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1 Abstract 
Functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) are two 

modalities used to assess human brain function in terms of neuronal activation, glucose metabolism 

or receptor binding. In fMRI, the blood oxygen level dependent (BOLD) signal is the most 

commonly employed approach to assess the neuronal response to certain stimulation.  

For either method, the generally small measured signals result in a poor signal-to-noise ratio 

(SNR). Other limitations of these imaging techniques are the inverse relationship of spatial and 

temporal resolution, partial volume effects (PVE) and the complex anatomy and function of the 

brain itself. As a result, preprocessing is needed prior to statistical analysis of the acquired images, 

typically including spatial smoothing of data. Smoothing may be performed either in voxel space, 

that is three-dimensional smoothing, or along an inflated brain surface in two dimensions. 

Although both approaches increase SNR, they are subject to limitations on their own.  

The advantages of smoothing in voxel space are its processing speed, low memory requirements, 

and ease of implementation in a computational pipeline. Its major disadvantage is given by the 

brain anatomy: the gray matter (GM) of the brain is adjacent to white matter (WM) and 

cerebrospinal fluid (CSF). Furthermore, gyration increases the brain’s surface area, with 

functionally distinct areas being in close proximity. 

Without further constraints, smoothing in voxel space is applied to the whole measured volume, 

though, resulting in a mixture of data from neighboring, but anatomically and functionally different 

tissues and gyri. In contrast to Euclidean, (i.e. linear), distances used in three-dimensional 

smoothing, geodesic distances describe the spacing of points along a surface or constrained path. 

Applied to the brain, distinct neuronal populations of adjacent gyri may be close in Euclidean 

space, but far apart by geodesic, and also functional means. 

Smoothing along the triangulated and inflated brain surface, e.g. using heat kernels (an 

implementation of Gaussian smoothing), resembles geodesic-distance smoothing. However, this is 

computationally expensive, and errors may be introduced during surface extrapolation and 

inflation, and thus is rarely applied. 

The aims of this thesis are i) to develop a novel smoothing procedure in voxel space using geodesic 

distances, ii) to directly compare different smoothing methods and iii) to assess their influence on 

SNR.  

It will be shown that the novel approach called gQED (geodesic Quasi-Euclidean Distance 

smoothing) performed similar to a reference (SPM) in terms of detection of neuronal activation and 

SNR but additionally allowed for smoothing within well-refined masks which may increase spatial 

specificity. The use of such masks on group-level, though, requires higher spatial normalization 

quality than commonly used. gQED smoothing is slower than the volumetric smoothing method, 

but a complete volumetric analysis with gQED including all other necessary preprocessing steps is 

still much faster than surface-based analyses. Therefore, the approach provides a more 

anatomically and physiologically correct alternative to current three-dimensional smoothing, while 

maintaining computational efficiency as compared to surface smoothing.  
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2 Kurzfassung 
Funktionelle Magnetresonanztomographie (fMRT/fMR) und Positronen-Emissions-Tomographie 

(PET) werden häufig zur Evaluierung von Hirnaktivität angewandt. Damit können beispielsweise 

die neuronale Aktivierung, Glukosestoffwechsel oder die Bindung von Rezeptoren untersucht 

werden. Bei der fMRT wird am häufigsten das von der Hämoglobinoxygenierung abhängige 

BOLD-Signal verwendet, um die neuronale Reaktion auf spezifische Stimulation zu untersuchen. 

Die gemessenen Signale besitzen im allgemeinen geringe Intensität, was zu einem niedrigen 

Signal-Rausch-Verhältnis (SNR) führt. Weitere Einschränkungen der oben genannten 

Bildgebungsmodalitäten sind das inverse Verhältnis von zeitlicher und räumlicher Auflösung, der 

Teilvolumeneffekt, und nicht zuletzt die komplexe Anatomie und Funktion des Gehirns.  

Daraus resultiert die Notwendigkeit der Prozessierung vor der statistischen Auswertung, die meist 

auch räumliches Glätten der Daten beinhaltet, welches entweder im 3-dimensionalen Raum oder 

entlang der entfalteten Hirnoberfläche in nur zwei Dimensionen durchgeführt werden kann. Beide 

Herangehensweisen erhöhen die SNR, besitzen aber auch Nachteile. Vorteilhaft an der 3D-

Prozessierung ist die hohe Geschwindigkeit, einfache Implementierung und geringes 

Speicheraufkommen. Der größte Nachteil ergibt sich durch die Anatomie des Gehirns, bestehend 

aus weißer und grauer Substanz, sowie zerebrospinaler Flüssigkeit, und den Hirnwindungen 

wodurch funktionell unterschiedliche Regionen räumlich eng beieinander liegen. 

Ohne weitere Einschränkung wird die 3D-Glättung aber auf das gesamte aufgenommene Volumen 

angewendet, wodurch Signale aus räumlich benachbarten aber funktionell unterschiedlichen 

Geweben und Hirnwindungen vermischt werden. Im Gegensatz dazu steht die Verwendung 

geodätischer Distanzen, gemessen entlang einer Oberfläche oder entlang eines eingeschränkten 

Pfades. Diese werden bei der Glättung entlang der entfalteten, triangulierten Gehirnoberfläche 

verwendet. Der Prozess der Triangulation und Entfaltung sowie die anschließende Glättung 

erfordern jedoch viel Zeit, Speicherplatz und Rechenaufwand und sind keine fehlerfreien 

Algorithmen. Deshalb wird nach wie vor bevorzugt die volumetrische Glättung angewandt. 

Die Ziele dieser Diplomarbeit sind i) die Implementierung eines neuartigen Glättungsprozederes 

unter der Anwendung von geodätischen Distanzen im dreidimensionalen Raum, ii) einen direkten 

Vergleich zwischen unterschiedlichen Glättungsmethoden herzustellen und iii) deren Einfluss auf 

das Signal-Rausch-Verhältnis zu untersuchen.  

Es wird gezeigt, dass die neue als gQED bezeichnete Methode ähnlich gute Resultate liefert wie 

gängiges volumetrisches Glätten, mit korrekter Maskierung dabei aber höhere räumliche Spezifität 

möglich ist. Die dafür benötigten Masken lassen sich für Gruppen-Statistiken allerdings nur 

anwenden, wenn besonders gute räumliche Normalisierung erreicht wurde. gQED ist langsamer als 

andere räumliche Glättungsmethoden, der gesamte Analyse-Prozess ist jedoch dennoch deutlich 

schneller als oberflächenbasierte Auswertungen.  

Dieser Ansatz bietet daher eine anatomisch und physiologisch genauere Alternative zur gängigen 

3D-Glättung, unter Erhaltung der einfachen Implementierung und rechnerischen Effizienz.  
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4 Motivation and Aim 
In neuroscience, neurology and related fields, accurate localization of neural activity is 

fundamental for understanding brain function as well as for treatment planning.  

Especially in surgery, already small spatial deviations of a few millimeters from the true site of 

activation can make the difference between life-long impairment or full recovery. Also in research, 

small localization errors may result in activation being attributed to a different brain region with 

substantially different function.  

The reasons for difficulties in localization are manifold, some of which are even voluntarily 

introduced through data processing such as smoothing, others are rooted in the nature of the 

signals, brain anatomy or limits to image resolution. Spatial smoothing is commonly used to 

improve the signal-to-noise ratio (SNR) of the acquired image, both increasing statistical power 

and to facilitate identification of neuronal activation. It is useful for the application of the general 

linear model (GLM) which is often used for statistical analysis, as errors will show a Gaussian 

distribution. When analyzing groups, smoothing also reduces any anatomical variation that may 

still be present after spatial normalization.  

While the necessity of smoothing cannot be denied, some smoothing procedures such as 

volumetric smoothing with a Gaussian kernel may introduce severe limitations. These have been 

known and investigated for many years, see e.g. [1]: Signals from different, adjacent tissues may 

be mixed or falsely “transferred” to spatially close, yet functionally distant and uninvolved brain 
regions. Smoothing may also introduce shifts in the location of maxima in the same brain region 

and distortion of the activated area. 

 

Fig. 1 Schematic description of spatial smoothing: left: exemplary gyri (GM: dark gray, WM: light gray) 

and sulci (CSF: black), middle: smoothing by Euclidean distance as most commonly used, right: 

smoothing by geodesic distance as proposed in this work. 

Numerous alternative procedures have been introduced with the aim of reducing localization 

errors, but these have limitations of their own. Since volumetric smoothing is easily applicable, 

implemented in many processing programs, needs less memory and is typically faster than its 

substitutes, it is still most commonly applied.  

The aim of this work is to introduce a novel voxel-wise smoothing procedure which takes into 

account the anatomy of the brain and thus offers smoothing solely across the gray matter surface. 

This reduces the shortcomings of Gaussian, volumetric smoothing while preserving its advantages 

of computational efficiency. The algorithm’s performance is then compared with commonly used 

alternatives. 
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5 Background 
In the following pages the reader will be introduced to the basics of (functional) image acquisition, 

image preprocessing and statistical analysis. For a more thorough treatise the interested reader may 

be referred to the vast amount of literature covering this topics, such as [2], [3] and [4] from which 

the following information is derived, if not stated otherwise.  

5.1 Imaging Modalities 
Nowadays, many different anatomical and functional imaging modalities exist such as X-rays, 

computed tomography (CT), magnetic resonance imaging (MRI), single-photon computed 

tomography (SPECT) and positron emission tomography (PET). In contrast to anatomical images 

where the structure and spatial extent of organs is captured, functional imaging captures 

physiological processes, often over a period of time. Depending on the method these observations 

can range from the macroscopic down to the molecular level. Although functional brain imaging is 

by far not limited to fMRI, this thesis uses fMR data (specifically BOLD-signals) as an example. It 

has to be kept in mind, though, that preprocessing and smoothing are also applicable to other 

modalities (e.g. PET) and that the proposed smoothing method is invariant of the imaging modality 

and that observations on the resulting data can be transferred to other methods. 

Before discussing image formation, a short remark on visualization conventions is necessary: Axial 

brain slices can be regarded from below as if standing at the foot end of the patient’s bed 
(radiological convention) or from above as if standing behind the sitting patient and looking down 

on her/his head (neurological convention). These two options can cause confusion as the 

hemisphere on the left of an axial or coronal image can be either the patient’s left (neurological 
convention) or right hemisphere (radiological convention). In this work the radiological convention 

is used, as also indicated by letters next to the slice images denoting anatomical directions.  

5.1.1 MRI 
In magnetic resonance imaging, the subject is placed in a strong, uniform, stationary magnet field 

B0, which causes the spins of unpaired protons (equivalent to hydrogen nuclei) within the subject 

to reorient and precess along B0 with the Larmor frequency 

 𝜔0 = 𝛾𝑝𝐵0   ( 1 ) 

where γp is the gyromagnetic ratio of a proton (a constant). 

In clinical applications B0 is typically 1.5 or 3 T (Tesla1), whereas 7 T is getting more available for 

research. The spins can be macroscopically described by magnetic dipoles. A radiofrequency (RF) 

impulse is used to perturb the aligned spins, rotating them and their magnetization M vector 

towards the transverse plane. 

As can be seen in eq. ( 1 ), the Larmor frequency and thus the RF to be used depend on the local 

magnetic field strength. In order to only perturb a certain slice within the subject, a gradient field is 

applied. As the spins gradually realign along B0, they lose energy and the measurable signal slowly 

decays. Put into formulae we can describe the precession by 

 𝑑𝑀⃗⃗ 𝑑𝑡 =  𝛾𝑝𝑀⃗⃗  × 𝐵0⃗⃗⃗⃗   ( 2 ) 

 
1 1 𝑇 = 1 𝑘𝑔𝐴 𝑠2 = 1 𝑉 𝑠𝑚2  
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Denoting M’s component parallel to B0 as M||, after the RF-pulse M|| will exponentially gain its 

original magnitude M0, with a time constant T1, also called longitudinal relaxation time.  

 𝑀|| = 𝑀0 (1 − 𝑒− 𝑡𝑇1) ( 3 ) 

The spins also exhibit their own interactions (spin-spin interactions) causing dephasing of their 

(during the RF-pulse synchronized) precession with time constant T2. This reduces M’s normal net 

component M┴ exponentially: 

 𝑀┴ = 𝑀0 𝑒− 𝑡𝑇2 ( 4 ) 

For spatial encoding in the xy-plane, especially using the sophisticated phase encoding the reader 

may be referred to literature.   

 T1 T2 PD (Proton Density) 

Weighting Max T1 contrast shown Max T2 contrast shown Proton density/ H nuclei 

density shown 

Image 

   

Water signal Water has a long T1. T1-

weighted imaging (WI) 

uses a short TR so the 

signal from water is still 

low, therefore, water 

appears dark 

T2-WI uses a long TE so 

the signal from water is 

high, therefore, water 

appears bright 

A long TR results in a 

high water signal, but a 

short TE means that this 

is less than the signal of a 

T2 scan. The signal of 

water is in the middle 

Fat signal Fat has a short T1, so 

even though the TR is 

short the signal is still 

high and fat appears 

bright 

Fat has a short T2, so at a 

long TE the signal is less 

bright and it will be 

darker than water, but still 

high 

A long TR results in a 

high fat signal, and short 

TE means this signal is 

higher than on a T2-WI. 

Fat appears bright 

TR (repetition time) Short. 300-600 ms Long. 2000 ms Long. 1000-3000 ms 

TE (echo time) Short. 10-30 ms Long. 90-140 ms Short. 15 ms 

Table 1 Difference between T1-, T2- and PD-weighted images of the brain, reproduced from [5]  

T1- and T2-weighted images are used for different clinical applications, as e.g. discrimination of 

tissue types varies between them (see Table 1). T2
* which may also be seen when discussing MRI 

acquisition, describes the actually measured spin dephasing due to field inhomogeneities within the 

scanner. T2
* is shorter than T2. The ‘real’ T2 can be measured indirectly by echoing (180° RF 

pulses), which causes the spins to temporarily rephase.  
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In general 

 𝑇2∗ ≤ 𝑇2 ≤ 2 𝑇1 ( 5 ) 

Two further important time measures are TR (repetition time), the time between RF pulses and TE 

(echo time), the time between echo RF pulses. T1 and T2 are tissue properties, whereas TE and TR 

are set during image acquisition and have a major influence on the measured signal intensity.   

Signal intensity S has been found to be approximately described by a constant K multiplied with 

the tissue’s proton density [H] and two terms representing the relationship of TR/T1and TE/T2. 

[H], T1 and T2 can be assumed constant at a specified tissue location, thus the measured signal and 

reconstructed image depend solely on the choice of TE and TR as described in Eq. ( 6 ) 

 𝑆 ≈ 𝐾 ⋅ [𝐻] ⋅ (1 − 𝑒−𝑇𝑅𝑇1  ) ⋅ 𝑒−𝑇𝐸𝑇2  ( 6 ) 

The effects of varying TE and TR and the resulting T1- and T2-weighted images are displayed in 

Table 1. 

5.1.2 BOLD fMRI  
Functional MRI is based on the aforementioned processes but is used to describe physiological 

processes such as perfusion and indirectly brain activity. A common fMRI-method employed is 

based on the paramagnetic, signal-weakening properties of deoxygenated hemoglobin, aptly called 

BOLD-signal (blood oxygen level dependent). A local increase in neural activation will lead to 

higher oxygen consumption resulting in more deoxygenated hemoglobin (corresponding to the – 

not always visible – initial dip of the signal). This, though, is overcompensated by increased 

perfusion, leading to a lower net ratio of deoxygenated blood in this area and a higher T2
* signal. 

The signal variation is described by the hemodynamic response depicted in Fig. 2 (top left). The 

BOLD-signal change is in the order of only a few percent of the total signal.  

 

 

Fig. 2 Top left: hemodynamic response function (HRF) schematic: ID … initial dip; TP … time from 
stimulus to peak; W … width at half height: PSU … post-stimulus undershoot ; Lower left: BOLD fMRI 

series: stimulus (red) and corresponding response (blue); Top right: Signal for different neural 

response magnitude; Lower right: Approximately linear response of BOLD for several stimuli within 

short time interval; Composition of several figures from [4] 
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BOLD activation correlates with the magnitude of the neural response and adds up for events in 

quick succession (Fig. 2 lower right). The time course of blood oxygen levels for sequentially 

continuous activity is also depicted (Fig. 2 bottom left). It relates to activity provoked by task 

performance or application of continuous external stimuli during well-defined time-intervals (i.e., 

the experimental paradigm).  

This time course can be estimated by convolution of a single HRF with a design vector 

corresponding to the task/stimulus. Many different approaches to model the HRF exist, though. 

Common choices are a single gamma function (canonical HRF) and the difference of two gamma 

functions, also modelling the post-stimulus undershoot. Inter- but also intra-subject variability of 

the HRF led to the development of more complicated but flexible models, e.g. using different basis 

sets. There is a trade-off, though, between flexibility of HRFs (less flexible functions being more 

biased as they only model close matches of a single HRF) and variability of the resulting estimates. 

[4] 

For cognitive tasks, several well-timed repetitions with pauses in-between allows for more 

powerful estimates of the neural activation in the corresponding brain regions. For the detection of 

(de-)activated brain regions in correspondence with the paradigm the reader is referred to section 

5.2.6.  

Opposed to the just now described task-based fMRI is resting-state fMRI, where subjects are asked 

to lie still and let their mind roam freely. Time courses of several regions of interested are then 

tested for temporal correlation which is used as a metric of functional connectivity.  

5.2 Preprocessing 

5.2.1 Slice Time Correction 
MR and fMR images of brain volumes are commonly acquired in consecutive or interleaved slices, 

e.g. when using echo-planar sequences (EPI). The repetition time TR for fMR images of the whole 

brain is in the order of two seconds, meaning that all slices of a volume will be acquired within one 

TR. This results in a delay between the different slices up to 

 𝛥𝑡 = 𝑇𝑅 − 𝑇𝑅𝑛  ( 7 ) 

seconds later and a subsequent signal loss as shown in Fig. 3. To avoid false negatives in 

functional analysis it is therefore necessary to correct for the time point of slice acquisition and to 

simulate simultaneous acquisition of the whole volume.  

   

Fig. 3 Slice Time Correction: a) slice order for interleaved acquisition; b) corresponding signals; Later 

acquired slices appear to exhibit an earlier response, as they do not detect the true onset of the HRF; 

Taken from [4] 
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5.2.2 Realignment – Motion Correction 
fMRI data is used to describe the time course of the neuronal response. Thus, a continuous series 

of images is acquired (one with each TR), which may however be corrupted by subject motion. 

Correction for patient movement, both within time frames, as well as from one frame to another, is 

crucial to accurately localize activation. Within-frame movement can only be suppressed by 

restricting the patient’s ability to move. Frame-to-frame movement can be compensated before 

statistical analysis by performing spatial transformations and registering the frames, during which 

rigid transformations are applied with six degrees of freedom (three translations, three rotations). 

Typically, either one selected frame (first or middle) or a mean image is used as a reference to 

which the other frames are then brought into alignment.   

5.2.3 Coregistration 
Coregistration describes the process of spatially matching volumes from different imaging 

modalities or different measurements. Transformations for coregistration thus may also include 

scaling and shearing to compensate for differences in measured volume, resolution and orientation.  

fMR images contain little anatomical information. To accurately localize an activated region, they 

need to be coregistered to a structural MR image. 

5.2.4 Spatial Normalization 
For inter-subject comparison and group analyses the images need be spatially normalized, to match 

an anatomy template in standardized space. As some brain structures exhibit large variability, this 

may only be partially possible. For normalization, atlases such as MNI152 (Montreal Neurological 

Institute) are used, which include averaged data from large populations (in that case 152 subjects).  

Normalization, coregistration and even realignment depend on cost functions such as least-squares, 

(normalized) correlation or mutual information. These describe the degree of alignment. The better 

the match, the smaller the cost function, which is minimized iteratively.  

For group analysis it has to be kept in mind, that using 3D normalization of the whole brain may 

not generally result in well-overlapping cortices and gyri of different subjects [6]. Surface-based 

registration theoretically promises better alignment which proves advantageous in group-level 

statistics but requires individual surface maps and typically excludes deeper brain structures. [7]  

Few hybrid methods such as CVS (combined volume and surface morph) [8] also exist. These 

model the gyration of the brain like surface-based approaches but instead of ‘inflating’ the surface 
to a sphere they apply transformations to match the surface and whole volume to a standardized 

brain template, resulting in alignment of cortical and subcortical regions in 3D voxel space. 

When data of several subjects is compared in template space (instead of referring to anatomical 

landmarks) or used for group statistics, the same anatomical structures in different subjects should 

overlap as well as reasonably possible. Even in healthy and demographically matched cohorts (age, 

sex/gender, handedness…) this may be a challenging task as sulci still may vary in location and 
depth. This reduced spatial match can negatively influence detection of spatially small brain 

activity. 

5.2.5 Spatial Smoothing 
As previously stated, smoothing may serve multiple purposes in data analysis, such as increasing 

activation detection sensitivity, reducing normalization errors and intersubject anatomical 
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variability, increasing SNR and allowing the use of statistical models (see section 5.2.6). 

Smoothing also changes data in undesired ways, though: Spatial resolution and specificity are 

reduced (at least for non-adaptive smoothing), false positives may be introduced, activation regions 

are likely to be inflated and information on their shape and spatial extent is reduced [9]. Even shifts 

of activation may be introduced, as described e.g. by [10]. When optimizing the size of the kernel, 

the positive aspects should outweigh the disadvantages of smoothing. Kernel optimization is 

commonly omitted, though, and default values or values following rules of thumb are used.  

5.2.5.1 Smoothing Introduced by Other Preprocessing Steps 

A low level of smoothing is also introduced involuntarily by all pre-processing steps using spatial 

and/or temporal interpolation of the signal. Since these steps include spatial transformations of the 

brain both within the original space (realignment) as well as changes in the size of the voxels and 

of the analysis volume, a comparison of time courses of a single voxel after each preprocessing 

step is not sensible to implement. Thus, noise was only compared for two instances in the 

preprocessing pipeline: after normalization and after smoothing. 

5.2.6 Statistics – GLM  
Once the previously explained steps have been completed data can be exploited in search of (de-) 

activation patterns matching the experiment and/or correlation between activity of different brain 

areas.  

In a mass univariate analysis, the time course of each voxel’s intensity (Voxels are “VOLumetric 
piXELs”, i.e. the 3D-analogue of pixels) will be modelled and compared to the time course of 

external stimuli or tasks. Thus, (de-)activation does not simply imply a large signal or a signal 

increase, but a change in BOLD-signal in accordance with the experiment’s time course.  

For task-based fMRI, the general linear model (GLM) is the most common statistical analysis 

method (Eq. ( 8 )). For a visualization of the GLM see Fig. 4. 

 𝒀 = 𝑿̃ ⋅ 𝜷 + 𝝐  ( 8 ) 

The measured BOLD-signal of a single voxel (Y in eq. ( 8 )) is estimated by the expected response 

time-course (design matrix 𝑿̃), multiplied with weights β plus an additional error term (residuals) 

ε. The design matrix includes regressors of interest, representing a convolution of the HRF with the 

occurrence of stimuli, and nuisance regressors (covariates) modelling subject motion and include a 

constant for signal offset and drift. Tissue regressors (e.g. mean time course in white matter) may 

additionally be used to remove unspecific signal changes that affect the whole brain.  

β-values, representing the “importance” of a regressor in the measured signal, are then tested for 

significance.  

The GLM is based on two major assumptions: 1) Errors are random, independent and follow a 

Gaussian distribution with zero mean and 2) the HRF linearly correlates to the neuronal signal. 

Unfortunately, though, both are violated, as BOLD-signals exhibit a large degree of auto-

correlation and the neuronal response in some cases may differ significantly from linear behavior. 

A detailed discussion on these issues and how they can be corrected can be found in [4] and [11].  
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Fig. 4 GLM-schematic taken from [11]: A BOLD time-course is predicted by three tasks and seven 

nuisance regressors 

5.3 Noise 
In (f)MRI the term noise is unfortunately inconsistently used. In the context of his thesis “noise” 

shall refer to the sum of (temporal) data variability σ not deliberately introduced by the 

experimental design. A major component of noise is thermal noise σT introduced during image 

acquisition (Johnson-Nyquist noise), whose source is mainly the subject itself. The next largest 

contribution to thermal noise is electronic noise in the receiver. Various noise modeling approaches 

exist, considering differences in image modality, acquisition (coil systems used), reconstruction 

and further processing.  

A commonly used assumption for thermal noise in image domain (k-space) is a zero-mean, 

spatially uncorrelated Gaussian process. Variance in imaginary and real parts are presumed to be 

equal. In the spatial domain (x-space), this results in models following a Rician distribution for 

single-coil systems and noncentral-χ (nc-χ) distribution for multiple-coils (see Fig. 5). Special 

attention needs to be paid when using modern acquisition-accelerating procedures, which e.g. rely 

on subsampling, as they alter noise.  

 

Fig. 5 Noisy image: left to right: data acquisition to final image; σ2… Variance; |Ω| … Size of  Field of 

View (number of points in 2D inverse discrete Fourier transform); For large SNR the signal can be 

estimated as Gaussian distributed, for SNR = 0 (i.e. image background) the Rician distribution 

simplifies to a Rayleigh distribution; Taken from [12] 
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Noise removal is a controversial topic within the imaging community and depends on 

aforementioned noise estimates and the purpose of filtering. Denoising methods are not limited to 

signal estimation but may be also performed via wavelets (similar to Fourier-analysis) or non-local 

means (means of voxels with similar surroundings). [12]  

5.3.1 Physiological Noise 
Head motion, heartbeat (pulsatile blood flow), breathing, and other variable physiological 

processes will introduce physiological noise σP during imaging. The two former play an especially 

important role in imaging of deep brain structures. (Partial) removal of physiological noise during 

data analysis is possible by independent component analysis (ICA) or if heartbeat and breathing 

have been monitored during measurement via modelling or gated image acquisition (i.e. only 

during a specified time interval of the heart cycle). [12] 

Physiological noise is the only signal-strength dependent noise contribution and may even account 

for most of to the SNR. It can be further characterized as the sum of fluctuations in transverse 

relaxation rate σB (related to BOLD-associated processes) and σNB, describing cardiac and 

respiratory as well as non-TE-related scanner influences. [13]. Different contributions to overall 

noise are shown in Fig. 6. 

5.3.2 SNR  
The signal-to-noise (SNR) ratio is defined as the fraction of signal S and total image noise σ:  

 𝑆𝑁𝑅 = 𝑆𝜎  ( 9 ) 

where 

 𝜎 =  √𝜎𝑇2 + 𝜎𝑆2 + 𝜎𝑃2  ( 10 ) 

and σS summarizes system noise including drift as well as shimming (the process of making the 

field more homogenous by running current through additional coils), field and RF imperfections. 

A large signal-to-noise ratio requires a preferably large signal compared to the approximately 

constant noise, and is correlated to measurement parameters such as repetition time TR, echo time 

TE, voxel volume (𝑆𝑁𝑅 ∝ 𝑉𝑣𝑜𝑥 ∝ Δ𝑥 ⋅ Δ𝑦 ⋅ Δ𝑧   for a constant field of view) and number of 

excitations (resulting in a mean image of lower noise). In fMRI, varying the latter is typically 

beyond the influence of the technician, due to the changing signal over time. For details on the 

effect of resolution on SNR the reader is referred to [14]. 

As can be seen in Fig. 6, physiological noise is significantly larger in GM, than in WM. [13] 

In later analyses temporal SNR will be estimated by using the (GLM-)estimated time course (𝐘 =𝐗̃ ⋅ 𝛃) of a single activated voxel as pure signal and the residuals (difference of modeled HRF and 

real time course) as noise. It has to be stressed, though, that this is not the only option to estimate 

temporal SNR. An alternative approach would be to use resting periods and locations where little 

variation in neural activity is to be expected. 
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Fig. 6 Noise contributions as depicted and described in [13]: “Anatomy (a) and spatial distribution of raw noise σ0 (b), physiological noise contributions σB (c), and σNB (d) in a typical image section from 

one subject. Note that gray scale contrast is identical in b–d.” 
5.4 Brain Anatomy – Motor Cortex 
Functional imaging of the brain aims to identify stimulation-induced neuronal activation and to 

link this to the underlying anatomical structures. Since this will be relevant to discuss the chosen 

approach and data presented in this thesis work, a short overview on the motor cortex will be given 

below: 

 

Fig. 7 Location of left motor hand area on the MNI152 template, localized as described in [15]: “The 
segment of the precentral gyrus that most contained motor hand function was a knob-like structure, 

that is shaped like an omega or epsilon in the axial plane and like a hook in the sagittal plane.” 
While no brains look the same, in normal healthy brains the same (relative) locations are roughly 

linked to the same discrete functions, especially when it comes to motor control (see e.g. Fig. 7). 

On subject level these can be localized with either invasive methods such as electro-stimulation 

and more commonly employed non-invasive methods and imaging modalities. In the beginnings of 

neuroscience head and brain injuries and resulting cognitive and/or motor deficiencies were also 

important indicators for the linkage between anatomy and function. 

Motor activity (planning, execution and control) is associated with the motor cortex. The primary 

motor cortex is part of the dorsal frontal lobe (see Fig. 8) and can be divided in brain regions 
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responsible for movement of different body parts. These can be visualized with the help of a 

distorted body drawn on the cortical surface, called homunculus (‘little person’). The homunculus 
along with a wide variety of anatomical and functional atlases may be used as a reference in the 

analysis of fMRI data. 

  

Fig. 8 Primary motor cortex: Sensory homunculus: Left: Coronal view (Source: [16]) Right:  Lateral view, Penfield’s map (Source:  [17]) 
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6 Methods 
6.1 Simulated Data 
To test the different smoothing algorithms in an environment with known ground truth artificial 

fMR images were used with well-defined parameters such as known SNR and well-defined 

activation location, underlying HRF and time course (event onset and duration and signal drift). 

This is a common approach in analysis and debugging of processing algorithms. Unfortunately, 

though, unpublished in-house code is often used for this purpose and only few well-established 

models are publicly available. For a thorough review on fMRI simulations see e.g. [18].  All of the 

artificial data did not require any preprocessing steps prior to smoothing. There is no movement of 

the ‘brain’ and the whole brain can be ‘imaged’ simultaneously, thus there is no need for slice time 
correction or realignment.  

The artificial data for this thesis was created persuing two separate approaches: 

As a first step an interpolated HRF was convolved with a binary design-matrix, resulting in the 

seed-voxel’s time course (see Fig. 9). This represents a local task-related neural activation. The 

spatial extent of the signal was derived by weighting the signal according to its anatomical distance 

to the seed in an idealized brain template. Noise was added to the whole volume and for all time 

points. 

 

Fig. 9 Artificial signal created by convolution of HRF and design matrix (‘Task’). Left: time course; 

Right: Single frame (time instance) of the resulting simulated BOLD-measurement shown in coronal, 

sagittal and axial slices. Activation (increased simulated BOLD-values) is slightly visible in the brain’s 
left hand-motor center as a small white batch of higher intensity than the surrounding tissue, the 

location is indicated by arrows.  

The second approach used a script based on code generously provided by J. R. Manning [19] and 

introduces more life-like variability and unknowns to the signal. With this script two studies were 

simulated: The first group-study used the same mask and seed as before. For the second study, 

brain masks were derived from real anatomical scans of different subjects. For each of the 20 

subjects the location of the motor hand area was manually estimated on normalized anatomical 
scans as depicted in Fig. 7. GM-masks were made for each of the real subjects and an artificial 

BOLD-signal was initiated within a random voxel that coexisted in the GM-mask and a 5x5x5 
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voxel volume with the hand motor areas’ coordinates as its center. This procedure guaranteed that 
inter-subject artificial activation varied to some extent but still matched corresponding brain 

regions as it was the case for the experimental data.  

Afterwards, the simulated data was spatially smoothed with the following approaches. 

6.2 Smoothing 
Many smoothing algorithms rely on convolution of the image with a chosen function (smoothing 

kernel, commonly a Gaussian or similar function) or convolution analogs such as diffusion.  

It shall be brought to the reader’s attention, that surface (i.e. node-wise) and volumetric (voxel-

vise) statistics do not differ, but any topological activation differences are mainly related to 

differences in spatial normalization and smoothing.  

For a discussion on the topic of smoothing kernel size the reader shall be referred to literature, e.g. 

[20], [21] and [22]. A commonly applied rule of thumb is, that the FWHM (Full Width Half 

Maximum = span between values on opposite sides of the function’s maximum with half the 
maximum intensity) should be at least twice the voxel size. A too large kernel, though, will also 

suppress true activation signal (matched-filter theorem).  

6.2.1 Convolution 
A comprehensive treatise of convolution with explanatory step-by-step MATLAB (Natick, 

Massachusetts: The MathWorks Inc.) code can be found in [23]. In short, convolution combines 

two signals (image and kernel) to a third with shared characteristics, by “smearing” one across the 
other. The process of “smearing” is implemented by shifting the signals with respect to each other 
and calculating their dot product. 

For two continuous functions f(t) and g(t), the convolution is defined as 

 (𝑓 ∗ 𝑔)(𝑡) ≝ ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏∞
− ∞   ( 11 ) 

The convolution w of two vectors u and v is mathematically described by 

 𝑤 = 𝑢 ∗ 𝑣 ( 12 ) 

 𝑤(𝑘) =∑𝑢(𝑗)𝑣(𝑘 − 𝑗 + 1), ∀ 𝑗, 𝑘, 𝑘 − 𝑗 + 1 > 0𝑗  ( 13 ) 

6.2.2 SPM 
The wide-spread MATLAB toolbox SPM122 (Statistical Parametric Mapping) offers built-in 

volumetric smoothing and is among the most used analysis tools for functional imaging [24]. It is 

well-established, has a large community, is quickly installed and easy to use without prior 

(programming) knowledge, making it a popular choice for neuroscientists. Therefore, it was 

chosen as the main reference in this thesis.  

SPM performs unrestricted volumetric smoothing of the whole image with a kernel of constant size 

and without taking tissue borders and brain gyration into account. Independent of their functional 

and anatomical relationship the signals of two voxels get mixed with their Euclidean distance as 

only variable.  

 
2 For all computations in this thesis referring to SPM, SPM12: v6225 was used unless stated otherwise.  
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As default, the smoothing kernel is a Gaussian convolved with a first-degree B-spline with 8 mm 

FWHM. The kernel is thresholded to 6 σ and normalized to sum to 1. Continuity of the underlying 

function is also accounted for. The convolution of the image with the kernel applies zero-padding 

in xy-plane and truncation along z as boundary conditions. For isotropic FWHM and sufficient 

distance to the border of the volume, smoothing along all axes can be considered the same. 

Especially for small FWHM, though, the kernel differs significantly from a pure Gaussian kernel 

regarding the function’s flanks’ steepness.  

6.2.3 gQED 
The smoothing modality proposed in this thesis uses Gaussian-weighted means based on geodesic 

Quasi-Euclidean Distances and will be abbreviated as gQED in this context.  

As stated above Gaussian smoothing uses Euclidean distances. The length of a straight line 

connecting two points is a measure of the mutual influence of their corresponding signals during 

smoothing. While simple to implement and commonly used, this procedure lacks any consideration 

of brain anatomy and physiology. In contrast, the aim of gQED is to constrain the image volume 

based on brain anatomy and thus to smooth only within and along the gray matter: 

As a first step, a mask is specified which includes the areas of interest, e.g. a thresholded GM-

probability map (examples depicted in Fig. 13). If no mask were defined, i.e. the whole image is 

considered, gQED is almost equal to unconstrained Gaussian smoothing in voxel space.  

When calculating the distance between two arbitrary voxels as the shortest path from one to the 

other, this path is now restrained by the mask. Speaking in analogs, traveling from one 

mountaintop to another requires hiking through the valley and the linear distance between the 

mountain tops is of little relevance.  

The metric used for the distance is quasi-Euclidean, which is a necessity for calculation of geodesic 

distances. In two dimensions and without a mask, the quasi-Euclidean distance dqe between two 

points P1 and P2 with coordinates (x1, y1) and (x2, y2), respectively, is defined as 

 𝑑𝑞𝑒 = | 𝑥1 − 𝑥2| + (√2 − 1) ⋅ |𝑦1 − 𝑦2| ( 14 ) 

for 

 |𝑥1 − 𝑥2| > |𝑦1 − 𝑦2| ( 15 ) 

and  

 𝑑𝑞𝑒 = (√2 − 1) ⋅ | 𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| ( 16 ) 

otherwise. In other words, while also generalizing this to masked 3D-images, the distance between 

two voxels is the shortest connecting path, where only voxels within the mask can be traversed and 

only crossed along one of their symmetry axes.  

In contrast, the Euclidean distance de in two dimensions is defined as 

 𝑑𝑒 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  ( 17 ) 

For each of the n non-zero voxel in the mask, called seeds, the distances to all the other voxels may 

be calculated. In MATLAB this is implemented using the geodesic distance algorithm described in 

[25]. As the number of surrounding voxels scales with the distance to the power of three, the 

implementation of gQED considers only sub-volumes in the close vicinity of the seed, taking 

Gaussian smoothing into account: 
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For an intensity profile following a Gaussian function 

 𝑔 ∝  𝑒− 𝑑22𝜎2 ( 18 ) 

with standard deviation σ, the intensity at d ≥ 3.5 σ (≈ 1.5 FWHM) is well below 0.5 % of the 

initial intensity at d = 0. Therefore, contributions to voxels of greater absolute distance to the seed 

than 3.5 σ may be considered insignificant.  

Once the distances d of all significant voxels to seed i have been calculated, a Gaussian-weighted 

image gi is computed as 

 𝑔𝑖 = 𝐼𝑖 ⋅ 1(√2 𝜋  ⋅ 𝜎)3  𝑒− 𝑑𝑖22𝜎2 ( 19 ) 

with the seed’s intensity Ii. gi describes only the smoothing of seed i’s signal to its neighbors, as if 
they had zero intensity of their own. Summation of all seeds’ images returns the whole smoothed 
volume:  

 𝐺 =  ∑𝑔𝑖𝑛
𝑖=1  ( 20 ) 

It can be shown that summation of the seed images (for a non-masked volume and Euclidean 

metric) and a convolution are mathematically identical. In fact, it is merely an application of 

associativity and commutative properties. A Gaussian is a common choice for a smoothing kernel, 

for better comparability the method described above has also been implemented with the kernel 

used by SPM, as described in section 6.2.5 and Fig. 11. Data processed with SPM’s kernel will be 
abbreviated as sQED or sED, depending on the metric used.  

As an example, we use an arbitrary image vector u and kernel vector v (for simplicity both of 

length 5). With eq. ( 13 ) the convolution w of these two vectors is 

 

𝑤 =
( 
   

⋮𝑢1𝑣3 + 𝑢2𝑣2 + 𝑢3𝑣1𝑢1𝑣4 + 𝑢2𝑣3 + 𝑢3𝑣2 + 𝑢4𝑣1𝑢1𝑣5 + 𝑢2𝑣4 + 𝑢3𝑣3 + 𝑢4𝑣2 + 𝑢5𝑣1𝑢2𝑣5 + 𝑢3𝑣4 + 𝑢4𝑣3 + 𝑢5𝑣2𝑢3𝑣5 + 𝑢4𝑣4 + 𝑢5𝑣3⋮ ) 
    ( 21 ) 

gQED comes to the same results via the following steps: 

 𝑤 =∑𝑤𝑖𝑖 = ( 
 𝑢1𝑣3 + 𝑢2𝑣2 + 𝑢3𝑣1𝑢1𝑣4 + 𝑢2𝑣3 + 𝑢3𝑣2 + 𝑢4𝑣1𝑢1𝑣5 + 𝑢2𝑣4 + 𝑢3𝑣3 + 𝑢4𝑣2 + 𝑢5𝑣1𝑢2𝑣5 + 𝑢3𝑣4 + 𝑢4𝑣3 + 𝑢5𝑣2𝑢3𝑣5 + 𝑢4𝑣4 + 𝑢5𝑣3 ) 

 
 ( 22 ) 

where  

𝑤1 = 𝑢1 ⋅ ( 
 𝑣3𝑣4𝑣500 ) 

 ,𝑤2 = 𝑢2 ⋅ ( 
 𝑣2𝑣3𝑣4𝑣50 ) 

 ,𝑤3 = 𝑢3 ⋅ ( 
 𝑣1𝑣2𝑣3𝑣4𝑣5) 

 ,𝑤4 = 𝑢4 ⋅ ( 
 0𝑣1𝑣2𝑣3𝑣4) 

 ,𝑤1 = 𝑢1 ⋅ ( 
 00𝑣1𝑣2𝑣3) 

 
 

To account for the different number of surrounding seeds contributing to each image voxel, where 

voxels close to the mask’s surface obviously have fewer neighbors and thus express lower 
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intensity, the image may additionally be corrected by dividing each image voxel with the number 

m of its significant contributors: 

 𝐺𝑛𝑐,𝑖 = 𝐺𝑖𝑚  ( 23 ) 

Since this scaling only influences absolute values of the voxels and not activation relative to their 

base level, there is virtually no change in the resulting activation patterns. Empirically, only 

changes in the second decimal place were observed. 

6.2.4 Comparison in 1D 
A numeric comparison of a “standard” 1D-convolution of a binary image with an exemplary 

inverse-distance kernel and the approach used for gQED is displayed in the table below where 

“…” denotes symmetric values in the vector. Only the central part of the convolution with the 
same size as the image is displayed. 

Image  Kernel (0-padded) Convolution gQED (unmasked) [0 0 0 1 1 1 0 0 0] [15 1413121…  ] 160 [27 47 65 110 120… ] 160 [27 47 65 110 120… ] 
Table 2 Smoothing of a 1D ‘image’ 
The term “zero-padding” describes that when image and kernel “slide across” each other, all values 
outside image and kernel are zero. For an image that has only continuous non-zero values, 

convolution and gQED-convolution return identical results, which is not surprising as they are 

mathematically the same. For the image vector in Table 2 there would also be no difference in the 

results between calculating the masked gQED-convolution (that is no smoothing across zeros) or 

using the convolution and subsequently masking the image.   

However, the surplus value of the computationally slower gQED approach can be easily 

understood when the image contains non-continuous areas of non-zero values, which are treated as 

masked as in Table 3. For the following example only a single entry in the image vector has been 

changed to create two blocks of ones. The kernel used remained the same as in Table 2.  

Image  Convolution gQED (masked) [0 1 0 1 1 1 0 0 0] 160 [57 107 95 130 135 122 65 47 27 ] 160 [0 60 0 110 120 110 0 0 0] 
 Convolution (subsequently masked) gQED (neighbor corrected) 

 
160 [0 107 0 130 135 122 0 0 0 ] 160 [0 60 0 55 60 55 0 0 0] 

Table 3 Smoothing of a masked 1D ‘image’ with the same kernel previosly used 

For discontinuous areas a simple convolution and gQED may differ significantly, even when 

implicit masking is used, as offered in SPM. This issue is particularly present in the gray matter of 

the human brain with its high level of cortical folding. As previously explained, volumetric 

smoothing of signals which are spatially close but on different gyri may get mixed during 

smoothing and thus impede correct interpretation of activated areas.  

The convolution implemented in MATLAB and SPM cannot properly handle masking or NaN 

(Not a Number) values. In SPM, NaNs are treated as zero during smoothing. If implicit masking is 
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specified as an option, NaNs are still treated as zero during smoothing and in a second step all 

voxels which were NaN before are then reset to NaN. Although this avoids mixture of different 

tissue types (e.g., gray and white matter) it may still smooth data across separate areas which are in 

spatial close proximity.  

While a convolution of matrices including NaNs is possible using the function nanconv [26], the 

approach did not lead to the comparable results for the previously described test vector with zeros 

replaced with NaNs, as can be seen in Table 4 below: 

Image [𝑁𝑎𝑁 1 𝑁𝑎𝑁 1 1 1 𝑁𝑎𝑁 𝑁𝑎𝑁 𝑁𝑎𝑁] 
Kernel [15 1413121…  ] 
nanconv (default settings) 160 [137 167 187 202 214 202 187 167 137] 
nanconv (‘edge’) [1 1 1 1 1 1 1 1 1] 
nanconv (‘nanout’) 160 [𝑁𝑎𝑁 167 𝑁𝑎𝑁 202 214 202 𝑁𝑎𝑁 𝑁𝑎𝑁 𝑁𝑎𝑁] 
Table 4 Smoothing of a masked 1D image using the nanconv-function 

6.2.5 Comparison in 3D 
In one dimension, distances between two vector elements are simply the absolute difference of the 

elements’ indices. For two and three dimensions, a metric is to be used, where different metrics 
may lead to different distances between voxels. In Fig. 10 isosurfaces are displayed for four 

common metrics.  

 

Fig. 10 Isosurface plots for distance transforms of a 3D-image; Image dimensions [50 50 50]; There is a 

single non-zero voxel at [25 25 25]; Each isosurface displays a distance of 15 units using the metric specified in the subplot’s title. Image taken from MATLAB Documentation for function bwdist(). 
Application of these different metrics and smoothing methods is given in Fig. 11. While smoothing 

an unmasked test image using the same mathematical procedure as implemented in gQED but with 

Euclidean metric and SPM’s kernel (abbreviated sED below) nearly perfectly reproduced the SPM-

smoothed image (differences were below 0.008 for a maximum intensity in the images of 100, see 

also Fig. 11), there are significant differences between smoothing with quasi-Euclidean metric in 
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combination with SPM’s kernel (sQED) and SPM-smoothing of nearly 5.6 intensity units. The 

maximum difference between with a Gaussian Kernel and Euclidean metric to SPM’s smoothing 

was below 2.1 and are assumed to be mainly attributed to differences in kernel width/steepness.  

Smoothed images Difference to SPM 

  

  

  

Fig. 11 Differences in voxel intensities for different smoothing approaches; left column: results of 

smoothing a single voxel of  I = 100 with different kernels and metrics; right column: smoothed image 

obtained by various methods subtracted from SPM-result. Please note the different scaling of the right 

column.    
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In Fig. 11 f one can easily see that quasi-Euclidean and Euclidean metric are identical for the 

image’s symmetry axes. The structure visible in Fig. 11d has been noted, but since its intensity is 

comparably low, its source was not identified. 

It has to be stressed that the main conclusion from above observations is that gQED uses a correct 

implementation of a smoothing algorithm and produces similar results. The differences between 

the two metrics are not to be forgotten, but even if it were possible to use Euclidean metric for 

geodesic distances, unrestricted spatial smoothing and masked, geodesic smoothing still differ 

fundamentally. In the Results and Discussion section, the focus will thus be on differences in 

signal detectability, spatial distribution, and correct location of activated areas.  

6.2.6 Adaptive Smoothing 
Adaptive Weight Smoothing (AWS) – now also implemented as an SPM toolbox (aws4SPM) [27] 

- traces back to [28]. In 2000 Polzehl and Spokoiny first proposed locally constant smoothing with 

adaptive weights for point pairs in various image data, from satellite images to medical 

applications and also fMRI [29]. Their goal was to reduce over-smoothing of relevant 

discontinuities i.e. edges and borders of relevant structures such as buildings in satellite images or 

tissue boundaries in medical imaging, while at the same time removing noise therein. AWS’ 
framework is dimensionality independent and requires no a priori assumptions such as anatomical 

information but detects borders within the (fMRI) images.  

The iterative process of adaptive smoothing is reported to increase sensitivity, power and reducing 

the number of false positives [9] as well as being advantageous when used on higher-resolution 

fMRI data, which would often not be used due to its lower SNR and resulting difficulties in 

activation detection. [29]  

In contrast to other smoothing methods, aws4spm requires already statistically processed data as 

input i.e. already defined and estimated contrasts.  These are then used as a starting point for 

iterative, adaptive smoothing. Unfortunately, only statistical results and no smoothed 4D-image file 

is returned by the analysis stream, which is why this approach cannot be used for analysis in the 

time domain. Thus, only the spatial distribution of single subject data analyzed with aws4SPM will 

be presented in the Results section.  

6.2.7 Surface Based Analysis – FreeSurfer/FS-FAST 
The software and tool collection FreeSurfer roots in work by Fischl, Dale and Sereno ( [30] , [31] 

and [32]) and has evolved and been extended since then. Its roots and progress have been reviewed 

e.g. by Fischl in  [33].  

FreeSurfer’s most prominent features are the segmentation of anatomical scans and subsequent 

construction of a surface model of the cortex in a spherical coordinate system as proposed in [32]. 

Since FreeSurfer uses the white matter surface instead of GM for registration it is independent of 

GM atrophy. While useful during analysis a spherical activation map would be hard to interpret. 

Therefore, results are commonly displayed on a slightly inflated brain as depicted in Fig. 12. 

This surface-based approach reduces anatomical variance in the location of corresponding sulci 

and gyri and thus may theoretically reduce the number of subjects needed for statistically analysis 

as suggested in [34]. The spherical model can not only be used to compare anatomical features 

between subjects such as cortical thickness, but also as a starting point of surface based functional 

analysis as implemented in FS-FAST (FreeSurfer Functional Analysis Stream).  
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Smoothing on the surface is achieved by weighted means of the BOLD-intensities that have been 

mapped to the surface model during coregistration of anatomical and functional scans (i.e. nodes 

on the surface have been assigned BOLD values). As brain ‘inflation’ removes gyration, data 
points which have been spatially close but anatomically distant before are now also spatially (on 

the inflated surface) distant with many vertices between them. This has been visualized by adding 

two colored points on the brain surface representation in Fig. 12. With volumetric smoothing 

(gyrated brain on the left) the signals at the location of the two points which are partially buried in 

the sulcus would mix. If only one of these regions were activated, still both would be detected as 

activated after smoothing or rather a continuous active region would be seen stretching from one 

point to the other. Smoothing along the vertices on the surface model would mix the signals to a 

much lower extent as on the surface model they are further apart (in the schematic cross section 

depicted below the distance roughly doubled due to inflation).  

For additional comparison between purely volumetric smoothing and gQED-smoothing the data 

has also been analyzed with FS-FAST. According results will be presented in section 7.2.2. 

   

Fig. 12 Inflated surface representation of the human brain; Left and center: color-coded template brain 

prior and post inflation, sagittal cross section of pre- and postcentral gyrus depicted below; Adapted 

from [35] Right: Color coded gyri and sulci on inflated brain; Adapted from 

andysbrainbook.readthedocs.io  

 

6.3 Experimental Data 
While processing artificial data is a good test for basic functionality of gQED, it would not only 

take highly sophisticated models to achieve truly realistic datasets, but the desired field of 

application still would be real functional data. Therefore, the different algorithms were tested on an 

experimental fMRI data set from a clinical study. 

6.3.1 Population 
Imaging data (anatomical and fMRI images) were generously provided by the Neuroimaging Labs, 

Department of Psychiatry and Psychotherapy, Medical University of Vienna and had been acquired 

in a previously completed and thematically unrelated pilot-study on task duration in fMRI vs fPET 

[36] on 21 healthy subjects. The study was approved by the ethics committee of the Medical 

University of Vienna (ethics number: 1479/2015) and all subjects had given written informed 

consent. 20 of the recruited 21 subjects were included in the analysis of [36]. One subject was 

excluded due to excessive head movement during measurement. For reasons explained below, two 

more subjects were excluded in the analysis for this thesis, reducing the total number of subjects to 

18 (9 male, mean age±sd = 26.2±4.3 years). 
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6.3.2 Measurement 
Images had been acquired using a hybrid PET/MRI scanner (Siemens mMR Biograph; anatomical 

scan: magnetization prepared rapid gradient echo sequence (MP-RAGE), TE/TR 4.2/2200 ms, 

voxel size1 x 1 x 1.1mm3); fMRI: EPI (echo-planar imaging), TE/TR 30/2000 ms, voxel size 2.5 x 

2.5 x 3.3 mm3). During measurement, four 30-second blocks of two uncorrelated tasks were 

simultaneously performed: Observation of landscape video clips while repeatedly tapping the right 

thumb3 to each finger of the right hand (sequence: index to small finger) at about 1 sequence per 

second. Breaks between tasks lasted 15 seconds. Design matrices as well as log files were provided 

for further analysis steps.  

The tasks are expected to evoke major activation in the visual cortex (landscape video observation) 

and the left motor cortex (since the right hand is used) with possible activation in the 

supplementary motor area. For this thesis, the main focus was on the motor cortex signal as it is 

localized near the central gyrus and separation and correct allocation of pre- and postcentral signal 

is a challenging task which could especially benefit from methods such as gQED. 

6.3.3 Volumetric Analysis 
For gQED and ‘standard’ spatial smoothing a SPM12-preprocessing pipeline had been used, 

consisting of slice-time-correction (middle slice as reference), realignment (register to mean, 

quality = 1), coregistration to anatomical images and spatial normalization to MNI-space (Montreal 

Neurological Institute).  

6.3.3.1 Normalization 

As explained in section 5.2.5, normalization does usually not result in perfect matches of the whole 

brain. While overlapping cortices would be generally of great interest for statistical analyses, it is 

especially important when masks are applied to a group of subjects, as implicitly done when using 

gQED smoothing.  

As a more sophisticated and already established normalization approach CVS [8] was put to the 

test. CVS is part of the FreeSurfer environment, thus makes use of not only the overall brain 

anatomy but also the brain’s gyration when calculating a morph from subject to template brain. 

This morph was then applied to the ST-corrected, realigned and coregistered fMRI data. Further 

processing (smoothing) and statistical analysis was then performed in the same way as on other 

volumetric data sets.  

6.3.3.2 Masking 

Masking of functional data prior to smoothing may serve several purposes such as exclusion of 

areas which are not of interest and assumed to increase noise and reduce activation detectability in 

nearby structures. Masked voxels though may not be completely excluded during smoothing as it is 

the case in SPM where they are regarded as zero-valued during convolution. Thus, even smoothing 

with masks may transfer signals across areas in close proximity which may then affect activation 

maps in so called ‘crosstalk’ and reduce specificity in activation. When inherently no crosstalk is 

introduced during smoothing (as it can be the case for well-masked gQED-smoothed data and in 

 
3 Due to difficulties in canulization needed for fPET two subjects used their left hand instead of their right 
hand, which caused activation in the opposite motor cortex. They still were included in the original study, 
though, by mirroring their data along the sagittal plane. Although considered at first, these two subjects were 
eventually excluded from the analysis for this thesis work as simply flipping activation does not consider 
anatomical differences between right and left hemisphere. 
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surface-based analysis) still some false-positive activity may be detected, though. This can be 

attributed to low image resolution, spatial extent of the BOLD-response and/or faulty signal 

projection during brain inflation in surface-based analysis.  

A crucial factor in gQED-application is the choice of a mask. Due to their widespread availability, 

tissue probability maps (TPM) included in SPM have been used along with the MNI152 template. 

A liberally thresholded mask, i.e. a large mask including voxels of already low GM- and high 

WM- and/or CSF probability, does not replicate gyri and sulci well but is unlikely to cut away 

relevant voxels. One benefit of smoothing with gQED, though, lies in its ability to smooth within 

the GM and not mixing geodetically far apart activations, such as activations on either side of a 

sulcus, as well as signal from different tissues. Within a liberal mask, though, there is no 

distinction between functional/geodesic and Euclidean distance, that is leaving the different metrics 

used aside.  

Too conservative masks on the other hand, which use high GM-probability thresholds, may 

exclude neural activation of interest due to either i) remaining anatomical variability between 

subjects after normalization, that is subject gyri do not match template gyri, or ii) activation closely 

located to the GM-border, where the GM-TPM exhibits lower values.  

Therefore, during data analysis a range of thresholds has been used. A much more time-consuming 

approach following brain anatomy even closer would be to segment each subject’s GM and use 
individual masks (with individual geodesic distances) for first level, i.e. intra-subject-analysis. This 

impedes group level analysis, though, as anatomical differences are not taken care of and the 

degree of smoothing in the same location for different subjects may differ. 

 

     

a) tpGM = 0.1 b) tpGM = 0.3 c) template-based 

mask 

(‘conservative’) 

d) custom mask 

(‘liberal’) 
e) subject-

specific mask 

Fig. 13 Multi-planar views: Coronal, sagittal and axial slices of several gray matter probability-maps;  

a & b: Exemplary selection of thresholds tp and the resulting GM-mask of a TPM; c: MNI152 template-

derived GM mask; d: custom mask derived by combining several tissue thresholds (‘Fullbrain’ – 

tpWM>0.9); e: GM-segmentation derived from a single subject’s anatomical scan 

6.3.4 Surface-Based Analysis 
Analysis in FreeSurfer/FS-FAST followed a standard procedure consisting of processing 

anatomical scans (scull stripping, surface reconstruction) and functional images. Functional 

processing involves in order of execution: template creation, mask creation, intensity 

normalization, registration to anatomical data, motion correction, slice-time correction, spatial 

normalization, and resampling to common space and smoothing. (Note that FreeSurfer applies 

motion correction first instead of ST-correction.) 
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In FreeSurfer three common subspaces are used: both cortical hemispheres, each in surface space, 

and subcortical structures in volume space.  Smoothing and analysis is performed in the respective 

spaces. Afterwards, single subject analysis and group analysis is performed for each subspace, 

followed by multiple comparison correction. Subcortical results will not be presented here due to 

lacking relevance for this thesis.  

6.3.5 Statistics 
On subject-level, for each dataset all voxels’ BOLD time-courses were tested for significance with 

respect to the experimental finger tapping task tapping task (block-design, see figures 2 and 9). The 

expected time course for brain regions involved in the task is derived from convolution of the HRF 

with the binary design-vector where zeros stand for ‘rest’ and ones for ‘task’. SPM and FreeSurfer 
create this vector from onsets and task durations specified in seconds or frames. The time course of 

task and BOLD signal are similar to the one depicted in Fig. 2.  

Further regressors involved motion parameters derived during realignment to exclude any signal 

variation caused by head motion.  

All reported T-values are corrected for multiple comparisons. For volumetric smoothing methods 

(SPM, aws4SPM, gQED) FWE (family-wise error) correction on voxel level with p < 0.05 was 

used. For FreeSurfer analyses multiple comparison correction was performed with 5000 

permutations and voxel-wise threshold vwthresh of 

 𝑣𝑤𝑡ℎ𝑟𝑒𝑠ℎ =   1.3 =  − 𝑙𝑜𝑔10 𝑝, 𝑝 = 0.05 ( 24 ) 

FWHM of all results reported was 8mm. In aws4SPM FWHM cannot be set explicitly but via 

bandwidth  

 ℎ𝑚𝑎𝑥 =  0.43 ⋅ 𝐹𝑊𝐻𝑀  ( 25 ) 

as explained in [37]. 

  

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Surface-based Smoothing of Brain Imaging Data in Voxel Space 

Peter Stöhrmann  32 / 64 

7 Results 
7.1 Artificial Data 

7.1.1 Single Subject 
The influence of different smoothing methods applied to single-subject artificial data was analyzed 

in time (see Fig. 14) as well as in space (Fig. 15) since both play an important role in accurate 

activation detection and localization and thus functional analysis.  

 

 SPM gQED aws4SPM 

  

Without Noise 

 

Tseed 16.05 15.98 15.97 
betaseed 23.32 29.87 133.94 
  

Noisy Image 

 

Tseed 16.40 16.58 15.53 
betaseed 23.92 30.67 185.14 

Fig. 14 Artificial BOLD-signal time courses ; Top left: Signal with and without  added noise; Top right: 

Non-noisy signal post smoothing (SPM and gQED, no time course returned by aws4SPM-procedure); 

Lower left: Smoothed noisy signal; Lower right: Statistics for seed voxels. Remark: Due to large noise 

components and resulting signal variability the seed did not always exhibit the largest T-value. 

For data presented in this section a GM-segmented and thresholded MNI152-template served as 

the cortex in which the signal occurred. For SPM and gQED (implicit) masking was used i.e. 

voxels outside of the cortex were excluded (gQED) or set to zero during smoothing and reset to 

zero/NaN afterwards (SPM). This approach using heavily masked data makes differences between 

SPM relying on Euclidean distances and gQED more visible. 

Especially for non-noisy signals the difference between purely volumetric/Euclidean smoothing 

(SPM) and the other methods is well visible: Even with the mask used, the activation pattern 

derived with SPM resembles approximately a sphere and is in stark contrast to how the signal 

spreads within the brain. Both gQED and aws4SPM show much smaller activation patterns that 

follow the underlying anatomy more closely.  
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 SPM gQED aws4SPM 

N
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Fig. 15 Statistically relevant activation patterns (thresholded T-statistics) for different smoothing 

methods (left to right: SPM, gQED, aws4SPM) of an artificial BOLD-signal. Top row: T-statistics for 

non-noisy data (time course as in Fig. 14 top right); Bottom row: T-statistics for noisy data (time 

course as in Fig. 14 bottom left) 

On a single-subject basis smoothing serves little other purposes than increasing SNR as of course 

no differences in anatomy and/or uncertainties in normalization need to be compensated for. To 

analyze the influence of different smoothing methods on temporal SNR (tSNR) 20 artificial data 

sets were created. The used GM map in which the signal propagated as well as the seed location 

and signals’ time course (i.e. the underlying design matrix) were identical. Random noise was 
added to each data set. As can be seen in Fig. 16 mean tSNR for the seed voxel increased with both 

smoothing methods (gQED and SPM).  

 

Fig. 16 Boxplot of the SNR of 20 artificial subjects prior to and post smoothing 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Surface-based Smoothing of Brain Imaging Data in Voxel Space 

Peter Stöhrmann  34 / 64 

7.1.2 Group Statistics 

7.1.2.1 Artificial Data on MNI GM Mask with Identical Seed Location 

As a second step in performance analysis of smoothing approaches, a simulated study (a set of 20 

artificial measurements) was created using a more complex model but still with identical brain 

anatomy and seed location as described in section 6.1.  

Main results of the group analysis are presented below in Table 5. No spatial variation of the 

maximum T-value and only little variation in the statistic’s magnitude was observed. 

 Liberal mask Conservative mask 

 SPM gQED SPM gQED 𝑇𝑚𝑎𝑥𝑏𝑟𝑎𝑖𝑛 9.08 9.31 9.12 9.33 [𝑥, 𝑦, 𝑧] [-36, -26, 54] [-36, -26, 54] [-36, -26, 54] [-36, -26, 54] 𝑇𝑡ℎ𝑟𝑒𝑠ℎ 7.34 7.44 7.13 7.25 
Table 5 Resulting activation clusters and corresponding statistics for a simulated study with identical 

brain template and identical seed for all ‘subjects’ 
7.1.2.2 Artificial Data on Real Subjects’ GM Masks 

Third in artificial data analysis another simulated study was created using the more complex 

model, this time also varying brain shape and thus also the seeds’ location. Results can be found 

below in Table 6. 

This model was only smoothed with a liberal group mask, as subject-specific masks would not 

allow for meaningful group-statistics and a more restrictive mask would hardly fit all subjects 

without excluding certain anatomical areas in certain subjects. This issue is further addressed in 

sections 5.2.4, 6.3.3.1, 7.2.2 and 8.1.  

 Liberal mask 

 SPM gQED 𝑇𝑚𝑎𝑥𝑏𝑟𝑎𝑖𝑛 16.45 16.41 [𝑥, 𝑦, 𝑧] [-34, -22, 50] [-34, -22, 50] 𝑇𝑡ℎ𝑟𝑒𝑠ℎ 7.24 7.45 

Table 6 Resulting activation clusters (only global maximum reported) and corresponding statistics for a simulated study with different brain template for all ‘subjects’; Brain templates were derived from 
normalized, segmented anatomical scans of real subjects 

 

7.2 Volumetric Experimental Data 

7.2.1 Single Subject 
For the following considerations, a single representative subject was chosen. Similar to the analysis 

of artificial data the time courses (Fig. 17) and spatial extent of activation patterns were of interest. 

As aws4SPM did not return smoothed 4D data and thus no time courses but merely the resulting 

statistics and activation maps, aws4SPM results are shown in Fig. 18 displaying activation maps 

only.  
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Anat. Norm. Mask SNRSPM SNRgQED 

SPM Group 43.97 dB 42.93 dB 

[-42, -26, 44]  Subject 41.68 dB 40.18 dB 

CVS Group 41.50 dB 40.09 dB 

[-42, -10, 62] Template 39.25 dB 37.85 dB 
 

a) Scaled time course (max = 1) of spatially 

normalized but unsmoothed data  

b) tSNR: Signal: 𝒀 = 𝑿̃ ⋅ 𝜷 Noise: ε 

  

c) Time course of smoothed data (group mask)  d) Smoothed data (subject-specific mask)  

  

e) CVS-normalized, liberally masked, smoothed 

data  

f) CVS-normalized and restrictively masked, 

smoothed data 

Fig. 17 Single-voxel time courses of a representative subject; The chosen voxel had the highest T-statistic in this subject’s statistical analysis for either normalization method 

The reader may have noticed that normalization procedures heavily influence signal smoothness 
and the range of the changes in BOLD-signal as compared to its maximum value. The different 

smoothing procedures additionally influence the magnitude of the activation’s time course. Both, a 
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rather smooth signal but with still large differences between task and no-task condition would be 

desired. This of course is not easily possible as smoothing is some sort of averaging and averaging 

active with non-active voxels will inherently result in less visible effects. With more conservative 

masking the averaging effect is reduced, which is why the signals are larger in the right column.  

 

S
P

M
 n

o
rm

a
li

ze
d

 

   

 a) SPM restrictive subject-

specific mask 

b) gQED restrictive subject-

specific mask 

c) aws4spm 

C
V

S
 n

o
rm

a
li

ze
d

 

   

 d) SPM restricitve template-

based mask 

e) gQED restricitve template-

based 

f) gQED conservative mask 

Fig. 18 Single-subject activation maps (T-statistics) with different normalization and smoothing 

approaches  

Single-subject activations were analyzed using boxplots (Fig. 19) as changes therein may affect 

group statistics relying on the subjects’ effect strength files as input. Maximum values for T-

statistics and effect strength (beta) where automatically extracted for each subject from a cube 

surrounding the motor cortex.  

It can be observed that the effect strength (beta) derived with gQED is larger than with SPM-

smoothing, while T-contrasts stay nearly the same, especially when compared on within-subject 

level.    
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SPM normalization – group mask CVS normalization – restrictive mask 

  

  

  

Fig. 19 Boxplots visualizing the (pairwise) differences in magnitude of single-subject effect strength 

(first row) and T-statistics (second row). Left column: SPM-normalized data smoothed with a liberal 

mask; Right column: CVS-normalized data smoothed with a restrictive mask. Pairwise Changes visualize fractions of each subject’s values derived with gQED divided by SPM-smoothed results 

7.2.2 Spatial Normalization 
The importance of spatial normalization and the necessity of achieving good anatomical overlap 

between subjects has been stressed previously.  

As a measure for normalization quality the normalized data was segmented, and group-averaged 

tissue-probability maps were created as displayed in Fig. 20 c) and d). TPMs were then visually 

compared by means of local tissue probability (darker color represents higher probability and 

overlap) and spatial extent and visibility of anatomical structures therein.  
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As can be seen in Fig. 20 below, the group-averaged tissue-probability maps for gray matter 

derived with CVS are similar to the GM-TPM of a segmented template brain indicating good 

normalization, whereas SPM-normalization barely exhibited well defined gyri and sulci.   

    

a) Gray matter TPM b) GM-segmented 

MNI152 template  

c) SPM-normalization 

TPM 

d) CVS-normalization 

TPM 

Fig. 20 Gray matter probability maps : a) TPM as distributed with SPM b) GM map created by 

segmentation of the MNI152-template using SPM c) scaled sum of subjects’ GM maps when normalized 
with SPM d) scaled sum of subjects’ GM maps when normalized with SPM 

Additionally, group activation maps were used as shown in Fig. 21. Based on the assumption that 

the finger-tapping task in the experiment evokes relatively well defined and constrained brain 

activity in the subjects, it was concluded that for increasing normalization quality Tmax should 

increase, activation cluster size should decrease and show more inherent structure. Local extrema 

and shape of activation patterns should additionally correspond better to the template brain 

anatomy. Corresponding statistics can be found in section 7.2.4.  

Fig. 21 Spatial differences in statistical maps derived from differently normalized data; For better 

visualization the same color maps were used ranging from respective Tthresh to Tmax for each data set; 

 

In Fig. 21 above statistical maps derived with SPM- and CVS-normalization and identical 
smoothing procedures are shown overlaid on an anatomical template slice. CVS-normalization 

   

a) Anatomical brain template 

(MNI152) 

b) Statistics derived from SPM-

normalized data  

c) Statistics derived from CVS-

normalized data  
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shows two well-pronounced local maxima within the cluster corresponding to the finger-tapping-

task. Additionally, these agree better with brain anatomy than SPM-normalized data.  

Lastly, even with much more restrictive masks the T-values and location of maxima should change 

little with good normalization. Results supporting these claim and in favor of CVS-normalization 

are shown in section 7.2.4. 

7.2.3 Masking 
The purposes of masking have been explained previously in section 6.3.3.2. In Fig. 22 group level 

statistical maps are presented on the same CVS-normalized data but with two different masks (see 

Fig. 13 c) and d)) and two smoothing methods for restrictively masked data. Although masking can 

of course influence resulting statistics the aim here is to show the spatial extent and inherent 

structure (local maxima) of areas detected as active. Therefore, no color bars are shown here.  

Two major differences between the images are easily detected: First, in the left image there is no 

activity visible in the right postcentral gyrus (i.e. in the left part of the image). This is partially 

caused by the visualization, though: This cluster was still detected but with its most superior extent 

slightly inferior as compared to other methods, making it just not visible in the slice shown. The 

other major difference is the visibility of activation in the right supplementary motor area for both 

SPM-derived images but not gQED.  

   

Fig. 22 Group statistics (T) of CVS-normalized data; Left to right: SPM smoothing with liberal mask, 

gQED smoothing in restrictive (conservative)  mask, SPM-smoothing with restrictive mask; 

7.2.4 Group Statistics 
The results of volumetric group analysis for experimental data are presented in Table 7 and Fig. 23 

for either volumetric normalization method and smoothing method. For CVS-normalized data two 

masks were used. SPM-normalized data was deemed to contain too large inter-subject anatomical 

variability to use a restrictive mask (see Fig. 20). 

 SPM-normalization CVS-normalization 

Liberal mask Liberal mask Conservative mask 

SPM gQED SPM gQED SPM gQED 𝑇𝑚𝑎𝑥𝑚𝑜𝑡𝑜𝑟 𝟏𝟔. 𝟑𝟔 16.91 𝟏𝟗. 𝟏𝟏 𝟏𝟖. 𝟑𝟒 𝟏𝟔. 𝟓𝟒 𝟏𝟔. 𝟎𝟕 [𝑥, 𝑦, 𝑧]𝑚𝑎𝑥𝑚𝑜𝑡𝑜𝑟 [-42, -26, 44] [-42, -26, 44] [-42, -10, 62] [-42, -10, 62] [-42, -10, 62] [-42, -10, 62] 𝑇𝑡ℎ𝑟𝑒𝑠ℎ 7.51 7.73 7.13 7.35 6.83 6.98 

Table 7  Statistics derived with different masks, normalization and smoothing procedures 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Surface-based Smoothing of Brain Imaging Data in Voxel Space 

Peter Stöhrmann  40 / 64 

The enormous influence the tested normalization procedures have on resulting group statistics is 

well visible in Table 7: Large difference between T statistics for the same smoothing method and 

same mask but different normalization algorithm can be observed. Additionally, the T-levels for 

the restrictive mask and CVS-normalization are similar in magnitude to the ones with SPM-

normalization, which included a much larger volume which means that there is little risk of 

excluding relevant voxels. 

 

Fig. 23 Activation patterns derived from different smoothing methods; Order (left to right) is the same 

as in Table 7 above; The coordinates show the motor cortex’ maximum of activation which differ 

between the two normalization procedures used. Please note the differently scaled color bars which 

are necessary since threshold and maximum T-values varied  

7.3 Surface-Based Experimental Data 
Data from surface-based analyses on subject- and group-level are presented below. As the left 

primary motor cortex was of interest only in this thesis work and FreeSurfer calculates and 

visualizes statistics separately for each hemisphere, solely the left hemisphere is shown and only 

from the most relevant angle (that is the median surface is not shown). 

7.3.1 Single Subject 
Results are shown for the same representative subject as before. Major activation clusters are 

visible in the post-central gyrus, only slightly expanding towards the pre-central gyrus, and in the 

visual cortex (as the experimental task combined finger-tapping with watching of videos). Few 

small additional clusters, some also exhibiting deactivation (blue) are visible. Please note that 

deactivation could also be detected in volumetric analyses but was not visualized.  

For easier comparison between the two different visual representations of the brain volumetric 

results have also been mapped to the FreeSurfer template.   
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Fig. 24 Single subject’s contrasts calculated with FS-FAST and visualized in FreeView (left) and a 

projection using mni2fs MATLAB toolbox of contrasts calculated in voxel space (gQED, subject-specific 

mask) on the inflated brain template (right). Colors and color bars show ‘significances’ as  -log(p) 

 

7.3.2 Group Statistics 
Group statistics derived with FreeSurfer/FS-FAST are shown and visualized below. The surface-

visualization makes difference between (surface-) single-subject-level and (surface-)group-level 

easily visible: the visual cortex signal is more refined, in contrast to the motor cortex, e.g. there is 

much more activation in the pre-central cortex than for the single subject shown before. Activation 

is shown prior and post multiple-comparison correction. 

  

Fig. 25 FreeView visualizations of group-statistics calculated with FS-FAST; Colors and color bars show ‘significances’ as -log(p); Left: Data prior to multiple comparison correction; Right: Clusters after 

multiple comparison correction using random permutations.  

After multiple-comparison correction FreeSurfer outputs a summary file whose content is shown 

below, and which allows for some – though limited – comparison with volumetric results by 

stating corresponding volumetric (MNI-)coordinates of the cluster maximum. The limited 

comparability is mainly rooted in the spatial shifts of single-subject activation due to the 

normalization procedure. 

Cluster No Tmax Size (mm2) MNI-Coordinates Annotation 

1 13.073 8046.57 [-15.7, -89.7, -7.2] Lateraloccipital 

2 11.316 4443.33 [-39.2, -29.1, 58.1] Postcentral (motor area L) 

4 5.073 423.05 [-45.1, -26.6, 22.0] Supramarginal 

Table 8 Results excerpt of FS-FAST second level analysis for the left hemisphere; Font colors match the 

clusters as depicted in Fig. 25 right. 
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8 Discussion 
In the course of this thesis work it became apparent that advanced smoothing methods can barely 

be analyzed independently and without taking previous preprocessing steps and especially spatial 

normalization into account. The reader shall thus be reminded, that in the following discussion – 

even if not always explicitly stated – observations are made on processes and metrics which 

directly and indirectly influence the performance of smoothing algorithms in general and the 

smoothing procedures described herein.  

Summarizing the results, it can be stated that gQED performed well, producing similar over-all 

results as the reference SPM. Deviations in T-statistics were only minor between the smoothing 

methods, increases originally expected with gQED were not observed due to increased data 

variance with this smoothing approach. Instead, a large dependency of T-statistics on 

normalization procedure was observed. 

8.1 Normalization 
Deficiencies in volumetric normalization are certainly known to the neuroimaging community and 

promote the creation of novel and more advanced normalization procedures. Direct comparisons of 

several spatial normalization procedures especially regarding functional data seem to be sparse, 

though [38]. The author of this thesis suggests that little research on this topic, though, may be 

rooted in the often overlooked importance of normalization in combination with smoothing of 

functional data: In functional images which have been smoothed with a simple volumetric kernel 

resulting in reduced resolution, for similar normalization procedures only little influence on 

activation can be observed. In Fig. 26 one can easily see that differences in functional data analysis 

with different normalization procedures are much more pronounced with increasing image 

resolution/reduced FWHM. As CVS-normalization differs significantly from SPM-normalization, 

differences in activation were well-visible with Gaussian smoothing. 

a)  b)  

Fig. 26 Impact of spatial normalization procedures on “low resolution” (a) and “high resolution” (b) 

functional activation maps; adapted from [38]. 

The appearance of limitations caused by insufficient normalization was expected to some degree 

especially when using restrictive masks. The major influence of different normalization procedures 
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on the results – both on statistics and location of the activation – was surprising to the author and 

can be regarded as an accidental but nevertheless very important finding of this thesis work. 

As can be seen in Table 7 using CVS instead of SPM’s standard normalization procedure led to a 
major increase in the maximum T-value of the motor-associated activation cluster (SPM-

smoothing: +16.8%, gQED-smoothing: +8.5%) and a shift of the cluster maximum by 24 mm 

towards the brain’s surface. Even the spatially closest local maximum in the CVS-cluster was 

10.4 mm from the maximum in the SPM-cluster.  

While changes in the location of activation clusters and maxima should further be investigated and 

verified, it can be concluded that such major increases in T-statistics (significance of the 

activation) as caused by CVS-normalization facilitates the identification of activated areas which 

would otherwise falsely remain undetected. In e.g. [39] the influence of normalization procedures 

on activation detectability and the importance of reduced inter-subject anatomical variability for 

detection of spatially small activation patterns has been previously reported as well. 

8.1.1 GM Overlap 
Fig. 20 c) and d) show the normalized, segmented and summed anatomical scans for CVS- and 

SPM-normalization. Except for the cerebellum in the lower part of the brain much better spatial 

overlap is achieved with CVS as can be deducted from the relatively uniform color and well-

visible gyration. In [8] CVS is also reported to outperform accuracy and robustness of the two 

further well-known registration methods FLIRT [40] and HAMMER [41], with FLIRT being 

claimed to achieve better normalization than SPM (SPM99) [41].  

Additionally, when a restrictive mask was used to smooth the CVS-normalized data the resulting 

statistics are still very close to the SPM-normalized ones, even though the restrictive mask includes 

only a fraction of voxels. If single-subject data were severely compromised by the restrictive mask 

the numbers would be expected to drop by a larger extent.  

8.1.2 Spatial Signal Separation  
Another result in the favor of CVS-normalization is shown in Fig. 21: The activation pattern shows 

more refined internal structure (local maxima) and matches the template’s anatomy better, since 
maxima spatially match gyri. Some caution needs to be applied when using this argument, though: 

If a signal originated on one side of a narrow sulcus an activation cluster in the middle of a sulcus 

might better represent the true activation site than a ‘blob’ in the middle of the correct gyrus 

showing no trend towards one of the gyrus’ sides or local maxima in both gyri forming the sulcus.  

8.2 Smoothing 

8.2.1 Masking and Crosstalk 
A major advantage in using surface-based smoothing and thus also gQED with a restrictive mask is 

reduced or even complete lack of signal-mixing from different tissues and neighboring gyri. [42]  

In Fig. 24 the contrasts resulting from surface-based analysis for a single subject shows the 

majority of activation located in the post-central gyrus. Fig. 18 on the other hand seems to show 

more activation for the single subject in the pre-central gyrus, which is more consistent with the 

theoretically expected result from the paradigm and with the group results (Fig 25). This may be 

attributed to imperfections in masking and coregistration of anatomical and functional scans in the 
FS-FAST workflow.  
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Hemispheres, in contrast to gyri, should be rather well-separable by masking. In Fig. 22 one can 

see activation in the supplementary motor center. When no mask is applied the activation pattern 

spreads from the left hemisphere to the right hemisphere across the longitudinal fissure. Looking at 

the cluster maximum’s location and knowing the task performed it is reasonable to assume that 

activation should be located rather only in the left supplementary motor center. When a restrictive 

mask is applied and gQED-smoothing is used, indeed no or only negligible small activation in the 

right supplementary motor area is seen. This is not the case with SPM-smoothing and the 

restrictive mask, as SPM does smooth across the masked longitudinal fissure.  

It must be added that masking in volume space or projection to surface space may not necessarily 

completely separate signals and restrict them to their true location [42]. Even with perfect detection 

of anatomical features and perfect coregistration this could not be achieved, simply because there 

is some spatial extent of the measured BOLD-signal. E.g. when lowering the threshold of the 

gQED-processed data so that less robust effects are also shown (uncorrected p-values), activation 

in the right supplementary motor area can also be seen.  

Concluding, gQED’s masking and smoothing abilities may provide interesting insights in future 

applications, especially when the exact location of activation is of utmost importance (e.g. in 

neurosurgery) or when investigating lateralization effects. 

Although corresponding data is not presented here as this would exceed the scope of this work it 

shall be added that possible effects of masking on multiple comparison correction were explored 

by additionally using two further statistical methods (TFCE and SnPM) which do not depend on 

random field theory and thus smoothness estimates. Any differences – if they could be observed at 

all – were small enough to be considered insignificant. 

8.2.2 Signal Magnitude and Variability 
Functional analysis can be boiled down to two numbers: effect strength (beta) and statistical 

significance of activation (T).  

While T being larger than the threshold calculated in multiple comparison correction is sufficient 

for activation to be declared as significant, a large value of course is preferable. If values generally 

increase for a different smoothing method, the results can be considered as more reliable and one 

can also expect to be able to detect locations which originally fell below the threshold.  

Large effect strength is not necessarily needed for large T-values (see eq. ( 26 )), but of course a 

larger effect can be detected more easily among noise. 

Analysis of time courses (Fig. 14 and Fig. 17), beta- and T-values (Fig. 14 and Fig. 19) and SNR 

(Fig. 16 and Fig. 17) both for artificial signals as well as experimental data led to the following 

observations: Compared to SPM-smoothed data, using gQED results in increased single-subject 

effect strength at lower SNR. This is easily explained by less ‘irrelevant’ data (white matter, CSF, 

air…) being mixed with the relevant signal changes. Single-subject T-statistics are roughly 

equivalent as well as group statistics, though. Since group-level T-values depend on single-subject 

effect strength (beta) this may seem counter-intuitive at first. Upon closer inspection gQED-

smoothed data is afflicted with larger variability and thus variance as visible in the boxplots in Fig. 

19. Since 

 𝑇 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ( 26 ) 
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a roughly constant T resulting from higher con-values can only be achieved with larger variance. 

8.2.3 Activation Detection and Localization 
Independent of the volumetric smoothing method, when the same data (i.e. identical preprocessing 

prior to smoothing) and masks were used, location of absolute maxima in activation for a single 

anatomical region typically did not differ or variation was only minor (range of 2 mm, which 

equals one voxel). Changes in the location and relative magnitude of local maxima within the 

anatomical region were observed, though.  

Different normalization procedures resulted in large (Euclidean) distances between the respective 

motor-cortex maxima, ranging from 15-25 mm. This is also visible comparing normalization 

implemented in SPM and normalization in also well-established but less commonly used 

FreeSurfer.  

The number of available processing tools and pipelines in general and especially in combination 

with the lack of a gold-standard for functional analysis has been previously identified as 

problematic regarding comparability in detected activation locations and patterns. [43] 

Further observations included maximum T-statistics being similar between SPM and gQED for the 

same normalization procedures and T-statistics being larger for SPM and gQED than for 

FreeSurfer, assumed to be rooted in the small volume being projected to the surface. Visual 

comparison showed gQED clusters commonly being more refined and slightly smaller than the 

corresponding clusters in SPM.  

8.2.4 Computational Performance 
Computers get more and more powerful, both decreasing time needed for mathematical operations 

as well as making storage and working with large amounts of data possible. On the other hand 

research budgets are often limited and infrastructure needed is expensive. Therefore, timely results 

even on older hardware are advantageous if one wants to introduce novel analysis procedures.  

8.2.4.1 Hardware 

Computations were done on the NIL servers (12 cores, 56 GB RAM), running CentOS 6.4 with 

MATLAB R2018b and FreeSurfer 6.0.0 installed. Due to Covid-19 related access restrictions, 

temporarily two personal laptop computers were used in parallel, running MATLAB R2019b on 

Windows 10 with 8 and 12 GB RAM, respectively. When restrictions were revoked, all data was 

reanalyzed on the NIL servers (except for aws4SPM analyses due to software availability). 

Although no relevant differences are to be expected, this way any deviations introduced by 

software versions can be excluded.  

As a positive side-effect of home-office, it could be shown that gQED performs without problems 

on different operating systems and on rather low-end hardware. Parallelization on a laptop 

computer is a challenge, though and the server ran much faster. 

8.2.4.2 Runtime 

8.2.4.2.1 gQED & SPM 

Depending on mask size/threshold, as well as FWHM used (and/or stored) the time needed for 

gQED-smoothing of a single subject (4D volume: 79x95x69x95) varied between roughly 5.5 and 

20 minutes. In contrast, smoothing with SPM is mask-invariant and took 1 to 2 minutes per 

subject. Roughly, an increase in smoothing time of a factor 10-20 when switching from SPM to 

gQED can be expected.  
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Calculating geodesic distances needed for smoothing also largely depends on the number of mask 

voxels and FWHM (i.e. max distances to be calculated). Time needed was in the range of one to 

two hours. However, if the same mask and same or smaller FWHM is used for other studies, the 

intracortical distances can be stored and only need to be calculated once.  

8.2.4.2.2 FreeSurfer 

While smoothing in surface space on its own takes little time it is dependent on time-consuming 

prior processing steps. These take much longer than the same preprocessing steps in volume space, 

easily exceeding 10 hours per subject. Thus, group analysis is only viable if subjects are processed 

in parallel using multiple CPU cores. This makes surface-based analyses less attractive when 

processing time and hardware requirements are to be kept low.  

CVS-normalization is dependent on preprocessing steps of anatomical data in FreeSurfer and 

additionally needed more than a day per subject to compute the spatial normalization from subject 

data to template space. 

8.3 Limitations 

8.3.1 Masking 
A wide variety of anatomical masks has been tested throughout data acquisition for this thesis 

work. Best group-results by means of T-values were achieved with a “full brain” mask (voxels 
with the sum of WM, GM and CSF probability ≥ 50% are included) with voxels of WM-

probability ≥ 90% excluded. 

When looking back at Fig. 20 it is not surprising that statistics on group level worsened 

considerably with restrictive masking when normalization was not optimal. The high level of 

anatomical differences left after spatial normalization with SPM was unexpected, though.  

Of course, the mask’s shape and the threshold used can have a major influence on the results and 

may even bias them e.g. by false negatives or moving of activation maxima when areas of 

activation are excluded for some subjects. It has also to be kept in mind that even with high GM-

probability thresholds not all gyri and sulci are well resolved. Thus, in some cases it might be 

advisable to manually correct a mask by including or excluding certain voxels to better follow 

brain anatomy.  

While crosstalk between two areas can be completely restricted with masking and gQED, one 

should not forget that some signal may have been allocated to the uninvolved area during data 

acquisition or processing-steps prior to smoothing. This is especially the case for low-resolution 

images. 

8.3.2 CVS-Normalization 
Anatomical variability between subjects is a critical limitation for statistical analyses of groups 

[39], especially when one wants to use restrictive masks.  

While CVS-normalization had a major positive effect on SPM analyses as well as gQED analyses 

of the real finger-tapping dataset, this normalization approach applied to functional data is still 

uncommon in the imaging community. As a result, neither directly comparable datasets have been 

found nor reports on localization changes induced by this procedure and its overall reliability. 

Changes in the location of activation in general when using different normalization procedures 

have been previously reported, though [38]. 
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A major drawback of CVS-normalization is its long processing time, especially since it succeeds 

FreeSurfer’s already time-consuming segmentation. This may result in reluctant use of this method 

despite its advantages. In addition, further reasons limiting the number of users may be the need for 

additional software and the resulting learning curve, the lack of a graphic user interface for 

FreeSurfer and CVS and reduced comparability with previous studies where purely volumetric 

normalization procedures had been used. Using older, less precise methods out of habit and for the 

sake of easy comparison was also suggested as an explanation to why surface-based analysis is 

barely used [44]. 

8.3.3 Software - Licenses 
gQED and more specifically its geodesic distance calculation depends on MATLAB’s Image 
Processing Toolbox, as they use the functions bwdistgeodesic. This toolbox is neither freely 

available nor included in standard MATLAB distributions, but can be assumed to be widely 

distributed and used in the medical imaging community. It would be possible, though, to provide 

mask files and inter-voxel distances, whose usage does not depend on toolboxes.  

Freesurfer, SPM and aws4SPM are all freely available, but may depend on MATLAB or 

MATLAB toolboxes.  

8.4 Other Smoothing Approaches 
As many other approaches tackling aforementioned limitations in volumetric smoothing exist, a 

short overview on two further selected methods will be given. 

8.4.1 Anatomically Informed Basis Functions  
Kiebel et al. proposed the concept of anatomically informed basis functions (AIBF) in 2000 as an 

alternative voxel-based fMRI-analysis approach. Among their framework’s features are a 
smoothing kernel depending on location, allowing smoothing along the cortical surface, and a 

possibility for super-resolution since the surface is reconstructed at sub-voxel-resolution. [45]  

The AIBF procedure includes extraction and reconstruction of cortical surfaces, specifying a 

transformation between vertex-space intensities and voxel-space signal and defining and 

(re)projecting basis functions on cortical sheet and cortex surface in voxel-space, respectively. 

Basis functions may be hexagonally arranged (in vertex-space) circular Gaussian functions with an 

additional Gaussian in the center of each hexagon. Transformation to voxel space is then applied.  

Although higher sensitivity for GM-signals reported than achieved with SPM-smoothing, this 

method does not seem to have been widely disseminated or applied. 

8.4.2 Gaussian Processes  
Gaussian processes (GP) have been implemented in fMRI data smoothing rather recently. For 

details the interested reader is referred to e.g. [46]. GP regression is a nonparametric Bayesian 

method originally applied in machine learning. When used for fMRI smoothing, noise and the 

spatiotemporal characteristics of BOLD-responses are analyzed, and the smoothing kernel is 

adapted according to these findings for each voxel. 

It is reported, that with GP smoothing both higher sensitivity and specificity can be achieved on 

subject-level, whereas common volumetric smoothing increases sensitivity at the cost of specificity 

[46]. 
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Although some MATLAB code was provided online, this method was not further pursued in the 

analysis presented here, as the code was lacking documentation and not all necessary files were 

available. Using subject- and voxel-specific smoothing is also problematic as this yields different 

degrees of freedom for group analysis. 

8.5 Possible Enhancements and Outlook 

8.5.1 Computation Time and Memory Requirements 
Even when considering only short distances, calculation of geodesic distances between any two 

voxels within the gray matter is a lengthy process. Theoretically, the time needed, as well as 

memory required, could be noticeably decreased, if one considered path- or rather distance 

symmetry between voxels: 

Let the distances d from seed 𝑣𝑎 to its neighbors be 

 𝑑(𝑣𝑎) = ( 
 ⋮𝑑𝑎,𝑖𝑑𝑎,𝑗𝑑𝑎,𝑘⋮ ) 

    ( 27 ) 

As  

 𝑑𝑎,𝑖 =! 𝑑𝑖,𝑎  ( 28 ) 

 𝑑(𝑣𝑖) = ( 
 𝑑𝑖,𝑎⋮𝑑𝑖,𝑗𝑑𝑖,𝑘⋮ ) 

     ( 29 ) 

contains not as much information as 𝑑(𝑣𝑎) if 𝑑(𝑣𝑎) is already known, but contains one redundant 

entry. Theoretically, it would be sufficient to store a sparse matrix only, such as 

 𝑑 = ( 
 ⋅ ⋅ ⋅ ⋅𝑑1,2 ⋅ ⋅ ⋅𝑑1,3 𝑑2,3 ⋅ ⋅𝑑1,4 𝑑2,4 𝑑3,4 ⋅⋮ ⋮ ⋮ ⋱  ) 

   ( 30 ) 

To this date, an already existing, time-saving implementation of geodesic distance calculation is 

neither known to the author, nor has been coded by the author during this thesis as this would 

exceed its scope. While large benefits regarding the time needed for calculating the distances in the 

first place are to be expected for a non-redundant geodesic-distance algorithm, it is questionable, 

whether and to what degree one would benefit on the scale of the whole analysis from storing the 

distances in such a sparse matrix for several reasons:  

• In MATLAB, there is no protocol for storing only the lower triangular section of a matrix.  

• Using a sparse matrix is only less memory consuming if the matrix consists of sufficient 

zero-entries. sparse(A) converts the full matrix A to a list of matrix coordinates and the 

corresponding value. Each non-zero element of a 2D matrix A thus will be stored as 

coordinates x and y plus the value at A(x,y). Saving the linear index and the corresponding 

value needs even less memory. To cite MATLAB’s documentation:  
“If the order of a matrix is small enough that full storage is possible, 
then conversion to sparse storage rarely offers significant savings.” 
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• The benefit of requiring less disc space to store masks and the geodesic distances between 

voxels might be outweighed by increasing processing steps needed and increasing 

computation time for smoothing. As an anecdote, an attempt to reduce the number of loops 

in the code and further vectorize calculations led to a major increase in calculation time, as 

it included setting up and manipulating larger and higher-dimensional matrices.  

• As large RAMs and hard drives become more easily available, memory requirements 

become of less importance.  

8.5.2 Further Applications 
gQED smoothing as well as CVS-normalization may be promising tools for image analysis. gQED 

is easy to replicate and implement into existing preprocessing pipelines. Although its influence on 

overall calculation time is considerable compared to classic spatial smoothing, it may prove 

valuable e.g. as a fast and easily adaptable replacement of surface-based analysis.   

8.5.2.1 High-Resolution fMRI 

BOLD fMRI resolution is typically rather low, especially compared to resolutions used in 

anatomical scans. Although higher resolution could often be achieved with modern scanners, this 

would result in lower SNR, which then requires more smoothing (i.e. larger kernel FWHM) 

eliminating the spatial detail gained during acquisition. Escaping this vicious cycle is partially 

possible by smoothing methods which follow anatomy and tissue borders [29]. gQED can achieve 

this and higher resolution and smaller voxel size will also reduce problems in masking. Therefore, 

testing gQED on high-resolution fMRI seems like a promising field of application. The only 

downside and limiting factor may be the additional memory needed to store the increasing number 

of voxel indices and corresponding distances. 

8.5.2.2 Increased Specificity 

As already explained, geodesic smoothing in well-defined masks prevents crosstalk. When signals 

from unrelated areas in close proximity are no longer mixed during smoothing, advances in 

activation specificity are to be expected, as the areas’ time courses remain independent from each 
other. This may also apply to the field of functional connectivity, which computes cross-

correlations between voxels’ time courses. Similar to activation analyses, it is important for 

connectivity calculations that a voxel’s signal is not influenced by its surrounding tissue [42]. 

8.5.2.3 Test-Retest & Longitudinal Studies 

In longitudinal and test-retest studies single subjects perform an identical task at two or more 

different times and changes between the sessions are analyzed.  

With longitudinal and test-retest studies conclusions on variability in measurement processes, 

cognition per se and on alterations in brain physiology due to pharmaceutical interventions, 

learning processes, illnesses etc. can be drawn. See e.g. [47] and [48] for the discussion of within-

subject variability in fMRI when the same subject repeats the same task during several 

measurements.  

Performance of gQED on these data seems promising as variance caused by imperfect spatial 

normalization and smoothing could be reduced. Furthermore, no time-consuming CVS-

normalization would be needed to still be able to work with a restrictive mask.  
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8.5.2.4 WM-Activation 

In its current form, gQED smooths GM-signal and gets rid of any signal in high-WM-probability 

areas. As reported in [49], whilst the signals are much smaller, also activation in WM and deeper 

brain structures (especially in the corpus callosum) may frequently be observed during tasks. 

Currently, these activations are rarely in the focus of research, but may become of increasing 

interest. By substituting the applied mask, gQED could easily be adapted to analyze WM instead.  

8.5.2.5 Other imaging modalities 

Finally, it should be emphasized that the implemented processing pipelines will be equally 

applicable to other imaging modalities which need spatial smoothing. This includes e.g. data from 

PET, ASL and structural imaging, whose results may improve in a similar manner.  
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9 Conclusion 
A smoothing algorithm for 3D/4D-images using geodesic, quasi-Euclidean distances (gQED) has 

been proposed, implemented and compared to various other image smoothing and analysis 

methods. Such a method could provide the imaging community with a versatile tool bridging the 

gap between purely volumetric and purely surface-based smoothing.  

For both, simulated and experimental data, gQED delivered comparable T-values (activation 

significance) at single-subject and group- analysis, with increased effect strength but also 

variability. SNR was slightly reduced when using gQED.  

As a major advantage, gQED with proper restrictive masking will only smooth data within the gray 

matter but not across anatomical or tissue boundaries, thus preventing partial volume effects and 

crosstalk between spatially close but functionally distinct brain regions.  

Interestingly, in experimental data such a restrictive masking was only applicable for the time-

consuming but high-quality spatial normalization (CVS). Thus, the work also highlighted 

previously unknown or disregarded deficiencies in SPM’s spatial normalization procedure. 

 

To summarize gQED proved 

• to be easy to implement into voxel-wise processing pipelines 

• to reproduce locations of neuronal activations at least as well as the widely used SPM 

toolbox  

• to deliver comparable statistical results of neuronal activations in the motor cortex when 

compared to SPM and higher T-values than FreeSurfer with manageable memory and time 

restraints. 

Thus, the approach may serve as a relevant tool to provide accurate identification of neuronal 

activation in the human brain. 
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11 Table of Figures 
Fig. 1 Schematic description of spatial smoothing: left: exemplary gyri (GM: dark gray, WM: light 

gray) and sulci (CSF: black), middle: smoothing by Euclidean distance as most commonly used, 

right: smoothing by geodesic distance as proposed in this work. ..................................................... 9 

Fig. 2 Top left: hemodynamic response function (HRF) schematic: ID … initial dip; TP … time 
from stimulus to peak; W … width at half height: PSU … post-stimulus undershoot ; Lower left: 

BOLD fMRI series: stimulus (red) and corresponding response (blue); Top right: Signal for 

different neural response magnitude; Lower right: Approximately linear response of BOLD for 

several stimuli within short time interval; Composition of several figures from [4] ....................... 12 

Fig. 3 Slice Time Correction: a) slice order for interleaved acquisition; b) corresponding signals; 

Later acquired slices appear to exhibit an earlier response, as they do not detect the true onset of 

the HRF; Taken from [4] .................................................................................................................. 13 

Fig. 4 GLM-schematic taken from [11]: A BOLD time-course is predicted by three tasks and seven 

nuisance regressors ........................................................................................................................... 16 

Fig. 5 Noisy image: left to right: data acquisition to final image; σ2… Variance; |Ω| … Size of  
Field of View (number of points in 2D inverse discrete Fourier transform); For large SNR the 

signal can be estimated as Gaussian distributed, for SNR = 0 (i.e. image background) the Rician 

distribution simplifies to a Rayleigh distribution; Taken from [12]................................................. 16 

Fig. 6 Noise contributions as depicted and described in [13]: “Anatomy (a) and spatial distribution 

of raw noise σ0 (b), physiological noise contributions σB (c), and σNB (d) in a typical image section 

from one subject. Note that gray scale contrast is identical in b–d.” ............................................... 18 

Fig. 7 Location of left motor hand area on the MNI152 template, localized as described in [15]: 

“The segment of the precentral gyrus that most contained motor hand function was a knob-like 

structure, that is shaped like an omega or epsilon in the axial plane and like a hook in the sagittal 

plane.” .............................................................................................................................................. 18 

Fig. 8 Primary motor cortex: Sensory homunculus: Left: Coronal view (Source: [16]) Right:  

Lateral view, Penfield’s map (Source:  [17]) ................................................................................... 19 

Fig. 9 Artificial signal created by convolution of HRF and design matrix (‘Task’). Left: time 

course; Right: Single frame (time instance) of the resulting simulated BOLD-measurement shown 

in coronal, sagittal and axial slices. Activation (increased simulated BOLD-values) is slightly 

visible in the brain’s left hand-motor center as a small white batch of higher intensity than the 

surrounding tissue, the location is indicated by arrows. ................................................................... 20 

Fig. 10 Isosurface plots for distance transforms of a 3D-image; Image dimensions [50 50 50]; 

There is a single non-zero voxel at [25 25 25]; Each isosurface displays a distance of 15 units using 

the metric specified in the subplot’s title. Image taken from MATLAB Documentation for function 
bwdist(). ........................................................................................................................................... 25 

Fig. 11 Differences in voxel intensities for different smoothing approaches; left column: results of 

smoothing a single voxel of  I = 100 with different kernels and metrics; right column: smoothed 
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image obtained by various methods subtracted from SPM-result. Please note the different scaling 

of the right column. .......................................................................................................................... 26 

Fig. 12 Inflated surface representation of the human brain; Left and center: color-coded template 

brain prior and post inflation, sagittal cross section of pre- and postcentral gyrus depicted below; 

Adapted from [35] Right: Color coded gyri and sulci on inflated brain; Adapted from 

andysbrainbook.readthedocs.io ........................................................................................................ 28 

Fig. 13 Multi-planar views: Coronal, sagittal and axial slices of several gray matter probability-

maps;  a & b: Exemplary selection of thresholds tp and the resulting GM-mask of a TPM; c: 

MNI152 template-derived GM mask; d: custom mask derived by combining several tissue 

thresholds (‘Fullbrain’ – tpWM>0.9); e: GM-segmentation derived from a single subject’s 
anatomical scan ................................................................................................................................ 30 

Fig. 14 Artificial BOLD-signal time courses ; Top left: Signal with and without  added noise; Top 

right: Non-noisy signal post smoothing (SPM and gQED, no time course returned by aws4SPM-

procedure); Lower left: Smoothed noisy signal; Lower right: Statistics for seed voxels. Remark: 

Due to large noise components and resulting signal variability the seed did not always exhibit the 

largest T-value. ................................................................................................................................. 32 

Fig. 15 Statistically relevant activation patterns (thresholded T-statistics) for different smoothing 

methods (left to right: SPM, gQED, aws4SPM) of an artificial BOLD-signal. Top row: T-statistics 

for non-noisy data (time course as in Fig. 14 top right); Bottom row: T-statistics for noisy data 

(time course as in Fig. 14 bottom left) ............................................................................................. 33 

Fig. 16 Boxplot of the SNR of 20 artificial subjects prior to and post smoothing ........................... 33 

Fig. 17 Single-voxel time courses of a representative subject; The chosen voxel had the highest T-

statistic in this subject’s statistical analysis for either normalization method .................................. 35 

Fig. 18 Single-subject activation maps (T-statistics) with different normalization and smoothing 

approaches ........................................................................................................................................ 36 

Fig. 19 Boxplots visualizing the (pairwise) differences in magnitude of single-subject effect 

strength (first row) and T-statistics (second row). Left column: SPM-normalized data smoothed 

with a liberal mask; Right column: CVS-normalized data smoothed with a restrictive mask. 

Pairwise Changes visualize fractions of each subject’s values derived with gQED divided by SPM-

smoothed results ............................................................................................................................... 37 

Fig. 20 Gray matter probability maps : a) TPM as distributed with SPM b) GM map created by 

segmentation of the MNI152-template using SPM c) scaled sum of subjects’ GM maps when 
normalized with SPM d) scaled sum of subjects’ GM maps when normalized with SPM .............. 38 

Fig. 21 Spatial differences in statistical maps derived from differently normalized data; For better 

visualization the same color maps were used ranging from respective Tthresh to Tmax for each data 

set; .................................................................................................................................................... 38 

Fig. 22 Group statistics (T) of CVS-normalized data; Left to right: SPM smoothing with liberal 

mask, gQED smoothing in restrictive (conservative)  mask, SPM-smoothing with restrictive mask;

 .......................................................................................................................................................... 39 
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Fig. 23 Activation patterns derived from different smoothing methods; Order (left to right) is the 

same as in Table 7 above; The coordinates show the motor cortex’ maximum of activation which 
differ between the two normalization procedures used. Please note the differently scaled color bars 

which are necessary since threshold and maximum T-values varied ............................................... 40 

Fig. 24 Single subject’s contrasts calculated with FS-FAST and visualized in FreeView (left) and a 

projection using mni2fs MATLAB toolbox of contrasts calculated in voxel space (gQED, subject-

specific mask) on the inflated brain template (right). Colors and color bars show ‘significances’ as  
-log(p) ............................................................................................................................................... 41 

Fig. 25 FreeView visualizations of group-statistics calculated with FS-FAST; Colors and color bars 

show ‘significances’ as -log(p); Left: Data prior to multiple comparison correction; Right: 

Clusters after multiple comparison correction using random permutations. .................................... 41 

Fig. 26 Impact of spatial normalization procedures on “low resolution” (a) and “high resolution” 
(b) functional activation maps; adapted from [38]. .......................................................................... 42 
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12 Appendix 
12.1 Acronyms and Abbreviations 
AWS Adaptive weights smoothing 

BOLD Blood oxygen level dependent (signal) 

CSF Cerebrospinal fluid 

CT Computed tomography 

CVS Combined volume and surface morph  

EPI Echo-planar imaging 

fMRI Functional magnetic resonance imaging 

FS FreeSurfer 

FS-FAST FreeSurfer functional analysis stream 

FWHM Full width half maximum 

GLM General linear model 

GM Gray matter 

gQED Geodesic quasi-Euclidean Distance (Smoothing) 

HRF Hemodynamic response function 

ICA Independent component analysis 

MNI Montreal Neurological Institute 

MRI Magnetic resonance imaging 

NaN Not a number 

NIL Neuroimaging Labs 

PET Positron emission tomography 

PVE Partial volume effect 

RF Radio frequency 

sED Smoothing: Euclidean distances 

SNR Signal-to-noise ratio 

SPECT Single photon emission computed tomography 

SPM Statistical parametric mapping (software) 

sQED Smoothing: quasi-Euclidean Distances 

ST Slice time  

TE Echo time 

TPM Tissue probability map 

TR Repetition time 

WM White matter 
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12.2 Code 

12.2.1 Intracortical (Geodesic) Distances 
function [storageCell] = computeDistancesV3(maskFilePath, vargin) 

     

    maskFilePath = char(maskFilePath); 

    info = niftiinfo(maskFilePath); 

    pxDim = info.PixelDimensions(1); 

     

    if info.PixelDimensions(1) ~= info.PixelDimensions(2) && ... 

            info.PixelDimensions(1) ~= info.PixelDimensions(3) 

        error('Pixeldimensions are not equal'); 

    end 

     

    mask = niftiread(info); 

 

    x = size(mask,1);  

    y = size(mask,2); 

    z = size(mask,3); 

 

    for ii = 1:size(mask,4) 

         

        test = zeros(x,y,z, size(mask,4)); 

        test(mask == 1) = 1; 

         

        if length(find(mask)) ~= length(find(test)) 

            error('Are you sure your mask is defined as you want it to be?'); 

        end 

         

        mask = logical(mask(:,:,:,ii)); 

 

        maskIdx = find(mask);       % gets indices for masked gray matter voxels 

        maskedVoxelNum = length(maskIdx); 

 

        voxelInfo = cell(1,7); 

        storageCell = cell(maskedVoxelNum, 3); 

 

        if exist('vargin', 'var') && isscalar(vargin) 

            FWHM = vargin; 

        else 

            FWHM = 8; 

        end 

         

        FWHM = FWHM/pxDim; 

        sigma = FWHM/(sqrt(8*log(2))); 

 

        sigmaMax = 3.5*sigma; 

        dimMax = ceil(sigmaMax); 

 

        % counter 

        kk = 1; 

 

        %% Smoothing 
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        for jj = 1:maskedVoxelNum 

 

            if mod(jj-1,10000) == 0                              % for remaining time estimate only 

                tic; 

            end 

 

            seed = false(x,y,z);                                % initialize seed voxel 

            seed(maskIdx(jj)) = 1; 

 

            voxelInfo(1,1) = {maskIdx(jj)};                     % index of seed voxel 

 

 

            % bwdistgeodesic is by far the slowest component of this script --> 

            % since we are only interested in rather small distances, we can 

            % restrict mask and image: 

 

            [xIdx, yIdx, zIdx] = ind2sub([x,y,z], maskIdx(jj)); 

 

            if xIdx <= (dimMax+1) 

                xIdxMin = 1; 

            else 

                xIdxMin = xIdx - dimMax; 

            end 

 

            if yIdx <= (dimMax+1) 

                yIdxMin = 1; 

            else 

                yIdxMin = yIdx - dimMax; 

            end 

 

            if zIdx <= (dimMax+1) 

                zIdxMin = 1; 

            else 

                zIdxMin = zIdx - dimMax; 

            end 

 

            if xIdx >= x - (dimMax+1) 

                xIdxMax = x; 

            else 

                xIdxMax = xIdx + dimMax; 

            end 

             

            if yIdx >= y - (dimMax+1) 

                yIdxMax = y; 

            else 

                yIdxMax = yIdx + dimMax; 

            end 

 

            if zIdx >= z - (dimMax+1) 

                zIdxMax = z; 

            else 

                zIdxMax = zIdx + dimMax; 

            end 
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            maskPartial = mask(xIdxMin:xIdxMax, yIdxMin:yIdxMax, zIdxMin:zIdxMax); 

            seedPartial = seed(xIdxMin:xIdxMax, yIdxMin:yIdxMax, zIdxMin:zIdxMax); 

 

            temp2 = bwdistgeodesic(maskPartial, seedPartial, 'quasi-euclidean'); 

            temp = nan(x,y,z); 

            temp(xIdxMin:xIdxMax, yIdxMin:yIdxMax, zIdxMin:zIdxMax) = temp2; 

 

            tempIdx = find(temp <= sigmaMax);                 % set max length of interest to 3.5 stdev 

 

            voxelInfo(1,3) = {tempIdx};                     % indices of other voxels 

            voxelInfo(1,4) = {temp(tempIdx)};               % distances to other voxels 

 

 

            %% smoothing with Gauss function: 

 

            storageCell(kk,1) = voxelInfo(1,1);       % seed voxel index 

            storageCell(kk,2) = {single(voxelInfo{1,3})};     % indices of other voxels 

            storageCell(kk,3) = voxelInfo(1,4);       % distances to other voxels 

 

            if jj < maskedVoxelNum 

                kk = kk+1; 

            end 

 

            if mod(jj,1000) == 0 

                if mod(jj,10000) == 0 

                    t10000 = toc; 

                    tEst = round(t10000/60*(maskedVoxelNum - jj)/10000); 

                    fprintf('%d of %d (%5.2f %%)... Estimated time remaining: %d min ... \n', jj, 

maskedVoxelNum, (100*jj)/maskedVoxelNum, tEst); 

                else 

                    fprintf('%d of %d (%5.2f %%)... \n', jj, maskedVoxelNum, ((100*jj)/maskedVoxelNum)); 

                end 

            end 

 

            memoryInfo = whos('storageCell'); 

            memory = memoryInfo.bytes; 

 

            if memory >= 6500000000        % 6.5 GB 

                error('WARNING: Check memory requirements. Your mask or FWHM may be too big'); 

            end 

 

        end 

 

        filename = strcat(maskFilePath(1:end-4), '.mat'); 

         

        intraCorticaldistances.storageCell = storageCell; 

        intraCorticaldistances.FWHM = pxDim*FWHM; 

        intraCorticaldistances.Mask = info.Filename; 

        intraCorticaldistances.Pixeldimensions = info.PixelDimensions; 

         

        fprintf('Saving file. \n'); 

        save(filename, 'intraCorticaldistances', '-v7.3'); 

    end 
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end 

 

12.2.2 gQED Smoothing 
function [smoothedFramesGauss] = gQED_frame_smoothingV2(vol2smooth,storageCell, varargin) 

%gQED_frame_smoothing: geodesic, quasi-euclidean-distance smoothing for the 

%   frames of (f)MR-data 

%   For the masked input volume to be smoothed (vol2smooth), the geodesic,  

%   quasi-euclidean distances (which have been stored in storageCell are  

%   used to perform voxel-wise, gaussian smoothing 

% 

%   INPUTS: volume to be smoothed (4D), storageCell containing the  

%   distances between and the indices of seed and other voxels, 

%   FWHM (optional, default = 8mm), bool 

%   for neighborhood correction 

% 

%   OUTPUTS: smoothed Volume 

% 

%   v0.1 - 27.01.2020 

 

%%  

narginchk(2, 4); 

 

[x,y,z, nFrames] = size(vol2smooth); 

 

smoothedImageGauss = zeros(x,y,z,nFrames); 

 

if nargin > 2 

    FWHM = varargin{1}; % [mm] 

else 

    FWHM = 8;     % [mm] 

end 

 

FWHM = FWHM/2;  % [Voxel] 

 

sigma = FWHM/(sqrt(8*log(2))); 

 

sigmaMax = 3.5*sigma; 

 

if nargin == 4 && logical(varargin{2}) == 1 

    neighborMatrix = ones(x,y,z); 

     

    for jj = 1:length(storageCell) 

        seedIdx = storageCell{jj,1}; 

        voxelIdx = storageCell{jj,2}; 

        temp = zeros(x,y,z); 

        temp(seedIdx) = length(voxelIdx); 

        neighborMatrix = neighborMatrix + temp; 

    end 

     

    neighborMatrix(neighborMatrix < 8) = nan; 

end 

 

for ii = 1: nFrames 
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    tempImg = zeros(x,y,z); 

    imageFrame = vol2smooth(:,:,:,ii); 

     

    for jj = 1:length(storageCell) 

         

        seedIdx = storageCell{jj,1}; 

        voxelIdx = storageCell{jj,2}; 

        xx = storageCell{jj,3}; 

         

        FWHM_corr = (xx <= sigmaMax); 

        xx = xx(FWHM_corr); 

        voxelIdx = voxelIdx(FWHM_corr); 

         

        dd = xx.^2; 

         

        val = imageFrame(seedIdx); 

         

        krn = 1/(sqrt(2*pi)*sigma)^3*exp(-dd/(2*sigma^2)); 

         

        tempImg(voxelIdx) = tempImg(voxelIdx) + krn*val; 

    end 

     

    if nargin == 4 && logical(varargin{2}) == 1 

         

        rescaled = tempImg./neighborMatrix; 

        smoothedImageGauss(:,:,:,ii) = rescaled;  

     

    else 

        smoothedImageGauss(:,:,:,ii) = tempImg;  

    end 

end 

 

smoothedFramesGauss = 100*smoothedImageGauss/max(smoothedImageGauss, [], 'all'); 

end 
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