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Abstract

The information-theoretical concept of Fisher information has recently delivered
promising results when applied to coherent scattering measurements. Its most
remarkable feature is that it allows the identification of the optimal wavefront
for probing any parameter that is hidden within an arbitrary complex scattering
medium.

To understand Fisher information in wave scattering on a more fundamental
level, we introduce a quantity that describes its behavior locally within the scat-
tering medium: the Fisher information flow. The latter constitutes an informa-
tion flux density that complements the widely-used energy flux density commonly
known as the Poynting vector.

In this work, we investigate the Fisher information flow and the correspond-
ing source term for stationary scalar waves. We demonstrate the properties of
these novel quantities using numerical simulations, thereby gaining an intuition
for the information-transport characteristics of electromagnetic waves. Moreover,
we measure the Fisher information flow using microwave technology to show that
the latter is not just a theoretical concept but plays a vital role in practical ap-
plications.
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1. Introduction

Since the Digital Revolution, information has become one of the most potent
resources of humanity. We store vast amounts of it on servers, transmit it to
peers worldwide via the internet, and pay with it for supposedly free web services.
However, despite the ubiquity of information in our lives, we are still far from
exploiting its full potential.

In the early 20th century, researchers started to investigate information quan-
titatively, aiming to understand how to transmit, extract, and utilize the latter
optimally. Their work marked the birth hour of information theory, a field whose
findings influenced numerous other disciplines, including computer science, statis-
tics, and the physical sciences. Just recently, scientists achieved promising results
by introducing the concept of Fisher information into the field of scattering metrol-
ogy . They showed that the amount of information an electromagnetic wave
can extract from a complex scattering system is determined by the so-called Fisher
information operator, which one can compute from far-field measurements. More-
over, they demonstrated that the optimal probing wavefront corresponds to the
maximum eigenstate of the Fisher information operator. This discovery gives rise
to many possible applications ranging from the detection of defects in nanofabri-
cated samples to biomedical imaging [3}6].

While past research identified the amount of information associated with a probe
state, it remained unclear how this information behaves within the scattering
system. In this work, we extend the information-theoretical toolbox for scattering
metrology by introducing the Fisher information flow, i.e., a vectorial measure of
how information travels with an electromagnetic wave at a given position. This
new quantity provides insights into the local behavior of information, thus enabling
us to gain a deeper understanding of its properties.

First, in Ch.[2] we discuss Fisher information in estimation theory and show how
one can apply this concept to coherent scattering measurements. Furthermore,
we introduce the Fisher information flow for stationary scalar waves and present
how to control the spatial structure of the latter by tuning the incoming state.
Next, in Ch. [3] we validate the results from the previous chapter by performing
numerical simulations of electromagnetic waves in a 2D slab geometry. Then, in
Ch. [, we discuss the measurement of the Fisher information flow in a quasi-2D
rectangular waveguide and compare the results to numerically simulated data.
Finally, in Ch. |5, we summarize and conclude.
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2. Theory

2.1. Fisher Information in Classical Estimation
Theory

The aim of estimation theory is to determine the value of a parameter, which
we call 6 following the standard notation. We have access to 6 via samples that
are drawn from a conditional probability distribution p (X6), i.e., the probability
distribution of a random variable X for a given value of #. To quantify how much
information a sample contains, we can use the concept of Fisher information,

which we introduce in this section following Refs. [710]. The definition of Fisher

information reads
F(0) = Var [0pIn(p (X|0))] . (2.1)
We require some regularity conditions:

1. Opp (X|0) exists almost everywhere, i.e., it may only not exist on a null set
that does not depend on 6.

2. [T(X)oup (X16) = 8y [ T(X)p (X]0).
3. supp(p (X|0)) = {X|p (X]0) # 0} does not depend on 6.
Often, it is helpful to express F'(f) as an expectation value. Recalling
Var [X] = E [X?] - E[X]?,

and computing
E [0 In(p (X]6))] = / p (X16) 05 In(p (X|6))dX
- /agp (X|0) dX

:a(,/p(xw) X

=0y 1 =0, (2.2)
we find that
F(0) =E [(9pIn(p (X16)))*] - (2:3)
Note that [F(0)] = [0]72. To motivate why F(6) is a measure of information, we
list some of its properties.
3
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e Non-Negativity

From Eq. (2.3]) we see that

F(6) > 0.

Additivity

Consider n independent and identically distributed (i.i.d.) samples from

p (X|0). We can write the joint probability distribution as p (X7, ..., X,|0) =

[T, p(X;|0). The Fisher information contained in those n samples is then

F,(0) = Var |9y In (ﬁp(sz))]

=1

= Var Z@gln (X;0) ]

ZVar (05 In(p (X;]0))]

= n\/ar [0 In(p (X10))]
=nkF(0),

where we used in () that Var[}_,Y;] = >, Var[Yi] + >, Cov [¥}, Y] and
Cov [Y;, Y] = 0 for independent Y; and Y.

iy Ly

Cramér-Rao Inequality

The Fisher information gives a lower bound on the variance of any unbiased
estimator 0(X), where X ~ p (X|0):

Var [é(X)] o)

Using the additivity of the Fisher information, we obtain the result for an
estimator that uses n samples 0(Xy, ..., X,,), where all X; ~ p(X|0):

1
nF(0)

Var [é(Xl, ...,Xn)} >

For a higher Fisher information F(6), the estimator (X1, ..., X,,) fluctuates
less around its expectation value, which corresponds to the true value of
since we assumed that 6 is an unbiased estimator. Therefore, fewer samples
are necessary to estimate # with a given precision. Equivalently, one could
say that a sample contains more information if F'() is high.
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) 2.1. FISHER INFORMATION IN CLASSICAL ESTIMATION THEORY

To conclude this section, we prove the Cramér-Rao inequality. We start by using
the Cauchy-Schwarz inequality, i.e.,

(Y. 2)]P < (YV.Y)(2,Z), (2.4)

where Y and Z are elements of the vector space of random variables and (-, )
denotes an inner product. If we now define the latter as[l

¥, 2) =B [V 7],
we find that
Cov[Y, Z]I" = [E[(Y —~E[Y])(Z - E[2))]]
<E[Y-E[])’]E[(Z-E[2)’]
= Var [Y] Var [Z].

We set Y = 6(X) and Z = dyIn(p (X|0)). Then, we notice from Eq. (2.2) that
E[Z] = 0 and from Eq. (2.1)) that Var [Z] = F(#). Using

Cov [V, Z] =E[(Y —E[Y])(Z - E|Z])]
—E[YZ]-E[Y]E[Z]
~E[YZ],

we obtain the desired bound on the estimator 6(X):

Var [é(X)} = Var [Y]

1 2
> Var[Z] |Cov [Y, Z]|

1 2
:\@qzﬂEWZ”

_ ! 6(X)0 In(p (X0 XﬂdX2
~ 5 || 0% (X9 (X10)
1 R 2

::ngl/9¢xy%p¢xw)dx

1 X 2
:F@S%/ﬁgmmxmdx
1 112
o
-

where we used that  is an unbiased estimator, i.e., E [é] = 6, in the last equality.

1One can easily check that this definition fulfills all requirements for an inner product, i.e.,
(conjugate) symmetry, linearity in the first argument, and positive definiteness.
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2.2. Quantum Fisher Information

In this section, we discuss Fisher information in the case of quantum metrology,
i.e., the estimation of a parameter ¢ that is enclosed within a quantum system.
We require some concepts of linear algebra, functional analysis, and quantum
mechanics, which we review briefly in Sec. [A] of the appendix. With these tools,
we can identify the so-called quantum Fisher information by finding an upper
bound of the classical Fisher information that does not depend on the choice of
the quantum measurement.

2.2.1. Quantum Cramér-Rao Bound

In quantum metrology, one needs to identify a suitable quantum measure {11y}
in addition to finding a good (i.e., unbiased and low-variance) classical estimator
6 = é(X ). Equivalently, one can say that a quantum estimator is a Hermitian
operator that describes a measurement followed by some classical data processing
of the measurement outcomes. The quantum Fisher information determines the
maximum amount of information about # that one can extract when choosing
the best positive operator-valued measure (POVM) and performing the optimal
classical data processing. For the derivation of the quantum Cramér-Rao bound,
we will follow Ref. [9], where the results of Ref. are shown in greater detail.

We denote the density operator of the system of interest as py. The conditional
probability distribution, which depends on the choice of the POVM, can then be
written as

p (X]6) = T [TLcpy)

We introduce the symmetric logarithmic derivative, i.e., a Hermitian operator Ly
that satisfies

1
§(L9P0 + poLg) = Oppy. (2.5)

Then, we can calculate the derivative of the conditional probability,

Oop (X10) = 0p Tr [ x py]
=Tr [HXagpg]

1 1
= 5 Tr [HxL.gpe] + 5 Tr [prng]

1 1 *
= 3 Tr [HXLgpa] + 5 Tr [(proLe)T] )
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7 2.2. QUANTUM FISHER INFORMATION

where we used that

(/ db (b|OT|b>)*

=Tr [Oq i
Since Ily, py, and Ly are Hermitian, we find
1 1 «
dop (X0) = 5 Ir [ILx Lopo] + 5 I [Lopelly]

1 1 .
=35 Tr [pellx L] + B Tr [pellx Le)
— R {Tx [polLy La]}
where we used the cyclic property of the trace and R{-} denotes the real part.

Using Eq. (2.3), we find an expression for the classical Fisher information in the
quantum framework:

F(0) = E [(0yIn(p (X10)))?]

1 2
= /de@ep (X16))

_ R {Tr [pollx L]}
=[x T fpolly]

Using §R{}2 < |- ], we can find an upper bound for the Fisher information:

[ Tr [poTLx Lo
< [T

_ /dX|Tr (V2 T) (VI Lo/00)] |
Tr [pellx] ’

where we used Thm. [I] and the cyclic property of the trace in the last step. If we
define a scalar product over the space of operators asEl

(B,A) =Tr [A'B],
the Cauchy-Schwarz inequality (see Eq. (2.4)) becomes
| Tr [ATB] | < Tr [ATA] Tr [B'B] .

2Again, one can check that this definition of an inner product fulfills all requirements.
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We can use this identity to bound F(#) further:

(Vi) (Vi)

e [(vitvm) | (Vitstom) ||

< 1| (VT i) Viteva| o | (VitsLavin) (ViTkLovin)

— TI‘ [POHX] TI' [L@HXL@/)Q] y

and thus

F(0) < / dX Tr[LellyLgpe) = Tr [Ljpe]

where we used the linearity of the trace and [ IIydX = 1. One can rewrite the last
expression by remembering the definition of the symmetric logarithmic derivative

(see Eq. (2.5)):

(Lopg + poLg) = 209po
= (Lgpo + poLo)Lg = 2(0gpy) Lo

1
— Ir [Lgpg} = 5 Tr [(LQ,OQ + ngg)Lg]

="Tr [(agpg)Lg] .
We define the quantum Fisher information as
H(@) ="Tr [Lgpg] =Tr [(agpg)[/g]

and see that, unlike F'(0), it does not depend on the POVM, i.e., it provides an
ultimate bound. Moreover, we note that

F(0) < H(0),

where equality is achieved if we choose an optimal POVM. The quantum Cramér-
Rao bound then becomes

A 1 1
Var [00X)] > = > ——.
"= e = He)
One can show that an optimal POVM is given by the set of projectors on the
eigenstates of the symmetric logarithmic derivative, see Refs. ﬂ§|,.

Quantum Fisher Information for Pure States

For pure states [¢)) = [¢(0)), we can write the quantum Fisher information in a
more convenient form. The density matrix for a pure state is py = [¢) (¢|. Con-
sequently, pp = pz, and we find that 9pps = (spe)pe + pe(Jepe). Comparing this
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9 2.3. FISHER INFORMATION IN SCATTERING MEASUREMENTS

expression to Eq. (2.5)), we deduce that Ly = 20ype and thus H(0) = 2 Tr [(Dgps)?]-
Then,

H()=2Tr [(89,09)2}
= 2T [(|0p0) (W] + [v) (Dpt)])?]
= 2Tr [ |Opt0) (10|0g0) (0] + |Optp) (Dpr)|
+ |) (Dgt|0) (Bptp| + |1) (D] Opt) (W] ]
2 ((]060)* + 2 (| 0gp) + (Dgp|0))?)
= 4 ((09v]9p0) + (Do 1))
= 4 ((0p0]0pt) — | (Dptbl ) ) , (2.6)

where we used the cyclic property of the trace and Tr[z] = z for any complex
scalar z. In the equations that we marked by an asterisk, we used that

9o (Y|Y) =0
= (oY) = — (¥|0s1))
= — (00 |Y)",

and thus

(O 10)? = (¥|Op0)?
= —[(Dpb|¥) |*.

2.3. Fisher Information in Scattering Measurements

2.3.1. Fisher Information Operator

Using the concept of quantum Fisher information, one can determine the opti-
mal coherent state for estimating a parameter hidden within a linear scattering
systenﬂ. This result was first shown in Ref. . In this section, we will present
the main findings from the paper, following the derivations in the corresponding
supplemental material and some unpublished notes of Lukas Rachbauer.

Definition. A coherent state |a) is an eigenstate of the annihilation operator of
the harmonic oscillator, i.e., a|a) = a|a). Using the Fock basis {|n)}52, it can
be written like

o0

o) = e /25 \O/‘—% In). (2.7)

3As our ongoing research shows, one can extract more information using states that feature
quantum phenomena like entanglement.
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10

A coherent state is a quantum state with minimal uncertainty that most re-
sembles a classical field. From Eq. , one can see that for a coherent state,
the probability of measuring n photons follows a Poisson distribution with an
expectation value of |a?.

Plugging a #-dependent coherent state into Eq. (2.6), we obtain the correspond-
ing quantum Fisher information after a tedious (but straight-forward) calculation:

1 _lewp?
90ar(6)) = —5e” =2 (8 | (6) Z ¢_
a2 (9pr(0 Zno/\‘/i 0)
1 7‘0{(0)'2 2 2 > |Gf
(Opcr(0)|0pcr(0)) = 1€ (9o la(0)]°) ZT
+ e 1 OF |9,0(6) Z

1 o—la Dpar(0)  Opa (0) n|a(0)|2n
=3¢ " (@ula® M(Z(G) * Z*(e) )Z !

n=1

n),

(n 1)

(99 |a(0)] ) + (L+ a(0)]%) |99 (0)

_1 o 2 o 2 8904(0) 86»@* (9)
51O @rlato)) (275 + w )

(@ (6)|0a(6)) = —e " (3o Z'a

m»—

4 e,\a(g)p@ea(@) Z n |a( )|2n

a(f) = nl
2 890((«9)

—5 (Gola@®)P) +la®)F =75
9 | (0)]%)” + [ (6) 2 |3px(6)
2 2 8904(0) 8904* (9)
@) @la@)) (25 + 25 ),
— H(0) = 4 ((85(8)|0pr(8)) — [(v(8)]9px(6))[)
= 4)9p0(0)?

| —

[ (6)|0pcr(6))]” =

e~ =
| = —~ [N}

Using this result, we can find the quantum Fisher information for multi-mode
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11 2.3. FISHER INFORMATION IN SCATTERING MEASUREMENTS

coherent states | (6)) = |ai(6)) ... \aN(9)>E|

|Opex(0)) = Z i1 (0)) 1090 (0)) |igr (6)) -
(O (0)|0pe(6)) = (Dpc(8)|0pers(6))

i=1

35" @h Oan(0) (as(0) b )

=1 j=1
J#

i=1

(Do (0)|cx(8)) =) _ (Bocxi(6)exi(6))
-y

| {(Opcx (0 Zae% )i () (;(6)|99cx; (0))

=1 j=1

= Ham(0) = 4 ((Opex(0)|0pcx(0)) — | (Gpex(0)|ex(0)) |?)

=4 ((90i(6)|0pcri(8)) — (Bpcxi(6)]i(8)) (i (6)|9pci(6)))

= 43 (00 (0)]300(0)) — | (G001 (0)(0)) )

= Z |Dpui (6)

i=1

= 4|0 ()" (2.8)

Here, Hy(#) denotes the quantum Fisher information for a multi-mode coherent
state. We conclude that we can compute the latter as the sum of the quantum
Fisher information contained in each mode, which we expected due to the additiv-
ity of Fisher information for independent variables. In Ref. , the authors show
that the homodyne detection scheme constitutes an optimal POVM since it max-
imizes the classical Fisher information to yield the quantum Fisher information
for coherent states from Eq. (2.8).

We can write Eq. in terms of the scattering matrix S, which relates the
wavefront going into a linear scattering system ¢™ with the wavefront coming out
of it c°"*(0):

™t (h) = S(6)c™. (2.9)

4Here, the oy are independent complex parameters.
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12

Since the annihilation operator of the ¢th channel a; is also the complex amplitude
operator for classical fields (see Ref. [12]), we can identify

ai(0) = (ex(0)]a:|ex(0)) = ¢ (6).
From Eqgs. and , we thus obtain:
Hy(0) = 4]|0pex(0)
= 4|95 (0)]*
= 4 (9S(0)) c™|?
— 4(c™) " (255(0))" (95(6)) ™
— 4 (c™) ()™ (2.10)
In the last equality, we introduced the Hermitian matrix
F(0) = (055(9)) (9S(9)) , (2.11)

which we call Fisher information operatorﬂ The eigenstate corresponding to its
largest eigenvalue constitutes the wavefront that extracts the most quantum (!)
Fisher information from the system for a fixed mean number of incoming pho-
tons/input intensity and N open channels. This result is remarkable: it provides
a simple algorithm to engineer an optimal coherent probe state only having access
to the far field.

2.3.2. Fisher Information Flow

In addition to knowing how much information we can extract in the far field, we
are interested in how this information behaves locally within a complex scattering
medium. We want to understand where it is created, whether it is conserved,
and how it is transported by an electromagnetic wave. We can answer all these
questions using the concept of the Fisher information flow, which is the main
topic of this work. In this section, we will derive it and discuss its mathematical
properties following unpublished ideas and notes of Jakob Hiipfl, Lukas Rachbauer,
and Stefan Rotter.

Quantum Mechanical Waves

The Schrodinger equation governs the time evolution of a quantum mechanical
state ¥ (r, ) in a system characterized by a potential V' (r,t):

ih@ﬂﬂ(ﬁ t) = [A{w(n t)
— (—h—A +V(r, t)) U(r, 1), (2.12)

2m

5Strictly speaking, we should call F(6) Fisher information matrix since it acts on the vector
space of mode compositions rather than on the Hilbert space. However, to avoid confusion,
we follow the literature convention and refer to F(6) as Fisher information operator.
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13 2.3. FISHER INFORMATION IN SCATTERING MEASUREMENTS

where H denotes the Hamiltonian of the system. One can define a continuity
equation

atp<r> t) +V- j(I‘, t) = O'(I‘, t) (213)
corresponding to a charge @ = [ p(r,t)d*r. The interpretation of the three terms
is:

e p(r,t) is the charge per volume at position r and time ¢

e j(r,t) is the flux density or flow of the charge, i.e., the charge per surface
and per time that flows in the direction of j(r,¢) at position r and time ¢

e o(r,t) is the charge that is created (o(r,t) > 0) or destroyed (o(r,t) < 0)
at position r and time ¢

If we identify the charge density as the probability density of finding the particle
at position r and time ¢, we find

p(I‘, t) = |¢(I‘, t)|2>

§(r,0) = 5 (W) Ve, £) — Y, V(r, 1))

= 3 {ulr, 0Vl 1)

o(r,t) =0,
where {-} denotes the imaginary part. The source term is zero since probability
can be neither created nor destroyed locally.
Similarly, we can identify a charge related to the Fisher information in systems

that depend on an arbitrary parameter §. Differentiating the Schrédinger equation
with respect to 0, we ﬁndﬂ

h2
ih0,0p1) = — 5 — A0y + gV + V Oy

Multiplying with Op10* and complex conjugation furnishes:

. * h? * * *

iRy 0,000 = — 5 0pt)* A0yt + 04V g™+ V Dy Ot (2.14)

. * h2 * * * * *
—1h0g 0, 0pp™ = —%89¢A89w + 0gV 7 Opptp™ 4+ V7 Optp Ot (2.15)

Subtracting Eq. (2.15)) from Eq. (2.14)), we obtain on the left-hand side:

LHS = ih(0p)* 8,091 + Opth0,0p1p")
= 10, (Dp" O))
= K0, |Og1) .

6To save some space, we do not write the explicit dependence on position, time, and the
parameter of interest.
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The right-hand side reads:

h2
RHS = —o—(0py" A0gy) — Opp A0pY") + 213 {0V Opt)™ + V Opy" g}
h2 . * *
_ —%V - (Dg* Vg — DpthV Ogrh™) + 23 {0V O™ 1) + V Opap* Ogap}
ih?

= —EV (SH{0p" Vg }) + 213 {0pV O™ t) + V Ogtp*Opp } .

Setting LHS = RHS, we find

| in?
1h0,|0g |2 + lﬁv (S {8 VOp))

= 2AS {0V Optb™ ) + V gt O} .

(2.16)

By comparing Eq. (2.16|) to the continuity equation (Eq. (2.13))), we can identify
the Fisher information charge density p'!, the Fisher information flow j*, and the

Fisher information source term o'*:

pFI - |897/}|27
it = %S{@ew*vaew}, (2.17)

2 * *
ol = ﬁ% {8.9‘/5’91/1 (S Vag’(b 891/1} .
Let us list some properties of these quantities:
e All quantities are real by construction.

e For a real potential V' (i.e., for a system without gain or loss), the source
term simplifies to o™ = 20,V {9p10*}. We deduce that information can
only be created at positions where the potential changes with the parameter
of interest (9pV # 0), which is intuitive. To extract a lot of information,
the wave should have a high intensity in regions where the potential changes
with 6.

e In the stationary case, we have 9,p"" = 0, and thus V -j*! = ¢!, Integrating
over a region D with boundary 0D, we find using Gauss’s theorem

/ 1 dA = / olav = / o av.
oD D supp(a¥T)

The Fisher information flowing through any closed surface is thus equal to
the integrated sources (i.e., ¥ > 0)/sinks (i.e., o™ < 0) within that surface.
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15 2.3. FISHER INFORMATION IN SCATTERING MEASUREMENTS

Scalar Classical Waves

In this section, we will show that the classical scalar wave equation and the
Schrodinger equation are equivalent in the stationary case. We have to take into
account that classical electromagnetic waves and massive Schrodinger particles
follow different dispersion relations:

WH = Ck’H
W2k

om '

EsZFLwS:

where we use the sub-index H (“Helmholtz”) for the classical dispersion relation
and the sub-index S (“Schrédinger”) for the quantum mechanical dispersion re-
lation. The equivalence between Helmholtz and stationary Schrodinger equation
only holds for a fixed value of frequency or wave number. We choose to fix the
wave number k = kg = kg. The corresponding frequencies wy # wg can be
computed using the different dispersion relations.

e Scalar electromagnetic waves ¥(r,t) are governed by the following wave

equation:
n(r,t)?
(A - 2 83) w(rv t) = 07
where we defined the refractive index as n(r,t) = /¢( . In the sta-

tionary case, n(r,t) = n(r). Assuming harmonlc time- dependency P(r,t) =
e wrly(r), we retrieve the stationary wave equation, i.e., the Helmholtz
equation:

(A+n(r)*k*) (r) =0 (2.18)

e For the Schriodinger equation (Eq. (2.12), we obtain in the stationary case
(i.e., V(r,t) = V(r)) and assuming harmonic time-dependence 9 (r,t) =

e wsty(r):

— (A + 2}1—? (Fs — V(r))) W(r) =0
— (A + (k2 — %V(r))) Y(r) = 0. (2.19)
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Comparing Eq. (2.18) and Eq. (2.19), we find that they have the same form if we
identify

h2k?
B 2m

V h2 k2 ES

Replacing the potential V( ) by a refractive index n(r) in Eq. and dividing
by the common prefactor = -, we obtain:

= 3 {00V},

o1 — 2”% S {0V Oy ) + V" Ot}

V(r)=—<—(1-n(r)")

(2.20)

(2.21)
_k2 {861 — n2)0p00* Y + (1 — n2)Dpb* O}
= kS {20000 + (n* — 1) 00" O}
It is useful to keep the units of these quantities in mind:
i) =107 [l [,
[ =017 P - P (2.22)
=10]7%- [v]? - [L]7%,

where [L] denotes a unit of length.

We conclude that we can also define the Fisher information flow j*! and the
Fisher information source term o' for stationary scalar classical waves. In Sec.
we will show that the Fisher information flow from Eq. @ is a local represen-
tation of the Fisher information operator from Eq. @ .

2.3.3. Finite-Difference Fisher Information Flow

In experiments, it is often hard to determine the change of the wavefunction for
small perturbations of the parameter of interest # due to the small signal-to-
noise ratio. As a consequence, we cannot compute the derivative with respect
to 0. Nonetheless, we can define a modified Fisher information flow replacing the
derivatives with finite differences. Let V' (6;) = V; and V(6,) = V5 be two arbitrar-
ily different potentials. We denote the solutions of the corresponding Schrodinger
equations as ¥ (61) = ¢y and 1(0y) = 1. We further write the difference quotient
between the potentials/wavefunctions as

Vo — Wi
DV =

Oy — 6,

1y — iy
Dy =
(0 0
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17 2.3. FISHER INFORMATION IN SCATTERING MEASUREMENTS

and the average as

= Vi+W
V=
2 Y
— U1ty
P = 5
Then, we can define the Fisher information charge density/flow/source term as:
P = DyP,
h

J' = L3 Dy vy}, (2.23)

ot = %% {DVDY* Y + VDY D},

Note that we do not distinguish between the Fisher information charge den-
sity /flow /source term for infinitesimal and finite perturbations in the notation.
Eq. (2.23) can be derived by realizing that

Vas — Vit

=DVi+ VD
50, Vi) + VD,

D(Vi) =

similar to the product rule. From the difference quotient of the Schrodinger equa-
tion
h?
iho, DY = ——ADY + D(V),
2m
we then find

0ip" = 9,(Dy* DY)

= 0, DY* D) + DY*0, Dy
_ <+%AD¢ - 5DV )) Dy + Dy (—%AW + ED(W))

h 1 w1 —
= (+—ADY* — —DV* — =V Dy* | Dy
2im ih ih

R 1 — 1
+ DY (5 ADY + S DV + VDY
2im ih ih
R

= 5.~ (ADY" Dy — DY ADY)
+ % (PY*DVY + Dy VDY — DV'5 Dy — V' Dy Do)
__ g (DY*V'Dy — VD D))
2im

L (D@Z)*DVE — DV D + DY VD — V*m*pw)

AT
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-y (s (puervD))

+ % (S{Dy*DVy + DY*VDy })
- _V _jFI + ol

i.e., the continuity equation. As in Sec. [2.3.2] we can define the finite-difference
Fisher information flow for stationary scalar classical waves by replacing the po-

tentials with refractive indices following Eq. (2.20). We find:

i =S {Dy"VDy},

o™ = k23 {Dr*Dyry + (W7~ 1) DYDY | (2.24
where we discarded the prefactor % In the limit of 65 — 6, — 0, we retrieve the
infinitesimal expressions from Eq. . Remarkably, all the properties of the
Fisher information flow also hold in the finite-difference case, as we will see in
Sec. Therefore, we will often not distinguish between the infinitesimal and
the finite-difference Fisher information flow/source term in the following sections.

2.4. Electromagnetic Waves in Waveguides

This section introduces the theoretical tools to describe electromagnetic (EM)
waves in the simulation (Ch. [3) and the experiment (Ch. [4]) from this work. We
will use this framework to continue our discussion of the Fisher information in
the following section, where we relate the Fisher information flow to the Fisher
information operator and present methods to control the flow of information in a
complex scattering system.

Electromagnetic waves are prone to high loss when propagating through cables
due to the Skin effect. Therefore, one generally uses waveguides to transmit them.
In the following, we first discuss general results for EM waves in a perfectly con-
ducting waveguide of constant cross-section, which is infinitely long in z-direction.
Then, we study the case of a rectangular waveguide in greater detail. Our discus-
sions follow Refs. [13}[14]. Note that we use a different coordinate system than the
literature. We have

where the quantities without tilde denote the coordinate system used in this work
and the tilded quantities denote the coordinate system used in the literature.

We state without a proof that all waves in a waveguide can be written as a
linear combination of the following types of modes:
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19 2.4. ELECTROMAGNETIC WAVES IN WAVEGUIDES

e Transverse electromagnetic (TEM) modes: E- and H-field transverse to the
direction of propagation (i.e., the z-direction),

e Transverse electric (TE) modes: E-field transverse to the direction of prop-
agation, H-field has a longitudinal component,

e Transverse magnetic (TM) modes: H-field transverse to the direction of
propagation, E-field has a longitudinal component.

To obtain the wave equations that govern these types of modes, we start by listing
the macroscopic Maxwell equations in Gaussian units:

VD = 4mp,
1
VXxE= ——@B,
c

V-B =0,
VxH= 4—7ij + 18tD.
c c
We assume that the medium within the waveguide does not carry any free charges
(pr = 0) nor any free currents (jz = 0). Furthermore, we consider a linear medium
with constant permittivity and permeability, i.e., D = €E and B = yH. With
these simplifications, we arrive at:

V.-E=0,
VxE=-LyH

¢ (2.25)
V.-H=0,
V x H = SO,E.

C

Applying the curl operator to the second and the fourth equation of Eq. (2.25)) and
using V x (V x A) = V(V - A) — V2A, we retrieve the 3D Helmholtz equations
for E and H:

€L 9 2
(E@—V>E:Q

(2.26)
(Sor-v2)H =0,
c
Since the waves propagate freely in z-direction we Writeﬂ:
E = E 2 ei(kzr—wt),
(9,2) (2.27)

H= I:I(y, Z) ei(kzz—wt)‘

Furthermore, we separate all vector quantities into a component which is longitu-
dinal and a component which is transverse to the z-direction (v = v + v, for an
arbitrary vector/vector-valued operator v).

"Here, we work with waves that propagate in positive z-direction. To retrieve the results for
waves propagating in negative z-direction, one can substitute k, — —k,.
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2.4.1. TEM Modes
For TEM modes, we have F, = H, = 0. From Gauss’s law it follows that

Vi - Et =0,
and from Faraday’s law we deduce that

éx~V><E:iw—:lflx — V,x B, =0.
We can thus obtain E; by solving a 2D electrostatic problem. Since the boundary
of a conducting waveguide is an equipotential surface and there are no charges
within the waveguide, TEM modes can not exist in a waveguide that consists of
only one connected surface. Only if there are two or more connected surfaces
contained within each other (e.g., a coaxial cable) do we observe TEM modes
in the regions between the surfaces. For our use case, i.e., a single rectangular
waveguide, TEM modes thus do not arise, and we can focus on TE and TM modes.

2.4.2. TE and TM Modes
Plugging Eq. (2.27)) into Faraday’s equation we obtain:

VxE=-"oH

C
—iwlH (2.28)
C

Using &, x (V x v) = Vv, — 0, vy and &, X v = &, X vi, we can rewrite Eq. (2.28)
like

V.E, = ik,E +iwle, x H,. (2.29)
c
Similarly, we find
V. H, = ik,H, — iw 8, x E;. (2.30)
c
Applying &, x to both equations and noting &, x (&, x vy) = —v; leads to
8, X VI, = ik,&, x B, — iw" H,, (2.31)
c
&, x Vi H, = ik,&, x H, + iw E,. (2.32)
c
Plugging Eq. (2.31)) into Eq. (2.30) and Eq. (2.32)) into Eq. (2.29)) we find:
E; = 2; <k$vtEx - %éx X thx> )
w 26/1, . kf% c
i » (2.33)
H - (katHx + %%, x VtEx> .
wor _ f2 c
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21 2.4. ELECTROMAGNETIC WAVES IN WAVEGUIDES

Those equations imply that the transverse components of the fields are fixed by
their z-components. The z-components are, in turn, fixed by the 2D Helmholtz
equation, which we obtain by plugging Eq. (2.27)) into the 3D Helmholtz equation

(Eq. (2:26)):

2
<—€“w R — 63) U(y,2) =0, (2.34)

c2

where U = Ex or U = Hx

2.4.3. TE and TM Modes in a Rectangular Waveguide

In this section, we solve Eq. for a waveguide of rectangular cross-section,
which is placed parallel to the z-, y-, and z-direction. The waveguide is assumed
to be infinitely long in z-direction, and it has side lengths of d,, in y-direction, and
d, in z-direction. Since the corresponding boundary conditions can be expressed
independently for the y- and the z-direction, we can make a separation ansatz:
U(y,z) = f(y)g(z). Inserting this ansatz into Eq. (2.34), we arrive at:

quw? o f"y)  g'(z) _
& Ry T (235)

This implies that £ f”(;y)) and 9;(22)) are constant. The solution to such differential
equations is a linear combination of sine and cosine functions, and the problem
reduces to imposing boundary conditions on the walls of the waveguide, which

read:

nxE=0, (2.36)
n-H=0, (2.37)

where n is a vector that is perpendicular to the waveguide wall. From Eq. ,
we note that the boundary condition for the z-component of the electric field reads
E.|s =0, where S denotes the boundary of the waveguide. Projecting Eq.
on n and using Eq. (2.37)), we obtain the boundary condition for the x-component
of the magnetic field 5-H,|s = 0, where % =n-V,.

For TE modes, we set £, = 0 and solve Eq. for H,. The boundary
conditions impose that f(y) = C, cos("d—?”) and g(z) = Cy, cos("%), where m and
n are integers and C,, and C,, are constants. This leads to the z-component of
the magnetic field for TE modes:

H, = H,,, cos <@) coS (mﬂz) (2.38)
d, d

From this equation, we can compute all other fields using Eq. (2.33)).
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Analogously, we find the z-component of the electric field for TM modes:

B, = By sin <@> sin (mm) (2.39)
d, d,

Since we can label TE and TM modes using the two integers m and n, we denote
them as TE,, , and TM,, ,, respectively.
For both TE and TM modes, we obtain the same dispersion relation by plugging

either Eq. (2.38) or Eq. (2.39) into the 2D Helmholtz equation:

k= (kpn)?
€’ nm\’ m >
_ _ 22y 2.40
c? (dy ) < d ) ( )

B - () — ()

Waves can only propagate freely if k2 > 0; otherwise, k, becomes complex, and
they get damped exponentially (see Eq. ) Consequently, they only exist
on length scales that are short compared to 1/3{k,}. We call modes with a
real/complex k, open/evanescent. For each mode (characterized by m and n),
there is a cut-off frequency below which it becomes evanescent:

Wonto(m, ) = 5 ((2—:)2 + (73”)2) . (2.41)

While TE,,, modes exist for m = 0, n > 1 or m > 1 and n = 0, TM,,,
modes require m > 1 and n > 1 (otherwise Ex = 0 and consequently all other
fields vanish as well). Therefore, only TE,,,, modes are present at low frequencies
W < Weutorr(1, 1).

TE,, modes

Finally, let us compute the explicit form of the TE,, modes, which are the only
propagating modes if d, > \/2 > d., ie., at low frequencies in a waveguide
whose extent in z-direction is small compared to its extent in y-direction. Using
Eq. , we find the x-components of the electromagnetic fields for those types
of waves:

E:EIO,

H, = Hy, cos <_n7ry) elFnz—wt),
dy
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23 2.4. ELECTROMAGNETIC WAVES IN WAVEGUIDES

From Egs. (2.33]) and (2.40), we obtain the remaining components:

E:Et
i

- (%éx x VtHz>
= (kp)2 N c

C

1 Wik nmw . MY\ (ke a—wt) A N
= ——————Hy,—sin| —= | e €, xXe
L gz e ", <d) !
i o nmy (kX x—wt) A
= “EkYHyy, sin [ —2 ) elkne—wtls
(ki) ¢ " ( d, >

and

H; 5

I
—
o

8
S
&

ikr (ke
— H=(cos( 2Z)e, - 1—; sin 2 &, | Hope'Fno=et), (2.43)
d, K d,

where we used w = ck/,/epr and

C

= V= [ (1), 2.1
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2.5. Wavefunctions in Simulation and Experiment

In this section, we discuss the equivalence between the numerical solution of the
2D Helmholtz equation in a slab geometry described in Ch.[3|and the measurement
of the transmission spectra in a 3D rectangular waveguide described in Ch. [d We
show that we can compare the simulated and the measured data by identifying
the (scalar) wavefunction as the z-component of the electric field in both cases.
Moreover, we find an explicit expression for the latter in the asymptotic region
following the theoretical framework from Sec. Then, we use this wavefunction
to relate the Fisher information flow with the Fisher information operator and
show how to control the flow structure within a complex scattering system.

2.5.1. Equivalence between Simulation and Experiment

In the experiment, the probe antenna is oriented parallel to the z-axis, see Fig. 4.3
Consequently, we measure the z-component of the electric field (note that the
magnetic field exerts a force perpendicular to the probe antenna). As opposed to
Sec. [2.4.3] where we consider a slab system of constant refractive index, we add
a region of variable refractive index /efr = \/€fi(z,y) in the simulation and the
experiment. Since we use a piecewise constant function of space for the refractive
index, F. still follows the Helmholtz equation except at the boundaries between
two regions of constant VEr:

V xE = —%&H
V xH= Z@tE
U
Vx(VxE)= —%@(VXMH)
V(V-E)— AE — —%@(V,uxH)—%@tV < H
V(V-(e'D)) - AE = —%at (Vi x H) — Z—’;‘afE
V(e(Ve')-E) — AE = —%at (Vi x H) — Z—’;‘a,?E
1
(502 —A)E= -V (¢(Ve) -E) = —0,(Vu x H)
3
H a2 -1 1
<c_28f - A) B. = =0, (e(Ve™") - E) + =0, (OyuH, — puH,),  (2.45)

where the right side is only non-zero at the said boundaries. Since the refractive
index does not depend on the z-coordinate, we have £, = F,(z,y) and Eq.
simplifies to a 2D problem. Therefore, we can simulate E, (except at the bound-
aries between regions of different refractive index) by solving the 2D Helmholtz
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25 2.5. WAVEFUNCTIONS IN SIMULATION AND EXPERIMENT

equation and imposing homogeneous Dirichlet boundary conditions at the wave-
guide walls.

2.5.2. Far-Field Wavefunctions and Scattering Matrix

Let us now derive the wavefunctions in the far field, i.e., far away from the region
where the refractive index varies spatially. On the one hand, we do not allow any
z-dependence of the wavefunction in the simulation. Therefore, only TE, modes
are possible. On the other hand, we have d, < d, in the experiment and thus only
TEy,, modes are open at low frequencies. In the far field, the refractive index is
not a function of space, and the wave propagates freely. Consequently, we can use

the results from Sec. and we obtain for the nth open mode (see Eq. (2.42))):

wn = EZ|TE0,n = An sin <?) ei(kﬁxitﬂ): (246)

Y

where we set A, = ,ic—’;\/gHOn. We fix the constant prefactor by normalizing the
probability flux through a transverse section of the waveguidd}

d, dy
/ S {0V} - dA = / dz / dy S {4 0,n)
0 0
ds dy
:\An\z/ dz/ dy 4 sin® Y k"
0 0 dy
d- dy
= \An|2ka/ dz/ dy sin® (@)
0 0 dy
d,d

- ‘An|2k£ .
2

LA
>[4
ke \l d,
2

Ap =4/
— dy
=4/——A
\/ dykz ™

where we discarded the physically irrelevant phase factor and redefined the con-

stant as A = \/g . Here, A is a real constant factor that depends on how strongly
we illuminate the injection antennas in the experiment. In the simulation, we
choose A = 1. This so-called flux normalization ensures that the probability flux
is the same for each open mode.

To consider the most general case, we discuss an arbitrary scattering region
that is connected to the asymptotic (i.e., the far-field) region via M straight,

8Note that the evanescent modes do not contribute in the asymptotic region and thus k¥ € R.
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semi-infinite, and rectangular leads of width d,, (cf. Ref. [15]). Note that we have
M € {1,2} in the simulation from Ch.[3Jand M = 1 in the experiment from Ch.
We introduce a coordinate system in each lead z; € [0,00), y; € [0,d,,], where
x; is the longitudinal coordinate, and y; is the transverse coordinate. Choosing
that x; — oo corresponds to the boundary between the scattering region and the
lead and x; = 0 corresponds to the asymptotic region, we can write the scalar
wavefunction in the ¢th lead as:

lkz nTi + COUt lkinxl] , (247)

U(i, yi) Z\/—XM yi) [ch,

where we also considered waves propagating in negative xi—directionﬂ N; = {%J

denotes the number of open (flux carrying) modes, and c", /¢S cout denote the coef-
ficients of the wavefront going in/coming out of the system. We further defined
the transverse mode profiles as:

() 2 . (n7my;
im\Yi) = [ 75— S )
X 7 y dyi dyi

dyi
0

(2.48)

For linear scattering media, the coefficients of the incoming waves ¢ are related
to the coefficients of the outgoing waves ¢ via the scattering matrix:

in

in
C.l C;’,l
. clh . cit
in __ 2 in __ 2,2
c = , G = s
in in
Chm i, N;
out out
C 6271
out out
out __ c out Ci,2
C = , G = s
out out
¢ Ci,N;
Sl 1 SI,M
" = Sc™" = D : c”, (2.49)
SM,l o SM,M
M
out
E S; ,]cj ,
Jj=1

9In the experiment, the signs in the exponents of the wavefunction are flipped. This is only
a different convention, since the physical fields correspond to the real part of the complex
fields. To avoid confusion, we will stick to the convention we used until now in the entire
text.
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27 2.5. WAVEFUNCTIONS IN SIMULATION AND EXPERIMENT

where the S, ; are IV; x N; transmission matrices from the jth to the ith lead, and
Si; is the N x N; reflection matrix for the ¢th lead. The vectors and matrices
in Eq. ( are written in the so-called mode basis, whose basis functions are
the transverse mode profiles from Eq. (| - We call ¢™/c°" the mode com-
position of the incoming/outgoing wavefront. Note that, because we normalize
c™ — c™/[|c™]| and ¢ — c®"/[|c™||, the wavefunction from Eq. is a
dimensionless quantity.

2.5.3. Fisher Information Flux in the Asymptotic Region

Using the theoretical framework from the last sections, we can finally show the
relation between the Fisher information flow from Eq. and the Fisher in-
formation operator for the wave from Eq. . For this, we compute the Fisher
information flux, i.e., the integral of the Fisher information flow over a closed
surface. Let us start with a small auxiliary calculation:

a@w xwyz Z \/—in yz aHCOUt ac,-’

O, Oph (24, y;) = — Z k2 X (1) O tte K

n=1

where we used that the incoming wave does not depend on € in the first equality.
Since we integrate in the asymptotic region, we can set x; = 0. For convenience,
we choose a surface 0D for the integration which is perpendicular to the x;-axis
in each lead (cf. Fig. for M =1). Then:

/ Vv - jav
D

:/ it dA
oD

M dyi
=> / (= 0,3) - (—&,,)dy,
i=1 70

M dy;
=- Z/ S {0 (@i, yi)" V0ot (i, Yi) im0 - —€2,dy;
i=1 70

M dy,

= - Z 'S {0 (1, 1) 0, 00 (1, 90)) o

0
M N;

dy,
= _Z/O {Z \/;TXHZ yz (aecout —1 Z ”Lin yz)agcfl;;}dyi
M N N; K
ZZZ\/ g{—l (Bpcst)” 8c°“t}/ Xion (Vi) X (Vi) dyi

i=1 n=1n'=1

-



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

28

M N; z
> k” S {1 (Bpc?™) " Bpes™s ) S

— (™)' F(B)c™, (2.50)

where F(6) is the Fisher information operator in mode basis. By comparison to
Eq. |T_U|, we deduce that the Fisher information flow describes the information
associated to a coherent incoming state locally (up to a trivial factor of 4, which
we could easily include in the expression for the Fisher information flow). While
we only showed Eq. in the far field, it also holds in the near field: from the
stationary continuity equation, we have

/ O_Fldv — / jFI - dA faréeld (Cin)TFCin.
\% ov

The first term, and thus the second term, are the same for all volumes containing
the entire source term. Since the last term is constant, we deduce that the second
equality must also hold in the near field, as long as we choose an integration
volumes that contains the entire region where o' # 0. In Fig. [3.5, we visualize
this result by plotting the Fisher information flux for different choices of the
integration region V.

To obtain the analogous result for the finite-difference Fisher information flow
from Sec. 2.3.3 we can replace 9 — D and repeat the derivation leading to

Eq. (2.50). We find that
/ V-3V = () F 6y, 0,)c™, (2.51)
D

where
F(6,,6,) := (DS)' DS (2.52)

is the finite-difference Fisher information operator, which is closely related to the
discrimination operator introduced in Ref. . Note that, as before,

(S2 —8Sy)
0y — 6,

ONote that we work in a convenient basis (the mode basis), whereas in Eq. (2.10) we use
abstract notation.

DS =
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29 2.5. WAVEFUNCTIONS IN SIMULATION AND EXPERIMENT

2.5.4. Spatial Control of Information

To conclude the discussion in this chapter, we demonstrate how one can control the
flow of information within a complex scattering system by tuning the incoming
wavefront. Remarkably, we compute the wavefront of interest solely from the
scattering matrix and its dependence on the parameter of interest 6, thus not
requiring any knowledge of the near field. While we show the calculations for
infinitesimal perturbations of #, they are also valid for the finite-difference case
when replacing 0y — D.

Controlling the Flow of Information in y-Direction

First, we show how to maximize the amount of information that flows into a
desired region at x; = 0, which is where we would place the detector in a technical
application. This practice is of interest when using a detector whose sensitivity
varies as a function of space. Our approach is inspired by the techniques used in
Ref. [16]. For simplicity, we consider a one-leaded geometry (M = 1) and omit
the indices that label the leads.

To find the optimal wavefront, we transform the scattering matrices correspond-
ing to the unperturbed and the perturbed system from mode into position space.
We find the transformation matrices by noting that we can represent an incom-
ing/outgoing wave that consists of N modes either by its (complex) mode com-
position or by its amplitude and phase at N y-positions. Denoting the state
corresponding to the nth incoming/outgoing mode as |ny,)/|now) and the state
corresponding to a y-coordinate at some fixed z-position as |y,), we have (see

Eq. :

2 in kT
<y33‘n1n> = T _Si <w>€ Fin )

[ NoutTY —ik®
<yx|’n,0ut> o \/_ ( t ) knout

where d, is the waveguide width, and we can compute k. using Eq. [2.44] Since
scattering matrices relate the space of incoming mode compositions to the space
of outgoing mode compositions, we need to transform their indices differently:

S?Joyo = <QO|S|QO>
N

= Z <g0‘nout> <nout|S‘nin> <nin‘y0>

Nout,Nin=0

_ (Aouts (Ain)T> 7

Joyo

where S is the scattering matrix in mode basis at * = 0, and we defined the
transformation matrices from mode to position space for outgoing/incoming waves
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as

out

Ag()nout = <?j0‘nout> = \/— —_— Sin ( d >’
Tout Y
in 2 . NinTY
Az, = (olnin) = — sin ( )

nln

We use N equally spaced y-positions within the waveguide at x = 0 to represent
S in position space, i.e., Yo,y € {Nfrl s Nild : ,N+1d } Since we use the
same y-coordinates for the dimensions corresponding to the incoming and outgoing
waves, we have A°" = A" To maximize the Fisher information flux to a certain
subset of these y-coordinates B,, we define

~ 0ifyo ¢ B
Sﬂoyo ::{ ’ !

Sioyo Otherwise

Sisa scattering matrix in position space of a system, where we only have access
to the outgoing wave (and thus to the Fisher information it carries) at the y-
coordinates in B,. We can easily retrieve the corresponding scattering matrix in
mode space:

QRSA ._ (Aout) = ((Ain)T>_1 ’

from which we can compute the so-called “restricted spatial access (RSA) Fisher
information operator”:

FRSA . (8HSRSA)T Dy SESA

The maximum eigenstate corresponding to this operator defines the wavefront that
yields the maximal Fisher information flux to B,. We show and discuss the Fisher
information flow/source term that results from such a wavefront in Sec. [3.3.1]

Controlling the Flow of Information to a Set of Leads

In this section, we introduce the relative Fisher information operator, which one
can use to maximize the percentage of information flowing into a subset of leads
J C L, where we denoted the set of all leads as L = {1,2,..., M}. We use this
practice when we only want to communicate with peers at the leads in J while
avoiding eavesdroppers at the leads in L\ J. For simplicity, we assume that we
can only send in waves from the ith lead. An example of such a setup is shown in
Fig. 2.1 for |L| =4 and |J| = 1.

Applying the same reasoning as in Sec. [2.5.3] the Fisher information flowing
into the jth lead is

dy,
b; = / § My = 0,y5) - (—8q,)dy;. (2.53)
0
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31 2.5. WAVEFUNCTIONS IN SIMULATION AND EXPERIMENT

@ €L\J

B% - 8 . Scattgring @ €L\J

LT

i <

Figure 2.1.: Alice, who sits at the left lead, wants to pass some information to her
friend Bob, who sits at the bottom lead. She can only reach him by injecting a
wavefront into her waveguide, as indicated by a blue arrow. Unfortunately, the
wave needs to pass through a scattering region, which is connected to three more
leads. While Bob sits at one of these leads, the other two leads are occupied by
eavesdroppers. Using the relative Fisher information operator, Alice can ensure
that Bob obtains a maximum percentage of the information.

Similar to the calculation leading to Eq. (2.50)), we can simplify this expression:

N

. out * out
Q)j = E (agcjm) 890]-7”.

n=1

As for the conventional Fisher information operator, we can rewrite the last iden-
tity using the scattering matrix formalism from Eq. (2.49)):

;= (9pc2™) 9y c@ut

—ZZ Ck’ 89 ]k/) 898]-,;60}6“.

keL k'eL
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If we assume that we only have access to the ith lead, i.e., we can only send in
waves there, we have cik“# = 0 and thus

D = (Cin)T (06S;.:)" 0685,

= (Cin)T Qjici”

where the subscript j|i denotes the Fisher information flowing into the jth lead
when we only send in waves from the ith lead. In the second step, we introduced
the reduced Fisher information operator in mode space for the jth lead Q ;. We
aim to maximize the relative Fisher information flux to a subset of leads J, i.e.,

in T in
> et Pjli (c?) (ZJEJ Qj”) K
XS g maX— in
> ier Pui cr (c) (ZZGL Qlli) ¢’

ma

Note that one could add weights in the last expression to customize the optimiza-
tion. Since the Q; are non-negative, they have a non-negative square root (see
Thm. , and we can rewrite the sum in the denominator a

(e’ (Z Qlu) e = (e)' ¢Z WZ Quct

leL l'eL leL

—dld,,

3

where we introduced the auxiliary quantity d; = / Zle L Ql|ic§in in the second
equation. Assuming that the square root is invertible, we can write the relative
flux as

ma

-1 -1
St AV Qi (X0 Qi) Ve Qui

X = Imax
> ier Qi di didi

which is maximized by the eigenvalue problem

1 .
\/ Z Qv (Z QJ’IZ’) \ /Z Qui d; = \d,. (2.54)
el jeJ leL

'Remember that non-negative operators are Hermitian, see Sec.
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33 2.5. WAVEFUNCTIONS IN SIMULATION AND EXPERIMENT

Rewriting the last expression in terms of c!*, we find

1
> Qu
\ i<t

1

1 _
dQu D Qu
leL reL

-1
> Qi D Qu
leL veL

(Sa)

i

Z Qjs

jedJ

Z Qjys

jeJ

Z Qjs

jeJ

Z Qjs

jeJ

in in
c' =) 5 Qujic;
leL
in in
c;' = Ac;
in in
c;' = \c;
in in
c;' = \c;

in __ in
Fjic” = A",

where we introduced the relative Fisher information operator F ;j; in the last line,
whose maximum eigenstate maximizes the relative flux of Fisher information into
the leads in J when probing the system from the ith lead. We show the Fisher
information flow/source term that results from the wavefront corresponding to

such a state in Sec. B.3.2
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3. Simulation

In this chapter, we discuss the behavior of the Fisher information flow in some
interesting 2D scattering geometries using numerical techniques. We treat scalar
classical waves, i.e., waves that are solutions of the Helmholtz equation (Eq. (2.18))).
For these waves, we can define the Fisher information flow and charge density as
in Eq. /Eq. for infinitesimal/finite perturbations of a parameter of
interest 6. In the following, we evaluate the expressions in the finite-difference
case by solving the Helmholtz equation for both the unperturbed and the per-
turbed system numerically. The code for the solution of the Helmholtz equation
and the computation of the scattering matrix was written by Matthias Kithmayer
based on the finite element software NGSolve, see Refs. ,. To handle several
perturbed versions of the same geometry more conveniently, his code was made
object-oriented in the course of this work.

Fig. 3.1 shows the 2D scattering geometry that we investigate in the following.
We simulate a system that is infinitely long in x-direction by using perfectly
matched layers (see Ref. for details). Since we use hard boundary conditions to
border the system in y-direction, we identify the scalar wave with the z-component
of the electric field (see Sec. . In this way, we can compare the simulation data
directly to the experimental data from the next chapter, see Sec. Within
the system, we place 60 circular scatterers of radius 2.55 mm and refractive index
n = 1.44, which corresponds to the refractive index of Teflon. Amidst the resulting
complex scattering layer, we place a square-shaped scatterer of side length 2 cm
and refractive index n = 1.44. We call this scatterer “target scatterer”, since we
choose the parameter of interest 6 as either its - /y-position or its refractive indexEl
For the ambient material, we use n = 1, which corresponds to the refractive index
of air. To model global loss in the system, we can add a complex refractive index
ngﬂ% to the entire scattering region. For the most part of the discussion, we discard
the left part of the scattering geometry by closing the system with a hard wall at
the dotted line. Then, we retrieve a geometry with one open lead (cf. Fig. ,
which suffices to discuss most properties of the Fisher information flow. If we
further replace the Teflon target scatterer with a metallic one, we retrieve the 2D
projection of the experimental scattering geometry from Fig. [4.2]

Using the scattering system from Fig. 3.1} we discuss where information is cre-
ated and how waves transport it through a complex system. We demonstrate that
information is conserved in Hermitian scattering geometries and discuss the effect

!'Note that we did not choose a circular target scatterer to better distinguish between the
Fisher information source term when estimating the target scatterer’s x- and y-position, see

Fig.

35
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0.1
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Figure 3.1.: 2D scattering geometry in the simulation. While the system is subject
to hard boundary conditions at the top and the bottom side (slate gray lines), it
is infinitely long in z-direction. The orange shapes, which we call scatterers, are
regions of refractive index n = 1.44 + ng{lg. The large square in the middle of
the system corresponds to the target scatterer. We assign n = 1.0 + ngﬂﬂo to the
ambient material. Often, we close the system at the dotted line and investigate

the resulting one-leaded geometry on the right (cf. Fig. [3.4).

of a global loss term. Then, we show how we can control the flow of information
within the system under the constraint that we can only access the far field. Fi-
nally, we demonstrate that the Fisher information flow is an entirely new quantity
by comparing it to the Poynting vector for a specific example.

We emphasize that we do not perturb the parameter of interest infinitesimally:
when estimating the target scatterer’s z-/y-position, we shift it for 4.5 mm in
positive z-/y-direction. Also, when estimating the target scatterer’s refractive
index, we increase it by 0.1. Consequently, all figures show the finite-difference
Fisher information flow/source term. To keep the text concise, we refer to these
quantities as Fisher information flow/source term without explicitly mentioning
that we computed them using finite differences.

3.1. Creation of Information

Let us start by investigating the creation of Fisher information. We recall the
equations for the Fisher information flow/source term in the scalar classical case

(see Eq. (2:24)):
j' = S{Dy*VDy},
ol — 12 {Dn2D¢*z/1 + (ﬁ . 1) sz*w} .

From the stationary continuity equation V -j'! = o', we see that information can
only be created/destroyed in regions where o' > 0/¢"" < 0. The source ternf]

consists of two contributions:

e The first term is only non-zero at regions where Dn # 0, i.e., at regions
where the system changes with 6. This contribution makes sense intuitively:

2Note that we call ¢! source term even though it can also act as a sink when o' < 0.
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37 3.1. CREATION OF INFORMATION

we cannot extract information about 6 from a system if it does not depend
on 6.

e The second term is only non-zero if S{(ﬁ— 1)} # 0. This contribu-

tion corresponds to regions where the refractive index has an imaginary
part, i.e., regions where the system exhibits gain/loss. In these areas, in-
formation that is encoded in the wavefunction via a #-dependence can be
augmented /reduced.

In the following, we visualize the flow and the source term for different parameters
of interest and local absorption/gain. For the plots, we choose a frequency of
f = 9.4 GHz, which corresponds to 6 open modes, i.e., TEg ,,, n < 6 (see Eq.
for d, = 0.1 m).

3.1.1. Hermitian Systems

First, we investigate systems without gain or loss. In these geometries, only the
first term of o' contributes. We consider three different parameters: the a-/y-
position of the target scatterer and its refractive index. For the corresponding
perturbations, we have Dn # 0 at

e the left and the right boundary of the target scatterer when 6 = xy.ay.
e the top and the bottom boundary of the target scatterer when 6 = ygcat.
e within the target scatterer when 6 = ng...

Here Zscat/Yscar denotes the z-/y-position of the target scatterer, and nge.; denotes
its refractive index. In Fig. [3.2) we show the Fisher information flow/source term
corresponding to the minimum and maximum eigenstates of the Fisher information
operator for these three choices of 6. From the relative scale of the vector plots,
we deduce that the flows corresponding to the minimum eigenstates are about
three orders of magnitude smaller than the flows corresponding to the maximum
eigenstates.

As expected, we observe that information originates at the target scatterer’s
boundaries when estimating its position (Figs. [3.2a] and [3.2b)) and in the target
scatterer’s interior when estimating its refractive index (Fig. [3.2c)). Note that
information can also be destroyed in these areas (o1 < 0). Consequently, not all
information reaches the asymptotic region, even when injecting the optimal probe
state. This is due to the low frequency, which leads to a low number of degrees of
freedom; therefore, we cannot control the wave perfectly in the areas of variable
refractive index, and negative contributions to the source term occur.
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Figure 3.2.: Simulated Fisher information flow (blue arrows) and source term
(green/pink colors in the background) in the scattering geometry from Fig. [3.4
for three different parameters of interest (no absorption/gain). We choose
f = 9.4 GHz and show the flow and the source term corresponding to the max-
imum/minimum eigenvalue of the Fisher information operator on the left/right.
Above the figures, we denote the relative scale of the vector plots. In (a)/(b) we
estimate the target scatterer’s z-/y-coordinate. The position of the target scat-
terer in the perturbed geometry is indicated by a salmon-colored square. In (c),
we estimate the target scatterer’s refractive index. We observe that information
originates where the refractive index changes upon perturbation, i.e., at the tar-
get scatterer’s boundaries when estimating its position and in its interior when
estimating its refractive index. Note that the unit of ¢! depends on the unit of

6, see Eq. .
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39 3.1. CREATION OF INFORMATION

3.1.2. Non-Hermitian Systems

In this section, we analyze the behavior of information in systems that exhibit
local gain or loss. We add a square region of refractive index nj,. = £5- 1072 i
at x = 0.31 m in the scattering layer of the one-leaded geometry from Fig.
Note that a negative imaginary part corresponds to gain, and a positive imagi-
nary part corresponds to loss. Figure|3.3| shows the maximum Fisher information
flows/source terms for the two systems when estimating the target scatterer’s re-
fractive index. We see that both terms of ¢! contribute: information originates
within the target scatterer and is amplified /reduced in the region where we added
the gain/loss. Since we inject the maximum information state into the system, the
flow aims to pass through/avoid the area of gain/loss. If we were to increase the
frequency such that there are more open modes and thus more degrees of freedom,
we would observe that the flow passes through/avoids the square entirely.

Integrating the data from Fig. |3.3] we can validate the stationary continuity
equation numerically, i.e., we can check the relation

/ o ldv = / 1. dA.
14 oV

Since the system is two-dimensional, the volume integral of the source term be-
comes a surface integral and the surface integral of the flow becomes a line integral.
We choose an integration path 0V,—_g s that is parallel to the y-axis when pass-
ing through the waveguide at x = 0.28 m, cf. Fig. [3.4 Then, the integral of the
Fisher information flow is given by Eq. and we evaluate the latter numerically
using 7500 equally spaced points in y-direction. To check the continuity equa-
tion, we must integrate o' over the region that is enclosed by 9V,—.2s m. Since
the source term is 0 on the outside of the waveguide, we only need to consider
{(z,4)]0.28 m <z < 0.553 m A 0.0 m <y < 0.1 m}. To evaluate the integral of
the source term numerically, we discretize this region using a grid of 20500 equally
spaced points in z-direction and 7500 equally spaced points in y-direction. We
find:

Fig. [3.34]:
FI sFI
‘szzoas w? av - faVz:oas md dA‘ ~1.1-107*
T oray R
r=0.28 m
Fig. [3.30]:
FI sFI
‘sz:O‘zs _ dvV — fBVz:oas md dA‘ ~13-1074
T oray R
r=0.28 m

The relative deviation could be decreased further by evaluating the quantities on
a finer grid.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

40

le7

1.012 . , 0.100
__ 0.506
“E .00 y tml
‘b
-0.013
—-0.027 : — : : : ‘ & 0.000
055 050 045 040 0.35 0.30
X [m]
(a) System with local gain nj,e = —5-1072 i
4114 2%
_2.057
# 0.000 y [m]
B
-0.160
-0.320 ‘ ‘ 0.000

| |
0.55 0.50 0.45 0.40 0.35 0.30
X [m]

b) System with local loss n. = 5 - 1072 1
y loc

Figure 3.3.: Simulated Fisher information flow (blue arrows) and source term
(green/pink colors in the background) when adding a square region of local gain
(a)/loss (b) at © = 0.31 m to the scattering geometry from Fig. We show the
flow /source term corresponding to the maximum eigenvalue of the Fisher infor-
mation operator at f = 9.4 GHz when estimating the target scatterer’s refractive
index. Information is created within the target scatterer (i.e., where the system
changes when perturbing the parameter of interest) and amplified (a)/reduced
(b) in the region of local gain/loss. While the flow accurately passes through the
region of gain, it does not avoid the region of loss entirely due to the low number
of open modes.
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— x [m]

Figure 3.4.: Integration path when evaluating the surface integral of the Fisher
information flow at x = 0.4 m (blue curve). The scattering geometry corresponds
to the one from Fig. 3.1 when we close the latter at the dotted line. Note that we
inject waves on the right side (i.e., at = 0 m) of the geometry.

3.2. Global Absorption Effects

In this section, we discuss how global loss affects Fisher information. We show that
the latter is conserved in Hermitian (i.e., lossless) geometries and demonstrate how
loss can influence the optimal path of information through a complex scattering
system. This discussion is of particular interest to us since the experimental setup
from Ch. {4 is prone to a global loss term, see Sec. [4.2.3]

To quantify the amount of information created in a region, we use the Fisher
information flux, i.e., the surface integral of the Fisher information flow |, av jFLdA.
In 2D, the surface integral becomes a line integral. We choose an integration path
0V, that is parallel to the y-axis when passing through the waveguide to determine
the amount of information at a given z-position, see Fig. 3.4 Note that the
wavefunctions (and thus the flows) are 0 outside the waveguide. Therefore, we
only need to evaluate the part of the integral that intersects the system, and the
surface integral simplifies to

0.1
Vi y

=0

where jI'! denotes the z-component of the Fisher information flow.
In the following, we evaluate these integrals at different z-positions to show the
relation between the Fisher information flow and the Fisher information operator,

i.e. (see Sec.[2.5.3):

/O’FIdV:/ _]FIdA: (Cin)TFCin,
\%4 ov

where the last equality holds as long as we choose an integration path that en-
compasses the entire region where of! # 0. We use the scattering geometry
from Fig. and estimate the target scatterer’s refractive index at f = 9.4 GHz.
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Figure Figure shows the flow and the logarithmic source term for a Her-
mitian/absorptive system. To simulate the absorptive case, we add a refractive
index of n2ld 1072 i to the entire system. We depict the logarithmic source

lob —
term, i.e.]:_"lg

f({o™}) =sen ({o"}) In ({o"} + 1)

since the contribution to of! from the global loss is several orders of magnitude
smaller than the contribution from within the target scatterer. Figure [3.5¢| shows
the fluxes for both the Hermitian and the absorptive geometry as a function of
x. We normalize the flux with respect to the expectation value of the Fisher
information operatorﬁ Note that the Fisher information operator, and thus the
normalization factor, changes when adding a global loss. In Fig. [3.5a] o' # 0
only within the target scatterer. Therefore, the corresponding flux is equal to the
expectation value of the Fisher information operator at xz-coordinates on the right
of the target scatterer. In Fig. o £ 0 in the entire system and we observe
a decrease of the corresponding flux towards the expectation value of the Fisher
information operator at x = 0 m.

Since we only add a small loss term in Fig.[3.5] the flow structure does not change
significantly compared to the Hermitian case. For larger absorptions, however,
we observe an interesting feature of the maximum information flow: it tends to
reduce its path length when traveling to the asymptotic region, entailing that
the information it carries is less prone to loss. This can nicely be seen when
using a metallic target scatterer like in the experiment from Ch. 4] and choosing
0 = xga. In Fig. 3.6, we show the maximum information flows for different
absorption strengths at f = 6.9 GHz, which corresponds to one of the frequencies
we used in the experiment. Note that we do not show the source term since it is
ill-defined for metallic target scatterers due to their infinite refractive index. At
low values of the loss, the wave mainly extracts information at the rear (i.e., left)
side of the target scatterer. However, once we increase the loss above a certain
threshold, information originates primarily on the front (i.e., right) side of the
target scatterer to avoid being subject to absorption when traveling around it.

3Here, {O’FI} = ot/ [JFI} denotes the dimensionless source term.
4Note that the expectation value of a Fisher information eigenstate is the corresponding eigen-
value.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

43 3.2. GLOBAL ABSORPTION EFFECTS
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(c) Fluxes for the system without (left) and with (right) global loss

Figure 3.5.: Simulated Fisher information flow/source term/flux corresponding
to the maximum eigenstate of the Fisher information operator in the scattering
geometry from Fig. for f = 9.4 GHz and 0 = ng..;. The plots in (a) and (b)
show the flow (blue arrows) and the logarithmic source term (green/pink colors in
the background). While we use a Hermitian geometry in (a), we add a complex
refractive index of n3l{, = 1072 i to the entire system in (b). In (c), we show the
normalized Fisher information flux as a function of x for both systems. Since we
only add a small loss term, the structure of the flow does not change significantly
when going from (a) to (b). However, the corresponding fluxes deviate in the
two cases: while we observe a constant flux in the Hermitian geometry, we find
a decrease of the flux towards the expectation value of the Fisher information

operator in the absorptive geometry.
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Figure 3.6.: Transition of the simulated maximum information flow (blue arrows)
when varying ngﬁi at f = 6.9 GHz. We use a metallic target scatterer (dark gray
square) and choose 6 = Z4..;. The gray rectangle indicates the shift of the target
scatterer when we perturb the system. As before, we assign a refractive index of
n = 1.44 to the other scatterers (orange circles). Going from (a)-(d), we increase
the global absorption strength and observe that information originates more and
more on the target scatterer’s right side. Since this side is closer to the asymptotic
region, the length of the information’s path through the lossy system is reduced.
Consequently, less information is absorbed, and we can retrieve more of it in the

asymptotic region.
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3.3. Spatial Control of Information

To conclude this chapter, we implement the techniques from Sec. There, we
showed how to control the flow of information within a scattering system by tuning
the incoming wavefront. We emphasize that we do not require any knowledge of
the near field for the design of the incoming state. Rather, we compute the latter
from the scattering matrix and its dependence on the parameter of interest 6. To
attain a satisfactory level of control over the wave, we require more degrees of
freedom than in the previous sections. Therefore, we work at higher frequencies.

3.3.1. Controlling the Flow of Information in y-Direction

First, we show how to focus the flow of information in a desired part of the
asymptotic region. In Sec. we showed that the wavefront that maximizes the
flow of information to a subset of y-coordinates B, C {N+rldy, Niﬂdy, ey Niﬂdy}
corresponds to the maximum eigenstate of the restricted spatial access Fisher
information operator F*54. Note that increasing the number of open modes N
not only gives us more freedom in designing the incoming wavefront but also
improves the spatial resolution of the target region B,.

For the demonstration of the techniques, we use the geometry with one open
lead from Fig. and 6 = ngea;. We choose f = 30.4 GHz, which corresponds to
20 open modes, i.e., TEq,, n < 20E| Fig. shows the flow corresponding
to the maximum eigenstate of F® when choosing B, = {yly > 0.05 m}/B, =
{yly < 0.05 m}, where d, is the waveguide width. As desired, most Fisher informa-
tion flows to the top/bottom half of the waveguide at = 0 m in the first/second
case. When comparing the information flowing up/down of the RSA and the con-
ventional maximum information flows, we see that the flux to the target region is
significantly higher for the RSA states:

0. .
Ji 05 35 (@ = 0,y)dy
S0 35N @ = 0,)dy
0.05 .
[y ds (@ = 0,y)dy

S 35 (@ = 0, y)dy

~~ 1.56,

~ 1.42.

Here, j5T denotes the flow corresponding to the maximum eigenstate of F, and
g /5 denotes the flow corresponding to the maximum eigenstate of FRS4 for
By, ={yly > 0.05 m}/B, = {y|y <0.05 m}.

5In the experiment from Ch. EL TM,,,, and TE,, ,, modes would also be possible for m > 0
at this frequency. Consequently, one could not use the theoretical framework from Sec. 2.5
to find the optimal wavefront. To implement the methods we present in this section experi-
mentally, one would have to either adapt the theory or decrease the height of the waveguide
to maintain a quasi-2D system.
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Figure 3.7.: Simulated Fisher information flow (blue arrows) and source term
(green/pink colors in the background) corresponding to the maximum eigenstate
of the restricted access Fisher information operator F®5* at f = 30.4 GHz. We
use a Hermitian system and estimate the refractive index of the target scatterer.
Since the frequency is higher than for the previous plots, the flow changes on a
smaller length scale. In (a)/(b), we choose the target region (bright red bar) as the
upper/lower half of the waveguide and observe that the Fisher information flow
gets focused in these areas at x = 0 m. The flow/source term around the target
scatterer and in the far field is shown in greater detail in the dark red boxes.
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3.3.2. Controlling the Flow of Information to a Set of Leads

In this section, we use the scattering geometry with two open leads from Fig. |3.1
and choose 6 = ng..;. We constrain our access to the right lead and imagine that
a spy sits at the left lead, eager to collect all Fisher information that comes his
way. When probing the system, we want to reveal as little as possible to the spy
while learning as much as we can about #. To achieve this task, we can use the
relative Fisher information operator from Sec. 2.5.4] i.e.:

-1
Fj; = (Z sz) (Z jS) ;
leL jeJ
where
Qji = (36S;.)" 9685,

and L denotes the set of all leads. The maximum eigenstate of this operator
maximizes the relative flux of Fisher information to a subset J of leads, when we
probe the system from the ith lead. If we label the leads with [ for the left and r
for the right lead, we have

L=Alr},
7={rh

and the relative Fisher information operator simplifies to

Fioyr = (008:) S0, + @081 081,) ((008,,) 948,

where S, denotes the reflection matrix of the right lead and S;, denotes the
transmission matrix from the right to the left lead. Figure shows the Fisher
information flow corresponding to the maximum eigenstate of Fy,;.. We choose
f = 11.8 GHz, which corresponds to 7 open modes, i.e. TEj,, n < 7. Note that
we do not require as many degrees of freedom as in Sec. 3.3.1] We see that the
relative Fisher information operator enables us to design an incoming state that
penetrates the system from the right and transports almost all information back
to where it came from. More concretely, we have

d
—  ~ 9841
O+ D, %,

where ®,./®; denotes the flux of information to the right/left lead, see Eq. (2.53)).
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Fisher Information Flow and Poynting Vector

To conclude this section, we use the maximum eigenstate of Fy,y, to show that
the flow of energy (described by the Poynting vector) and the flow of information
(described by the Fisher information flow) are fundamentally distinct quantities.
For completeness, let us state the definition of the Poynting vector for scalar
classical waves:

i =R{wvet.

Since most of the information returns to the right lead, it seems intuitive that
most of the energy should follow a similar path. However, the Poynting vector,
which we plot in Fig. has an entirely different structure than the Fisher
information flow from Fig. while most of the information flows back to our
lead, a large part of the energy passes through the system and reaches the spy. We
conclude that, while the spy knows that we probe the system, he can only deduce
very little about the value of 6 from his measurements. This comparison shows
that the Fisher information flow is a new quantity that enables us to understand
electromagnetic waves on a more fundamental level.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

othek,

o
|
led:;

3ibl
Your know

49 3.3. SPATTIAL CONTROL OF INFORMATION

SRR

ll///za————o%

Attt 1 f p i =
77

, » AN =
o : ‘ N = T
vvvvv Cant1tiiies
...... z N AR 22 //////%
- ‘ “ N
b o5 777
3 .

y [m]

0.600 0575 0.550 0.525 0.500 0.475 0.450 0.425
X [m]

(a) Fisher information flow

BRSSO

O sttty

S e
= S

0.600 0575 0.550 0.525 0.500 0.475 0.450 0.425
X [m]

(b) Poynting vector

Figure 3.8.: Simulated Fisher information flow (blue arrows in (a)) and Poynting
vector (orchid arrows in (b)) for the maximum eigenstate of the relative Fisher
information operator Fy,. at f = 11.8 GHz. We use the scattering system with
two open leads from Fig. and estimate the target scatterer’s refractive index.
Note that we probe the system from the right side. While most of the wave’s
energy is transmitted to the spy lead in the left (b), almost no information reaches
the latter (a).
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4. Experiment

In this chapter, we discuss the measurements of the Fisher information flow, which
were performed at Université Cote d’Azur in the course of this work. We present
the experimental setup, explain the data processing, and discuss the measurement
results. The experimental /data processing techniques that we use are inspired by
Ref. . Although the derivatives with respect to space and the parameter of in-
terest in the expression for the Fisher information flow complicate the experiment
(see Sec. [4.4]), we achieve remarkable precision in our measurements. Our results
show that the Fisher information flow is accessible in practical applications, which
makes it an even more powerful tool.

4.1. Experimental Setup

To give the reader as much insight as possible, we show the experimental setup
from three different perspectives: Fig.[4.1]shows a photo, Fig. [£.2]shows a sketch of
the top view with and without the top plate, and Fig. compares the cross sec-
tion in the z-z-plane for the two types of measurements we perform (i.e., far-field
and near-field measurement). In the following, we gradually discuss all compo-
nents of the setup and reference the figures that show them the most clearly.

We work with a rectangular aluminum waveguide of length 1.1 m (z-direction)
and inner width 0.1 m (y-direction). While we close the system on the left at
x = 0.553 m with a piece of aluminum, we place absorbing material on the right
to imitate an infinitely long waveguide, see Fig. [4.2l Due to our choice of one of
the probe antennas, which we discuss in more detail later in the text, the system
is slightly higher on the left (i.e., 11 mm for 0.553 m > z > 0.453 m) than on the
right (i.e., 8 mm for x < 0.453 m), see Fig. [4.3|

Within the waveguide, we place 1 cuboid aluminum and 25 cylindrical Teflon
scatterers, see Fig. for their arrangement. We call the metallic scatterer
“target scatterer” since we choose the parameter of interest 6 as either its x-
position (6 = Tgeat) or its y-position (6 = ysat). Note that this scatterer is higher
(11 mm) than the Teflon scatterers (8 mm), see Fig.[1.3] To create a perturbation
of 0, we shift the target scatterer in positive x- or y-direction for 4.5 mm. This
shift can be executed precisely since we fix the scatterer’s position with a pin in
the bottom plate of the waveguide.

To determine the microwave field for a given incoming state, we measure the
transmission from port 2 to port 1 of a vector network analyzer (VNA). We denote

o1
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Figure 4.1.: Photo of the experimental setup with the top plate. Here, the far-field
probe antenna is connected to the VNA. Before performing a measurement, we
close the near field measurement area with a metal plate, which we press against
the waveguide using weights. While the Teflon scatterers are white, we depict
them in orange in Figs. and for better visibility.

the transmission spectra as Sia(f), where f is the frequencyEl Port 1 of the VNA
is connected to a probe antenna, which we position using three step motors, see
Fig. 4.1} Port 2 is connected to four injection antennas that reach 3 mm into
the system via a power splitter and four 1QQ modulators, see Figs. and
Both probe and injection antennas couple weakly to the system. Note that the
calibration points of the VNA are at the end of the analyzer cables, i.e., the
cables connecting the VNA and the power splitter/probe antenna (see Fig. {4.1)).
We control the incoming state by choosing the relative phase (0 to 27) and the
attenuation (0 to 40 dB) of the IQ modulators. The corresponding field can be
measured in two different regions:

e About 20 cm away from the scattering region (i.e., 0 m < x < 0.025 m),
we can probe the field via 6 x 19 evenly spaced holes in the top plate of
the waveguide (distance of 5 mm from center to center, see Fig. . We
use a probe antenna that reaches 4 mm into the waveguide. The latter is
guided into the measurement holes with the help of two pins (not shown in

I'Note that the transmission is a dimensionless quantity since it is always determined relative
to what we send into the system at the calibration point.
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4.1. EXPERIMENTAL SETUP

the figures). We refer to the transmission spectra from this region as “far
field” since we measure them far away from the scattering region. Here, all
evanescent modes have died out, and the wave propagates freely. Figure
shows the cross section of the experimental setup during a far-field scan.

In the left-most part of the scattering region (i.e., z > 0.453 m), the top
plate does not cover the waveguide in an area of 10 x 10 cm?, see Figs.
and Here, we measure the so-called “near field” using a 1 mm antenna
that is integrated into a metal plate. While performing a measurement, we
press this plate against the waveguide, thus closing the latter. As opposed
to the far field, we can measure the near field at arbitrarily close points.
The only limiting factor is the precision of the step motors that position
the probe antenna. Figure shows the cross section of the experimental
setup during a near-field scan.

During the far-field measurement, we close the near-field measurement area with
an aluminum plate, see Fig. [£.3al Due to surface irregularities, some small slits
can occur between the plate and the waveguide. We do not need to cover the
holes for the far-field measurement since they are small (radius 2 mm), and the
flux escaping through them is negligible.
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(b) Top view of the waveguide without top plate

Figure 4.2.: Top view of the waveguide with (a) and without (b) top plate. When
the experiment runs, the top plate is fixed to the waveguide. Using Teflon (orange
circles) and metallic (dark gray square) scatterers, we create a complex scattering
environment on the left side. The system is closed on the left and we place an
absorber on the right to imitate an infinitely long waveguide. We inject microwaves
into the system via four weakly coupled injection antennas (depicted using the
symbol x). The latter are connected to port 2 of a VNA via I() modulators and
a power splitter. The probe antenna, which is connected to port 1 of the VNA, is
sketched as a slightly larger x and can be positioned using three step motors (not
shown).
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Figure 4.3.: Cross section of the experimental setup in the xz-z-plane during a far-
field (a) and a near-field measurement (b). We choose the aspect ratio of the axes
scaling as 1:4 (z-scale:z-scale) for better visibility. To imitate an infinitely long
system, we place an absorber on the right side. Using Teflon (orange rectangles,
8 mm high) and metallic (dark gray rectangle, 11 mm high) scatterers, we create
a complex scattering environment on the left side. We connect the probe antenna
to port 1 of the VNA and attach it to three step motors (not shown), which we
use to position it. To port 2, we connect the four injection antennas via a power
splitter and four IQQ modulators. Note that the waveguide is higher in the near
field measurement area (11 mm) than in the other regions (8 mm).
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4.1.1. Choice of the Frequency Range

In Sec. , we showed that only TE,,, and TM,,, modes exist in rectangular
waveguides. We further demonstrated that each TE/TM mode has a cut-off fre-
quency, below which it only exists on length scales that are short compared to the
corresponding 1/ {k,}. This behavior is useful when choosing a frequency range
for our experiment, since we have the following two constraints:

e We cannot measure the z-dependence of the microwave field, since we cannot
vary the probe antenna’s z-position within the system.
= We want to work at frequencies where m = 0.

e With the four injection antennas of the experimental setup, we can control

up to four complex degrees of freedom when designing the state that we
send into the system.

= We want to work at frequencies where n = 4.

Following Eq. (2.41)), we find that one should choose f € [6 GHz, 7.5 GHz| to
satisfy those constraints since:

 Weutot(0,4) 4w - c[m/s]

cut-o ’ 4 - - ~ 0. H )
Jeurorr(0, 4) o om0 00 G
wcut-off(()? 5) o - c[m/s]
cut-off(0,0) = = ~ 7.5 GHz, 4.1
Jeut-o(0, 5) o o1 - 0.1/m] ‘ (4.1)
Weut-oft (1, 0) 17 - c[m/s]
cut-o: 170 = = ~ 18.7 GH ,
Jeuwon(10) o 27 - 0.008[m] ‘

where we set the waveguide width d, = 10 cm, the waveguide height d, = 8 mm,
and used the refractive index of air \/ex = 1. In the experiment, we measure the
transmission spectra Sio(f) for 2501 equally spaced frequency points in the inter-
val f € [6 GHz, 7.5 GHz|, ensuring that TE,,n < 4 are the only propagating
modes]

2Remember that TM,,,» modes only exist for m > 0 and n > 0.
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4.2. Data Processing

4.2.1. Smoothing over Frequency

To reduce the measurement noise, we apply a triangular filter to the transmission
spectra for both near- and far-field measurements. We choose a filter function of
width 7:

mootne: 1
Siyeothed(ng) = 6 (S12(ny — 3) + Sta(ny + 3))

2
3
+ 16 (S12(nf — 1) + Sia(ny + 1))

4
+ 1—6512(nf),

where ny € {3,4,5,...,2497} is the frequency index. Figure shows the real
part of a spectrum before and after the smoothing procedure. We measured the
spectrum in the hole at position (z = 1.5 cm,y = 5 cm) using the far-field probe
antenna and the following IQM settings:

IQM, : {attenuation: 0 dB, phase: 0},
IQM, 4, : {attenuation: 40 dB, phase: 0},

i.e., the Oth injection antenna is fully illuminated, while all other injection antennas
are on maximal attenuation.
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Figure 4.4.: Real part of a transmission spectrum Sia(f) = Si2(ns) before (blue)
and after (orange) the smoothing procedure. We show only a small range of
frequency indices.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

59 4.2. DATA PROCESSING

4.2.2. Determining c™ and c°%

In the far field, the wave propagates freely, and we can determine the ¢™ and c°%*

from Eq. (2.47) at a fixed frequency and for given 1Q modulator settings using
the following workflow:

Procedure 1.

1. Measure the far-field spectra on a grid of n, x n, positions. We discard all
the frequencies from these spectra except one, such that we obtain a complex
scalar function of 7 € {1,2,....,n,} and j € {1,2, ...,ny}ﬁ

2. We can view this 2D function as n, 1D functions of j € {1,2,...,n,}. For
each of these 1D functions, we perform a fit to

zmeas (42)

Z \/—Xn :

by varying the real and the imaginary part of the ¢2™®*. In Eq. (4.2)), 2
denotes the ¢th z-coordinate at which we measured and

7,/neas

c

1
i,meas
ci,meas — 2
i,meas
C3
i,meas
¢y

is the corresponding transverse mode composition. Note that we need to
measure the complex field at n, > 4 y-positions to fix all four of the complex
parameters in c>meas,

3. ¢ and ¢®" i.e., the mode compositions of the incoming and outgoing wave-
front, are related to chmeas yia:

chmeas _ Clnelk’ x? + Coute ikfx

n n ?

This can be rewritten as a linear regression problem, i.e., find the vector a,
such that

2Ny

> lle)vh, — wh|[* = min,
j=1

3Note that we have one open lead (M = 1), and, unlike in Sec. the index 7 does not denote
the lead.
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where we sum until 2n, rather than until n, since we need to fix the real
and the imaginary part. We identify:

12
_ | S
Qe R {couty |
S{a"
W {%{cﬁ‘;m} it j < n,
oS ity >,
(/[ R {eik;ng}
g {eikin )
R {efikﬁxj}
—G {ekin )
S {eikng_nx}
o {eikﬁxj,nm}
S {efikgng,nz}

8% {efikflz‘j,nz }

if j < ng

if j > n,

\

Note that we perform the linear regression for each of the modes n €
{1,2,3,4}. We need at least four equations to fix all parameters of a,.
Since the number of equations is 2n,, we find that n, > 2.

In practice, we measure at all n, X n, = 6 x 19 possible positions in the far field
to reduce the measurement noise. For the linear regression, we use the scikit-learn
library .

Figure shows the result of such a workflow for f = 6.45 GHz and the fol-
lowing IQM settings:

IQM,, : {attenuation: 0 dB, phase: 0},
IQM, 4, : {attenuation: 40 dB, phase: 0},

i.e., the Oth injection antenna is fully illuminated, while the remaining antennas
are on maximal attenuation. We depict the real part of the measured transmission
and the far-field wavefunction from Eq. , where we plug in the ¢™ and c°%
we obtain using Proc. [I] Since the latter agree well, we conclude that the wave
propagates freely in the far field and we can characterize it with the ¢™ and c¢°"
from Proc. [
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(a) Measured transmission (b) Wavefunction

Figure 4.5.: Comparison of the measured transmission at f = 6.45 GHz (a) and the
wavefunction from Eq. , where we plug in the ¢™ and c®"* from Proc. [1] (b).
We illuminate the Oth injection antenna fully while attenuating the remaining
antennas maximally and show the real part of the transmission/wavefunction.
Note that we normalized ¢ — ¢™/||c™|| and ¢ — ¢°*/||c™||, which explains
the different scales of the plots.
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4.2.3. Scattering Matrix and Experimental Loss

Since we can extract ¢™ and ¢®" from a far-field measurement, we can also deter-
mine the scattering matrix S, which relates them according to Eq. ﬁ To find
the latter, we require four linearly independent ¢™ and the corresponding c®**. We
obtain these vector pairs by choosing four inherently different IQM settings:

IQM, : {attenuation: 0 dB, phase: 0},
IQM,_; : {attenuation: 40 dB, phase: 0},
i€{1,2,3,4},

i.e., we fully illuminate one injection antenna after another, always maximally
attenuating the remaining antennas. Indeed, we find that the ¢™ we obtain this
way are linearly independent:

1 B R .
—————|det | ety iy by ey ||~ 0.86,
I L lleteu, IQ‘MO IQ‘Ml IQ‘MQ IQ‘VM ,

where we used the scattering geometry shown in Fig. and CiréMz denotes the
incoming state in mode basis when the ith injection antenna is illuminated. These
vectors thus form a basis, which we call IQM basis. Consequently, we can obtain
the scattering matrix by solving the following equation system for S:

in in in in
S |ciom, Ciom, Ciom, Ciom,

Sll 514

Il
O
')
z
(=}
Q
')
E
Q
O
2
M
D
')
=
w

841 844 ‘ ‘ ‘ ‘

out out out out
= | %iQMm, CiQm, CiQMm, CiQm,

We show the result of the scattering matrix measurement for the geometry from
Fig.at f=16.45 GHz in Fig., where we depict both |S| and |STS‘. While S
should be symmetric according to the Lorentz reciprocity theorem (see Ref. ),
we observe a slight asymmetry due to the measurement noise. Furthermore, we
see that the scattering matrix is not unitary. This can be explained by a weak
global loss within the waveguide, which arises due to the skin effectEl

4In the experiment, we have one open lead, and thus M = 1.

SThere are also local losses in the setup since some of the flux escapes through the holes in
the top plate and the slits that occur when the near-field measurement area is not perfectly
closed. Moreover, the probe antenna absorbs some of the radiation, which also leads to local
losses. However, the contribution of these effects is small, and we neglect it in our discussion.
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The nth diagonal element of !STS| constitutes a measure of the total intensity
that returns to the asymptotic region if the nth mode is injected into the sys-
tem. Consequently, we refer to this quantity as “mode attenuation coefficient”
in the following. In Fig. [4.6D] we observe that the latter decreases for higher n,
which means that higher modes are more strongly affected by the global loss. We

nm

can understand this qualitatively by remembering that for higher modes k, = */
increases and thus k, = |/k? — k2 decreases. Consequently, the angle of propaga-

tion with respect to the z-axis, i.e., a = arctan (k—y), increases, and high modes

“bounce” up and down more often. Therefore, they travel a longer distance within
the system and are more prone to absorption. Note that this discussion is only
valid in regions where the wave propagates freely (i.e., in the far field).

0.6 0.6
0.5 0.5
04 0.4

0.3
0.3

0.2
0.2

0.1
0.1

(a) S| (b) [StS|

Figure 4.6.: |S| (a) and |S'S| (b) in mode basis, where we measured S at f =
6.45 GHz for the scattering geometry of Fig. [4.2] The ticks on the left and at the
bottom show the mode number n (see Eq. (2.47)). While the colors indicate how
large the matrix elements are, the exact values are denoted in each of the cells.

4.2.4. Tuning the Incoming State

Once we know the IQM basis, we can inject an arbitrary state ¢ into the waveg-
uide using the superposition principle. To describe this procedure, we introduce
the transformation matrix from IQM to mode basis:

_ in in in in
Trodec1qm = | CToMm, €M, C1QM, CTom, | - (4.3)

Consider an easy example to motivate this definition: say, we fully illuminate
the Oth and the 3rd IQ modulator with a relative phase of 7. In IQM basis this
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corresponds to

O O =

In the mode basis, this corresponds to

im ,in

in
Ciom, T € CiQu,;

which can be written as

1
0
Tmode(—IQM 0

e17T

The transformation from mode to IQM basis is then just the inverse:

_ -1
TIQM(—mode - TmodeeIQM'

Therefore, we can obtain the IQM settings corresponding to the desired input
state ¢™ using the following procedure:

Procedure 2.

1. Perform the matrix multiplication

claM

= TIQM<—m0decin'

2. Rescale ¢c'® such that one of the vector’s entries has an absolute value of
1, ensuring that one injection antenna is fully illuminated. This practice
reduces noise effects since it leads to the highest possible transmission.

QM

3. Convert the complex numbers in each entry of c into an attenuation in

dB
min (40, —201log, (’CIQM ))

n

and a phase in radian
arg (CLQM) )

Fig.[4.7shows the result of such a procedure when aiming to inject the maximum
eigenstate of the Fisher information operator for 6§ = x4, and f = 6.45 GHz
into the experimental setup from Fig. We compare the mode composition
and the transmission of the desired and the measured incoming state. While
the mode compositions show some deviations due to the measurement noise, the
transmissions have the same structure, and we conclude that we can use Proc.
to inject a desired wavefront into the waveguide.
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Figure 4.7.: Wavefront engineering, i.e., the injection of a desired incoming state.
We used the setup from Fig. [£.2] chose f = 6.45 GHz, and aimed to inject the
maximum eigenstate of the Fisher information operator for § = x..¢. (a) compares
the real and imaginary part of the desired incoming state (¢'*) and the incoming
state we measure when using the IQM settings found in Proc. [2] (¢®...). The
ticks on the left show the mode number n (see Eq. (2.47)). While the colors
indicate how large the vector elements are, the exact values are denoted in each
of the cells. (b) shows the desired transmission, which we obtain by superposing
the IQM basis transmissions numerically with the coefficients TIQMHnOdecin. (c)
shows the transmission we measured in situ when using the IQM settings from
Proc. 2] Note that the scale of this transmission is larger due to the rescaling in

step 2 of Proc. 2}
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4.3. Workflow

Now that we have introduced all the necessary experimental /data processing tech-
niques, let us discuss the workflow for measuring the Fisher information flow in
the near and far field using the setup from Fig. [4.2]

Following Sec. we determine the scattering matrix S from a far-field mea-
surement. Then, we perturb the parameter of interest # by shifting the target
scatterer in either x- or y-direction for 4.5 mm and measure the perturbed S ma-
trices, i.e., Siéft, where the superscript denotes the type of the shift. Note that
this corresponds to a non-infinitesimal perturbation of 8. We can execute the shift
with inaccuracies of less than 0.1 mm by fixing the target scatterer’s position with
a pin in the bottom plate of the waveguide.

From these scattering matrices, we compute the finite-difference Fisher infor-

mation operator in mode basis (see Eq. (2.52)):

Fo/v = (D18 Drvs, (4.4)
where
Silt, )
’DI/yS _ ( pert
4.5 mm

As discussed in Sec. the properties of Fisher information do not change when
replacing the derivatives with respect to # with finite differences. Therefore, we
sloppily refer to F*/¥ as Fisher information operator in the following.

Since we always measure the transmission spectra at all 2501 frequency points,
we could compute a Fisher information operator for each frequency. We choose
f =16.45 GHz and f = 6.9 GHz such that we have four Fisher information opera-
tors, one for each combination of perturbation and frequency. Following Proc.
we can compute the IQM settings corresponding to the four eigenstates of each of
those four operators. We aim to measure the (finite-difference) Fisher information

flow for these states, i.e. (see Eq. (2.24))):

j* = S Dy VD e} (4.5)
where
z/
Dm/y’g/J _ @Z)peft - ¢
4.5 mm ’

and wgéﬁ /1 is the measured transmission in the perturbed/unperturbed system.
We inject 20 states into the unperturbed system (4 eigenstates of F* and FY at
both frequencies and 4 IQM basis states) and 12 states into each perturbed system
(4 eigenstates of F* or FY at both frequencies and 4 IQM basis states) and scan
the near and far field. Note that we measure the transmission for the linearly
independent IQM basis states since we can construct any other wavefunction by
superposing them numerically. The sequence of measurements is summed up in

the following:
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Procedure 3.

1. Measure the field corresponding to the IQM basis states in the far field
for the unperturbed and the two perturbed systems. Calculate the Fisher
information operators from those measurements.

2. Change the probe antenna and scan the near field for all three systems when
injecting the Fisher information eigenstates and the IQM basis eigenstates.

3. Change the probe antenna again and do a far-field scan for all three systems
when injecting the Fisher information eigenstates.

4. Repeat step 1. Comparing the Fisher information operators from this step
with those from step 1 enables us to assess the measurement uncertainties

(see Sec. [4.4).

Note that it would have been better to interchange the order of steps 2 and
3 since we would not have had to exchange the probe antenna before measuring
the flows in the far fieldff] Since we achieved a good precision in the far-field
flow measurement nonetheless (see Sec. and due to temporal constraints
(Proc. |3| takes several weeks), we did not repeat the procedure to see whether we
could improve our results further.

6Unfortunately, we only had the idea of measuring the Fisher information flow in the far field
while the near-field measurement was already running.
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4.4. Measurement Uncertainties

Before we present the results from Proc. 3], let us discuss some sources of uncertain-
ties in the experiment. Two main factors limit the precision of the measurements:

Uncertainties from the Setup Apart from the electronic noise in the VNA,
we need to consider inaccuracies in the probe antenna placement. For near-field
measurements, they are of order O(50 pum) in both z- and y-direction. During a
far-field measurement, the probe antenna is guided into a hole in the top plate
of the waveguide by two pins. Nonetheless, the antenna is not always perfectly
positioned in the middle of the measurement hole, which influences the measured
transmission spectrum.

Uncertainties from System Changes In the course of the workflow described
in Proc. 3] the experimental setup is modified several times. The manipulations
of the system include:

e Opening and closing the near-field measurement area to shift the target scat-
terer. The plate closing the near-field measurement area cannot be placed
the same every time. Consequently, the (tiny) slits between the plate and the
waveguide are not always the same, which influences the local absorption.

e Changing the probe antenna. As a result, the cables connecting the VNA
and the probe antenna are arranged differently, which leads to different
relative phases in the transmission spectra.

Furthermore, the measurements described in Proc. 3| take several weeks. During
this time, the ambient temperature increased since the season changed from spring
to summer. The higher temperature led to a higher absorption due to the Skin
effect and to an expansion of the systemﬂ adding further uncertainties to the
measurement process.

To get a feeling for the impact of the noise and the system changes, we remea-
sured the far-field transmissions corresponding to the IQM basis states in step
4 of Proc. 3] and compared them to the data from step 1, see Fig. 4.8 While
we observe differences in both the transmission spectra and the Fisher informa-
tion eigenstates, the general structure of the data remains similar. Interestingly,
the deviations of the large eigenvalues are smaller, which suggests that the cor-
responding Fisher information flows are less prone to measurement uncertainties.

"Note that the definition of the transverse modes depends on the side length of the system, see

Eq. .
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Figure 4.8.: Comparison of the far-field IQM basis state measurement in step 1
and step 4 of Proc.[3] Several weeks passed between the two measurements, in the
course of which we opened and closed the near-field measurement area multiple
times and changed the probe antenna twice. (a) compares the non-smoothed
spectra we measured at [z = 1.5 cm,y = 5 cm] when injecting the Oth IQM basis
state. We only show a small range of frequencies around f = 6.45 GHz. (b)/(c)
depicts the eigenvectors and eigenvalues of the Fisher information operator FY at
f = 6.45 GHz, which we computed from the measurements in step 1/4 of Proc.
Each column corresponds to the element-wise absolute value of an eigenvector in
mode basis. The ticks on the left show the mode number n (see Eq. (2.47))). While
the colors indicate how large the vector elements are, the exact values are denoted
in each of the cells. The eigenvalues that correspond to the eigenstates are shown
under the columns.
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4.5. Results

To conclude this chapter, we present the Fisher information flow we observed
experimentally in the far and near field. While the far-field measurements show
that the flow is a local representation of Fisher information, the near-field data
demonstrates how waves extract information and transport it through a complex
scattering environment. For conciseness, we only present the measurements at
f = 6.45 GHz; the measurements at f = 6.9 GHz are shown in the appendix.

4.5.1. Far-Field Fisher Information Flow

The measurement of the Fisher information flow in the far field is particularly
interesting since we want to check whether the surface integral of the flow in the
asymptotic region is equal to the eigenvalue of the injected state. This relation,
which we derived in Sec. [2.5.3] is one of the main results of our work since it
implies that the flow constitutes a local measure for Fisher information.

In the far field, we can only measure at positions that are 5 mm apart in z- and
y-direction. On such a coarse grid, the direct computation of the flow from the
measurement data would be error-prone since the spatial gradient could not be
evaluated precisely. Moreover, the corresponding surface integral would be inexact
due to the small number of data points. To avoid these problems, we calculate
the ¢™ and c® corresponding to the transmission spectra using Proc. Then,
we use the wavefunction from Eq. to evaluate the Fisher information flow
and its surface integral. For a comparison of the measured transmission and the
corresponding wavefunction, see Fig. [£.5]

The far-field Fisher information flows when injecting the eigenstates of F* (for
0 = Tgear) and FY (for 0 = ysear) at f = 6.45 GHz are shown in Figs. and
[4.10 We note that the scale of the vector plots decreases from the largest to the
smallest eigenstate. This implies that the outgoing wavefronts corresponding to
the larger eigenvalues carry more Fisher information.

In Fig. [4.11] we compare the surface integral of these flows to the correspond-
ing eigenvalues of the Fisher information operator. To evaluate the integrals,
we choose an integration path that encompasses the entire scattering region and
passes through the waveguide parallel to the y-axis at © = 0 m. Despite the mea-
surement uncertainties described in Sec. [£.4] we only observe relative deviations
of O(5%) between the maximal eigenvalues and the corresponding fluxes. For the
smaller eigenstates, the discrepancies grow as the signal-to-noise ratio decreases.

The measurements at f = 6.9 GHz exhibit similar behavior, see Sec. B of the
appendix.
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Figure 4.9.: Fisher information flows for § = x4, in the far-field measurement
area when injecting the four eigenstates of F* at 6.45 GHz. We arrange the flows
according to the corresponding eigenvalues in decreasing order from left to right.
The relative scales of the vector plots are denoted above the figures.
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Figure 4.10.: Fisher information flows for # = ys. in the far-field measurement
area when injecting the four eigenstates of F¥ at 6.45 GHz. We arrange the flows
according to the corresponding eigenvalues in decreasing order from left to right.
The relative scales of the vector plots are denoted above the figures.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

72
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(a)

Figure 4.11.: Comparison of the fluxes [

(b)

¥z = 0,y) - (—&,)dy to the eigen-

values for 6 = zg . (a) and 0 = yseay (b) at f = 6.45 GHz. The dotted lines
indicate the fluxes, and the solid lines indicate the eigenvalues. Each eigenstate
is depicted using a different color: the largest eigenstate is shown in blue, the
second-largest in yellow, the third-largest in red, and the smallest in green. Note
that we show the Fisher information on a logarithmic x-axis. If there were no
experimental uncertainties, the fluxes would be equal to the eigenvalues.
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4.5.2. Near-Field Fisher Information Flow

The measurement of the Fisher information flow in the near field reveals where
information originates and how it behaves when transported through a complex
scattering system. Since the waves do not propagate freely in the vicinity of
scatterers, we cannot perform a fit using Eq. as we did for the far-field
measurements. However, the near-field probe antenna allows us to measure the
transmission spectra at arbitrarily close positions, enabling us to approximate the
spatial derivatives in the expression for the Fisher information ﬂowEl Therefore,
we can compute the latter directly from the measured data. We choose to measure
the spectra on a grid of 39 x 39 evenly spaced points that are 2.5 mm apart in x-
and y-direction and use central finite differences to evaluate the spatial gradients.
At the edges, we use forward/backward finite differences.

The near-field Fisher information flows when injecting the eigenstates of F* (for
0 = Zgear) and FY (for 0 = ygeay) at f = 6.45 GHz are shown in Figs. and
4.13al As predicted by the theory and the numerical simulations, we observe that
information is created in regions where the refractive index changes with 0, i.e.,
on the left and right side of the target scatterer for 6 = 4., and on its top and
bottom side for 6 = yg..e. While the large eigenstates feature a continuous flow
picture, the flows corresponding to the smaller eigenstates are dominated by the
noise. Note that the relative scale of the vector plots does not necessarily decrease
from the largest to the lowest eigenstate since only a fraction of the produced
information escapes the near field and contributes to the eigenvalueﬂ

Figs. [4.12b| and 4.13b] show the flows we obtain at f = 6.45 GHz when solv-
ing the 2D Helmholtz equation in the projection of the experimental scattering
geometry on the z-y plane. Note that we inject the eigenstates of the simulated
rather than of the measured Fisher information operators. To account for the
experimental losses described in Sec. [£.2.3] we add a uniform imaginary part to
the refractive index of the entire system, whose value we fix by comparing the
average mode attenuation coefficient from the experiment and the simulation. We
find:

f =645 GHz :
T <ST Ssim)
I [ sim 3{"2?0(113}:1'6'103] N Tr [ngp exp] ~
. - ; ~ 0.50,

f=6.9 GHz :
T

Tv {(Ssimss

lob exp

4 4

8Note that the enhanced spatial resolution comes at the price of a higher waveguide in the
near-field measurement area, see Fig.

9Remember that the area where the refractive index changes with @ can act both as a source

and a sink.

TIPS

~ 0.61,
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where ngﬂﬂ) denotes the refractive index we add to the entire system. While the

flows corresponding to the maximum eigenstates have the same structure in the
experiment and the simulation, we observe deviations in the flows corresponding
to the smaller eigenstates. This is another indicator of the maximum information
state’s robustness with respect to measurement uncertainties.

It is difficult to compare the surface integrals of the flows to the corresponding
eigenvalues for the near-field measurement since we do not know the relative cou-
pling strength of the two probe antennas. To properly normalize the near-field
wavefunction, we would have to multiply by

1 Cg

Yo
[ Cur

¥,

where ¢ can be extracted from a far-field measurement with the same IQM set-
tings, and Cfy/Cyy is the coupling strength of the far-/near-field probe antenna.
In theory, the coupling strengths could be determined from a reflection spectrum
measurement when placing absorbing material around the probe antennas. How-
ever, we perform the calibration of the VNA at the end of the analyzer cables
rather than at the tip of the probe antennas. Therefore, the absorption and the
reflections in the components connecting the analyzer cable and the antenna lead
to large uncertainties when determining the antenna’s coupling strength.

In Fig. we compare the experimental eigenvalues to the corresponding
fluxes at different z-positions on the right of the target scatterer. Since we do
not know Cgx and Cy¢, we rescale the eigenvalues by a factor a such that the
largest flux at the right-most x-coordinate lies on the largest eigenvalue. We find
a & 3.26 - 1078 for the eigenstates of F* in Fig. and a &~ 3.87-107® for the
eigenstates of F¥ in Fig. [£.14b] This rescaling accounts for the relative antenna
coupling strength and the norm of the incoming state. We observe that the largest
flux does not fluctuate around the corresponding eigenvalue but decreases towards
it. For the smaller fluxes, this effect is hidden by the noise. Due to the short
range of x-values and the drastic decrease of the flux, this phenomenon cannot be
due to the weak global absorption alone. We believe that the surplus of Fisher
information comes from the evanescent modes that arise as the height of the
waveguide changes at x = 0.453 m, see Fig. Further research will be necessary
to confirm this interpretation.

The flows and the corresponding surface integrals at f = 6.9 GHz exhibit a
similar behavior, see Sec. [C| of the appendix.
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Rel. Scale: 1.00E+00 Rel. Scale: 1.00E+00

Rel. Scale: 2.17E-01

Rel. Scale: 4.50E-01

Ao

Srrry

Figure 4.12.: Fisher information flows for 6 = x4.,; in the near-field measurement
area when injecting the four eigenstates of F* at 6.45 GHz. The experimentally
measured /simulated flows are shown in (a)/(b) ordered from the largest (top) until
the smallest (bottom) corresponding eigenvalue. We depict the Teflon scatterers
as orange circles and the metallic target scatterer as a dark gray square. The gray
rectangle around the target scatterer corresponds to the region where we could
not measure since it is too close to the latter in either the unperturbed or the
perturbed system. We denote the relative scales of the vector plots above the
figures and do not show the axes ticks/labels to save space.
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Rel. Scale: 1.00E+00 Rel. Scale: 1.00E+00

W
NRRRR

RO N

R N

Rel. Scale: 5.47E-02 Rel. Scale: 1.46E-03

(a) (b)

Figure 4.13.: Fisher information flows for 6 = y.., in the near-field measurement
area when injecting the four eigenstates of F¥ at 6.45 GHz. The experimentally
measured /simulated flows are shown in (a)/(b) ordered from the largest (top) until
the smallest (bottom) corresponding eigenvalue. We depict the Teflon scatterers
as orange circles and the metallic target scatterer as a dark gray square. The gray
rectangle around the target scatterer corresponds to the region where we could
not measure since it is too close to the latter in either the unperturbed or the
perturbed system. We denote the relative scales of the vector plots above the
figures and do not show the axes ticks/labels to save space.
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Rescaled eigenvalues

e Fluxes
1.0] o .
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£ 0.2
0.0 -2 a 4 . . : .
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(a)
Rescaled eigenvalues
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0 0.8
T © °
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ic 0.2
0 O'é — — i i = P
0.4705 0.4655 0.4605 0.4555
X [m]

(b)

Figure 4.14.: Comparison of the fluxes f00.1 "z, y) - (—é,)dy at different -
positions on the right of the target scatterer to the eigenvalues for = x4, (a) and
0 = Yscar (b) at f = 6.45 GHz. The round markers indicate the measured fluxes,
and the solid lines indicate the eigenvalues. Each Fisher information eigenstate
is depicted using a different color: the largest eigenstate is shown in blue, the
second-largest in yellow, the third-largest in red, and the smallest in green. To
account for the relative antenna coupling strength and the norm of the incoming
state, we rescale the eigenvalues by a factor a such that the largest flux at the
right-most x-coordinate lies on the largest eigenvalue.
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5. Conclusion

Recently, information-theoretical concepts were introduced in the field of scatter-
ing metrology in the form of the Fisher information operator. This novel quantity,
which can be computed solely from far-field measurements, made it possible to
quantify the amount of information that a coherent state can extract from an
arbitrary complex scattering environment. Moreover, it allowed the identification
of the optimal coherent probe state.

In this work, we aimed to understand Fisher information in wave scattering on
a more fundamental level by introducing a means to describe its local behavior:
the Fisher information flow. We discussed the theoretical framework underlying
this quantity and investigated its properties both numerically and experimentally.

First, we derived the Fisher information flow and the corresponding source term
for stationary scalar waves and showed that these quantities satisfy the continuity
equation. We focused on (quasi-)2D slab geometries to prove that the flow is a
local representation of Fisher information. Moreover, we discussed how to control
the structure of the flow by tuning the incoming wavefront.

By performing numerical simulations, we then showed where information orig-
inates and how electromagnetic waves transport it through a complex scattering
environment. We further investigated how global and local loss terms influence
the Fisher information flow, implemented the techniques to control its structure,
and confirmed that it constitutes an entirely new quantity by comparing it to the
Poynting vector. Our numerical analysis validated all theoretical predictions and
showed that the Fisher information flow provides a potent and intuitive tool to
visualize the complex concept of information.

Finally, we measured the Fisher information flow in a microwave experiment,
achieving remarkable precision despite considerable noise effects. Our results show
that this quantity is not only of theoretical interest but also constitutes a funda-
mental feature of electromagnetic waves in practical applications.

All in all, we demonstrated that the Fisher information flow is a valuable com-
plement to the Poynting vector. Since information and energy are equally impor-
tant concepts in our modern-day world, we hope that the impact of the Fisher
information flow will be comparable to the one of the Poynting vector. Future
research might investigate the Fisher information flow for vector-valued waves in
the time-dependent case to reveal even more of its intriguing properties.
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Appendix

A. Square Roots of Operators and POVMs

In this section, we review some concepts of linear algebra, functional analysis,
and quantum mechanics, which we require in Ch. [2| of this work. Our discussion

follows Refs. [23/-26].

Definition. A Hilbert space H is a complete vector space endorsed with an inner
product. Completeness means that every Cauchy sequence in H converges to an
element of H. We use the bra-ket notation and the Riesz representation theorem
to denote elements of the Hilbert space H and its dual space H*: |¢) € H, (¢| =
fs € H*. Consequently, we write the inner product as f4(¢) = (¢, ¢) =: (¢|@/J)E|

Definition. For our purposes, a linear operator (or just operator for short) O is
a linear mapping H — H, i.e.,

Vi) e Ve €eC: O (Zq |¢i>) => O

(2

7

Definition. We call an operator O bounded if

AM >0V [p) € H: (OP|0Y) < M/ {Ylh).

Definition. The adjoint operator O of a bounded operator O is defined via the
relation

VIv),le) € H: (¥]0d) = (O'Y]¢) .

If OF = O, we call the operator Hermitian. If OY = O and the domains of O
and OV are the same, we call the operator self-adjoint. We will not distinguish
between the two terms since we only work with operators that map H — H. Her-
matian operators have real eigenvalues, and the corresponding eigenstates form an
orthonormal basis of H.

Definition. A non-negative operator is a Hermitian operator O that fulfills

Vo) € H: (WlOf) 0.

Keep in mind that the scalar product in mathematics, which we denote as (-,-), is linear in
its first argument, while the scalar product in physics, which we denote as (-|-), is linear in
its second argument.
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Definition. Let O be non-negative operator on a complexr Hilbert space. We call
a Hermitian operator A the square root of O if

A% =0.

Theorem 1. Fvery non-negative operator O on a complex Hilbert space has a
unique non-negative square root A = +/O. See Ref. for a proof.

Definition. The density operator p is a non-negative operator that describes any
quantum mechanical system, including those in a non-pure state. Consider an
ensemble, i.e., a set of pure states |y) that occur with a probability of w(y). We
can describe such a system using the following density operator

p= /dy w(y) |y) (|,

/dy w(y) = 1.

We can use the density operator to calculate the expectation value of other opera-
tors

where

<®:/@w@@mw

:/@/%w@wmwm>

:/@<q/@w@m»@mw
="Tr [pO] )

and it fulfills the normalization condition
Telp) = [ ab (8] [ dy wiv) o) w10
— [y uwtw) [ db ) ol

/dyw (yly)
/dyw
1

)

where we used an orthonormal basis {|b)} of H in both calculations.
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87 B. FAR-FIELD FISHER INFORMATION FLOW AT 6.9 GHZ

Definition. One can describe a measurement of a quantum mechanical system by
choosing a positive operator-valued measure (POVM), i.e., a set of non-negative
operators {Ilx} that sum up to the identity operator:

/HXdX =1.

The Born rule gives the probability of observing a measurement outcome X, i.e.,
p(X) = Tr (L)

A common and simple choice of a POVM is llx = |X) (X|, where |X) is the
quantum state that corresponds to the measurement outcome X.

B. Far-Field Fisher Information Flow at 6.9 GHz

In this section, we present the far-field measurement of the Fisher information
flow at f = 6.9 GHz. Figures and show the flows corresponding to the
eigenstates of F* (for 6 = x4a) and FY (for 0 = ygeat). As for the measurement
at f = 6.45 GHz, we see that the scale of the vector plots decreases from the
largest to the smallest eigenstate. This confirms that the outgoing wavefronts cor-
responding to the larger eigenvalues carry more Fisher information. Figure
compares the surface integral of the flows to the eigenvalues of the Fisher informa-
tion operator. We observe an even better agreement than at f = 6.45 GHz: the
relative deviations are of O(2%) for the maximum eigenstates. For the smaller
eigenstates, the discrepancies increase due to the smaller signal-to-noise ratio.

Rel. Scale: Rel. Scale: Rel. Scale: Rel. Scale:
1.00E+00 2.24E-01 1.76E-02 1.56E-02

_0_10

_0_10

-0.08

- -0.06 -0.06

0.06 0.06
SRR y [m] y [m] ylm y [m]
. 0.04 0.04 -0.04 - -0.04
~—-0.02 0.02 - -0.02 --0.02
0.00 e 0.00 0.00 s 0.00
0.025 0.000 0.025 0.000 0.025 0.000 0.025 0.000
X [m] X [m] X [m] X [m]

Figure B.1.: Fisher information flows for 8 = x4 in the far-field measurement
area when injecting the four eigenstates of F* at 6.9 GHz. We arrange the flows
according to the corresponding eigenvalues in decreasing order from left to right.
The relative scales of the vector plots are denoted above the figures.
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Rel. Scale: Rel. Scale: Rel. Scale: Rel. Scale:
1.00E+00 7.37E-02 4.78E-02 8.16E-03

0.025 0.000 0.025 0.000 0.025 0.000 0.025 0.000
X [m] X [m] X [m] x [m]

Figure B.2.: Fisher information flows for # = 9. in the far-field measurement
area when injecting the four eigenstates of F¥ at 6.9 GHz. We arrange the flows
according to the corresponding eigenvalues in decreasing order from left to right.
The relative scales of the vector plots are denoted above the figures.

—— Eigenvalues of F* —— Eigenvalues of F¥
————— Fluxes ----- Fluxes
102 103 104 102 103 104
Fisher information [#] Fisher information [#]
(a) (b)

0 Y3/ (z = 0,y) - (—8,)dy to the eigen-
values for 6 = Tgea (a) and 0 = ygear (b) at f = 6.9 GHz. The dotted lines indicate
the fluxes, and the solid lines indicate the eigenvalues. Each eigenstate is depicted
using a different color: the largest eigenstate is shown in blue, the second-largest
in yellow, the third-largest in red, and the smallest in green. Note that we show
the Fisher information on a logarithmic x-axis. If there were no experimental
uncertainties, the fluxes would be equal to the eigenvalues.

Figure B.3.: Comparison of the fluxes [ .
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89 C. NEAR-FIELD FISHER INFORMATION FLOW AT 6.9 GHZ

C. Near-Field Fisher Information Flow at 6.9 GHz

In this section, we present the near-field measurement of the Fisher information
flow at f = 6.9 GHz. Figures [C.4a] and [C.5a] show the measured flows when
injecting the eigenstates of F* (for 6 = xga) and FY (for 6 = z4caq) in the near-field
measurement area. The corresponding simulated flows are depicted in Figs.
and As for the measurement at f = 6.45 GHz, we observe that the highest
eigenstate features a continuous flow structure that is similar to the simulation.
The smaller eigenstates, on the other hand, produce a noisy flow, which deviates
from the numerical data.

In Fig. we compare the experimental eigenvalues to the corresponding fluxes
at different z-positions on the right of the target scatterer. Since we do not know
the antenna coupling strengths, we rescale the eigenvalues by a factor a such that
the largest flux at the right-most x-coordinate lies on the largest eigenvalue. We
find o =~ 1.12 - 1077 for the eigenstates of F* in Fig. and a =~ 1.90 - 1077
for the eigenstates of F¥ in Fig. [C.6D] In addition to the decrease of the largest
flux towards its eigenvalue, which we already saw at f = 6.45 GHz, we observe
a bump in its curve, which could be a resonance effect due to the change of the
waveguide height at x = 0.453 m.
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Figure C.4.: Fisher information flows for 6 = wxy.,; in the near-field measurement
area when injecting the four eigenstates of F* at 6.9 GHz. The experimentally
measured /simulated flows are shown in (a)/(b) ordered from the largest (top) until
the smallest (bottom) corresponding eigenvalue. We depict the Teflon scatterers
as orange circles and the metallic target scatterer as a dark gray square. The gray
rectangle around the target scatterer corresponds to the region where we could
not measure since it is too close to the latter in either the unperturbed or the
perturbed system. We denote the relative scales of the vector plots above the
figures and do not show the axes ticks/labels to save space.
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Rel. Scale: 1.00E+00 Rel. Scale: 1.00E+00

Rel. Scale: 3.04E-01

Rel. Scale: 1.12E-01

Rel. Scale: 2.63E-03

Figure C.5.: Fisher information flows for # = y...t in the near-field measurement
area when injecting the four eigenstates of F¥ at 6.9 GHz. The experimentally
measured /simulated flows are shown in (a)/(b) ordered from the largest (top) until
the smallest (bottom) corresponding eigenvalue. We depict the Teflon scatterers
as orange circles, and the metallic target scatterer as a dark gray square. The
gray rectangle around the target scatterer corresponds to the region where we
could not measure since it is too close to the latter in either the unperturbed or
the perturbed system. We denote the relative scales of the vector plots above the
figures and do not show the axes ticks/labels to save space.
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Figure C.6.: Comparison of the fluxes f00.1 ¥ (x,y) - (—&,)dy at different a-
positions on the right of the target scatterer to the eigenvalues for 6 = zy., (a)
and 0 = yseas (b) at f = 6.9 GHz. The round markers indicate the measured fluxes,
and the solid lines indicate the eigenvalues. Each Fisher information eigenstate
is depicted using a different color: the largest eigenstate is shown in blue, the
second-largest in yellow, the third-largest in red, and the smallest in green. To
account for the relative antenna coupling strength and the norm of the incoming
state, we rescale the eigenvalues by a factor a such that the largest flux at the
right-most x-coordinate lies on the largest eigenvalue.
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