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Vorwort

Die Erstellung der vorliegenden Masterarbeit erfolgte im Rahmen zweier Forschungspro-
jekte. Die konkrete Auseinandersetzung mit Betongelenken und die Analyse von Experi-
menten ist dem Verkehrsinfrastrukturforschungsprojekt „Betongelenke“ zu verdanken,
das durch

• die Österreichischen Forschungsförderungsgesellschaft (FFG)1 

• die ÖBB Infrastruktur Aktiengesellschaft (ÖBB Infra AG) und

• die Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft (ASFINAG)

beauftragt wurde und durch das Projektteam bestehend aus

• Smart Minerals GmbH,

• Vill Ziviltechniker GmbH, und

• TU Wien, Institut für Mechanik der Werksto˙e und Strukturen,

bearbeitet wird. Die beschriebenen Mehrskalenstrukturanalysen sind insbesondere durch
das FWF-Projekt2 „Bridging the Gap by Means of Multiscale Structural Analyses“
motiviert, im Rahmen dessen der Mehrwert aufgezeigt wird, der sich dadurch ergibt,
moderne Mehrskalenmodelle für Beton in Struktursimulationen von Stahlbetontragwerken
einfießen zu lassen.

Der Text der vorliegenden Masterarbeit (exklusive der Anhänge) bildet einen weit
vorangeschrittenen Entwurf für ein Manuskript, das im Lauf des Frühjahres 2016 in weiter
verbesserter und leicht ergänzter Fassung zur Begutachtung und möglichen Publikation
bei der Zeitschrift „Structural Concrete – Journal of the fb (Fédération internationale
du béton)“, mit den Autoren Johannes Kalliauer3 , Thomas Schlappal3, Markus Vill4,
und Bernard Pichler3 eingereicht werden soll.

Die Anhänge beinhalten die Ergebnisse einer der vorliegenden Masterarbeit vorange-
gangenen Projektarbeit, im Rahmen derer ergänzende numerische Sensitivitätsanalysen
vorgenommen wurden. Sie wurden daher der vorliegenden Arbeit angefügt.

1ProjektNr: 845681 
2ProjektNr: P 281 31-N32 
3Institut für Mechanik der Werksto˙e und Strukturen, Technischen Universität Wien, Karlsplatz

13/202, 1040 Wien, Österreich
4Vill Ziviltechniker GmbH, Hermanngasse 18, 1070 Wien, Österreich



Erweiterte Kurzfassung

Betongelenke erleben aktuell eine Renaissance, weil sich die zahlreichen Ausführungs-
beispiele, die insbesondere in den 50er und 60er Jahren des 20. Jahrhunderts realisiert
wurden, in den vergangenen Jahrzehnten in der Ingenieurpraxis als sehr rotationsfähige,
nichtsdestotrotz aber auch sehr tragkräftige und dauerhafte Konstruktionselemente
bewährt haben. Dieser Befund motiviert Bauingenieure, das Strukturverhalten von Be-
tongelenken mit den aktuell zur Verfügung stehenden experimentellen und theoretischen
Methoden zu untersuchen.

Die vorliegende Arbeit baut auf vorangegangenen Experimenten auf. Letztere sind in
einem weit vorangeschrittenen Entwurf für ein Manuskript zusammengefasst [24], das
demnächst zur Begutachtung und möglichen Publikation bei der Zeitschrift „Experi-
mental Mechanics“ eingereicht werden soll. Darin sind Materialtests beschrieben, die
am verwendeten Beton durchgeführt wurden, um die Würfeldruckfestigkeit und einen
Steifgkeitsmodul zu bestimmen. Weiters wurden Strukturtests an Betongelenken in Form
von zentrischen und exzentrischen Druckversuchen dokumentiert. Die dabei gemessenen
Zusammenhänge zwischen äußerer Belastung der Betongelenke und Verformung in Form
von Stauchungen und Verdrehungen des Gelenkshalses bilden die Grundlage für die
vorliegende Arbeit.

Die vorliegende Arbeit zielt darauf ab, das experimentell beobachtete Verhalten
von bewährten Betongelenken mit Hilfe von nichtlinearen dreidimensionalen Finite Ele-
mente (FE) Simulationen zu reproduzieren. Dazu wird das kommerzielle FE Programm
Atena science (Version 5.1) verwendet, das für die Strukturanalyse von Stahlbetonkon-
struktionen entwickelt worden ist. Weil das elasto-plastische Materialverhalten duktiler
Bewährungsstähle kaum Streuungen unterliegt, kann es sehr zuverlässig simuliert werden.
Beton ist hingegen ein sehr variabler Rezeptwerksto˙, dessen Materialeigenschaften
von der gewählten Rezeptur abhängen. Weil Beton zudem ein chemisch aktiver und
poröser Werksto˙ ist, ist die Entwicklung seiner mechanischen Materialeigenschaften
auch von den Umgebungsbedingungen wie Temperatur und Luftfeuchtigkeit abhängig.
Die Entschlüsselung der Zusammenhänge zwischen Materialeigenschaften von Beton
und seiner Materialrezeptur sowie der Umgebungsbedingungen sind eine aktuelle Her-
ausforderung der wissenschaftlichen Forschung. Daher beinhalten derzeit verfügbare
Materialmodelle für Beton zahlreiche und vielfach rein phänomenologische Materialpa-
rameter. Es ist gängige Praxis, diese Materialparameter innerhalb üblicher Schranken so
zu wählen, dass entsprechende Struktursimulationen experimentell oder baupraktisch
beobachtetes Verhalten wiedergeben. Diese Vorgangsweise birgt die Gefahr, dass die
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Ermittlung geeigneter Materialparameter zu einer mathematischen Optimierungsaufgabe
degeneriert, bei der physikalische Aspekte des Materialverhaltens unbeachtet bleiben.
Die Aussagekraft von Struktursimulationen, die aus einer derartigen Vorgangsweise resul-
tieren, ist in Hinblick auf das mechanische Verhalten der untersuchten Baukonstruktion
sehr stark limitiert. Daher ist es wünschenswert, geeignete Materialparameter unter
Verwendung physikalischer Argumente zu identifzieren. Dieser Herausforderung widmet
sich die vorliegende Arbeit.

Die ersten Struktursimulationen erfolgen mit Standardeinstellungen, die sich durch
Vorgabe der gemessenen Materialeigenschaften (Steifgkeit und Festigkeit) ergeben. Die
damit erhaltenen numerischen Berechnungsergebnisse überschätzen die experimentell
ermittelte Struktursteifgkeit und die Traglast der Betongelenke wesentlich.

Zur Verbesserung der Struktursimulationen wird im Rahmen einer Sensitivitätsanalyse
untersucht, ob chemisches und trocknungsinduziertes Schrumpfen von Beton zu einer
Vorschädigung des Materials geführt haben kann. Dazu werden in einer Abfolge mehrerer
FE Simulationen verschieden große Schrumpfdehnungsintensitäten als Eigendehnun-
gen in Rechnung gestellt. Diese Analysen verdeutlichen, dass schrumpfungsinduzierte
Vorschädigung von Beton sowohl die Struktursteifgkeit als auch die Traglast von Beton-
gelenken abmindert. Während die gemessene Struktursteifgkeit durch geeignete Wahl
der Schrumpfdehnungsintensität quantitativ zufriedenstellend wiedergegeben werden
kann, bleibt die experimentell erreichte Traglast überschätzt.

Zur weiteren Verbesserung der Struktursimulationen wird beachtet, dass sich im
ungerissenen Teil des Gelenkshalses – bei Beanspruchung des Betongelenks durch eine
Drucknormalkraft und ein Biegemoment – ein triaxialer Druckspannungszustand ergibt,
wobei die entsprechenden Druckhauptnormalspannungen ein charakteristisches Verhältnis
von 1 : 0.5 : 0.3̇ aufweisen. Der isotrope (hydrostatische) Anteil dieses Spannungszustands
ist bemerkenswert hoch und bedingt eine ganz wesentliche Festigkeitssteigerung des
Betons, mit deren Hilfe die hohe Belastbarkeit von Betongelenken erklärt werden kann.
Diese durch allseitigen Druck bedingte Festigkeitssteigerung wird allerdings auf Basis
der Standardeinstellungen des verwendeten FE Programms überschätzt. Dafür lassen
sich folgende Gründe angeben.

1. Triaxiale Festigkeitstests werden üblicherweise in Öldruckzellen durchgeführt und
stellen nach wie vor eine sehr große Herausforderung dar. Fotos von zerstörten Be-
tonprobekörpern zeigen tonnenförmige Restverformungen, die auf wesentliche Schub-
spannungen in der Kontaktfäche zwischen Probekörper und Lastplatte rückschließen
lassen. Von derartigen, experimentell unerwünschten, aber unvermeidbaren Schub-
spannungen ist bekannt, dass sie die Festigkeit von Betonprobekörpern weiter
steigern. Daher liegt die Vermutung nahe, dass die in der verfügbaren Literatur
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beschriebenen triaxialen Festigkeiten von Beton die tatsächliche Belastbarkeit des
Materials überschätzen. Nichtsdestotrotz werden die überschätzen Festigkeiten
verwendet, um Festigkeitsmodelle von Beton zu kalibrieren.

2. Die somit auch von den Betonmodellen überschätzen triaxialen Festigkeiten sind
für Standardanwendungen der Softwareprogramme irrelevant. Bei der üblichen
Simulation von Stahlbetonstützen, -trägern, -platten, -scheiben und -schalen liegen
nämlich entweder einaxiale oder biaxiale Spannungszustände vor. Das heißt, dass
kommerziell angebotene Berechnungsprogramme praktisch nie im Bereich der
triaxialen Spannungszustände getestet werden.

Daher wird in der vorliegenden Arbeit in die Materialparameter eingegri˙en, um die
simulierte triaxiale Festigkeit von Beton abzumindern. Dabei wird allerdings Sorge getra-
gen, dass die einaxiale Druckfestigkeit von Beton unverändert bleibt. Das ist erreichbar,
indem eine fktive (d.h. für die tatsächliche Simulation unmaßgebliche) Zugfestigkeit
vergrößert wird. Auch in diesem Zusammenhang wird wieder eine Sensitivitätsanalyse
vorgenommen. Dazu werden in einer Abfolge mehrerer FE Simulationen verschieden
große Festigkeitsreduktionen in Rechnung gestellt. Diese Analysen verdeutlichen, dass
die Reduktion der triaxialen Festigkeit von Beton die anfängliche Struktursteifgkeit
erwartungsgemäß nicht beeinfusst, aber die simulierten Traglasten von Betongelenken
sinken. Die gemessene Traglast kann durch geeignete Wahl der Festigkeitsreduktion
quantitativ zufriedenstellend wiedergegeben werden.

Schließlich wird der Mehrwert von Mehrskalenstrukturanalysen aufgezeigt, bei denen
moderne Mehrskalen-Betonmodelle als Grundlage für die numerische Simulation von
Stahlbetonstrukturen verwendet werden. Die Motivation dafür ist, dass die Berück-
sichtigung von behinderten Schrumpfdehnungen von Beton die Struktursteifgkeit und
-festigkeit von Betongelenken zwar reduziert, der Einblick in die Materialschädigung von
Beton aber stark limitiert bleibt. Es stellt sich die Frage nach der Korrelation von ma-
teriellem Steifgkeits- und Festigkeitsverlust von Beton durch behinderte Schrumpfdehnun-
gen. Zu diesem Zweck wird ein unlängst entwickeltes Mehrskalenmodell zur Beschreibung
der Zugfestigkeit und der Zugentfestigung von Beton angewendet [13]. Als Schädi-
gungsvariable dient dabei der physikalisch interpretierbare Rissdichteparameter nach Bu-
diansky und O’Connel [4]. Zuerst wird der Zusammenhang zwischen Schädigungsvariable
und Materialsteifgkeit betrachtet, um den Rissdichteparameter zu identifzieren. Davon
ausgehend wird die Abminderung der Zugfestigkeit von Beton quantifziert. Schließlich
wird noch beachtet, dass schrumpfungsinduziere Rissbildung zu Energiedissipation führt,
was die verbleibende Bruchenergie reduziert. Sie wird ebenfalls quantifziert. Im An-
schluss wird gezeigt, dass es gleichwertig ist, entweder Schrumpfdehnungen in Form
von Eigendehnungen vorzuschreiben oder im Rahmen einer alternativen Vorgangsweise
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reduzierte Eingabewerte für den Elastizitätsmodul, die Zugfestigkeit und die Bruchenergie
vorzuschreiben.

Anhand der vorgenommenen Struktursimulationen lassen sich folgende Schlussfol-
gerungen ziehen.

• Belastet man Betongelenke verschiebungsgesteuert bis zur Traglast und darüber
hinaus, ist ein für baupraktische Zwecke sehr gutmütiges Verhalten zu erwarten.
Beim Erreichen der Traglast werden Betongelenke nämlich sehr nachgiebig, was zu
signifkant anwachsenden Relativdrehwinkeln führt, wohingegen die Belastbarkeit
nur unwesentlich absinkt.

• Eine wesentliche Ursache für dieses Verhalten ist das gutmütige Druckversagen
von Beton an der Oberfäche im innersten Bereich des Gelenkshalses. Die Gelenks-
halswurzel ist nämlich eine der Luft ausgesetzte freie Oberfäche des Betongelenks.
Daher liegt dort ein ebener Spannungszustand vor. Die oberfächliche Betonschichte
wird daher auf biaxialen Druck beansprucht. Die biaxiale Druckfestigkeit ist aber
nur unwesentlich größer als die einaxiale Druckfestigkeit und somit wesentlich kleiner
als die triaxiale Festigkeit von Beton. Daher wird die oberfächliche Betonschichte
bereits auf Gebrauchslastniveau ihre Festigkeit erreichen. Obwohl bei weiterer
Belastungssteigerung die Dehnungen der Oberfächenschichte wesentlich zunehmen,
platzt die Oberfächenschichte aber ganz o˙ensichtlich nicht ab. Nur dadurch ist es
möglich, dass sich hinter der Oberfächenschichte (im Volumen des Betongelenks)
ein triaxialer Druckspannungszustand aufbaut, der hohe Materialfestigkeiten zur
Folge hat. Würde die Oberfächenschichte nämlich abplatzen, dann würde die
dahinter liegende Schichte, die anfänglich im Volumen des Betongelenks positioniert
war, zur neuen Oberfäche werden. Aufgrund der beschriebenen Oberfächenrandbe-
dingung würde diese Schichte nicht mehr triaxial sondern nur mehr biaxial auf
Druck beansprucht sein, die Festigkeit würde wesentlich absinken, und somit wäre
auch die neue Oberfächenschichte überlastet, was dazu führen würde, dass auch
sie abplatzt. Damit würde sich ein katastrophaler Dominoe˙ekt ergeben, nämlich
das progressive Ausbreiten der Abplatzungsfront von der Gelenkshalswurzel in
Richtung der Betongelenksmitte.

• Diese Schlussfolgerung legt nahe, bei zukünftigen Betongelenken über eine konstruk-
tive Lösung zum Abplatzungsschutz der auf Druck beanspruchten Gelenkshalswurzel
nachzudenken.



Abstract

Concrete hinges experience a renaissance, because the past decades have provided practi-
cal evidence that they are durable structural elements, but the functionality of concrete
hinges remains to a considerable extent an enigma. This provides the motivation to
gain further insight into the structural behavior of concrete hinges, based on nowadays-
available experimental and theoretical methods. The present master thesis focuses on
the numerical re-analysis of recently performed centric and eccentric compression tests
on concrete hinges, based on nonlinear Finite Element (FE) simulations carried out
with concrete model “CC3DNonLinCementitious2” and the software Atena science 5.1.
FE simulations based on default material parameters, related to the measured Young’s
modulus and to the measured cube compressive strength of concrete, signifcantly over-
estimate the experimentally observed structural sti˙ness and ultimate load carrying
capacity of concrete hinges. Consideration of concrete shrinkage and of a more moder-
ate strengthening of concrete under triaxial compression allows for a qualitatively and
quantitatively satisfactory reproduction of experimental measurements. In addition, a
recently developed multiscale model for tensile strength and softening of concrete is
used to quantify damage of concrete resulting from shrinkage strains restrained by the
two connected reinforcement cages. The FE simulations underline that concrete hinges
exhibit a structural behavior which is very benefcial for structural applications. Close
to the ultimate load carrying capacity, rotation angles increase signifcantly, while the
strength of the structure is almost constant. This results from the rather ductile behavior
of concrete forming the surface at the innermost region of the neck, where a biaxial
compressive stress state prevails. Only because this concrete surface layer remains in
place (no spalling), a triaxial compressive stress state can build up behind the surface
layer, i. e. inside the volume of the neck. The resulting confnement pressure increases the
strength of concrete considerably, and this explains the unexpected large load carrying
capacity of concrete hinges.
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Chapter1 
Introduction

Concrete hinges are un-reinforced or marginally reinforced necks in beam-like or column-
like reinforced concrete structures. Typically, a few pairs of crossed steel rebars run
across a concrete hinge, and the cross-over point is at the center of the neck. Therefore,
the bending sti˙ness of the neck is signifcantly smaller than the one of the full beam or
column cross-section. This results in a desired concentration of bending deformations at
the concrete hinge. In addition, it is part of the structural concept, that concrete hinges
exhibit bending-induced tensile cracking even under regular service loads. Cracking
further reduces the bending sti˙ness of the neck, and this further promotes the ability of
a concrete hinge to develop desired relative rotation angles. The large rotation ability of
concrete hinges is evidenced by several test series see, e. g. [11, 17, 24, 26].

Concrete hinges were invented before world war II by Eugène Freyssinet, and they
enjoyed great popularity after the war. In the 1960s, Leonhardt [17] developed pioneering
design guidelines for concrete hinges, see also the reformulation of these guidelines in the
nomenclature of modern European design standards by Marx [18]. Anyway, decades-long
durability of concrete hinges remained questionable at the end of the 1960s. Therefore, the
civil engineering community decided to gain practical experience from quasi-continuous
monitoring of existing structures. Now, more than fve decades later, there is plenty of
practical evidence that concrete hinges indeed provide the expected long-term durability
associated with reliable services and small costs for maintenance and repair. Therefore,
concrete hinges experience a renaissance in practical engineering, particularly so in
integral bridge construction, see, e. g. [23, 27, 21].

Nowadays, several powerful software products for the numerical simulation of rein-
forced concrete structures are commercially available. This provides motivation for the
present basic-research contribution, where we re-analyze a recently performed testing se-



2Introduction

ries on reinforced concrete hinges [24] using the nonlinear Finite Element program Atena 
science [7]. Our goal is to further deepen the available insight into the structural behavior
of concrete hinges, whereby particular attention is paid to the questions regarding (i) the
triaxiality of compressive stress states in the neck region, (ii) the initial extensional
and bending sti˙ness of the neck, (iii) the structural behavior of concrete hinges under
eccentric compression right up to the load carrying capacity, (iv) the damaging e˙ect
of concrete shrinkage both on the sti˙ness and on the tensile strength of concrete, and
(v) the functionality of front-side notches.

Nonlinear Finite Element simulations and the interpretation of their results are the
main original contributions. At frst, numerical simulations of concrete hinges will be
based on measured mechanical properties of concrete and on default inputs of Atena 
science. Corresponding two-dimensional plane strain simulations will be used to quantify
the triaxiality of compressive stress states in the neck region. Results from three-
dimensional simulations, in turn, will be compared with measurements from structural
testing. Subsequently, the Finite Element model will be further improved, whereby
special attention will be paid to shrinkage of concrete and to the strengthening of the
material resulting from the confnement pressure of triaxial compressive stress states. In
order to quantify the damaging e˙ects of partly restrained shrinkage strains both on the
sti˙ness and on the tensile strength of concrete, a recently developed multiscale material
model for tensile failure of concrete [13] will be adopted. The corresponding dimensionless
damage variable will be used to relate the damaged sti˙ness to the damaged tensile
strength of concrete, leading to multiscale structural analysis of concrete hinges. Finally,
the functionality and usefulness of front-side notches will be studied based on simulated
stress distributions in a concrete hinge without front-side notches.

The present master thesis is structured as follows. The recently performed experiments
on concrete hinges, are briefy summarized in Chapter 2. They represent target values for
nonlinear Finite Element simulations documented in Chapter 3, containing (i) nonlinear
Finite Element simulations based on measured mechanical properties of concrete and on
default inputs of Atena science, (ii) the improvement of the model regarding shrinkage
and the triaxial compressive strength of concrete, as well as (iii) a micromechanical
approach, to damage induced by shrinkage. This leads to a discussion, including the
usefulness of front-side notches, see Chapter 4. Conclusions are drawn in Chapter 5.



Chapter2 
Experimental data from testing of
concrete hinges, taken from [24]

In the sequel, we revisit experimental results from [24], which serve as desired target
values for Finite Element analyses. This includes information on the used materials
(Section 2.1), on the geometric dimensions of the tested concrete hinges (Section 2.2), on
the test setup (Section 2.3), as well as test results from centric compression up to 200 kN
(Section 2.4), from eccentric compression with eccentricity e = 20 mm and loading up to
200 kN (Section 2.5), as well as compression with eccentricity e = 25 mm and loading up
to the load carrying capacity (Section 2.6). Notably, compression is considered with a
positive sign throughout the entire work.

2.1 Materials: concrete and steel rebars
The three tested concrete hinges consisted of steel-reinforced concrete. Concrete C35/45
F45 GK16 B5 was produced with a commercial CEM II/A-L 42.5N cement, Viennese tab
water, and calcitic aggregates with a maximum size of 16 mm. The initial water-to-cement
mass ratio mw/mc amounted to

mw/mc = 0.48 . (2.1)

The initial aggregate-to-cement mass ratio ma/mc was equal to

ma/mc = 3.97 . (2.2)
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Cube compressive strength fc,cube and Young’s modulus E were determined 28 days after
production, following Austrian standards for testing of concrete [25]; resulting in [24]

fc,cube = 56.25 MPa , E = 34.75 GPa . (2.3)

As for the steel rebars, steel quality BSt 550 was chosen. It exhibits an expected value of
the von Mises yield stress ˙y amounting to

˙y = 605 MPa . (2.4)

2.2 Geometric dimensions of the tested concrete hin-
ges and arrangement of steel reinforcements

The three tested concrete hinges complied with the design guidelines of Leonhardt [17].
They exhibited an overall width of 25 cm, a height of 35 cm, and a depth of 40 cm,
see Fig. 2.1. Side notches were 8.75 cm deep, and front notches 5 cm (Fig. 2.1), such
that the cross-section of the neck amounted to 7.5 × 30 cm2. The top and bottom 2
centimeter of the concrete hinges were made of steel plates, ensuring e˙ective distribution
of concentrated external line loads. The top and bottom reinforcement cages were
connected by three pairs of crossed steel rebars, with cross-over points right at the center
of the neck, see Fig. 2.1.
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14
2

2
14

335

Front view

25
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reinforcement
steel plates

40

305 5

Side view

[cm]

Figure 2.1: Geometric dimensions of the tested concrete hinges and arrangement of steel
reinforcements; after [24]
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2.3 Test setup and displacement measurement e-
quipment

During testing, the three nominally identically concrete hinges were subjected to line
loads distributed along the entire concrete hinge in thickness direction (Fig. 2.2). As for
displacement quantifcation, Linear Variable Displacement Transducers were mounted
to the side surfaces of the concrete hinges. They measured changes of the notch mouth
opening displacements of the lateral notches.

Figure 2.2: Defnition of coordinate system: x denotes the loading direction, y the
thickness direction, and z the lateral direction; schematic illustration of loading and
support conditions as well as of displacement sensors (LVDT) positions

2.4 Centric compression up to 200 kN
In order to characterize the undamaged extensional sti˙ness of the neck region, centric
compression tests were carried out. Three nominally identical concrete hinges were
subjected, one after the other, with a loading speed of 5 kN/s, to 200 kN. The three
40 second compression tests delivered very similar results, underlining satisfactory test
repeatability (Fig. 2.3). The measured force-shortening relationships are virtually linear,
and the shortening of the neck at 200 kN amounted to some 35 µm (Fig. 2.3).
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Figure 2.3: Shortening of the neck region of three nominally identical concrete hinges
(Fig. 2.1 and 2.2), measured in centric compression tests; loading was increased with a
force rate of 5 kN/s; experimental data after [24]

2.5 Eccentric compression up to 200 kN (e = 20 mm)
In order to characterize the undamaged bending sti˙ness of the neck region, eccentric
compression tests were carried out with a loading speed of 5 kN/s. The eccentricity

e = 20 mm (2.5)

was chosen such that no signifcant bending-induced tensile cracking is to be expected
when increasing the loading up to 200 kN. Eccentric compression, namely, is a combined
compression–bending test, with a bending moment M which is at any time t proportional
to the applied normal force N

M(t) = N(t) · e . (2.6)

The 40 second tests on three nominally identical concrete hinges delivered very similar
results, underlining satisfactory test repeatability (Fig. 2.4). The measured force-rotation
relationships are virtually linear, and the rotation angle of the neck at 200 kN amounted
to some 0.75 mrad (Fig. 2.4).

2.6 Eccentric compression up to the load carrying
capacity (e = 25 mm)

In order to characterize the structural behavior up to the load carrying capacity of the
three nominally identical concrete hinges (Fig. 2.1 and 2.2), eccentric compression tests
were carried out. The eccentricity

e = 25 mm (2.7)
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Figure 2.4: Rotation angles of three nominally identical concrete hinges (Fig. 2.1 and 2.2),
measured in eccentric compression tests with eccentricity e = 20 mm; loading was
increased with a force rate of 5 kN/s; experimental data after [24]

was chosen to be equal to one third of the neck width

a = 75 mm , (2.8)

representing the largest eccentricity which may be analyzed based on the design guidelines
of Leonhardt [17]. Loading was controlled manually. After an initially linear behavior,
rotation angles increased superlinearly with increasing loading. Once rotation angles
reached some 15 mrad, the structural behavior was apparently ductile with signifcantly
increasing rotation angles, while the loading could not be increased signifcantly any
more (Fig. 2.5). The load carrying capacity was equal to some 700 kN, and this is related
to a nominal bending moment amounting to some 17.5 kNm, see Eqs. (2.6) and (2.7).
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Figure 2.5: Rotation angles of three nominally identical concrete hinges (Fig. 2.1 and 2.2),
measured in eccentric compression tests with eccentricity e = 25 mm; loading was
increased manually; experimental data after [24]



 

Chapter3 
Finite Element Simulations of the
tested concrete hinges

Geometric linear Finite Element (FE) Simulations are performed with Atena science
(version 5.1), with the aim to gain insight into the structural behavior of concrete
hinges based on quantifcation of stress states inside their volume, which are typically
inaccessible in experimental testing. In order to reproduce the experimental observations
described in Chapter 2, the FE simulations are based on expected values of all material
properties, i. e. the simulation option “Safety Format: mean” is chosen.

As for modeling of concrete, the nonlinear material model “CC3DNonLinCementi-
tious2” is used, because it allows for performing both two-dimensional and three-
dimensional simulations. “CC3DNonLinCementitious2” models the inelastic material
behavior of concrete based on two failure surfaces: a Rankine surface for the descrip-
tion of tension induced failure, and a Menétrey-Willam failure surface [5, 6, 7, 19] for
compression-induced failure. The mathematical formulation of the latter is based on
hydrostatic stress ˘, deviatoric stress ˆ, as well as Lode angle �, and it reads as follows

3 m r(�) ˘
! 

F3
p
P (˘, ˆ, �) = 2 · ˆ2

2 + · ˆ · p + p − c = 0 , (3.1)
fc

0 fc
0 6 3

where m/fc
0 is defned as � �2 

t 
m 3 · e˙

1 −
f

f

c 
0
0 

= , (3.2)
fc

0 e˙ + 1 ·
ft

0

and where r(�) is defned as

4 · (1 − e2 ) · cos (�)2 + (2 · e˙ − 1)2 

r(�) = ˙ q .
2 · (1 − e2 

˙) · cos (�) + (2 · e˙ − 1) · 4 · (1 − e2 
˙) · (cos (�))2 + 5 · e˙

2 − 4 · e˙

(3.3)
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In Eq. (3.1), c denotes the hardening/softening parameter [7], with initial value

cini = 1 . (3.4)

In Eqs. (3.2) and (3.3), e˙ denotes the so-called eccentricity of the failure surface in
deviatoric planes; and its default value amounts to

e˙ = 0.52 . (3.5)

In Eqs. (3.1) and (3.2), fc
0 denotes the evolving elastic limit stress of concrete under

uniaxial compression. The corresponding initial value, denoted as fc0, represents a
required input value for the material model. Because of strain hardening, fc

0 will increase
until the uniaxial compressive strength fc is reached. The latter is another required input
value for the material model. Also in Eqs. (3.1) and (3.2), ft

0 denotes the uniaxial tensile
strength predicted by the Menétrey-Willam failure surface. Because of the combination
with the Rankine criterion, ft

0 is a fctitious tensile strength value, without real mechanical
relevance in tension.

3.1 Default input values related to the measured
sti˙ness and strength of concrete

While the only measured mechanical properties of concrete are the cube compressive
strength fc,cube and the Young’s modulus E, see Eqs. (2.3), the chosen material model
requires more than ten numerical input values, see Table 3.1. Notably, Atena science
provides recommended default values for all input quantities which were not directly
measured. Several of these default values depend on the compressive strength, which is
generally a known quantity in concrete engineering. For instance, the relation between
the cube compressive strength fc,cube and the uniaxial compressive strength fc reads as

fck,cube = fc,cube − 8 MPa ,

fck = 0.85 · fck,cube ,

fc = fck + 8 MPa , (3.6)

where index k denodes characteristic strength values, i. e. intentionally decreased strength
values for semiprobabilistic design calculations. The relation between the uniaxial
compressive and tensile strength values is adopted from the Model Code [12] and
Eurocode 2 [2]. For concrete with fck � 50 MPa, as in the present case, it reads as

ft = 0.30 · fck
2/3 

, (3.7)
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where both strength values need to be inserted in MPa. The ratio between the actual
uniaxial tensile strength ft, intervening in the Rankine criterion, and the fctitious tensile
strength of the Menétrey-Willam failure surface reads as

t�t = f 0
(3.8)

ft

where �t = 2 is the corresponding default input value, see Table 3.1 for all default input
values obtained with the cube compressive strength fc,cube and the Young’s modulus E

from Eqs. (2.3).

Table 3.1: Default input values of concrete model “CC3DNonLinCementitious2” of
Atena science, related to cube compressive strength fc,cube and to Young’s modulus E

from Eqs. (2.3) as well as to the maximum aggregate size amounting to ag = 0.016 m

description name value, unit

Young’s modulus E 34750 MPa
Poisson’s ratio � 0.2
uniaxial tensile strength ft 3.57 MPa
uniaxial compressive strength fc 49 MPa
fracture energy Gf 147 J/m2 

critical compression displacement wd 0.5 mm
eccentricity of the Menétrey-Willam failure surface e˙ 0.52
direction of plastic fow ( = 0 . . . purely deviatoric
plastic strains)

0

elastic limit under uniaxial compression fc0 7.49 MPa
plastic strain at uniaxial compressive strength �p

c 1.24 · 10−3 

control of crack rotation (Fixed = 1 . . . no crack
rotation)

Fixed 1

compressive strength reduction from cracks with nor-
mal orthogonal to the loading direction

rc 0.8

maximum aggregate size ag 0.016 m
ratio of tensile strength of Menétrey-Willam failure
surface to the tensile strength of Rankine criterion

�t 2
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3.2 Quantifcation of stress triaxiality in the neck
region based on 2D plane strain simulations

2D plane strain simulations are relevant for the midplane of the concrete hinges, with
plane-normal pointing in thickness direction. The width of the neck (a = 7.5 cm), namely,
is by a multiplicative factor of 4 smaller than the dimension of the neck in thickness
direction (30 cm). In other words, the real strain state in the midplane must be close to
a plane strain state.

The used FE mesh consists of 26400 quadrilateral Finite Elements with bilinear
displacement interpolation, 26885 nodes, and 53770 degrees of freedom, see Fig. 3.1. This
FE mesh was the result of a study regarding mesh dependency [15]. While coarser
meshes resulted in FE results depending on the discretization fneness, fner meshes
delivered objective results, i. e. the used mesh represents a close-to-optimal trade-o˙
between simulation e˙ort and reliability of numerical results.

Figure 3.1: Upper half of two-dimensional Finite Element mesh consisting of 26400
quadrilateral Finite Elements with bilinear displacement interpolation, 26885 nodes, and
53770 degrees of freedom; used for plane strain simulations of eccentric compression tests
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As for the re-analysis of the tests used to quantify the load carrying capacities of
the concrete hinges, eccentric compression with eccentricity e = 25 mm is simulated,
based on input values listed in Table 3.1. Loading is increased in load increments of
0.5 kN/cm, such that after 70 successive load steps a simulated load of 35 kN/cm is
reached. Stress distributions are evaluated along the 7.5 cm wide neck, see the red line in
Fig. 3.1. Principal stress states prevail along this line, given that the line coincides with
the intersection of two planes of symmetry of the concrete hinge, see Figs. 3.2, 3.3, and
3.4 for the distribution of principal stresses acting in loading direction, in lateral direction,
and in thickness direction, respectively. The simulation steps are well converged, as
quantifed by the following convergence errors: the Residual Error amounts to 1.4 · 10−3 

(default threshold: 1 · 10−2), the Absolute Residual Error amounts to 5.5 · 10−4 (default
threshold: 1 · 10−2), the Displacement Error amounts to 3 · 10−4 (default threshold:
1 · 10−2) the Energy Error amounts to 2.6 · 10−7 (default threshold: 1 · 10−4).

Considerable compressive stresses are limited to one half of the neck width (Figs. 3.2,
3.3, and 3.4). This is consistent with Leonhardt’s design guidelines [17], which assume
that tension-induced cracking will happen along half of the neck width, provided that the
eccentricity-to-neck width ratio e/a amounts to 1/3, as in the simulated case with e =
25 mm and a = 75 mm. The compressive stresses, in turn, show nonlinear distributions,
i. e. they increase with increasing distance from the center of the concrete hinge, but
close to the lateral surface, they decease again. Normal stresses in lateral direction
even decrease down to zero at the lateral surface of the neck (Fig. 3.4), because of the
corresponding free-surface boundary condition. Still, at larger load intensities, the stress
distributions in loading direction is somewhat reminiscent of a triangular distribution
(Fig. 3.2), such as considered by the design guidelines of Leonhardt [17]. The largest
compressive normal stresses, obtained with the external load intensity of 35 kN/cm,
amount to 224 MPa, 104 MPa, and 64 MPa in loading direction, in thickness direction,
and in lateral direction, respectively (Fig. 3.2, 3.3, and 3.4). In other words, concrete
hinges exhibit pronouncedly triaxial compressive stress states with principal stress ratios
amounting approximately to 1 : 0.5 : 0.3̇. This implies that the isotropic (“hydrostatic”)
part of the stress state amounts to some 60 % of the compressive normal stress in loading
direction. This confnement results in a signifcant strengthening of concrete, and this
explains why concrete hinges are very durable structures, even through stress levels under
regular service conditions are larger than tolerated stress levels in bridges or high-rise
buildings.
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Figure 3.2: Normal stresses in loading direction across the neck width of the concrete
hinge, as quantifed by two dimensional plane strain FE simulations with mesh according
to Fig. 3.1 and Atena science input quantities listed in Table 3.1, the seven graphs refer
to external load intensities increased in steps of 5 kN/cm
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Figure 3.3: Normal stresses in thickness direction across the neck width of the concrete
hinge, as quantifed by two dimensional plane strain FE simulations with mesh according
to Fig. 3.1 and Atena science input quantities listed in Table 3.1, the seven graphs refer
to external load intensities increased in steps of 5 kN/cm
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Figure 3.4: Normal stresses in lateral direction across the neck width of the concrete
hinge, as quantifed by two dimensional plane strain FE simulations with mesh according
to Fig. 3.1 and Atena science input quantities listed in Table 3.1, the seven graphs refer
to external load intensities increased in steps of 5 kN/cm
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3.3 3D FE simulations of centric and eccentric com-
pression tests

In order to gain further improved insight into the behavior of the tested concrete hinges,
three-dimensional FE simulations are carried out. Considering the double symmetry of
the problem, it is suÿcient to discrete one fourth of the structure (Fig. 3.5). The used
FE mesh consists of 27776 four-noded hexahedra elements using trilinear displacement
interpolation, 31730 nodes, and 95190 degrees of freedom (Fig. 3.5). Again, this mesh was
the result of a study regarding discretization errors, i. e. it represents a close-to-optimal
trade-o˙ between simulations e˙ort and reliability of simulation results.

Figure 3.5: Three-dimensional Finite Element mesh discretizing one fourth of the studied
concrete hinges; the mesh consists of 27776 hexahedra Finite Elements with trilinear
displacement interpolation, 31730 nodes, and 95190 degrees of freedom

The simulation of the centric compression test described in Section 2.4 delivers
numerical results which are qualitatively similar to experimental observations, i. e. the
shortening of the neck region increases virtually linearly with increasing loading (Fig. 3.6).
The extensional sti˙ness of the undamaged concrete hinge, however, is quantitatively
overestimated by some 40 %.
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Figure 3.6: Comparison of (i) numerical results of 3D FE simulation obtained with the
mesh shown in Fig. 3.5 as well as with input parameters listed in Eqs. (2.3) and Table 3.1
(thick line) with (ii) measurements from centric compression tests (thin lines)

The simulation of the eccentric compression test with an eccentricity of e = 20 mm
and loading up to 200 kN (Section 2.5) also reproduces experimental observations in a
qualitatively similar fashion (Fig. 3.7). The rotation angle of the concrete hinge increases
virtually linearly with increasing loading. Still, the bending sti˙ness of the undamaged
concrete hinge is overestimated by some 40 %.
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Figure 3.7: Comparison of (i) numerical results of 3D FE simulation obtained with the
mesh shown in Fig. 3.5 as well as with input parameters listed in Eqs. (2.3) and Table 3.1
(thick line) with (ii) measurements from eccentric compression tests with e = 20 mm
(thin lines)

The simulation of the eccentric compression test with eccentricity e = 25 mm and load-
ing up to the load carrying capacity (Section 2.6) reproduces experimental observations
again in a qualitatively satisfactory fashion. The rotation angle frst increases linearly
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and later superlinearly with increasing loading (Fig. 3.8). However, the simulated initial
bending sti˙ness and the simulated load carrying capacity overestimates corresponding
experimental observations by some 40 and 100 %, respectively.
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Figure 3.8: Comparison of (i) numerical results of 3D FE simulation obtained with the
mesh shown in Fig. 3.5 as well as with input parameters listed in Eqs. (2.3) and Table 3.1
(thick line) with (ii) measurements from eccentric compression tests with e = 25 mm
(thin lines)

3.4 Which essential mechanical features need to be
considered in order to obtain also quantitatively
reliable simulation results?

The obtained simulation results underline that FE simulations based on measured values
of cube compressive strength and Young’s modulus of concrete as well as on default values
of Atena science (Table 3.1) do not delivery quantitatively reliable results, but structural
sti˙ness and strength are signifcantly overestimated. Consequently, mechanical features
which are signifcantly infuencing the structural performance of concrete hinges have
remained unconsidered. In the sequel, it is checked whether or not the di˙erences between
FE simulation results and experimental observations can be explained based on damage
resulting from shrinkage of concrete and based on the potential overestimation of the
strengthening e˙ect resulting from the confnement of highly triaxial compressive stress
states.

Shrinkage of concrete is restrained by the reinforcement of the concrete hinges,
because the upper and lower reinforcement cages are connected by three pairs of rebars.
Therefore, increasing shrinkage of concrete results in tensile stresses of concrete and in
compression of the crossed reinforcement bars. Once tensile stresses in concrete reach
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the tensile strength, shrinkage-induced cracking occurs. Notably, shrinkage increases
typically proportionally to hydration degree, such that the advanced maturity of concrete
after 28 days renders it likely that the tested concrete hinges su˙ered from signifcant
shrinkage-induced damage. This will be investigated in Section 3.5.

Under the strong confnement of triaxial compressive stress states with principal
normal stress ratios amounting to 1 : 0.5 : 0.3̇, Atena science predicts a maximum
principal compressive stress at failure which amounts to 6.9 times the unconfned uniaxial
compressive strength. In this context, it is noteworthy that typical applications of FE
software for reinforced concrete structures are beams and columns as well as plates
and shells; and these structures exhibit either predominantly uniaxial or predominantly
biaxial stress states. In other words, numerical simulations of standard civil engineering
structures challenge the Menétrey-Willam failure surface in the vicinity of the uniaxial
and the biaxial compressive strength, but the regime of triaxial compressive stress states
remains untested. While this underlines that simulation of the structural behavior of
concrete hinges is a particularly challenging task, one may also speculate that confnement-
induced strengthening of concrete is overestimated by the default Menétrey-Willam failure
surface. This will be investigated in Section 3.6.

3.5 Sensitivity analysis regarding shrinkage of con-
crete

The following sensitivity analysis regarding shrinkage consists of extending the FE
analysis described in Section 3.1 by frst simulation steps in which shrinkage of concrete
is prescribed in terms of eigenstrains. Since concrete shrinkage was, unfortunately, not
measured in the experiments of Chapter 2, the infuence of di˙erent shrinkage intensities
on the simulated structural behavior is studied. To this end, each one of the two FE
simulations providing insight into the extensional sti˙ness and the bending sti˙ness of
concrete hinges, is repeated four times, with shrinkage-related eigenstrains amounting to
0.15 %˘, 0.30 %˘, 0.45 %˘, and 0.60 %˘, respectively. This result in eight additional FE
simulations which are based on the default input values listed in Table 3.1.

Simulation results suggest that increasing initial shrinkage of concrete decreases
the initial sti˙ness of concrete hinges, both under centric and eccentric compression
(Figs. 3.9 and 3.10). While the simulated relation between axial force and shortening of
the neck remains in good approximation linear (Fig. 3.9), simulation of larger shrinkage
intensities results in nonlinear relations between loading of the concrete hinge and the
rotation angle of the neck (Fig. 3.10). These nonlinearities imply (i) that progressive
load increase results initially in sti˙ening of the concrete hinge and (ii) that once a force
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level exceeds some 150 kN, further load increase results in softening of the concrete hinge
(Fig. 3.10). This can be explained as follows. Restrained shrinkage results in tensile
cracking of concrete and in an associated decrease of the sti˙ness of the material. This
damaged sti˙ness of concrete is relevant at the very beginning of compressive loading
of the concrete hinge, because stress trajectories have to run around the open cracks.
Load increase, in turn, progressively reduces the crack openings. Once a crack closes,
the original material sti˙ness is practically restored, because stress trajectories no longer
need to run around the cracks, but direct force transfer from one crack surface to the
other becomes possible. This explains the initial sti˙ening, see also [10]. At larger load
intensities, in turn, bending-induced tensile stresses (from eccentric loading) result in
additional damage, and this explains the obtained softening at larger load intensities.
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Figure 3.9: Sensitivity analysis regarding the role of shrinkage of concrete: Comparison
of (i) numerical results of 3D FE simulation obtained with the mesh shown in Fig. 3.5
as well as with input parameters listed in Eqs. (2.3) and Table 3.1 and shrinkage (thick
lines) with (ii) measurements from centric compression tests (thin lines): (a) sti˙ness
decrease due to increasing shrinkage intensities, and (b) Simulation results obtained with
“optimal” value of shrinkage amounting to 0.5 %˘
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Figure 3.10: Sensitivity analysis regarding the role of shrinkage of concrete: Comparison
of (i) numerical results of 3D FE simulation obtained with the mesh shown in Fig. 3.5 as
well as with input parameters listed in Eqs. (2.3) and Table 3.1 and shrinkage (thick line)
with (ii) measurements from eccentric compression tests with e = 20 mm (thin lines):
(a) sti˙ness decrease due to increasing shrinkage intensities, and (b) Simulation results
obtained with “optimal” value of shrinkage amounting to 0.5 %˘

Summarizing, the simulation results suggest that shrinkage strains might have resulted
in considerable damage of the concrete hinges. Based on interpolation, it is found that a
shrinkage intensity of 0.5 %˘ allows for reproducing the experimentally observed exten-
sional and bending sti˙ness of the tested concrete hinges in a quantitatively satisfactory
fashion.

Consideration of shrinkage does not only reduce the simulated initial sti˙ness of
concrete hinges, but also the simulated ultimate load carrying capacity (Fig. 3.11). In
more quantitative detail, the found “optimal” shrinkage intensity (0.5 %˘) reduces the
model-simulated ultimate load carrying capacity of the tested concrete hinges by 22 %,
see Fig. 3.11. Still, even the shrinkage-based FE simulation signifcantly overestimates the
load carrying capacity of the tested concrete hinges, and this provides the motivation for
the following sensitivity analysis regarding the triaxial compressive strength of concrete.
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Figure 3.11: Comparison of (i) numerical results of 3D FE simulation obtained with the
mesh shown in Fig. 3.5, and with input parameters listed in Eqs. (2.3) and Table 3.1,
and with 0.5 %˘ shrinkage of concrete (thick line) with (ii) measurements from eccentric
compression tests with e = 25 mm (thin lines)

3.6 Sensitivity analysis regarding confnement-indu-
ced strengthening of concrete

The following sensitivity analysis regarding the confnement-induced strengthening of
concrete consists of repeating the FE analysis described in the previous Section (Fig. 3.11),
based on FE input quantities which are deviating from the default values (Table 3.1),
in order to simulate a more moderate strength increase with increasing confnement
pressure. Reducing the triaxial compressive strength, in turn, shall neither modify the
uniaxial compressive strength nor the uniaxial tensile strength. This can be achieved by
increasing the input parameter �t, quantifying the ratio between the fctitious uniaxial
tensile strength ft

0 related to the Menétrey-Willam failure surface and the realistic uniaxial
tensile strength ft related to the Rankine failure surface. Notably, this modifcation is
carried out exclusively in the immediate vicinity of the “compressive” half of the neck
region, see the Finite Elements illustrated in red color in Fig. 3.12.
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Figure 3.12: Finite Element mesh used for three-dimensional simulation of concrete
hinges: elements in which the standard value �t = 2 is used are shown in black; elements
in which increased values of �t are prescribed are shown in red (increase �t values result
in decreased strength of concrete under triaxial compression)

Increasing the Atena science input parameter �t from 2 to 4, 6, and 8, respec-
tively, and considering all other required input values as listed in Table 3.1, delivers
Menétrey-Willam failure surfaces with decreasing slopes in the ˘,ˆ-diagrams, i. e. with
less pronounced confnement-induced strengthening of concrete, see Fig. 3.13. Using
these modifed failure surfaces as the basis for FE simulations of eccentric compression
tests of concrete hinges, delivers simulation results describing the same initial bending
sti˙ness, but progressively decreasing ultimate load carrying capacities (Fig. 3.14). Based
on interpolation it is found that

�t = 6.86 (3.9)

allows for reproducing the experimentally observed ultimate load carrying capacities of
the tested concrete hinges in a quantitatively satisfactory fashion, see Fig. 3.14.
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to (3.5), evaluated for input quantities listed in Table 3.1 and strength ratios �t 2
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Figure 3.14: Sensitivity analysis regarding the role of triaxial strength of concrete:
Comparison of (i) numerical results of 3D FE simulation obtained with the mesh shown
in Fig. 3.5 as well as with input parameters listed in Eqs. (2.3) and Table 3.1 except
�t = [2; 4; 6; 8] and with 0.5 %˘ shrinkage of concrete (thick lines) with (ii) measurements
from eccentric compression tests with e = 20 mm (thin lines): (a) load-carrying-capacity
decreases with increasing tensile strength for the Menétrey-Willam failure surface, and

= fc(b) Simulation results obtained with “optimal” value of �t = 6.86 () ft
0

2 )



FE-Simulations 3.7: Multiscale structural analysis 23

3.7 Micromechanics-assisted quantifcation of dam-
age resulting from hindered shrinkage of con-
crete

The further improved FE simulation of concrete hinges (Fig. 3.14) reproduces the ex-
perimentally observed behavior of the tested concrete hinges in a qualitatively and
quantitatively satisfactory fashion. This underlines the particular importance of consid-
ering shrinkage-induced damage. However, prescribing shrinkage-related eigenstrains in
nonlinear FE simulations does not provide straightforward quantitative insight into the
questions how much hindered shrinkage of concrete reduces the sti˙ness and strength
of the material. As a remedy, a recently developed multiscale model for concrete, see
[13], is used to quantify (i) the shrinkage-induced damage and (ii) the relation between
damage-induced reduced sti˙ness and tensile strength, respectively. This results in
micromechanics-assisted FE simulations of concrete hinges, i. e. in multiscale structural
analysis.

The multiscale model of Hlobil et al. [13] envisions a microcracked composite consisting
of a sane (= uncracked) concrete matrix damaged by parallel and interacting microcracks
(Fig. 3.15). Using a Mori-Tanaka sti˙ness estimate from continuum micromechanics

Figure 3.15: Idealization of concrete damaged by parallel cracks according to [13]; the
two-dimensional fgure refers to a three-dimensional representative volume element

[1, 31], the model suggests that the Young’s modulus of microcracked concrete, in the
direction normal to the crack planes, Ec,dam, decreases with increasing damage variable
!, and the mathematical formulation of this relation reads as [13]

� ��−116 · !
Ec,dam(!) = Ec · 1 + ·

� 
1 − �c

2 (3.10)3

where Ec, �c, and ! denote the Young’s modulus and the Poisson’s ratio of sane concrete,
as well as Budiansky and O’Connel’s crack density parameter [3]. The relation between
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the damage variable ! and the softening tensile strength, ft,dam, was (i) identifed in [13]
from direct tension tests on dog-bone shaped concrete specimens and (ii) validated in the
framework of blind predictions regarding three-point bending tests on notched mortar
prisms; the mathematical formulation of this relation reads as [13]s h i−1KIc ˇ

ft,dam(!) = · 0.3148 + 0.385 · ! , (3.11)2 ag

where KIc and ag, respectively, denote the fracture toughness and the maximum aggregate
size of concrete.

As for identifcation of the damage variable !s, resulting from hindered shrinkage
of concrete, the undamaged Young’s modulus of concrete is taken from Eqs. (2.3), the
Poisson’s ratio of concrete is set equal to the standard value �c = 0.2, and the damaged
Young’s modulus of concrete is estimated from Fig. 3.6 as

Ec,dam = 26 GPa . (3.12)

Specializing Eq. (3.10) for these quantities and solving the resulting expression for the
damage variable ! delivers

!s = 6.5% . (3.13)

The fracture toughness of concrete is identifed by specializing Eq. (3.11) for the undam-
aged tensile strength ft = 3.57 MPa (see Table 3.1) and for ! = 0, as well as from solving
the resulting expression for KIc as

KIc = 0.286 MPa
p

m . (3.14)

The sought damaged tensile strength follows from specializing Eq. (3.11) for the damage
variable from (3.13) and the fracture toughness from (3.14) as

ft,dam = 3.44 MPa . (3.15)

Shrinkage-induced damage in form of microcracking is related to energy dissipation,
and this dissipated energy must be accounted for when it comes to defning the input
parameter “fracture energy Gf” of the “CC3DNonLinCementitious2” model of Atena 
science, where tensile softening is modeled based on a smeared crack approach. The
corresponding relation between softening tensile strength ˙ and increasing crack opening
w of the smeared crack is modeled based on the following relationship after Hordijk [14],
see also Fig. 3.16
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Figure 3.16: Tensile softening law of material model “CC3DNonLinCementitious2” of
Atena science: softening tensile strength of concrete over opening of smeared crack, see
also Eqs. (3.16) and (3.17) as well as Table 3.1; the green area is equal to the energy
dissipated, because of shrinkage-induced cracking

( )� �3 � �
˙(w) w w w � � 

= 1 + c1 · · exp −c2 · − · 1 + c1
3 · exp (−c2) , (3.16)

ft wc wc wc

with
c1 = 3 , c2 = 6.93 , wc = 5.14 Gf

. (3.17)
ft

Our next aim is to quantify the energy which is dissipated by shrinkage-induced cracking
which has resulted in a crack density amounting to !s = 6.5 %, see Eq. (3.13). This
requires quantifcation of the crack opening w according to Hordijk’s relation (3.16). To
this end, Eq. (3.16) is specialized for Eqs. (3.17), for ˙ = ft,dam, with ft,dam according
to Eq. (3.15), and for numerical values of Gf and ft taken from Table 3.1. Solving the
resulting expression for the crack opening displacement delivers

ws = 1.17 µm . (3.18)

see also the point labeled as “concrete damaged by restrained shrinkage” in Fig. 3.16. The
energy dissipated because of shrinkage-induced cracking is equal to the area under the
softening curve, see the shaded area in Fig. 3.16. It follows from the following integration"( ) #Z � �3 � � 

w w w�Gf (ws) = ft ·
ws 

1 + 27 · · exp −6.93 · − 28 · · exp (−c2) · dw .
0 wc wc wc

(3.19)
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Specializing Eq. (3.19) for Eqs. (3.17) as well as for numerical values of Gf and ft taken
from Table 3.1, and integrating the resulting expression delivers the shrinkage-related
energy dissipation increment as

�Gf (ws) = 4.08 · 10−6 J/m2 . (3.20)

Finally, the residual fracture energy follows as the di˙erence between the initial fracture
energy Gf (see Table 3.1) and the shrinkage-related energy dissipation increment according
to Eq. (3.20) as

Gf (ws) = Gf − �Gf (ws) = 143 J/m2 . (3.21)

It remains to be check whether or not consideration of shrinkage in form of eigenstrains
amounting to 0.5 %˘ (see Fig. 3.14) is indeed quasi-equivalent to a reduction of Young’s
modulus from 34.75 GPa to 26 GPa, a simultaneous reduction of tensile strength from
3.57 MPa to 3.44 MPa see Eq. (3.15), and a simultaneous reduction of fracture energy
from 147 J/m2 to 143 J/m2 , see Eq. (3.21) and Table 3.2. Therefore, the FE simulation of
eccentric compression right up to the load carrying capacity is repeated, using the default
input values of Table 3.1, except for the modifed input quantities listed in Table 3.2.
The two di˙erent simulations indeed deliver quite comparable results, i. e. both the initial
bending sti˙ness and the ultimate load carrying capacity of the simulated concrete hinges
are very similar, see Fig. 3.17 to 3.19. This underlines that the usefulness of the presented
mode of quantifying shrinkage induced damage based on a recently developed multiscale
model for tensile failure of concrete.

Table 3.2: Modifed input values of concrete model “CC3DNonLinCementitious2” of
Atena science, for consideration of shrinkage-induced damage based on an micromechan-
ical approach and less confnement-induced strengthening under triaxial compression

description name value, unit

Young’s modulus E 26063 MPa
uniaxial tensile strength ft 3.44 MPa
fracture energy Gf 143 J/m2 

ratio of tensile strength of Menétrey-Willam failure surface
to the tensile strength of Rankine criterion; modifed only in
the immediate vicinity of the “compressive” half of the neck
region, see the Finite Elements illustrated in red in Fig. 3.12

�t 6.86

https://ws)=4.08
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Figure 3.17: Comparison of simulation results, for centric compression, obtained for two
di˙erent approaches to consideration of shrinkage: dotted line = results obtained with
prescription of eigenstrains; dashed line = results obtained with reduced values of Young’s
modulus, tensile strength, and fracture energy, compare Table 3.2, with Table 3.1; both
simulations are simulated with �t = 6.86
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Figure 3.18: Comparison of simulation results, for eccentric compression with e = 20 mm,
obtained for two di˙erent approaches to consideration of shrinkage: dotted line = results
obtained with prescription of eigenstrains; dashed line = results obtained with reduced
values of Young’s modulus, tensile strength, and fracture energy, compare Table 3.2, with
Table 3.1; both simulations are simulated with �t = 6.86
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Figure 3.19: Comparison of simulation result, for eccentric compression with e = 25 mm,
obtained for two di˙erent approaches to consideration of shrinkage: dotted line = results
obtained with prescription of eigenstrains; dashed line = results obtained with reduced
values of Young’s modulus, tensile strength, and fracture energy, compare Table 3.2, with
Table 3.1; both simulations are simulated with �t = 6.86



Chapter4 
Discussion

In this Chapter, simulation results are discussed with the aim to verbalize the gained
insight into the structural behavior of concrete hinges. This includes the discussion of
the triaxiality of compressive stress states in the neck region, the associated functionality
of front-side notches, the triaxial compressive strength of concrete, ductile surface failure
under biaxial compression, its implication on the durability of concrete hinges, the
infuence of shrinkage of concrete on the structural performance of concrete hinges, and
the question whether or not consideration of creep deformation is important.

4.1 Triaxiality of compressive stress states in the
neck region of concrete hinges and the function-
ality of front-side notches

Two-dimensional plane strain simulations have shown that compressive stress states in
the neck region of concrete hinges are triaxial with principal stress ratios amounting to
1 : 0.5 : 0.3̇. Compressive stresses in lateral and thickness direction result from stress
trajectories that run around the lateral and the front-side notches. While lateral notches
are required to achieve the desired rotation ability of concrete hinges, the importance of
front-side notches is not similarly evident.

The functionality and importance of front-side notches can be assessed in the context of
three-dimensional Finite Element simulations, carried out in the framework of sensitivity
analyses regarding the depth of front-side notches, (Section 11.2). Stress boundary
conditions prevailing at free surfaces indicate a vanishing normal stress in the direction
orthogonal to the surface. This implies that vanishing normal stresses in thickness
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direction prevail not only at the plane front-side face of a concrete hinge without front-
side notch, but also at the innermost free surface of a front-side notch, where the
surface normal is pointing in thickness direction. In other words, the compressive stress
in thickness direction is always zero directly at the discussed surfaces, and the most
important question regards the distance from the surface, which is required for built-up
of signifcant compressive stresses.

In the absence of a front-side notch, the built-up of compressive stresses in thickness
direction is controlled by the Poisson e˙ects: directly at the front-side surface, lateral
strains in thickness directions are not restrained, but the restraint increases with increasing
distance from the surface. In the present context, simulation results suggest that some
80 % of the reachable compressive normal stress in thickness direction are built-up within
a 5 cm distance from the surface, and that the reachable stress is practically reached
10 cm from the surface (Fig. 4.1); whereby the “reachable stress” is equal to the one
quantifed by the two-dimensional plane strain simulations mentioned above.
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Figure 4.1: Normal stress distributions in thickness direction obtained from 3D FE
simulations of concrete hinges without front-side notches, y = 0marks the center of
concrete hinges, y = 20 cm the front side surface

A front-side notch signifcantly promotes the built-up of signifcant compressive normal
stresses in thickness direction, already in the close vicinity to the free surface of the
notch, because stress trajectories have to run around the notches, and the corresponding
inclination angles of the stress trajectories provide the desired compressive stresses. A
front-side notch with a depth of 3.5 cm appears to be optimal for the studied dimensions
of a concrete hinge, because the reachable compressive stress in thickness direction is
reached very quickly (Fig. 11.37 to 11.39). Further increasing the notch depth to 5 cm
has the interesting e˙ect that the compressive stresses in thickness direction (i) increase
sharply with increasing distance from the notch, (ii) reach a maximum which is larger
than the typical stress level quantifed by means of the plane strain analyses, and (ii)
fnally decrease to the typical stress level quantifed by means of the plane strain analyses
(Fig. 11.8 to 11.10). Such a concentration of compressive stresses in the immediate
vicinity of the front-side notch might well have a positive infuence on the durability of
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concrete hinges, but this cannot be answered based on the performed time-independent
simulations.

Anyway, the characteristic principal compressive strength ratio 1 : 0.5 : 0.3̇ implies
the existence of an isotropic stress part (“confnement pressure”) that amounts to 60 % of
the principal stress acting in loading direction. The confnement results in a considerable
increase of the strength of concrete, as discussed next.

4.2 The triaxial compressive strength of concrete
It is well known that confnement pressure increases the strength of concrete. Still, the
available experimental database regarding failure of concrete under triaxial compression
is, unfortunately, rather small, because of the challenges associated with the realization
of a triaxial compressive strength tests. As for the related discussion, it is useful to
recall the state-of-the-art knowledge regarding failure of concrete in uniaxial and biaxial
compressive strength tests.

Failure of concrete under uniaxial compression is very well documented in the open
literature, e. g. there even exist computer tomography images taken during a strength
test, clarifying that (i) at the peak load, failure starts in form of distributed damage with
microcracks propagating in loading direction (“axial splitting”), (ii) at the beginning of
the post-peak regime, microcracking localizes into a band which is inclined with respect
to the loading direction, and (iii) later in the post-peak regime, this band turns into a
shear band, i. e. the failure mode switches from invisible and distributed microscopic
axial splitting to a macroscopically apparent shear failure mode, see [9].

Failure of concrete under biaxial compression is signifcantly less well documented
in the literature. Even nowadays, state-of-the-art insight goes back to the landmark
experiments by Kupfer et al. [16], who showed that the symmetric biaxial compressive
strength is by a typical factor of 10 to 20 % larger than the uniaxial compressive strength
of concrete.

Failure under triaxial compression is even less well understood. The employed
Menétrey-William failure surface, for instance, was initially developed based on ex-
perimental data from triaxial compression tests by Kupfer et al. [16], by Mills and
Zimmerman [20], and as well by Chinn and Zimmerman [8], who constructed one of
the frst triaxial compression test facilities which was large enough to characterize rep-
resentative concrete cylinders produced with realistic maximum aggregate diameters.
Strength values obtained in experiments, in which the isotropic confnement pressure was
comparable to the one quantifed in the neck region of concrete hinges (see above), suggest
that the largest compressive stress at failure amounts to some 12 times the uniaxial
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compressive strength. However, photos showing tested specimens after their failure,
indicate a barrel-type shape of the unloaded specimens [8]. These residual deformations
are very strong indicators that the performance of the tested concrete specimens was
signifcantly infuenced by undesired but unavoidable, friction-induced and self-balanced
shear stresses, activated in the interfaces between load platens and specimen. Such shear
stresses are well known to signifcantly increase the strength of the tested sample, but
quantifcation of the shear-induced strengthening of concrete remains to be impossible in
practical testing. Summarizing, it might well be that experimentally observed strength
values signifcantly overestimate the actual load carrying capacity of the material.

It is interesting to discuss implications for strength modeling of concrete, resulting from
the described uncertainties associated with the available triaxial compressive strength
data. Notably, the default input values of the Menétrey-Willam failure surface, used
by Atena science, deviate from the counterparts originally suggested by Menétrey
and William themselves. Atena-science-simulated strength values, obtained for triaxial
compression stress states with principal stress ratios 1 : 0.5 : 0.3̇, suggest that the largest
compressive stress at failure amounts to some 6 times the uniaxial compressive strength,
and this is by a factor of 2 smaller than the original version of the Menétrey-William
failure surface.

In the present master thesis, the Menétrey-William failure surface was further modifed
such that simulated strength values, obtained for triaxial compression stress states with
principal stress ratios 1 : 0.5 : 0.3̇, suggest that the largest compressive stress at
failure amounts to only 2.5 times the uniaxial compressive strength. This raises the
question whether or not such a comparably small confnement-induced strengthening
may be realistic, compare with the approaches discussed above: 2.5 < 6 < 12. In the
context of Eurocode-consistent Finite Element simulation, this question can be answered
aÿrmatively, as explained next. For partially loaded areas, namely, the Eurocode
considers that the strength is larger than the uniaxial compressive strength, and the
strength increase factor is a function of the necking ratio. Considering the neck of
concrete hinges to represent a partially loaded area, and specializing Eurocode formulas
for the geometric dimensions of the tested concrete hinges delivers a strength increase by
a factor of 2.0, and this is quite close to the strength increase obtained with the stress
ratio parameter �t = 6.86.
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4.3 Ductile surface failure under biaxial compres-
sion explains the durability of concrete hinges

Stress triaxiality alone does not explain why concrete hinges are durable structural
elements. At the air-exposed surfaces in the innermost regions of the lateral necks,
namely, a free-surface boundary condition applies, such that a plane stress state prevails
there. In this context, it is noteworthy that the biaxial compressive strength of concrete
is by only a few percent larger than the uniaxial compressive strength of the material.
Consequently, the stress state in an air-exposed surface layer of the neck region reaches
its ultimate load carrying capacity already at loading stages which are smaller than or
equal to regular service loads of concrete hinges. Still, the surface layer does not spall
away, but it remains in place, and – even more importantly – also the stress state does
not decrease signifcantly, although the strains increase very signifcantly. In other words,
the surface layer exhibits a ductile rather than a brittle behavior. The continued integrity
of the surface layer, in turn, is essential for the built-up of the triaxial compressive stress
state. If the surface layer would spall away, namely, the neighboring layer (which was
initially inside the volume of the structure) would become the new surface layer, it would
all over sudden exhibiting a plane stress state, and the strength of the material would
drop from the large strength under confned triaxial compression to the much smaller
strength under biaxial compression. This would make it likely that initiation of spalling
would result in a catastrophic domino e˙ect with the spalling front propagating quickly
in the direction towards the center of the concrete hinge. Anyway, there is plenty of
evidence from testing of concrete hinges and from practical applications that spalling
does not take place as long as the loading is not close to the load carrying capacity of a
concrete hinge.

4.4 Shrinkage of concrete infuences the structural
performance of concrete hinges

Concrete is an aging material which is shrinking with time. Total shrinkage is typically
decomposed into autogenous shrinkage, resulting from the chemical reaction between
cement and water, and drying shrinkage.

Autogenous shrinkage is typically assumed to increase proportionally to the strength
of concrete, but this oversimplifes the situation to a considerable extent. The actual
origin of autogenous shrinkage is that hydration products, resulting from the chemical
reaction between cement and water, occupy a slightly smaller volume than the reactants.
Therefore, autogenous shrinkage increases practically linearly with increasing reaction
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degree, referred to as “hydration degree”. Notably, also uniaxial compressive strength
is frequently assumed to be a linear function of hydration degree. Given that both
autogenous shrinkage and uniaxial compressive strength are proportional to hydration
degree, it is a logic consequence that there exists also a linear correlation between
shrinkage and strength, although they are not etiologically linked to each other. As for
quantitative aspects of autogenous shrinkage, it is noteworthy that typical concretes
reach, 28 days after their production, hydration degrees between 70 and 80 %. This
implies that most of the autogenous shrinkage strains develop within the frst four weeks
after production. Typical shrinkage intensities amount to 0.05 %˘ [2].

Drying shrinkage is a structural (and not a material) problem, because it is related
to water transport at the microscale of concrete, and the driving force for the latter are
moisture gradients. Gradients, in turn, contradict the requirement of a material problem
which is, by defnition, free of gradients. Given the di˙usion driven nature of water
transport in mature concrete, drying shrinkage develops over months, years, and decades.
Thereby, shrinkage strains are the larger, the larger the reduction in internal relative
humidity. Right after production, concrete samples are typically completely saturated,
i. e. the internal relative humidity is practically equal to 100 %. Drying shrinkage comes
to an end, once the internal relative humidity is uniform and equal to the external
relative humidity of the ambient air. This equilibrium confguration is reached the
faster, the shorter the required water transportation distances. The latter are typically
quantifed by the ratio obtained from dividing the concrete volume by the surface area
exposed to the dry air. Given that necks of concrete hinges occupy a quite small volume
but a quite larger surface area, concrete in the neck region is very prone of developing
drying shrinkage strains much faster than typically expected in more standard concrete
structures. As for quantitative aspects of drying shrinkage, drying to a relative humidity
of 50 %, which is a typical value for indoor applications, results in drying shrinkage of
normal concrete between 0.5 %˘ and 0.6 %˘ [12]. 28 days after production typically half
of these values can be expected.

The presented FE simulations were based on shrinkage intensities amounting to
0.5 %˘, and this might appear as slightly too large compared to what is expected to
be realistic after 28 days. Reducing shrinkage to the expected level, in turn, would
result in an overestimation of the experimentally observed sti˙ness of concrete hinges.
Two e˙ects can explain this di˙erence between simulation and experiment. Firstly, less
initial sti˙ness of the neck region may results from entrapped air, given the diÿculties
to compact fresh concrete poured into formworks used for the production of concrete
hinges. Secondly, the experimentally observed sti˙ness might be smaller than the actual
sti˙ness, because of undesired concentration of loading and support forces. The top and
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bottom steel plates of the concrete hinges, namely, were connected to the top and bottom
reinforcement cages by means of welding. This results in eigenstresses and, hence, the
steel plates are slightly curved rather than perfectly fat after welding. This implies that
the loading and support forces are concentrated in the middle of the concrete hinge,
rather than being equally distributed along the entire thickness direction, at least at the
beginning of a loading sequence. At later stages of the loading process, full-line contact
prevails, but residual imprints in the steel plates, resulting from the load application
system and from the support system, respectively, indicate that external forces were –
also close to the peak load – not perfectly uniformly distributed in thickness direction.
A FE sensitivity analysis regarding the load application length in thickness direction,
in turn, clarifes that load concentration results in a reduced structural sti˙ness of
concrete hinges (Fig.11.113). This explains why realistic shrinkage intensities combined
with perfectly distributed loading in thickness direction overestimate the experimentally
observed sti˙ness of concrete hinges.

4.5 Is consideration of creep important?
The presented time-independent FE simulations cannot be expected to reproduce exper-
imentally observed behavior in a perfect fashion, because concrete exhibits creep, but
time-dependent behavior remained unconsidered in the numerical simulations. Extending
the FE simulations towards consideration of creep turned out to be impossible, because
creep modeling approaches provided by Atena science are developed to assess long-term
creep behavior, i. e. creep developing over years and decades. Numerical simulation of
short-term creep, evolving within some tens of minutes, does not yield qualitatively
realistic results.

Still, creep must be expected to play an important role when it comes to quantifcation
of deformations close to the peak load, because concrete is well known to exhibit nonlinear
creep. This is typically modeled by the aÿnity concept of Ruiz [22], which envision that
the regular linear creep function of concrete is valid for load intensities up to 40 % of the
strength. At larger load intensities, the linear creep function is to be amplifed by an
aÿnity parameter. The latter increases with the fourth power of the utilization degree,
i. e. the ratio of applied stress to the strength of the material. While this concept was
originally developed for uniaxial creep functions, the extension to three-dimensional stress
states is straightforward, see [28, 29, 30]. Once the load carrying capacity is reached, the
creep activity of concrete is three times as large as the creep activity in the linear creep
regime.
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Testing provides very valuable insight into the structural performance of concrete hinges,
but available deformation and displacement measurement are typically limited to the
easily accessible surface of concrete hinges. What is happening inside the volume of
concrete hinges, in turn, remains to a considerable extent an enigma. Therefore, Finite
Element simulations are very valuable, because they provide complementary insight into
the structural behavior of concrete hinges. They essentially allow for quantifying the
triaxial compressive stress states prevailing in the neck region, which are responsible for
the high load carrying capacities of concrete hinges.

From the numerical simulations documented in the current master thesis, the following
conclusions are drawn:

• As for the investigated concrete hinges, the triaxial compressive stress state in the
neck region exhibits characteristic ratios of principal stresses in loading direction,
in thickness direction, and in lateral direction, amounting to 1 : 0.5 : 0.3̇.

• This stress triaxiality results to considerable extent from the existence of the notches,
because stress trajectories must run around the notches, and the inclination angles
of the stress trajectories create the desired compressive stresses acting orthogonal
to the loading direction. This underlines the importance of front-side notches.

• The principal compressive stress ratio 1 : 0.5 : 0.3̇ implies that the isotropic part
of the stress state (= “confnement pressure”) amounts to 60 % of the compressive
stress in loading direction.

• The signifcant confnement pressure results in a signifcant strengthening of con-
crete.
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• Failure surfaces implemented in Finite Element software for concrete apparently
overestimate the triaxial strength of the material signifcantly. This can be explained
with the unsatisfactory experimental insight into triaxial strength of concrete and
the big challenges associated with such test.

• Modifying standard failure surfaces, such that they are consistent with Eurocode
regulations for partially loaded areas, allows for simulating realistic load carrying
capacities of concrete hinges.

• As for the investigated concrete hinges, where the top and bottom reinforcement
cages are connected by three pairs of crossed steel rebars, consideration of restrained
shrinkage of concrete is important. Desirably, shrinkage is to be simulated in form
of eigenstrains.

• Restrained shrinkage of concrete results in tensile microcracking of the material,
and the created damage can be quantifed based on a recently developed multiscale
model for tensile strength and softening of concrete [13].

• The load carrying capacity of concrete hinges can be well simulated based on time-
independent FE analyses, but corresponding rotation angles will be underestimated
by such simulation approaches, because concrete exhibits nonlinear creep, and this
time-dependent phenomenon signifcantly contributes to the overall deformations.

• Softening of concrete hinges in the post-peak regime is rather ductile than brittle.
This manifests itself in strongly increasing rotation angles, while external loading
decreases only marginally.

• The durability of concrete hinges results from a similarly ductile failure mode of
concrete at the innermost surface of the lateral notches, where a biaxial compression
stress state prevails. This ductile failure enables the built-up of the triaxial stress
states described above.
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