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Abstract

Cloud computing gives new opportunities to many applications. The advantages of reducing
the cost and complexity of up-front infrastructure are accompanied with various security issues.

A cloud storage provider has to be trusted to handle ones data confidentially and ensure its
availability. In order to guarantee the secrecy and availability of sensitive data, it is unavoidable
for the end-user to encrypt and replicate the data in any way. An approach for these issues is to
store the data in a virtual cloud formed of multiple cloud providers.

With a scheme called secret sharing a free selectable amount of redundancy is added. The
data to be protected is split into multiple pieces and distributed to several servers. To restore
the original data a certain amount of arbitrary pieces is required. In this way, the failure of a
single server in the cloud does not influence the availability. Moreover, this schemes enables high
secrecy as only a certain amount of pieces reveal the original information. Any party holding less
pieces are not capable of obtaining any information of the original data.

It is of high computational effort to split the data in such a manner. While various software
solutions exist, there are only few investigations in hardware. However, the implantation in
dedicated hardware allows the possibility of high performance increase and has the potential to
expand its applicability.

This work firstly handles the implementation of an information theoretical secure secret sharing
scheme, proposed by Adi Shamir. Subsequently, it discusses and presents the implementation of
a more efficient scheme in terms of storage space, the Computational Secret Sharing. All these
investigations are targeted for a Field Programmable Gate Array (FPGA). A final implementation
of a complete secret sharing system operating in a network environment and the capability of
managing, sharing and distributing complete files as well as successfully restoring them completes
this work.
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Kurzfassung

Viele Anwendungen wurden durch das Zusammenschliefen von Computern zu einer Cloud erst
moglich oder bedeutsam verbessert. Allerdings ergeben sich durch die Auslagerung von Daten
auch neue Bedenken. Speichert man etwa Daten in der Cloud, so muss man dem Anbieter
vollkommen vertrauen, die Daten zu schiitzen, sowie auch ihre Verfiigbarkeit sicherzustellen.
Letztendlich liegt es jedoch in der Verantwortung des Nutzers vertrauliche Daten entsprechend
zu schiitzen und sich gegen den Ausfall der Cloud oder Datenverlust abzusichern. Dies fiihrt
unweigerlich zu Verschliisselung und Replikation.

FEine Losung dies zu erreichen besteht darin, eine virtuelle Cloud aufzubauen, die aus mehreren
physischen Clouds besteht. Mittels eines Verfahrens namens SecretSharing wird zu den Daten
eine beliebige Menge an Redundanz hinzugefiigt. Dabei werden die Originaldaten in mehrere
Teile zerlegt und in der virtuellen Cloud auf unterschiedliche Server verteilt. Um die Original-
daten wiederherzustellen, wird eine vordefinierte Anzahl dieser Teile rekombiniert. Dabei ist es
gleichwertig, welche dieser Teile fiir die Rekombination verwendet werden. Dank dieser Methode
wird der Ausfall einer definierbaren Anzahl von Servern kompensiert. Zusétzlich wird mit diesem
Verfahren Vertraulichkeit sichergestellt. Mit weniger als flir die Wiederherstellung benétigten
Teile lasst sich keine Information iiber den Inhalt der Daten ableiten.

Fiir dieses Konzept existiert eine Vielzahl an Softwarelosungen, jedoch nur eine sehr limitierte
Auswahl an Hardwarerealisierungen. Eine eigens dafiir konzipierte Hardware in dieser Arbeit
bringt erhebliche Durchsatzsteigerungen und erweitert somit den Anwendungsbereich bei gesenk-
ten Kosten.

Zunéchst wird in dieser Arbeit ein informations-theoretisch sicheres Verfahren, erstmals vorgestellt
von Adi Shamir, in Hardware implementiert. Darauf aufbauend wird das Computational Secret
Sharing, welches eine bessere Speichereffizienz besitzt, untersucht. Fiir beide Ansétze werden
generische Hardwarearchitekturen fiir die Realisierung in einem FPGA entworfen. Abschluss
dieser Arbeit ist die Implementierung eines kompletten Systems in einer Netzwerkumgebung, die
in der Lage ist mehrere Dateien zu verwalten, zu teilen und wiederherzustellen.
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1 Introduction

This work starts with an outline of computational clouds and the application fields within the
cloud setup. While various software (SW) solutions exist, a special motivation for a hardware
(HW) acceleration is given. The general conditions for implementations is listed as well as the
outline and notations of this work at the end of the chapter.

1.1 Secret Sharing In The Cloud

In the field of information technology the purpose of a cloud is outsourcing resources and reducing
the complexity and cost of up-front infrastructure, rapidly realizable with minimal management
effort. While cloud computing has a wide field of application, the focus of this work is on data
storage. However, handing the data to a Cloud Service Provider (CSP) of a cloud leads to various
issues. The costumer has to trust the service provider to handle the data confidentially. This is of
special interest for companies or individuals, if the data contains sensitive information. Moreover,
the data should be available at any time when requested.

(A a minimum uptime for cloud services is specified in the service-level agreement (SLA), which
is .. ) In the service-level agreement (SLA), a minimum uptime is specified for cloud services.
For example the popular Amazon Cloud Service the SLA value is 99.9% uptime per month [? |.
Anyway, as shown by recent incidents in [15] a downtime greater than the specified value is still
possible, but only allows to receive redress. It is still in the responsibility of the user to ensure
compliance of the final security and confidentiality [8].

Various different approaches to overcome those problems include replicating the data and en-
cryption. Another attempt is the cloud-of-cloud approach. In this scenario a virtual cloud
consisting of more than one physical cloud provider is in charge and realized by a process called
secret sharing. Various systems exist and some of them are summarized in [67].

In the secret sharing approach, a file is split into pieces (shares) and stored on multiple servers
within different clouds. In order to obtain the original file, an arbitrary subset of these shares are
required. In this way, the reliability of a single cloud or server is avoided, if sufficient shares are
generated. For example, if 10 servers are in use with an uptime of 99.9 % with 4 required shares,
the failure probability is brought from 1073 to 1.1 x 1076 [49].

Moreover, it is of special advantage, that a certain amount of shares, k, is required to obtain
the original file. With less shares than this boundary, no information is obtained and of no use
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for a malicious cloud provider, or attacker. It ensures confidentiality if less than k share holders
collaborate.

Compared to the straight forward approach of encryption and duplication of files, the scheme
of this work allows two advantages. Firstly, no key management is required as no key exists in the
scheme and secondly, the data overhead is adjustable. Due to possible malicious attacks, there are
still credentials required to authenticate the shares and guarantee a consistent and secure secret-
file. However, such an authentication mechanism is required anyway in an encrypted scheme.

1.2 Motivation For A Hardware Implementation

To realize the concept of secret sharing a mathematical algorithm is applied subsequently. Per-
forming the algorithm on a file, it is first split into blocks of a certain bit-width. The block
can be seen as numbers on which the algorithm is applied. On one hand, blocks of higher bit-
widths lead to a mathematical higher complexity due to multiplications in the algorithm. On the
other hand, a higher bit-width comes with benefits. Even in a computational secure scheme, it
is possible to guess a right secret, but every possibility is same likely. Using higher bit-widths
makes it significantly more unlikely to guess a right word. Moreover, the performance of higher
protocols in a cloud-of-cloud approach is increased. The protocol [21] for auditing [9] and [39],
a process to verify the consistency of shares without retrieving the original file benefits of bigger
blocks. Furthermore, the scheme of secret sharing is homomorph. Consider two subsecrets and
each split into multiple shares. Multiplying shares from both subsecrets lead to a new topsecret.
This topsecret is the same as both subsecrets multiplied. In this case, a topsecret is generated,
without revealing any subsecrets. However, this homomorphic attribute is only applicable within
a block.

Because of the performance penalties in the storage domain software implementations usually
perform the calculations on blocks of one byte, as the calculations are able to be performed
efficiently in look-up-tables. For processing 16 bits at once, other look-up-table based approaches
exit, but the calculation becomes significantly slower for higher bit-widths and inefficient in terms
of possible throughput. Therefore current software implementations of secret sharing, such as
proposed in Archistar [49] work with a block size of 8 bit and can achieve a share generation rate
of about 32 Mbit/s. Another implementation of Nubisave in [68] reach a throughput of about
5 Mbit/s in a real world environment. In chapter 2.7 more software implementations of secret
sharing algorithms are discussed.

For the improvement of the performances in terms of their throughput and bit-widths, a hard-
ware implementation is of interest. Especially when we want to apply the technology within a
larger data centre which also requires low latency. According to the block size, the calculations
are performed on a hardware designed for a certain bit-width.

To the best of my knowledge, only two hardware implementations of secret sharing are pub-
lished, [77] and [50]. Gaining a high throughput in both works, the sharing and reconstruction
process as well as the evaluation of the architecture for different bit-widths was not the intention
in these works.

Therefore, this work discusses the feasibility of a hardware implementation and evaluates the
performances of different bit-widths. It is focused on different secret sharing algorithms and word
widths, specifically optimized for storage configuration motivated by the use cases covered by the
ARCHISTAR system [49].
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1.3 Objectives

The aim of this thesis is to evaluate the feasibility to realize a secret sharing mechanism in a FPGA
for different bit-widths specifically targeted for efficient distributed storage solutions. Hardware
units are designed and bit-widths are discussed, which are generically selectable. In the following,
the bit-widths 8, 16, 32, 64 and 128 were investigated and implications for practical realizations
have been elaborated.

The work firstly deals with a secret sharing scheme of information theoretical secrecy, the
Shamir Secret Sharing (SSS) scheme [65]. It forms the foundation for a more complex secret
sharing scheme with better storage efficiency, the Computational Secret Sharing (CSS) scheme
[46], investigated subsequently.

After evaluation of the performance in different bit-widths, a prototype is built. It is capable
of sharing and restoring files with a high throughput in a real network environment.

1.4 About This Work

Evaluation Platform

The Zedboard [82] was selected as FPGA platform. The hardware description code was de-
veloped in Very High Speed Integrated Circuit Hardware Description Language (VHDL). The
synthesis and implementations of this work were performed with Vivado'™ 2015.3 [79] and tar-
geted for the Zedboard. The Zedboard consists of a Xilinx Zyng-7000 AP SoC XC77Z020-CLG484
[80] FPGA. It is partitioned into a Programmable System (PS) and a Programmable Logic (PL),
connected via an Advanced Expandable Interface (AXI). The PS contains a dual-core ARM
Cortex™L-A9 processor. The PL consists of 6-input look-up-tables (LUTs), D-Flip-Flops (D-
FFs), 36 kbit Block Random Access Memories (BRAMs) and Digital Signal Processors (DSPs)
as well as several interfaces.

Notations

In figures presenting architectures of hardware designs, bold lines symbolize buses (usually data
paths), while thin lines represent single signals (usually control signals). The abbreviation LUT
refers to the logic element within a FPGA, while written out refers to a look-up-table in general
terms.

1.5 Organisation Of Thesis

The chapter 2 describes fundamental basics, important for the understanding of this work as well
as related work. Then, the implementation of Shamir’s Secret Sharing scheme, an information
theoretical secure secret sharing scheme is investigated in 3. The next chapter 4 contains strategies
for more efficient implementations of a polynomial multiplier. In chapter 5 the development from
the implementation of Shamir’s scheme to a Computational Secret Sharing scheme is presented.
A complete prototype capable of sharing files in a network environment is presented in chapter
6. Finally, a conclusion and outlook of this work is in 7. All chapters with implementations and
findings include a dedicated evaluation and summary subsection.



2 Preliminaries And Related Work

In this chapter an introduction of the main elements and important topics, such as the detailed
description of Shamir’s Scheme and finite fields, is given. Starting with finite fields, new concepts
in each section are introduced in order to get a complete understanding of a robust computational
secret sharing scheme. The following sections provide an overview of related work, which will be
the content of the rest of this chapter.

2.1 Finite Fields

In a secret sharing algorithm a lot of additions and multiplications have to be performed sequen-
tially on an initial value. If the operands are represented by natural numbers, it leads to a rapid
increase of the original value. A large number of bits would be needed to represent the highest
possible value in a digital system to avoid overflows. However, most of the bits are often not used
which is very inefficient. For an efficient use of these bits all calculations are performed in finite
fields, or more specific, in binary extension fields.

For detailed information of finite fields and related mathematical basics it is referred to [48]
while a brief introduction is given in the following.

Finite fields, denoted as I, consist of a finite number p of elements and satisfy all rules of
fields. They are often denoted as a Galois field, GF(p), in honour of Evariste Galois. The
simplest construction of finite fields uses prime numbers for p. Operations of arithmetic, such as
addition and multiplication of any operand within this field, lead to a result in the same field.
This is necessary to satisfy the axioms of fields and is only possible if p is a prime. To obtain
such a result, a reduction step (modulo p) is performed after each operation. While the numbers
don’t grow larger, each operation can still be unambiguously reversed. In order to gain a better
understanding a simple example for F7 is given in (2.1).

3+5=8mod7=1

(2.1)
1-5=—4mod7=3

Extension fields, denoted as GF(p™), are used for constructing fields with a number of elements
different to prime numbers. These fields consist of p™ elements, where p stands for a prime
and n any natural number. In order to construct such a field, the elements are represented by
polynomials with a degree less than n and coefficients are described by elements of the field F,,.
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Similar to the first example with finite fields of p elements, a reduction is performed after each
operation to stay in the field. Instead of the prime number an irreducible polynomial is used,
which is chosen arbitrary but unique for a specific binary extension field. The reduced polynomial
is the remainder of a division by the irreducible polynomial. A simple example of a multiplication
in GF(22) with the irreducible polynomial 22 + x is given in 2.2.

(x4+1)(xz+0)= (2> +2) mod (z*+24+1) =1 (2.2)

If p is chosen as 2, the coefficients can only be 0 or 1. Such fields are named binary extension
fields and often denoted as GF(2™), where n signifies the bit-widths. They can be applied easily
and efficiently in digital systems.

2.2 Secret Sharing Principles

Secret sharing is an algorithm for distributing one secret into several share parts among different
parties. The secret is divided into shares, where a specific number of shares is needed to restore
the secret. In a n/k threshold scheme n shares are produced, while a minimum of freely chosen
k shares are needed to reconstruct the secret. Any number of shares less than k does not reveal
any information about the secret.

An algorithm to meet this criteria was first independently introduced by Adi Shamir [65] and
George Blakley [10]. Shamir’s Secret Sharing algorithm is based on two-dimensional polynomials,
while Blakley’s algorithm works with planes and their intersection in a n-dimensional space.
Shamir’s algorithm is more efficient in a storage setting, because it produces smaller overheads.
A share of Blakley’s algorithm is the size of n times the secret, whereas one share in Shamir’s
model has exactly the size of the secret. Shamir size is optimal for information theoretical security,
however, for practical reasons it can be more efficient with slightly weaker security assumptions.
Therefore the basic algorithm was adapted to a more advanced secret sharing mechanism to meet
more requirements such as smaller overheads, robustness and verification.

2.3 Shamirs Secret Sharing

Shamir’s Secret Sharing is based on the evaluation and interpolation of polynomials. For a n/k
threshold scheme a polynomial with a degree of k-1 is used (2.3). The first coefficient m at 2°
represents the secret, while all other coefficients, c,...c1, are filled with random numbers. To
construct a share the polynomial is evaluated at a point x, where z can be chosen arbitraryily
except x # 0, which is the secret itself.

y:ck_lx:vk_1+....+02xm2+cl><:z:1—|—co

where: y = share (2.3)
Co = secret
€1...ck.—1 = random values

A polynomial interpolation is performed to reconstruct the secret. Any share represents a point
of the polynomial, where the x-position is publicly known and the y-position is the share itself.
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The y-value at = 0, or equally the coefficient at z° from the interpolated polynomial, is the
secret. For an exact interpolation of a polynomial with a degree of k-1, a minimum of k points is
required. If only k-1 points are available it is obvious, that the polynomial can’t be reconstructed
as the secret could still take any value depending on the last share-point.

In this scheme the size of the shares are exactly the size of the secret. Therefore an overhead of
n-times the secret is produced. An advantage of this scheme is its information-theoretic secrecy,
which means it can not be broken with any computing effort.

For a deeper understanding of Shamir’s Secret Sharing an illustration is given in figure 2.1.

We choose a polynomial with a degree of 2 - ¢g * 22 + ¢1 * 2 + cg. co represents the secret,
which we assume is 4. The coefficients ¢; and ¢y are randomly chosen with 2 and -5. Next, we
calculate 4 shares s;...s4 on the points 1...4, which gives us s1 = 1,59 = 2,83 = 7,54 = 16.

We select the shares si, s2,s4 and use the Lagrange Interpolation at the point z = 0 (2.4).
There are many other interpolation schemes which could be used equally.

n n

Solro« 1 f__g;;?j (2.4)

i=0 i=0j#i "

The Lagrange Interpolation leads to the following equation (2.5) with the result of the original
secret we selected.

16 ®sharey

12

®shares

4 —@secret

®shares

1— ?sharel
0
0 1 2 3 4

X

Figure 2.1: An illustration of a polynomial for Shamir’s Secret Sharing of a 4/3 threshold scheme, using
4 as the secret and 1,2,7,16 as random coefficients.



Preliminaries And Related Work

2.4 Computational Secret Sharing

The information-theoretic secrecy comes with the cost of shares with sizes of the secret itself.
Although in practical implementations it is often sufficient if the secret is computational secure.
The secret can not be revealed with a limited computational effort. Hugo Krawczyk published
such a scheme called Computational Secret Sharing [46].

Computational Secret Sharing is described with an abstract secure secret sharing scheme. For
a better understanding a brief explanation is given based on Shamir’s scheme. Instead of random
numbers it uses secrets in higher coefficients of the polynomial and a secure encryption function.

First the secret is encrypted with a secure encryption function (ENC) using a key A. The
shares s1, ..., ; are generated by evaluating a polynomial at any point z; # 0 and each coefficient
is part of the secret. This is the fundamental difference to Shamirs’s scheme, where all coefficients
except ¢g are filled with random numbers. The key is then shared with a perfect secure secret
sharing scheme into key-shares K;. Each pair, consisting of a secret-share s; and a key-share K,
is distributed to one shareholder.

In the process of reconstructing the secret, first the key is restored followed by the encrypted
secret. In comparison to Shamir’s scheme all coefficients of the polynomial are needed to be
restored. The result is then decrypted by using the restored key and the reversed encryption
function ENC~! to reveal the original secret.

2.5 Robust And Verifiable Secret Sharing

Computational Secret Sharing makes the scheme efficient and computational secure, but the
scheme is still vulnerable for attacks. If a shareholder distributes a modified share, it is not
feasible for the system to detect the faulty share and a wrong secret would be the result. The
error can not be detected nor can the faulty share be identified.

Robust Secret Sharing

A secret sharing system is called robust, if such a malicious share is detected and the original
secret can still be recovered. To be more specific, it is (¢, §)-robust, where ¢ is the maximal number
of corrupted shares.

Shamir’s scheme is robust for the case of t < n/3, t < k and if all shares are available. In this
case all possible combinations of shares could be reconstructed and a majority vote would show
the correct secret. However, this scheme works to an upper bound of n/3 and is not efficient in
term of computational effort, because a lot of reconstructions would be needed.

R.J McEliece and D.V. Sarwate first published a solution for this problem [53] by using error
correcting codes. This scheme is also bounded by ¢ < n/3. Another solution was presented by
Tompa and Woll [70], where they use a much larger space than the secret itself. Therefore the
probability for a recovered secret to be outside the original possible space is high, if at least one
of its shares were corrupted. However, there is still a probability greater zero that the fault might
not be detected and the scheme is inefficient in terms of space usage.
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Rabin and Ben-Or used message authentication codes [57]. Their scheme is often refereed to
as information checking. Every share s; gets extended by an authentication tag 7; ; for every
shareholder P; and the key is then send to the corresponding P;. At the secret reconstruction it
is checked if the share is accepted my sufficient many authentication tags.

In [56] Rabin introduced a scheme based on digital signatures. This was extended by H.
Krawczyk in [46] to overcome the problem of key-management and increase the space efficiency.
It is based on distributed fingerprints [45] and published by Krawczyk. The fingerprints are
generated with hash-functions and divided into shares, for example with schemes described above.
These shares are now distributed to the shareholders. Using hashes as here is only suitable for
computational secret sharing, because the hashes leak information. Contrary, the information
checking above is information theoretical secure. In the following the share construction applying
distributed fingerprints is outlined.

1. Calculate n shares s; out of the secret
2. Calculate fingerprint of each share f; with a Hash function
3. Calculate shares of all fingerprints sy;

4. Every shareholder gets one share of the secret s; and one share from each fingerprint sy;
(si+5p0+ ... +555)

Verifiable Secret Sharing

In the scenarios of robust secret sharing we assume that the dealer, who distributes the shares
to the shareholders, is honest. If the dealer is corrupt he can distribute modified shares, the
restored secret would depend on the shareholders selected for reconstruction. A scheme to detect
such a behavior is called Verifiable Secret Sharing.

The first scheme to fulfil this requirement was published by Chor et. al [14]. There are a couple
more solutions which are working for a limited amount of corrupted nodes (e.g. ¢t < n/3) and
unconditionally private, e.g. [34], [35] or with the assumption of a limited computational power
of the attacker. Such computational secure schemes schemes can work with a higher boundary
of corrupted nodes.

Auditing

The process where shares are verified if they are still valid is called Auditing. It is of benefit
if this can be done without downloading all information and without reconstructing the secret
itself. This gives convenience and the possibility to outsource this task to a third party which
may be untrusted. Such schemes for the proof of retrieve-ability have been first introduced by
Ateniese et al. [9] and Jules and Kalinski [39].

In the meantime a lot of schemes for single server setups e.g. [64] [63] [12] as well as for cloud
of cloud setups, e.g. [21], have been proposed.

However, specifically for secret shared data a new protocol has been proposed recently [21]
which leverages the redundancy in systems with k¥ < n and can be very efficiently applied to large
sets of stored data, e.g., they introduce almost no overhead for practical configurations.
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2.6 Hardware Implementations

There are only few hardware implementations of secret sharing algorithms known from the lit-
erature and no extensive treatment of such has been done so far. The focus in these works is
different from the one in this thesis and to the best of knowledge there is no speed optimized
FPGA implementation of the full Computational Secret Sharing scheme. Moreover, no work
deals with the evaluation of different bit-widths of the secret to be processed at once.

In [77] secret sharing is used in a network monitoring application. The monitored data is
encrypted and the key is shared using Shamir’s algorithm. Only if enough evidence is collected the
specific key is available to a monitoring entity. Therefore the encryption and share generation must
be able to work for Gigabit-networks. To meet this criteria a dedicated hardware implementation
in a FPGA was developed. Because the share generation is time critical, only the implementation
of this part is described, while improvements were given also on the reconstruction algorithm.

The key is derived using an Advanced Encryption Standard (AES) function, a master key and
the packet flow identifier. This key is used for the coefficient cg in the Shamir polynomial which
is to be shared. All other coefficients in the Shamir polynomial are also generated over the same
AES method. The generated key is then used to encrypt the payload of the package with an
other AES unit, while the coefficients are used in a Shamir core. Beside the coefficients, the core
also gets a x-value as input, which is supplied by a True Random Number Generator (TRNG).

For the evaluation of the Shamir polynomial, the Horner-Scheme is applied. This gives the
possibility to break m — 1 squarings and multiplications down to m — 1 multiplications, where
m — 1 is the degree of the polynomial. These multiplications are then processed sequentially
using the same multiplier. After each multiplication an addition and a reduction step follows.
The reduction step is necessary because the algorithm works in a binary extension field. Since a
fixed irreducible polynomial was used, the reduction can be done in one step with static XOR-
connection. The x-coordinate was restricted to a 32 bit value in order to reduce the size of the
multiplier. A 191 x 16 bit multiplier was used, which processes the 191 x 32 bit multiplication in
two cycles.

The work was implemented on a Network FPGA card using a Virtex-II Pro 50 FPGA. The
isolated examination of the share generation reveals a throughput of 2359Mbit /s with the usage
of 1633 slices in this design. This are roughly 3266 4-Input look-up-tables. The full keyshare
units reach a throughput of 343 Mbit/s with 3687 slices and 18 instances of BRAMs.

Another implementation from [50] focuses on secure secret sharing. In comparison to the imple-
mentation above, it’s target architecture are ASICs and therefore it was synthesized with Cadence
Encounter RTL Compiler with the Nangate 45nm Opencell library. While the Secret Sharing is
an effective way to divide a secret, it is vulnerable to attackers and cheaters as mentioned in
section 2.5. In their work they apply robust codes and algebraic manipulation detection to resist
strong cheating attacks. Besides the size of the implementation the results are focusing on the
efficiency of cheating detection and correction and the causing size-overhead.

2.7 Software implementations

There are various software implementations on secret sharing. The crucial parts of software
implementation are the time-consuming polynomial multiplications limiting the performance.
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Multiplications of small word-widths can be processed efficiently with look-up-tables, but the sizes
growth exponentially with the used Galois field and respectively the bit-widths. For example,
an 8 x 8 bit multiplication for a GF(2%) would require 28¥8/2 = 32768 entries of 1 Byte. The
size of the look-up-table would be about 32kByte and easily realizable in a common computer
system. However, a look-up-table in GF(2'%) would need 4.3TB which is currently not feasible
in an efficient manner.

The implementation of GF(2!¢) can be efficiently done with logarithms and logarithm look-up-
tables. Therefore the problem is transformed according to equation (2.6), where a and b are the
factors and ¢ the result of the multiplication.

axb=c=1log (log(axb)) =log ' (log(a) + log(b)) (2.6)

The logarithm and inverse logarithm can be stored in a look-up-table with 2'6 entries and only
the addition has to be performed.

However, after a certain size of the Galois field the method can not be applied anymore and
the plain multiplication has to be performed by shift, AND and XOR operations.

In [42] a collection of libraries supporting secret sharing where gathered. The GFShare library
[24] operates in a GF(2®) field and was analyzed in detail on an Intel i5-2500K, 3.3 GHz, 8
Gbit RAM, computer system. The achieved throughput for sharing large files for an applied 5/3
threshold scheme was 7.4 Mbit/s. This value is relatively small compared to Gigabit networks
and small extension fields.

In [7] secret sharing schemes were analyzed in terms of their performance. The focus of their
work is the comparison of different schemes according to the threshold parameters n and k. There
was no information about the used specific computer system. However, with Shamir’s Secret
Sharing scheme a throughput of about 9 Mbit/s could be achieved for generating 10 shares. The
Computational Secret Sharing achieved a throughput of about 18 Mbit/s for the same amount
of shares.

To increase the throughput, efforts were made to use the Graphics Processing Unit (GPU)
for better performance. In [13] it was shown that the benefit of a GPU increases with higher
thresholds. A threshold of 4 achieves a throughput of 48 Mbit/s for the calculation of one share.
Another implementation of secret sharing based on cellular automata on a GPU [38] reveals a
speed of 40-160 Mbit/s in a 5/5 threshold scheme.

10



3 Shamir’s Secret Sharing

In this section the implementation of Shamir’s Secret Sharing scheme in a FPGA is presented. Its
resource utilization is discussed as its performance is evaluated against a software implementation
as well.

3.1 Introduction

The concept of Shamir’s Secret Sharing scheme was introduced in chapter 2.3. The aim of this
chapter was to find an efficient FPGA implementation of Shamir’s scheme in terms of throughput.

In the use-case of this work the secrets to be shared are files. In order to apply Shamir’s
algorithm, first the secret has to be divided into words of a certain bit-width depending on the
selected binary extension field. The binary extension field is generic and can be freely selected
from GF(2"),n € {8,16,32,64,128} to compare their efficiency.

The tasks are divided into the share generation, the share reconstruction and finally the cre-
ation of a whole system which manages the dataflows. Different implementation strategies and
optimization methods are presented and evaluated as is the efficiency of the algorithm, applied
in different Galois fields. The results are fully parametrizable cores for the parameters (n, k) of a
threshold secret sharing scheme and the bit-widths of secret-words.

3.2 Share Generation

The generation of a share according to Shamir’s scheme requires the definition of an unique Shamir
polynomial for each secret (-word) and the evaluation at a specific point z with the condition
x # 0. The information required to build the Shamir polynomial includes the secret itself, the
x-point and various random data for the coefficients ¢, n > 0.

While the randomness of the coefficients is of crucial importance to the secrecy of the scheme,
the generation of random numbers is not covered in this chapter. Moreover, they are considered
as given from an interface from an outer party. However, it is theoretical possible to include the
random number generation within the FPGA even if it contradicts the FPGA’s purpose, as it
should be a fully determined system. Various works have identified sources of randomness on a
FPGA and showed the possibility to build a TRNG within it, e.g. [51], [72], [66], [32]. In chapter
6.2 the generation of random numbers on a FPGA will be discussed.

11
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The evaluation of a polynomial with a degree of n in a straight forward approach (3.1), process-
ing the coefficients in an ascending manner, consists of > ;" ; (¢) multiplications and n additions.
The usage of the Horner scheme, where the coefficients are processed in an opposite way from
cn to ¢g, allows a significant reduction to n multiplications and n additions. It is illustrated in
equation (3.2). Additionally, it allows efficient implementations in hardware.

y=co+erXxa+coX a4 .. +eny xaxln—1)+ ¢, x 2" (3.1)

y=(((ecn Xz +cp—1)Xx+..+c2)XT+c1)XT+ o (3.2)

If the result of an operation exceed the bit-widths of its field, a reduction is required. Therefore
three different operation types can be identified for the computation of the equation (3.2). They
consist of an addition, a multiplication and a reduction.

Addition

The addition in a binary extension field is implemented efficiently with little effort. Due to the
fact that only two symbols are used for one digit in the polynomial, no carry bits are needed.
The truth table for a bitwise addition is shown in table 3.1b and is the exact equivalent to a
XOR-operation. The implementation on the FPGA could be realized with linear complexity in
dependence of the bit-width of the operands.

[ [lof1] [ x[lo]1]

0ot 0fofo
11]o0 1ot
(a) (b)

Table 3.1: Truth table for bitwise addition and multiplication in GF(2™).

Multiplication

FPGAs usually contain multiple DSPs to perform arithmetic operations. Because the multi-
plication in a binary extension field is different to an arithmetic operation, the DSPs cannot be
used and specially designed GF(2")-multipliers are implemented with LUTSs. In finite field arith-
metic a multiplication consists of shift operations and additions. The difference to an arithmetic
multiplier lies in the additions and the fact that there are no carry bits. The truth table of a
bitwise multiplication in a binary extension field in shown in table 3.1a and is identical to an
AND-operation.

The nature of the multiplication gives the possibility of implementing it sequentially by shifting,
bit-wise multiplication and adding all sub-results together, or executing the whole functionality
in parallel. The focus of this work is on the parallel implementation in order to gain a higher
throughput and a more efficient use of LUTs within the FPGA. The resulting structure for a
3 x 2 polynomial multiplier is shown in figure 3.1, where the bitwise multiplication is performed
with an AND-operation and the addition with a XOR-operation.

12
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Figure 3.1: Parallel 2 x 3 bit polynomial multiplier architecture, build with logic gates.

The size of the multiplier increases with the square of the input size, assuming both inputs with
identical widths. It is illustrated in figure 3.1. The growth in size strongly affects the processing
of wider words, such as 128 bit. Furthermore, due to the longer paths in parallel architectures the
minimal possible clock (clk) period increases. In table 3.2 the multiplier sizes after synthesis and
implementation and the reachable minimum clock periods are summarized for the investigated
bit-widths.

bit-widths LUT LUT minimal
of multiplicands synthesis implementation clk period [ns]
8 29 33 2.2
16 118 133 2.7
32 450 483 3.5
64 1729 1747 4.6
128 7175 7195 5.6

Table 3.2: Size of a GF(2")-multiplier in dependency of the bit-widths from the inputs, measured in
6-input LUT.

By limiting the possible x-values to a certain bit-width a decrease in size can be achieved. This
method was already used before in [77]. It has no impact on the secrecy of the scheme, but it
restricts the amount of possible generated shares since every share needs a different x-value to be
unique. In table 3.3 the resulting size after synthesis of an asymmetric multiplier is shown.

As shown in table 3.3 the restriction of the z-values comes with a high reduction of LUTs.
Limiting the possible z-values to results of the power of two, x := {2"},n < bit — width, an
even higher decrease of LUTs could be gained. It would reduce the multiplication effort to the
minimum, as it would result in processing only shift operations, which could be realized without
any logic and only wiring. The main disadvantage is the relatively small set of possible z-values
(8 in GF(28), 128 in GF(2'%®)) resulting in a small amount of different generated shares.

Another way of restricting z-values includes the usage of predefined static points. A multiplier
with a static value fixed on one input results in a high decrease of required logic, but leads to the
loss of flexibility at run time.

The final size of such a multiplier is strongly dependent on the actual fixed value. To gain an
idea of its complexity, table 3.2 presents synthesis results with one value fixed at a specific point.
In GF(2%) all 255 possible values were synthesized, in GF(2!0) to GF(2!2%) 200 values, equally
divided over the corresponding field, were synthesized.

13
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bit- first multiplicand
widths || 8 16 32 64 128
2 I 6 11 19 33 65
4 |16 32 64 128 208
6 | 21 41 81 159 319
- 8 |27 51 99 224 386
g 12 78 170 317 577
=16 114 200 392 775
= 20 284 559 1117
= 24 337 678 1327
T 28 394 777 1535
S 32 450 882 1742
248 1304 2602
64 1731 3520
96 5361
128 7239

Table 3.3: Size of an asymmetric GF(2")-multiplier according to the bit-widths of its inputs respectively,
measured in 6-input LUT.
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Figure 3.2: Size of a polynomial multiplier with one input fixed at a specific value (x-axis) for different
Galois fields, measured in 6-input LUT.

For the rest of this thesis the x-value was restricted to 8 bit, resulting in 255 possible shares.
The size was considered to be sufficient in a typical cloud based data storage setting and the
decrease of up to 5.3% of originally needed LUTs in GF(2!?8) brings high performance benefits

as well.

Reduction

The reduction in a binary extension field accords to a modulo operation, where the value to be
reduced is divided by the irreducible polynomial. The irreducible polynomial must be of degree
n in a GF(2"). Usually a set of irreducible polynomials are available for a binary extension field

14
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and from a mathematical point of view all are equally suitable for defining the field. From the
practical point of view, the weight of the polynomial and the number of nonzero coefficients have
a direct influence on the complexity of the modulo operation and its hardware implementation.
To implement one static irreducible divisor polynomial results in even more reduction potential
of the circuit.

Such a modulo operation by a static divisor can be implemented efficiently as a linear feedback
shift register (LFSR). The number of nonzero coefficients in the divisor polynomial equals the
amount of XOR-connections in the feed-back loop. To that end, this approach needs n cycles to
generate the results, where n is the number of input bits.

The polynomial division and modulo operation is a common problem, as it is used for many
other applications, for example in the cyclic redundancy check (CRC). Consequently the polyno-
mial division was part in a lot of research to investigate the realization in less clock cycles. In
[81] a parallel implementation is described, which calculates the result within one clock cycle by
using only static XOR~connections. The algorithm to find these connections was used for this
work and is described below.

1. Consider the input data D of n bits as an 1 X n vector and the irreducible polynomial as
an 1 x m vector.

2. Calculate n modulo results subsequently for the input data set 2¢,i = 1...n, and store the
bits of each result in a vector V;. There will be 7 vectors V with the size 1 x m.

3. Create a n x m matrix M, where each column consists of the vector V.

4. Store the product of the matrix M and the input data D in a vector R, R = M ® D, which
is the result. The symbol ® denotes a matrix multiplication, where the multiplications are
performed by AND-operations and additions by XOR-operations. As a result only those
input bits remain for each output bit where the corresponding bit was set in the matrix M.
Only those bits have to be XOR connected in hardware in order to produce the remainder

R.

A Java program was developed in order to pre-calculate the required XOR-connections subse-
quently for all implemented fields. The resulting XOR-connections can be found in the appendix.

As mentioned before, the size of the chosen irreducible polynomial influences the complexity of
the circuit. In [62] small irreducible polynomials were investigated for different binary extension
fields. For each investigated and developed field in this work (GF(2%), GF(21¢), GF(23%), GF(2%4)
and GF(2!2%)) the irreducible polynomial was chosen from [62] and a summary can be found in
table 3.4.

bit-width irreducible polynomial

8 P
16 20 425 + 2% + 1
32 232+ 27 4 2% + 22
64 2t 43 4o
128 B4’ a4

Table 3.4: Used irreducible polynomials in this work.
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The resulting size of the reduction circuit, measured in 6-input LUT, is shown in table 3.5 for
each investigated Galois field. The input bit-width also influences the size, here input bit-width
2 x (n—1) is assumed, which corresponds to a polynomial multiplication output for n input bits.

Galois fields  GF(2%) GF(2'%) GF(2%?) GF(2%) GF(2'%)
Input bit-width 15 31 63 127 255

LUT needed 14 36 32 127 253

Table 3.5: Size of the reduction circuit in different Galois fields, measured in 6-input LUT after synthesis.

Share Generation

The character of equation (3.2) is best suited for a sequential computation in a feed-back loop,
shown in figure 3.3b. One multiplier is used for performing all required multiplication steps
subsequently. After each multiplication a reduction has to be performed, followed by an addition.
The benefit of such an architecture are the arbitrary selectable threshold values at runtime, as
only the amount of needed clock cycles changes. A drawback of such a scheme is the fact, that
all operations have to be performed within the same cycle for an efficient capacity utilization of
all units, because of the feed back loop. This leads to the disability of efficient pipelining.

On the other hand, an architecture fully capable of pipelining is shown in figure 3.3a, where
architecture (b) is unrolled. In comparison to (b) the threshold value has to be chosen at synthesis
time, which strongly effects the synthesis result in terms of space. Moreover, the data management
becomes difficult. To alleviate data management issues, the design was build with a sequential

approach.
3 | E rand
2 |2 o » rand
\ﬁ—|—' secret %j_' g
—P secret |2
Adder Adder |[sh - Adder *h2¢ Adder [share
share,
> —> rand L (XOR) X XOR
(XOR) N (XOR) z MULT | (XOR)
x| MULT MULT = MULT
x
(a) b (c)
(b)

Figure 3.3: Multiple architectures for a share generation. (a) presents a pipelined architecture. while
(b) and (c) are sequential architectures with a feed back loop.

As shown in figure 3.3b, two multiplexers are needed for the share generation. The value of the
first summand has to be selected between the random values and the secret itself. On the other
hand, the multiplier is fed with a random number in the first cycle of an evaluation round and the
previous addition result in all other cycles. In this work a slight adjustment to this architecture
was made, shown in figure 3.3c, which consists of only one multiplexer. Obviously this comes with
the cost of the multiplier not being used the in first cycle of the evaluation. However, the data
management becomes easier and one random value or secret is applied at a time, thus providing
many advantages as well. It is of special benefit for looking up the next step of Computational
Secret Sharing. Moreover, it becomes more LUT x number of cycles efficient for threshold values
above a certain limit.
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While architecture (b) needs k — 2 cycles to calculate a share, architecture (c) needs k — 1
cycles, where k is the threshold value in the secret sharing scheme. Higher values for k£ decrease
the relative difference between these needed cycles and the saving of the second multiplexer is of
greater influence. The relation is demonstrated in figure 3.4, exemplary for Galois fields GF(2'6)
and GF(2%4), where architecture (b) becomes more LUT x cycle efficient after a certain threshold
value k of 4 or 5.

GF(219) GF(25%)
900 F—— ‘ ‘ 1 3,000 f—— w w T
——architecture (b) —&—architecture (b)
2 700 L architecture (c) 2,500 || —— architecture (c)
)
% 2,000
x 500
. 1,500
4
1007 \ \ \ \ 4 5001 \ \ \ \ i
2 3 4 5 6 7 2 3 4 5 6
Threshold level Threshold level

Figure 3.4: A comparison of the performance from architecture (a) and (b) for the share generation
in dependence of the threshold value from the secret sharing scheme. The performance is
measured in the cycle LUT product.

In a secret sharing setting for cloud applications, threshold values above or equal to four are
expected. Combined with better management and adaptability to the Computational Secret
Sharing scheme, architecture (c) was favoured and implemented.

The architecture of the final Share Generation Unit (SGU) is described in the following and
presented in figure 3.5. In this work, the design is parametrizable for the used Galois field, the
bit-width of the x-values and the number of parallel share generations. A finite state machine
(FSM) controls the sharing process, while multiple Polynomial Evaluation Units (PEU) can be
used to generate multiple shares at a time. Each PEU contains only elements that are needed to
be unique for each share. It is beneficial to construct them parallel, as all need the same random
and secret values at a time, which leads to only one required multiplexer for all PEUs. Moreover,
the random values don’t have to be saved for later rounds.

If a share construction is requested, the signal enable is set to high. The circuit starts to load
the secret into a register and the first random word, while both read operations are confirmed
via the corresponding rand_rd and secret_rd signal. Next, the FSM controls the multiplexer in
order to distribute the random values for k£ — 2 cycles and the secret at the last round. After
the last round the corresponding share is at the output and the share_valid signal confirms the
share. The register at the multiplier input is directly reset in preparation of the next round. The
next round is initiated if the enable signal is high again.

The resulting size in terms of 6-input LUT, as well as the minimal possible clock period is
demonstrated in figure 3.6, for the construction of 10 shares in parallel. Remarkable is the slight
increase in resources and the decrease of the clock period for GF(2!6) compared to GF(232),
mainly because of the efficient implementable irreducible polynomial in this field.
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Figure 3.5: Architecture of the Share Generation Unit.

3.3 Secret Reconstruction

For the recovery of the original secret an interpolation is applied. In [77] various interpolation
techniques were analysed in terms of their complexity and scalability. It was shown that the
Lagrange interpolation is most suitable for this application. The Lagrange interpolation is per-
formed in two steps. First basis-polynomials are computed as in (3.3) regarding the available
points. By using the the shares as weights for the basis-polynomials, the y-value at the interested
point is reconstructed by multiplying each shares with its corresponding basis polynomials and
adding products together, shown in (3.4).

(=TI % (3.3)

k
L(x) := Zyllz(m) (3.4)

J=0

The basis polynomials remain unchanged as long as points from the same x-value, regardless
the y-value, are used. However, every time different points are included in the interpolation, all
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Figure 3.6: Size of the SGU in 6-input LUT for the synthesis and implementation and the minimal
possible clk period. In the evaluated design 10 shares were constructed parallel.

of the basis polynomials have to be recalculated. At this point a practical assumption for a high
performance increase is applied.

It is assumed that the applied x-values don’t change with every processed word. This comes
from the assumption, that all shares, stored on one specific server contains the same x-value and
data in a network setup are usually transmitted in packets. The size of an Ethernet frame is
typically about 1500 bytes, which would accord in GF(232) to about 1500/4 = 375 words. When
reconstructing a file, the source of the shares are not changed at a per word basis. They would at
least change with every packet or more realistic they won’t change during a hole reconstruction
process. The distributed setup is due to security and reliability reasons and there is no need
to change servers frequently, except if required by outer circumstances. For that reason, the
computational intense calculations of the basis polynomial are outsourced to a processing system
(PS) within the FPGA, and the available logic is used for computations continuously.

The implementation of the resulting operations into logic are addition, multiplication and
reduction, similar to the previous section of the share generation. The operations addition and
reduction remain unchanged. The multiplication optimization methods applied for the share
generation are not applicable here, because a symmetric multiplier is necessary. However, there
are multiple methods for further reduction of the size of a polynomial multiplier. This will be
discussed in more detail in chapter 4. For the future design a multiplier with several, so called,
Karatsuba levels is used. These designs show a significant increase of the minimal clock period
for higher bit-widths. However, because the multiplier is not used in a feed-back-loop, it can be
efficiently pipelined to overcome timing problem.

The weighting function of the shares with the basis polynomial consists of multiplications and
additions. A use of k multipliers, illustrated in figure 3.7a, enables an efficient reconstruction of
one share per cycle. However, it is possible to use only one multiplier and apply the coefficients
subsequently, shown in figure 3.7b. An efficient pipelining of the multiplier is implemented since
only an adder is in a feed-back-loop.
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Figure 3.7: A sequential and parallel architecture for the secret reconstruction.

The architecture, as shown in figure 3.7b is selected in order to reach the same share generation
and secret reconstruction speed as described below. It was designed generically to be able to
work in all discussed Galois fields. A generic number of Karatsuba levels are applied in the
multiplier and the opportunity to choose pipelining or not. The final architecture is shown in
figure 3.8. The PS is the head of the reconstruction process and managing the computation of
the basis polynomials. The basis polynomials are computed in the PS using a C-library from
James S. Plank [26]. After computation the basis polynomials are loaded into the corresponding
hardware registers via an AXI bus. The shares are supplied subsequently over the same bus. This
assumption was taken to facilitate the circuits, but can be easily extended with a set of share
registers and a multiplier.

If shares are available, the Secret Reconstruction Unit (SRU) is activated by setting the enable
signal to high. The first base polynomial is now forwarded to the multiplier by the multiplexer.
Additionally, the first share is aligned to the multiplier, and its read is conformed by setting the
share_read signal to high. The register at the adder input is reset according to the number of
pipelining stages if the first multiplication result of the new reconstruction process is available
on the adders input. With the input threshold, the threshold level is applied to the circuit. In
the following cycles all weighted base polynomials are added together successively. Finally, the
secret_ready signal is set to high, signalizing the final reconstruction of the secret.

The resulting size in 6-input LUT and the achieved minimum clock period with the architecture
is shown in figure 3.9 for a pipelined and non-pipelined version respectively. Due to the symmetric
multiplier the size of the final Secret Reconstruction Unit increases quadratically. The influence
of the pipelining stages results in a slightly bigger final design, because less logic optimization is
possible. On the other hand, a significant increase of the possible clock frequency is possible.

3.4 Evaluation

In order to evaluate and compare the presented implementations, both a secret sharing software
implementation was compared to this hardware implementation and a full working FPGA imple-
mentations is realized, which communicates with external systems and is capable of secret sharing
and secret reconstruction.
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Figure 3.8: Architecture of the Secret Reconstruction Unit.

Hardware Software Comparison

For the evaluation against a computer program, a simple Shamir Secret Sharing algorithm
was implemented, which can operate in in all investigated Galois fields. Within this program,
all additional tasks, such as the random number generation, read and write procedures to the
hard disk or network and other data management, were excluded. This was in order to find the
theoretical maximal throughput.

Various software libraries were tested in order to find an efficient implementation for the cal-
culation in the Galois fields. The selected library for the implementation is from James S. Plank
[26]. It contains three different multiplication strategies, each applied for different Galois fields.
Fields up to 9 bit are implemented in look-up-tables, fields from 10 to 22 bit are implemented
with logarithmic and inverse logarithmic look-up-tables and an addition and fields bigger or euqal
to 23 bit are implemented with shift and addition operations. The software was running using
multithreading and 100% utilization of each processor core on a computer with the following
specifications:

1. Processor: Intel i5-4590, Quadcore, 3.3 GHz
2. RAM: 16 GB, DDR3

3. Operating System: Windows 7, 64 bit

4. Hard Disk: 512GB, SSD, Samsung 850 Pro
5. Thermal Design Power (TDP): 84 W

The hardware was implemented on the Zedboard using a Zynq®-7000 All Programmable SoC
XCT7Z020-CLG484-1 FPGA. The data management was neglected for the FPGA, but due to
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Figure 3.9: Size of the SRU in 6-input LUT, for synthesis and implementation as well as the minimal
possible clk period. It is shown for both, a pipelined and non-pipelined architecture.

reservations of structures and routing, an utilization from only 50% was assumed, resulting in
26600 available LUTs. For a theoretical comparison, the architecture results from the previous
sections were used and simply extrapolated for a usage of of 26600 LUTs.

The final results are shown in figure 3.10. A SGU with a parallel generation of 10 shares was
applied in the FPGA design. The throughput is measures in Gbit/s according to the output of a
functionality. This is generated share bits for the SGU and reconstructed secret bits for the SRU.

Figure 3.10 shows an almost constant speed of the share generation in the FPGA, with a single
peak at 32 bit. This effect of constancy is caused by the static size of 8 bit for the x-value. In the
computer implementation a strong drop of the performance is notable at 32 bit. At this point
look up table based calculations are not applicable anymore and the relatively slow shift based
multiplications are necessary. Overall the FPGA design turns out to have a performance gain of
a factor of about 100.

Field Share Generation Secret Reconstruction

FPGA PC FPGA PC
GF(2%) 8.2mW 42W 9.9mW 50W
GF(2'9) 10.7mW 26W 13.3mW 39W
GF(2%2) 6.4mW 205W 22.1mW 275W
GF(25%) 9.0mW 237TW 43.3mW 318W
GF(2!2%) 5.2mW 31TW 89.1mW 429W

Table 3.6: Power consumptions for a throughput of 1 Gbit/s.

Based on the throughput shown in figure 3.10 an estimation for the power consumption per
throughput was made. The Intel i5 processor has a power consumption of 8 W and the power
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Figure 3.10: The maximal theoretical throughput of a software and a FPGA implementation, for the
share generation and secret reconstruction respectively. A parallel construction of 10 shares
in the FPGA is assumed. The throughput is measured in share bits per second for the share
generation and secret bits per second for the secret reconstruction.

consumption of the FPGA was estimated using Vivado. In table 3.6 the resulting power con-
sumptions for a throughput of 1 Gbit/s are compared.

Implementation of a complete System on the Zedboard

While the implementation for all investigated Galois fields were verified with simulation, for the
practical proof of concept a fully working implementation on the Zedboard was made. For this
purpose an AXI secret sharing intellectual property (IP;) core was build, which communicates
via an AXI bus. The PS takes care of the communication to the outer world and applies all
necessary data to the secret sharing core. These data includes the calculated basis polynomial,
the x-values, the threshold level, the secret and the shares. A simple control and status register
is accessible for the PS to enable the SGU or SRU. All secret and share data were buffered within
the SSS core using First In- First Out (FIFO) on all inputs and outputs. The status of the FIFOs
were accessible by the control and status register. A simple TRNG was included in the design,
its structure will be discussed in detail in section 6.2.
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The implemented system works in GF(23?) for simplicity reasons, as the AXI bus of the PS has
a width of 32 bit. The final usage, including the logic of the FIFOs and communication is shown
in table 3.7. 8 shares were produced parallel and a threshold value of 4 was selected. With a
used clock frequency of 200 MHz, the implementation achieves a throughput of 12.8 Gbits/s for
the share generation, measured in shared bits produced per second and 1.6 Gbits/s for the secret
reconstruction, measured in secret bits recovered per second. The device utilization is about 5.8%
of the available LUTs.

SGU SRU TRNG SGU-FIFOs SRU-FIFOs AXI Bus
LUT 934 390 384 375 293 297
BRAM 4.5 1

Table 3.7: The FPGA implementation result for a SSS core, listed by functional units.
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4 Advanced Multipliers

In this chapter the polynomial multiplier realization within a FPGA and various improvement
strategies are analyzed.

First mathematical algorithms to reduce the computational complexity are presented and the
Karatsuba algorithm is discussed and evaluated in more detail as well as its implementation in the
FPGA. In order to further decrease the final LUT count FPGA specific strategies are investigated
based on including other design elements of the FPGA.

4.1 Introduction

The implementation of Shamir’s Secret Sharing reveals the multiplier to be the bottleneck of the
design, with the highest consumption of resources. Therefore other implementation techniques
were investigated in order to reduce the amount of necessary LUTs for a multiplier.

While the classical multiplication straight forward approach has a quadratic complexity of
O(n?), with n as the number of input bits, various algorithms for the reduction of the complexity
of a multiplication exist. They include the Karatsuba algorithm [40], the Toom multiplication
[71] and its generalization, the Tom-Cook algorithm [16] as well as improvements of it [83],
the Schénhage-Strassen algorithm [61], the Knuth algorithm [43] and algorithms using the Fast
Fourier Transformation (FFT) [11] [17].

In comparison, the Karatsuba algorithm is best suited for a practical implementation due to
its simplicity. For that reason a performance gain with a Karatsuba multiplier is discussed in
many papers equally for soft- and hardware, e.g. in [29] and [28]. It is applicable to any kind
of multiplication including finite field applications. In section 4.2 the influence of the Karatsuba
algorithm in different binary extension fields is examined.

In section 4.3 alternative methods to decrease the utilization of LUTs are investigated, based
on the application of addition design elements within a FPGA for performing a polynomial
multiplication.

4.2 Applying Karatsuba’s Algorithm

In 1963 Karatsuba published an algorithm to reduce the complexity of a multiplication, known
as the Karatsuba algorithm. The idea follows the ’divide and conquer’ scheme. A multiplication
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with a complexity of O(n?) is broken down to smaller multiplications and additions, with a
complexity of O(n). The resulting overall complexity of this scheme is O(2/°92(3)). Even with the
theoretical improvement it is not guaranteed to reach the same complexity reduction within a
FPGA resulting in a LUTSs reduction. More complex data paths may result in longer delays. For
this purpose the algorithm was investigated for a 6-input LUT. In the following procedure it is
described how the Karatsuba algorithm works.

Consider two input multiplicands A and B with a bit-width of m. Both are divided into two
parts with half of the bit-width A, A; and Bj,B;. A;,B; represent the lower bits and Aj,,Bj,
the higher bits of A and B in equation (4.1). Mathematically, we denote such a split by a
multiplication with R™, where R represents the base of the used number system, e.g. 10 in the
decimal system or 2 in the binary system, and m symbolizes the position of a single symbol within
a number, e.g. 1R' = 10.

We consider a and b written in lower cases as the digits of A and B respectively and the value
x in the brackets (x) indicates the bit number.

AZAhR%—I-Al:am—{—...—I-aO
B=DByR% 4+ B, = by, + ... + by

Ap=alm) + .+ a(y), Ay =a(y — 1)+ ..+ a(0) (4.1)
By =b(m) + ... + b(%),BZ - b(% —1) + ... + b(0)
The product AB of A and B is expressed as the product of its sum.
AB = (Ap,R™ + A))(BRR™ + By)
= Ap By, R?m + (AhBl + BhAl) R™+ A B;
, , , , NGl (4.2)
Pa Pc Pb
= P,R*™ 4+ P.R™ + P,
The facilitation is given by a different representation of P,
P. = AhBl + BhAl
= ApBy — ApBy, + A\B; — A B + A B + BpA;
= (Ap + A))(Brn + By) — ApB, — A By (4.3)
—— N
Pd P, Pb
=FP—FP,— D
with the new product term P;. The final result is expressed as
AB = P,R*™ + (P;— P, — P,))R™ + P, (4.4)

and the three products F,, P, and Py of two inputs with the width of % and four additions or
subtractions are performed. While the addition is of linear complexity and the multiplication is
of quadratic, the resulting complexity is O(ml"g2 (3)). With larger bit-widths m, the performance
of a straight forward implementation increases.

26



Advanced Multipliers
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Figure 4.1: A symbolic representation of Karatsuba’s algorithm is shown in (a). In (b) the addition and
assembling regarding its bit position of the ’add and assemble’-block is illustrated.

Karatsuba’s algorithm is well suited for a hardware implementation, e.g. shown in [75]. Figure
4.1a presents a graphical representation of the structure, which leads directly to a hardware
architecture. In a binary extension field, the addition and subtraction is replaced by a XOR-
operation and the multiplication is performed by a polynomial multiplier. The final ’add and
assemble’ block in figure 4.1a is in charge of assembling the signals P,, P, and P, according to
their bit position and adding them by a XOR-connection, illustrated in figure 4.1b.

In order to increase the performance gain, the facilitation efforts are applied recursively for
all sub-multiplications in Karatsuba’s algorithm. We refer to the amount of recursive applied
Karatsuba multiplications as Karatsuba-levels, e.g. a Karatsuba-level of one stands for a single
application of the formula. Due to the nature of logic synthesis and LUTs, the benefit of the
Karatsuba algorithm starts to influence the design positively at a certain bit-width. At a bit-
width of 8 it is of disadvantage to apply Karatsuba’s formula. The utilization benefit of the
formula starts at 16 bit and limits the performance gain of using multiple Karatsuba-levels. In
figure 4.2 the size of multipliers according to its Karatsuba-levels is shown for the Galois fields
GF(2"), n € {16,32,64,128}, with n = 8 excluded as there are no benefits recognizable. The
minimum clock period is shown subsequently for each level and an increase in time with ascending
Karatsuba-levels is noticeable. This is due to a higher datapath dependency.

To overcome the increasing time effort, multiple pipelining stages were applied. They decrease
the minimum clock period significantly, but come with the cost of a bigger design size, due
to less optimization possibilities in the logic. The pipelining architecture presented in figure
4.2 consists of registers before and after each sub-multiplication. The double-register style was
applied, because it showed the biggest size-to-time benefit. The total savings for an optimal
Karatsuba-level rises with the bit-width of the inputs, summarized in table 4.1.

bit-width of the inputs: 8 16 32 64 128
optimal Karatsuba-level: 0 1 2 3 4
LUT savings: 0% 14% 16% 33% 47%

Table 4.1: LUT savings for an optimal Karatsuba-level compared to a straight forward multiplier archi-
tecture.
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Figure 4.2: Multiple Karatsuba-levels applied for multipliers in different Galois fields. The resulting size
in 6-input LUT of the synthesis as well as the implementation results, for both a pipelined
and a non-pipelined version is illustrated.

4.3 A Better Overall Resource Utilization

After applying the Karatsuba algorithm and its strong improvements of LUT utilization, the
multiplier remains the biggest block in the design and bottleneck. Therefore additional methods
for decreasing the LUT count were investigated. Because the target architecture of this work is a
FPGA and design elements other than LUTSs are available, they were included in the multipliers
design. The design elements on a FPGA are LUTs, D-FFs, DSPs and BRAM.

The following designs include these elements in order to reduce the LUT count and are evaluated
in terms of their efficiency and usability.

D-FF

Alternatively the D-FF works similar to an AND-gate with additional buffering using the data
and the enable input. The AND-gates in the polynomial multiplier, shown in figure 3.1, are
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substituted by D-FFs resulting in the design of figure 4.3. This design is intended for a 3 x 2 bit
multiplication of the multiplicands a and b with the output product c.

a ar a0

bo
en en en J
D-FF Dl D-FF D« D-FF O
b
A A Y
en en en
D-FF D« D-FF Di« D-FF D«
Q Q Q
3 v ¥ v
[xor | [ xor |
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Figure 4.3: A 3 x 2 bit polynomial multiplier architecture, using D-FFs as AND gates.

In table 4.2 the resulting LUT and D-FF utilization of multipliers in different Galois fields,
using D-FFs as AND-gates, are summarized. To give a relation for the amount of D-FFs, the
percentage regarding a Zynq®-7000 FPGA with 106400 available D-FF's is recorded.

Even with a high amount of D-FFs within a FPGA, the required number is very extensive in
this design, especially for multipliers of large bit-widths.

Field LUT D-FF D-FF utilization LUT savings

GF(2%) 25 79 0.07% 0 (0%)
GF(2'%) 74 287 0.27% 38 (33.9%)
GF(2%?) 250 1087 1.02% 198 (44.2%)
GF(2%%) 910 4223 3.97% 819 (47.4%)
GF(2'%8) 3457 16639 15.64% 3775 (52.2%)

Table 4.2: The size of a polynomial multiplier using D-FFs in the design.

BRAM

FPGASs usually contain BRAM within the logic area for fast data-storage. The Zynq®-7000
contains a 280 dual-ported 18 kbit BRAM block. A possible way of allocating the BRAM blocks
to other operations is to store look-up-tables with data of the pre-calculated multiplication results.
In a straight forward approach, the data is accessed using the input multiplicands as the address
and the result is available on its data output. The result is either not-reduced or reduced according
to the Galois field. However, in this case it is not possible to implement such a multiplier for a sub-
multiplication for bigger Galois fields, e.g. as a sub-multiplier within the Karatsuba algorithm.
The application of the sub-multiplication requires not-reduced results stored, which leads to a
double memory size.

Another technical opportunity for look-up-table based multiplications with less memory storage
applies the logarithm. By applying formula (4.5) the logarithm and inverse logarithm is pre-
calculated and stored in a BRAM look-up-table.

ab = log~(log(ab)) = log™" (log(a) + log(D))
M~ N = (4.5)
BRAM BRAM BRAM
LUTy LUT>  LUTs
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The outputs of the logarithm look-up-tables are added and used as input for the inverse log-
arithm look-up-table. The reduction of the memory amounts up to 3/4 of an approach stor-
ing the final multiplication results. However, such a multiplication is not applicable for a sub-
multiplication in a bigger field. In table 4.3 the demanded memory is listed for the three archi-
tectures discussed above. The column "red.” refers to a multiplier with stored reduced results,
"no red.” to stored unreduced look-up-table results and ”log” to an architecture applying formula
(4.5). Furthermore the required amount of 18 k-BRAMs in listed.

Of particular interest is that two multiplications are performed simultaneously with the same
resource utilization a single multiplication would require. This is due to the dual ported structure
of the BRAM.

While this method is reasonable for small Galois fields, it is not practical for bit-widths above
8 as the memory space would increase significantly.

bit-width memory needed [bit] 18k BRAM blocks (utilization)

of inputs no red. red. log no red. red. log
2 18 32 — 1 (0.4%) 1 (04%) —
4 1792 1024 96 1 (0.4%) 1 (0.4%) 3 (%)
6 45k 25k 3k 3 (1.1%) 1 (0.4%) 3 (1%)
8 983k 524k 73k 60 (21%) 32 (11%) 3 (1%)
10 20M  10M 157k 1152 (411%) 576 (202%) 3 (1%)
12 386M  201M  31M — — 9 (3%)
14 7G 3G 604M — — 39  (13%)
16 133G 67G 111G — — 180 (64%)

Table 4.3: The required memory size for look-up-table based multiplications and the effective amount of
18k bit BRAM for the realization.

DSP

A direct approach is not feasible using a DSP in a straight forward approach. However, a
considerable amount of DSPs is available on a modern FPGA, e.g. 220 in Zynq®-7000, making
it worth to include the DSPs into the final design.

The major difference in arithmetic and polynomial multiplication is the missing carry bit in a
polynomial addition, which is performed subsequently in a multiplication process. The basic idea
is to skip all bits possibly influenced by a carry bit. In other words, adding leads to bigger numbers
in terms of digits representing these numbers. For example, by adding two binary numbers with
the size of one bit, a maximum of one carry bit is produced for the case that both summands
are one, 1, + 1 = 10;. If four one-bit numbers are added, the resulting number may need up to
three bits, 1 + 15 + 1, + 1 = 100,. The last digit always accords to the result in a polynomial
addition. Therefore not all of the input and result bits of a DSP are used and digits influenced
by a previous carry bit are skipped. A resulting adding scheme for a 25 x 18 bit arithmetic
multiplier, as it is available in a DSP of the Zynq®)-7000 architecture, is shown in figure 4.4. The
two polynomial input multiplicands are referred to as a and b. The multiplication is performed by
shifting, bitwise multiplication and adding all sub-results together. The shift process is illustrated
graphically, each row is bitwise multiplied by the input shown on the right, b, and then all rows
are added to reach the final result c¢. Every third input bit of the DSP multiplier is connected
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to a bit of a polynomial multiplicand. This leads to 6 inputs of multiplicand b and 9 inputs of
multiplicand a, while all other inputs are hold at zero. The highest possible result of the addition
in this scenario is 110, by adding six times one. Because only every third bit of the output
is processed, the bits influenced by a carry do not influence the final polynomial multiplication
result.
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Figure 4.4: A schematic for performing a 6 x 9 bit polynomial multiplication in an 18 x 25 bit arithmetic
multiplier (DSP), using every third bit, for the inputs (ag - ag and by - b5) and outputs (cg
- ¢13) respectively.

The final result is a 9 x 6 bit multiplier and for the same principle a multiplication of 13 x 3
bit is possible as well. This basic architecture was included in the designs for 8 x 8 and 16 x 16
bit multipliers, in order to integrate them as building blocks for multipliers of bigger sizes. In
figure 4.5 the architecture for an 8 x 8 bit multiplier is shown. The multiplication of 8 x 6 bits
is covered by a DSP multiplier, while the 2 x 8 bit multiplication is performed by LUTs. Both
sub-results are added using LUTs. This leads to a total utilization of ten LUTs and one DSP,
with 15 LUTs saved compared to a only LUT design.

Qg a; ag as a, az a, a; ag
:lospz b,
b,
| |LUT b,
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b,
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bg
b,
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Figure 4.5: figure
The design for an 8 x 8 bit multiplier, with DSP and LUT

The 8 x 8 bit multiplier could be implemented as a basic building block in order to build bigger
multipliers, such as a 16 x 16 multiplier by using them as sub-multipliers in Karatsuba’s algorithm.
However, more designs to build a static 16 x 16 bit polynomial multiplier were investigated, by
including two to four DSPs into the design. In a straight forward multiplication design, some
parts of sub-multiplications are performed by DSPs, while the rest is covered by LUTs. In table
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4.4 the synthesis results are listed for multiple designs using different amounts of DSP, partly
applying Karatsuba’s algorithm.

Architecture: (a) (b) - (c) - (d)
0DSP+ 2DSP 2DSP+ 3DSP 3DSP+ 4DSP
Karatsuba Karatsuba Karatsuba
LUT: 112 68 68 45 52 27
Saving/DSP: - 22 22 22.3 20 21.25

Table 4.4: The utilization for a 16 x 16 bit multiplier including a different amount DSPs in the design
and partly applying Karatsuba’s algorithm.

Multiplier architecture (d) with four DSPs is demonstrated in figure 4.6 and distinguishes
between whether the sub-multiplication is covered by DSPs or LUTs. The final sub-results are
added using LUTs.

A5 A1 313 d1p d13 9 A 3 3y A A5 3 Az A A &
DSP1 by
DSP2 b,
DSP3 b,
DSP4 b,

1

LUT bs

C30 Cag Cag C7 Co6 Ca5 Caa Ca3 Cop €1 Cyo Cig9 Cig €17 Cip Ci5 Cig €13 Cpp Gy € G Cg C G G € C3 G € G

Figure 4.6: Architecture (d) for a 16 bit polynomial multiplier, realized with DSPs.

By applying both, the Karatsuba algorithm for breaking down a multiplication to 16 x 16 bit
and using one of the architectures summarized in table 4.5, more complex multiplications are
realized with DSPs in the design. In table 4.4 synthesis results for 32, 64 and 128 bit multipliers
with DSPs are presented and compared for different basic 16 x 16 multiplication designs. The
final design is fully generic, where one can choose which strategy to use.

On average 19 LUTs are saved per DSP. The target FPGA possesses 220 DSPs, which allows
the saving of up to 3960 LUTs. With 53200 LUTs in the target FPGA, their utilization is reduced
significantly by 8%.

4.4 Conclusion

Multiple methods to reduce the final LUT count of a multiplier were evaluated. The D-FF and
BRAM based optimizations were not used, due to their marginal LUT savings by the high cost
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16 bit mult. -
architecture (a) (b) min. clk
LuT LUT DSP LUT DSP LUT DSP period
32 bit 396 291 6 12 ~ 3.3ns
64 bit 1236 996 18 36 ~ 3.5ns
128 bit 4111 3233 54 108 ~ 3.6ns

Table 4.5: The utilization of LUTs and DSPs using the Karatsuba algorithm until 16 x 16 bit multipliers
are reached and an architecture from table 4.4 including multiple DSPs in the design.

of other design elements and the fact that they are highly needed for other tasks in the final
implementation of a full system.

The DSP based optimization was included in the final multiplier design as a generic option,
because its significant decrease of up to 8% of LUTSs in the Zynq®-7000 architecture. Moreover,
they have no other purpose. A disadvantage may be the resulting higher power consumption,
as the DSPs are used in a very inefficient way. The Karatsuba algorithm is beneficial in wide
bit-width multipliers and was included in the final design to apply this facilitation until a 16 x 16
bit sub-multiplication is reached.
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5 Computational Secret Sharing

This chapter covers the progression of the implementation from Shamir’s Secret Sharing to the
Computational Secret Sharing scheme. It follows a theoretical speed comparison of a software
implementation, and a full CSS core is developed, capable of share generation and secret recon-
struction.

5.1 Introduction

The concept of Computational Secret Sharing was explained in chapter 2.4. The idea is to create
a concept with minimal sizes of shares in order to achieve a better storage efficiency. This scheme
was introduced in [46]. The scheme requires an encryption function, a decryption function, an
informational theoretic secure secret sharing scheme (e.g. Shamir’s scheme), and any secret
sharing scheme with optimal storage efficiency.

The first step of Computational Secret Sharing is the encryption of the original secret. The
encryption is performed with a random key, which is then shared using Shamir’s Secret Sharing
scheme. The encrypted secret itself is shared by applying the basic concept of Shamir’s poly-
nomial, but placing secrets instead of random numbers in all of the coefficients. The concept
will be simply referred to as Extended (Shamir) Secret Sharing (ESS) scheme. The difference to
Shamir’s scheme is the absence of random numbers and thereby not putting redundancy into the
shares itself. The result is an optimal storage efficiency for the ESS. The redundancy of the ESS
shares is given only by the generation of more shares than necessary for the reconstruction. The
key-share and secret-share are assembled into one message and sent to the shareholders. The key
changes for every message and the message length is free to choose.

Nonetheless, the additional key-share needs to be stored as well and the size of all shares
necessary for the reconstruction (which are k shares with & as the threshold value) asymptotically
approaches the size of the secret in dependency of the message length.

The encryption and decryption function is performed according to the Advanced Encryption
Standard from the National Institute of Standards and Technology (NIST) [2]. The standard is
approved by the National Security Agency (NSA) for top secret information [54]. The algorithm
is used worldwide, is publicly accessible and free to use.

The process of constructing shares according to the Computational Secret Sharing scheme with
the AES algorithm for the encryption function is presented in figure 5.1. A TRNG generates
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a random-key, which is utilized by the AES unit and shared with the Shamir’s Secret Sharing
unit as the key-share. The AES unit encrypts the secret with the random-key. Afterwards the
produced ciphertext is shared with ESS unit and distributed as the secret-share.

The resulting SGU and SRU have the ability to operate in both modes, enabling the application
of the same unit for key-shares and secret-shares, in order to reduce the logic.

Rand .
TRNG 3 Sﬁ?rle Secret-Share, ’
0
| Shamir- —
" Key-
KEY _
SS Share, Secret-Share, ’
A
Secret Extended .
——  AES 1 s .

Key-
Share,

Secret-Share, ’

Figure 5.1: The theoretic concept of the Computational Secret Sharing generating the shares.

5.2 Advanced Encryption Standard

The AES is a block cipher, which is open and standardized by the National Institute of Standards
and Technology in [2]. It is a subset of an encryption scheme developed by Joan Daemen and
Vincent Rijmen in the year 2000 and published in [18] and [19]. Because it is a symmetric
encryption scheme, the same key for encryption and decryption is used. The algorithm works
with a block length of 128 bit, where the key size is 128, 192 or 265 bit. In dependency to the
key length it is referred to as AES-128, AES-192, AES-256, but the block size always remains
128 bit.

How AES works

The AES algorithm operates with substitutions and permutations. Every 128 bit (16 bytes)
block is expressed as a 4 x 4 matrix and all elements are of one byte size. Substitutions and
permutations are performed on the elements in multiple rounds, where the key-size determines
the number of rounds, 10 for a 128 bit key, 12 for a 192 bit key and 14 for a 256 bit key. In the
following a basic description of an encoding in n rounds is explained:

1. Preparation: First, the key is expanded to obtain an unique key for the following rounds.

2. Round 0: (AddRoundKey) Every byte in the block is combined with a byte from the
round-key using a XOR-operation.

3. Round 1 to n — 1: Multiple operations are performed:

e (SubBytes) Every byte is substituted, using a non-linear substitution, which is stored
in a look-up-table.
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e (ShiftRows) The bytes of every row are shifted to the left, where the row number
specifies how many times each byte is shifted.

o (MizColumns) Each column of the matrix is multiplied by a fixed polynomial, which
can be stored efficiently in a look-up-table.

e (AddRoundKey) Finally, every byte is combined with its corresponding round-key as
in round 0.

4. Round n: Operations similar to the rounds 1 to n — 1, but the MixColumns step is not
performed.

The operations mainly consist of look-up-table based substitutions, shift operations and simple
XOR-operations. They enable efficient hardware and software implementations, investigated in
[22] and [47], especially in comparison to other high-secure block ciphers [60]. The algorithm
finds application in many practical implementations, e.g. the Wi-Fi Protected Access 2 (WPA2)
encryption for wireless-LAN communication [41].

Block cipher modes

A block cipher, such as the AES, may reveal unwanted effects by directly feeding the plaintext
to the input and process the output as ciphertext, even with no weakness of the block cipher
itself. This comes from the fact, that each block is processed independently. Imagine two blocks
with the same bit-pattern, e.g. all bits hold at zero. The corresponding output blocks will reveal
an identical bit-pattern. An attacker may see if 128 bit blocks are identical, which could reveal
structures of the original data.

To overcome this weakness, a change of the output pattern in dependency of the block-number
or the previous processed block can be forced in order to guarantee a change in the ciphertext
blocks, even with the plaintext blocks remaining the same.

The AES can be used in various modes. The NIST published five confidentially operation
modes of a block cipher in [25], which are specified as well in a standard from the International
Organisation for Standardisation (ISO) in [5]. These modes are summarized in the following
and are illustrated in figure 5.2, where 5.2a is the basic AES mode which may reveal overlaying
structures and the modes 5.2b to 5.2e overcome this problem by various strategies.

e Electronic Code Block (ECB): The plaintext is set as the input of the AES, while the output
is directly used as ciphertext and illustrated in figure 5.2a.

e Cipher Block Chaining (CBC): The plaintext is combined by a XOR with the AES output
of the previous round and applied as input for the AES in the current round. With a change
of the output a input change is forced, which leads again to a changed output. The AES
output is used as ciphertext and illustrated in figure 5.2b.

e Cipher Feedback (CFB): The ciphertext of the previous block is the input for the AES in
the next round. The plaintext is combined with the AES output by a XOR-operation. This
XOR-result is the ciphertext. Illustrated in figure 5.2c.

e Output Feedback (OFB): In comparison to CFB, not the ciphertext but the output of the
AES is the input of the AES for the next round. Illustrated in figure 5.2d.
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e Counter (CTR): The value of a counter is the input of the AES. In order to get the cipher-
text, the AES output is XOR-combined with the plaintext. Ilustrated in figure 5.2e.

Plaintext Plaintext Counter
XOR I v
0 AES 0 AES &, AES &, AES XV, AES
Plain- Plain- Plain-
text YOR text text YOR
XOR
Cyphertext Cyph‘értext Cyphertext Cyphertext Cyphertext
(a) ECB (b) CBC (c) CFB (d) OFB (e) CTR

Figure 5.2: Different block cipher operation modes.

AES Implementation

Because various optimized FPGA implementations for AES exist, an intellectual-property-block
of an AES core was implemented in this design. The criteria for such an core is to compete with
the throughput of the rest of this design. A certified AES core from OpenCores [55] was selected,
which is able to load one new 128 bit input block in each cycle. After a latency of 22 cycles, the
encrypted block is available on its output, which leads to a throughput of 128 bit per clock cycle.

Furthermore, the core is optimized in speed and utilization. The non-linear substitution
(SubBytes) and polynomial multiplication (MizColumns) is realized with look-up-tables in the
BRAM. However, almost all of the 140 available BRAM elements on the Zynq'®-7000 FPGA
were utilized by the AES implementation. Coupled with little adjustments the BRAM count was
reduced in order to save them for the later data buffering of the overall system. In table 5.1 the
synthesis and implementation results of the AES core are summarized, including adjustments to
reduce the BRAM count by performing SubBytes, MixColumns or both with LUTs.

LUT LUT min. clk
AES-functions in BRAM BRAM synthesis implementation FF period
No BRAM 0 11376 10919 5843  2.9ns
SubBytes in BRAM 36 8960 8960 5411  4.3ns
MizxColumns in BRAM 50 7808 7593 4963 ons
Both in BRAM 86 3200 2978 3811 5ns

Table 5.1: The synthesis and implementation results of the AES core, realizing different functionalities
in BRAM based look-up-tables.

The AES core is operated in counter mode, which gives various advantages over the other
operating modes. In comparison to ECB mode, it does not reveal overlaying structures of the
whole data set. Compared to all other modes, there is no feedback loop of the previous output,
which is not available before 22 cycles. Next, it is possible to start encrypting at an arbitrary block
in a data set, because only the counter register needs to be preloaded with the according value.
Moreover, encryption and decryption is performed with a completely identical unit. The AES
output is the same for encryption and decryption. The ciphertext is generated by combining the
AES output with the plaintext by a XOR-combination. On the other hand, combining the AES
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output with the ciphertext by a XOR-connection reverses the first XOR-operation and reveals
the plaintext.

The AES unit has a considerable high utilization of FPGA resources. For that reason, only one
AES unit was build, which is shared between the share generation and secret reconstruction, as
the full design should be capable of both functionalities. The resulting design is shown in figure
5.3. There are two data channels, for share generation and secret reconstruction respectively,
which are multiplexed to the AES input. Two counter registers store the current counter value
for each channel independently, while the correct counter value is selected by the control circuit.
Via an external counter reset signal, the counters are reset. Two key-registers enable key-storage
for both channels, while new keys are read whenever the counter is reset and the key corresponding
to the processed channel is applied at the key-input of the AES core.

CH, valid
CHo valid
CH, Data
CH, Data
reset counter 0
reset counter 1

Counterl

A 4 h 4

—A MUX /
vy

Shift-Register

Counter2

reset

Save KEY

¥ KEY_read
(delayed FIFO)
Key CH, [«
Y 0 Key CHy
Save KEY
v
‘ XQR KEY CH,
Key CH;

CH, valid

CHg valid

DATA out
+—

Figure 5.3: The architecture of the AES unit.

The secret is combined with the AES output 22 cycles after the restart of the counter due to
the AES core latency. For simplification purposes the channel input data is stored in the AES
unit for these 22 cycles. It allows the synchronous start of the timer when a new input is fed
into the AES core. The 22 cycle delay and storage are selected generically for a D-FF based
shift-register or a BRAM based FIFO-buffer.

The synthesis and implementation results of the AES unit are summarized in table 5.2. While
the counter-width is generic, it was set to 16 bit. It allows up to 2'6 x 16byte = 1GByte for a
dataset before the counter has to be reset. The shift register was implemented using D-FFs. A
change to a BRAM based FIFO could save about (128 + 2) x 22 = 2860 D-FFs at a cost of 2
additional BRAMs.
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LUT LUT min. clk
AES-Functions in BRAM BRAM synthesis implementation FF period
No BRAM 0 10940 10912 9295 3.3ns
SubBytes in BRAM 36 9212 9182 8863 4.3ns
MixzColumns in BRAM 49 7484 7537 8382 4.8ns
Both in BRAM 85 876 2913 7279 4.9ns

Table 5.2: The synthesis and implementation results of the AES unit (figure 5.3), realizing different AES-
functionalities in BRAM look-up-tables. The counter width is 16 bit and the shift register
was implemented using D-FFs.

5.3 Share Generation

The developed SGU for Shamir’s scheme was slightly adapted. The only difference to Shamir’s
scheme is that the secret data is used for all coefficients. In the architecture presented in 3.5,
a multiplexer selects whether the secret data or random values are directed to the Polynomial
Evaluation Units. An additional signal mode_select is selecting between the SSS-mode and ESS-
mode. In the SSS-mode the secret is positioned in the lowest coefficient ¢, while the multiplexer
selects random words for the higher coefficients ¢; to ¢,. In the ESS-mode the multiplexer always
directs secret words to the Polynomial Evaluation Units.

5.4 Secret Reconstruction

The secret reconstruction in the Computational Secret Sharing scheme differs from Shamir’s
scheme by the amount of data extracted from the shares. While in Shamir’s scheme only the
coefficient ¢y of the Shamir polynomial is of interest, all of the coefficients are reconstructed in
the Computational Secret Sharing scheme.

In chapter 3.3 the Lagrange interpolation was used to interpolate the y-value at a specific point
(x = 0). However, in this scheme all coefficients of the Lagrange interpolation polynomial are
determined, leading to a linear system of equations to be solved.

The evaluation process of the Shamir polynomial is a linear equation system. Written in matrix
notation it leads to formula (5.1), with a matrix SEC containing a set of secrets, a matrix SH
containing a set of shares and a matrix X with x-values and their powers. Such a set of secrets
or shares are always computed together.

shareg Ty Xo x% x% secretg
share; | | x1 w1 x% a::f secrety (5.1)
shares To X9 x% l’% secreto '
shares T3 X3 x§ :c§ secrets

SH X SEC

By solving the equation after SEC, the matrix X has to be inverted, which leads to equation
(5.2) for the reconstruction of a set of secrets.

SEC = X"'SH (5.2)
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The inversion of the matrix X depends on the x-values of the used shares. Similar to calculating
the basis polynomial in Shamir’s scheme, the operation is performed on the PS.

The calculation of X !SH consists of additions and multiplications, similar to the weight-
function of the Lagrange interpolation. While in Shamir’s scheme k multiplication and k£ — 1
additions are performed, this scheme requires k? multiplications and (k —1)? additions. Equation
5.2 is evaluated independently for every set of shares and therefore performed in the PL.

X-Matrix inversion

The inversion of the matrix is performed on the PS and was programmed in C. First, a matrix X
has to generated, by computing the powers of the x-values. Then a simple and efficient algorithm
for the inversion, published in [30], was implemented.

After processing the matrix, the coefficients are loaded subsequently into the PL, via an AXI
bus.

Determining the secret matrix

The determination of the secret matrix is similar to the secret reconstruction in Schamir’s
scheme. One multiplier with a multiplexer on each input and an adder reconstruct the set
of secrets subsequently. However, each set of secrets requires k cycles and leads to a slower
reconstruction rate than for the share generation. A parallel approach was selected, mainly for
achieving an identical throughput of the share generation and secret reconstruction, with the cost
of loosing threshold flexibility at runtime. The threshold value is still generic, but set at synthesis
time. The design is presented in figure 5.4.

Every row of the matrix X is calculated in parallel, where each multiplication takes place in a
share, — subreconstruction block. The multiplication results are added and reduced in order to
obtain one secret of the set. The whole process is pipelined efficiently since there is no feedback
loop. The rows of the matrix are processed sequentially by applying different values of the matrix
X, but the same share for each multiplier.

The values of the inverted matrix X ! are loaded into the unit before activating the SRU. The
interface for loading the values is generic for either a parallel port or a bus, as shown in figure
5.4. In the parallel design, the multiplexer selects all the matrix elements stored in a register.
The bus design stores each column of the matrix X! in an individual memory. The memory is
selected externally with the signal sel_col and all column elements are loaded serially via the bus
matriz_elements.

The SRU is enabled via a logic high on the enable signal and starts to load a set of shares into
the share buffers. It is conformed with a logic high on the signal share_rd. Immediately after
the conformation the SRU starts the multiplication process, one row after another. The signal
row_sel functions as the address for the column memories and selects the correct matrix elements
for the multiplication input. After a certain amount of cycles according to the pipelining stages,
the secret_valid pin is put to logic high signalising a valid secret on the output secret. The set
of secrets appears immediately after each other on the output. One secret is reconstructed per
clock cycle, if the shares are provided successively.

The reconstruction with Shamir’s scheme for the key-secret is selected with the input mode,
which switches between the SSS mode and the ESS mode. The SSS mode only reconstructs the
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Figure 5.4: Secret Reconstruction Unit of the Computational Secret Sharing.

first row, equal to the coefficient ¢y in the Shamir polynomial. All other secrets in the set are
random values and not necessary.

The size of this unit is shown in 5.5. A threshold value of 4 was assumed and the design is fully
pipelined. Because of the high amount of LUTs needed for the four multipliers, the design was
also evaluated with multipliers including DSPs as presented in chapter 4.

5.5 A Full Computational Secret Sharing Core

The functionalities of AES, SRU and SGU are put together in order to build a full CSS system.
A packet oriented approach was chosen to allow a structured management of keys and data sets
for the same key. The data are handled as packets and stored in packet buffers. An additional
header information is used for the information if the share generation needs a new key, or a share
packet contains a key-share. A simplified structure is presented in 5.6, where black lines represent
data buses and grey lines buses for the header information.

In between the SRU and the AES, and the SGU and the AES a buffer is interconnected. The
buffers are necessary as the SRU and SGU may operate at different speeds, depending on the
Galois field. In a Galois field GF(2!?®) the SRU and SGU are able to operate at the same speed
as the AES. In GF(25%) the AES multiplexes in between the SGU and the SRU with full time
utilization of all units. The buffers also take care of the bit-width conversion from 128 bit of the
AES unit to the bit-width used for the SGU, and vice versa. Additionally, the buffers are applied
on all data inputs and outputs, capable of bit-width conversion as well. The AES-Arbiter takes
care of a fair use of the AES in both directions. The channel is switched after each packet, if
packets are available on the AES input buffer and the AES output buffers not full.
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Figure 5.5: Size of the CSS SRU in 6-input LUT, for synthesis and implementation and the minimal

possible clk period. It is shown for both, a pipelined and non-pipelined architecture.

In the following a share generation and secret reconstruction process is explained.

CSS

1.

- Share Generation

If a secret packet arrives, it is first stored in the Secret In Buffer.

. The AES-Arbiter signalises the Secret In Buffer to send the data to the AES unit, if the

Secret In Buffer contains a full secret packet, the SGU buffer is not full and the AES is free.

The header information is read if a new key is required. If so, a new key from the corre-
sponding input new_key is read and stored, as well as the channels counter value is set to
zero. Otherwise, the stored key is used and the counter continues with the previous value.

If a new key is used, the SGU buffers store the key with the packet it was applied for. The
packet is sent to the SGU if the received packet is complete. If the packet contains a new
key, it is handed over first to the SGU with the additional information to enable the SSS
mode for the key-share. The rest of the data is processed in the ESS mode. At the same
time the header information is passed to the Share Out Buffers.

. The SGU simply receives the data and information which mode to use, produces the shares

and sends them to the Share Out Buffers.

If a share buffer contains a whole packet, it signalises on the outer interface to have one
share packet ready for pick up.
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Figure 5.6: Simplified structure of the CSS unit.

CSS - Secret Reconstruction

1.

If all the Share In Buffers contain a full packet and the SRU buffer is not full, the header
information is passed on to the SRU buffer and the shares are handed to the SRU. If a key
is to be extracted according to the header information, the SRU receives the share with the

additional information to operate in the ESS mode. Afterwards the remaining data is sent
in the SSS mode.

The SRU reconstructs the secret in the selected mode and hands the data to the SRU buffer.

The SRU uses the header information to determine whether the reconstructed data contains
a key. If this is the case, the key is stored with its related packet.

If the SRU buffer contains a full packet, the AES free and the Secret Out Buffer is not full,
the AES-Arbiter signalises the SRU buffer to send its data to the AES. The header is sent
to the Secret Out Buffer as well as to the AES. If a new key was reconstructed, this key is
also sent to the AES.

The AES checks if a new key was extracted and if so, resets the according counter value
and uses the new key. Then all of the other data is decrypted.

If a secret packet is fully reconstructed, the Secret Out Buffer signalises the packet to be
ready to the outer interface.

The buffer and packet size is generic in this design. However, similar sizes of the secret and
share packets were chosen. Therefore k secret packets have to be loaded until the share packets
are ready, where k is the threshold level of the applied n/k threshold scheme.

5.6 Evaluation

In accordance with the evaluation of Shamir’s Secret Sharing scheme in chapter 3.4, a theoretical
maximal throughput comparison between a software and a hardware implementation is given, as

43



Computational Secret Sharing

well as an estimation for a real design.

Hardware Software Comparison

For the theoretical maximal throughput evaluation in a hardware implementation only the space
consuming units AES, SGU and SRU were considered with the previous presented implementation
results. The results were extrapolated for the assumption that 50% of the available LUTSs on the
Zynq®-7000 FPGA were utilized (50% = 26600 LUT). For the share generation the AES and SGU
were considered, while for the share reconstruction the AES and SRU were taken into account.
First AES, multiple SGU or SRU reached a total throughput of 128 bit per cycle. Then the
resulting sizes were replicated until 26600 LUTs were utilized. The multiplier design was realized
without DSPs in order to obtain a more objective comparison. In the software implementation,
as well as in the hardware, all data flows were neglected. The library and multiplication strategies
such as in chapter 3.4 were applied. It was extended by an AES function [36] which achieved a
throughput of 156 Mbit/s with all four cores of the evaluation PC of section 3.4.

For both the hardware and software, 8 shares were generated and a threshold value of 4 was

assumed. The final throughput results are presented in figure 5.7. The throughput is measured
in Gbit/s for the output of the generated shares and reconstructed secrets for each functionality.
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Figure 5.7: The theoretical maximal throughput of a software and a FPGA implementation respectively
for the share generation and secret reconstruction. A parallel construction of 8 shares and
a threshold value of 4 is assumed. The throughput is measured in share bits per second for
the share generation and secret bits per second for the secret reconstruction.
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In comparison to the previous implementation of Shamir’s scheme, the influence of the Galois
field decreases due to the influence of the AES, which remains the same in all Galois fields. A
performance drop of a factor of about 2-3 for the hardware and 8-12 for the software implemen-
tation is observed. The hardware implementation remains significantly faster than its software
counterpart.

Based on these values, a power estimation for a throughput of one Gbit/s were made. For the
PC the CPU dissipation power of 84 W were used. The power consumption of the individual units
(AES, SGU and SRU) was estimated in Vivado. The values were extrapolated for a theoretical
50% utilized FPGA.

A real implementation of all the units in parallel would lead to a lower power consumption.
However, it can be seen as a reference value for an upper bound. The resulting values are presented
in table 5.3.

Field Share Generation Secret Reconstruction

FPGA PC FPGA PC
GF(2%) 697mW 321W 57mW 585 W
GF(21) 404mW 308W 44mW 568 W
GF(23%) 243mW 553W 35mW 808W
GF(2%4) 188mW 598 W 3TmW 854W
GF(2'28) 238mW 67TW 38mW 984W

Table 5.3: Power consumptions for a throughput of 1 Gbit/s in the CSS scheme.

CSS - Core

The architecture of the CSS core shows the best performance at 64 bit. The share generation
and secret reconstruction is performed fully parallel with an optimal utilization of the AES unit.
Moreover, it is possible to implement a 64 bit system in a FPGA like the Zynq®-7000.

The implementation of a full Computational Secret Sharing system, integrated with a network
connection is of high effort and presented in the next chapter 6. In table 5.4 a summary of the
synthesis sizes of the full CSS core, including all buffers, is given. In the synthesized implementa-
tion 8 shares were generated parallel with 4 shares needed for the reconstruction. A packet size
of 1500 bytes was selected, oriented at a maximal Ethernet packet size. Each buffer can store up
to 2 packets and the header length was set to 16 bit.

45



Computational Secret Sharing

GF(23%) GF(2%%) GF(2'%)
LUT BRAM LUT BRAM LUT BRAM
AES 8944 36 8946 36 8945 36
AES Arbiter 2 2 2
Secret In Buffer 231 3 231 2 361 2
Secret Out Buffer 217 2.5 217 2.5 215 2.5
Share In Buffer 386 4 403 4 448 8
Share Out Buffer 1560 12 1808 12 1785
SGU Buffer 304 2 335 2 334 2
SRU Buffer 320 2 317 2 243 2
SGU 887 1651 3638 20
SRU 936 2980 15743
+48 DSP +144 DSP +96 DSP
Total 13791 60.5 16893 60.5 31717 72.5
+48 DSP +144 DSP 496 DSP

Table 5.4: Synthesis results of the CSS core.
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6 A Full Computational Secret Sharing
System

In this chapter the preciously introduced CSS core is applied to a complete system capable of
sharing files. Additional elements to achieve this goal, such as a True Random Number Generator,
a network communication and a protocol for the file management are presented.

6.1 Introduction

In a full applied secret sharing setup, a client wants to save a file on multiple servers. In between
the client and the servers, the FPGA is settled. The client sends its data to the FPGA, which
performs the secret sharing algorithm and splits a file into multiple shares, which are distributed
to the servers. On the other hand, the FPGA is capable of putting shares together to reconstruct
the original file. This process is invisible to the client. Such a setup is illustrated in figure 6.1.

ey

Server

%@ «— ‘ 3 } \ TTT
Client FPGA q||)

Sever

Figure 6.1: The secret sharing setup.

In order to establish a full secret sharing system, more components besides the CSS core are
required. These components are identified in the following and discussed in the next sections of
this chapter.

e TRNG: A TRNG delivers random data to the CSS core and enables a correct and secure
functionality.

e Protocol: A protocol manages files, including their shares and fragments them into packets.

47



A Full Computational Secret Sharing System

e External Communication: An interface is responsible for the external communication
of the FPGA board to the client and servers and should be able to operate at a reasonable
speed.

e CSS core Wrapper: In accordance to the external interface, the CSS core is wrapped or
a bridge is implemented to enable the communication of the CSS core with the external
interface within the FPGA.

e Client: The client and its interface are relevant for selecting files for sharing, reconstruction
and sending these to the FPGA. Moreover, control information should be exchanged.

e Server: The servers are capable of storing multiple shares, or rather share packets, and to
communicate with the FPGA.

The applied CSS core architecture was synthesized for a 8/4 threshold scheme and the secret
sharing is performed in GF(2%4). It allows a parallel share generation and secret reconstruc-
tion with maximum throughput, due to the optimal sharing of the AES core in between the
SGU and SRU. Moreover, 64 bit is the highest bit-width and therefore offers the most efficient
implementation on the target FPGA.

6.2 True Random Number Generator

Although a FPGA should be a fully deterministic system, various works showed the possibility
to generate true random numbers within it, e.g. [51], [72], [66], [32], [73]. While the randomness
source is usually any kind of noise, in [73] three ways to extract such a noise in a FPGA are
presented.

e Metastability: In a digital circuit, only the states low and high with defined voltage ranges
are allowed. If a signal changes from one state to the other, it passes through a forbidden
state. If the forbidden state is sampled with a FF, the FF could reach one of the two allowed
logic states, or become metastable [58]. Due to noise inside the FF the circuits behaviour
becomes totally stochastic [74].

e Chaos: Chaos can only by be extracted by analog components, such as quantization errors
of analog to digital converters (ADC). However, because many FPGAs contain such a ADC,
e.g. the Zynq 7000, this source may be available.

e Jitter: In simple words, jitter is the unpredictable deviation in a signals propagation delay.
It is the most used macro effect in FPGA based TRNGs, e.g. by sampling a noisy clock
signal near of its edges [73].

A couple of well known TRNG designs exist in literature. In the following, designs considered
as important are outlined, while all of them claim to produce totally random bit streams.

The first design of a TRNG, mainly targeted for a FPGA, is introduced in [33]. It samples
the jitter of a phase locked loop (PLL). Therefore the PLL output is sampled near the transition
zones, influenced by the jitter using a rationally related clock of a higher frequency. Built-in-PLLs
of the FPGA were used, limiting the design to the FPGAs containing PLLs.
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This idea was adapted in [44], where ring oscillators (RO) are replace the PLLs. Two identical
ROs were built in one slice of a Xilinx FPGA, where the place-and-route is performed manually
in order to reach a similar behaviour of the ROs.

The design proposed in [37] works with Galois LFSR and Fibonacci LFSR, where the shift
registers are replaced by inverters. Due to slight variations in the delays, the output can not be
predicted. Both LFSRs are XOR-combined.

A design based on open-delay-changes was introduced in [20], which aims to violate the timing
constraints of a D-FF. Therefore multiple D-FFs are in parallel and their inputs are slightly
delayed, reachable by wiring. Moreover, instead of built-in-D-FFs discrete latches are built with
LUTs due to the high metastability avoidance of modern D-FFs.

The design of Snunar et al. in [69] bases on multiple ROs combined via XOR-connection sam-
pled with a predefined frequency. Each RO has an independent jitter and there is a determinable
possibility to capture the RO output signal within this jitter. By using a sufficient amount of
ROs, one RO is always captured within its jitter area and the output signal becomes random.

There are advantages and disadvantages inherent in every design, so in [31] the TRNGs were
compared with various metrics. All of the investigated practical TRNG designs revealed weak-
nesses and therefore the selection of a TRNG has to follow the designs criteria.

The proposed architecture from Sunar was favoured, because its high possible data rate of about
100 Mbits per second and its easy feasibility as it does not require PLLs nor manual routing.
In further investigations in [23] the design showed weaknesses mainly due to the high fan-in at
the XOR~gate, combining the outputs of all ROs. In [76] Wold and Tan made improvements
to overcome this problem, by using one dedicated D-FF after each RO. Moreover, they showed
that no post-processing of the output is necessary in order to achieve results, if sufficient ROs are
utilized. In this composition one and zero are equally likely in the output stream. The design
passed the statistical tests NIST [59] and Diehard [52] for random number generation evaluations,
if 25 or more ROs are employed with a sample frequency of 100 MHz.

The design for the TRNG of Wold and Tan found application in this work and is shown in figure
6.2. The number of inverters in one RO and the total count of ROs is generically parametrizable.
It gives the possibility to adapt the design to the needs of security and size.

Ring Oscillatorg > > > D-FF —

XOR Random Bitstream
D-FF——

e
Ring Oscillator, > > > D-FF —

Figure 6.2: TRNG.

The required amount of random bits rely on the applied threshold scheme, the size of the key,
the bit-width for the SGU, the packet size, how often a new key is used and the overall operating
clock frequency of the CSS unit. Assuming a generation of a new key for every share packet, the
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required amount of random bits IV, per second can be calculated as follows. First, the random
bits per share packet are calculated as in equation (6.1), where Ny is the key size in bits, k the
threshold value and bw the bit-with of the SGU. These bits are required periodically in a certain
interval ¢, which is calculated in equation (6.2), using the quantity of secret packets with an
individual key @), the packet size in bits Np and the clock period 1/fu;. Finally, the required
random bits per second is defined as in equation (6.3).

Ny = Ni+ (k= 1) x bw (6.1)
N, 1
t=0Q,* L2 x 6.2
QP b’UJ fclk: ( )
N,
Nr/s = T (6.3)

In a secret sharing scheme random bits are required at a rate of 42 Mbits/s with a threshold
of 4, a packet size of 1500 bytes, a 64 bit SGU and a clock size of 100 MHz.

The applied TRNG produces random bits with a rate of 100 Mbit /s and is sufficient according
to the estimation above. However, if configurations may require a higher rate, multiple random
bit streams are generically produced in parallel in the final TRNG design.

6.3 Protocol

A protocol for the administration of complete files was developed. It takes care of identifying
files, partitioning them into packets for transmissions in packet oriented networks, identifying
packets and exchanging control information in between the client, FPGA board and servers. A
lightweight protocol was developed and implemented to perform those tasks. Each packet is
attached by a 128 bit header of the protocol, referred to as CSS header. The full capability of
this protocol is explained by its fields. Table 6.1 shows the structure of the header, while the
fields are explained in the following.

0O - 7 8 - 15 16 - 23 24 - 31
Padding‘ x-value ‘Command‘ Version
File Identifier
Total Packet Count
Sequence Number

Table 6.1: Structure of the CSS protocol.

e Version: This field contains the header version number, intended for further extensions.
For this work, only a version 0 was implemented.

e Command: This field determines the content of the packet. Following commands are
possible:
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— 0x01: A secret packet with the request to apply a new key. This is used for the first
and then for every k secret packet.

— 0x02: A follower secret packet, to continue the encryption with the same key as for
the secret packets before.

— 0x10: A share packet.

— 0x80: A request to return shares according to its identifier field. If this command
is sent from the client, which must contain the numbers of the servers to restore the
secret from. These numbers are attached in the payload after the header.

— 0x81: A heartbeat packet to the FPGA board. It can be used if a periodic transmission
is necessary to keep the connection between the client and the FPGA board open, to
refresh the Address Resolution Protocol (ARP) table or for debugging.

— 0x82: A heartbeat packet to the board, which is directly forwarded to all servers. The
payload must contain the numbers of the servers to which the heartbeat should be
forwarded. These numbers are attached in the payload after the header. It is used if a
periodic transmission is required on all connections to keep a connection open, refresh
the ARP table or for debugging.

— 0x90: A control packet, to set the Internet Protocol (IP2) addresses for the three used
Ethernet ports of the FPGA extension board. The IP, addresses are transmitted in
the payload after the header.

— 0x91: A control packet for the IPy addresses of the servers. All packets belonging to
servers are sent to these IPy addresses.

— OxFE: A control packet for a forced reset for the FPGA logic.

x-value: If the header is attached to a share packet, the field determines the x-value and
distinguishes between the different share packets.

Padding: This field is to maintain the header structure of 32 bit blocks.

Identifier: A 32 bit identifier for a file. All packets according to the same file are carrying
the same identifier. If the header is used for a request of a file or its shares, this field
determines the returned shares.

Total Packet Count: This field determines the total amount of packets for one file. With
a packet payload size of 1424 byte a maximum file size of about 6 TB is supported.

Sequence Number: This field determines the packet number within the total packet
count.

6.4 External Communication

In order to communicate with the client and the servers, an external connection of reasonable
speed is required. For this task Gigabit Ethernet was selected, including the Internet protocol
and User Datagram Protocol (UDP) in order to communicate with a computer application. On
top of UDP the CSS protocol is settled, which handles CSS specific tasks.
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While the CSS core would be able to work at higher rates, Ethernet was chosen because
of its widespread usage, which enables an easy integration of the FPGA system in a client-
server environment. The Zedboard contains one Ethernet interface and was extended by a Quad
Gigabit Ethernet FPGA Mezzanine Card, referred to as Ethernet FMC®) [27]. The Ethernett
FMC contains a total of four Ethernet ports, directly connected to the PL. One of those ports is
dedicated to the client connection of which two are for the connection of the servers. For an 8/4
threshold scheme, a maximum utilization of all three channels is enabled in the share generation
process. A theoretical throughput of 1 Gbit/s for secrets and 2 Gbit/s for shares was attained.

The extension board communicates with the PL via a reduced Gigabit Media Independent
Interface (RGMII). Three AXI Ethernet IP; cores (AXI 1G/2.5G Ethernet Subsystem (7.0)
[78] from Xilinx were applied in order to facilitate the communication with the Ethernet FMC.
Furthermore, it handles basic functionalities of the Media Access (MAC) Layer, such as MAC
address filtering and CRC calculation including CRC concatenation.

The IP; cores contain an AXI interface for setup information, connected to the PS. For the
data transfer, the IP; core consist of one AXI interface for the data itself and one more for control
sequences, respectively for receiving and transmitting.

While the IP; core performs the CR concatenation and MAC address filtering, other MAC
layer tasks as well as the network and transmission layer responsibilities have to be handled by
the overall system.

The header generation of the MAC, TPy and UPD differs for the secret and each share. Therefore
the output buffers of the shares and the secret within the CSS core were extended to store these
headers. After the header generation in the PS, they are loaded into the core. Every time the
buffer puts out a packet, it first sends the MAC, IP5 and UDP header, followed by the CSS header
and then the actual payload.

With the selection of Ethernet, the packet size, including the IPo, UDP and CSS headers, was
set to 1500 bytes according to the maximum transfer unit of the Ethernet protocol [1].

6.5 Computational Secret Sharing Core Wrapper

A wrapper adapts the outer interfaces of the CSS core to the needs of the three Ethernet 1P
cores. The outputs of the CSS core accords to the amount of generated shares and to the amount
of shares needed for the reconstruction. Each input and output are matched to one of the three
physical Ethernet interfaces. Figure 6.3 contain the architecture of the CSS core wrapper.

The secret input and output are connected to the Ethernet channel 0 (Ethernet IP; core 0).
Additionally, a packet multiplexer and a packet switch are interposed to allow the PS to receive
and send packets via Ethernet channel 0. It is determined from the CSS header information if
the packet is forwarded to the CSS core or PS.

The share outputs are connected via the packet multiplexer to the Ethernet channel 0 and
1, four share outputs respectively. Additionally, a packet from the PS is always inserted. The
reception and distribution of share packets for a reconstruction process is more complicated, as
the packets can come from any of the two inputs. A share packet crossbar with both Ethernet
channels as inputs sorts those packets according to their CSS header information, and delivers
it to the corresponding CSS core input. The connection information, which share to forward on
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which CSS core input, is obtained from a routing table, given from the PS. The PS calculates the
elements of the inverse matrix for the reconstruction process and feeds them into the matching
position of the CSS core. A branch from the share crossbar to the PS allows the reception of
channel 0 and 1 packets for the PS.

All communication paths to the PS are grouped and made external via one AXI interface. The
communication to the Ethernet ports are translated via Ethernet IP; core interfaces to the two
necessary AXI channels.

to TRNG to PS

iAXI Bus

AXI Interface ‘
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‘J v 1
Packet| |Packet Packet| | Packet| | Packet
FIFO FIFO FIF FIFO FIFO
F Y F Y
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Figure 6.3: CSS core wrapper architecture.

6.6 Client And Server

The client and server are realized via computer applications in purpose of the evaluation setup.
It enables a detailed analysis of stored packets. Both programs are written in Java. In the clients
Graphical User Interface (GUI) additional parameters can be set. They include the x-values
for the share generation, selecting servers for the secret reconstruction, the IPo addresses for
the board as well as the [Py addresses for the servers and the client. For both applications the
possibility to restrict the data rate is given in order to avoid congestion at the underlying layer
or network.

The clients GUI allows to select files from the file system. These files are partitioned for the
Ethernet transmission and a CSS header is attached. The final packets are sent to the FPGA
board.

The server applications store share packets and return them if requested. Additional content
is visualized graphically for an optical pattern detection.
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6.7 Full Setup And Evaluation

In the final FPGA design, the CSS wrapper and TRNG were implemented as described above,
one AXI interconnect, three AXI Ethernet IP; cores and a core for the organic light-emitting
diode (OLED) display of the Zedboard. The display serves for status information, the saved IPs
and MAC address of the board and client and servers for debug reasons. The client and server
applications are performed on one computer. In the following, the process of the setup, share
generation and reconstruction of the secret is described.

Configuration

For the configuration of the FPGA board, the client transmits all the IPs addresses of the
servers, the client and the FPGA board itself to the board. This is performed by a broadcast
message on the UPD port 16500. The board starts to send ARP requests and collects ARP
responses in order to complete its ARP table for the later network communications.

Share Generation

The client application determines which x-values are included in the share generation process
and transfers them to the FPGA. The PS of the FPGA sets the x-values in the according registers
of the SGU and computes the MAC, [P, and UDP headers. After the configuration message,
secret packets are sent, while k secret packets are needed to produce one share packet in a n/k
threshold scheme. Afterwards, each generated share package is sent to the server.

Secret (-file) Reconstruction

The client application sends the information of which file is requested for the reconstruction
process from which servers to the FPGA. The PS in the FPGA sends requests to the according
servers. In the meantime the inverted matrix according to the requested servers and therefore
x-values are calculated and sent in the PL. The routing table for the share packet crossbar is
determined and sent to the PL. The secret is reconstructed, when all shares of the same packet
number are received and sent to the client.

Utilization

The utilization of the FPGA is summarized in table 6.2. A considerable high amount of LUTs
is required by the AXI Ethernet 1Py cores. All the buffers consume a high amount of LUTSs, on

one hand due to their high occurrence and on the other hand due to their additional functionality
of storing the CSS header and partly the MAC, [P, and UDP headers.

The placement of the design elements within the FPGA is demonstrated in figure 6.4, colour
differentiated between the functional units.
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Functional Unit LUT FF BRAM DSP
Full FPGA 53200 (100%) 106400 (100%) 140 220
Full Implementation 30495 (57%) 36273 (34%) 139 144
One Ethernet IP; core (0) 2708  (5.1%) 3984 (3.7%) 4 0
TRNG 108 (0.2%) 2%  (0%) 0
OLED 2301 (4.3%) 1388 (1.3%) 1 0
Full CSS architecture 19144 (36%) 22158 (21%) 126 144
CSS Core 17382 (33%) 20452  (19%) 126 144
AES 3594 (6.8%) 8403  (7.9%) 100 0
SRU 3002 (5.8%) 7595  (7.1%) 144
SQU 2185  (4.1%) 1095 (1%) 0 0
Share Switch 323  (0.6%) 261 (0.2%) 0 0
All Buffers in CSS Core 8507 (16%) 3357  (3.2%) 26 0

Table 6.2: FPGA utilization for a complete CSS system as well as selected functional unit. THE SGU
and SRU were implemented for 64 bit and a 4/8 threshold scheme was applied.

Evaluation

A complete network CSS system was successfully developed. Due to its dynamic 1Py settings
and protocols it is applicable in any Ethernet network. The CSS protocol enables the partitioning
and management of whole files in a file sharing system. In this setup, multiple and arbitrary files
could be selected and shared as well as completely restored. The full core is implemented within a
single clock domain of 100 MHz, which leads to an internal CSS core throughput of 6.4 Gbit/s in
both directions. The external speed is restricted to a maximum of 1 Gbit/s due to the limitation
of the Ethernet speed. The full implementation consumes about 57% of LUT resources. In the
practical setup the client and servers were performed on a computer. The files could be shared
and restored with an affective rate of 250 Mbit/s due to congestion.
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Figure 6.4: FPGA utilization
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7 Conclusion

In this chapter the overall outcome of this work is summarized and discussed. Additional appli-
cation fields for a secret sharing implementation are presented. Finally, improvement strategies
and first estimations for a verified secret sharing are given, which can be the objective of future
works.

7.1 Summary And Discussion

The implementation of Shamir’s Secret Sharing scheme and the Computational Secret Sharing
scheme in a FPGA was presented. The algorithms were analyzed in order to find an efficient
implementation in terms of throughput. The multiplication was identified as the bottleneck of
the system and improvements for the multiplier were discussed.

The implementation result were evaluated for the bit-widths of 8, 16, 32, 64 and 128 bit. A
comparison to software implementations was obtained by evaluating the theoretical reachable
maximum throughputs.

The result are generic IP; cores, parametrizeable for various parameters such as the bit-width,
the amount of shares to be generated and the threshold value. Additionally, a full system was
implemented which communicates with servers and a client using IP2 over Ethernet, capable to
share and distribute arbitrary files as well as restoring them.

This work shows a significant performance decrease for the application of wider bit-widths,
as it is in software implementations. If the advantages for higher bit-widths are not used, the
optimal approach would be to implement 8 bit implementations in parallel. However, the hard-
ware implementation showed high performance gains compared to its software counterpart, by a
significant reduction of power. Such a system is realizable in FPGAs and capable of operations
at high data rates and even higher bit-widths.

For the SGU an almost constant performance in all of the investigated bit-widths is observable,
due to the restriction of the possible x-values. The SRU shows almost a linear performance
decrease, except for 32 bit, which only has a slight performance decrease compared to 16 bit.

The proposed architecture for a CSS implementation is best suited for 64 bit, due to the
optimal utilization of all involved units. The final prototype approved a correct functionality in
a completely integrated file based system.
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7.2 Applications

The aim was to find an efficient hardware implementation, for applications in a cloud-of-cloud
setup. As it is capable of a high throughput by a significant lower power consumption than a
software counterpart, it is applicable for high data rates in data centers as well as for single users.

Due to its similar functionality it offers the usage as a secure Redundant Array of Independent
Disks (RAID), specified in [4]. In a RAID system multiple hard discs are combined and redun-
dancy is added in order to compensate a single fault of a hard disk. Newer RAID arrangements,
such as RAID 6, are capable of handling two faulty disks. However, the proposed system is
capable of handling an arbitrary number of faulty hard disks, selectable with the threshold value
and the number of produced shares. Additionally, it offers more security than the RAID system,
as the information is encrypted. If a hard disk is sorted out, their data do not need to be erased
with high effort, as a single hard disk would never reveal any information and is useless for a
possible attacker.

7.3 Further Work

In order to prepare the complete hardware implementation for a real world environment, it is
of advantage to add more robustness to the system as there may exist cheaters. The concept
of verified secret sharing handles these issues, first introduced in [14] and briefly explained in
chapter 2.5.

Related to this work, first attempts were made to generate the required fingerprints with the
secure hash algorithm (SHA) SHA-256 [3] or SHA-3 [6]. To compete with the share generation
speed, all hash values are generated in parallel, with input rates from 8 - 128 bits per cycle.
An analysis of applicable implementations lead to a certified SHA-3 core from Opencores [? |.
With a throughput of 7.2 Gbit/s it competes with the SGU and SRU implementations. The core
has a size of 9895 LUTSs in a Virtex 6 FPGA (XC6VLX240T-1FF1156). Performing the hash
generations in parallel for all shares would exceed the size capability of the target FPGA. In a
FPGA of bigger size, the fingerprint generation unit would still take the biggest portion of the
resources. Therefore the efficiency and optimized realizations for a fingerprint generation as well
as a complete verified secret sharing implementation could be the objectives of further works.
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Appendix

The appendix is structured as follows. In section A, first screen-shots of the final project in
Vivado are presented followed by an additional block diagram of the CSS core. In section B
a Java code snapshots is presented, which was used to generate the static XOR-connection for
the reduction circuit, as well as example reduction circuits in VHDL. In section C, snapshots of
important VHDL modules are shown. Finally the C code is presented in section D. The code for
the matrix inversion is presented as well as the example code, to evaluate the maximal reachable
secret sharing throughput on a PC.

99



APPENDIX

0'TAg310pIe0Gpa7

[ o 1959y Wa3sAs 105593010
an Tt aan e ———
Lvaa LYan e PaY0/UDp=
58 > = - el

2a o & - urpsarne- p—_
o 5= e b = [0:0]s2i pnAsTSNg uEsar [o: eEo.uS_m“n‘“.“H“ |
Swsorqu ouAs oMo ) -
nas . q zazuu\__\_
-310P0GP3; =0 Zwarshs Buisse201d 351 e
0 qFT0PIe0qPSZ WOOT ™0 E 07Inq spIan
——
e — !
, 33003
washsqns PRI 95°2/9T IXY
a . [o:0lsu1
P76 .
Lo optp 6. e
5AS BuIss230.d LONAZ
“yod 3521 €}
0 38UOOX

“yiod b1
od o oipuw

1 o WL IO AZ

[0:5)dz4Ou;
OV 045 DXV W)

This image shows the block diagram of the full implementation, capable to apply secret sharing
for complete files in a network environment. It contains the processing system, AXI- interconnects,

the AXI-Ethernet IP; cores and the CSS core.

A - Vivado Screen-Shots and Block Diagrams

The Vivado block design of the full implementation
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AXI CSS core - customization GUI

In this subsection a screen-shot of the developed AXI CSS core is given. In the table below all
of the customization parameters are summarized.

f ﬁ Re-customize IP &11

AXI_CSS_v1_vl1_0(1.0) ‘

ﬁﬂ Documentation || IP Location

[ Show disabled ports Component Name | design_1_AXI_CSS_v1 IP_v1 0_0

Genrate (S5 options | Buffer size | Multiplier options | DONOTCHAMGE

Word Width 64

£+ s cue_we Packet Size 1424 [16 - 1424]

Tk 5_AKIS_CHE_RES

T s a0z cul_RED

Mumber of Shares to generate |8

Degree 3
Bitwidth of the X-Value 8
AES
AES SR Type FF -

Aes Counter Width |9

OK. H Cancel
General CSS Options
Word Width: bit-width of the Secret Sharing architecture
Packet Size: size of secret and share packets in byte,

typ. 1424 byte (payload) for Ethernet
Number of Shares to generate: number of shares to generate parallel

Degree: degree of the Shamir-polynomial (k — 1)
Bit-width of the x-Value: bit-width of the z-value

AES

AES SR Type: shift register type of the AES, BRAM of FF
AES Counter Width: counter width of the counter in CTR mode
Buffer size

Secret In Buffer Max Packets
Share Out Buffer Max Packets
Share In Buffer Max Packets
Secret Out Buffer Max Packets
SGU Buffer Max packets

SRU Buffer Max packets

Multiplier Options

Pipelining: Pipelining stages for each 16 x 16 sub-multiplier (0,1,2,3)
Usage DSP: how many DSPs should be used in one

16 x 16 multiplier (0,1,2,3)
DSP Per Karatsuba many of the three multipliers in the Karatsuba

algorithm should be realized using DSPs
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APPENDIX

Detailed CSS core

This figure presents the detailed architecture of the CSS core. In comparison to figure 5.6 the
Share Out Buffers and the Secret Out Buffer are extended by the capability to store and output

network headers.
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B - The Reduction Circuit

Calculation of the static XOR-connection for the reduction

A snapshot of the Java program, to determine the static XOR-connections for the reduction
circuit, as described in [81].

static void CalcXORConnection(String polynom, int dataWidth,
String inputSignalName, String inputSignalName){

String Nin = new String (); //input String for CRC

[ Rwkokokokkkokokkokkokok ok Matrix generation sk sk ks ko sk ko skok sk ok ko k [
int [][] XOR_Table= new int [dataWidth][polynom.length () —1];
int k=dataWidth;

for (int 1=0; i<dataWidth;i4++){

k=k—1;
Nin=getStringZeros (k)+71”+getStringZeros (i);
XOR_-Table[i] = String-to_-Int_Array (CalcCRC(polynom, Nin));

}

[xkkskoknkkkkxkkk Generate XOR VHDL Codes sk sk sk sk sk k s ok ok sk ok ok ok [
boolean begin=true;

int XORPathCnt=0;

int XORLongestPath=0;

for (int i=0;i<polynom.length()—1;i++){
System.out.println ();
System.out.print (inputSignalName+"("4+i+7) <= 7);
for (int j=0;j<dataWidth; j++){

if (XOR_Table[j][(polynom.length()—2)—i]==1){
if (begin==true){
begin=false ;
}else{
System .out.print (? XOR ”);
XOR-path_cnt++;

System.out.print (””+inputSignalName+"("+j+")");

}

if (XORPathCnt > XORLongestPath){ XORLongestPath=XORPathCnt;}
XOR-path_cnt=0;

System .out.print (7;”);

begin=true;
}
System.out.println (”Nr. of XORs in longest path: \t”+XORLongestPath);
return ;

}

In the following the resulting static XOR-connection for the binary extension fields GF(2%),
GF(2'6) and GF(232) applying the irreducible polynomials of table 3.4 are listed.

Static XOR-connection for GF(2°)

r(0) <= d(0) XOR d(8) XOR d(12) XOR d(13);

r(1) <= d(1) XOR d(8) XOR d(9) XOR d(12) XOR d(14);

r(2) <= d(2) XOR d(9) XOR d(10) XOR d(13);

r(3) <= d(3) XOR d(8) XOR d(10) XOR d(11) XOR d(12) XOR d(13) XOR d(14);
r(4) <= d(4) XOR d(8) XOR d(9) XOR d(11) XOR d(14);

r(5) <= d(5) XOR d(9) XOR d(10) XOR d(12);

r(6) <= d(6) XOR d(10) XOR d(11) XOR d(13);

r(7) <= d(7) XOR d(11) XOR d(12) XOR d(14);

Static XOR-connection for GF(216)

r(0) <= d(0) XOR d(16) XOR d(27) XOR d(29);

r(l1) <= d(1) XOR d(16) XOR d(17) XOR d(27) XOR d(28) XOR d(29) XOR d(30);
r(2) <= d(2) XOR d(17) XOR d(18) XOR d(28) XOR d(29) XOR d(30);

r(3) <= d(3) XOR d(16) XOR d(18) XOR d(19) XOR d(27) XOR d(30);

r(4) <= d(4) XOR d(17) XOR d(19) XOR d(20) XOR d(28);

r(5) <= d(5) XOR d(16) XOR d(18) XOR d(20) XOR d(21) XOR d(27);

r(6) <= d(6) XOR d(17) XOR d(19) XOR d(21) XOR d(22) XOR d(28);

r(7) <= d(7) XOR d(18) XOR d(20) XOR d(22) XOR d(23) XOR d(29);

r(8) <= d(8) XOR d(19) XOR d(21) XOR d(23) XOR d(24) XOR d(30);
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r(9) <= d(9) XOR d(20) XOR d(22) XOR d(24) XOR d(25);

r(10) <= d(10) XOR d(21) XOR d(23) XOR d(25) XOR d(26);

r(11) <= d(11) XOR d(22) XOR d(24) XOR d(26) XOR d(27);

r(12) <= d(12) XOR d(23) XOR d(25) XOR d(27) XOR d(28);

r(13) <= d(13) XOR d(24) XOR d(26) XOR d(28) XOR d(29);

r(14) <= d(14) XOR d(25) XOR d(27) XOR d(29) XOR d(30);

r(15) <= d(15) XOR d(26) XOR d(28) XOR d(30);

Static XOR-connection for GF(2%?)

r(0) <= d(0) XOR d(32) XOR d(57) XOR d(61) XOR d(62);

r(1) <= d(1) XOR d(33) XOR d(58) XOR d(62);

r(2) <= d(2) XOR d(32) XOR d(34) XOR d(57) XOR d(59) XOR d(61) XOR d(62);
r(3) <= d(3) XOR d(32) XOR d(33) XOR d(35) XOR d(57) XOR d(58) XOR d(60) XOR d(61);
r(4) <= d(4) XOR d(33) XOR d(34) XOR d(36) XOR d(58) XOR d(59) XOR d(61) XOR d(62);
r(5) <= d(5) XOR d(34) XOR d(35) XOR d(37) XOR d(59) XOR d(60) XOR d(62);
r(6) <= d(6) XOR d(35) XOR d(36) XOR d(38) XOR d(60) XOR d(61);

r(7) <= d(7) XOR d(32) XOR d(36) XOR d(37) XOR d(39) XOR d(57);

r(8) <= d(8) XOR d(33) XOR d(37) XOR d(38) XOR d(40) XOR d(58);

r(9) <= d(9) XOR d(34) XOR d(38) XOR d(39) XOR d(41) XOR d(59);

r(10) <= d(10) XOR d(35) XOR d(39) XOR d(40) XOR d(42) XOR d(60);

r(11) <= d(11) XOR d(36) XOR d(40) XOR d(41) XOR d(43) XOR d(61);

r(12) <= d(12) XOR d(37) XOR d(41) XOR d(42) XOR d(44) XOR d(62);

r(13) <= d(13) XOR d(38) XOR d(42) XOR d(43) XOR d(45);

r(14) <= d(14) XOR d(39) XOR d(43) XOR d(44) XOR d(46);

r(15) <= d(15) XOR d(40) XOR d(44) XOR d(45) XOR d(47);

r(16) <= d(16) XOR d(41) XOR d(45) XOR d(46) XOR d(48);

r(17) <= d(17) XOR d(42) XOR d(46) XOR d(47) XOR d(49);

r(18) <= d(18) XOR d(43) XOR d(47) XOR d(48) XOR d(50);

r(19) <= d(19) XOR d(44) XOR d(48) XOR d(49) XOR d(51);

r(20) <= d(20) XOR d(45) XOR d(49) XOR d(50) XOR d(52);

r(21) <= d(21) XOR d(46) XOR d(50) XOR d(51) XOR d(53);

r(22) <= d(22) XOR d(47) XOR d(51) XOR d(52) XOR d(54);

r(23) <= d(23) XOR d(48) XOR d(52) XOR d(53) XOR d(55);

r(24) <= d(24) XOR d(49) XOR d(53) XOR d(54) XOR d(56);

r(25) <= d(25) XOR d(50) XOR d(54) XOR d(55) XOR d(57);

r(26) <= d(26) XOR d(51) XOR d(55) XOR d(56) XOR d(58);

r(27) <= d(27) XOR d(52) XOR d(56) XOR d(57) XOR d(59);

r(28) <= d(28) XOR d(53) XOR d(57) XOR d(58) XOR d(60);

r(29) <= d(29) XOR d(54) XOR d(58) XOR d(59) XOR d(61);

r(30) <= d(30) XOR d(55) XOR d(59) XOR d(60) XOR d(62);

r(31) <= d(31) XOR d(56) XOR d(60) XOR d(61)
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C - VHDL Code Snapshots

In this section snapshots of important VHDL modules are listed.

Secret Reconstruction Unit (Computational Secret Sharing)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use ieee.numeric_std. all;

use work.polynom_multiplier_-top-pkg.all;
use work.reduction_pkg.all;

use work. functions_pkg.all;

entity secret_reconstruction is

generic (M : integer ;

SHARES : integer ;

DSPPERKARATSUBA : integer ;  — 0, 2 or 3

USEDSP : integer ; — o, 2, 3 or 4

PIPELINING : integer : H—

MATRIX_MODE : string := " parallel”);

Port (clk : in std_logic;

rst : in std_logic;
matrix_port_i : in  std_logic_-vector ((SHARES*shares*M)—1 downto 0);
matrix_coef_i : in  std_logic_-vector (M—1 downto 0);
matrix_-coef_valid-i : in std_-logic;
coef_sel_share_i : in integer range 0 to SHARES-—1;
coef_sel_pos_i : in integer range 0 to SHARES—1;
share_port_i : in  std_logic-vector ((SHARES*M)—1 downto 0);
secret_o : out std-logic-vector (M—1 downto 0);
secret_valid_o : out std_-logic;
share_valid_i : in  std_logic_vector (SHARES—1 downto 0);
css_mode_i ¢ in std_logic;
css_mode_o : out std_-logic;
ready-o : out std_-logic );

end secret_reconstruction;

architecture Behavioral of secret_reconstruction is

constant PIPELIE_STAGES : integer := get_pipeline_stages (m, PIPELINING);
type bus_array is array (0 to SHARES—1) of std-logic_-vector (M—1 downto 0);
type bus_array_big is array (0 to SHARES—1) of std_-logic_-vector (2*(M—1) downto 0);
type Matrix is array (0 to SHARES—1, 0 to SHARES—1) of std_-logic_-vector (M-1 downto 0);
signal coef : Matrix;
signal next-coef : bus_array;
signal share_in : bus_array;
signal next_share : bus_array;
signal mult_unreduced : bus_array_big;
signal mult_reduced : bus_array;
signal cnt : integer range 0 to SHARES—1;
signal set_secret_valid : std_-logic;
signal secret_valid_shift : std_-logic-vector (PIPELIE.STAGES downto 0);
signal css_mode_shift : std-logic_-vector (PIPELIE.STAGES+1 downto 0);
signal ready-internal : std_-logic;
signal run_reconstruction : std_logic;
begin

—write the whole matrix coeficents parallel into FFs
——and connect the big share port to individual share signals
matrix_parallel: if (MATRIXMODE = ” parallel”) generate
connect: for i in 0 to SHARES—1 generate
matrix: for j in 0 to SHARES—1 generate
coef(i, j) <= matrix_port_i( (i+1)*M + j*SHARES*M —1 downto i*M + j*SHARES*M);
end generate;
share_in (i) <= share_port_i( ((i+1)*xM) —1 downto i*M);
end generate;
end generate;

——write the matrix coeficents sequential into a memory
——and connect the big share port to individual share signals
matrix_sequential: if (MATRIXMODE = ”sequential”) generate
connect: for i in 0 to SHARES—1 generate
share_in (i) <= share_port_i( ((i+1)*M) —1 downto i*M);
end generate;
process (clk) is

begin
if (clk event and clk=’1") then
if (rst = ’1’) then
coef <= (others => ( others => (others => ’0’)));
elsif (matrix_coef_valid_i = ’1’) then
coef(coef_sel_share_i, coef_sel_pos_i) <= matrix_coef_ij;
end if;
end if;
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end process;
end generate;

—instatiate as many multiplayers and reduction units as shares exists
Mult: for i in 0 to SHARES—1 generate
mult: polynom_multiplier_top

generic map(M = M,
DSPPERKARATSUBA => DSPPERKARATSUBA,
USEDSP => USEDSP,
PIPELINING => PIPELINING)
port map(clk => clk,
ain_i => next_share (i),
bin_i => next_coef (i),

result_o => mult_unreduced (i));

reduct: Reduction
generic map (M => M)
port map(Data_in_i => mult_unreduced (i),
Data_reduced_-o => mult_reduced (i));
end generate;

—XOR all Multiplication results
process (clk) is

variable temp_secret : std-logic_vector (M—1 downto 0) := (others => ’0’);
begin
if (clk event and clk=’1") then
temp-secret := (others => ’07);
for i in 0 to SHARES—1 loop
temp_secret := temp_secret xor mult_-reduced (i);

end loop;
secret_o <= temp_secret;
end if;
end process;

——shift the valid and mode states
process (clk) is

begin
if (clk event and clk="1") then
if rst = 1’ then
secret_valid_shift <= (others => ’0’);
css-mode_shift <= (others => ’0’);
else
secret_valid_shift <= secret_valid_shift (PIPELIE.STAGES—1 downto 0) & set_secret_valid;
css_mode_shift <= css_mode_shift (PIPELIE_.STAGES downto 0) & css_mode_i;
end if;
end if;

end process;

——output if secrets are valid
secret_valid_o <= secret_valid_shift (PIPELIE_STAGES);
css_.mode_o <= css_mode_shift (PIPELIE.STAGES+1);

——load the correct coefficents and prepare the valid flag
process (clk) is
begin
if (clk event and clk="1") then
if (rst="1") then

cnt <= 0;
run-reconstruction <= ’07;
set_secret_-valid <= ’07;

for i in 0 to SHARES—1 loop
next_share(i) <= (others => ’0");

end loop;
elsif share_valid_i(0) = ’1’ or run.reconstruction = ’1’ then
run_reconstruction <= ’17;

cnt <= cnt 4+ 1;

——load the next shares
if cnt = 0 then
for i in 0 to SHARES—1 loop
next-share (i) <= share_in (i);
end loop;
end if;

——select and load the next coefficients

for i in 0 to SHARES—1 loop
next-coef(i) <= coef(i, cnt);

end loop;

——prepare the secret valid flag
set_secret_valid <= ’17;

——AIll secret reconstructed

if ((css_mode_i = ’1’ and cnt = SHARES—1) or css_mode_.i = ’'0’) then
cnt <= 0;
run_reconstruction <= ’07;
end if;
else
set_secret_valid <= ’07;
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end if;
end if;
end process;

——decide if the calculation is finished and new values should be request
process (share_valid_i (0), css_mode_i, cnt, rst) is

begin

if (rst="1") then
ready-internal <= ’1°;

elsif (css_mode-i = ’0’) then
ready_-internal <= ’17;

elsif cnt = SHARES—1 then
ready-internal <= ’17;

elsif cnt = 0 and share_valid_i(0) = ’0’ then
ready-internal <= ’17;

elsif cnt = 0 and share_valid_i(0) = ’1’ then
ready-internal <= ’07;

else
ready_-internal <= ’07;

end if;

end process;
ready.o <= ready_internal;

end Behavioral;
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Share Generation Unit (Computational Secret Sharing)

library ieee;

use ieee.std_logic_-1164.all;

use ieee.numeric_std. all;

use work.polynom_multiplier_pkg. all;
use work.reduction_pkg.all;

entity sharegen is

generic (M : integer 32;
x-BW : integer 8;
DEGREE : integer 3;
SHARENUM : integer := 8 );
port (clk : in std_-logic;
rst : in std-logic;
secret_i : in  std_logic-vector (m—1 downto 0);
x-port_i : in  std-logic-vector ((SHARENUMx*x.BW)—1 downto 0);
data_-in_-valid-i : in std-logic;
shares_o : out std_logic_vector ((SHARENUMx+M)—1 downto 0);
shares_valid_o : out std_-logic;
rand_i : in std_logic_vector (M—1 downto 0);
rd_rand_o : out std_-logic;
mode_i : in std_logic;
rd_data_o : out std-logic );

end sharegen;
architecture Behavioral of sharegen is
type bus_array is array (0 to Share_num—1) of std_logic_vector (M-1 downto 0);

type bus_array_x is array (0 to Share_num—1) of std_-logic_vector (XBW—1 downto 0);
type bus_array_unreduced is array (0 to Share_num—1) of std_-logic_-vector (2x(M—1) downto 0);

constant zeros : std_-logic-vector ((MxBW)—1 downto 0) := (others => ’0’);
signal x : bus.array;
signal share : bus.array;
signal factor : bus_array;
signal mult_unreduced : bus_array_unreduced;
signal mult_reduced : bus_array;
signal temp_share : bus_array;
signal summand_buf : std_-logic_vector (M—1 downto 0);
signal cnt : integer range 0O to degree;
signal secret_buf : std_-logic_-vector (M—1 downto 0);
signal share_valid_sr : std-logic_vector (1 downto 0);
signal css_mode : std_-logic;
signal rd._data : std_logic;
signal start : std_logic;

begin

connect: for i in 0 to SHARENUM-1 generate
x(i) <= zeros & x_port_i( ((i+1)*XBW) —1 downto ixXBW);
shares_o( ((i+1)*M) —1 downto i*M) <= share(i);

end generate;

myPEU: for i in O to share.num—1 generate
mult_s: polynom_multiplier generic map(M => M)

port map(clk = 07,
a = x(i),
b => factor (i),

result => mult_unreduced (i) );

reduct: Reduction generic map (M => M)
port map(Data_in_i => mult_unreduced (i),
Data_reduced_o => mult_reduced (i) );

temp_share(i) <= summand_buf xor mult_reduced (i);
end generate;

shares_valid.o <= share_valid_sr (1);
start <= data-in_valid_-i or (not css_mode);

——calculate the share—values

process (clk)

begin

if (clk’event and clk = ’1’) then

rd_rand_o <= ’07;
share_valid_sr (0) <= ’07;
share_valid_sr (1) <= share_valid_sr (0);
share <= temp_share;

if (rst = ’1’) then
rd_rand_-o <= ’'0’;
cnt <= 0;

share_valid_-sr <= 7007;
elsif (start="1") then

if css_mode = ’0’ then
summand_buf <= rand-i;
rd_rand_-o <= ’'17;

else
summand_buf <= secret_i;

end if;

for i in 0 to Share.num—1 loop
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factor (i) <= temp-_share(i);
end loop;

cnt <= cnt+1;
if (cnt = 0) then
for i in 0 to Share_num—1 loop
factor (i) <= (others => ’0’);
end loop;
elsif (¢cnt = DEGREE) then

cnt <= 0;
share_valid_sr (0) <= ’17;
end if;
end if;
end if;

end process;

——read the next data according to thee correct mode
process (clk)

begin
if (clk’event and clk = ’1’) then
if (rst = ’1’) then
css_mode <= 17
rd_data <= ’17;
elsif (start=’1") then
if mode_i 0’ or css.mode = ’'0’ then
css_mode <= ’'07;
rd_data <= ’0’;
end if;
if (cnt = DEGREE—1) then
rd_data <= ’17;
elsif (cnt = DEGREE) then
css_mode <= ’'17;
rd_data <= ’17;
end if;
end if;
end if;

end process;

—— signalize if data is read
process (rd_data, mode.i, cnt, start) is

begin
if (rd-data = ’1’) then
if (mode-i = ’0’ and start = ’1’) and cnt = O then
rd_data-o <= ’'0’;
else
rd_data_o <= ’'17;
end if;
else
rd_data_.o <= ’'0’;
end if;

end process;
end Behavioral;
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CSS core

library IEEE;

use
use
use
use
use
use
use
use
use
use
use
use
use

entity CSS_vl

IEEE .

IEEE

work .
work .
work .
work .
work .
work .

work

STD_LOGIC_1164.ALL;

.NUMERIC_STD.ALL;
work .
work .
work .
work .

functions_pkg. all;
packet_in_buffer_pkg.all;
AES_pkg. all;

AES_channel_arbiter_pkg. all;

secrec_out_buffer_pkg.all;
sharegen_in_buffer_pkg. all
sharegen_pkg. all;
out_buffer_pkg.all;
share_in_buffer_pkg.all;
secret_reconstruction_pkg.

.secret_-in_buffer_pkg.all;

is

generic (M

x BW

Share_num

degree
DSPperKaratsuba
UseDSP

Pipelining
MATRIX.MODE
EXTERNAL_BUS_WIDTH
PACKET_SIZE
header_size

SECRET_IN_BUFFER_-MAX_PACKETS
SHARE_OUT_BUFFER-MAX_PACKETS
SECRET_-OUT_BUFFER-MAX PACKETS
SHARE_IN.BUFFER-MAX_PACKETS
SHAREGEN_BUFFER-MAX PACKETS
SECREC_BUFFER-MAX PACKETS

AES_SR_TYPE
AES_COUNTER-WIDTH

port (clk in
rst in
CSs_Ctrl in
rand in
rand_rd_o out
——Share generator
x_port in
secret_in in
secret_in_write in
secret_in_last in

out
out

share_out_port
ShareGen_Status

ShareGen_Buff_rd_en
ShareGen_Buff_rd_valid
ShareGen_Buff_packet_ready
ShareGen_Buff_last

in
in
in

nt_header_i
sel_nt_header_i
wr_nt_header_i

all;

integer
integer
integer
integer
integer
integer
integer
string
integer
integer
integer
integer
integer
integer
integer
integer
integer
string

: integer
std_logic;
std_logic;
std_logic_vector (32 — 1 downto 0);
std_logic_vector (M—1 downto 0);
std_logic;

std_logic_vector ((share_num % x_bw) — 1 downto 0);
std_logic_vector (EXTERNALBUSWIDTH — 1 downto 0);
std-logic;
std-logic;

std-logic_vector ((SHARENUM % EXTERNALBUSWIDTH) — 1 downto 0);
std-logic_vector (32 — 1 downto 0);

in std-logic-vector (Share.num — 1 downto 0);

out std-logic-vector (SHARENUM — 1 downto 0);

out std_logic_vector (SHARENUM — 1 downto 0);

out std_logic_vector (SHARENUM — 1 downto 0);

std_logic_vector (31 downto 0);
std_logic_vector (SHARENUM — 1 + 1
std_logic;

downto 0);

rst_-nt_header_cnt_i in std_-logic;

——Secret reconstruction

matrix_port in std-logic_vector (((DEGREE+1)x*(DEGREE+1)*M)—1 downto 0);
matrix_coef_i in std-logic_vector (M—1 downto 0);

matrix_coef_valid_i in
coef_sel_share_i in
coef_sel_pos_i in
share_in_port in
share_in_write in
secret_out out
secret_out_available out
secret_out_read in
secret_out_valid out
secret_out_last out
SecRec_Status out
new_key in

std-logic;

integer range 0 to SHARENUM-1;

integer range 0 to SHARENUM-1;

std-logic_-vector (((DEGREE+1)+*EXTERNALBUS_-WIDTH)—1 downto 0);
std-logic_-vector ((DEGREE+1)—1 downto 0);
std-logic-vector (EXTERNAL BUS.WIDTH-1 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector (32 — 1 downto 0);
std_logic_vector(128—1 downto 0);

new_key_rd_o out std-logic );
end CSS_vl;
architecture Behavioral of CSS_vl is
type share_in_bus_array is array (0 to DEGREE) of std_logic_-vector (EXTERNALBUS_WIDTH—1 downto
type share_in_buf_bus_array is array (0 to DEGREE) of std-logic_-vector (M—1 downto 0);
type bus_array is array (0 to Share.num—1) of std-logic_-vector (M—1 downto 0);
type share_out_bus_array is array (0 to Share.num—1) of
std-logic_-vector (EXTERNALBUS.WIDTH—1 downto 0);
type share_in_header_array 1is array (0 to DEGREE) of std-logic_-vector(128—1 downto 0);
signal secret_in_buffer_out_last std_logic;
signal secret_in_buffer_out_data std_logic_-vector (128 —1 downto 0);
signal secret_in_buffer_heade_out_valid std_logic;
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begi

signal
signal
signal
signal

signal
signal
signal
signal
signal

signal
signal
signal
signal
signal

signal
signal
signal
signal
signal

signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal

signal
signal
signal
signal

secret_in_buffer_read

secret_in_buffer_packet_available

secret_in_buffer_reset_aes
secret_in_buffer_out_valid

aes_data_out

std_-logic;

std_-logic;

std_-logic;
std_-logic;

std-logic_-vector (128—1 downto 0);

aes-data_-valid-chO std_-logic;
aes-data-valid-chl std-logic;
AES_chO_out_-buffer_read std-logic;

share_in

sharegen_in_buffer_header
sharegen_in_buffer_header_valid

sharegen_in_buffer_packet_available

sharegen_in_buffer_secret
sharegen_in_buffer_secret_valid

sharegen_shares

share_in_bus_array ;

std_logic_vector (128 — 1 downto 0);
std_logic;

std_logic;

std_logic_vector (M—1 downto 0);
std_logic;

std_logic_vector ((SHARENUM x M) — 1 downto 0);

sharegen_shares_valid std_logic;
ShareGen_secret_in_write std_-logic;
sharegen_read_data std_-logic;
sharegen_mode std-logic;

share_out_buffer_share_valid
share_out_buffer_share_last

share_out_buffer_packet_available

share_out_buffer_share_out

share_in_buffer_share_last
share_in_buffer_header_valid
share_in_buffer_header_out
share_in_buffer_css_mode
share_in_buffer_share_valid
share_in_buffer_share_out
share_in_buffer_packet_available

SecRec.secret_out
secrec_out_buffer_key_out
secrec_out_buffer_header_valid
secrec_out_buffer_header_out
secrec_css_mode
secrec_share_in_port
secrec_ready
SecRec_secret_out_valid
SecRec_share_in_read

secrec_out_buffer_key_out_valid
secrec_out_buffer_read
secrec_out_packet_ready
secrec.out_buffer_data_out
secrec_out_buffer_data_valid
secrec_out_buffer_last_word

secret_out_buffer_data_out

secret_out_buffer_secret_out_valid
secret_out_buffer_secret_out_last
secret_out_buffer_packet_available

——nt header

signal

signal
signal
signal
signal
signal

signal
signal

signal
signal

n

ShareGen_Buff_rd_valid <=

wr_nt_header std_logic

status_-SecRec std_logic
share_out_fifo_empty std_logic
share_out_fifo_full std_logic
secret_in_fifo_empty std_-logic

secret_in_fifo_full std_logic

all_share_in_packets_ready
share

share_in_packet_-cnt
share_in_packet_cnt-rst

_vector (SHARENUM — 1 4+ 1 downto

_vector ((DEGREE + 1)
_vector (SHARENUM —
_vector (SHARENUM —

std-logic_-vector (SHARENUM — 1 downto 0);
std-logic_-vector (SHARENUM — 1 downto 0);
std_logic_vector (SHARENUM — 1 downto 0);
share_out_bus_array ;

std_logic_vector (DEGREE downto 0);
std_logic_vector (128 —1 downto 0);
share_in_header_array ;

std_logic_-vector (DEGREE downto 0);
std_-logic_-vector (DEGREE downto 0);
share_in_buf_bus_array ;

std_-logic_vector (DEGREE downto 0);

std-logic_-vector (M—1 downto 0);
std-logic-vector (128—1 downto 0);

std-logic;

std-logic-vector (128 —1 downto 0);

std_logic;

std_logic_vector (((DEGREE+1)*M)—1 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;
std-logic;

std_logic_vector (128—1 downto 0);
std-logic;

std-logic;

std-logic_-vector (EXTERNALBUSWIDTH — 1 downto 0);

std-logic;
std_logic;
std_logic;

0);
2+ 2 -1

1 downto 0);
1 downto 0);

downto 0);

3
;
std-logic;
bus.array ;

share_in_bus_array ;
std-logic;

share_out_buffer_share_valid;

ShareGen_Buff_last<= share_out_buffer_share_last;

ShareGen_Buff_packet_ready <=

secret_
secret_
_out_last <=
secret_

secret

out <=
out_-valid <=

out-available <=

share_out_buffer_packet_available;

secret_out_buffer_data_out;
secret_out_buffer_secret_out_valid;

secret_out_buffer_secret_out_last;

secret_out_buffer_packet_available;
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wr_nt_header <= sel_nt_header_i when wr_nt_header_i= ’1’ else (others => '07);

connect_share_out: for i in 0 to SHARENUM-1 generate
share_out_port (((i+41)*EXTERNALBUS.WIDTH)—1 downto i*xEXTERNAL BUS_WIDTH)
<= share_out_buffer_share_out (i);
share (i) <= sharegen_shares( ((i+1)*M)—1 downto i*M);
end generate;

connect-share_in: for i in 0 to DEGREE generate
share_in (i) <= share_in_port( ((i+1)*EXTERNALBUSWIDTH) —1 downto i*EXTERNAL BUSWIDTH);
SecRec_share_in_port( ((i+1)*M) —1 downto i*M) <= share_in_buffer_share_out (i);

end generate;

secret_in_buffer_cmp : secret_in_buffer
generic map(WIDTH_IN => EXTERNAL_BUS_WIDTH,
WIDTH.OUT  => 128,
MAX PACKETs => SECRET_IN.BUFFER.MAX PACKETS,
packet_size => (packet_sized+header_size) )

port map(clk = clk,
rst => rst ,
data_in_i => secret_in ,
data_in_valid_i => secret_in_write ,
data_-in_last_i => secret_-in_last ,
read_en_i => secret_-in_buffer_read ,
data_-out-o => secret_-in_buffer_out_-data ,
data-out-valid-o => secret_-in_buffer_out_-valid ,
header_out-valid-o => secret_-in_buffer_heade_-out-valid ,
data_out-last-o => secret_in_buffer_out_last ,
packet_available_o => secret_in_buffer_packet_available ,
reset_aes_o => secret_in_buffer_reset_aes );

AES1 : AES

generic map(SR-TYPE => AES_SR.-TYPE,
COUNTER-WIDTH => AES_COUNTER-WIDTH)

port map(clk = clk,
rst => rst ,
plaintext_chO_i => secret_in_buffer_out_data ,
plaintext_ch1_i => secrec_-out_buffer_data_out ,
key_chl_i => secrec.out_buffer_key_out ,
new_key_i => new_key ,
new_key.-rd_o => new-key_rd-o,
Ciphertext-o => aes_data-out ,
data-out-chO_valid-o => aes_-data-valid-chO ,
data_-in_-chO_valid-i => secret_-in_buffer_out-valid ,
data-out-chl_valid-o => aes_-data-valid-chl ,
data_in_chl_valid_.i => secrec_out_buffer_data_valid ,
reset_counter_ch0O_.i => secret_in_buffer_reset_aes,
reset_counter_chl_i => secrec_out_buffer_key_out_valid )

—AES Verwaltung
AES_arbiter : AES_channel_arbiter
port map (clk => clk,
rst => rst ,
CHO_ready-i => secret_in_buffer_packet_available ,
CHO_-last_-i => secret_in_buffer_out_last ,
Chl_ready-i => secrec_out_packet_ready ,

CH1l_.last-i => secrec-out-buffer_last_-word ,
CHO_-en_-o => secret_-in_buffer_read ,
Chl_en_o => secrec_out_buffer_read );
share_gen_in_buffer : sharegen_in_buffer
generic map(WIDTH_IN => 128,
WIDTH.OUT = M,

MAX PACKETs => SHAREGEN_BUFFER.MAX PACKETS,
packet_size => packet_size ,

DEGREE => DEGREE )
port map(clk => clk,
rst = rst ,
data_in_i => aes_data_out ,
data_out_o => sharegen_in_buffer_secret ,
rd_en_i => sharegen_read_data ,
data_-in_valid_i => AES_data_valid_choO ,
data_-out_valid_o => sharegen_in_buffer_secret_valid ,
packet_available_o => sharegen_in_buffer_packet_available ,
css_header_in_i => secret_-in_buffer_out_-data ,
css_header_out-o => sharegen_in_buffer_header ,
css_-header_in_valid-i => secret_-in_buffer_heade_out_-valid ,
css_header_out_-valid_-o => sharegen_in_buffer_header_valid ,
key-in_i => new-_key,
sharegen_-mode-o => sharegen_mode );
share_gen : sharegen
generic map(M = M,
x.BW = x.BW,
SHARENUM => SHARE.NUM,
DEGREE => DEGREE )
port map(clk = clk,
rst => rst ,
secret_i => sharegen_in_buffer_secret ,
data_in_valid_.i => sharegen_in_buffer_secret_valid ,
x_-port_i => x.port ,
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shares_o =
shares_valid_o =

sharegen_shares ,
sharegen_shares_valid ,

rand_i => rand,

rd_-rand_o => rand-rd_-o,

mode_i => sharegen_mode,
rd_data_o => sharegen_read_data );

Share_out_Buffer
b: out_buffer

for i

in 0 to SHARENUM-1 generate

generic map(WIDTH_IN = M,
‘WIDTH_.OUT => EXTERNAL_BUS_WIDTH,
MAX PACKETSs => SHARE_OUT_BUFFER-MAX_PACKETS,
PACKET_SIZE => (packet_size+128/8), —PACKET_SIZE+16 Bytes
NT_HEADER_SIZE => 11,
x BW = XBW,
VERSION_NR = 0,
BUFFER-TYPE => ”share” )
port map(clk = clk,
rst => rst ,
data_in_i => share (i),
data_out_o => share_out_buffer_share_out (i),
data_out_valid_o => share_out_buffer_share_valid (i),
data_out_-last_o => share_out_buffer_share_last (i),
rd_data_i => ShareGen_Buff_.rd_en (i),
data-in_-valid_i => sharegen_shares_valid ,
packet_available_o => share_out_buffer_packet_available (i),
css_header_i => sharegen_in_buffer_header ,
css-header_valid_.i => sharegen_in_buffer_header_valid,
x_value_i => x_port ((i+1)*xXBW — 1 downto i*XBW),
nt_header_i => nt_header_i,
nt_header_valid_i => wr_nt_header (i),
rst_nt_header_cnt_i => rst_nt_header_cnt_i );

end generate;

share_in_buffer_cmp for i in 0 to

b: share_in_buffer

generic map(WIDTH_IN
‘WIDTH.OUT
MAX_PACKETSs

PACKET SIZE

=> M,

port map(clk =
rst =
data_in_i =
data_-in_valid_i =
rd_data_i =
data_out_o =
data_out_valid_o =
data_out_last_o =
header_out_o =

header_out_valid_.o =>

packet_available_o =>

css_mode_o =

packet_cnt_o =

rst_-packet_cnt_i =
end generate;

DEGREE generate

=> EXTERNAL_BUS_WIDTH,

=> SHARE_IN.BUFFER-MAX_PACKETS,
=> PACKET.SIZE )

clk ,

rst ,

share_in (i),
share_in_write (i),
SecRec-share_in_read ,
share_in_buffer_share_out (i),
share_in_buffer_share_valid (i),
share_in_buffer_share_last (i),
share_in_buffer_header_out (i),
share_in_buffer_header_valid (i),
share_in_buffer_packet_available (i),
share_in_buffer_css_mode (i),
share_in_packet_cnt (i),
share_in_packet_cnt_rst );

secrec secret_reconstruction
generic map(M = M,
SHARES => DEGREE+1,
DSPperKaratsuba => DSPPERKARATSUBA,
USEDSP => USEDSP,
PIPELINING => PIPELINING,
MATRIX_MODE => MATRIXMODE )
port map(clk => clk,
rst = rst,
matrix_port_i => matrix_port ,
matrix_coef_i => matrix_coef_i,

matrix_coef_valid_i =>
coef_sel_share_i =
coef_sel_pos_i =
share_port_i =

secret_o =
secret_valid-o =
share_valid_i =
css_mode_i =
css_mode_o

ready.-o =>

sec_.rec_out_buffer

matrix_coef_valid_i,
coef_sel_share_i ,
coef_sel_pos_i,
SecRec_share_in_port ,
secrec_secret_out ,
secrec_secret_out_valid ,
share_in_buffer_share_valid ,
share_in_buffer_css_mode (0),

=> secrec-css_-mode ,

secrec_ready )

secrec_out_buffer

generic map(WIDTH_IN = M,
‘WIDTH.OUT => 128,
MAX PACKETs => SECREC_BUFFER-MAX PACKETS,
packet_size => packet_size,
DEGREE => DEGREE )
port map(clk => clk,
rst = rst,
data_in_i => secrec.secret_out ,
data_out_-o => secrec_out_buffer_data_out ,
read_en_i => secrec_out_buffer_read ,
data_in_valid_i => secrec.secret_out_valid ,
data_out_-valid_-o => secrec_out_buffer_data_valid ,
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packet_available_o => secrec_out_packet_ready ,
css_header_in_i => share_in_buffer_header_out (0),
css_-header_out_o => secrec_out_buffer_header_out ,
css_header_in_valid_i => share_in_buffer_header_valid (0),
css_header_out_valid_-o => secrec_out_buffer_header_valid ,
key-out_-o => secrec_out_buffer_key_out ,
data_out-last_-o => secrec-out_buffer_last_word ,
key-out_valid-o => secrec_.out_buffer_key_out_valid ,
input-is_keyn_i => secrec_css_mode );
Secret_.out_Buffer : out_buffer
generic map(WIDTH_IN => 128,

WIDTH.OUT => EXTERNAL_BUS_WIDTH,

MAX PACKETSs => SECRET_-OUT_BUFFER-MAX_PACKETS,

PACKET_SIZE => packet_size ,

NT_HEADER_SIZE => 11,

XBW => X BW,

VERSION_.NR = 0,

BUFFER-TYPE => ”secret” )

port map(clk = clk,

rst => rst ,
data_-in_i => aes_data_out ,
data_out_-o => secret_-out_buffer_data_out ,
data_-out_-valid_-o => secret_out_buffer_secret_out_-valid ,
data_out-last_-o => secret_-out_-buffer_secret_out_last ,
rd_data_i => secret_out-read ,
data-in_-valid_-i => AES_data_valid-chl ,
packet_available.o => secret_out_buffer_packet_available ,
css-header-i => secrec_out_buffer_header_out ,
css_header_valid_.i => secrec_out_buffer_header_valid ,
x_value_i => (others => ’0’),
nt_header_i => nt_header_.i,
nt_header_valid_i => wr_nt_header (SHARENUM) ,

rst_nt_header_cnt_i => rst_nt_header_cnt_i );

process (share_in_buffer_packet_available) is

begin
all_share_in_packets_ready <= 17
for i in 0 to DEGREE loop
if (share_in_buffer_packet_available(i) = ’0’) then
all_share_in_packets_ready <= 07
end if;

end loop;
end process;

secrec-share_in_read <= secrec.ready and all_share_in_packets_ready ;

ShareGen_secret_in_write <= sharegen_in_buffer_secret_valid;
AES_chO_out_buffer_read <= '17;

process (CSS_Ctrl(8—1 downto 0)) is

variable temp_out : std_logic_-vector(32—1 downto 0);

begin
temp_out (status_SecRec "length —1 downto 0) := status_SecRec;
temp_out(32—1 downto status_-SecRec ’length) := (others => ’07);

for i in 0 to DEGREE loop
if to_-integer (unsigned(CSS_Ctrl(8—1 downto 0))) = i then
temp_-out := share_in_packet_cnt (i);
end if;
end loop;

SecRec_Status <= temp-out;

if CSS_Ctrl(8—1 downto 0) = x”FF” then

share_in_packet_cnt_rst <= ’17;
else

share_in_packet_cnt_rst <= ’0’;
end if;

end process;

ShareGen_Status (SHARENNUM x 2 4+ 2 — 1 downto 0) <= share_out_fifo_empty & share_out_fifo_full
& secret_in_fifo_empty & secret_in_fifo_full;
ShareGen_Status (31 downto SHARENUM x 2 + 2) <= (others => ’07);

end Behavioral;
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8 X 8 bit polynomial multiplier, using 1 DSP

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERICSTD.ALL;

entity DSPMult8Bit is

GENERIC (Pipelining : integer := 1);

PORT(clk : in std-logic;
ain : in std-logic-vector(8—1 downto 0);
bin : in std-logic-vector(8—1 downto 0);
d : out std_logic_vector(15—1 downto 0) );

end DSPMult8Bit;

architecture Behavioral of DSPMult8Bit is

signal a : std-logic_vector(8—1 downto 0);
signal b : std-logic_vector(8—1 downto 0);
signal DSPina : std_-logic_vector(25—1 downto 0) := (others => ’07);
signal DSPinb : std-logic_vector(16—1 downto 0):= (others => ’07);
signal DSPout : std-logic_vector(41—1 downto 0): (others => ’07);
signal DSPoutPol : std_logic_-vector(13—1 downto 0):= (others => ’07);

function VECTORAND(a : std-logic_vector(8—1 downto 0); b: std_-logic)
return std-logic_-vector is
begin
if (b="1") then
return a;
else
return ”00000000”;
end if;
end VECTORAND;

begin

——make connections to use normal Mult with DSP
d <= 700” & DSPoutPol xor
”0” & VECTORAND(a, b(6)) & ”000000” xor
VECTORAND(a, b(7)) & ”700000007;

process (ain, bin) is
begin
for i in 0 to 8—1 loop
DSPina(i*3) <= ain(i);
end loop;
for i in 0 to 6—1 loop
DSPinb (i%3) <= bin(i);
end loop;
end process;

pl: if (Pipelining > 0) generate
process (clk) is
begin
if (clk event and clk='1") then
for i in 0 to (84+6—1)—1 loop
DSPoutPol (i) <= DSPout(i=x3);
end loop;
a <= ain;
b <= binj;
end if;
end process;
end generate;

p2: if(Pipelining = 0) generate
process (DSPout) is
begin
for i in 0 to (84+6—1)—1 loop
DSPoutPol (i) <= DSPout(i=3);
end loop;
end process;
a <= ain;
b <= bin;
end generate;

DSPout <= std_logic_-vector (unsigned (DSPina) * unsigned (DSPinb));

end Behavioral;
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16 x 16 bit polynomial multiplier, using 2 DSPs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERICSTD.ALL;

entity DSPMultl6Bitv2 is

GENERIC( Pipelining : integer := 0);

PORT( clk : in std_-logic;
ain : in std_logic_vector(16—1 downto 0);
bin : in std_logic_vector(16—1 downto 0);
result : out std_logic_vector(31—1 downto 0) );

end DSPMultl6Bitv2;

architecture Behavioral of DSPMultl6Bitv2 is
signal DSPlina: std_-logic-vector(25—1 downto 0) := (others => ’07);
signal DSPlinb: std_logic-vector(16—1 downto 0):= (others => ’07);
signal DSPlout: std_-logic-vector(41—1 downto 0):= (others => ’0’);

signal DSPloutPol : std_logic_vector(l14—1 downto 0):= (others => ’0’);

signal DSP2ina: std_logic_vector(25—1 downto 0) := (others => ’0’);
signal DSP2inb: std_logic_vector(16—1 downto 0): (others => ’0);
signal DSP2out: std_-logic_vector(41—1 downto 0): (others => ’0);
signal DSP2outPol : std_logic_vector(14—1 downto 0):= (others => ’0’);

signal a : std-logic_-vector(16—1 downto 0);
signal b : std-logic-vector(16—1 downto 0);
signal ¢ : std-logic-vector(31—1 downto 0);

function VECTORAND7(a : std_logic-vector(7—1 downto 0); b: std_logic)
return std-logic-vector is
begin
if (b="1") then
return a;
else
return ”0000000”;
end if;
end VECTORAND7;

function VECTORAND6(a : std_logic_-vector(6—1 downto 0); b: std_logic)
return std_logic_vector is
begin
if (b="1") then
return aj;
else
return 7000000”;
end if;
end VECTORANDG;

function VECTORANDI16(a : std-logic_-vector(16—1 downto 0); b: std_-logic)
return std-logic-vector is
begin
if (b=1") then
return a;
else
return ”0000000000000000”;
end if;
end VECTORANDI6;

begin

——make connections to use normal Mult with DSP
process (ain, bin) is
begin
for i in 0 to 9—1 loop
DSPlina(i*3) <= ain(i+1);
DSP2ina(i*3) <= ain (i+6);
end loop;
for i in 0 to 6—1 loop
DSPlinb(i*3) <= bin(i);
DSP2inb(ix3) <= bin(i+10);
end loop;
end process;

pl: if (Pipelining > 0) generate
process (clk) is
begin
if (clk event and clk="1") then
for i in 0 to (94+46—1)—1 loop
DSPloutPol(i) <= DSPlout(i=*3);
DSP2outPol (i) <= DSP2out(i=*3);
end loop;

a <= ain; ——one pipeline stages for the others
b <= bin; ——values as well
end if;

end process;
end generate;

p2: if (Pipelining = 0) generate
process (DSPlout, DSP2out) is
begin

for i in 0 to (9+6—1)—1 loop
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DSPloutPol(i) <= DSPlout(i=*3);
DSP2outPol (i) <= DSP2out(i=*3);
end loop;
end process;
a <= ain;
b <= bin;
end generate;

DSPlout <= std_logic_vector (unsigned (DSPlina)
DSP2out <= std_-logic_-vector (unsigned (DSP2ina)

c <=
”000000000000000” & VECTORAND6(a(16—1 downto 10), b(0)) & ”000000000”
”700000000000000” & VECTORANDG(a(16—1 downto 10), b(1l)) & 7000000000~
”0000000000000” & VECTORAND6(a(16—1 downto 10), b(2)) & 7000000000~
”000000000000” & VECTORAND6(a(16—1 downto 10), b(3)) & 70000000007
»00000000000” & VECTORAND6(a(16—1 downto 10), b(4)) & ”000000000”
700000000007 & VECTORAND6(a(16—1 downto 10), b(5)) & 70000000007
»000000000” & VECTORANDI6(a(16—1 downto 0), b(6)) & ”000000” xor
»00000000” & VECTORANDI6(a(16—1 downto 0), b(7)) & ”0000000” xor
»0000000” & VECTORANDI6(a(16—1 downto 0), b(8)) & ”00000000” xor
»000000” & VECTORANDI6(a(16—1 downto 0), b(9)) & 70000000007
»00000” & (a(15) and b(10)) & »000000000” & VECTORANDG(a(6—1 downto 0),
»0000” & (a(15) and b(11)) & ”000000000” & VECTORANDG(a(6—1 downto 0)
7000” & (a(15) and b(12)) & »000000000” & VECTORANDG(a(6—1 downto 0)
700” & (a(15) and b(13)) & ”000000000” & VECTORAND6(a(6—1 downto O0)
70" & (a(15) and b(14)) & 7000000000” & VECTORAND6(a(6—1 downto 0),
(a(15) and b(15)) & ”000000000” & VECTORANDG6(a(6—1 downto 0),
”0000000000000000” & DSPloutPol
70”7 & DSP2outPol

result <= c;

end Behavioral;

——straight through, without pipeline

* unsigned (DSP1linb));
* unsigned (DSP2inb));

rrerer

and
and
and
and
and
and

prrrrree

xor
70” xor
”00” xor
”7000” xor
”0000” xor
”00000” xor

e

”0000000000” xor
”00000000000” xor
”000000000000” xor
”0000000000000” xor
”00000000000000” xor
”000000000000000” xor
70”7 xor
”0000000000000000”;
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16 x 16 bit polynomial multiplier, using 3 DSPs

libr
use
use

enti

end

architecture

begi

ary IEEE;
IEEE.STD_LOGIC_1164.ALL;
IEEE . NUMERIC_STD.ALL;

ty DSPMultl6Bitv3 is

GENERIC (Pipelining integer := 1);

PORT( clk in std_-logic;
ain in std_logic_vector(16—1 downto 0);
bin in std_logic_vector(16—1 downto 0);
result out std_logic_-vector(31—1 downto 0) );

DSPMult16Bitv3;

Behavioral of DSPMultl6Bitv3 is

signal ¢ std_logic_-vector(31—1 downto 0);

signal a std_-logic_-vector (16—1 downto 0);

signal b std-logic_-vector (16—1 downto 0);

signal DSPlina std_logic_vector(25—1 downto 0)
signal DSPlinb std_logic_vector(16—1 downto 0)
signal DSPlout std_logic_vector(41—1 downto 0)
signal DSPloutPol std_logic_-vector(14—1 downto 0)
signal DSP2ina std_logic_-vector(25—1 downto 0)
signal DSP2inb std_logic_-vector(16—1 downto
signal DSP2out std_logic_-vector(41—1 downto 0)
signal DSP2outPol std_logic_vector(14—1 downto 0)
signal DSP3ina std-logic_vector(25—1 downto 0)
signal DSP3inb std-logic_vector(16—1 downto
signal DSP3out std-logic_-vector(41—1 downto
signal DSP3outPol std-logic_-vector(l4—1 downto

function VECTORANDT(a std_logic_vector(7—1 downto
return std_logic_vector is
begin
if (b="1") then
return aj;
else
return
end if;
end VECTORAND7;

700000007

function VECTORANDY(a std-logic_vector(9—1 downto
return std_-logic_-vector is
begin
if (b="1") then
return a;
else
return
end if;
end VECTORANDY;

”000000000”;

function VECTORANDI6( a
return std_logic_vector
begin
if (b="1") then
return aj;
else
return
end if;
end VECTORANDI6;

is

”0000000000000000”;

n
—make connections to use normal Mult with DSP
process (ain, bin) is
begin
for i in 0 to 9—1 loop
DSPlina(i*3) <= ain(i);
DSP2ina(i*3) <= ain(i+7);
DSP3ina(i*3) <= bin(i+6);
end loop;
for i in 0 to 6—1 loop
DSP1linb(i*3) <= bin(i);
DSP2inb (i*3) <= bin(i+10);
DSP3inb (i*3) <= ain(i+41);
end loop;
end process;
pl: if (Pipelining > 0) generate

process (clk) is
begin
if (clk event and clk=’1") then
for i in 0 to (94+6—1)—1 loop

DSPloutPol(i) <= DSPlout(i=x3);
DSP2outPol(i) <= DSP2out(i=x3);
DSP3outPol(i) <= DSP3out(i=x*3);
loop;
ain ;

end

a <= ——one pipeline stages for the

78

std_logic_vector(16—1 downto 0);

= (others => ’07);
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0); b: std_logic)
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b <= bin; ——values as well
end if;
end process;
end generate;

p2: if(Pipelining = 0) generate
process (DSPlout, DSP2out, DSP3out) is
begin
for i in 0 to (946—1)—1 loop
DSPloutPol(i) <= DSPlout(i=x3);
DSP2outPol(i) <= DSP2out(i=x*3);
DSP3outPol(i) <= DSP3out(ix*3);
end loop;
end process;
a <= ain; ——straight through, without pipeline
b <= bin;
end generate;

DSPlout <= std-logic-vector (unsigned (DSPlina) * unsigned (DSPlinb));
DSP2out <= std-logic-vector (unsigned (DSP2ina) * unsigned (DSP2inb));
DSP3out <= std_logic_vector (unsigned (DSP3ina) % unsigned (DSP3inb));

c <=
”000000000000000” & VECTORAND7(a(16—1 downto 9), b(0)) & ”000000000” xor
»00000000000000” & VECTORAND7(a(16—1 downto 9), b(1)) & ”0000000000” xor
»0000000000000” & VECTORAND7(a(16—1 downto 9), b(2)) & ”00000000000” xor
»000000000000” & VECTORAND7(a(16—1 downto 9), b(3)) & ”000000000000” xor
”00000000000” & VECTORAND7(a(16—1 downto 9), b(4)) & ”0000000000000” xor
”0000000000” & VECTORAND7(a(16—1 downto 9), b(5)) & ”00000000000000” xor
70000000007 & VECTORAND9(a(16—1 downto 7), b(6)) & 70000007 & (a(0) and b(6)) & ”000000” xor
”700000000” & VECTORANDY9(a(16—1 downto 7), b(7)) & 7000000” & (a(0) and b(7)) & 70000000” xor
”0000000” & VECTORAND9(a(16—1 downto 7), b(8)) & 7000000” & (a(0) and b(8)) & 700000000” xor
”?000000” & VECTORAND9(a(16—1 downto 7), b(9)) & ”000000” & (a(0) and b(9)) & ”000000000” xor
”00000000000000000000” & (a(0) and b(10)) & 700000000007 xor
”0000000000000000000” & (a(0) and b(11)) & 000000000007 xor
”000000000000000000” & (a(0) and b(12)) & ”000000000000” xor
”00000000000000000” & (a(0) and b(13)) & ”0000000000000” xor
”0000000000000000” & (a(0) and b(14)) & 700000000000000” xor

”000000000” & VECTORAND7(a(7—1 downto 0), b(15)) & ”000000000000000” xor
”00000000000000000” & DSPloutPol xor
DSP2outPol & ”00000000000000000” xor
”0000000000” & DSP3outPol & ”0000000”

result <= c;

end Behavioral;
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16 x 16 bit polynomial multiplier, using 4 DSPs

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERICSTD.ALL;

entity DSPMultl6Bitv4 is

generic (Pipelining : integer := 0);

port (clk : in std_-logic;
ain : in std_logic_vector(16—1 downto 0);
bin : in std_logic_vector(16—1 downto 0);
result : out std_logic_-vector(31—1 downto O0)

)
end DSPMultl6Bitv4;

architecture Behavioral of DSPMultl6Bitv4 is

begi

signal a : std-logic-vector(16—1 downto 0);
signal b : std_logic_vector(16—1 downto 0);
signal ¢ : std_-logic_vector(31—1 downto 0);

signal DSPlina
signal DSPlinb
signal DSPlout

std_logic_vector(25—1 downto 0)
std_logic_-vector(16—1 downto 0)
std_logic_vector(41—1 downto 0)

signal DSPloP : std_-logic_-vector(14—1 downto 0) :=

signal DSP2ina
signal DSP2inb
signal DSP2out

std_logic_-vector(25—1 downto 0)
std_logic_vector(16—1 downto 0)
std_-logic_vector(41—1 downto 0)

signal DSP20oP : std_logic_vector(14—1 downto 0) :=

signal DSP3ina
signal DSP3inb
signal DSP3out

std-logic_vector(25—1 downto O
std-logic_-vector(16—1 downto O
std-logic_-vector(41—1 downto O

signal DSP3oP : std_logic-vector(14—1 downto O0)

signal DSP4ina
signal DSP4inb
signal DSP4out

std_logic_vector(25—1 downto 0)
std_logic_vector(16—1 downto 0)
std_logic_-vector(41—1 downto 0)

signal DSP4oP : std_logic_vector(14—1 downto 0)

n

——make connections to use normal Mult with DSP
process (ain, bin) is
begin

pl:

p2:

end

DSPlout <= std_logic_vector (unsigned (DSPlina)
DSP2out <= std_logic_vector (unsigned (DSP2ina)

for i in 0 to 9—1 loop
DSPlina(i*3) <= ain (i)
DSP2ina(i*3) <= (i4+7);
DSP3ina(i*3) <= bin(i+6);
DSP4ina(i+3) <= bin(i+1);

end loop;

for i in 0 to 6—1 loop
DSP1linb(i%3) <= bin (i);
DSP2inb (i+3) <= bin (i+10);
DSP3inb(i*3) <= ain(i+1);
DSP4inb (i%3) <= ain (i+9);

end loop;

process;

if (Pipelining > 0) generate

process (clk) is

begin

if (clk ’event and clk=’'1’) then
for i in 0 to (94+6—1)—1 loop
DSP1oP (i) <= DSPlout(i=*3);
DSP20P (i) <= DSP2out (i *3);
DSP30oP (i) <= DSP3out(i=*3);
)

(others => ’0
(others => ’0

:= (others => ’0

(others => ’07);

:= (others => ’0
(others => ’0

:= (others => 70

(others => ’07);

:= (others => ’0

: (others =>
:= (others =>
(others => ’07);

= (others =>
= (others =>
= (others =>

(others => ’07);

DSP4oP (i) <= DSP4out(i=*3);
end loop;
a <= ain; ——one pipeline stages for the others
b <= bin; —values as well
end if;

end process;
generate;

if (Pipelining = 0) generate
process (DSPlout, DSP2out, DSP3out, DSP4out) is
begin
for i in 0 to (94+6—1)—1 loop
DSP1oP (i) <= DSPlout(i=*3);
DSP20P (i) <= DSP2out(i=*3);
DSP30oP (i) <= DSP3out(i=*3);
DSP40P (i) <= DSP4out (i *3);
end loop;
end process;
a <= ain; ——straight through, without pipeline
b <= bin;
generate;
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DSP3out <= std-logic_-vector (unsigned (DSP3ina) * unsigned (DSP3inb));
DSP4out <= std_logic_vector (unsigned (DSP4ina) % unsigned (DSP4inb));

c(5 downto 0) <= DSPloP(5 downto 0);

c(6) <= DSPloP(6) XOR (a(0) AND b(6));

c(7) <= DSP1oP(7) XOR DSP30P (0) XOR (a(0) AND b(7));

c(8) <= DSP1oP(8) XOR DSP30P (1) XOR (a(0) AND b(8));

c(9) <= (a(9) AND b(0)) XOR DSP1oP (9) XOR DSP30P(2) XOR (a(0) AND b(9));

¢(10) <= (a(10) AND b(0)) XOR DSP4oP (0) XOR DSP1oP(10) XOR DSP30P(3) XOR (a(0) AND b(10));

c(11) <= (a(11) AND b(0)) XOR DSP4oP (1) XOR DSP1oP(11) XOR DSP30P(4) XOR (a(0) AND b(11));

c(12) <= (a(12) AND b(0)) XOR DSP4oP (2) XOR DSP1oP(12) XOR DSP30P(5) XOR (a(0) AND b(12));

c(13) <= (a(13) AND b(0)) XOR DSP4oP (3) XOR DSP1oP(13) XOR (a(7) AND b(6)) XOR DSP3oP (6)
XOR ( a(0) AND b(13));

c(14) <= (a(14) AND b(0)) XOR DSP4oP(4) XOR (a(8) AND b(6)) XOR (a(7) AND b (7)) XOR DSP30P (7)
XOR (a(0) AND b(14));

c(15) <= (a(15) AND b(0)) XOR DSP4oP(5) XOR (a(8) AND b(7)) XOR (a(7) AND b(8)) XOR DSP30P (8)
XOR (a(0) AND b(15));

¢(16) <= (a(15) AND b(1)) XOR DSP40oP(6) XOR (a(8) AND b(8)) XOR (a(7) AND b(9)) XOR DSP30P (9)
XOR (a(1) AND b(15));

¢(17) <= (a(15) AND b(2)) XOR DSP40P(7) XOR (a(8) AND b(9)) XOR DSP20P (0) XOR DSP30P (10
XOR ( a(2) AND b(15) );

XOR DSP40P (8) XOR DSP20P (1) XOR DSP3oP(11) XOR (a(3) AND

)
c(18) <= (a(15) AND b(3)) b(15));
c(19) <= (a(15) AND b(4)) XOR DSP4oP (9) XOR DSP20P (2) XOR DSP30P (12) XOR (a(4) AND b(15));
c(20) <= (a(15) AND b(5)) XOR DSP40P (10) XOR DSP20P (3) XOR DSP30P(13) XOR (a(5) AND b(15));
c(21) <= (a(15) AND b(6)) XOR DSP40P(11) XOR DSP20P(4) XOR (a(6) AND b(15) );
c(22) <= (a(15) AND b (7)) XOR DSP40P (12) XOR DSP20P (5);
c(23) <= (a(15) AND b(8)) XOR DSP40P (13) XOR DSP20P (6);
c(24) <= (a(15) AND b(9)) XOR DSP20P (7);

c(30 downto 25) <= DSP20P (13 downto 8);
result <= c;

end Behavioral;
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TRNG

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERICSTD.ALL;

entity TRNGRO is

Generic (number_of . RO : integer
number_of . INV : integer ;
use_constant : boolean false );

Port ( clk : in std-logic;

rand_o : out std_logic);

end TRNGRO;
architecture Behavioral of TRNGRO is
attribute dont_touch : string;

signal ro_slv: std_logic_-vector (number_of _ RO—1 downto 0);
signal ro_buf_slv: std_-logic_-vector (number_of . RO—1 downto

attribute dont_touch of ro_slv : signal is ”true”;
attribute dont_touch of ro_buf_slv : signal is ”true”;

component RO is
Generic(depth : integer := 3);
Port ( rand-o : out STD_LOGIC);
end component;

begin

g: for i in O to number_of RO—1 generate
ro: RO generic map(depth => number_of INV)
port map (rand_o => rol_slv (i));
end generate;

process (clk) is
variable rand : std-logic := ’07;
begin
if clk ’event and clk=’1" then
ro_buf_slv <= ro.slv;

rand = ’0’;

for i in 0 to number_of_ RO—-1 loop
rand := rand XOR ro_buf_slv (i);

end loop;

if (use_constant = true) then
rand_o <= ’17;

else
rand_o <= rand;

end if;

end if;

end process;

end Behavioral;

Ring Oszillator

0);

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity RO is

Generic(depth : integer := 3);
Port ( rand-o : out STD_LOGIC);
end RO;

architecture Behavioral of RO is

attribute dont_touch : string;

signal connect : std_-logic_vector (depth—1 downto 0);
attribute dont_touch of connect : signal is "true”;
begin

rand_o <= connect (0);
connect (depth—1) <= not connect (0);
g: for i in 0 to depth—2 generate
connect (i) <= not connect(i+4+1);
end generate;
end Behavioral;
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D - C Code snapshots

Matrix inversion on the PS

This code is performed on the PS to first generate the matrix with the applied x-values and
then it’s inversion for the secret reconstruction. The algorithm described in [30] is applied with
binary extension field operations of the library [26].

void ff_invMatrix (ff_element A[K][K]){

ff_element A1[K][K];
ff_element ff_mul_temp;
//Step 1
int p, i, j;
//Step 2
for (p=0; p<K; p++){
//Step 3
if(ff_eq(A[p][p], ffozero)){
printf(”inversion not possible...\n”);
break ;

}/Step 5
for (j=0; j<K; j++){
(= p){
ff-div(A[p][i], Alp]llp], AL[P][i]);

}
//Step 6
for (i=0; i<K; i++){
if (i != p){
ff_div (A[i][p], Alp][p], Al[i][P]);

}
//Step 7
for (i=0; i<K; i++){
for (j=0; j<K; j++){
(i 1= p && j != p)f
ff_mul (A[p][j], Al[i][p], ff_mul_temp);
ff_add (A[i][j], ffomul_temp, AL[i][j]);

-inv (A[p][p], Al[p][pP]);

//copy new matrix
for (i=0; i<K; i++){
for (j=0; j<K; j++){
) ff_copy (AL[i][j], A[i][j]);

}
}
}
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Theoretical maximal throughput estimation for the share generation on the PC

This code only performs the required finite field calculations for the share generation, using
the library [26]. The required random numbers can be either static or generated with the rand()
function.

void CSS_ShareGenSpeedTest(int bit_width, int nr_shares){
int i, j, cnt, n, sub_count;

#if (GF == 16 || GF == 8)
int secret [K];
int share[nr_shares];
int x-n[nr_shares];
//initialisieren
for (i=0; i<K; i++){
secret [i] = 0;

}
#if USERAND >= 1
for (i=0;i<nr_shares;i4++){

share[i] = 0x56;
x-n[i] = 0x56;
}
#else
for (i=0;i<nr_shares;i4++){
share[i] = 0x56;
x-n[i] = 0x56;
}
#endif
#else

ff_element ff_share[10];
ff_element ff_x_n[10];
ff_element ff_secret_in [4];
ff_element ff_secret_out [K];
//initialisieren
#if USERAND >= 1
for (i=0; i<K;i++){
ff_secret_in [i]->data[0]=rand ();
for (j=1;j<BLOCKS; j++){
ff_secret_in [i]—>data[j]=rand ();
}

for (i=0;i<nr_shares;i4++){
ff_x_n[i]—>data[0]=rand ();
for (j=1;j<BLOCKS; j++){
ff_x_n[i]—>data[]j]=0;
}

}
#endif
#endif

#if GF >= 32
for (i=0;i<nr_shares;i4++){
ff_copy (ff_zero, ff_share[i]);

)
#endif

for (i=0;1<K;i++){
//AES
SimulateAES ();

//Share generation
//iteration to reach 128 bits proccessd (according to AES output)
for (sub_count = 0; sub_count <(128/bit_width); sub_count++){
for (j=0; j<nr_shares;j++){
#if GF >=32

ff_mul (ff_share[j], ff_x_n[j], ff_share[j]); //share=sharexx

ff_add (ff_share[j], ff_secret_in[i], ff_share[j]); //share=sharetsecret
#elif GF == 16

share[j]=galois_logtable_multiply (share[j], x-n[j], 16) secret[i];
#elif GF =— 8

share[j]=galois_multtable_multiply (share[j], x-n[j], 8) secret[i];
#endif

84



APPENDIX APPENDIX

Theoretical maximal throughput estimation for the secret reconstruction on the PC

This code only performs the required finite field calculations for the secret reconstruction, using
the library [26]. The applied z-values can be either static or generated with the rand() function.

void CSS_SecRecSpeedTest(int bit-width , int nr_shares){

int i, j, cnt, n, sub_count;
//Initialisieren
#if (GF == 16 || GF == 8)

int secret [K];
int share[nr_shares];
int x_n[nr_shares];
int inv_matrix [K][K];
int result;
//initialisieren
#if USERAND >= 1

for (i=0;i<grad;i++){

for (j=0;j<K;j++){
inv_matrix [i][j]=rand ();

share [i]=rand ();

for (i=0;i<nr_shares;i++){
share[i] = rand ();
x-n[i] = rand();

}
#else
for (i=0;1<K;i++){
for (j=0;j<K;j++){
inv_matrix[i][j]=89;//rand ()+15;

share [i]=16;

}

for (i=0;i<nr_shares;i++){
share[i] = 0x56;
x-n[i] = 0x56;

}
#endif
#else
ff_element ff_A [K][K];
ff_element ff_mul_temp;
ff_element ff_share [K];
ff_element ff_x_n [K];
ff_element ff_secret_-out [K];
//initialisieren
#1f USERAND = 0
for (i=0;i<nr_shares;i4++){
ff_x_n[i]—>data[0]=0x48;
for (j=1;j<BLOCKS; j++){
ff_x_n[i]->data[j]=0;
}

}
#else
for (i=0;i<nr_shares;i++){
ff_x_n[i]—>data[0]=rand ();
for (j=1;j<BLOCKS; j++){
ff_x_n[i]->data[j]=0;

}
#endif
#endif

//Secrets Reconstruction
For (j=0; j<K; j++){
//diunds to precess 128 bit in total, for aes
for (sub_count = 0; sub_count <(128/bit_width); sub_count++){
#if GF >= 32
ff_copy (ff_zero, ff_secret_out[j]);
#else
secret [j]=0;
#endif
for (i=0;i<K;i++){
#if GF = 16
secret [j] = galois_logtable_multiply (inv_matrix[j][i], share[i], 16)  secret[j];
#elif GF = 8
secret [j] = galois_multtable_multiply (inv_matrix[j][i], share[i], 8) secret[j];
#elif GF >= 32
ff_mul (ff_A[j][i], ff_share[i], ff_-mul_temp);
ff_add (ff_-secret_out [j], ff_-mul_-temp, ff_secret_out[j]);
#endif
}

}
//calc AES
SimulateAES ();
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