link between the band structure and the elastic reflectivity of an electron

beam. It uses the fact that free electrons in vacuum are described as plane waves

and in periodic crystalline potentials as Bloch waves. Both wave functions must

satisfy certain boundary conditions at the solid-vacuum interface for an external

electron to be allowed to enter the solid. The following derivation is based on the

text book ”Solid Surfaces, Interfaces and Thin Films” written by Hans Lüth [25].

In the simplest case, a surface can be described by a step-like potential barrier,

where the space is divided into two sections: z < 0, the vacuum half space

and, z > 0, the crystal half space consisting of a semi-infinite periodic potential.

An incident electron beam is refracted at the potential barrier changing its

momentum, as shown in figure 4. However, the total particle current I is

conserved at the transition from vacuum into the solid (primed variables):

I = I 0 , ~jA = ~j 0A , (1)

where A is the area of the beam and ~j is the particle density. The quantum

mechanical probability flux can be written as

~j =
~

2im
( ⇤r − r ⇤). (2)
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Figure 4: Illustration of a plane wave hitting the interface to a crystal at z = 0.
The momentum changes in presence of the inner potential. The total electron
flux remains conserved at this transition.[25]

By combining both equations, the boundary and continuity conditions for the

wave functions  vac and  sol in vacuum and in the solid are obtained:

 vac(z = 0) =  sol(z = 0) (3a)

@
@n
 vac(z = 0) =

@
@n
 sol(z = 0) . (3b)

In the next step, the wave functions  vac and  sol still have to be characterised.

An incoming primary electron can be described as a plane wave with the energy

E = ~2
2m and the mass m as follows

φvac = ei(
~kk·~rk+k?z), (4)

where the k components are in the (x,y) plane and k? points in the z direction.

The wave function in a vacuum consists of both the incoming wave φvac as well as

the di↵racted waves. For the di↵racted waves, the 2D periodicity of the surface

potential can be employed. This conserves kk within the reciprocal vector ~Gk =
~Ghk = h~b1 + k~b2, where ~b1 and ~b2 are the reciprocal lattice vectors parallel to the

surface and h,k the Miller indices. The total wave function in the vacuum reads:

 vac = φvac +
X
hk

Ahke
i((~kk+~Ghk)·~rk−k?,hkz) (5)
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where Ahk is the amplitude of the scattered waves. From the conservation of

energy

E =
~2

2m
(|~kk + ~Ghk |2 + k2?,hk), (6)

the components of the wave vector can be obtained. Within the solid, the wave

functions of the electrons are described as Bloch waves, which represent solutions

of Schrödinger’s equation in a periodic potential

V (~r) =
X
~G

VGe
i ~G~r . (7)

Thereby, V~G are the Fourier coefficients of the potential and ~G is a reciprocal

lattice vector. The Bloch waves are plane waves modulated by a function u(~r),

where u has the same periodicity as the potential. This gives the wave function

of the electron inside the crystal:

 sol = u~k(~r)e
~k·~r =

X
~G

c ~G(
~k)e(i((

~k+~G)·~r)), (8)

where c ~G(
~k) are the Fourier components of u~k(~r).

The matching conditions of equation (3) for the wave functions (equation 5 & 8)

show that the external electron with primary energy E can only enter the solid, if

allowed electronic states exist in the crystal at this energy. Moreover, the match

in Fourier components of the Bloch states with the incoming wave determines

how well an electronic state couples with vacuum. Essentially, Bloch states must

exist whose Fourier coefficients correspond to those of the incoming electron. At

this point, the assumption that an incoming particle represents a plane wave can

be dropped and generally replaced by a wave packet. Solid states electrons in

well-coupling states can more easily leave the solid and external electrons can

easily penetrate the into the target in such states. Primary electrons in well-

coupling states can travel far into the solid and therefore have a high probability

of undergoing inelastic scattering, resulting in a low elastic reflectivity. However,

Slater suggested that the surface barrier can also be a complex quantity. The real

part of the inner potential causes refraction of electrons on the surface and the

imaginary part causes expoential wave damping, similar to Lambert-Beer’s law.

In quasi 2 dimensional (2D) Van der Waals (VdW) materials like graphite,

electrons can occupy a unique state, the so-called interlayer state. An interlayer

state can be understood as a quasifree electron constantly bouncing between
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adjacent layers. Therefore, the electron will be reflected on and transmitted

through the lattice planes, similar to light in a Fábry-Perot interferometer.

Recently, simulations of n-layered graphene (n refers to the number atomic

layers) were performed by Geelen et al. and Ziegler to create a link between

the reflectivity of elastically back scattered electrons and the interlayer states

[26, 27]. The results of the simulation by Ziegler are shown in figure 5, where

the interlayer states produce n-1 resonances in the reflectivity. Each added layer

reduces the waviness of the curve, yielding a smooth curve for macroscopic

samples (n > 100). The Fourier components of an interlayer state are similar to

those of free charged particles, since the electrons can travel quasifreely through

the lattice planes. If the energy of the primary electron coincides with a band
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Figure 5: Simulation for the reflectivity of n-layered graphene as presented in
[26, 27] compared to the total electron yield (TEY) curve from A. Bellissimo [28,
29] (TEY curves are discussed in the following section). For n-layered graphene,
n-1 nodes are formed. This highlights, that electrons in an interlayer state act
similar to light in a Fábry-Perot interferometer. Each added layer reduces the
waviness of the curve, leading to a smooth curve for thick samples (e.g. n=100).

gap, the wave functions can no longer be matched, as no Bloch states are available

in forbidden areas. As a consequence, external electrons cannot enter the solid

at all, resulting in a high reflectivity. According to aforementioned matching

formalism, in I-V measurements, band gaps are characterised by a reflectivity of

about unity. By extending the assumption that the interface transitions from a

semi-infinite crystal to vacuum in a step function, and moving to a more realistic

13



representation with a surface layer, one obtains states localised at the surface

whose wave functions decrease exponentially into the crystal. The external

electron can couple with the surface state, resulting in an exponential damping

of the wave function of the primary electron. This behaviour is characterised by a

complex~k and a complex surface potential. Such electron wave damping was first

described by John Clarke Slater in 1937 and has since been widely adapted in the

literature, for instance in [25, 30–34]. For the I-V measurements, the presence

of these surface states means that electrons can indeed penetrate the crystal,

but are strongly damped. The reflectivity in a band gap is therefore expected

to be less than unity. The small but finite penetration depth of the electrons is

characterised by the imaginary part of the perpendicular component of the wave

vector=(k?).

3.1.1 Electron yield

For many applications, the secondary electron yield (SEY) δSE is of paramount

importance, as it describes the total amount of SE generated per impacting

primary particle. For instance, a high SEY (greater than 1) is desirable in

particle detectors, such as in photo multipliers, where a series of dynodes

lead to a cascading increase in signal strength . In contrast, a SEY much less

than one is sought after in many applications where secondary electrons are

seen as an undesired e↵ect. For example, the accelerator walls of the large

hadron collider (LHC) at CERN must be coated with a material with low SEY

(δSE < 1) to avoid the generation of an electron cloud because of the synchrotron

radiation. Therefore, controlling SE emission materials is an active area of

research, especially in view of the imminent launch of the LHC’s high-luminosity

mode [35]. In addition to the SEY, i.e., the amount of SE generated per incident

particle, the energy distribution of the emitted SE jSE(E) is also of interest.

Both quantities just mentioned are frequently modeled via Monte-Carlo

calculations. Especially in the medium and high energy ranges (E > few keV to

100keV) there is a reasonable agreement between theoretical and experimental

values. However, most theories and models fail in the low energy regime because

they are mostly based on the particle character of electrons only while neglecting

the wave character [29]. Moreover, in this energy range the band structure of

the target becomes crucial for the reflectivity and transmittivity of impinging

electrons.

From a technical point of view, measurements of both δSE and jSE(E) are very

difficult, as it is impossible to experimentally distinguish properly between SE

14



Figure 6: Simulation of an electron energy spectrum for a polycrystalline gold
surface with a primary energy of 1keV. This simulation is based on a Monte Carlo
calculation by Werner [36, 37]. The blue curve is the sum of the (elastic and
inelastic) backscattered primary electrons and secondary electrons[29].
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and PE in the acquired spectra, as shown in figure 6. However, what can be

measured is the total electron yield (TEY), which is the sum of the emitted

secondary electrons and the reflected electrons (RE) per impinging particle:

δT = δSE +δRE . For energies lower than 50eV, the TEY consists mostly of primary

backscattered electrons, since the energy of the PE is not sufficient to emit SE in

substantial amounts. The TEY in the energy range E <50eV is highly influenced

by the band structure of the target and hence, can be used to study it.

3.1.2 Band structure of graphite

In a single atom, electrons can only occupy certain Eigenstates with discrete

energy levels. For molecules with N atoms, each atomic energy level splits into N

molecular energy levels. In macroscopic solids with N = 1023 atoms, it leads to

1023 energy levels, which are so close together that one can speak of a continuous

energy band. These bands thus provide information about the states that an

electron is to allowed occupy in the solid. The representation of the allowed

states in momentum space is called dispersion relation E(k) or band structure.

Figure 7: Band structure of highly oriented pyrolytic graphite (HOPG) along the
main crystalline directions (see figure 22b) calculated by Riccardi using DFT[38].

The band structure of highly oriented pyrolytic graphite (HOPG) is shown in

figures 7 and 8. This band structure is calculated by Pierfrancesco Riccardi et al.

using density functional theory (DFT) based on the local density approximation

for the exchange and correlation part of the Hamiltonian. This approach is
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Figure 8: Band structure of highly oriented pyrolytic graphite (HOPG) along the
ΓM direction (see figure 22b) calculated by Riccardi using DFT[38].

considered as the current state of the art. The horizontal red line indicates the

vacuum level of HOPG and is located at E −EF = φ = 4.6eV, where φ is the work

function. From the shape of the individual bands one can infer their properties.

For example, the first derivative of a band relates to the mobility, and the second

derivative relates to the e↵ective mass of the electrons. The e↵ective mass is

a semi-classical model that describes the e↵ect of external forces on electrons

inside the crystal. Heavy electrons are strongly bound to the cores and therefore

have low mobility and vice versa for light electrons.

The yellow arrows in figure 7 indicate the overlap of a broad interlayer band and

a flat atom-like band in the ΓA region at about E−EVac = 3.7eV. From the previous

considerations, it follows for the interlayer band that it has a high mobility and

a low e↵ective mass. Thus, electrons in such bands can move almost freely along

the ΓA direction, i.e. between the atomic layers of graphite. In contrast, the atom-

like band is very flat and thus has hardly any dispersion. Electrons in such a state

have only discrete allowed energies, similar to electrons in single atoms.

3.2 The surface barrier

In order to understand the kinematics at the vacuum-solid interface, one must

first consider the di↵erent energy levels in a solid. Figure 9 schematically shows

a model energy level diagram of a metal at the vacuum-solid interface. Low

energy electrons with discrete energies ✏0,✏1, ... are bound to their nucleus and

strongly localised close to the core. Thus, they do not interact with electrons

from neighbouring atoms. At higher energies, the discrete energy levels start
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Valence band

E0,ΔE = E0 − E1

E1

E2 = ΔE − EF − φE

0

EF

:0

:1

EF

φ

Ui

vacuumsolid

Figure 9: Energy level diagram of a metal close to the vacuum-solid interface
defining the inner potential Ui . The red wave indicates di↵erent wavelengths
inside and outside the solid. Orange: allowed electron states. Blue: overlapping
core potentials, resulting in the work function on the outermost layer. An
impinging primary electron with energy E0 transfers ΔE to a bound solid state
electron and leaves the solid with E1 = E0 −ΔE. The bound solid state electron
has the energy E2 = ΔE −Ef −φ after the energy transfer. Originally published in
[39].
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to form a continuum, where electrons interact with each other. Due to the

nature of fermions, each state will be occupied by two electrons (one spin up

and one spin down), starting from the lowest energy ✏0. At temperature 0K ,

the energy of the highest occupied state will be referred to as Fermi energy EF .

According to Schrödinger’s equation and as indicated by figure 9, the energy and

momentum of an incoming electron wave changes on the vacuum-solid interface,

influenced by the potential energy stepUi between the vacuum potential and the

mean core potential. Ui is referred to as the inner potential and is defined by

the constant Ui = EF + Φ, where Φ is the work function of the solid. This is

a conventional definition, used in many surface science and solid state science

studies. In general, the inner potential is by no means such a trivial quantity,

since many factors, e.g. the exchange correlation between the electrons, need

to be considered as well. However, for many applications and for this work, it

is sufficient to treat Ui as a constant. When entering the solid, the energy of an

electron is increased by the inner potential. Its energy andmomentum in vacuum

(v) and in the solid (s) are given by:

Es = Ev +Ui (9a)

|~ks | =
p
2(Ev +Ui) , (9b)

when atomic units are used. Since the parallel component of the momentum

is conserved2 during the penetration of the surface barrier, the perpendicular

component changes, resulting in a change of direction. Figure 10 shows a

trajectory of an incoming electron with ~kv ,Ev at the transition, highlighting the

change in direction. This transition is in analogy to the behavior of light following

Snell’s law. In the following derivation, it will be shown, that Snell’s law also

applies for electrons, however, in a slightly di↵erent manner.

Assuming an incoming electron with energy Ev and momentum ~kv in vacuum:

~kv =

0BBBB@kv,kkv,?

1CCCCA = |~kv |0BBBB@sin(↵)cos(↵)

1CCCCA (10a)

|~kv | =
p
2Ev (10b)

hits the surface of the crystal under an incident polar angle ↵ with respect to the

surface normal. Now the electron experiences the presence of the inner potential

2This fact can be understood with Noethers theorem, named after Amalie Emmy Noether :
each symmetry corresponds to a conserved quantity. Since it does not matter where exactly the
electron hits the surface, a translation symmetry exists parallel to the surface. As a result, the
parallel component of the momentum is conserved.
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Figure 10: Schematic trajectory of an incoming electron, impacting under the
polar angle ↵ w.r.t. the surface normal. Note that the terminology is given for
light waves, where the transversal (t) component refers to parallel component of
the momentum for electrons. Originally published in [27].

Ui and changes its momentum and energy to:

Es = Ev +Ui (11a)

~ks =

0BBBB@ks,kks,?

1CCCCA = |~ks |0BBBB@sin(β)cos(β)

1CCCCA (11b)

|~ks | =
p
2Es . (11c)

Since parallel component of the momentum is conserved during this transition,

ks,k = kv,k. Snell‘s law for electrons can be derived:

|~ks |sin(β) = |~kv |sin(↵) (12a)

sin(↵)
sin(β)

=
|~ks |
|~kv |

=

r
Ev +Ui

Ev
. (12b)

To obtain the angle β, under which the electron propagates within the solid,

equation 12 can be rearranged to:

β = arcsin
 r

Ev

Ev +Ui
sin(↵)

!
. (13)

Using the trigonometric identity cos(arcsin(x)) =
p
1− x2 on equation (27b) one

can derive an expression for the perpendicular component of the momentum in
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the solid.

ks,? =
p
2(Ev +Ui)cos(β) (14a)

=

r
2(Ev +Ui)(1− Ev

Ev +Ui
sin2(↵)) (14b)

=
q
2Ev(1− sin2(↵)) + 2Ui (14c)

=
q
2Ev cos2(↵) + 2Ui . (14d)

As presented in the following sub-chapter, the perpendicular component of

the momentum is used to obtain information at which energies constructive

interference peaks are to be expected. This can be accomplished by using both

the von Laue as well as the Bragg condition.

3.2.1 Laue and Bragg theorem

The formation of constructive interference peaks of electrons in crystalline

materials can be understood and described via the von Laue as well as via Bragg

condition [40]. In the following section the von Laue condition is derived and

subsequently the equivalence between both conditions is proven.

First, it is assumed that an incident wave, more specifically an electron wave,

is elastically scattered on point-like scattering centres arranged in a lattice. The

scattering centres are the atoms in the crystal lattice and therefore the distance

between two points is determined by the lattice vector ~R. In figure 11 a scattering

event at two points with distance vector ~R is shown. The incident wave has the

wave vector ~k = kn̂ and the scattered wave ~k0 = k0n̂0 respectively. This results in
the path di↵erence

Rcos(✓) +Rcos(✓) = ~R · (n̂− n̂0) . (15)

Constructive interference occurs if and only if the path di↵erence of two waves

with identical magnitude of the wave vectors (k = k03) is a 2⇡m multiple of

the wavelength λ with an integer m 2 Z. Hence the condition for constructive

interference is
~R · (n̂− n̂0) = 2⇡mλ . (16)

Substituting k = 2⇡
λ into equation (16) results in

~R · (~k − ~k0) = 2⇡m . (17)

3This implies elastic scattering

21



Figure 11: Schematic illustration of travel length di↵erence of an incoming
electron wave. Note: This graph was drawn based on [40]

This equation is equivalent with the notation

ei(
~k0−~k)·~R = 1 , (18)

which corresponds exactly to the definition of the reciprocal lattice vector ~G:

ei
~G·~R = 1 . (19)

Therefore constructive interference occurs, if the di↵erence of the wave vectors

equals a reciprocal lattice vector [40, 41]:

~k0 −~k = ~G . (20)

Equation (20) represents the first formulation of the von Laue condition. An

equivalent formulation follows by using

~k0 =~k − ~G . (21)
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With the condition for elastic scattering (i.e. k = k0) one obtains by squaring both

sides of equation (21):

k02 = k2 = k2 +G2 − 2~k · ~G (22a)

~k · ~G =
1
2
G2 (22b)

~k · Ĝ =
1
2
G . (22c)

The von Laue condition, i.e. the condition for constructive interference, is

satisfied if the projection of the wave vector ~k onto the reciprocal lattice vector ~G

is exactly half of the magnitude of ~G. As mentioned at the beginning, both the

Figure 12: Illustration of Laue condition and that the incoming and outgoing
wave vector share the same angle with respect to the normal plane to the
reciprocal lattice vector. Note: this graph was drawn based on [40]

von Laue and the Bragg condition are equivalent to each other. The following

section is devoted to the proof of this statement.

Suppose, ~k and ~k0 fulfill the von Laue condition and elastic scattering shall be

assumed (k = k0). Figure 12 schematically illustrates an incoming wave, which

will be elastically scattered on a normal plane to Ĝ. Due to the elastic scattering

assumption, the incoming and the outgoing wave each enclose the same angle

✓ with respect to the normal plane, leading to an angle ⇡
2 − ✓ between ~k nad Ĝ.

The magnitude of a reciprocal lattice vector |G| can also be written as the n-fold

multiple of the shortest reciprocal lattice vector G0 = n2⇡
d , where d is the distance

between two atomic layers in real space and n is an integer. Using |~k| = 2⇡
λ and
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G = n2⇡
d , Bragg’s law can be derived from equation 22c:

~k · Ĝ =
1
2
|G| (23a)

|~k||Ĝ|cos(⇡
2
−✓) = n

2⇡
d

(23b)

sin(⇡)
λ

= n
2
d

(23c)

2d sin(✓) = nλ , (23d)

where λ is the wavelength of the wave.

3.2.2 Determination of the inner potential of HOPG

As aforementioned, the von Laue and Bragg condition are equivalent to each

other and determine the circumstances under which a wave constructively

interferes with itself. In contrast to light, for electrons the Bragg condition

is not sufficient to predict interference phenomena, since Snell’s law must be

considered as well.

Considering Snell’s law for electrons from equation 12, one can obtain the

equivalent expression:

sin(↵)
sin(β)

=

r
Ev

Ev +Ui
(24a)

1− cos2(β)
1− cos2(↵) =

Ev

Ev +Ui
(24b)

cos2(β) = 1− Ev cos2(↵) +Ui

Ev +Ui
. (24c)

The wavelength inside the solid is given the de Broglie wave length λdB = 2⇡
ks

with

ks =
p
2(Ev +Ui), as shown figure 10. Substituting λdB into the Bragg condition

from equation 23d and using β = ⇡
2 −✓ yield:

2d cos(β) = n
2⇡p

2(Ev +Ui)
. (25)

Finally, combing equation 24 with equation 25 results in an expression, in which

only known quantities appear

Ev =
1

cos2(↵)

 
n2
⇡2

2d2
−Ui

!
. (26)
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Therefore it is possible to determine the inner potential experimentally by

measuring the Bragg di↵raction maxima Ev(n), when the interlayer distance d

and the angle of incidence ↵ are known. In this way, we determined recently

a value for the inner potential of highly oriented pyrolytic graphite of Ui =

16.8± 1.6eV[27].

3.3 Inelastic constructive interference

(a) Schematic Trajectory of the D+L
model with the incident angle ↵,
the refracted angle β, the energy
E and the momentum k , the
notation of the subscripts is given
in the main text. The inelastic
scattering event is represented by
an explosion symbol.

(b) Same as in (a), but for the L+D
model.

Figure 13

It has been recognised that di↵raction phenomena of inelastically scattered

electrons are strongly influenced by the di↵raction of elastically scattered

electrons. By calculating the inelastic cross section for discrete energy losses of

1 < ΔE < 30 eV using a quantum field theory model (QFT), in the early 1970’s

Duke et al. [2–5] showed, that inelastic di↵raction gives rise to two solutions

for constructive interference. More specifically, if constructive interference

occurs for elastically scattered electrons at an energy Ev(n), then for inelastically

scattered electrons it occurs at energies Ev(n) as well as Ev(n)+ΔE. Such a relation

between the modulation of elastically and inelastically di↵racted electrons has

been observed experimentally, for instance in 1999 by Ruocco et al. [1]. One

of the main goals in this work is to describe inelastic interference phenomena

using two semi-classical models in which only the crystal structure and the inner

potential of the target is considered.

In a specular reflection geometry, an inelastic event is always linked to an elastic

collision, mostly independent on the type or the magnitude of energy loss[1, 42,

43]. This results in two possible channels: elastic before inelastic (Di↵raction +
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Loss) and inelastic before elastic (Loss+Di↵raction), as shown in figure 13. In

both models, the electron beam with energy Ev hits the surface at the angle ↵

with respect to the surface normal. The beam is deflected by the inner potential

and continues to propagate at the angle β in the solid (see chapter 3.2). Now, the

electron can scatter inelastically either before or after the elastic di↵raction on

the lattice. Each path gives rise to two di↵erent outcomes, as described in the

following sections.

3.3.1 Di↵raction before loss (D+L)

In this section, the case is studied where the incoming is first scattered elastically

and subsequently inelastically. This is shown in figure 13a. An electron beam

(black trajectory) with energy Ev and momentum ~kv hits the surface of the target

at angle ↵. The beam is deflected by the inner potential Ui and continues to

propagate inside the solid with:

Es = Ev +Ui (27a)

~ks =

0BBBB@ks,kks,?

1CCCCA = |~ks |0BBBB@sin(β)cos(β)

1CCCCA (27b)

|~ks | =
p
2Es . (27c)

Hence, the same kinematic conditions apply for purely elastically scattered

electrons and for electrons in the D+L model. Therefore, such electrons,

di↵ractionmaxima occur at the energies Ev(n) predicted in equation 26 for purely

elastically scattered electrons.

After the elastic di↵raction, the electron collides inelastically with a solid-state

electron. In such a process, both energy and momentum conservation must be

taken into account. From energy and momentum conservation follows:

E0s = Es −ΔE (28a)

|k0s | =
p
2(Es −ΔE) (28b)

~k‘s =~ks −Δ~K , (28c)

where ΔE is the energy- and Δ~K is the momentum-transfer from the primary

electron to a solid state electron and the primed symbols correspond to the

quantities of the primary electron after the collision. However, without more

precise knowledge about collision partner, a unique determination of Δ~K is

impossible. In the literature, it is often assumed that the direction of the primary
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electron is maintained during this process and thus the momentum transfer only

occurs in the forward direction [1–3, 43, 44]. This assumption results in the

momentum after the inelastic collision:

β0 = β (29a)

k0s,? = k0s cos(β) (29b)

k0s,k = k0s sin(β) . (29c)

Since the magnitude of the momentum has changed, the exit angle ↵0 di↵ers
from the incidence angle ↵. Snell’s law for the exit angle is given by

sin(↵0)
sin(β)

=
k0s
k0v

(30)

where k0s and k0v are the momenta in the solid and in vacuum. By combining

equation (12) with equation (30), one obtains:

sin(↵0) = sin(↵)

s
(Ev +Ui)(Ev −ΔE)
Ev(Ev +Ui −ΔE) (31)

It follows that the inelastic channel interferes constructively at the same energy

as purely elastically scattered electrons but leaves the solid at a di↵erent angle.
The limiting case for ΔE! 0 results in ↵0 = ↵, which is consistent with the purely

elastically scattered electrons.

3.3.2 Loss before Di↵raction (L+D)

In the loss before di↵raction (L+D) model (see figure 13b), the electron su↵ers
the energy loss ΔE before it scatters elastically on the lattice. As in the previous

model, it shall be assumed, that the momentum transfer Δ~K only occurs in the

forward direction, so that the main kinematic properties after the event are given

by:

E0s = Es −ΔE (32a)

|k0s | =
p
2(Es −ΔE) (32b)

k0s,? = |k0s |cos(β) (32c)

k0s,k = |k0s |sin(β) . (32d)
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Consequentially, the kinematical circumstances under which elastic di↵raction
occurs at the lattice are no longer identical with those for purely elastically

di↵racted electrons. Thus, for the L+D model, the von Laue condition must be

adapted to the new momentum. For this purpose, recall the von Laue condition

from equation 22c:
~k ˙ Ĝ =

1
2
G (33)

with Ĝ pointing perpendicular to the surface and G = n2⇡
d . The left-hand side of

this equation just gives the perpendicular component of the momentum, as the

dot-product is the projection of the momentum onto the reciprocal lattice vector,

which is perpendicular to the surface. Therefore, by substituting the left-hand

with k0s,? one obtains:

k0s,? =
n⇡
d

(34a)p
2(Ev +Ui −ΔE)cos(β) = n⇡

d
. (34b)

One can substitute cos(β) =
q
1− Ev

Ev+Ui
sin2(↵) (see equation (13)), resulting in:

p
2(Ev +Ui −ΔE)

r
1− Ev

Ev +Ui
sin2(↵) =

n⇡
d

. (35)

Squaring both sides yields:

Ev cos
2(↵) +Ui −ΔE +ΔE

Ev

Ev +Ui
sin2(↵) =

n⇡
2d

. (36)

Arranging terms in order of the power of Ev gives:

E2
v cos

2(↵) +Ev(Ui cos
2(↵) +Ui −ΔE cos2(↵)− n2⇡2

2d2
) + (U2

i −ΔEUi − n2⇡2

2d2
Ui) = 0 .

(37)

The two solutions for Ev read:

Ev,1,2 =
−cos2(↵)(Ui −ΔE)− (Ui − n2⇡2

2d2 )±Δ
2cos2(↵)

, (38)

where

Δ =
q
[cos2(↵)(Ui −ΔE)]2 + (Ui − n2⇡2

2d2 )
2 +2cos2(↵)[ΔE(Ui +

n2⇡2

2d2 )−Ui(Ui − n2⇡2

2d2 )].

This equation gives two possible solutions for which the von Laue condition

is fulfilled. To verify which of the two branches corresponds to the physically
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correct solution, the limiting case for ΔE! 0 was calculated:

lim
ΔE!0

Ev,1,2 =
−cos2(↵)Ui − (Ui − n2⇡2

2d2 )±Δ
2cos2(↵))

(39a)

lim
ΔE!0

Ev,1,2 =
−cos2(↵)Ui − (Ui − n2⇡2

2d2 )± [cos2(↵)− (Ui − n2⇡2

2d2 )]

2cos2(↵))
(39b)

lim
ΔE!0

Ev,1,2 =

8>>><>>>:
1

cos(↵)(
n2⇡2

2d2 −Ui) for the positive branch

−Ui for the negative branch
(39c)

It follows that in the limiting case for low energy losses, the positive branch

yields the identical solution as for purely elastically scattered electrons and will

therefore be used to determine the energies for constructive interference in the

L+D model.

With given experimental parameters (Ui ,↵ and A = n2⇡2

2d2 ) one can now calculate

the energies at which one would expect constructive interference phenomena in

the L+D channel using:

ELD =
−cos2(↵)(Ui −ΔE)− (Ui − n2⇡2

2d2 ) +Δ

2cos2(↵)
. (40)

From equation (40) follows no obvious or trivial connection between the von Laue

condition and the energy loss. However, one can rearrange terms in equation (36)

to obtain p
2(Ev +Ui −ΔE)cos(β) = n⇡

d
(41a)

ELD =
1

cos2(↵)
(
n2⇡2

2d2
−Ui +ΔE

cos2(β)
cos2(↵)

) . (41b)

From this representation it follows immediately that in the L+D channel there is

an energy shift ΔEPos of the Bragg peaks. Since β < ↵8↵ 2]0, ⇡2 [ it follows strictly

that the energy shift is towards higher energies and further, since

cos2(β)
cos2(↵)

=
1− Ev

Ev+Ui
sin2(↵)

1− sin2(↵) > 1 , (42)

the shift is greater than the energy loss ΔE.

For the L+D model the kinematics for leaving the solid on the solid-vacuum

interface are identical compared to the D+L model. There, the exit angle ↵0,
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under which the electron leaves the target, is given by equation 31. In strong

contrast to the D+L mode, where the di↵raction maxima Ev(n) are identical to

pure elastic scattering, the predicted energies in the L+D model are shifted to

higher energies. The energy shift Eshif t = ΔE cos2(β)
cos2(↵) is a function of the incident

energy Ev , as plotted in figure 14 for Ui = 16eV and ↵ = 30,60. As this graph

shows, the L+D model predicts for high energies (> few 100eV): Eshif t ! ΔE.

This is in good agreement with experimental and theoretical observations and

studies [1–3, 42, 43]. At lower energies, a strong deviation from the expected

shift is predicted, since the L+D model predicts that the shift of the di↵raction
maxima is significantly larger than the energy loss. However, the modulation

of the elastically and inelastically scattered electrons in this energy range is not

determined by Bragg di↵raction, but by other e↵ects, such as the band structure

of the target. It is nevertheless remarkable that with such a simple model, the

same result (for Ev > few 100eV) can be obtained as with complex quantum field

theory (QFT) calculations [2–5].

In summary, the models presented above both describe the case where an
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Figure 14: Factor cos2(β)
cos2(↵) as a function of the incident energy Ev , using equation

42 with Ui = 16eV, ↵ = 30°(black) and ↵ = 60°(red).

electron is elastically di↵racted at the lattice, but loses energy in the solid in a

single inelastic scattering event. It was shown that it is decisive whether the

electron loses energy before or after the elastic di↵raction. This leads to the fact

that for every purely elastic di↵raction maximum, two di↵raction maxima arise

in the inelastic channels. Since there are no constraints that one of the two is
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favoured, it is assumed that both cases occur with similar intensity. This can

be experimentally verified by measuring the IV curves at certain energy losses.

It is to be expected that the di↵raction maxima that are in the ΔE = 0eV curve

separate into two twin peaks that are approximately ΔE cos2(β)
cos2(↵) apart.

4 Methods

4.1 Schematics

4.1.1 Overview

The main data sets in this work concern double di↵erential IVLEED spectra

of HOPG. These data were acquired on a secondary electron-electron energy

loss coincidence spectroscopy (SE2ELCS) spectrometer at Technische Universität

Wien, located in Vienna.

With this apparatus, it is possible to measure full energy spectra in reflection

geometries. In order to accomplish this, a target is irradiated with a beam of

electrons and the backscattered primary- and emitted secondary electrons are

detected. Thereby, the energy of the electrons is measured and recorded via a

digital setup. The energy of the electrons is determined in two di↵erent ways,

firstly, with a time-of-flight (TOF) analyser and secondly with a hemispherical

mirror analyser (HMA). This gives rise to spectra similar to that of reflected

electron energy loss spectroscopy (REELS) spectra. Such measurements can be

used to determine how the target responds to electron bombardment and thus

infer the electronic properties of the sample.

The core components of the SE2ELCS include the vacuum system, the electron

gun, the detectors and the electronics for digital data acquisition. In order

to perform such electron scattering experiments, one must first study the

composition of this spectrometer and characterise the working principles and

limits for each component. Thus, in the following section, each component will

be presented and discussed briefly. A more detailed overview of this specific

spectrometer is given by Vytautas Astašauskas in [39].

4.1.2 Vacuum system

Experiments with electron beams require a high vacuum because the inelastic

mean free path (IMFP) is strongly correlated with the quality of the vacuum. The

IMFP can vary from a few microns at ambient pressure to a few meters in ultra
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Figure 15: Front (left) and side (right) view of the SE2ELCS spectrometer at TU
Wien. (1,purple) Preparation chamber; (2,green) analyser chamber; (3,yellow)
electron source; (4,red) TOF drift tube; (5,cyan) HMA; (6,magenta) loadlock [39].

Figure 16: Schematic overview of the experimental set-up in the plane of the
beam trajectory. The electron gun, the TOF and the HMA are in the same plane
[39].
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high vacuum (UHV) environments. Furthermore, residual gas atoms will di↵use
through the surface of a solid andwill deposit over time in the outermost layers of

the specimen. Electrons with energies below 1keV only have a penetration depth

of a few atomic layers, therefore, depositions can have a significant influence

on the experimental results. Two procedures to improve the surface quality

of the sample can be conducted: firstly, reducing the residual gas pressure

in the vacuum chamber lowers the rate of deposition in solids and secondly,

in-situ sample preparation (e.g. annealing at high temperatures or sputtering

with Argon) ensures a clean and pure surface. The required pressure in the

vacuum chamber is determined in such a way, that the IMFP of the electrons

exceed the working distances in the experiment and that the rate of deposition is

sufficiently low that the surface remains pure during the measurements. For the

measurements performed in this work, a residual gas pressure of 2 · 10−10mbar

satisfied both objectives.

Photographs of the SE2ELCS are shown in figure 15. It consists of three

sealable vacuum chambers: a lock load (6), a preparation chamber (1) and

an analyser chamber (2). The load lock is used for introducing new samples

into the spectrometer and can be vented down to 10−8mbar. As soon as the

pressure is sufficiently reduced, the sample will be transferred from the load

lock into the preparation chamber. The sample is mounted on a rail-guided

sample holder using wobble sticks. This chamber contains several vacuum

pumps, an argon sputtering gun and a quadrupole mass spectrometer. The

preparation chamber allows sample preparation through sputtering without

secondary particles entering the chamber with the measuring instruments.

Furthermore, the mass spectrometer can be used to inspect the vacuum system

for leaks by externally spraying the chamber with helium 4He. Because of the

high di↵usivity and the low natural concentration of helium, this gas easily

penetrates the vacuum chambers through leaks. In case of a leak, a significantly

increased 4He concentration would be measured in the mass spectrometer. An

ionic pump vents the preparation chamber down to the 10−10mbar range. Once

the pressure in the preparation chamber is low enough, the sample is allowed

to be transferred to the analyser chamber. The analyser chamber is separated

from the preparation chamber to avoid contaminants from traces of atmospheric

water. This chamber contains several vacuum pumps, a thermionic electron

source (e-gun), a time of flight (TOF) analyser, a hemispherical mirror analyser

(HMA), an x-ray source, a sample stage and an additional argon sputtering gun.

The sample stage can be manually moved, tilted and rotated to optimise the

sample’s position. The e-gun, the TOF and the HMA are in the same plane, as
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shown in figure 16, allowing measurements in specular reflection geometries.

Specular reflection geometries for the HMA can be achieved using an untilted,

flat sample and for the TOF analyser by tilting the surface by 30° towards

the electron source, as shown in figures 17. A more extensive and elaborate

discussion of the vacuum system was conducted by Vytautas Astašauskas in [39].

The experiments in this work were conducted at a base pressure of 2 ·10−10mbar.

(a) Experimental set-up for a specular
reflection geometry measurement with
TOF. The sample is tilted by 30°
torwards the electron source, so that
the e-gun and the TOF drift tube are
located at 30° with respect to the surface
normal.

(b) Experimental set-up for a specular
reflection geometry measurement with
HMA. The e-gun and the HMA are both
located at 60° with respect to the surface
normal.

Figure 17: Specular reflection geometries for HMA and TOF experiments.

The pressure was measured with a hot filament ionisation gauge (HFIG). Since

HFIG produce a significant number of stray electrons, the pressure was not

monitored during ongoing experiments. This would not only negatively impact

the experimental results, but moreover could inflict fatal and irreversible damage

on the electron detectors, as their lifespan is characterised by total electron

counts. The base pressure during an experiment with a duration of 1 month

has risen only by 3 · 10−10mbar, indicating a high-quality vacuum system.

4.1.3 Electron source

The first step in specifying an electron spectrometer is to characterise the electron

source. The SE2ELCS spectrometer uses a thermionic Kimbal Physics ELG-2

electron source (e-gun). The most important specifications are given in Table 1.

In electron scattering experiments, the quality of the electron source contributes

substantially to the experimental results, as inconsistencies in energy or intensity

will have a direct impact on the acquired spectra. The employed e-gun is

well suited for the experiments conducted in this work, since it provides an
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Beam energy 1eV to 2keV
Energy spread 0.5eV
Beam current 1nA to 10µm
Energy stability ±0.01%
Beam stability ±0.1% per hour (with emission current control)
Pulse capability Min. Pulse width 20ns
Spot size 0.5 mm to 5 mm (@2cm working distance)

Table 1: Overview of the most important specifications of the electron source
[45].

electron beam with minimal energy and intensity fluctuations. A comprehensive

overview of all specifications of the electron gun is given in the e-gun manual in

[45]. The block diagram of the electron source is presented in figure 18. The

Figure 18: Block diagram of the electron gun [45].

electron beam is created and controlled in a five-step process, as followed:

• The electrons are generated by a thermionic cathode, consisting of a

tantalum disk. The disk is heated by a tungsten hairpin filament to the

emission temperature Temission = 2200K.

• The number of electrons being emitted by the cathode is controlled by a

Wehnelt cylinder. Applying a negative voltage UGrid to the cylinder results

in the suppression of the electron emission. If the applied voltage is high

enough, the electron emission is completely suppressed and the intensity

of the electron beam diminishes to negligible levels. Hence, by supplying a

35



negative square wave signal to the cylinder, one can produce a time-pulsed

beam, which is mandatory for time-of-flight measurements.

• The positively charged first anode extracts the electrons out of the Wehnelt

cylinder and controls the intensity of the beam with the voltage VFA.

• The focus unit acts as an electron lens and focuses the beam onto the surface

of the target and, hence, determines the spot size and diameter of the beam.

A typical spot size of 1-2mm was used during the conducted experiments.

• Lastly, the beam can be deflected in x and y direction by an electrostatic

Field between two pairs of parallel metal plates.

The beam energy is determined by the potential di↵erence between the sample

and the cathode. Section 4.2 covers the energy scale of reference in detail.

Note that during the measurement procedure, it was observed that the energy of

the elastic peak depends on the grid voltage. An investigation on this behaviour

yielded a linear dependency of the elastic peak energy and the grid voltage, as

shown in figure 19. However, no explanation for this phenomenon could be

found, but this energy shift was considered in the scaling of the experimental

data.

Figure 19: Demonstration of the grid Voltage dependence of the landing energy
on the grid voltage. The red points represent the energy of the elastic peak
measured at an acceleration voltage of 100V . Note: the y-scale is given with
respect to the Fermi-level. It is clearly observable that the landing energy
increases linearly with the grid voltage. Originally published in [39].
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4.1.4 Analysers

Time-of-Flight Analyser

The first discussed analyser is a time of flight (TOF) analyser.

TOF mechanical set up
The analyser consists of a field free drift tube, placed above the sample. On

Figure 20: Mechanical structure of the TOF: consisting of a drifttube, followed
by the MCP and the DLA. Originally published in [39].

top of the drift tube, three Multi Channel Plates (MCP) are mounted. An MCP

can be seen as an array of electron multipliers to increasing the signal strength.

Once an electron hits the surface of the MCP, multiple electrons will be emitted,

which in turn can emit several electrons and thus trigger a chain reaction. Thus,

a cloud of electrons reaches the Delay Line Anode (DLA). The DLA is placed on

top of the MCP. It consists of three stacked coiled wire-pairs and therefore can

locate where and when the electron hits the DLA. This enables one to measure

the exact position of the incoming electrons. The flight times are determined by

measuring the time di↵erence between the emission of a short electron pulse and

the time until the electron cloud hits the DLA. The starting time is therefore well

determined by the pulsed electron beam of the electron gun. After taking into

account the runtimes of the evaluation electronics, the actual flight time of the

electron can be calculated.

General consideration of TOF analysers
A TOF analyser measures the time it takes for an electron to travel from its
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emission to the detector. The time measurement starts with the emission of a

short electron pulse from the electron source and ends for the respective electrons

with the detection at the delay line anode (DLA). The signal at the DLA is

recorded in equidistant time intervals. Depending on the energy of the electrons,

they will be detected in di↵erent time-bins, resulting in a time of flight spectrum.

For non-relativistic particles with massm and energy E the time of flight t can be

estimated with:

E =
mv2

2
=
ms2

t2
(43a)

t =

r
ms2

E
, (43b)

with the traveled distance s. This equation gives a qualitative description of

the fact that the relationship between energy and time of flight is non-linear,

however gives a good estimate for the conversion of the two quantities. Note, that

the time of flight diverges for electrons with a kinetic energy of 0eV. Accurate

and realistic conversion from time of flight to energy is analytically difficult

because the trajectory of the electrons is not known due to the present electric

and magnetic fields inside the vacuum chamber. However, one can perform

electron trajectory simulations to obtain a suitable conversion of TOF to energy

for a specific geometry. The results of such simulations are saved in look-up tables

(LUT). It is important to add, that due to the non-linear relation of energy and

time of flight, the resolution of the TOF depends on the energy of the electrons.

The TOF analyser is best suited for low energy electrons, since the time-bins in

the spectrum are constant and the energy resolution dE diminishes for higher

energy:

dt =
@
@E

r
ms2

E
dE . (44)

Hemispherical mirror analyser

The second analyser is a hemispherical mirror analyser (HMA), which uses 5

channeltron electron mutliplyers (CEM) as detectors, as shown in figure 16. The

channeltrons are spaced in equidistant positions on the end of the HMA. The

HMA consists of two parallel hemispherical metal shells and to each a high

voltage potential can be applied. Consequentially, incoming electrons travel

on Kepler trajectories, where the eccentricity depends on the kinetic energy of

the electrons. The HMA can perform in two di↵erent modes: constant analyser

energy (CAE) and constant retard ratio (CRR). In the CAE mode, the incoming

electrons will be accelerated or decelerated by a retard voltage to a characteristic
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CH1 Epass-5%
CH2 Epass-2.5%
CH3 Epass

CH4 Epass+2.5%
CH5 Epass+5%

Table 2: Overview of the HMA energy resolution in CAE mode. Note that the
energy resolution is independent from the electron energy.

pass energy Epass. Consequently, electrons which reach the end of the HMA

have a constant energy. Electrons with the pass energy will be detected in

the centre channeltron. Electrons with slightly higher or lower energy will be

detected as given in Table 2. By sweeping the retard voltage, one can acquire

full energy range REELS spectra with constant energy resolution. This is a key

advantage of the HMA over the TOF, as the resolution of the TOF diminishes

with increasing energies. In CRR mode, the ratio between the retard voltage and

the pass energy is kept constant. However, the experiments in this work were

exclusively operated in the CAE mode using, as the CRR mode is only used in

Auger electron spectroscopy (AES)[39].

Comparison of TOF and HMA spectra
Figure 21 shows a comparison of typical energy spectra of the two analysers at

a primary energy of 99eV. One can clearly see that the resolution of in the TOF

energy spectrum (blue) diminishes at higher energies, resulting in the broadening

of the elastic peak. However, the strength of the TOF analyser is its high

resolution in the low energy part of the spectrum (E < 50eV ). In contrast, the

HMA o↵ers consistently good energy resolution over the entire energy range. In

the discrete energy loss region, the plasmonic structure can be observed. Fig

17b presents the experimental set-up for a measurement in specular angle. The

electron beam hits the surface of the solid at a polar angle of 60°.

4.1.5 Sample

The experiments in this work were conducted on highly oriented pyrolytic

graphite (HOPG). HOPG is a synthetic, layered poly crystalline form of graphite.

Regular graphite, and especially natural graphite, only has a short term order,

but not a long term order, because water inclusions and other impurities lead to

shifts, rotations and bending of the crystal lattice. HOPG is a highly pure and

highly ordered variant of graphite that does not occur naturally in this form. It

is produced at around 3000°C and under high pressure, whereby the number of

defects is significantly reduced. The grains of HOPG are about 10µm in size [46]
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Figure 21: Comparison of a converted TOF energy spectrum and a HMA reflected
electron energy loss (REEL) spectrum of HOPG with ELand = 99eV . Note that
the angle of incidence is not equal for both spectra (HMA: ↵ = 60 ; TOF:
↵ = 30 and thus a direct comparison can be misleading. However, the di↵erent
characteristics strength of each analyser is still emphasised.

and are arranged arbitrarily in the lateral plane, but have a high degree of order

along the c-axis. The mosaic spread in the c-axis of the HOPG sample used in

this work is specified as 0.8±0.2(ZYB quality). Owing to its high degree of order,

HOPG is used as a magnification calibration substrate for scanning tunneling

microscopes (STM) or as a monochromator for neutron and X-ray beams. In this

work, HOPG is investigated for its electronic properties by means of inelastic

very low energy electron di↵raction (IVLEED).

The crystalline structure of HOPG is presented in figure 22a. The crystal consists

of A,B carbon atoms arranged in hexagons in the x-y plane, forming the typical

carbon honeycomb structure. In the c-axis, the planes are arranged in such a way

that the B’ of the upper layer is centred over the hexagon of the lower layer.

The carbon atoms in the lattice form three hybridised sp2 orbitals [39]. Two of

those orbitals, namely px and py , form dp2 hybrid orbitals with the neighbouring

atoms in the x-y plane in the characteristic 120° honeycomb structure . The third

pz orbital is perpendicular to the sp2 hybrid states and forms weak ⇡ bonds with

atoms of the next layers[39, 47]. This weak bond gives rise to weak Van der Waals

(VdW) forces between the layers. Since even slight mechanical forces can cause

the VdW bonds to break, graphite is used, for instance, in pencils. In addition,
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this results in a unique form of sample preparation, namely the ”Scotch-tape-

method”, wherein the sample can be exfoliated using adhesive tape; revealing an

atomically flat and pure surface.

The bombardment of HOPG with electrons gives rise to oscillations in the charge

density. Electrons in ⇡ orbitals prefer to oscillate between the layers, creating

the ⇡-plasmon. In contrast, electrons in the hybrid sp2 orbitals prefer to oscillate

in-plane, resulting in the ⇡ +σ-plasmon.

Crystalline structure of Graphite

The unit cell of the 3-dimensional crystal structure is presented in figure 22a.

Graphite consists of many graphene layers stacked on top of each other in an

ABAB sequence. These layers are bound to each other by weak Van der Waals

bonds. Graphene is a flat 2D material, which is characterised by its typical

honeycomb structure. The carbon atoms are arranged in two hexagonal sub

lattices A and B, which are displaced with respect to each other. In the 3D

graphite crystal, the graphene layers are not stacked directly on top of each other,

but form a hexagonal symmetry in the space group P64/mmc(#194)[48]. The

primitive lattice vectors in this space group are defined as follows:

~a1 =
a
2

0BBBBBBBBB@
1

−p3
0

1CCCCCCCCCA , ~a2 =
a
2

0BBBBBBBBB@
1p
3

0

1CCCCCCCCCA , ~a3 = c

0BBBBBBBBB@
0

0

1

1CCCCCCCCCA . (45)

The magnitudes of these vectors are given by the lattice constants a = 2.46Å and

c = 6.71Å [49, 50]. Note that the unit cell ranges over two graphene layers in

c-axis and thus the interlayer spacing d is only half the value of c. The Volume of

the unit cell is given by the scalar triple product:

Ve = ~a1 · (~a2 ⇥ ~a3) = a2c
p
3

2
. (46)

In addition to the lattice, a corresponding base is required for the complete

characterisation of a crystal. The base specifies how the A and B atoms are

connected to each other in a unit cell. Figure 22a shows that there are four

di↵erent atoms (A,A’,B,B’) per unit cell, where A,B and A’,B’ are on the same
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(a) Idealised 3D crystal structure of
graphite. Solid circles indicate atoms in
the hexagonal sub lattice A and hollow
circles the sub lattice B respectively.
Primed letters indicate the atoms in the
top layer. [49]

(b) Illustration of the 3D Brilliouin
zone of Graphite with the main
crystallographic directions [49]

Figure 22

plane. The position of the atoms is given by the following coordinates:

~⇢A = (0,0,0), ~⇢B =
a
2
(
1p
3
,1,0), ~⇢A0 = (0,0,

c
2
), ~⇢B0 = (− a

2
p
3
,−a

2
,
c
2
) (47)

The reciprocal space is spanned by the reciprocal lattice vectors ~bi which are

defined as follows:

~b1 =
2⇡
Ve

(~a2 ⇥ ~a3) = 2⇡

a
p
3

0BBBBBBBBBB@
1p
3

−1
0

1CCCCCCCCCCA (48a)

~b2 =
2⇡
Ve

(~a3 ⇥ ~a1) = 2⇡

a
p
3

0BBBBBBBBBB@
1p
3

1

0

1CCCCCCCCCCA (48b)

~b3 =
2⇡
Ve

(~a1 ⇥ ~a2) = 2⇡
c

0BBBBBBBBB@
0

0

1

1CCCCCCCCCA . (48c)

The first Brillouin zone (BZ) is defined as the primitive Wigner-Seitz cell in the

reciprocal lattice and is plotted for graphite in figure 22b.The coordinates of the

main crystallographic symmetry points are given in table 3, where ~k = u ~b1+v ~b2+
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w ~b3.

Symmetry points (u,v,w) [kx,ky,kz] Point group
Γ: (0,0,0) [0,0,0] 6/mmm
A: (0,0,1/2) [0,0,⇡/c] 6/mmm
K: (2/3,1/3,0) [4⇡/3a,0,0] 62m
H: (2/3,1/3,1/2) [4⇡/3a,0,⇡/c] 62m
M: (1/2,0,0) [⇡/a,-⇡/

p
3a,0] mmm

L: (1/2,0,1/2) [⇡/a,-⇡/
p
3a,⇡/c] mmm

Table 3: Overview of the main crystallographic symmetry points. The point
groups are given in the Hermann–Mauguin notation.[51]

4.1.6 Sample preparation

A clean and planar surface is of utmost importance, especially at investigations

concerning the surface barrier. Even the smallest deposition of contamination

is able to change the outcome by a significant amount. Hence, a careful sample

preparation is the key to success.

The specimen is placed on a heatable copper sample holder and is fixed by a

(a) Sample holder used for HMA
measurements with incident angle of
↵ = 60°. Originally published in [39]

(b) Slanted sample holder used
for TOF measurements in specular
reflection with incidence angle ↵ = 30°.
Originally published in [39]

Figure 23

stainless steel ring and two screws as shown in figure 23. The sample holder

is cleaned with an ultrasonic cleaner using acetone. One of the advantages of

working with HOPG is, that the surface can be mechanically exfoliated with

adhesive tape. If performed carefully, this procedure provides not only a clean

and planar surface but even removes any ambient contamination on the surface.

It is of utmost importance to introduce the prepared sample into vacuum as soon

as possible to avoid eventual contamination.
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For in-situ cleaning, the sample is annealed at a maximum temperature of about

400°C at a residual gas pressure of 10−9mbar to 10−8mbar. A variable DC voltage

is applied to the heating coil contacts of the sample holder. This causes a current

to flow which heats up the specimen holder and subsequently the specimen. The

temperature can be measured using a thermocouple mounted in the analyser

chamber. As a result of the heating process, deposited impurities gas out of

the surface, which increases the residual gas pressure in the analyser chamber.

In order not to endanger the mounted devices, a well-established method is to

increase the voltage only in small steps and wait till the vacuum pumps pumped

down to a low enough residual gas pressure. This procedure ensures most of the

deposited contaminants to be evaporated and pumped by the vacuum pumps

without causing damage to the sample.

To verify the purity of the sample, a REELS spectrum was measured, as

shown in figure 24. The red curve (after annealing) shows a more sharp and

distinct spectrum, indicating a clean and ordered sample. Whereas the black

curve (before annealing), the proportion of incoherent inelastic scattering is

significantly higher, indicating an impure and disordered crystal.

Figure 24: REELS spectra of HOPG with primary energy of 173eV and acquired
with the HMA before (black) and after (red) annealing. Intensities are normalised
to the elastic Peak (ELP) hight [39].
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4.2 Energy scale of Reference

In electron scattering experiments, where both secondary and back scattered

primary electrons are measured in a single spectrum, one must characterise

the used energy scale of reference. Firstly, the kinetic energy of the impinging

primary electrons are defined, taken three processes in to account. Firstly, section

4.2.1 discusses the contact potential di↵erence (CPD) between two electrically

attached metals. In section 4.2.2 the influence of the acceleration voltage on

the kinetic energy is discussed in detail. The electron generation process itself

also contributes to the kinetic energy of the primary electrons and is covered in

detail in section 4.2.3. After the discussion of the kinetic energy, the potential

distribution of the SE2ELCS spectrometer is presented in section 4.2.4 and a full

energy scale of reference is established.

4.2.1 Contact potential

Figure 25: Schematic illustration of the contact potential di↵erence of two
metals. A metal contains filled electron states (gray areas) up to the Fermi level
EF and empty states above (white areas with the height of the work function
φ1,2. Left: Two electrically isolated metals with di↵erent work functions have
di↵erent Fermi levels EF,1 , EF,1. Centre: Two electrically connected metals
share a common Fermi level in thermodynamic equilibrium. Right: Applying
an electrical voltage to metal 1 leads to a shift in the corresponding Fermi level
and therefore also to a change in the CPD.

The theory of contact potentials is known since the late 18th century and was

discovered by Alessandro Volta. Two electrically isolated metals with di↵erent
work functions φ1 and φ2 share a common vacuum level (VL) [7–9], as shown

in the left hand side in figure25. The vacuum level is defined as the energy

of a free and stationary electron in a perfect, field-free vacuum outside the
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material and the work function is defined as the energy required to move an

electron from the Fermi level EF to the vacuum level. When two metals are

electrically attached to each other (either by direct contact or by conducting

wires), electrons will flow from one metal to the other. Thereby, the direction

of flux is from the higher (metal 2) to the lower (metal 1) Fermi level EF,2! EF,1.

As a consequence, the Fermi levels will equalise until they reach EF,1 = EF,2.

Once the net flux of electrons stops, the system is in thermodynamic equilibrium.

Electrons will accumulate in the metals with the lower Fermi level, resulting in

a potential di↵erence, the so-called contact potential di↵erence (CPD) or contact

electrification. The height of the potential di↵erence Δφ is given by the di↵erence
in work functions: Δφ = φ2 −φ1 (see centre of figure 25).

Applying a bias voltage V to a metal causes a shift in the Fermi level by EF + qV ,

where q is the charge of the electron. This shift can be used to control the

CPD between two metals and subsequently to control the potential energy step

between them (see right hand side in figure 25). This produces the operating

principle of the acceleration voltage VAcc of the electron source. Electrons

generated by the e-gun have an energy close to the vacuum level of the emitting

cathode. However, by applying a voltage to the cathode, the electrons are

accelerated towards the sample and hit the sample with the energy

E0 = qVAcc +φsample −φgun . (49)

The following two sections will discuss the acceleration voltage and the energy

levels in the thermionic electron generation process in detail.

4.2.2 Acceleration Voltage

The kinetic energy of an electron is mainly determined by the so-called

acceleration voltage. Non-relativistic charged particles with charge q and velocity

~v feel the Lorentz force F = q(~E + ~v ⇥ ~B) in the presence of electric ~E and magnetic
~B fields. In the classical approximation, this equation can be used to describe

the kinematic of electrons. In a conservative electrostatic field4 the work done

by a charged particle is independent from its trajectory and depends only on the

potential di↵erence between the starting point P1 and the end point P2, resulting

in an acceleration voltage Vacc = φ(P2) − φ(P1). The potential di↵erence causes

the acceleration or deceleration of electrons to a certain energy. By applying a

variable DC voltage between the electron source and the sample, one can control

and specify the energy of electrons.

4 d~E
dt = 0 and r⇥E = 0
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4.2.3 Thermionic emission of electrons

In addition to the acceleration voltage, the electron generation process itself

contributes to the kinetic energy [10–14]. As mentioned in chapter 4.1.3, a

thermionic electron source was used during the experiments in this thesis. Due to

the high temperatures that can occur in such an apparatus, one needs to consider

a correction of the kinetic energy including the energy spread of the emitting

electrons. Electrons in the solid state can be described using the free electron

model. In this model electrons are considered quasi free particles forming a

Fermi gas and thus following the Fermi-Dirac statistic. This theory states that

at a temperature of T = 0K , every electronic state up to the Fermi level EF is

filled and empty if above EF . At temperatures T > 0K this behaviour changes

and states above the Fermi level start to be partially occupied. If one increases

the temperature even further, states above the vacuum level can be occupied in

a reasonable amount, resulting in a thermionic electron emission (TEE). If an

electron reaches such a state, it is allowed to leave the solid, since its energy is

sufficient to overcome the work function of the material.

The energy of electrons generated via a thermionic electron source is close to the

vacuum level of the emitting cathode. However, because of the high temperature

of over 2000K, the emission current and the energy distribution depend on

the temperature inside the e-gun. The emitted current density J is given by

Richardson-Dushman’s law in integral form[13]:

J =
Z 1
0

4⇡mq

~3
E −µ−φ
1+ e

E−µ−φ
kBT

H(E −µ−φ)dE , (50)

where q,m are the charge and mass of an electron, ~ is the reduced Planck’s

constant, E is the kinetic energy above the vacuum level, µ is the chemical

potential and is in this work equal to the Fermi level EF , φ is the work function,

H(x) is the Heaviside step function and T is the temperature of the cathode [12,

13]. The electron emission intensity for any arbitrary energy E > EF +φ is given

by
dJ
dE

=
4⇡mq

~3
E −EF −φ
1+ e

E−EF−φ
kBT

H(E −µ−φ) . (51)

Equation 52 defines the thermionic electron energy distribution (TEED) and it

gives the thermal energy spread of the emitted electrons. Figure 26 schematically

illustrates the TEED for T = 10K,300K and 2200K . The TEED’s maximum is
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given by

d2J

dE2 = 0 (52a)

Emax = EF +φ + kBT +Wn

✓1
e

◆
, (52b)

where Emax is the energy at the maximum and Wn is the Lambert W function

with integer the n 2 Z. Assuming only real and positive values for the energy,

the Lambert W function results in W0

⇣
1
e

⌘
= 0.278... . Thus, the maximum of the

TEED is given by

Eth = EF +φ +1.28kBT (53)

and will be referred to as thermionic energy shift Eth. The most probable energy

at which electrons are emitted at a emission temperature Temission = 2200K is

about 0.24eV above the vacuum level. For the scope of this work, it is sufficient

to consider the maximum of the TEED in the energy scaling process since this

will directly cast to the maximum of the elastic peak in the energy spectra.
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Figure 26: Theoretically predicted thermionic emission energy distribution of an
electron gun with a work function φ = 4.1eV at di↵erent emission temperatures.
As predicted, the maximum of the TEED shifts with increasing temperatures. At
very low temperatures, the electron emission is almost fully suppressed.

4.2.4 Potential distribution in the SE2ELCS

As shown previously, the value of the kinetic energy of electrons depends

on the respective energy scale of reference. Generally, the reference
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Figure 27: Energy level diagram of the used components. The acceleration
voltage shifts the Fermi level of the electron gun by VAcc and on top of the
vacuum level, a schematic TEED indicates the energy spread due to the high
temperatures in a thermionic electron gun. EPE and ESE represent the kinetic
energy after leaving the sample where the corresponding primed quantity refers
to the ”detected” energy.

energy is the vacuum level of the emitting material. However, in electron

scattering experiments, this principle no longer applies, because both primary

and secondary electrons are detected and they are emitted from di↵erent
materials with di↵erent work functions. However, owing to the fundamental

indistinguishability of quantum particles, it is no longer possible to be certain

whether an electron is a reflected primary electron or an emitted secondary

electron. Thus, it is no longer clear to which energy reference point, the kinetic

energy is associated with. In general, the choice of the energy reference point

for the energy has no influence on the underlying physics. One thus has a

certain freedom defining the energy reference point. There exist several valid

approaches where, for instance, the Fermi level or the vacuum level of the

analyser is taken as an energy reference point. In the framework of this thesis,

the energy of an electron is always referred with respect to the vacuum level

of the sample, unless it is specifically stated otherwise. As a consequence, the

energies directly correspond to the (unoccupied) vacuum band structure of the

target material.

The potential distribution of the SE2ELCS spectrometer is given in figure 27.

The surface of both the HMA and the TOF analyser are covered with the same

graphite coating, and hence, they are to be treated equally in terms of their

energy scaling. All three components are electrically attached to each other and
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connected to the common ground (GND) level. The Fermi level of the e-gun is

shifted by the acceleration voltage VAcc.

Considering the acceleration voltage VAcc, the contact potential di↵erence (CPD)

and the thermionic energy shift Eth, one can define the kinetic energy of the

impinging primary electrons with respect to the vacuum level of the sample (the

so called landing energy Eland):

ELand = qVAcc +φs −φg +Eth , (54)

where q is the charge of the electron, φs,φg are the work function of the sample

(s) and the e-gun (g). The work functions of the materials in use are given in table

4. The energy of the elastically back scattered electrons is given by

Eelastic = qVAcc +φa −φg +Eth , (55)

where φa is the work function of the analyser. The energy in the elastic peak

is independent of the target’s work function, since in conservative electrostatic

fields, the energy is only dependent on the potential di↵erence between the

starting and end point of the trajectory.

Assuming an incoming primary electron (PE) with energy ELand hits the surface

of the target and undergoes an inelastic single scattering with a bound secondary

electron (SE). The energy of the PE and SE after the energy transfer ΔE is given

by

EPE = ELand −ΔE (56a)

ESE = Eb +ΔE −φs , (56b)

where Eb is the binding energy. Note that the binding energy is by definition

negative with respect to the Fermi level. If ESE > 0, the electron owns sufficient

energy to overcome the work function and will eventually leave the solid,

whereas otherwise it will remain as a hot electron inside the solid. The kinetic

energy of secondary electrons is given by

E0SE = ESE +φa −φs . (57)
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HOPG Tantalum (e-gun) Graphite (Analyser)
Φ(eV ) 4.6 4.1 4.2

Table 4: Work function of materials used in the SE2ELCS experimental setup.

5 Experimental results

The main data sets in this work concern the double di↵erential inelastic very

low energy electron di↵raction (IVLEED) spectra of highly orientated pyrolytic

graphite (HOPG). These data are acquired bymeasuring full energy range spectra

at varying landing energies in the range of 10-200eV for two di↵erent specular
reflection geometries. For the interpretation of this complex data set, the typical

features of an HOPG energy spectrum at a given landing energy will be presented

and discussed in chapter 5.1. Section 5.2 then discusses the elastic IV curves of

HOPG, i.e., the intensity of the elastic peak as a function of the landing energy.

After the discussion of the single di↵erential data sets, the full double di↵erential
IVLEED curves will be presented and analysed in section 5.3.

5.1 Single HOPG energy spectrum

Firstly, a single energy spectrum is analysed to study the typical e↵ects that can
occur and how they are determined in a spectrum. An energy spectrum, as

used in this work, consists of (in-)elastically backscattered primary and emitted

secondary electrons and contains the intensity as a function of the detected

electron energy with respect to the vacuum level of the target. Figure 28a

shows a characteristic energy spectrum for HOPG, recorded with the HMA in

60° specular reflection geometry at a landing energy ELand = 450eV . It can be

grouped into four characteristic categories: the elastic peak (yellow), discrete

energy losses (blue), plural scattering (grey) and secondary electrons (red).

• The elastic peak (ELP) or zero-loss peak (ZLP) consists of elastically

backscattered primary electrons. These electrons will exclusively

participate in elastic collisions with the screened coulomb field of the

nuclei. Energy losses caused by Bremsstrahlung can be neglected since

the energy is well below the keV range. Moreover, the energy transfer

during the collision with the nucleus can be neglected since the mass of

the nucleus is four to five orders of magnitude larger than the mass of an

electron. The energy of the ELP changes linearly with the landing energy

and the shape is primarily determined by the thermionic electron energy

distribution (TEED), as shown in chapter 4.2.3. When the time of flight

spectra are transformed into energy spectra, the width of the elastic peak
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Figure 28: Single electron energy spectrum.
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depends on the landing energy, resulting in the broadening of the peak at

higher energies.

• The discrete energy losses seen in figure 28a arise from the excitation of

plasmons in the target. Thereby, the energy loss is an n-fold of the plasmon

resonance energy E = ~! with n 2 N. In graphite samples, two types

of plasmons exist: the ⇡ plasmon and the ⇡ + σ plasmon. The prefixes

indicate the associated orbitals in resonance [52]. The ⇡ plasmon is a

collective oscillation of electrons in the ⇡ bond and therefore exists between

the carbon atoms in the honeycomb structure. Its characteristic energy is

E⇡ = 6eV . The ⇡ + σ plasmon is an oscillation of the hybridised sp2 orbital

between the atomic layers and has a characteristic energy of E⇡+σ = 25eV .

The plasmon excitation energy is independent of the energy of the primary

electron, and therefore, the excitation of a single plasmon gives rise to a

discrete energy loss of the primary electron. In the energy spectrum, the

discrete energy losses can be observed as peaks at EElp − ~!, and therefore,

plasmonic energy losses are directly linked to the elastic peak. Besides

single plasmon excitations, plural excitation also occurs in lower intensity,

as shown in the zoomed section of figure 28b.

• In contrast to back scattered electrons, the secondary electrons are generally

independent of the landing energy and follow the curve shown in figure

28a. The structure in the SE region is directly linked to the (vacuum)

band structure of the target and will be explained in more detail in

section 5.3.2. During inelastic collisions, secondary electrons are excited

to higher energy states and eventually to states above the vacuum level.

In anisotropic targets, the secondary emission depends on the observation

angle between the surface of the target and the analyser. In an energy

spectrum, back scattered primary electrons and secondary electrons cannot

be distinguished, however, electrons below 50eV are referred to as true

secondary electrons by convention.

5.2 Very low energy electron di↵raction

As stated in the introduction, very low energy electron di↵raction (VLEED) is

a widely used method to investigate the unoccupied electron states in the band

structure above the vacuum level. In VLEED measurements one only considers

elastically scattered electrons, since the energy and the parallel component of the

momentum are conserved during the coupling process between the vacuumwave

functions and the Bloch waves [27, 39, 53]. However, this process is certainly
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accompanied by inelastic scattering e↵ects. The IVLEED measurements provide

experimental data concerning both elastic and inelastic scattering, creating a

causal link between them. Both aspects will be discussed in the following section.

5.2.1 TEY
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Figure 29: TEY curve of Bellissimo [36] compared to its first and second
derivative and the band structure in ΓA direction (bottom). The data was
measured in absolute units and at perpendicular incidence angle of the electron
beam. The vertical lines indicate the maxima (solid) and minima(dashed) of the
TEY curve.

Experimental VLEED data for HOPG was provided by Alessandra Bellissimo

via a total electron yield (TEY) measurement [28, 29, 36]. The experiment was

performed at perpendicular incidence and was measured in absolute units. In

the region below 50eV, the TEY resembles mainly elastically and inelastically

backscattered electrons, as the primary energy is not sufficiently high to generate

a significant number of secondary electrons. Therefore, the TEY is very sensitive

to the elastic reflectivity of primary electrons. Figure 29 shows the TEY curve

(black) and its derivatives (blue and red) compared to the band structure along

the ΓA direction. Dotted and solid vertical lines indicate the minima andmaxima

of the TEY curve. Theminima at 2-6eV and 15-21eV alignwell with the interlayer

states of graphite. This is consistent with the considerations of the matching

formalism of chapter 3.1, as the primary electrons can travel far into the crystal

and therefore have low probability of scattering back elastically. Therefore, it
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can be concluded, that interlayer states play a decisive role in the formation of

minima in the TEY curves.

The maximum at 7-14eV aligns with a wide band gap in the ΓA band structure.

From the matching formalism, one would expect that the elastic reflectivity

would be unity because in band gaps no Bloch waves exist that can couple to

the vacuum wave functions. However, the reflectivity peaked at 0.8. Bellissimo

wrote in her PhD thesis: ”However, due to the formation of surface states or to the
presence of the interlayer states the external wave-function matching with these states
decay exponentially into the interior of the crystal at energies where Bloch states are
forbidden”[29], which is in good agreement with the literature which states, that

the primary electron can couple to surface localised states whose wave function

decay into the crystal [25, 30–34]. The description via surface states is equivalent

to the description that wave functions have an exponentially decreasing but

continuous transition into forbidden regions, similar to Lambert-Beer’s law for

electrons, where the characteristic length is given by the imaginary part of the

inner potential. his results in a high reflectivity, although not equal to unity.

The data collected in this work support the claim that electrons can enter

forbidden regions, by providing reflected electron energy loss spectroscopy

(REELS) spectra. Figure 30 shows two REELS spectra of HOPG, where the red

spectrum is taken at a landing energy in a band gap and the black spectrum is

taken at an energy corresponding to a minimum in the IV curve. Both curves

are normalised to the elastic peak intensity. The graph shows clearly that waves

which fall into forbidden regions (red spectrum) have a finite, non-zero intensity

in the energy loss part. The intensity is by orders of magnitude lower, when

compared to waves which match with allowed Bloch states (black spectrum). The

lower energy loss intensity in forbidden regions indicates that external electrons

can enter into the solid, but can travel only short distances.

In summary, this work provides data to qualitatively understand that the first

order approximation of the matching formalism for VLEED fails in band gaps.

It was shown by Bellissimo that the elastic reflectivity does not go back to unity

in band gaps. In our REELS spectra it was shown that the primary electrons

do indeed enter the crystal in forbidden regions, however the intensity is by

orders of magnitude lower as when the electron falls into an allowed Bloch state.

Nevertheless, a direct and causal link to the undergoing mechanism could not

be found in our data and more theoretical as well as experimental research is

required.
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IV curves

The aim of the following chapter is to present two IV curves of HOPG, measured

in di↵erent specular reflection geometries and discuss them with the findings of

the aforementioned matching formalism for VLEED. The IV curves are obtained

by plotting the elastic peak intensities as a function of the landing energy and

hence, this curve directly corresponds to the elastic reflectivity of the primary

electrons.

Figure 31 shows the IV curve, acquired using the TOF analyser at ↵ = 30
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Figure 31: IV curve of the TOF(0119) measurement compared to its first and
second derivative and the band structure in ΓA and ΓK direction (bottom). The
vertical lines indicate the maxima (solid) and minima(dashed) of the IV curve.
The orange line in the band structure indicates the perpendicular component of
the momentum, calculated with equation 14.

incidence angle, compared to the band structure of HOPG in the ΓA and ΓK

direction. The minima and maxima are again indicated using dashed and

solid vertical lines and the derivations are plotted in red and blue and the

perpendicular component of the momentum is plotted as a yellow line in the

ΓA band structure. The maxima of this curve are located at 16eV, 30eV and 50eV,

whereas the minima are located at 13eV, 21eV , 41eV and 65eV. The assignments

of the maxima andminima to certain allowed and forbidden areas in the ΓA band

structure can be misleading, as minima align with band gaps and maxima with

allowed states respectively. Multiple e↵ects can cause deviations in the expected
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outcome. Firstly, the electron beam hits the surface no longer at a perpendicular

angle. Therefore, a direct comparison to the ΓA band structure is no longer

feasible, because the primary electron falls in states of non-high symmetry points

in the band structure. Secondly, the broad band gap between about 5 and 13eV

(which caused a strong peak of almost unity in the TEY curve) is not included

in the present data set. Thirdly, it is not trivial to distinguish whether peaks

are induced by the band structure or by Bragg scattering, as for instance, the

maximum at 50eV can be either related to a Bragg peak (Bragg order n = 3) or to

the band structure.

The IV curve acquired using the HMA at an incidence angle of ↵ = 60° with
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Figure 32: IV curve of the HMA(0813) measurement compared to its first and
second derivative and the band structure in ΓA and ΓK direction (bottom).
The vertical lines indicate the maxima (solid) and minima(dashed) of the IV
curve curve. The orange line in the band structure indicates the perpendicular
component of the momentum, calculated with equation 14.

respect to the surface normal is shown in figure 32. The maxima (indicated by

solid lines) are located at 9, 18, 29, 47 and 63eV, whereas the minima are located

at 15, 23, 37, 57 and 67eV. At the flat incidence angle of 60°, the comparison

solely to the ΓA band structure can be misleading, however, the first maximum

at E − EVac = 9eV aligns well with the broad band gap at 7 < E − EVac < 14eV.

This fit well with the prediction of the matching formalism. Although, peaks at

higher energies cannot be assigned with certainty to individual regions in the ΓA
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band structure.

5.3 IVLEED

Figure 33: Schematic illustration of an double di↵erential IVLEED spectrum.
The data are acquired by measuring a set of REELS spectra over a wide range
of landing energies. A vertical cut corresponds to individual REELS spectra,
where as horizontal cuts yield a novel spectrum type, the so called landing energy
specta (LES). The elastic peak (ELP) at ELand = E − Evac is located on the 45°
diagonal and discrete energy losses are parallel to the elastic peak. A second
novel spectrum type is the so called constant energy loss spectrum (CELS) which
gives the intensity for constant energy losses as a function of the landing energy.

Very low energy electron di↵raction and the matching formalism use

exclusively elastically back scattered primary electrons and fully neglect

inelastic events and emitted secondary electrons. However, elastic scattering

is directly linked to inelastic scattering, as shown in chapter 3.3. Therefore,

studying inelastically scattered electrons is essential to understand all the e↵ects
concerning the band structure. Secondary electrons can only leave the solid if

they fill an unoccupied, allowed state in the band structure and are therefore

well suited to the study of the unoccupied band structure above vacuum level.

For this reason, double di↵erential inelastic very low energy electron di↵raction
(IVLEED) spectra were measured in this work. Such measurements consist of

a set of REELS spectra acquired over a wide range of landing energies. The

individual REELS spectra were stacked so that the x-axis corresponds to the

landing energy and the y-axis E − Evac to the energy of the detected electrons,

respectively. The intensity is represented by a logarithmic colour scale. The

double di↵erential representation of the data can be used to obtain the intensity

of any contiguous path. Needless to say, not all of these paths are of physical
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Figure 34: Result of IVLEED measurement of HOPG with HMA in 60° specular
reflection on 13thAug.2019. Note that intensity only exists below the elastic peak
due to the conservation of energy. The top green line is the IV curve and for
comparison, the red curve is the TEY curve from Bellissimo [29]. Vertical and
horizontal lines: minima (dashed) and maxima (solid) of the IV curve. On the
right panel, Band structure in AΓK direction (white lines) and the momentum of
the incoming electron (red lines) calculated with 27b
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Figure 35: Normalised IVLEED data from previous figure. The intensity gives
the ratio of intensity to the intensity of the elastic intensity in logarithmic colour
scale. On top, IV curve (green) and TEY curve (red). Vertical and horizontal
lines: minima (dashed) and maxima (solid) of the IV curve. On the right AΓK
bandstructure (white) and momentum of the incoming electron in the solid (red).
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Figure 36: Result of IVLEED measurement of HOPG with TOF in 30° specular
reflection on 19thJan.2019. Same scheme as in previous figures. Note that the
elastic peak broadens at higher energies because of the conversion from time-of-
flight spectra into energy spectra. This measurement was performed byWolfgang
Werner.
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Figure 37: Result of nIVLEED measurement of HOPG with TOF in 30°
specular reflection on 19thJan.2019. Same scheme as in previous figures. This
measurement was performed by Wolfgang Werner.
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relevance, however, some of these paths represent novel spectra that have not

been found in the literature before. A schematic illustration of the representation

format is shown in figure 33. The intensity along a vertical cut (i.e. ELand = const.)

through the spectrum yields a single REELS spectrum. A horizontal cut (i.e.

E − EVac = const.) yields landing energy spectra (LES), which are a novel type

of spectra. It gives the intensity of electrons at constant final state energy as

a function of the landing energy. The elastic peak of the individual REELS

spectra can be identified as the 45° diagonal. The intensity along this diagonal

as a function of the landing energy is referred to as IV curve. Discrete energy

losses (i.e. plasmon excitation) are identified as features parallel to the elastic

peak. The intensity of constant energy loss as a function of the landing energy is

referred to as constant energy loss spectrum (CELS). Thus, the CELS represent

the intensity of a linear function parallel to the elastic peak but shifted to a

negative ordinate. The C-source code for obtaining both LES (h2d) and CELS

(2dfit) from the IVLEED data is presented in the appendix A.

Figures 34 and 36 show the IVLEED data recorded with the HMA and TOF,

respectively. The brown vertical lines indicate the minima (dashed) and maxima

(solid) of the IV curve (green, top). Horizontal lines are drawn at the cross section

between the elastic peak and the vertical lines. This allows one to compare the

IV curve to the band structure in AΓK direction (right hand side). Secondary

electron e↵ects are identified as horizontal stripes, as they occupy final states

with a fixed energy E − Evac. Normalising the data to the intensity of the elastic

peak yields the ratio of inelastic to elastic scattering. The normalised IVLEED

(nIVLEED) data are shown in the figures 35 for the HMA and in figure 37 for

the TOF. The following subsections are devoted to the interpretation of these

double di↵erential data. At first, in chapter 5.3.1, the VLEED considerations of

the previous chapter are extended to include inelastic scattering. Afterwards,

in chapter 5.3.2 the mechanisms behind the secondary electron emission are

presented and discussed. Chapter 5.3.3 discusses the discovery of a novel

mechanism in which primary electrons su↵er discrete energy losses that depend

on the landing energy, which is in strong contrast to plasmonic excitation. Finally,

chapter 5.3.4 discusses the transition between regions where band structure and

Bragg scattering are dominant, respectively.

5.3.1 Inelastic VLEED

This chapter extends the VLEED interpretation of the previous chapter to also

include inelastic scattering. First, figure 34 is considered, where the IV curve

is plotted in the upper part. In the double di↵erential spectra, the IV curve
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corresponds to the intensity along the 45° diagonal. The brown verticals indicate

the minima and maxima of the IV curve, and at the intersection with the elastic

peak, horizontal straight lines have been drawn to provide a visual comparison

with the band structure.

Generally, electrons that travel only a short distance in the solid have low

probability of su↵ering high energy losses and vice versa for electrons that travel

long distances in the crystal. Recalling the matching formalism, electrons which

fall into a maximum of the IV curve are expected to travel only short distances

in the solid. In first order approximation, electrons are not allowed to exist in

regions of band gaps. However, in figure 34 a finite, non-zero intensity can be

observed in the areas of band gaps (7eV < ELand < 14eV ), implying that electrons

can indeed enter the solid and thus undergo inelastic collisions.

The nIVLEED spectrum in Figure 35 shows the ratio of inelastic to elastic

intensity. It can be observed that t strong di↵erences in the behaviour exist

between the regions of minima and maxima of the IV curve. In IV curve minima

(dashed vertical lines) electrons can penetrate easily into the crystal, resulting in

more inelastic intensity per primary electrons and therefore a high intensity in

the normalised data. Furthermore, high energy losses are more likely to occur

in regions of minima in the IV curve (dashed vertical. In contrast, along the

solid vertical lines (IV curve maxima), high energy losses are significantly less

likely to occur. With the help of the horizontal lines, a comparison can be made

with the band structure. Chapter 5.2 already covered the relation between IV

curve and the band structure in detail. In short, it can be said that in regions

of IV curve maxima (solid lines) external electrons have no or only few allowed

states and are therefore driven out of the material, resulting in a high intensity

in reflection geometry. In contrast, allowed Bloch states exist in regions of IV

curve minima (dashed lines), thus permitting electrons to penetrate deeper into

the material. Along the dashed vertical lines, one can observe that they have

a certain fine structure. Thereby, local maxima form at intersections of dashed

vertical lines with solid horizontal lines (e.g. at ELand =57eV, 67eV and 80eV).

This can be explained by the fact that electrons that fall into such a region of

the band structure do not have an allowed state and are thus increasingly driven

out of the crystal, resulting in a high intensity. In contrast, local minima can be

observed at the intersection of two dashed lines, indicating that electrons occupy

favoured states. Therefore, they penetrate deeper into the solid and have a higher

probability of su↵ering further energy losses. A quantitative determination of the

distances traveled at this point is impossible with the available data and further
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research in this direction is required.

The (n)-IVLEED data from the TOF measurement (Figures 36 and 37) are

consistent with the above interpretations.

Another way to interpret the data is to compare the elastic IV curve with constant

energy loss spectra (CELS). Figure 38 shows the IV curve and several CEL spectra

for the energy losses ΔE from 6 to 24eV in the low energy range, extracted from

figure 34.

The vertical lines indicate the maxima of the elastic IV curve (ΔE = 0eV) and the

diagonals indicate a linear shift by the corresponding energy loss. The diagonals

serve only as a visual guide and should therefore be used with caution. It can

be seen in this graph that peaks form in some of the loss IV curves along the

verticals. Suppose a primary electron with the energy ELand hits a forbidden or

weakly to vacuum coupling state of the band structure, resulting in a high elastic

reflectivity. Electrons that lose the energy ΔE fall into other regions of the band

structure. If allowed states exist for the inelastically scattered electrons, they can

penetrate further into the solid, which reduces the intensity in the IV curves.

However, if no allowed states exist, then a high intensity arises in the loss IV

curves at ELand .

Considering the diagonals, one can recognise that peaks shift linearly with the

energy loss. Assuming that at energy E0 exists an unfavourable region of the band

structure, which results in a maximum in the IV curve. However, if an electron

with ELand > E0 loses energy such that E0 = ELand − ΔE, the inelastic scattered

electron falls in unfavoured regions, resulting in an observable peak. This leads

to the fact that the peak shifts linearly with the energy loss ΔE in the loss IV

curves.

Figure 39 shows the IV curves for the energy losses from 0 to 24eV in the high

energy range. Because of the low and noisy intensities, interpretation in this

region is impossible. At this energy, a transition between the band structure

dominated and the Bragg scattering dominated region takes place.

At this point it is worth mentioning that these processes are fundamentally

di↵erent from those in the inelastic interference models, although the peak

formation suggests that they are. The models for inelastic interference involve

a purely kinematic model, which describes the separation of Bragg peaks in the
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event of inelastic scattering. The first observable Bragg peak in 60° specular

reflection geometry occurs at a landing energy of 160eV. Furthermore, the 2dfit

evaluation is only reasonable for the HMAmeasurement, since a constant energy

resolution is required. In the TOF IVLEED measurement, the broadening of the

elastic peak would lead to significant distortions in the loss IV curves.

5.3.2 Secondary electrons

0

0.47

0.2

0.4

0.6

0.8

1

 0  5  10  15  20  25  30

Α

Γ

/home/ziegler/gitrepos/philippbachelor/data/singlespectra

HOPGlowenergy.g

k p
er

p (
An

gs
tr-1

), 
In

te
ns

tiy
 (a

rb
. u

nit
s)

E-EVac (eV)

HOPG Energy spectra for ELand=72.2eV

HMA
TOF

Figure 40: Low energy spectra of HOPG at ELand=72.2eV in 30° (red) and 60°
(black) angle of incidence compared to the band structure along ΓA. Yellow arrow
indicates peaks in red curve at 3.7eV.

In this chapter the e↵ects concerning the secondary electron emission (SEE)

are discussed on the basis of the IVLEED data. The SEE is directly linked to the

band structure above the vacuum level, since secondary electrons must occupy an

allowed band before they can leave the solid. The measured SEE depends on the

angle between the detector and the surface of the sample, as this sets the direction

within the band structure [54, 55]. Hence, the TOF and HMA measurements

di↵er in their secondary electron energy distribution. The measurements have

been made in specular reflection geometry, so the analyser and electron source

include the same angle to the sample. In figure 40 two secondary electron spectra

of HOPG at a landing energy of 72eV are shown and compared with the ΓA

band structure. In the TOF spectrum (red) curve it is shown that the intensity

decreases strongly in the band gap, indicating that allowed states do not exist for
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secondary electrons. The yellow arrow indicates the position of the sharp peak

at 3.7eV. In general, a causal link between the secondary electrons and the band

structure is difficult to establish. However, very recently, the origin for the yellow

marked peak was found in Reference [53]. Plasmon induced symmetry breaking

causes a hybridisation of an interlayer state with an atom-like state, leading to

the emission of secondary electrons with well defined energies and almost no

dispersion. Since this SE generation mechanism is a novelty, it will be discussed

in more detail in the following section. In the HMA spectrum (black curve), an

additional peak can be observed at 8eV, whose origin probably stems from the

band structure along non-high-symmetry axes. Because of the large exit angle of

60° in the HMA measurement, a direct comparison to the ΓA band structure can

be misleading. In the IVLEED spectra (see figures 34 and 36) secondary electron

features can be identified as horizontal stripes at E − EVac = 3.7eV and 17eV, as

the energy of their final state is independent on the landing energy.

Figure 41 shows a secondary electron spectrum (blue) and a total electron yield

(TEY) curve (green; see chapter 5.2 for more information of this curve) and

compares themwith the ΓA band structure. The position of the first yellow arrow

is given with 3.7eV, which is in very good correspondence with the intersection of

two bands. One of the bands has almost no dispersion, similar to bound electrons

in atoms and thus this band is referred to as atom-like band. Electrons in atom-

like states are localised in space and have a high density of states (DOS), implying

that it is a favoured state for initially bound electrons. The second band is a so

called interlayer state (I.S.). Stacking two or more graphene layers on top gives

rise to interlayer states in which electrons can move quasi freely between atomic

layers. I.S. are highly dispersive between layers (c-axis of the crystal) and are very

transmissive for external electrons. Hence, electrons in interlayer states couple

well to vacuum wave functions of incoming electrons. Electrons in such mulit-

quantum well states behave similarly to light in a Fabry-Pérot interferometer.

If a ⇡ + σ plasmon is excited by an incoming primary electron, the symmetry

of the one-electron band structure breaks and a hybridisation occurs between

the overlapping interlayer state and atom-like state. In figure 41b it is shown

how the transmission T changes due to the symmetry breaking. The hybrid state

combines the properties of both bands. This state has a high density of states

from the flat atom-like band, making it a preferred final state, and it possesses

the high mobility of the interlayer state which permits coupling to vacuum

and consequently the emission of electrons. Thus, the hybridisation leads to a

favorable final state with high mobility, resulting a non-dispersive peak. Werner
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et al. predicted that a similar process leads to a peak at the second yellow arrow

(E −EVac=17eV). Since the energy of the hybrid state is given by the overlapping

bands in the electronic band structure, the peak is independent from the landing

energy. Therefore, the secondary electron peaks can be observed as horizontal

stripes in the IVLEED data (figures 34 and 36). The 3.7eV stripes is observable

for landing energy greater than 25eV, which corresponds well to the excitation

energy of the ⇡ +σ plasmon.

5.3.3 Atypical Peak

In the previous subchapter it was shown that secondary electron e↵ects are

characterised by a fixed final state. Figure 42 shows a zoomed-in section of

the HMA IVLEED data (see figure 34). One can observe a horizontal stripe

around E − EVac=28eV, implying the existence of a favorable final state for

secondary electrons. However, this peak seems to disappear for higher landing

energies, which is untypical for true secondary electron e↵ects, since SE features

remain constant throughout the entire range of landing energies. Owing to this

behaviour, it is referred to as ”atypical peak”. Figure 43 illustrates how the peak

emerges from the ⇡ plasmon. In the REELS spectra for ELand > 37eV (light blue)

it can be observed that the ⇡ plasmon peak starts to become asymmetric and for

even higher landing energies a distinct peak will form at around E−EVac = 28eV.

Figure 44 shows a landing energy spectrum (LES) at E − EVac = 29eV and

compares it to several REELS spectra from the HMA IVLEED data(see figure

42). The vertical arrows indicate the position of the atypical peak in the REELS

spectra and point to the LES curve. It is shown that discrete energy losses (such

as the ⇡ plasmon at ELoss = 6eV) remain in the same position in all REELS spectra,

whereas the atypical peak shifts as a function of the landing energy. Furthermore,

the atypical peak is difficult to identify as an independent peak in REELS spectra

with ELand >55eV, as the signal becomes too noisy in this region. This graph

also shows a curve for the diferential inverse inelastic mean free path (DIIMFP)

(primary energy E = 55eV) which is related to the energy loss function and was

calculated from empirical optical data using the Penn model. In essence, the

DIIMFP indicates the probability of su↵ering a certain energy loss.

Figure 45 shows the LES at E − EVac = 29eV from the HMA IVLEED spectrum

(figure 42) and compares it to two DIIMFP curves for primary energies of 55

and 160eV. It can be observed that the strange peak does not have a step-like

decrease in intensity, as suggested in the IVLEED spectrum (figure 42) but that it

is rather an exponential decrease. The LES shows that the Atypical Peak and the
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Call stripes.g and stripes2.g and color_stripes.g!!!! 

(b) 

(a) 

Figure 41: (a) shows a secondary electron energy spectrum (blue) and the total
electron yield (TEY) curve from Bellissimo [28]. The yellow arrows indicate the
peak maximum at E − EVac=3.7eV and 17eV. Purple area shows the theoretical
total transmission of the graphite surface without symmetry breaking, whereas
the red area shows it with the symmetry broken. (b) enlarged section. At the
blue triangles a sharp peak with very high transmission develops in the broken
symmetry case. This graph was originally published in [53].
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Figure 42: Result of IVLEED measurement of HOPG with HMA in 60° specular
reflection on 8thAug.2019. Same graph as in figure 34 but zoomed in lower
landing energies to highlight the strange peak.
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Figure 43: HOPG REELS spectra of in 60° specular reflection at landing energies
ranging from 35eV to 45eV. True secondary electron peaks in the region bellow
20eV appear at fixed energies, where as the ⇡ plasmon follows the elastic peak
(cut o↵). Atypical peak evolves from ⇡ plasmon and stays at fixed energy about
E −EVac=29eV.
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DIIMFP curve exhibit roughly identical behaviour. This suggests that the atypical

peak originates from primary electrons that su↵er a specific energy loss to reach

this favoured final state. At higher landing energies, the probability of su↵ering
sufficiently high losses is too low to exist as an independent peak (as indicated

by the DIIMFP). At an energy loss of about 55eV (corresponding to ELand=84eV),

the limit of the atypical peak is defined.

The origin of this strange peak is not yet fully understood, as it is a novel and still

a largely unexplored phenomenon. However, the comparison of the horizontal

cut with the DIIMFP shows that the occurrence of the peak is related to the

appearance of the ⇡ + σ plasmon. The DIIMFP curves show that the width of

the plasmon roughly corresponds to the width of the strange peak. However, this

relation alone does not result in the formation of a peak at constant energy. For

this to happen, a preferred final state must exist within the band structure, which

will be occupied by either inelastically scattered primary electrons or highly

excited secondary electron. A primary electron would have to lose just enough

energy to occupy this state with fixed energy, and therefore energy loss must

be a function of landing energy. Somehow this specific inelastic event must be

preferred over other types of inelastic scattering. If this peak stems from highly

excited secondary electrons, the primary electron must thereby transfer almost

all of its energy to a bound solid state electron. Whether this state is occupied by

”captured” primary electrons or by highly excited secondary electrons cannot be

determined. Similar strange peaks are also observed at about E −EVac=45eV and

70eV. Whether this process is a process similar to the 29eV strange peak is not

yet clear and therefore, it o↵ers a promising avenue for continuing research.

5.3.4 Sharp transition: band structure - Bragg-like

The last aspect discussed is the abrupt transition in the HMA IVLEED data

of figure 34 between the E − ELand <100eV and the >100eV region. In the

region ELand < 100eV, on can observe several characteristic inelastic scattering

and secondary electron features, for instance the atypical peak and secondary

electron peaks. However, at higher landing energies, almost no inelastic intensity

was measured. Also, there is a significant drop in intensity in the IV curve at

ELand = 100eV. This indicates that a sharp transition occurs between the low

energy range, where the electronic band structure of the solid dominates the

intensity and at higher energies, the Bragg-like region where electrons form

constructive and destructive interference patterns on the atomic lattice. A

physical explanation for the sharp transition remains unclear and subsequent

experimental and theoretical research is suggested.
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6 Conclusion

The main goal of this work was to investigate the unoccupied band structure

of highly oriented pyrolytic graphite using inelastic very low energy electron

di↵raction (IVLEED) experiments. The investigation of the elastic peak

intensities created a qualitative picture, which explains how far external

electrons are allowed to propagate inside a solid. A model based on the matching

formalism was created to understand the coupling between the wave functions

of primary electrons in vacuum and inside the crystal. Furthermore, it was

shown external electrons can indeed enter into the crystal at energies where

Bloch states are forbidden, despite their wave function being strongly damped.

This work provides convincing experimental data of the e↵ects predicted by the

wave function matching formalism by Slater [33]. In numerous works, the real

component of the inner potential has been determined, for instance by Bragg

scattering experiments [27], but with our data, the imaginary component of the

inner potential is also revealed. The experimental data showed good agreement

with the theoretical model.

IVLEED measurements allow one to measure full double di↵erential energy

spectra and therefore, this technique can be used to investigate Bragg di↵raction
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patterns for elastically as well as for inelastically scattered electrons. In this

work, two models where used to predict the di↵raction maxima for inelastically

di↵racted electrons. The theoretical models were able to predict di↵raction
maxima in a way that is consistent with existing experimental and theoretical

studies [1–5]. Although this work aimed to provide data to validate the present

models, the acquired data was not suited for this purpose, since the investigated

energy range was too low.

This work revealed a novel type of electron emission at constant energy. For

this to happen, a preferred final state must exist within the band structure,

which will be occupied by either inelastically scattered primary electrons or

highly excited secondary electron. A primary electron would have to lose just

enough energy to occupy this state with fixed energy, and therefore energy loss

must be a function of landing energy. Somehow this specific inelastic event

must be preferred over other types of inelastic scattering. If this peak stems

from highly excited secondary electrons, the primary electron must thereby

transfer almost all of its energy to a bound solid state electron. Whether this

state is occupied by ”captured” primary electrons or by highly excited secondary

electrons remained unclear. For further research it may be suggested to include

negatively biased samples. A bias voltage would shift the Fermi level of the target

(see chapter 4.2 for details). Therefore, features which stem from the electronic

band structure shift in the REELS spectra, whereas the elastic peak and discrete

losses would remain at the same energy. Consequently, one can distinguish

between true primary electrons (elastic peak and discrete energy losses) and true

band structure e↵ects. Furthermore,

In summary, this work covered many di↵erent aspects concerning the

unoccupied band structure above the vacuum level and provided plenty of ideas

and starting points for further research. For instance, measuring IVLEED data

for higher energies could validate the models for inelastic di↵raction, created in

this work. Furthermore, the novel and atypical peak o↵ers countless possible

directions of subsequent studies, for instance via e,2e coincidence spectroscopy,

which allows one to fully measure momentum and energy of initial and final

state of electrons.
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Appendices

A 2dfit and h2d Source code

1 //############# Find Elp : Maxiumum in range E ˜ E land

2 fo r ( i =0; i <his t −>nloss ; i ++) {
3 elpy [ i ]=0 ;

4 elpx [ i ]=0 ;

5 fo r ( j =0; j <his t −>nt ; j ++) {
6 // p r in t f (”% f ” , h i s t −> t s c a l e [ j ] ) ;

7 i f ( h i s t −>y ie ld [ i ] [ j ] [0 ] > elpy [ i ]&& ( his t −> l o s s s c a l e [ i ] *0 . 8 <=

his t −> t s c a l e [ j ] ) && ( ( h i s t −> l o s s s c a l e [ i ] * 1 . 2 ) >= his t −> t s c a l e [ j ] ) ) {
8 // i f ( h i s t −>y ie ld [ i ] [ j ] [0 ] > elpy [ i ]&& ( his t −>esca le1 [ i ] *0 . 8 <=

his t −>esca le2 [ j ] ) && ( ( h i s t −>esca le1 [ i ] * 1 . 2 ) >= his t −>esca le2 [ j ] ) ) {
9 elpy [ i ]= his t −>y ie ld [ i ] [ j ] [ 0 ] ;

10 // p r in t f ( ”\ nIch bin hier : %f ” , h i s t −> t s c a l e [ j ] ) ;

11 elpx [ i ]= his t −>esca le2 [ j ] ;

12 }
13 }
14 i f ( ipd . i l ev >3) {
15 pr in t f ( ” E l a s t i c Peak at (X/Y) : %l f %l f \n” , elpx [ i ] , elpy [ i ] ) ;

16 }
17 }
18 i n t maxk=50;

19 i n t k ;

20 for ( k=0;k<maxk ; k++) {
21 //Summe r e l zum elp ! ! ! ! ! !

22 //################################

23 //################################

24 // 2 d f i t

25 //################################

26 //################################

27
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28 fo r ( i =0; i <his t −>nloss ; i ++) {
29 sum[k ] [ i ]=0 ;

30 fo r ( j =0; j <his t −>nt ; j ++) {
31 i f ( h i s t −> t s c a l e [ j ] >= ( elpx [ i ]−k ) && his t −> t s c a l e [ j ]<=

( elpx [ i ]−k+1) ) {
32 // i f ( h i s t −>esca le1 [ j ] >= ( elpx [ i ]−k ) && his t −>esca le1 [ j

]<= ( elpx [ i ]−k+1) ) {
33 // i f ( h i s t −>esca le2 [ j ] >= ( elpx [ i ]−k ) && his t −>esca le2 [ j

]<= ( elpx [ i ]−k+1) ) {
34 sum[k ] [ i ]+= his t −>y ie ld [ i ] [ j ] [ 0 ] ;

35 // p r in t f ( ”\ nIch bin hier : e1=%l f l o s s=%l f e2=%l f

t s c=%l f ” , h i s t −>esca le1 [ i ] , h i s t −> l o s s s c a l e [ i ] , h i s t −>esca le2 [ j ] , h i s t

−> t s c a l e [ j ] ) ;

36 }
37 }
38 i f ( ipd . i l ev >3) {
39 pr in t f ( ”%d Sum from %l f i s : %l f \n” ,k , h i s t −> l o s s s c a l e [

i ] ,sum[k ] [ i ] ) ;

40 // p r in t f (”%d Sum from %l f i s : %l f \n” ,k , h i s t −>esca le1 [

i ] ,sum[k ] [ i ] ) ;

41 }
42 }
43 }
44 //################################

45 //################################

46 // h2d

47 //################################

48 //################################

49

50 maxk=100;

51 for ( k=0;k<maxk ; k++) {
52 for ( i =0; i <his t −>nloss ; i ++) {
53 sum2[k ] [ i ]=0 ;

54 fo r ( j =0; j <his t −>nt ; j ++) {
55 // p r in t f (”%d %l f %l f %l f %l f \n” , j , h i s t −> l o s s s c a l e [ j ] ,

h i s t −>e s ca l e [ j ] , h i s t −>esca le2 [ j ] , h i s t −> t s c a l e [ j ] ) ;

56 i f ( h i s t −> t s c a l e [ j ] >= (k ) && his t −> t s c a l e [ j ]<= (k+1) ) {
57 // i f ( h i s t −>esca le1 [ j ] >= (k ) && his t −>esca le1 [ j ]<= (k

+1) ) {
58 // i f ( h i s t −>esca le2 [ j ] >= (k ) && his t −>esca le2 [ j ]<= (k

+1) ) {
59 sum2[k ] [ i ]+= his t −>y ie ld [ i ] [ j ] [ 0 ] ;

60 // p r in t f ( ”\ nIch bin h ier : e1=%l f l o s s=%l f e2=%l f t s c

=%l f ” , h i s t −>esca le1 [ j ] , h i s t −> l o s s s c a l e [ i ] , h i s t −>esca le2 [ j ] , h i s t −>

t s c a l e [ j ] ) ;

61 }
62 }
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63 i f ( ipd . i l ev >3) {
64 pr in t f ( ”%d Sum from %l f i s : %l f \n” ,k , h i s t −> l o s s s c a l e [

i ] , sum2[k ] [ i ] ) ;

65 // p r in t f (”%d Sum from %l f i s : %l f \n” ,k , h i s t −>esca le1 [

i ] ,sum2[k ] [ i ] ) ;

66 }
67 }
68 }

87


