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Deutsche Kurzfassung

Fortschritte in der Photonik sind typischerweise mit technologischen Neuerun-
gen bei der Herstellung immer komplexerer optischer Gerédte verbunden. Bei
diesen Bestrebungen, neuartige dielektrische Strukturen zu erzeugen, gibt es zwei
Komponenten, die weitgehend ungenutzt geblieben sind: Absorption und Unord-
nung. Dies ist auf die vorherrschende Ansicht zuriickzufiihren, dass der Verlust
von Licht durch Absorption und die komplexe Streuung, die durch ein ungeord-
netes Material hervorgerufen wird, nachteilig und daher von keinem praktischen
Interesse sind. Aktuelle theoretische Erkenntnisse und die sich abzeichnenden ex-
perimentellen Moglichkeiten, sehr komplizierte Lichtfelder zu modulieren und zu
detektieren, verandern derzeit jedoch diese traditionelle Denkweise.

In dieser Arbeit versuchen wir diesen Paradigmenwechsel zu beschleunigen in-
dem wir vielversprechende theoretische Konzepte untersuchen, um die Einfliisse
von Absorption und Unordnung zu kontrollieren und sie sogar zum Vorteil zu
nutzen. Basierend auf unseren neuesten Arbeiten, in denen wir gezeigt haben, wie
eine systemspezifische Verteilung von Absorption und Verstarkung in bestimmten
photonischen Strukturen die Streuung der einfallenden Lichtwelle komplett un-
terdriickt, prisentieren wir in dieser Arbeit einige neue Erkenntnisse aus diesem
Forschungsfeld. Wir zeigen, wie eine (ungeordnete) Struktur unidirektional unsicht-
bar gemacht werden kann, indem auf eine bestimmte Art und Weise Absorption
und Verstdrkung dem System hinzugefiigt wird. Licht, das sich durch solch eine
Struktur ausbreitet, kann nicht von Licht unterschieden werden, das sich durch eine
homogene Struktur ausbreitet, sodass die Struktur als unsichtbar betrachtet wer-
den kann, obwohl das Medium an sich ungeordnet ist. Dariiber hinaus préisentieren
wir die erste experimentelle Umsetzung unseres Konzepts in einem ungeordneten
akustischen Wellenleiter, in dem wir zeigen, dass wir durch gezielte Absorption und
Verstarkung der Schallwelle den Wellenleiter fiir die Schallwelle transparent machen
konnen. In Abwesenheit von Absorption und Verstirkung wiirde die Welle reflek-
tiert werden ohne tief in den Wellenleiter eindringen zu kénnen. Durch gezielte
Hinzugabe von Absorption und Verstirkung koénnen wir nicht nur die Streuung
in der gesamten Struktur unterdriicken, sondern auch die Welle zwingen, einer
vorgegebenen Intensititsverteilung zu folgen. Dadurch kann selbst in ungeordneten
Medien an einer bestimmten Stelle ein starker Intensitétsfokus erzeugt werden, der
in vielen Bereichen der Physik von grofem Interesse ist.

Ein konzeptionell anderer Ansatz zur Bewéltigung von Unordnung ohne Absorp-
tion und Verstirkung baut auf den jliingsten experimentellen Fortschritten auf, ein
komplexes Medium durch Messung seiner Streumatrix zu charakterisieren. Mit
diesen neu verfiigharen Moglichkeiten zeigen wir wie sogenannte “teilchendhnliche
Streuzustinde” — also strahlartige Wellenzusténde die sich auf klassischen, geraden
Bahnen bewegen — erzeugt werden kénnen. Aufbauend auf dieser Erkenntnis unter-
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suchen wir die Ausbreitung von Licht in ungeordneten aber rdumlich korrelierten
Strukturen, die zu einer Aufspaltung der Welle in einzelne Aste fithren. Wir en-
twickeln eine Strategie, die es uns erméglicht, einzelne Bahnen dieser Verdstelung
mithilfe von teilchendhnlichen Zustdnden zu selektieren. Anders formuliert, kénnen
wir die Lichtwelle so beeinflussen, dass sie sich nicht mehr entlang eines verzweigten
Geflechts an Pfaden in ganz unterschiedliche Richtungen ausbreitet, sondern auf
einer einzelnen vorher ausgewihlten Bahn bleibt.

Unter Verwendung eines dhnlichen Konzepts wie bei der Suche nach teilchendhn-
lichen Wellenzustanden entwickeln wir Strategien zur Manipulation von Teilchen in
ungeordneten Materialien. Insbesondere untersuchen wir wie eine Welle von aufsen
auf ein Medium geschickt werden muss, um ein in einer ungeordneten Umgebung
verborgenes Teilchen zu manipulieren. Speziell méchten wir auf das Teilchen einen
genau definierten Impuls, Druck oder Drehimpuls iibertragen beziehungsweise auf
das Teilchen fokussieren. Um dies zu erreichen, stellen wir ein neues Konzept vor,
das es uns erlaubt die vorher genannten Ziele optimal umzusetzen und vergleichen
die daraus resultierenden theoretischen Vorhersagen mit einer experimentellen Im-
plementierung in einem Mikrowellen-Wellenleiter.

Abschliefsend zeigen wir, dass eine Lichtwelle von einem kleinen, absorptiven
Element eingebettet in einem ungeordneten Medium komplett absorbiert werden
kann, wenn die Frequenz und die Form der Welle sowie die Absorptionsstirke des
absorbierenden Elements richtig eingestellt wird. Wéire die Form der Welle nicht
korrekt adjustiert, wiirde sie von dem Medium zu einem grofsen Teil reflektiert
anstatt absorbiert werden. Dieser Effekt der “koh&renten perfekten Absorption”
wird zum ersten Mal experimentell in einem ungeordneten Medium mithilfe von
Mikrowellen demonstriert.

Wir hoffen mit dieser Arbeit zur Entstehung weiterer Experimente beitragen
zu konnen, die das enorme Potenzial von Absorption und Unordnung fiir neue
Innovationen in der Photonik aufzeigen.
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Abstract

Progress in photonics has traditionally been linked to technological advances in
fabricating ever more complex optical devices. In this effort to create arbitrary
dielectric structures, two components that have remained largely unexploited are
loss and disorder. This is because of the prevailing view that the absorption of light
by the loss and the seemingly random scattering induced by a disordered material
are disadvantageous and thus of no practical interest. Recent theoretical insights
and the emerging experimental possibilities to shape and detect very complicated
light fields are currently, however, changing this traditional way of thinking.

In this thesis we try to accelerate this paradigm shift by exploring promising the-
oretical concepts for controlling the influences of loss and disorder and for turning
them to an advantage. Based on our recent work, where we showed how adding a
judiciously designed pattern of loss and gain on a given photonic structure leads
to light fields that are immune to scattering in a disordered medium, we show here
several novel phenomena with interesting features. We demonstrate how to make a
(disordered) structure unidirectionally invisible by adding a tailored loss and gain
distribution to it. Light propagating through such a structure cannot be distin-
guished from light that travels through a uniform structure, such that it can be
considered as invisible although inhomogeneities are still present, but compensated
by gain and loss. Moreover, we present the first experimental implementation of our
concept in a disordered acoustic waveguide where we demonstrate that by absorb-
ing and amplifying sound waves in a well-defined way, we can make the waveguide
one-way transparent for an incoming sound wave that would otherwise get per-
fectly reflected in the absence of gain and loss. By adding the right loss and gain
distribution to a given structure, we can not only suppress scattering in the entire
structure, but also force the wave to have a predetermined intensity distribution.
This concept can be used to create a strong intensity focus at a certain position
even inside disordered media, which is of great interest in many fields of physics.

A conceptually different approach to cope with the presence of disorder with-
out introducing loss and gain into the structure builds on the recent experimental
breakthrough to characterize a highly complex medium by measuring its scattering
matrix. Using these newly available data sets, we first show in a simple system how
so-called “particle-like scattering states” — states that have a beam-like wave func-
tion — can be generated. Building up on this knowledge, we study the propagation
of light waves in a smoothly correlated disorder which gives rise to the formation of
a network of branches. We develop a strategy that allows us to address individual
branches using particle-like states such that we can steer light through a disordered
system on only a single branch rather than on multiple of them.

Using a similar concept to the one used to find particle-like states, we devise
strategies for micromanipulating targets inside disordered materials in an optimal
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manner. Specifically, we study how wavefronts directed from the outside onto
the medium have to be shaped to manipulate a target buried inside a disorder
by applying a well-defined momentum, pressure or torque as well as to achieve a
focus inside the target. In addition to the introduction of our novel theoretical
approach we also show a corresponding implementation in a microwave setup that
demonstrates our predictions in a convincing way.

Ultimately, we show that perfect absorption of a wave’s intensity can be achieved
by a small absorptive element embedded inside a disordered structure by care-
fully shaping the incident wavefront, the wave’s frequency as well as the amount
of absorption. This effect of “coherent perfect absorption” is, for the first time,
demonstrated experimentally in a disordered medium in a microwave setup.

With this work we hope to trigger further experiments that demonstrate the
enormous potential of loss and disorder for innovation in photonics.
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Introduction

Building new photonic devices is usually connected to the effort of reducing two
naturally occurring ingredients spoiling the long-distance propagation of light: loss
and disorder. Loss leads to an absorption of light whereas disorder causes a highly
complex intensity pattern due to scattering and multi-path interference. While loss
occurs in materials such as metals or black paint, disorder is induced by inhomo-
geneities of the system such as impurities or other imperfections. The prevailing
view of staying away from these two ingredients in the fabrication process of op-
tical devices is thus very reasonable, however, new theoretical insights and newly
available experimental possibilities have recently questioned this belief.

Instead of eliminating loss, it was recently shown in several experiments that
loss can induce interesting new effects in optics such as loss-induced transparency
|1, 2|, coherent enhancement or perfect absorption [3-7], loss-triggered lasing |8
10], loss-enhanced amplifiers [11], and loss-induced quantum phase-transitions [12].
One particular case that has been studied extensively is that of materials where loss
is combined with gain in a balanced way [13, 14]. Especially structures where gain
and loss follow a so-called parity-time (P7)-symmetry [15] have recently drawn
a lot of attention [15]. This new design principle for engineering structures fea-
tures a plethora of remarkable characteristics [16-18| like power oscillations |2, 19],
non-reciprocal transport [20-22|, unidirectional invisibility [23-26|, and constant-
intensity waves in inhomogeneous refractive index landscapes [27-30|, which play
a significant role in this thesis.

While wave scattering induced by disordered media was also considered as detri-
mental not very long ago [31, 32|, disorder has recently been proven to be a useful
resource in photonic structures [33-35]. In several proof-of-principle experiments,
disorder was shown to be beneficial for applications like sub-wavelength focusing
[36], for enhancing transport [37, 38|, for the construction of ultra-small spectrom-
eters [39], for controlled random lasing [40-43| or for very intense laser sources
without speckle [44]. A promising new approach to cope with the presence of dis-
order is to characterize [45, 46| as well as to control [47, 48] light fields even in
strongly disordered media with so-called spatial light modulators (SLMs). It has
been shown that with SLMs the wavefront can be shaped in such a way that light
could be focused behind a disordered medium in space [47, 48] and time [49, 50].

This emerging new field of “wavefront shaping” has become a broad and fruitful
field in modern wave physics during the last few years. The experimental acces-
sibility of the scattering matrix of a disordered medium [45, 46, 51| that relates
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all incoming with all outgoing field states, is one of the principal reasons for this
progress. The information stored in this scattering matrix can nowadays be ex-
ploited for several purposes, such as to turn an arbitrary disordered medium into
any desired optical instrument [52], use wavefront shaping to see through or around
disorder [52-55|, to enhance the information transfer rate of multi-mode fibers [56—
58|, or to do medical imaging with visible light [59, 60]. Since spatial light modu-
lators become faster and allow to control even more degrees of freedom of the light
field, we expect that the possibilities in wavefront shaping will continue to grow.

These recent developments make us optimistic that loss and disorder in optical
systems can be controlled or can be even turned to our advantage. In the following
thesis, we focus on new theoretical concepts involving loss and disorder (separately
and jointly) that are both promising in terms of new functionalities as well as
implementable with state-of-the-art technology in photonics.

In the upcoming chapter we give a short introduction to the scattering formalism
used throughout this thesis. Specifically, we introduce the concept of the scattering
matrix and show different scattering geometries that we use in the thesis.

The second chapter of this thesis is dedicated to so-called constant-intensity
waves [27-30]. In general, when waves propagate through disordered structures,
back-scattering occurs at inhomogeneities of the medium such that complex in-
terference patterns in the intensity of the wave arise. These intensity variations
can be completely removed by adding a tailored gain and loss distribution to the
disorder. We show that by using the concept of constant-intensity waves we can
make a medium invisible from one side [30] and, furthermore, present a first ex-
perimental realization of this concept in an acoustic waveguide [61] which has been
carried out in collaboration with Romain Fleury’s group from EPFL in Lausanne.
Moreover, we present a generalization of the constant-intensity idea that allows
us to create wave states with any predetermined intensity profile, such as a focus,
instead of a constant intensity only [62, 63]. At the end of the second chapter we
demonstrate the existence of constant-intensity waves not only in one-, but also in
two-dimensional systems [64].

Even in the ballistic regime, wave scattering can be very complex leading poten-
tially to a spatially extended wave function. In order to overcome a spreading of
the wave due to multiple scattering, we introduce in the chapter thereafter the con-
cept of the time-delay operator and so-called “particle-like states” [65, 66]. These
special wave states feature a beam-like (or particle-like) wave function instead of
being spread in the entire scattering region. We present the first in situ realization
of particle-like states in a microwave cavity [67] resulting from a collaboration with
Ulrich Kuhl’s group from the Université Cote d’Azur. Such particle-like states can
not only be investigated in the ballistic regime but also in systems with a weak and
smoothly correlated disorder featuring the phenomenon of “branched flow”. In such
systems, an injected wave does not spread out isotropically in all directions but
rather forms a distinct branching pattern along which the wave flows preferentially.
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We show that these branches in the spreading pattern can be separated from each
other by exploiting the time-delay operator, allowing us to steer light through a
disorder along one single branch |68].

In the fourth chapter we generalize the concept of the time-delay operator to
a much broader class of new operators, of which the time-delay operator is only
one specific implementation. These new operators allow us to apply to a target,
which can be embedded inside an arbitrarily disordered environment, a well-defined
momentum, pressure or torque as well as to achieve a focus inside the target. Beside
studying these new operators analytically as well as numerically, we also present
experimental data from a collaboration with Ulrich Kuhl’s group [69, 70].

In the last chapter we combine loss and disorder and study the phenomenon
of “coherent perfect absorption” — an effect commonly referred to as “anti-lasing”
because it corresponds to the time-reversed process of coherent emission of radiation
|3]. Here, we investigate coherent perfect absorption in a disordered medium, which
would then be the time-reversed process of a random laser at threshold [71]. We
directly implement such a random anti-laser for the first time in a microwave setup
— again in collaboration with Ulrich Kuhl’s group — and conduct stability tests on
it 7]

This thesis concludes with a summary and an outlook.
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Chapter 1

Scattering formalism

A generic scattering system can be divided into two domains: the asymptotic region
where the waves can be decomposed into well-defined scattering channels and the
actual scattering region where the scattering process takes place. A sketch of such
a scattering system is shown in Fig. 1.1(a). The scattering region (grainy area in
gray) can be arbitrarily shaped, it can be filled with a disordered medium or it
can include loss and/or gain. All these properties of the scattering region can be
translated into an (inhomogeneous) refractive index landscape n(7") with 7 being
the position vector. In contrast to the scattering region, the refractive index of the
asymptotic region [Fig. 1.1(a) surrounding white area] is uniform, i.e., n(#*) = const.
What all scattering experiments have in common is that waves coming from the
asymptotic region impinge onto the scattering region and leave the region after
the scattering process. The incoming wave as well as the outgoing wave can be
written as a coefficient vector with respect to a certain basis that is defined in the
asymptotic region where we use the vector @ to describe the incoming wave and the
vector U to describe the outgoing wave. The notion behind the projects presented in
this thesis is to control the behavior of the wave inside the scattering region either
by shaping the incoming wave «, which can be experimentally realized by using
so-called spatial light modulators (SLMs) [47, 48], or by modifying the scattering
region itself (e.g., by adding absorption to it).

In the following we study exclusively one- and two-dimensional, time-harmonic
systems such that the out-of-plane component of the wave’s electric field ¢ (") can
be described by the scalar Helmholtz equation (for a derivation see appendix A.1),

[A +n*(F)k)Y(7) = 0, (1.1)

where kg = 27/ is the wave number in the asymptotic region (with \g being the
wavelength) and A the Laplacian. For two-dimensional systems, the Laplacian A
and the position vector 7 take the form A = 9?/92% + 9*/0y* and 7 = (x,y)7,
respectively, whereas in one dimension they turn into A = 9?/02? and 7 = z.

In this thesis we study, among others, two-dimensional systems where the scat-
tering region is surrounded by hard walls forcing the wave’s intensity to be zero
at the boundaries. One example of such a setup with a square scattering region is



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

(]
i
r

M YOU

14

(a)

(b)
—T! Wicat !—T
Uy ! % v Uy iy
W ) S E n(F) : 5 ) [
U ; o : : Uy T
B T *
(c) :
] AL : : \ v,
1 F r
% ﬁg; n(r) il
| . , - U,
D | | B
L

Fig 1.1: (a) Generic scattering system with a scattering region featuring a non-
uniform refractive index n(7) (grainy area in gray) and a uniform asymptotic region
with n(7") = const. (surrounding white region). The incoming wave (described by the
vector i) coming from infinity propagates toward the scattering region where the wave
gets scattered. The outgoing wave (described by the vector ¥/) leaves the structure into
infinity. (b) One example of a scattering system is a square-shaped cavity of length L
and width W... = L with leads of width T/ attached to it on both sides. Hard-wall
boundary conditions are applied on both sides of the structure (see solid black lines).
The asymptotic regions are called leads through which waves can enter the scattering
region (%; and #,) and can leave it after the scattering process (¢j and ). (c) A
special case of such a two-port system is a waveguide structure where the scattering
region has the same width as the leads, i.e., Wy..c = W.

sketched in Fig. 1.1(b), where the hard walls are indicated by black solid lines. It
consists of a square scattering region of length L and width W.,, = L (grainy area
in gray) with two semi-infinite leads of width W attached to it representing the



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Chapter 1 Scattering formalism 15

asymptotic regions (white areas). These leads allow waves to enter and leave the
scattering region. In such two-port systems we choose the z-axis as the longitudi-
nal propagation direction of the wave and the y-axis as the transverse direction. A
special case of a two-port system is a waveguide which is studied, e.g., in Chapter
4, where the scattering region has the same width as the leads, i.e., Wyca, = W [see
Fig. 1.1(c)]. Such waveguide structures are in general much longer than they are
wide, i.e., L > W. The leads of these two-port systems are both uniform where
we assume (without loss of generality) a constant refractive index of n(z,y) = 1
bringing the advantage that the number of basis states in which the wave can be
decomposed into is finite and determined by the wavelength of the incident wave
Xo- These basis states are solutions of the Helmholtz Eq. (1.1) with a uniform
refractive index n(z,y) = 1,

1

@Dn(ﬂ% y) = TXn(y)eikw’"a:a <12)

)

Xn(y) = \/% sin(ky,ny) (1.3)

is the transverse profile of the wave function and the prefactor 1/4/k, ,, normalizes
these states to unit flux. These solutions are called transverse modes and are
characterized by an integer n, the transverse wave number k,, = nm/W and the

where

wave number in longitudinal direction &, , = /k§ — k2,,. The solutions in Eq. (1.2)

are right-propagating waves, however, left-propagating waves are simply described
by ¥} (z,y), where the asterisk % represents the operation of complex conjugation.
For k, , < ko, the longitudinal wave number k, , is real and the mode can propagate
in a-direction. In the case of k,,, > ko, k; , is purely imaginary and the mode decays
exponentially (evanescent mode). Modes with a real longitudinal wave number &, ,,
are referred to as open modes and in contrast to evanescent modes they carry a
finite flux. The total wave number ky determines the number N of open modes in
a lead through N = |Wky/m| with [...] being the floor function. As an example
we show in Fig. 1.2(a) the intensity of a wave obtained when the 13-th mode, i.e.,
Y3 as described in Eq. (1.2), is injected from the left-hand lead into a cavity as
sketched in Fig. 1.1(b).

The wave states in Eq. (1.2) can be used as a basis to decompose an arbitrary wave
into it since they form a complete and orthogonal set of states. Consequently, any
incoming or outgoing wave can be written as a coefficient vector @ = (i), @,)T and
7 = (1, 0,)T, respectively, where the indices [ and r indicate the lead on the right or
on the left side of the scattering region. The parts u; and v, are right-propagating
waves, whereas 4, and v, are left-propagating waves as is schematically shown in
Fig. 1.1(b) and (¢).
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The most widely-used tool to describe wave scattering processes is the scattering
matrix S of a system that relates incoming to outgoing wave amplitudes through
v = Su. In this thesis we present concepts that exploit the information stored
in this scattering matrix S to shape the incoming wave « in such a way that the
resulting wave inside the scattering region shows a desired behavior. In the absence
of absorption and amplification, the scattering matrix is unitary (i.e., STS = 1),
meaning that the norm of the wave is conserved. If the input wave is normalized
to one (@@ = 1), the norm of the outgoing wave o710 = «1STSw = @@ = 1 is one
as well, i.e., the total flux carried by the wave is conserved. For non-Hermitian
systems, i.e., systems including loss and/or gain, the scattering matrix is in general
non-unitary (i.e., STS # 1) and thus the norm of the wave is not conserved, i.e.,
i # 1.

In two-port systems as shown in Fig. 1.1(b) and (c), the scattering matrix takes

the block structure )
r t
s=( 0 (1.4

where 7, t are the reflection and transmission matrices containing the scattering
amplitudes for injection from the left side and »/, ¢’ consist of the corresponding
amplitudes for injection from the right side. The matrix element ¢,,,, for example,
describes the transmission from the m-th incoming mode into the n-th outgoing
mode. Since reciprocity is not broken in all systems that we study in this thesis,
the following symmetry relations are valid: » = rZ, ' = (+/)T, t = (¢')T. Breaking
the reciprocity typically requires either a time-dependent dielectric function, non-
linearities or an external magnetic field, which are all not considered in this thesis
[35].

Until now, the scattering amplitudes were given with respect to the lead modes
in Eq. (1.2), however, this choice is arbitrary and, in fact, any complete and or-
thogonal set of functions can be taken as a basis. An experimentally very useful
basis, especially in optics, is a spatial basis, where one spatial basis element would
correspond to one pixel in a spatial light modulator. One element of the transmis-
sion matrix t,, measured in this pixel basis would then describe the transmission
from pixel a at the input to pixel b at the output. A transformation between the
transmission matrix in the modal basis [now called #{™}| and the transmission ma-
trix in the spatial basis [now called ¢1*}| can be derived as follows: (i) we calculate
the elements of the transverse position operator y in the modal basis

g} :/0 dy xn(y) -y - Xm(Y), (1.5)

with x,(y) denoting the transverse mode profiles in Eq. (1.3). (ii) We calculate
the eigenbasis of the y{™ -operator in Eq. (1.5). These eigenstates ¢ (the in-
dex i represents the i-th eigenvector) are states with a well-pronounced inten-
sity maximum at a transverse position specified by the corresponding eigenvalue,
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Chapter 1 Scattering formalism 17

Fig 1.2: (a) Field profile of the 13-th transverse mode, i.e., 113, as defined in Eq. (1.2)
injected from the left-hand lead into the system sketched in Fig. 1.1(b). (b) Spatial
eigenstate 772 showmg a well-pronounced intensity maximum at the input lead. (c)
Angular eigenstate " radiating into a specific direction. Both vectors, 772> and k',
are given with respect to the mode basis spanned by the functions in Eq. (1.2). The
incident wave number is chosen in such a way that 50 transverse modes can propagate
in the leads. In order to solve the Helmholtz equation numerically we use the modular
recursive Green's function technique (see appendix A.5 for more details).

where one such eigenstate is shown in Fig. 1.2(b). (iii) Using these eigenstates,
we obtain the transmission matrix in coordinate space by t{¥} = YTt{m™}Y | where
Y = [gW, 7@, ... #™] contains the eigenvectors of the y-operator column-wise.
In this basis, one row of t{¥} describes the transmission from the entire incoming
lead to only one peak on the right-hand side of the scattering geometry. The other
blocks of the scattering matrix can be transformed analogously.

Another widely used basis is the angular basis, i.e., where the basis states feature
a well-defined angle of injection. In order to obtain these states numerically, we
calculate the elements of the operator k, = —id/0y in the modal basis measuring
the transverse y-component of the wave vector, since a well-defined transverse wave
vector component corresponds to a well-defined angle of incidence. In analogy to
the spatial basis, we calculate the eigenvectors k of this operator. Omne such
eigenstate is shown in Fig. 1.2(c), where we can clearly see that the incident wave
radiates into only one specific direction. In this thesis we use the eigenstates 12;;(])
as a basis to analyze the different angular components of an incident wave.

Having introduced the scattering formalism in this chapter, we study in the next
chapter very special scattering states, namely constant-intensity waves. To make
life more simple, we start introducing these waves in one-dimensional structures
and generalize these waves to two dimensions later on.
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Chapter 2

Non-Hermitian wave control

Any inhomogeneous index of refraction generally leads to a highly complex inter-
ference pattern in the intensity of light waves that pass through such a medium. To
completely remove these intensity variations as well as any back-reflections from
the inhomogeneities in the medium, a protocol was introduced that is based on
system-specific gain and loss components that are added to the system in a very
delicate way [27-30, 61]. The resulting constant-intensity waves (Cl-waves) were
first introduced for paraxial wave beams in a suitable optical potential showing
variations transverse to the propagation direction of the beam [27]. In a next step
we could show that this approach can be extended in a non-trivial way such that
Cl-waves can also be created in structures that show variations of the refractive
index in propagation direction of the light [28]. Building up on this knowledge,
we explore in this chapter many different aspects of shaping a wave by introducing
gain and loss to a system. We show not only how to completely eliminate a wave’s
intensity variation to get a Cl-wave but also how to create a wave with an arbi-
trary predetermined intensity profile |62, 63]. By carefully tuning a wave’s phase
information we show how to create structures that are unidirectionally invisible
[30]. We also report on the first experimental realization of the Cl-concept using
an acoustic waveguide [61] and show that our concepts can also be transferred to
two-dimensional structures [64]. In what follows, we give a short introduction into
the mathematical description of Cl-waves in one-dimensional systems.

2.1 Constant-intensity waves in one-dimensional

structures?!

Scalar wave scattering in one-dimensional structures is governed by the Helmholtz
equation (see derivation in appendix A.1),

2

a 2 2 _
5z + k] via) =0, 2.)

! The theory of CI-waves in one-dimensional scattering systems was developed together with
Konstantinos Makris from the University of Crete [29].
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20 2.1 Constant-intensity waves in one-dimensional structures

with n(x) being the refractive index, ko the wave number, and ¢ (x) the scalar,
complex-valued field amplitude. We assume that the refractive index shows vari-
ations in a finite region x € [—L, L] and that it can be complex, i.e., n(z) =
ng(x) + in;(x) where ng(z) is the real part and n;(x) is the imaginary part. A
negative value for n;(z) corresponds to gain (amplification) and a positive value
for n;(z) to loss (absorption). A plane wave incoming from the asymptotic region
|z| > L with a uniform refractive index of ny typically scatters at the refractive
index variations n(x), leading, in general, to a finite back-reflection and a compli-
cated interference pattern in the intensity. What we show now is that we can get a
fringe-free intensity pattern for incident plane waves with a specific wave number kg
provided that ng(x) and n;(x) fulfill a certain relation. In other words, adding to a
structure a well-defined gain-loss distribution can eliminate all intensity variations
of the wave.

The Helmholtz Eq. (2.1) is usually solved for a given refractive index (which
is determined by the medium) yielding a corresponding scattering wave function
(x). Now, we follow the reverse strategy: we fix a specific form of the wave
function ¢ (x) and determine the corresponding refractive index n(x) that supports
this wave state. To be more precise, we want the wave to have the form

W(z) = A exp {iko /_ L W(a:’)d:z:’} , (2.2)

with an arbitrary real-valued function W (x) and a constant amplitude A. Inserting
the ansatz in Eq. (2.2) into the Helmholtz Eq. (2.1) and resolving for the refractive
index yields

i OW(x)

]{70 ox )
In other words, injecting a plane wave with wave number £y into a structure with
a refractive index described by Eq. (2.3), we get a wave that follows the solution
in Eq. (2.2) having a constant intensity I = |¢(x)]> =

n?(z) = W?(z)

(2.3)

= |A|?> anywhere inside the
structure. Solving Eq. (2.3) for ng(z) and n;(z), we get

W) e 13

) — LW

2k np(x)’ (2:5)

with W/(x) = OW(x)/0z. From these equations we can see that for Wi(x) =
const. = Wy the imaginary part of the index goes to zero, i.e., n;(x) = 0, and the
real part becomes ng(x) = Wy, which is the trivial case of a plane wave traveling
through a uniform material with ng(z) = Wy. Thus, non-trivial CI-waves can only
exist in systems featuring gain and loss, i.e., n;(z) # 0. In the following work we
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Chapter 2 Non-Hermitian wave control 21

only consider structures with ng(z) > 1, such that the function W (z) has to be
larger than 1 [see Eq. (2.4)].

The solution in the entire space, i.e., including the asymptotic regions (with index
of refraction ng) in front of and behind the cavity reads as follows,

A exp[ikono (.fU + L)}, r<—L,
P(x) = ¢ A expliky ffL W(z")dx'], —-L<xz<1L, (2.6)
A explikong (x — L), x> L,

where one can easily see that the wave has a constant intensity, I(z) = [ (z)|* =

|A|?, in the asymptotic regions [where n(z) = no| as well as inside the cavity where
the refractive index varies.

In a last step we have to find the appropriate boundary conditions for the function
W (z). Since a Cl-wave is a wave traveling from the left-hand asymptotic region
into positive z-direction without back-reflections, the corresponding boundary con-
ditions at x = +L are perfect transmission boundary conditions,

oY

o (£L) = ikonot (£L), (2.7)

resulting in the following condition for W (z): W(L) = ng = W(—L).

We emphasize here that a Cl-wave is associated with a specific incidence direc-
tion. Here, incidence is assumed from the left (in positive z-direction), such that
injecting a plane wave with the same wave number ky from the other incidence di-
rection, i.e., from the right (in negative xz-direction), one gets finite reflections and
non-trivial intensity variations inside the structure. Due to Lorentz-reciprocity,
however, one would still get unit transmission.

In order to elucidate the above ideas we consider in the following one specific CI-
refractive index. To construct such a refractive index distribution n(x), we choose
an arbitrary function W (x) that fulfills the boundary condition in Eq. (2.7). Con-
sider first the refractive index calculated from Eq. (2.3) obtained from a generating
function W (z) = ng + f(x) where ng is the asymptotic refractive index and f(x)
is a superposition of 12 randomly placed Gaussian functions. The corresponding
complex refractive index is shown in Fig. 2.1(a) and (b), where the real part is
shown in gray and the imaginary part in green (loss) and red (gain). In Fig. 2.1(c)
we display the intensity of the scattering state at the design wave number kq for
the two cases with the gain-loss distribution added (magenta line) and without it
(blue line). We can clearly see that the wave’s intensity shows strong variations in
the Hermitian case, whereas the intensity is constant for the system including gain
and loss. In other words, the interplay of gain and loss makes the wave lose all its
interference fringes resulting in a wave with a constant intensity.

Our example shows that for a plane wave at an incident wave number kg, we can
add a corresponding gain-loss landscape, such that the wave gets perfectly trans-
mitted and has no spatial variations in its intensity pattern. A natural question one
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22 2.1 Constant-intensity waves in one-dimensional structures
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Fig 2.1: (a), (b) Real (gray) and imaginary (red: gain, green:loss) parts of the refractive
index for a Cl-system calculated from Eq. (2.3) with a generating function W (z) =
no + f(x), where f(x) is the superposition of 12 randomly placed Gaussian functions
with different amplitudes (amplitudes uniformly distributed between 0 and 1) and the
same standard deviation 0 = 0.5)\¢. The asymptotic refractive index is ng = 2 and the
wave number is kg = 27/0.2. (c) Intensity of the scattering state for a plane wave with
wave number kg and amplitude A = 1 injected from the left into the system for the
structure including gain and loss (magenta line) and without gain and loss (blue line).
As we can see, the non-Hermitian components make the wave perfectly transmitting
without any intensity variations. The calculations were performed using the transfer-
matrix method (see appendix A.2 for more details).

may ask at this point is what happens to incident plane waves with detuned wave
numbers k = kg = Ak assuming active materials that are characterized by approx-
imately flat dispersion curves near the values of the wavelength of operation. One
may expect that the emergence of Cl-waves is a sharp resonance phenomenon, such
that waves with a slightly detuned wave number k& would show a completely dif-
ferent behavior just like for a resonance in a Fabry-Pérot interferometer [72]. This
turns out to be a misleading picture. Since the Cl-wave function at position =z,
A expliko [*, W(a')dz'], only depends on the generating function W (z2') at 2’ < z,
one can easily truncate the structure at any point x and still get a Cl-wave. We
have to make sure however, that one continues the system for all x > 2/ with a
constant generating function having the same value as at the point of truncation
(provided that the transition to the asymptotic value is continuous). This obser-
vation indicates that Cl-refractive indices are not only reflectionless in total but
also unidirectional at any point inside the structure. Perfect transmission in such
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Chapter 2 Non-Hermitian wave control 23

systems is thus not a resonance phenomenon (as resulting from a back and forth
propagation of waves), suggesting that Cl-waves are stable against changes of the
incident wavelength.

In order to test this broadband stability we take the structure from Fig. 2.1 that
is designed to support a Cl-wave for incident plane waves with wave number k
and inject plane waves with detuned wave numbers k& # ky. To be more precise,
Fig. 2.2(a) shows the transmission spectrum, i.e., the transmittance T = |t|* as
a function of the wave number detuning 0 = k — ko, for the Hermitian system
(blue line) and for the Cl-system (magenta line) shown in Fig. 2.1. We see, first of
all, that the Cl-system is close to perfectly transmitting not only at k = ko (i.e.,
9 = 0) but also in a broad frequency range around kg (between 6 = —2 and § = 2),
whereas the Hermitian system strongly deviates from unit transmittance. Figure
2.2(b) shows the difference between the transmission phase ¢, of a wave propagating
through the Hermitian or through the Cl-system and the transmission phase of a
wave propagating through a uniform material with index ng, ¢g = 2Lkng. In
Fig. 2.2(c) we can see the difference between the corresponding transmission time-
delay 7, = 0¢/Ok [73| compared to the time-delay a wave suffers from propagating
through a uniform material 7o = J¢o/0k. We see that not only the transmittance
but also the time-delay is very stable compared to the Hermitian system. Figure
2.2 thus clearly demonstrates the broadband frequency stability of CI-waves.

Given the function W (x), the corresponding refractive index distribution n(x)
can be directly determined via Eq. (2.3) and vice versa. The same is, however, not
true if, as a starting point, the real part of the refractive index ng(z) is known
instead (typical situation in many realistic cases). One would have to solve the
differential equations (2.4) and (2.5), which turns out to be a very challenging task.
We tackled this problem, instead, with a deep-learning based approach and show
that we can indeed find the corresponding gain-loss profile n;(z) with a very high
precision when the refractive index distribution ng(z) is given (see Ref. [74] for
details).

Due to the fact that the phase of CI-waves is given as the integral over the gener-
ating function W (x), one can create a scattering state with a predetermined phase
profile by fixing W (xz). This fact can be used to hide the information about the
scattering region by delicately choosing W (x) and thus making it unidirectionally
invisible, as presented in the next section.
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Fig 2.2: (a) Transmission spectrum of the Hermitian (blue line) and Cl (magenta
line) system shown in Fig. 2.1 as a function of the wave number detuning § = k —
ko. (b) Transmission phase ¢; minus the phase that the wave would accumulate in a
uniform material ¢y = 2Lkny for the Hermitian and Cl-system. (c) Difference between
the corresponding time-delays 7, — 79 = 9¢;/0k — O¢o/0k. For the Cl-system the
transmittance in (a) is close to unity, and the time-delay is considerably stable in a broad
interval. The reference values of perfect transmittance is indicated by the horizontal
dashed line in (a). The relative width of the stability window between § = —2 and
d =2is Ad/kg ~ 4/31.42 ~ 0.13, i.e., a wave number detuning of around 6% from
ko in both directions still allows for perfect transmission.

2.2 Unidirectionally invisible constant-intensity
waves?

From quantum mechanics textbooks we know that the Hamiltonian of a system
has to be Hermitian to ensure that its eigenvalues are real. Recently it was shown,
however, that there exists a whole class of non-Hermitian Hamiltonians that possess
real spectra as long as they fulfill a so-called parity-time (P7T)-symmetry [15]. A
Hamiltonian H is called P7T-symmetric if it commutes with the P7T-operator, i.e.,
[PT, H] = 0. The PT-operator is a combination of the parity-operator P, flipping
the spatial coordinate x — —z, and the time-reversal operator 7 that performs a

2 The text in this section partially goes back to our published work in Ref. [30], from which
also the figures were taken. All numerical simulations were performed by myself whereas the
theoretical analysis and data evaluation was carried out in collaboration with Konstantinos
Makris from the University of Crete.
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Chapter 2 Non-Hermitian wave control 25

complex conjugation i — —i, i.e., it turns gain into loss (and vice versa) and changes
the propagation direction of the waves. In optics, a system is P7T-symmetric if its
refractive index n(x) is invariant under the application of the PT-operator, i.e.,
PTn(x) = ng(—z) —in;(—x) = n(x). In order so satisfy this relation, the real
part of the refractive index has to be an even function, ng(x) = ng(—x), and the
imaginary part an odd function, n;(z) = —n;(—x), of the spatial coordinate .

One of the most successful concepts in the field of P7T-symmetric optics is the
idea to make periodic gratings unidirectionally invisible by adding loss and gain to
them in a well-controlled way [24]. Such systems feature zero reflection for waves
incident from one side of the structure while the reflection for the other side is in-
creased. Moreover, waves feature unit transmission (for injection from both sides)
and accumulate a phase along the two propagation directions that is the same as in
the absence of the structure. The first theoretical proposal for such unidirectionally
invisible structures |24] drew considerable attention and was already successfully
implemented in several experiments [23, 25, 26]. It was soon shown that the in-
visibility of such structures breaks down for long systems, which, however, can be
fixed by a modification of the refractive index |75, 76]. The idea of invisible non-
Hermitian structures was later extended to non-P7 -symmetric structures, which,
however, are restricted to layered and periodic systems |77, 78] or to structures
where the corresponding dielectric function has to be analytic in one half of the
complex position plane (in terms of spatial Kramers-Kronig relations) [79-81]. In
spite of the intense research activities related to this novel topic, the question of
whether this concept can also be generalized to aperiodic, non-P7 -symmetric, and
non-analytic refractive indices remains to be answered.

Here, we propose such a general design principle for unidirectionally invisible
structures that are unrestricted in their spatial shape. This design principle is
based on the concept of Cl-waves which is presented in the previous section where
we show that a plane wave with wave number kq incident from the left asymptotic
region x < —L will feature a constant intensity inside the non-uniform scattering
region —L < z < L. While it will also be perfectly transmitted to the right
asymptotic region x > L, the structure still imprints information on its shape
onto the transmission phase ¢; of the outgoing plane wave. Here, we present a
way to eliminate the possibility of detecting such structures even through phase
measurements. To achieve this goal, we choose the generating function [which is
used to calculate a Cl-refractive index via Eq. (2.3)] to be of the form

W(z) = no + f(2), (2.8)

where ng is again the refractive index of the asymptotic regions and f(z) an arbi-
trary real-valued function that should satisfy

/L f(z)dz = 0. (2.9)
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26 2.2 Unidirectionally invisible constant-intensity waves

This function f(z) describes the phase the Cl-wave accumulates in addition to
the propagation through a uniform medium with constant refractive index ngy. In
other words, enforcing Eq. (2.9) is equivalent to demanding that this additionally
accumulated phase vanishes. Specifically, the transmission phase of a Cl-wave is
given by ¢; = kg LLL W (z)dz which turns into the simple expression ¢, = 2koLng for
a wave traveling through a Cl-system derived from the generating function Eq. (2.8)
with the condition in Eq. (2.9). This transmission phase is equal to the phase a
wave would accumulate by propagating through a uniform scattering region with
index ng of length 2L. In such systems, neither the transmitted intensity nor the
transmission phase then reveals whether the refractive index is uniform with ng or
an inhomogeneous refractive index. Due to the frequency stability of Cl-waves (see
Fig. 2.2), also the time-delay 7 = 0¢;/0k is the same as obtained in the uniform
system, not only at the design wave number kg, but rather in a broad frequency
window.

In order to test our predictions, we start by considering first the refractive index
distribution as provided in Eq. (2.8), where f(x) consists of 12 randomly placed
Gaussians with the same height and the same width but with six of them having
a positive amplitude and six of them having a negative amplitude, thus enforcing
the condition shown in Eq. (2.9). The corresponding complex refractive index
calculated with Eq. (2.3) is shown in Fig. 2.3(a) and (b), in analogy to Fig. 2.1.
The intensity of a plane wave at the design wave number kq for the two cases with
the gain-loss distribution added (magenta line) and without it (blue line) is shown
in Fig. 2.3(c). For the Hermitian case (blue line) we can clearly see the strong
variations of the wave’s intensity, whereas the intensity is constant for the system
including gain and loss. In order to check if the system at hand is unidirectionally
invisible, we study now several quantities.

Figure 2.4(a) shows the transmission spectrum, i.e., the transmittance 7' = |t as
a function of the wave number detuning 6 = k — kg, for the Hermitian system (blue
line) and for the Cl-system (magenta line) shown in Fig. 2.3. We can see that the
Cl-system is close to unit transmission not only at the design wave number k = k
(i.e., 0 = 0) but also in a broad frequency range around ky (between 6 = —2 and
d = 2). Quite in contrast, the Hermitian system shows strong deviations from unit
transmission. Figure 2.4(b) shows the difference between the transmission phase ¢,
of a wave propagating through the Hermitian or through the Cl-system compared
to the transmission phase of a wave propagating through a uniform material with
index ng, ¢g = 2Lkng. We see that for the Cl-system the difference is close to zero
in a broad frequency interval. In Fig. 2.4(c) we can see the difference between the
corresponding time-delay 7, compared to the time-delay a wave suffers from propa-
gating through a uniform material 70 = d¢y/0k. Also here, the Cl-system features
the same values as the corresponding uniform system. Figure 2.4 thus clearly shows
that the Cl-system in Fig. 2.3 cannot be distinguished from a uniform system such
that it is indeed invisible from the left around the target wave number k.
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Fig 2.3: (a) and (b) Real (gray) and imaginary (red: gain, green:loss) parts of the
refractive index for a Cl-system. The system follows a generating function W (z) = no+
f(z), where f(z) is the superposition of 12 randomly placed Gaussian functions, with
six of them having a positive amplitude and six of them having a negative amplitude,
as is dictated by Eq. (2.9). The asymptotic refractive index is ng = 2, and the wave
number ko = 27/0.2. (c) Intensity of the scattering state for a plane wave with wave
number ko and amplitude A = 1 injected from the left into the system for the structure
including gain and loss (magenta line) and without gain and loss (blue line). As we can
see, the non-Hermitian components make the wave perfectly transmitting without any
intensity variations

After showing that the invisibility concept works for the simple system shown in
Fig. 2.3, we now demonstrate its general applicability. To be more precise, we show
that we can even make a strongly disordered structure, whose strong variations in
the refractive index lead to Anderson localization, unidirectionally invisible. Our
starting point to generate such a disorder is a generating function in Eq. (2.8), with
f(z) being a superposition of N = 3000 Gaussians with random widths, heights,
and positions satisfying the invisibility condition in Eq. (2.9). The choice of using
partially overlapping Gaussians for generating the disorder is just for convenience
here: any other arbitrary, but smooth, function f(z) satisfying Eq. (2.9) can also be
used. In analogy to Fig. 2.3, we show the real and imaginary parts of the refractive
index in Fig. 2.5(a) and (b), respectively.

Before studying the invisibility property of this refractive index, we first show
that the disordered structure in Fig. 2.5(a) gives rise to Anderson localization in
the absence of gain and loss. To prove this explicitly, we determine its localization
length &, which quantifies the strength of the exponential decrease of the transmit-
tance T = |t|? as a function of the system’s total length L, = 2L. This localization
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28 2.2 Unidirectionally invisible constant-intensity waves

'— Hermitian —— Invisible Cl

Detuning &

Fig 2.4: (a) Transmission spectrum of the Hermitian (blue line) and invisible CI
(magenta line) system shown in Fig. 2.3 as a function of the wave number detuning
d = k—ko. (b) Transmission phase ¢; minus the phase that the wave would accumulate
in a uniform material ¢o = 2Lkng for the Hermitian and invisible Cl-system. (c)
Difference between the corresponding time-delays 7, — 79 = 0¢;/0k — O/ Ok. For the
invisible Cl-system the transmittance in (a) is close to unity, and the other two quantities
in (b) and (c) are close to zero in a broad interval. The reference values of perfect
transmittance, zero phase difference, and zero time-delay, which are necessary for a
system to be perfectly invisible, are indicated by the horizontal dashed lines. The relative
width of the invisibility window between 6 = —2 and 6 = 2is Ad/ky ~ 4/31.42 =~ 0.13,
i.e., a wave number detuning of around 6% from kq in both directions still allows for
unit transmission and zero accumulated phase. In order to quantify the deviations from
perfect invisibility, we calculate the mean square deviation (MSD) within the invisibility
window of the transmittance from unit transmission (7" = 1), the MSD of the phase
difference from zero extra phase (¢, — o = 0) and the MSD of the time-delay difference
from zero extra time-delay (7 — 79 = 0). To get a reference value, we evaluate all
deviations for the corresponding Hermitian system as well. We get the following results:
MSD(T)term = 5.01- 102, MSD(T') ¢y & 6.9- 104, MSD (¢, — o) tterm = 6.72- 1073,
MSD(¢t — ¢0)CI ~ 1.98 - 10_5, MSD(Tt — TO)Herm ~ 1.34- 10_6, MSD(Tt — 7'0)(]1 ~
1.37 - 1078, The small deviations from perfect invisibility (see horizontal dashed lines)
turn out to be around two orders of magnitude smaller for the Cl-system than for the
Hermitian system.

length £ can be estimated by & = —2L(In[T'(Liot)]) ~*, where the brackets (...)
denote the average value over 1000 random configurations at a given system length
Liot- In Fig. 2.5(d) we plot (In[T'(Let)]) over Ly, from which we can estimate the
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Fig 2.5: (a) and (b) Real (gray) and imaginary (red: gain, green:loss) parts of the
refractive index for a strongly disordered Cl-system. We use a generating function of
the form Eq. (2.8), where f(z) is a superposition of N = 3000 Gaussian functions
with different widths (o is uniformly distributed between 0.04\; and 0.05)), heights
(uniformly distributed between 0 and 0.22), and positions, satisfying the invisibility
condition in Eq. (2.9). The asymptotic refractive index is ny = 2, and the wave
number kg = 27/0.2. (c) Intensity of the scattering state for a plane wave with wave
number ko and amplitude A = 1 injected from the left into the system for the structure
including gain and loss (magenta line) and without gain and loss (blue line). As can
be seen, the non-Hermitian components make the wave perfectly transmitting and free
of any intensity variations. (d) Logarithmic transmittance averaged over 1000 random
configurations of the system shown in (a) as a function of the system'’s total length
Lot = 2L. We fit the data to the black line 2Ly /£, whose slope we can use to
estimate the localization length & ~ 19\.

localization length & through a fit with —2L /£ (black line). We find that the lo-
calization length is £ ~ 19\, such that the disordered structure in Fig. 2.5 is around
three times longer than the localization length & and therefore deep in the localized
regime. As a consequence, the wave gets hardly transmitted [see Fig. 2.5(c) blue
line] in the Hermitian system, whereas in the non-Hermitian case (magenta line) it
gets perfectly transmitted featuring a constant intensity.

In Fig. 2.6 we show that even such a strongly disordered system is unidirectionally
invisible. It can be seen that the Cl-system yields not only the same transmittance
[see Fig. 2.6(a)] but also the same transmission phase [see Fig. 2.6(b)| and the same
time-delay |see Fig. 2.6(c)| as the corresponding uniform system. We thus conclude
that the disordered structure in Fig. 2.5, which in the absence of gain and loss is in
the regime of Anderson localization, can be turned completely invisible by adding
the correct gain-loss refractive index distribution to it.
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30 2.2 Unidirectionally invisible constant-intensity waves

Invisible CI |

| ——Hermitian

(c)

= 0.1 | L L
|
[ ,DA A : _.e\._L_A_;,L i,

-1 -0.5 0 0.5 1
Detuning §

Fig 2.6: (a) Transmittance, (b) difference between the transmission phase, and (c)
difference between the time-delay of the Hermitian (blue line) and invisible CI (magenta
line) system shown in Fig. 2.5 as a function of the detuning 6 = k — k. All quantities
indicate that even such a disordered system is invisible for left-incident waves in a broad
frequency rang between 6 = —0.5 and § = 0.5. The relative width of the invisibility
window is Ad/ky ~ 1/31.42 =~ 0.03; i.e., a wave number detuning of around 1.5%
from kg in both directions still allows for unit transmission and zero accumulated phase,
which is significantly broader than a resonance in the Hermitian system. The deviations
from perfect invisibility (see horizontal dashed lines) are calculated as described in
the caption of Fig. 2.4. We get the following values: MSD(T)germ ~ 9.43 - 1071,
MSD(T)er & 1.29 - 1072, MSD(6; — 0 )tierm ~ 3.94, MSD(¢, — ¢bo)cx &~ 1.9 - 1072,
MSD(7; — 70)Herm = 8.32 - 1075, MSD(7; — 70)cr &~ 2.94 - 1078, i.e., the deviations
for the invisible Cl-system are around two orders of magnitude smaller than for the
Hermitian system.

As shown in the previous as well as in the current section, Cl-waves are very
robust to changes of the incident frequency. We now make use of this broadband
stability to test whether we can even launch pulses through our unidirectionally
invisible structures. As shown above, such structures should feature the same
time-delay as a pulse propagating through the corresponding uniform structure.
We first show in Fig. 2.7(a) the propagation of a pulse through the same disordered
Hermitian system as in Fig. 2.5 at three different time steps (1 < to < t3). As ex-
pected, for the Hermitian system in the strong scattering regime the pulse diffracts
already considerably at the beginning of the structure. In strong contrast, we can
see that the pulse in the corresponding invisible Cl-system [see Fig. 2.7(b)| propa-
gates through the system while maintaining its initial shape throughout the entire
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Chapter 2 Non-Hermitian wave control 31

scattering region. We compare now this situation to a pulse propagating through
a uniform system with the asymptotic index value ny = 2 [see Fig. 2.7(c)|, and see,
that both pulses arrive at the end of the structure in the same shape and at the
same time (as indicated by the vertical dashed line). Thus, adding the appropriate
gain-loss distribution to a disordered structure allows us to make the system not
only perfectly transmitting for pulses but even completely invisible for them.

(a)

WAL f
?1-".-., -
:

(b)

P 4 t i

T

i
© |
]

é/ﬁ'\ Wave intensity /{2\ 3/\

-30 -20 -10 0 10 20 30
Position =/ Ay

Fig 2.7: Pulse propagating through (a) the disordered Hermitian system of Fig. 2.5,
(b) the corresponding invisible Cl-system, and (c) a uniform system at three different
time steps, t1 < ty < t3. Whereas the pulse diffracts rather fast in the Hermitian
structure [see (a)], it gets perfectly transmitted through the Cl-system [see (b)] while
maintaining its initial shape. Moreover, the pulse takes the same time to propagate
through the structure as through a uniform system [see (c)]. The Fourier spectrum of
the pulse is Gaussian-shaped with a standard deviation of o &~ 0.045k.

In the last part of this section we show that the unidirectionally invisible Bragg
grating proposed in Ref. [24] coincides with one example of our family of invisible
structures at specific parameter configurations. When moving away from these
parameter values, the P7T-symmetric Bragg grating loses its invisibility property,
whereas our system stays invisible. We start by introducing the Bragg grating from
Ref. [24] which follows a PT-symmetric and periodic refractive index modulation:

n(x) = ng + ny cos(2px) + ing sin(2pz), (2.10)

with 3 being the spatial periodicity of the grating. At the Bragg point (5 = ko) and
with n; = ny = 1072 and ngy = 1, the structure becomes unidirectionally invisible
for left-incident waves and strongly reflecting for waves incident from the right.
The Cl-system that this Bragg grating coincides with can be derived with Eq. (2.3)
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32 2.2 Unidirectionally invisible constant-intensity waves

from a generating function W(x) = ng + f(z) featuring f(x) = n’ cos(28'z), which
satisfies the invisibility condition in Eq. (2.9):

n(z) = \/ W2(z) — kloavgf)

12 2 !/ 2 Ion/!
- no\/l + 2 cos2(28'7) + — cos(28'x) + i b Csin(28w).  (2.11)
ng no kong

Assuming that n’ = 1073 (in analogy to Ref. |24]), we can neglect in Eq. (2.11)
the term which is proportional to n’?> and consider the other two terms, which are
proportional to n’, as small, allowing us to approximate the square root /1 + = =
1 4 x/2 for small x |with z = %008(26’95) + i?f/"l sin(2p'z)]. We end up with

ong
n(x) =~ ng + n' cos(2f0'x) + 150/:; sin(24'z), which turns out to match exactly the
expression in Eq. (2.10) if n’ = ny = ny = 1073, ng = 1 and 3’ = 8 = ky. This
strongly indicates that the unidirectionally invisible Bragg grating in Ref. [24] is in
fact a refractive index that supports Cl-waves which also satisfies the invisibility
condition in Eq. (2.9).

The Cl-structure in Eq. (2.11) has the big advantage that it is invisible for all
values of ', ng and n’. In other words, the structure is neither restricted to the
Bragg point ' = ko nor to small index variations n’ as the structure in Eq. (2.10).
To prove our statement numerically, we perform the same calculations as in Fig. 2.4
and Fig. 2.6 but now for two different systems: the first one (see Fig. 2.8 blue
lines) is the Bragg grating defined in Eq. (2.10) away from the Bragg point, § =
0.7ko, and for larger index variations n; = ny = 0.5, whereas the second one (see
Fig. 2.8 magenta lines) is our invisible Cl-refractive index in Eq. (2.11) with the
same parameters (5 = [, n’ = n; = ny). From Fig. 2.8(a) we can see that the
Bragg grating can be detected already by measuring the transmittance at different
frequencies, whereas the Cl-system has unit transmittance in a broad frequency
window. Also the transmission phase [see Fig. 2.8(b)| and the time-delay [see
Fig. 2.8(c)| indicate that the Cl-system is invisible — quite in contrast to the Bragg
grating. Figure 2.8 thus demonstrates that the Cl-system in Eq. (2.11) is invisible
per construction for arbitrary parameters ng, n’ and 8’, whereas the Bragg grating
in Eq. (2.10) is only invisible for the parameters used in Ref. [24].

To conclude this section, we show that the interplay of gain and loss allows
for a class of unidirectionally invisible systems that are very robust with respect
to frequency variations and do not satisfy any spatial symmetries. Our approach
constitutes a broadly applicable generalization of earlier concepts restricted to pe-
riodic, layered, or to refractive indices that are analytic in one half of the complex
position plane. We show that even disordered systems, which, in the absence of
gain and loss, give rise to Anderson localization, can be made unidirectionally in-
visible using our approach. The frequency stability of Cl-waves even allows us to
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|——Bragg grating —— Invisible CI
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Fig 2.8: (a) Transmittance, (b) difference in the transmission phase and (c) differ-
ence in the time-delay for the Bragg structure in [Eq. (2.10)] (blue line) with different
parameters for ng,ni,ng, f as in Ref. [24] and for the Cl-system [Eq. (2.11)] (ma-
genta line) as a function of the detuning 6 = k — ko, with the following parameters:
ng=2,n =ny =ny =05 0 =0 =0.7ky and kg = 27/0.2. The system’s length
is &~ TAg. All quantities indicate that the Cl-system is unidirectionally invisible in a
broad frequency window, whereas the Bragg grating from Eq. (2.10) can already be
detected by measuring the (frequency dependent) transmittance. The relative width of
the invisibility window between 6 = —2 and 6 = 2 is Ad/ko ~ 4/31.42 =~ 0.13, i.e,,
a wave number detuning of around 6% from kg in both directions still allows for unit
transmission and zero accumulated phase.

send pulses through disorder as through a uniform system. We are confident that
these exciting predictions can be implemented in a number of experiments where
the spatial engineering of gain and loss has recently been achieved successfully
[13, 23, 25, 26, 43, 61, 82-84].

A major obstacle to the practical implementation of the concept of Cl-waves
is the challenge of building continuous gain—loss distributions. Therefore, it is of
interest to extend the notion of Cl-waves to systems involving discrete distributions
of gain and loss as theoretically shown in Ref. [28]. A corresponding experimental
realization of this concept in an acoustic waveguide is presented in the next section.
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34 2.3 Constant-pressure waves in acoustic waveguides

2.3 Constant-pressure waves in acoustic
waveguides?

In Ref. [28] we show analytically that the concept of Cl-waves can also be applied
to discrete systems. Here, we transfer this concept of discrete Cl-waves to the
acoustic regime where non-Hermitian acoustic wave physics has recently become a
sizable research field on its own [82, 83, 85]. Switching from optics to acoustics,
the corresponding quantities to the light intensity and the refractive index are the
sound pressure and the acoustic impedance, respectively.

The experimental setup that we consider for the creation of constant-pressure
sound waves is a one-dimensional air-filled tube loaded with a set of discrete acoustic
inclusions modeled by acoustic impedances Z; as can be seen Fig. 2.9. At low
frequencies, where only a single mode can be excited, the system can be described
by a transmission line model (see appendix A.3 and Ref. [86] for more details).
In this model, the complex acoustic pressures p; and volume flows ¢; in front of
each inclusion with j = 1,...,n (with n being the total number of inclusions) are

connected through
piy_ (1 Zj)(Aj Bj><pj+1> 519
(%) (0 1 ¢ Dj G )’ (2.12)

where M; = [A;,B;;C;, D;| represents the transfer matrices connecting the
impedances Z; and Z;;; (for details see appendix A.3). In contrast to optics,
the non-Hermiticity of the impedances Z; is represented by a non-vanishing real
part (positive for loss and negative for gain), whereas the imaginary part of Z;
corresponds to the Hermitian component. We assume that the finite system is con-
nected to two semi-infinite half-spaces described by characteristic impedances Z,
(left) and Zp (right).

In analogy to our Cl-waves, we make the following (discretized) ansatz for our
acoustic constant-pressure wave,

J
pj—l—l = exXp <1k§0 Z ¢l> P, (213)

=1

with ¢; being real-valued numbers representing the phase evolution of the sound
wave (just as the generating function ). This wave ansatz forces the volume flow

3 The results presented in this section were obtained in the framework of a collaboration with
Romain Fleury and Etienne Rivet from EPFL in Lausanne. The theory was developed to-
gether with Konstantinos Makris, Romain Fleury and Etienne Rivet whereas the numerical
simulations and the experiment were conducted by Romain Fleury and Etienne Rivet. This
section follows partially our joint publication [61], from which also the figures were taken.
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Fig 2.9: (a) Photo of the one-dimensional acoustic waveguide with a total length of
3.5 m loaded with eight non-Hermitian acoustic inclusions. These inclusions are loud-
speakers, whose acoustic impedances can be designed through a harmonic impedance
control method (for details see Methods section in Ref. [61]). (b) Schematic of the ex-
perimental setup with the sound source being at the left-hand side and the termination
at the right-hand side.

q; to take the values

1 i e?

== — — D1 2.14
4d; 7;11 D, 41 ; 7]7::11 Dmlerl ( )
The required acoustic impedances Z; supporting such a constant-pressure wave are

found to be
g _Pi— Ajpj — qujJrl‘

! Cipjt1 + Djgjn

If we set all the phases ¢;, then both the acoustic impedances Z; and the reflec-
tion coefficient of the whole system R are fixed (see appendix A.3). Since we are
interested in a perfectly transmitted wave featuring zero reflection, we want the re-
flection coefficient R to be zero. Therefore we have to relax two degrees of freedom
in the choice of the phases ¢; which will be optimized to obtain zero reflection.
Here, we use the first two phases ¢; and ¢, to tune the reflection coefficient R to
zero without modifying the rest of the design. At this point we want to mention
that also for the case of R # 0 we get a constant-pressure wave at each inclusion.
In order to illustrate the idea of discrete constant-pressure waves we first show
a simulation of an acoustic system consisting of n = 8 inclusions terminated by

(2.15)
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36 2.3 Constant-pressure waves in acoustic waveguides

45, = Zr = Zy, where Zj is the characteristic acoustic impedance in the tube. We
start by randomly choosing the phases ¢;, followed by an optimization of the first
two phases to minimize R (as described above). These values ¢; are then used
to calculate the corresponding acoustic impedances Z; through Eq. (2.15). In a
next step we study the behavior of the wave in the Hermitian system, i.e., when
the acoustic impedances are purely imaginary [see Fig. 2.10(a)|. The pressures p;
for this Hermitian system can be determined through Eq. (2.12) and show large
variations as shown in Fig. 2.10(c). Adding, however, the corresponding gain and
loss components to the system [see Fig. 2.10(b)] force the wave to have a constant
pressure at each site as shown in Fig. 2.10(d).

(a) (b)

3 3
2 2
’EQ 1 NQ 1 .
NT 0 N~ 0 " . 9
E 4 E 4 8
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3 ] -3 d ! —_
324012 3 32101 2 3 62
Re Z}./ZO Re Z/./Za 5 §
(c) (@) pe
1 1 ~
° / 3
- ~ 2
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E° E° \

-
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Re P; Re p;
HERMITIAN NON-HERMITIAN

Fig 2.10: (a) Acoustic impedances Z; calculated from Eq. (2.15) in the complex plane
where the real part of all impedances are removed to obtain a Hermitian system. (c)
Acoustic pressures p; obtained for the case in (a) leading to non-uniform amplitudes.
(b) By adding loss and gain, we obtain a non-Hermitian system whose non-Hermitian
impedances have the same imaginary parts as those in the case of the Hermitian system
in (b), but their real parts are now different from zero. (d) The non-Hermitian additions
result in an acoustic scattering state with constant pressure at each site p,.

In order to get a better understanding of our constant-pressure waves, we study
now the full wave field inside the waveguide by simulating a three-dimensional air-
filled cylindrical pipe loaded with the same acoustic impedances as in Fig. 2.10.
This gives us access to the pressures not only at the inclusions p; but everywhere
in the system. In Fig. 2.11(a) we can see the real part of the acoustic pressure (at
a given time) in black when there is no gain and loss inside the system for injection
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Chapter 2 Non-Hermitian wave control 37

from the left-hand side into the pipe. The gray area represents the values spanned
by the pressure over a full period of the harmonic field. Due to the disorder in-
side the system, large parts of the wave are reflected and the absolute value of the
pressure decreases along the system. If we now, in turn, add the corresponding
non-Hermitian parts to the impedances as dictated by Eq. (2.15), we can see in
Fig. 2.11(b) that the wave gets perfectly transmitted through the system. Addi-
tionally, we can see that the gray envelope meets the dashed red line at unity right
in front of every inclusion corresponding to the location of every pressure site p;.
In contrast to continuous constant-pressure waves, the discrete design here forces
the pressure to be unitary in front of each inclusion, but not in between. That
is, however, not a limitation of the concept, since the distance between neighbor-
ing sites p; can be chosen to be arbitrarily small and, when being shorter than
the wavelength, prevents large-amplitude fluctuations in between the sites. Addi-
tionally, perfect transmission is guaranteed by design such that we can conclude
that the present discretization of the constant-pressure property does not introduce
any fundamental limitation compared to the continuous case, although it brings a
significant simplification on the required gain-loss distribution.
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Fig 2.11: (a) Full wave three-dimensional finite-element simulations of the pressure
field in the Hermitian case of Fig. 2.10(a),(c). The system transmits poorly and the
pressure inside fluctuates strongly. (b) Simulation of the corresponding non-Hermitian
case of Fig. 2.10(b),(d). The amplitude of the pressure reaches unity at each check
point p;, located directly in front of each inclusion [consistent with Fig. 2.10(d)] making
the disorder transparent. The black line is a snapshot in time of the acoustic pressure
field, whereas the gray area shows the range of its oscillations as time evolves. The
vertical colored lines represent the locations of the impedances Z;.
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38 2.3 Constant-pressure waves in acoustic waveguides

Based on our theory and simulations, we show now the results of the experiment,
where a schematic of this experiment can be seen in Fig. 2.12(a). We first con-
sider again the Hermitian system having only imaginary acoustic impedances [see
Fig. 2.12(b)]. Statistical considerations show that such a system operates in the
regime of Anderson localization where the waveguide is about three times the local-
ization length (see Methods section in Ref. [61] for details). The acoustic pressures
inside the Hermitian system measured directly in front of the inclusions with the
help of microphones are displayed in 2.12(c). We can clearly see that the wave state
has a spatially varying pressure and a strongly reduced transmission to the right-
hand side. Adding the correct gain and loss to the inclusions [see Fig. 2.12(d)]|, the
measured pressure amplitudes become identical at each site as shown in Fig. 2.12(e).
Our measurements clearly demonstrate that a specific distribution of gain and loss
can even make a disordered and Anderson localized Hermitian system transparent
for waves coming from the left-hand side featuring a constant pressure at discrete
check points.
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Fig 2.12: (a) Schematic of the setup shown in Fig. 2.9. (b) Imaginary part (Hermitian
case) of the constant-pressure impedances represented in the complex plane forming a
disorder. (c) Pressures measured at each site for the Hermitian case in (b) showing high
variations due to the disorder. The pressures are represented as phasors, with the radius
of the circle being proportional to their amplitude, and the line segment showing their
phase with respect to that of the incident pressure. (d) Impedances obtained by adding
the correct gain or loss value to each inclusion. (e) Pressures measured at each site
in the non-Hermitian case (d) demonstrating the discrete constant-pressure property
in excellent agreement with theoretical predictions. Measured data is represented by
colors and simulated data in black.
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Chapter 2 Non-Hermitian wave control 39

Summarizing the previous sections, we show that we can completely counteract
the detrimental influence of disorder by adding to it a well-defined gain and loss
distribution to finally obtain a wave with no intensity (or pressure) variations that
gets perfectly transmitted through the system. This concept was demonstrated in
the acoustic experiment shown in this section. One essential point to create such
constant-intensity (constant-pressure) waves is the choice of the generating function
W (x) or the phases ¢; to be real quantities. In the next section we show that by
allowing for complex generating functions W (x) or phases ¢; we can, in fact, obtain
scattering states with any predetermined intensity (pressure) distribution such that
a constant-intensity (constant-pressure) wave can be seen as a special case of this
much broader class of wave states.

2.4 Predetermined-intensity waves

The call for a Cl-wave restricts the generating function W (x) to be real-valued,
however, the ansatz i(z) = A exp [iko I W(x’)dx’} also solves the Helmholtz
Eq. (2.1) when the generating function W (zx) is complex, i.e., W(x) = Wg(z) +
iW;(x), with Wg(z) and Wi (x) being the real and imaginary part, respectively. One
can easily see that a complex generating function results in a wave with varying
intensity profile | (z)]? = |A|*exp [—2/{;0 I W[(x’)dx’] which is completely de-
termined by the imaginary part of the generating function Wj(x). Thus, properly
choosing Wy (x) allows us to design the intensity distribution of a scattering state as
required. The Cl-wave in Eq. (2.2) is then just a special solution of these general-
ized wave states where the imaginary part Wy (z) is zero. In order to still satisfy the
perfect transmission boundary conditions in Eq. (2.7), the imaginary part W;(x)
has to vanish at the boundaries of the scattering region, i.e., W;(—L) = 0 = W;(L).

In order to illustrate this new concept, we jump right to one example. Of prac-
tical interest in wave engineering is to create a sharp intensity peak, i.e., a focus
at a desired position. We want to emphasize, however, that our concept is not
restricted to this specific intensity profile — it can follow any intensity profile. We
choose the imaginary part of the generating function to be the derivative of a
Gaussian function G(x) = a exp(—z?/0?) with a certain amplitude a and a certain
width o, i.e., W;(z) = 0G(x)/0x, since this function follows the required boundary
conditions already per construction (assuming that o is small enough such that the
derivative of the Gaussian is negligible at the boundaries x = £L). Even though
it is not obvious, this specific choice of W;(z) leads to a strongly peaked inten-
sity [ (z)]? = |A|? exp [—2koa exp(—2?/0?)], as shown later. The real part of the
generating function Wx(z) does not affect the intensity of the wave state, but it
does affect the refractive index. To make the formation of the intensity peak more
spectacular, we choose Wg(z) to be a randomly fluctuating function formed by
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40 2.4 Predetermined-intensity waves

a superposition of Gaussian functions with random widths and random positions
resulting in a disordered real part of the refractive index ng(z). The complex re-
fractive index that supports the desired wave state, i.e., the focus, can be calculated
by _

n?(z) = [Wa(z) +iWy(x)]? - kioa% Wi(z) +iWi(z)], (2.16)
i.e., in analogy to Eq. (2.3) but now with a complex (instead of a purely real) gen-
erating function W(z). In Fig. 2.13(a) we can see the real part of the refractive
index calculated from Eq. (2.16) with the corresponding intensity of a wave in-
jected from the left-hand side. The disorder, which originates from the disordered
function Wg(z) leads to high variations in the intensity pattern. Figure 2.13(b)
shows that by adding the correct gain and loss distribution to the system shown
in Fig. 2.13(a), we can create a well-defined intensity peak at the predetermined
position and additionally make the wave lose all its intensity variations despite the
fact that the system is still disordered.
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Fig 2.13: (a) Strongly fluctuating intensity of a wave (blue) with wavelength Ay = 0.15
impinging from the left onto a disordered refractive index distribution that is obtained
from the real part of n(z) calculated with Eq. (2.16). The real part of the generating
function Wx(z) is a superposition of randomly placed Gaussian functions with the
same amplitude of 0.2 but with random widths (uniformly distributed between 0.005
and 0.055). The imaginary part W;(z) is given by W;(z) = 9/0x [aexp(—2?/0?)]
with @ = 0.007 and o = 0.05. (b) The wave shows a strong intensity build-up at the
predetermined position z = 0 and gets perfectly transmitted when the correct gain and
loss [imaginary part of n(z) from Eq. (2.16)] is added to the disorder.

Having demonstrated that a generalization of the concept of Cl-waves to a much
broader class of waves can lead to waves with a predetermined intensity profile, we
show in the next section how to transfer this generalization also to the transmission
line model which is discussed in the previous section.
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Chapter 2 Non-Hermitian wave control 41

2.5 Predetermined-pressure waves in acoustic
waveguides?

The idea of this section is to transfer the concept of waves with a predetermined
intensity profile also to the transmission line model for acoustic waves introduced
in section 2.3. The motivation behind this effort is to study two interesting acoustic
devices. The first one will be a structure allowing for a so-called “quiet zone”, i.e.,
a region inside a structure with a negligibly small sound amplitude. The second
device we study is a structure that perfectly absorbs sound waves when put, e.g.,
on a wall, to minimize sound emission from this room.

In analogy to the complex generating function W (z) in the last section, we now
also extend the phases of the wave ansatz in Eq. (2.13) to complex numbers ¢;,

Le., ¢; = g, +1¢y;, giving us

J J
Pj+1 = €xXp (—k‘o Z gbll) exp (iko Z gle) p1. (2.17)
=1 =1

We can see that the first term including the imaginary parts of the phases ¢;,
determines the amplitude profile A; of the wave

j—1
Aj = |p| = exp (—ko Z¢h> Ik (2.18)
=1

whereas the second term determines the phase evolution of the wave. Our aim
is to choose the phases ¢; in such a way that we get a predetermined amplitude
distribution A;. This can be done by solving Eq. (2.18) for ¢;,,

1 Ajr) A
o= {1“(|p1|> 1“(|p1|>]’ (2.19)

i.e., given the amplitude profile A; one can easily calculate the required imaginary
parts of the phases ¢;; with Eq. (2.19). The imaginary parts of the phases ¢;,
have to fulfill the boundary conditions ¢;, = ¢;, = 0. The corresponding acoustic
impedances supporting this pressure wave can be calculated in the same way as for
the constant-pressure wave described in Section 2.3 through Eq. (2.15).

In order to verify our theoretical concept, we perform numerical simulations. Our
first choice is to minimize the pressure of a sound wave in a predetermined region of
the medium, i.e., we want to realize a so-called “quiet zone”. For this purpose we use
a pressure profile A; which is constant everywhere except at three chosen positions

4 The results presented in this section were obtained together with Nikolaus de Zordo and Lukas
Leczek whose student projects I co-supervised [62, 63].
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42 2.5 Predetermined-pressure waves in acoustic waveguides

where the amplitude is small (here Ag = A; = Ag = 0.1, A; = 1 everywhere else).
With the choice of the amplitude profile A;, the imaginary parts of the phases ¢;
are fixed by Eq. (2.19). Since the amplitude is only affected by the imaginary parts
of ¢, i.e., ¢;, we can choose arbitrary real parts of the phases ¢z which we choose
to be constant, except for the first two phases which are optimized in such a way,
that the reflection coefficient R gets minimal (in analogy to the constant-pressure
waves in Section 2.3). With the choice of the phases ¢; we know all pressures p;
as a function of p; or R, respectively. With Eq. (2.15) we are able to calculate our
acoustic impedances Z; that support our pressure wave with the chosen amplitude
profile, see Fig. 2.14. As shown in Fig. 2.14(b), the scattering state (blue) shows the
predicted amplitude profile, i.e., the “quiet zone” with a small pressure at scatterer
positions 6 to 8. The real and the imaginary parts of the acoustic impedances Z;
that lead to this amplitude profile are shown in red /green and gray, respectively. If
we, however, remove the gain and loss from the system, i.e., if we neglect the real
part of the impedances Z; as can be seen in Fig. 2.14(a), we get fluctuations in our
amplitude profile (blue) due to reflections.
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Fig 2.14: (a) Pressure p; of a sound wave injected from the left-hand side into a

system consisting only of imaginary impedances Z; (gray), i.e., a Hermitian system.

(b) Adding the correct gain (red) and loss (green) distribution (i.e., real parts of the

impedances Z;) to the system, the pressure wave p; follows the predicted amplitude

profile A; = |p;| showing a so-called “quiet zone”, i.e., an extended region of small
sound pressure (here located at sites 6-8).

After demonstrating that this idea of generating waves with a predetermined
pressure profile works also for the transmission line model, we show now that we
can use this concept to build an absorber for sound waves. Together with Manfred
Kaltenbacher and his PhD-student Sebastian Floss from TU Wien we were work-
ing on a proof-of-principle experiment showing that waves entering an acoustic
waveguide get absorbed strongly enough to prevent waves from being transmitted
through the waveguide and from being back-reflected from it. In order to achieve
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Chapter 2 Non-Hermitian wave control 43

this goal we can directly apply the idea of a predetermined-pressure wave by de-
manding an exponentially decreasing pressure distribution inside the waveguide.
The restriction that we impose on ourselves is to make the waveguide as short as
possible and to use lossy elements only, in contrast to the experiment in Section
2.3 where we used both, gain and loss. The lossy elements can be realized by micro
perforated plates (MPPs) which are thin flat plates with small holes punched in it,
where the acoustic impedance of the plate Z can be tuned by varying the number
of holes [87]. The goal is to design a waveguide with a certain number n of MPPs
characterized by their impedances Z; such that waves entering the waveguide from
one side get absorbed as much as possible with no waves being back-reflected. The
task now is to tune the parameters n, the distance d between the MPPs, the desired
amplitude profile A; and the real part of the phases ¢p, in such a way that the
required impedances Z; only have a positive real part, i.e., only loss. Using a simple
gradient descent optimization routine, we found a system as shown in Fig. 2.15(b),
where the pressure at the last plate is only around 19% of the incident pressure
and the reflection coefficient only R ~ 10~%; in other words, almost nothing gets
back-reflected and only 19% get transmitted. Removing the loss from the system as
shown in Fig. 2.15(a), we get a reflection coefficient of R ~ 0.99 and a pressure at
the output of the waveguide of about 39% of the incident pressure. The waveguide
is optimized for a wavelength of Ay = 1.5 m for which conventional absorbers would
be much larger. The next steps of this project are to perform full-wave simulations
and, finally, build the acoustic waveguide. We hope that our concept can help to
create new types of absorbers that can be used, e.g., in anechoic chambers. In such
chambers, conventional absorbing materials such as foam are placed on the inside
of the room to avoid back-reflections from the walls. These absorbing materials
efficiently absorb sound waves above 100 Hz and have a typical length of 1.5m.
Our concept has the potential to yield absorbers that are considerably smaller than
conventional absorbers and to efficiently absorb sound waves with frequencies lower
than 100 Hz.

In the previous sections we study many aspects of constant-intensity (pressure)
waves and waves with predetermined intensity (pressure) profile in one-dimensional
or quasi one-dimensional systems. A natural question that arises now is if such
waves also exist in more than one dimension. Surprisingly, such constant-intensity
waves also exist in two-dimensions which we show in the next section.
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Fig 2.15: (a) Pressure p; of a sound wave injected from the left-hand side into a
system consisting only of imaginary impedances Z; (gray), i.e., a Hermitian system.
(b) Adding the correct loss (green) distribution (i.e., real parts of the impedances Z;)
to the system, the pressure wave p, follows the predicted uniformly damped amplitude
profile A; = |p;| = exp(—~x;), where 7 ~ 2.65 is the absorption rate and z; the
positions of the MPPs. The pressure at the last MPP has an amplitude of only 19% of
the incident pressure, i.e., the absorption is quite efficient, and the reflection coefficient
is only R ~ 107, In the Hermitian system shown in (a) the reflection coefficient is
R ~ 0.99 and the pressure at the last MPP around 39% of the incident pressure. The
system consists of n = 8 MPPs being separated by a distance d = 9.35cm, and having
a thickness of 2mm i.e., the system has a total length of L ~ 86 cm.

2.6 Constant-intensity waves in two-dimensional

structures®

While most of the previous works on Cl-waves focused on one-dimensional scatter-
ing systems |27, 28, 30, 61|, a recent work showed how to generalize this concept
also to non-paraxial scattering problems with two spatial dimensions [88]. While
the work in Ref. [88] focuses on epsilon-near-zero (ENZ) materials, we study now
two-dimensional Cl-waves in structures with e(z,y) = n?(z,y) > 1.

We start our analysis by considering the two-dimensional Helmholtz equation
that describes the scattering of a linearly polarized wave ¢ (z,y) in the z-y plane
(for details see appendix A.1):

The scattering region [—L,, L,] X [-L,, L,] is defined as the region in space where

5 This work was carried out together with my colleague Ivor Kre§i¢ who performed the numerical
simulations and Konstantinos Makris who derived most of the analytical results [64]. I was
involved in the development of the theory and generated the figures for our joint publication
[64].
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Chapter 2 Non-Hermitian wave control 45

the complex refractive index n(x,y) = ng(z,y) + in;(x,y) is different from the
asymptotic refractive index ng. The question we are interested in is if it is possible
to find Cl-waves in two-dimensional dielectric structures with gain and loss. In
other words, we are looking for solutions of the constant-intensity form:

P(x,y) = ey, (2.21)

where 0(x,y) plays the role of the generating function here. In order to obtain
ClI-solutions for a given function 0(x,y), the corresponding refractive index is non-
Hermitian and of the form:

o= (3) () £[(50) (5] e

where we skipped all arguments for better readability. In a next step, we have
to find boundary conditions for the generating function 6(z,y). We assume that
outside the scattering region the wave is a simple right-propagating plane wave
with wave vector parallel to the z-axis, i.e., ¥°"(z,y) = exp(ikonox), such that we
impose continuity conditions along the boundaries. In other words, we have the
following boundary conditions for the electrical field and its derivative:

YO (L, ) = (iLw, 9, (2.23)
Wmt (4Lo,y) = (j:Lz, Y, (2.24)
wout(x,i )= (:1: +1,). (2.25)
ad’om( +1,) = ( +L,). (2.26)

By direct substitution of the Cl-wave in Eq. (2.21) into these boundary conditions,
we can rewrite them in terms of 6(z,y):

no = 00 (+Ls,), (2.28)

nor = 0(z, £L,), (2.29)
a0

0= —(z,%£L,). (2.30)

dy

Also here we directly jump to one specific Cl-refractive index and demonstrate the
Cl-wave it gives rise to. One generating function 6(x,y) satisfying these boundary

conditions is ) )

T
0(z,y) = nox + a exp (_F — %) : (2.31)
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46 2.6 Constant-intensity waves in two-dimensional structures

provided that o is small enough such that the Gaussian term can be neglected at the
boundaries of the scattering region. This generating function yields the following
Cl-refractive index |via Eq. (2.22)]:

2 2 2 2 2 2
n?(z) = [ng - ixexp (_w_ - y_)} + liyexp (_x_ - y_)}
o2 202 20?2 o? 202 202

: 2 2

- %0%(302 +9? — 207) exp (_:1:_ - y_) : (2.32)

The real part of this refractive index distribution can be seen in Fig. 2.16(a) and its

imaginary part in Fig. 2.16(b). Since experimentally it is not possible to inject an

infinitely extended plane wave onto a structure, we have to truncate the incident

wave at a certain width. Numerically, we can achieve this by injecting a beam with

a super-Gaussian transverse profile wider than the scattering region. In Fig. 2.16(c)

we see how such a truncated wave hits the Hermitian structure with a refractive

index as shown in Fig. 2.16(a). We can see that the wave strongly scatters at

the inhomogeneity resulting in a high intensity peak. If we now add the gain-loss

distribution [see Fig. 2.16(b)] to the system and inject the same beam again, we can

see in Fig. 2.16(d) that the wave propagates through the system as if there were

no inhomogeneities at all proving that the Cl-concept works for two-dimensional
structures as well.

After studying such a simple system serving as a proof-of-concept, we jump now
to a more complex system, which will be a disordered one. We choose 6(z,y) to
be a superposition of N = 300 Gaussian functions with random amplitudes a,,,
random widths o, and random positions (z,,y,), i.e.,

2 2
207 207

O(z,y) = Z ay, €Xp {— (z — 2n)" _ = n)” : (2.33)

The real and imaginary parts of the corresponding Cl-refractive index can be seen
in Figs. 2.17(a) and (b). Again, we first shine a wave onto the Hermitian system
leading to a highly complex intensity pattern [see Fig. 2.17(c)|. The wave can be
engineered to lose all its intensity variations and back-reflections by adding the
correct gain-loss distribution to it, thus creating a Cl-wave, see Fig. 2.17(d). This
clearly demonstrates that even two-dimensional strongly scattering structures can
be made perfectly transmitting by engineering its gain-loss distribution.

In a next step we study the sensitivity of the designed Cl-system with respect
to changes of the input angle ¢ and to the incident wave number k (at normal
incidence). The robustness is measured by the L*-error as follows:

d(I, 19/%) = VIS 5 () = 195, y) Pdedy
| ST T 7, g)Pdody

(2.34)

?



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

Chapter 2 Non-Hermitian wave control 47

Ng 1n;
(a) _ (b) _
2 |3.5 2 0.6
5 2 0.4
=0 ‘ . 25 =0
=
0.2
1.5 0
2 I 2 "
6 8 . 10 6 8 10
(© 6 X/ 4o (d) X/ 2
lp|?
4

20
0
v/ -20

20 20
10 0 10
x/Aqg y/do o 0 x/Ag

Fig 2.16: (a) Real and (b) imaginary part of the Cl-refractive index in Eq. (2.32) with
ng = 2.5, 0 = 0.2 and a = 0.48. (c) A plane wave illumination is mimicked by a wave
with a super-Gaussian transverse profile much larger than the width of the scattering
region (dashed white box). The wave scatters at the refractive index in (a), whereas the
wave gets perfectly transmitted featuring a constant intensity when the correct gain and
loss distribution from (b) is added, see (d). Here, we solve the Helmholtz Eq. (2.20)
numerically using an advanced finite-element method (NGSolve Finite Element Library,

https://ngsolve.org/).

where I(z,y) is the intensity distribution of the CI-wave inside the region marked
with white dashed lines in Fig. 2.17(d) and I**(z,y) is the intensity distribution
of the wave with changed incidence angle ¢, I¥, or with different wave number
k, I*. We compute the L%-errors for angle and wave number detuning for both a
Cl-system designed for wave number ky and normal incidence (¢ = 0) and for the
corresponding Hermitian system without gain and loss. In Fig. 2.17(e) we show the
L?-error scan of the angle ¢, where we can see that near normal incidence, the CI-
wave prescription works well to produce a beam without intensity modulations (see
blue line), as compared to the Hermitian case (red line) showing a relatively large
error for all angles. At angles larger than 5°, the non-Hermitian solution starts
having similar distances to the perfect Cl-wave as the Hermitian solution. The
wave number scan [see Fig. 2.17(f)] shows a relatively high degree of robustness.
The scan yields relatively small L?-errors for deviations below 10% from the design
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Fig 2.17: (a) Real and (b) imaginary part of a disordered refractive index calculated
with Eq. (2.22) with a generating function shown in Eq. (2.33). (c) A super-Gaussian
beam injected into the system shown in (a) leads to a highly oscillatory wave function
that can be made completely flat [see (d)] by adding the correct gain-loss distribution
shown in (b). (&) L%-error [see definition in Eq. (2.34)] of the intensity distribution
of the wave in the region marked with white dashed lines in (c) and (d) between the
perfect Cl-wave shown in (d) and beams with different incidence angles ¢ for both
the Cl-system (blue line) and the corresponding Hermitian system (red line). (f) Same
quantities as in (e) but for a scan of the incident wave number k at normal incidence

@ =0.

wave number ky which is a remarkably broad frequency window. This reflects
exactly the general frequency stability of CI-waves that we showed already for the
one-dimensional case, see e.g., Fig. 2.2.

Summarizing, we demonstrate here that engineering the complex refractive index
of a medium one can fully eliminate multiple scattering even in two dimensions.
Specifically, we show how to construct a refractive index distribution that — for a
particular wavelength — leads to Cl-waves inside disordered media.

Having shown in this chapter that adding gain and loss can be used to overcome
multiple scattering induced by disordered structures, we follow in the next chapters
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Chapter 2 Non-Hermitian wave control 49

quite the opposite approach. Instead of controlling the medium itself (by adding
gain and loss), we now focus instead on controlling the incident wavefront to achieve
a desired intensity distribution of the wave inside the scattering region. In order
to find out how the incident wavefront has to be shaped to produce a certain wave
state, we make use of the Wigner-Smith time-delay operator which we introduce at
the beginning of the next chapter.
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Chapter 3

Time-delay operator and
particle-like states

The concept of time-delay in scattering theory was first introduced in the thesis of
Eugene Wigner’s PhD-student Leonard Eisenbud for nuclear scattering problems
[89]. What Eisenbud and Wigner discovered was that the duration of a scattering
process can be extracted from the energy derivative of the scattering phase [90].
Later, Felix Smith generalized this concept to a multi-channel scattering problem
|91] by introducing the so-called Wigner-Smith (or Eisenbud-Wigner-Smith) time-
delay operator, that includes the system’s multi-channel scattering matrix S (see
Chapter 1 for details on the scattering matrix) by way of a frequency derivative,

Q. = —iS’la—w. (3.1)
In case of a unitary scattering matrix (i.e., in the absence of gain and loss), this
operator is Hermitian and its eigenstates @ ®) form an orthogonal basis, where the
index i represents the i-th eigenvector. (For reasons of better readability, we skip the
index i for the derivations below.) The real-valued eigenvalues 7, of @, also called
proper delay times, can be interpreted as the time-delay the wave accumulates by
traversing the scattering region. To be more precise, the eigenvalues 7, are given
by 7, = 0¢/0w, where ¢ is the global phase of the outgoing wave v = S4u, i.e.,
¥ = |0]9e'?, with © being the unit vector of ¥ (see Chapter 1 for details on the
scattering formalism). Physically speaking, the eigenvalues 7, are given by the
frequency derivative of the global scattering phase ¢ and are therefore proportional
to the time-delay [89]. It is worth mentioning that the Wigner-Smith time-delay
operator features interesting connections to the system’s density of states [92-95|
and, as shown recently, can also be used to maximize the energy stored in resonators
[96].

Probably unaware of the works by Wigner and Smith, Fan and Kahn showed
much later in multi-mode fibers that there are certain modes (so-called principal
modes), whose output speckle patterns (i.e., the wavefront at the fiber exit) are to
first order independent with respect to a frequency change of the incident wave at
the input of the fiber (apart from a global change of the brightness) [97]. We show
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now in a short derivation that these robust modes are nothing else than eigenstates
of the Wigner-Smith time-delay operator: the input and output waves of a fiber
|similar to Fig. 1.1(c)| are described by two coefficient vectors u; and v, in a certain
basis, respectively. They are related to each other by the transmission matrix £,
i.e., U, = tu;. In general, the output vector v, is frequency dependent [due to the
frequency dependence of the transmission matrix ¢(w)| and can thus be expanded
around wy,

O,
Ow
Ot(w)

:t T8 A _
(wo)t; + Aw N

Up(wo + Aw) = ¥ (wp) + Aw

+ ...

wo

U+ ..., (3.2)
wo
where Aw is a small change of the frequency wy and we keep the input vector v
fixed for all w. Since the output speckle patterns of principal modes are robust
with respect to changes of w, we demand now that the first order term in Eq. (3.2)
is parallel to the zeroth order term, i.e, they should only differ by a (complex)
constant z,

t(wo)u; = zAcuM

Oow

We now multiply both sides of Eq. (3.3) with (it)~! and rewrite it as an eigenvalue
equation,

. (3.3)

wo

1 Ot(w)
_.:_.tfl = w_;: w_» 3.4
AW : ow woul Twltlt = qut (34)
with Ot (w)
t(w
= =it = 3.5
q it —= (3.5)
being the operator with eigenvalues 7, := (izAw)~! and eigenvector #;. The ro-

bustness with respect to changes of the frequency of the speckle pattern v, = tu;
of this eigenvector u; is mathematically expressed as

Up(wo + Aw) ~ exp(it, Aw) v, (wo), (3.6)

i.e., there is only a global change of the output speckle described by the factor
exp(it,Aw) including the eigenvalue 7.

Considering now that for perfect multi-mode fibers there are no reflections and
no losses, the transmission matrix ¢ is unitary — just as the entire scattering matrix
S. The operators @, from Eq. (3.1) and ¢, from Eq. (3.5) are thus the same
thing, such that the principal modes are nothing else but the eigenstates of the
Wigner-Smith time-delay operator [57, 58|. If the transmission matrix ¢ is not
unitary, differences start to arise between eigenstates of @), and ¢q,. Whereas for
the non-Hermitian operator g, only the transmitted wave v, of its eigenstates are
insensitive (up to a global factor) with respect to a change of the input frequency w



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Chapter 3 Time-delay operator and particle-like states 53

[see Eq. (3.6)], eigenstates of the Hermitian operator @), yield output profiles that
are insensitive not only in their transmitted part v, but also in their reflected part
v;. Mathematically, this translates into

U(wo + Aw) =~ exp(iT,Aw)v(wp), (3.7)

with @ = (0}, 7,)T = S and @ being an eigenstate of @,,. Contrary to eigenvalues
of the Hermitian operator @),,, eigenvalues of ¢, are complex [97] and take the form:

_ 06 o)

T O ow (38)

where ¢; is the global transmission phase, i.e., ¥, = |7,|0e'? (7, is the unit vector
of #,.). The real part of 7, i.e., Re(7,) = 0¢;/0w, reflects the frequency deriva-
tive of the transmission phase and is therefore proportional to the time-delay of
the eigenstate ;. The imaginary part, Im(7,), describes how the transmission |t
changes with respect to a change of the frequency w as can be seen from Eq. (3.6),
U (wo + Aw)| =~ exp|—Im(7,)Aw]|v,(wy)|. Whereas the operator @, can be com-
puted straightforwardly, computing q, and its eigenstates is more challenging, since
the ordinary inverse of ¢ appearing in Eq. (3.5) does not exist if ¢ is non-square or
singular. In the appendix A.4 we thus introduce an effective inverse that still allows
for the calculation of q,,.

After introducing the Wigner-Smith time-delay operator @, its non-Hermitian
counterpart ¢, and the properties of principal modes, we show in the next section
that we can use these operators to generate so-called particle-like states, which are
scattering states that have a trajectory-like wave function.

3.1 Particle-like states in a microwave cavity®

When an arbitrary wave enters a cavity, it gets reflected multiple times at the
boundaries such that, finally, the wave will be distributed throughout the cavity,
as can be seen for example in Fig. 1.2(a). As numerically shown in Ref. [65] and
experimentally demonstrated in Ref. [66], shaping the wave at the input of the
cavity according to eigenstates of the time-delay operator in Eq. (3.1), we may get
wave states that feature a beam-like (or particle-like) wave function instead of be-
ing spread in the entire cavity. The wave function of such particle-like states stays
collimated along the whole scattering region, or in other words, the wave function

6 The results presented in this section were achieved in close collaboration with Ulrich Kuhl and
his former PhD-student Julian Béhm from the Université Cote d’Azur as well as with Philipp
Ambichl who is a former member of our group. I performed the numerical simulations under
the supervision of Philipp Ambichl, whereas Julian B6hm conducted the experiment under the
supervision of Ulrich Kuhl. The text in this section partially follows our joint publication [67],
from which also the figures were taken.
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occupies a bundle of classical particle trajectories. Such particle-like states live in
the subspace of fully transmitted or fully reflected states, just like particles that
can either traverse the scattering region or get reflected back at some boundary
or obstacle. In a two-port system as, e.g., shown in Fig. 1.1(b), the time-delay
operator in Eq. (3.1) takes the block-form @, = [Q11, Q12; @21, Q22]. It was shown
that particle-like states are those eigenvectors of (), that are simultaneously eigen-
vectors of the sub-block Q1 = —i(rfdr/0w + t10t/0w) and additionally lie in the
nullspace of Q21 [65]. In view of an experimental realization of such particle-like
states, the Wigner-Smith time-delay operator suffers from the disadvantage that
the construction of ()11 involves the transmission matrix ¢ as well as the reflection
matrix 7 (measuring both ¢ and r is challenging experimentally).

Here, we present a microwave realization of particle-like states that involves only
the knowledge of the transmission matrix ¢. A first experimental realization of
particle-like states using elastic waves in a cavity was reported in Ref. [66], where,
however, the states were obtained by a numerical synthesis of experimentally mea-
sured system excitations. Our microwave experiment is an in situ realization by
means of an active input shaping, thus generating such particle-like states directly.

e e Viector network T
1Q-modulator -~ RN EE ana[;rzer — |:i|=m|
Power divider—" N .

10 cm 10 em

Moving
¥  antenna

53.5cm

z X

y

(T
i 27 positions

1145 cm

Fig 3.1: Sketch of the experimental setup. A two-dimensional microwave cavity is
excited by 16 antennas (left upper corner) placed in the incoming lead (red-colored
area). The antennas are connected to IQ-modulators controlling amplitude and phase
of the microwave signal, whereas the 1Q-modulators themselves are fed by a vector
network analyzer. The chaotic scattering region (light blue area) is connected to the
incoming lead and an outgoing one (green area). Both leads are closed by absorbing
foam material (LS-14,LS-16). The dotted line in the exit lead indicates the 27 positions
where the movable antenna is placed for the measurement of the complex transmission
matrix t. The red square in the exit lead marks the area for the computation of I, and
I (see text).
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The scattering setup with which we investigate the appearance of particle-like
states is shown in Fig. 3.1. A chaotic scattering region is attached to an incom-
ing lead and an outgoing lead (see red, light blue, and green areas in Fig. 3.1
respectively). The width of the lead W of 14cm allows the propagation of 16
transverse-electrical modes (TE modes) in the entrance and the exit lead at the
working frequency of vy = wy/27 = 17.5 GHz which corresponds to a wavelength
in air of 1.71cm. These 16 modes are excitable via 16 antennas where each an-
tenna is connected to one IQ-modulator, which controls amplitude and phase of
the microwave signal passing through. The IQ-modulators themselves are fed by a
vector network analyzer connected to a power splitter. The ends of the waveguide
are filled with absorbing foam material to reduce reflections. The cavity is closed
by a top metallic plate with a 5 x 5mm? grid of holes allowing us to introduce a
movable antenna which measures the electric field at any given hole position. The
long middle part located between incoming and outgoing lead serves as a verifica-
tion to show that particle-like states avoid this region which is usually entered by
arbitrary scattering states.

The goal is now to create scattering states that get fully transmitted through
the setup by shaping the wave in the incoming lead with the 16 antennas placed
there. The strategy that we follow to obtain such scattering states is the concept
of the time-delay operator in Eq. (3.1) introduced in the last section. As in most
experiments, we do not have access to the full scattering matrix S which is needed
to calculate @), however, we show in the following that the information of the
transmission matrix ¢ (which is accessible in our setup) is sufficient to find particle-
like states by using the operator g, in Eq. (3.5). In order to identify particle-like
states among all the other eigenstates of g, we make use of the corresponding
eigenvalues 79 in Eq. (3.8). Since particle-like states are highly collimated and are
not distributed all over the scattering region, the time it takes them to traverse the
scattering region is typically much smaller than for other scatterin(g states that get
scattered multiple times inside the scattering region. Because Re[m’)] measures this

scattering time, particle-like states can be identified by a small value of Re[mfl)].

Furthermore, particle-like states feature a small Im[nfi)] since for fully transmitting
and spatially confined scattering states the transmitted intensity barely changes
with input frequency w as compared to states that get scattered multiple times. In
the following, we skip the index i of the eigenstates/eigenvalues to ensure a better
readability.

The first step in calculating eigenstates of ¢, is to measure the full transmis-
sion matrix ¢(w) in a certain frequency window around the working frequency wy,
followed by a Fourier filtering to reduce noise effects (for details see supplemen-
tary material of Ref. [67]). The transmission matrix is set up by injecting a signal
through one of the 16 antennas in the incoming lead at one time and measuring
the signal in the outgoing lead with the moving antenna at 27 positions which are
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56 3.1 Particle-like states in a microwave cavity

marked in Fig. 3.1, i.e., the transmission matrix is a rectangular matrix of size
27 x 16. Since the transmission matrix is non-square we cannot calculate its ordi-
nary inverse which is needed to construct ¢, in Eq. (3.5). Therefore, we apply the
technique described in the appendix A.4 and work with the operator ¢, which only
includes a sub-part of ¢ associated with a certain number N, of highly transmitting
channels, with n being the cut-off transmission value. We tested empirically that
the smallest imaginary parts of the eigenvalues, Im(7,,), which provide an indicator
for the quality of particle-like states, are obtained by taking the highest N, = 7
transmitting channels for the calculation of ¢,. Once ¢, is constructed, we can
calculate its eigenstates, inject them into our system and verify their particle-like
shape by measuring the corresponding electric field with the movable antenna.

Particle-like state 2 (PSS 2)

(a) Particle-like state 1 (PSS 1)

(b) Trajectory bundles (c) Random state (RSS)

Fig 3.2: (a) Intensity distribution of the particle-like scattering states which are exper-
imentally obtained by wavefront shaping of the incident wave in the incoming lead. (b)
Central path lengths of the corresponding classical trajectory bundles of the particle-like
scattering states (L; = 33.3cm, Ly = 50.0cm, L3 = 49.1cm). (c) Typical intensity
distribution when only one single antenna is excited (here: second antenna from top).
Note that the intensities in panels (a) and (c) are normalized each to a maximum
(minimum) value of 1 (0).
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Chapter 3 Time-delay operator and particle-like states 57

At first we investigate the eigenstate with the smallest value of Re(7,), i.e., with
the shortest time-delay. The corresponding intensity distribution can be seen in
Fig. 3.2(a) top left panel (PSS 1), where the wave function shows the predicted be-
havior of following the shortest trajectory bundle going directly from the incoming
to the outgoing lead [see red bundle in Fig. 3.2(b) left]. In a next step we investigate
particle-like states with larger time-delays, which correspond to the green and the
blue classical trajectory bundles shown in Fig. 3.2(b). The trajectories of these two
bundles turn out to have almost the same length (Ly = 50.0cm and L3 = 49.1 ¢cm)
and since similar path lengths lead to similar time-delays, the operator ¢, cannot
fully discriminate between these two scattering states. While the particle-like state
with the second smallest eigenvalue corresponds quite well to the green classical
bundle [see Fig. 3.2(a) top right panel (PSS 2)|, the state with the third largest
eigenvalue [see Fig. 3.2(a), bottom panel (PSS 3)| mixes both bundles, green and
blue. In other words, PSS 2 and PSS 3 corresponding to these bundles are in a
near degenerate superposition with path contributions of both length L, and Ls.

In order to demix degenerate particle-like scattering states, for example PSS 3
in Fig. 3.2(a), we can analyze the state’s angular contribution. As described in
Chapter 1 one can use angular eigenstates E?S") (where n denotes the n-th eigen-
state of the wave number operator k,) as a basis to analyze the different angular
components of an arbitrary incident wave. One such eigenstate with a well-defined
incidence angle can be seen in Fig. 1.2(¢). Due to the fact that the classical trajec-
tory bundles L, and Lz in PSS 3 obviously belong to different angles of incidence,
we show that demixing PSS 3 is possible by discriminating between the angular
components that belong to one or the other classical trajectory bundle. In order to
show the efficiency of this method numerically, we first reconstruct the experimen-
tal observation of PSS 3 by coherently superimposing two particle-like states that
correspond to the trajectory bundles L, and L3, which do not mix in our numerical
simulations due to the absence of experimental imperfections. This scattering state
is now decomposed into the basis spanned by the angular eigenstates I; " with
corresponding expansion coefficients ¢,, and weighting factors |c,|?, see Fig. 3. 3( )
The coefficients are sorted by the eigenvalues of the corresponding eigenstates k
starting from large negative eigenvalues (i.e., large negative angles) to large positive
eigenvalues (i.e., large positive angles). We can see that the angular decomposition
of PSS 3 has two main contributions — one for very steep angles (with positive and
negative sign) and one for rather flat injection angles, corresponding to the trajec-
tory bundles Ly and Ls, respectively. In a next step, we inject two wave states into
the system that consist only of angular components with one of these two contri-
bution (the respective other wave component is suppressed). We end up with two
demixed particle-like states with scattering wave functions that follow nicely the
trajectory bundles Ly and L, see Fig. 3.3(b) and (c).

In order to highlight the highly collimated wave function of the particle-like
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Fig 3.3: (a) (Left panel) Intensity of a wave state similar to PSS 3 [see Fig. 3.2(a)
bottom panel], created by numerically superimposing two particle-like states that belong
to the classical trajectory bundles Ly and L3 shown in Fig. 3.2(b). (Right panel) The
corresponding decomposition in angular components is shown through the weights |c,,|*.
The angles are sorted in ascending order starting from steep negative angles (on the
left) to positive steep angles (on the right). One can see that the mixed state features
two main contributions: one for very steep angles (positive and negative) and one for
rather flat angles. By sorting these angular components into two separate states, we
can demix the state in (a) to obtain two separate particle-like states shown in (b) and
(c) whose wave function patterns nicely follow the classical trajectory bundles L, and
Ls. The simulations here were again performed with the modular recursive Green's
function technique (see appendix A.5 for more details)

scattering states, we show in Fig. 3.2(c) the intensity distribution obtained by
exciting only a single randomly chosen antenna. We can see that also such a random
state shows some intensity maxima within the cavity, however, these maxima do
not follow classical trajectory bundles and additionally the state extends into the
middle part of the scattering region, which is avoided by all particle-like states.
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Chapter 3 Time-delay operator and particle-like states 59

In a next step we show that particle-like states have a significantly higher spectral
robustness of their transverse output profile v,.(v) as compared to random states,
where 9,.(v) = t(v)u; is the transverse output profile corresponding to an incoming
wave 1U; (where #; can be a particle-like state or a random state). To be more
specific, we define the spectral robustness as

Corr(v) = | (3.9)

S
~
<
=
S
—
S
=

which is the normalized correlation between the output vector v, at frequency v
compared to its output at v (the frequency at which the states are evaluated).
In Fig. 3.4 we calculated the correlations with Eq. (3.9) for the three particle-like
states and the random state shown in Fig. 3.2. PSS 1 is the state showing the
highest output robustness since it goes directly from the incoming to the outgoing
lead. PSS 2 and PSS 3 perform a reflection at the convex cavity boundary and
are thus more sensitive to small changes in the frequency. This explains why the
correlation curve in Fig. 3.4 is flatter for PSS 1 than the one of PSS 2 and PSS 3.
The correlation of the random state is, as expected, the lowest.

As particle-like states are highly collimated beams, putting an obstacle in the
way of their corresponding classical trajectory bundle would decrease the observed
transmission, whereas putting an obstacle outside of the occupied region would
affect the wave function only slightly. To test this idea explicitly experimentally, we
place altogether 13 cylindrical obstacles forming a rhombic shape into the scattering
region of the cavity, see Fig. 3.5(b). The obstacles have an equidistant spacing of
about 3.3 wavelengths to make sure that their perturbations are uncorrelated. In
order to quantify the change of the transmitted intensity, we evaluate the relative

change
Io - Iem
A-[rel - bITJ

where I, is the transmitted intensity when the obstacle is placed inside the cavity
and I, is the transmitted intensity for the empty system without the obstacle.
The transmitted intensities are obtained by computing the sum of the measured
transmitted intensities at 135 positions indicated by the red square in Fig. 3.1. As
expected, we can see in Fig. 3.5 that the particle-like states are affected by a strong
drop of 30% or more of the transmitted intensity when the scatterer is placed within
the bundle supporting the particle-like state. This observation is interesting from a
practical point of view if one aims to transmit intensity from the input to the output
lead in the presence of obstacles. Once a specific particle-like state is blocked, one
can maintain efficient transmission by switching to another state (e.g., from PSS
1 to PSS 2), an option that will not work when operating with random scattering
states. Also a global perturbation like uniform absorption will affect particle-like
states much less due to their short time-delays.

(3.10)
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-100 -50 0 50 100
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Fig 3.4: Correlation function according to Eq. (3.9) of the output profile of the three
particle-like states and the random state shown in Fig. 3.2. The particle-like states
are more stable with respect to changes of the incident frequency v compared to the
random state.
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Fig 3.5: (a) Change of the transmitted intensity Al as defined in Eq. (3.10) of the
particle-like scattering states and the random state while moving the rhombic obstacle
between position 1 (Pos 1) to position 5 (Pos 5) [see (b)]. PSS 1 and PSS 2 show
a significant drop at only one position where the obstacle crosses the corresponding
classical trajectory bundle, whereas PSS 3, which is a superposition of two classical
bundles, is, as expected, affected by all obstacle positions. The random state shows no
indication of a particle-like pattern.

Concluding this section, we experimentally realized particle-like scattering states
by means of incident wavefront shaping in a microwave cavity. Such states follow
bundles of classical particle trajectories and can be identified with the help of the
Wigner-Smith time-delay formalism. We found altogether three particle-like states
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and tested their stability with respect to changes of the incident wavelength.

Having shown that particle-like states can be used to generate wave states that
stay focused during their entire transmission process even in chaotic cavities, we
study in the next section particle-like states in systems with a smooth and correlated
disorder which allow for a so-called branched flow.

3.2 Branched flow”

When physicists studied how coherent electrons propagate in a two-dimensional
semiconductor heterostructure with high mobility, they were very surprised to find
in their measurements that the electrons do not spread out isotropically in all
directions but rather form a distinct branching pattern along which they seem to
flow preferentially (98, 99]. The reason for this unexpected branching lies in the
smooth and spatially correlated background potential of the heterostructure [100],
which acts like a collection of imperfect lenses [101]| that give rise to caustics at
which the electronic density is enhanced [102-104]. It was soon understood that the
phenomenon of branched flow occurs not only for electron waves in semiconductors
but rather for many types of waves and for different length scales up to the formation
of hot spots in tsunami waves as a result of the propagation through the rough ocean
sea bed [105-111].

Many studies focused on the statistics of this phenomenon [101, 108, 112, 113| and
on its origins [100, 101, 114-117], however, the question of how branched flow can be
controlled to steer waves through a complex medium has not been addressed so far,
since the possibility to shape and manipulate electrons or ocean waves are rather
limited. In a new generation of experiments, however, branched flow was observed
when coherent laser light propagates through very thin disordered materials such
as the surface layer of a soap bubble [118]. Due to this transfer of branched flow
to the optical domain, the whole arsenal of wavefront shaping techniques to shape
the wavefront of such branched light beams [33, 35| can now be applied.

What we aim to show is that a suitably shaped wavefront that is injected into
a system showing branched flow allows us to steer these waves along individual
branches, rather than along many of them in parallel. In other words, we try to
use the branches as highways for wave propagation such as to navigate a wave to
a desired location while maintaining its collimation during the entire scattering
process. Our strategy to find the correct wavefronts is to apply the concept of
particle-like scattering states, as introduced in the previous section. We expect

" The results presented in this section were achieved in collaboration with two of my former
colleagues Adrian Girschik and Philipp Ambichl. T developed the theory and the concept of
addressing individual branches together with Philipp Ambichl, whereas the numerical simula-
tions were performed together with Adrian Girschik. The text and the figures in this section
partially go back to our joint publication [68].
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our approach to be useful in a variety of different contexts, where steering waves
through a complex environment to a predetermined target is a key goal, like in
wireless communication [119], in adaptive optics [120], underwater acoustics [121],
for wave focusing |7, 36, 48, 69|, biomedical imaging [122, 123], as well as for wave
control in disordered systems in general [33, 35, 124, 125|.

(b)
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Fig 3.6: (a) lllustration of the setup under study: a waveguide filled with a correlated
disorder (center region) of width W ~ 100)\, is attached to an incoming lead on
the left (through an aperture, blue) and an outgoing lead on the right (not shown).
The smooth disorder refractive index in the waveguide of length L = 1.4W ~ 140\,
is illustrated in blue/red colors. On top of the refractive index the wave intensity is
plotted, corresponding to a superposition of the wave intensities of mode 1 to 100
injected through the left lead, resulting in a pronounced branched structure. The first
three lead modes are depicted in orange on the left-hand side. The main goal of our
study is to separate these branches by suitably shaping the incoming wavefront in the
left lead. (b) Intensity output profile as a function of the transverse coordinate y at
the right end of the disordered region (z = L). The seven maxima labeled from 1 to 7
(highlighted in light blue/magenta) are produced by the arrival of different branches at
the output.
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The system we consider for our study is shown in Fig. 3.6(a) and consists of a
rectangular scattering region of width W and length L = 1.4W that is attached to
two straight semi-infinite leads of the same width W on the left and right (only left
lead shown), just as described in Fig. 1.1(c). In all the calculations reported in this
section, we choose the number of propagating open lead modes to be N = 200 and
a fixed wave number ky = pm /W of the incoming light [the first three lead modes
are indicated in Fig. 3.6(a)|]. For simplicity we set W = p = 200.01 resulting in
the following simple expressions for the wave number ky = 7 and the wavelength
Ao = 2. In units of wavelengths, the system has a width of W = 100y and a length
of L =~ 140)\,.

In analogy to the first observation of branched flow where electrons were in-
jected through a constriction (quantum point contact) into a high-mobility electron
gas 98], we also include such a constriction in the form of an aperture of width
d = 50.5 ~ 25)¢ between the left lead and the disordered scattering region (at
x = 0). In many previous studies the width of the constriction was chosen such
that it only allows for one or two modes to propagate through. Here, the 50 modes
that we allow to pass provide us with many tunable degrees of freedom as required
for shaping the incoming wavefront. We just want to mention here that in a narrow
quantum point contact that transmits only a single mode, our method cannot be
applied since no wavefront shaping would be possible. The smooth and long-range
disorder necessary to observe branched flow is modeled by a spatially dependent in-
dex of refraction n(7") throughout the whole scattering region indicated by the light
red/blue color in Fig. 3.6(a). This correlated refractive index n(7) is characterized
by a correlation length & = 6 = 3)p, minimum/maximum values: min[n(r’)] = 1
and max([n(7)] ~ 1.19, and a mean value mean[n(7")] ~ 1.1 (for more details on the
correlated disorder see appendix A.6).

The scalar scattering problem in this two-dimensional setup is again described
by the two-dimensional Helmholtz Eq. (A.20) which is solved numerically with the
modular recursive Green’s function technique [126, 127| (see appendix A.5 for more
details). This technique allows not only for efficiently evaluating the scattering
states ¢ (7) but also the unitary scattering matrix S.

In order to observe the branched flow of light, we inject the different lead modes
as described in Eq. (1.2) from the left into the system through the aperture and su-
perimpose the corresponding wave intensities they give rise to. In the superposition
we consider only the first 100 lead modes (out of 200) to avoid high angle scattering
and to ensure a high visibility of the individual branches. The branched structure
in the propagation of waves through our setup is clearly visible in Fig. 3.6(a).

The challenge we rise to in a next step is to address these branches individually
through a suitable coherent superposition of incoming modes in the left lead. The
methods we choose for this purpose involve only the transmission matrix ¢. As
the branched flow in our system naturally leads to a concentration of intensity at
certain spots at the output, we find that the knowledge of the transmission matrix
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t for modes concentrated around these spots is sufficient for a clean separation of
branches. In other words, we may restrict ourselves to those regions in space at the
output, where the branches arrive. These regions are determined from the intensity
profile at the output facet of our system at x = L, see Fig. 3.6(b). Seven intensity
maxima corresponding to the arrival of different branches are clearly visible in
Fig. 3.6(b) and highlighted in light blue/magenta. For each intensity maximum
we manually set lower and upper boundaries, which are indicated by vertical lines
in Fig. 3.6(b) and define a reduced transmission matrix ¢ connecting the incoming
lead with the corresponding region at the output (labeled from 1 to 7). In order to
obtain ¢, we first transform the transmission matrix ¢ given in the mode basis into
the spatial basis (see Chapter 1 for details on the transformation). The elements ¢,
of this matrix hence describe the coherent transmission amplitudes from all points a
at the input (we choose 200 equidistant points in the input lead corresponding to 200
open lead modes) to all points b around a specific intensity maximum at the output.
In this basis, one row of ¢ describes the transmission from the entire incoming lead
to only one peak on the right-hand side of the scattering geometry. Thus, if we are
interested in the transmission matrix from the left lead to a designated region on
the right side, we just need to cut out the corresponding rows falling outside the
desired region to finally obtain ¢.

Our first approach to achieve clean branch separation is to employ a singular
value decomposition (SVD) of ¢, i.e.,

t=UxVT, (3.11)

allowing us to access the transmission eigenvalues 7 in this truncated spatial
basis as contained in the real diagonal matrix ¥ = diag [v/7@]. The matrix U
consists of eigenvectors of £¢7 and V consists of eigenvectors of ¢7¢. The largest
transmission eigenvalues 7 correspond to those transmission eigenchannels 7
(contained in the columns of V') that transmit the most intensity to the desired re-
gion at the output. At this point one might be tempted to think that these highly
transmitting channels will already constitute the branches we are after. To test this
hypothesis, we inject for each of the seven transmission matrices ¢, the correspond-
ing transmission eigenchannels with the largest transmission eigenvalues. Checking
the corresponding scattering wave functions [see Fig. 3.7(b),(e)-(i),(p),(t)], we find
that a clean branch separation is, indeed, possible for a number of cases. We also
find, however, that several among the highly transmitting eigenchannels follow two
different branches in parallel instead of only one. Figure 3.7(0) shows an exam-
ple of such a state, where one can clearly see a mixing of one branch propagating
directly into the selected region (marked with blue bars at the output) with an-
other branch bouncing off the lower boundary. Demanding high transmission into
a desired region by choosing high transmission eigenchannels is thus clearly not
enough to guarantee clean branch separation since high transmission can also be
obtained by propagating along multiple branches at once. In a possible optical
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experiment such a mixing can be expected to be even more prevalent than in our
numerical example, simply because optical implementations can typically involve a
large number of branches [118|.
In order to be able to address also such mixed branches individually, we now
apply the concept of particle-like states as introduced in the last section. The key
idea here is that two branches that may both be highly transmitting [like those in
Fig. 3.7(0)] can be distinguished by their different time-delays (as determined by
the different branch lengths). Thus, we calculate eigenstates of ¢, = —it '0t/0w
for each of the seven reduced transmission matrices t. Since the ordinary inverse of
t, which is needed to calculate ¢,,, cannot be taken due to its non-regularity, we have
to apply again the technique introduced in appendix A.4, where we only include a
sub-part of ¢ associated with a certain number N, of highly transmitting channels
(with n being the cut-off transmission value). Using this technique, we obtain the
reduced time-delay operator ¢, operating in the subspace of highly transmitting
states only. In practice, a value of 7 = 0.8 proved suitable for all our calculations.
The imaginary parts of the complex eigenvalues of ¢, are, again, very small and
the real parts can still be used as a good measure for the physical time-delays [67].
To put this method directly to the test, we turn our attention to the state shown
in Fig. 3.7(o) featuring a mixture of two branches with different path lengths and,
correspondingly, different time-delays. A singular value decomposition of ¢ reveals
that it contains 9 singular values larger than n = 0.8. With this knowledge we can
now construct g, and, indeed, find among its eigenstates @ ¥ the desired wave fields
that follow the two involved branches individually [see Fig. 3.7(r) and (s)|. Since the
eigenvectors o (¥ feature injection only from the left-hand lead, they should carry
the subscript [, i.e., ﬁl(z), however, we skip this subscript for better readability.
Restricting the construction of time-delay eigenstates to the subspace of high
transmission thus yields already very good results. Using this method, we, how-
ever, also observed a few time-delay eigenstates that mix two different branches
as, e.g., shown in Fig. 3.7(j). These two branches, on the other hand, turn out
to be individually addressable through those transmission eigenstates 7 with the
smallest time-delays [see Fig. 3.7(g) and (i)]. The time-delay of a transmission
eigenstate 7% can simply be calculated by taking the expectation value with the
time-delay operator gy, i.e., [7®]fq, 7.
One may thus also decide to turn the above strategy on its head and look for
transmission eigenstates in the subspace of short time-delays. Since neither one
of these opposite strategies seems to have an a priori advantage, we now combine
them with each other in a synergistic way to improve our results even further:
(i) We evaluate all eigenstates 7 of ¢ and @ of g,, for all of the seven
transmission matrices ¢ corresponding to regions of maximum intensity shown
in Fig. 3.6(b).

(ii) We select those states that are identical in both eigenstate sets, since they turn
out to be individual branch excitations in all of the observed cases. To do this,
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Fig 3.7: Transmission and time-delay eigenstates of the system shown in Fig. 3.6
calculated from the transmission matrices ¢ connecting the incoming lead with the
seven different output regions marked in Fig. 3.6(b) (see blue horizontal bars here).
The branched structure [see Fig. 3.6(a)] is drawn as a gray background. We show all
eigenstates that are selected by our procedure [steps (i)-(iii) in the main text] with black
text labels and two examples of eigenstates that are filtered out by our procedure since
they address two different branches at once (red label). The states are ordered according
to their output region on the right (see numbers 1 to 7). The average transmittance
of all states with black label is around 89% into the region marked by the blue bars.




Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Chapter 3 Time-delay operator and particle-like states 67

(iif)

we project each time-delay eigenvector @) onto each transmission eigenvector
70, such that we end up with the matrix elements m;; = [@@]'7). (The
matrix m is not unitary since the eigenstate-sets are not complete). For the
case that two eigenvectors are the same, the matrix m has only one significant
non-zero element in the corresponding row/column. Practically, we consider
two eigenvectors to be the same when |m;;| > 0.9.

In a last step, we deal with those eigenstates that consist of more than one
contribution from the respective other eigenstate set, i.e., that have more than
one non-zero element in the corresponding row/column of m. Our task here
is to select those states that consist of only single branches and to discard
those states that propagate along more than one branch at once, since the
coefficients m;; do not indicate per se which states consist of single branches
only. As we show here, the spatial and/or angular distribution of an eigen-
state at the input aperture provides us with sufficient information to perform
this task since an eigenstate exciting only one branch will be spatially more
confined and will radiate into a smaller angular region than a state addressing
multiple branches. Assuming that the transmission matrix ¢ is measured in
the spatial pixel basis, the eigenvectors @) and 7(*) are naturally given in
this spatial basis as well. By plotting the absolute value of the coefficients
|c?|, where n is the n-th component of the vector @™ or 7 as a function
of the transverse coordinate at the aperture (x = 0), we can easily generate
the spatial distribution of an eigenstate. To estimate the angular distribution
of an eigenstate at the aperture, we decompose the eigenvectors @ and 7@
into the angular basis spanned by the eigenvectors E@(,") (see Chapter 1 for
more details on the angular basis) which have a well-defined transverse wave
vector component and analyze the different angular components |cf|. Figure
3.8(a) and (b) display the spatial and angular components of the transmis-
sion eigenstate shown in Fig. 3.7(0) (red) and the time-delay eigenstate in
Fig. 3.7(r) (blue). We see that the spatial profile of the transmission state
is broader and that it features more angular components than the time-delay
state. We can therefore conclude that the transmission state is more likely to
address multiple branches, whereas the time-delay state addresses only one
single branch, which is confirmed by the wave plots shown Fig. 3.7(o) and
Fig. 3.7(r). In Fig. 3.8(c) and (d) we plot the same distributions for the time-
delay state shown in Fig. 3.7(j) and the transmission state shown in Fig. 3.7(i).
From Fig. 3.8(c) we deduce that the time-delay state consists of more than
one branch due to the larger spatial distribution, which is confirmed by the
wave plots. We successfully applied this procedure to all eigenstates @ and
7@ from which we can conclude that the spatial and angular distribution of
the time-delay and transmission states can be used to find those states out
of both eigenstate sets (time-delay and transmission eigenstates) that excite
only one single branch.
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Fig 3.8: (a),(b) Spatial (left) and angular distribution (right) at the input aperture
(located at = = 0 between y/\g =~ 37 and y/\g ~ 62) of the transmission (red) and
time-delay state (blue) shown in Fig. 3.7(0) and Fig. 3.7(r), respectively. The different
widths of the distributions indicate that the transmission state is likely to excite more
than one branch at once. (c),(d) Spatial (left) and angular distribution (right) of the
time-delay (blue) and transmission (red) state shown in Fig. 3.7(j) and Fig. 3.7(i).
From the widths of the spatial distributions shown in (c) we can conclude that the
transmission state is more likely to excite only one single branch, which is confirmed by
the wave plots. The widths of the normalized distributions are quantified by the interval
around the maximum value of the distribution (indicated by the vertical dashed lines)
in which 60% of the distribution lies.

Following the above three steps (i)-(iii), which notably rely only on the experi-
mentally accessible transmission matrices ¢, we obtain well-separated branch states
(see all states in Fig. 3.7 with a black text label) that stay collimated through-
out the entire scattering region and that feature an average transmittance of over
89% into one of the designated seven output regions. These results show that
our method leads to a channeling of waves through the disordered region and to
a well-controlled branched flow. An interesting detail that we emphasize here is
that our approach not only yields a single state for each individual branch but, in
fact, also states that propagate along the same branch but with a higher transverse
quantization; see, e.g., Fig. 3.7(c),(f),(h),(1),(n),(r) [65].

To underscore the non-trivial nature of these collimated branch states that we
identify here, we inject several of the states shown in Fig. 3.7 into a clean waveguide
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Chapter 3 Time-delay operator and particle-like states 69

without any disorder. The results are displayed in Fig. 3.9, showing that these
states feature a considerably reduced collimation as compared to the case including
the disorder (see figure insets). This observation demonstrates that the states we
identify here do not just rely on a trivial injection with a narrow angular distribution
at the input and that the disorder plays a crucial role for the states’ collimation.

e L 1
(©) (d)
S

Fig 3.9: (a)-(d) Eigenstates from Fig. 3.7(i),(k),(m),(q) injected into an empty waveg-
uide without the disordered refractive index. The fact that removing the disorder refrac-
tive index leads to a defocusing demonstrates that the formation of collimated branch
states crucially relies on the presence of the underlying disorder landscape. The blue
bars indicate the region where the branch exits the scattering region in the presence of
the disorder (see insets).

In a last part of this study, we also demonstrate explicitly that our collimated
single-branch states allow for the transmission of pulses along a branch. The fre-
quency stability that is necessary to allow for a stable pulse propagation is exper-
imentally shown for particle-like states in the last section in Fig. 3.4. Thus, we
expect that the propagation of a pulse should also be possible in our branched
flow system. Consider here, as an example, the time-delay eigenstate shown in
Fig. 3.10(a) that propagates along a certain branch. Taking a superposition of this
branch state at different frequencies to form a Gaussian wave packet, we obtain a
pulse propagating along the selected branch as shown in Fig. 3.10(b)-(d) at three
different time-steps (t; < t2 < t3). We observe that the pulse transits the system
while staying on the selected branch throughout the entire transmission process.

In summary, this section demonstrates how to control the flow of waves through
a correlated and weak disorder refractive index landscape. Such systems give rise to
branches along which incoming waves travel through the disorder. We introduce a
method that allows us to inject waves in such a way that almost all the flow travels
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Fig 3.10: (a) Time-delay eigenstate propagating along one single branch in a disorder
landscape [to prove the general applicability of our approach, a different disorder real-
ization was used as in Fig. 3.6(a)]. (b)-(d) Pulse propagating along the branch shown
in (a) at three different time-steps (¢; < to < t3). The pulse remains spatially confined
while traversing the disorder along the branch shown in (a). The Fourier spectrum of
the pulse is Gaussian-shaped with a standard deviation of o ~ 0.034k,, with kq being
the wave number.

along a single branch alone. This non-trivial finding can even be extended to the
temporal domain, as we show by creating pulses that remain on a single branch
throughout the entire transmission process. Implementing such concepts in optics
requires only a small sub-part of the transmission matrix and is thus within reach
of present-day technology. We expect our work to be generalizable from scalar to
vector waves and from two to three dimensions, where it may give rise to interesting
applications in communication and imaging technology.

In the previous two sections we show that eigenstates of ¢, which are states that
are by construction robust with respect to changes of w, can have very interesting
properties, like having a particle-like wave function. In the next chapter we take
the concept of principal modes and time-delay eigenstates to a new level such as
to produce states that — instead of being insensitive with respect to a frequency
variation — are invariant with respect to changes in system configurations, like a
local shift of a designated scatterer inside the disordered medium. We show in the
next chapter that with eigenstates of such a corresponding operator we can transfer
a well-defined momentum onto a specific target buried inside a disorder. Moreover,
we show that we can also generate states that apply to a target a well-defined
pressure or torque as well as to achieve a focus inside the target.
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Chapter 4

Generalized Wigner-Smith operator®

While the time-delay operator and principal modes have already led to numerous
insights, we now introduce a new approach in which we generalize the Wigner-
Smith operator by using derivatives with respect to different parameters than the
frequency. In Eq. (3.1) we can simply substitute w — « and obtain what we call
the Generalized Wigner-Smith (GWS) operator

0S(«)
oo’

Qo = —157Ha) (4.1)
featuring eigenstates whose output patterns are stable to first order with respect
to changes of the parameter «, in the same way as principal modes are invariant to
changes of the incident frequency w. We emphasize here that the parameter o can
literally be any parameter the scattering matrix depends on, such that Eq. (4.1)
defines a whole new class of operators that inherit the favorable characteristics of
the Wigner-Smith time-delay operator which can now be seen as just one example
of GWS-operators with @ = w. In order to give the eigenvalues of Q,, TOEZ), a
physical meaning, one can proceed by analogy: the eigenvalues 759 of the Wigner-
Smith operator @), (involving a derivative with respect to the frequency w) are the
time-delays of the corresponding eigenstates. As time and frequency are conju-
gate quantities (in the sense used for a Fourier transform), the GWS-operator Q)
(involving the derivative with respect to a) should have eigenvalues 74" that are
the conjugate quantity to a. Important to mention is the fact that the quantity
a can not only be a global parameter that describes the entire scattering system
(like the frequency w), but also a local parameter such as the position of a single
scatterer. For this specific case where « is the position of a scatterer, i.e., a = z,

8 The results presented in this chapter were obtained in collaboration with my former colleague
Philipp Ambichl, my current colleagues Michael Horodynski, Matthias Kithmayer and Kevin
Pichler, Ulrich Kuhl and his former PhD-student Julian Bohm from the Université Cote d’Azur
and Yan V. Fyodorov from King’s College in London. The theoretical analysis was carried
out by Philipp Ambichl, Michael Horodynski, Matthias Kiihmayer and myself, whereas the
numerical simulations were mainly performed by Matthias Kiihmayer. The experiments were
conducted by Julian B6hm and Kevin Pichler under the supervision of Ulrich Kuhl. The text
and the figures in this section partially go back to our joint publications [69, 70].
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the corresponding GWS-operator would give eigenstates whose eigenvalues have
the dimension of a momentum.

In the following we study these new operators (), in a waveguide system as
shown, for example, in Fig. 1.1(c), where a designated target is surrounded by a
disorder formed by randomly placed scatterers. We demonstrate that by choosing
different parameters a such as the target’s position, radius, angular orientation or
refractive index, the corresponding eigenstates of (), apply to the target a well-
defined momentum, pressure or torque as well as to achieve a focus inside the
target. '

In order to understand the eigenvalues of the GWS-operator (), TOEZ), we can use
the following relation which is derived in the supplemental material of Ref. [70]:

(11Qalu) = 56l Tl (42)

where |u) is an arbitrary incoming wave state written as a ket in the bra-ket notation
(typically a vector @ in a certain basis), [¢,) is the resulting wave field inside the
scattering system (typically a spatially resolved field distribution) and V' is defined
as V = k2n?(x,y) with kg being the vacuum wave number and n(z, y) the refractive
index. Equation (4.2) is a very powerful tool since it relates asymptotic quantities
such as @, and the incident wavefront |u) with local quantities such as the wave
function [¢,) and the variations of the refractive index landscape 0V/0a. Please
note that the derivative with respect to v in Eq. (4.2) does only act on V and not on
the wave function |¢,). Using Eq. (4.2) one can ask the question on how to shape
the incident wavefront |u) to manipulate a target in a specific way (via 0V /0a). In
the following we choose for a different parameters of a target and study the physical
meaning of the eigenvalues of the corresponding GWS-operator ), with the help
of Eq. (4.2). Specifically, we show in the following that a small rotation of a target
yields eigenstates that transfer a well-defined angular momentum onto the target;
shifting the target’s position o = 7 provides the momentum transfer; varying the
radius of a circular target & = R grants control over the radiation pressure exerted
on it; and changing the value of the dielectric constant o = ¢ = n? determines the
wave intensity stored inside the target.

We investigate the different GWS-operators @), directly in the experiment using
a rectangular microwave waveguide as shown in Fig. 4.1, similar to the one used in
Section 3.1. The setup gives access to the full scattering matrix and allows for the
measurement of the electric field through holes in the top plates. Eight antennas on
both ends of the waveguide allow to inject any desired wavefront into the scattering
region. The operation frequency is 12.75 GHz, resulting in a wavelength of \y =
2.35cm at which eight transverse modes can propagate. The disorder is simulated
by randomly placed Teflon scatterers around the target which is located in the
middle of the setup.
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Teflon scatterers

Target scatterer

Mode profiles

Fig 4.1: lllustration of the waveguide geometry used in the experiment. The top plate
(not shown) features a grid of small holes through which an antenna can enter the
system to measure the electric field. Red cylinders indicate the randomly distributed
circular Teflon scatterers (dielectric constant ¢ = 2.0736 and radii 2.55 mm or 11 mm)
and the green cylinder in the middle indicates a target scatterer, whose material, size and
shape is chosen specifically for each GWS-operator we investigate. The red-shaded area
indicates the region shown in Figs. 4.2-4.5. Eight antennas on each side (not shown)
are used to measure the full scattering matrix and to inject the desired scattering states.

In the first example we choose the orientation angle ¢ of a complex-shaped metal-
lic target embedded in an empty waveguide to be the parameter «, see Fig. 4.2(a).
In order to calculate the corresponding GWS-operator Q, = —i157'95/9p, we
measure the scattering matrix for three different angular positions of the target
¢ = +5° and 0° to approximate the derivative 0S/0p with a finite difference. As
analytically shown in the supplemental material in Ref. [70|, the eigenvalues of Q).

are linear proportional to the torque M, the corresponding eigenstate ﬁg’) exerts
onto the target:

MG = [[4(6) % ) 0 (@) Pluds = 2rl). (43)

where the integral is taken along the target’s boundary described by the curve C
and parameterized by ¢ The expression 7(¢)|071(¢)|* describes the normal force at
every point of the boundary exercised by the electric field ¥ and m, (¢) is the lever
(the part of the distance from the boundary to the target’s center of mass that is

normal to 7). Thus, Eq. (4.3) directly connects the eigenvalues of @, ﬂp(i), with the

torque the corresponding eigenstate @’g) transfers onto the target. We now inject
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the eigenstate of (), with the largest eigenvalues T@(i) through the antennas into the
waveguide and measure the electric field, see Fig. 4.2(a). We can clearly see that
the wave focuses onto the target’s corners, where the lever is maximal and thereby
applying the largest torque. In analogy to Fig. 4.2(a), we show in Fig. 4.2(c) the
eigenstate of (), with the largest eigenvalue for a square target embedded inside
randomly distributed scatterers. Even for such a multiply scattering system, the
resulting wave state focuses onto one corner of the square, thus applying a well-
defined torque onto it. For comparison, we show in Fig. 4.2(d) the eigenstate with
a small eigenvalue where we can see that the wave’s intensity is negligibly small at
the target’s boundaries which is equivalent to applying no torque onto it.

One can observe in Fig. 4.2(a) that the displayed eigenstate exerts not only a
torque, but also a force that moves the target in a certain direction. If one is
interested in rotatlng the target without moving its center of mass, one can choose
two eigenstates ugp1 and ugo of (), that both apply a high torque to the target
in the same direction, but whose linear momentum transfer has opposite signs. In
Fig. 4.2(b) we can see a wave state resulting from a superposition of such two states,
ie., §= ﬁél) +ﬁé2), for which the linear momentum transfer disappears by focusing
onto both of the opposite corners of the target.

In a next step we investigate the GWS-operator where the parameter « is the
radius R of a metallic circular scatterer. With Eq. (4.2) we can find again a relation

between the eigenvalues of Qg, T}gi), and a meaningful physical quantity. To be

more precise, we can show that the eigenvalues T}gi) are linear proportional to the

radiation pressure P the corresponding eigenstate u }(g) applies to the target:

P = / 9,000 = R)Pdp = —27{R, (4.4)

where the integral is taken along the boundary of the circular scatterer with radius 12
and v is the electric field distribution of the corresponding eigenstate g). In other
words, the eigenstates ﬁg) apply a well-defined radiation pressure P to the dielectric
target scatterer such that the radiation pressure can be maximized by injecting
the eigenstate with the largest eigenvalues into the system. The experimentally
measured eigenstate with the largest eigenvalue can be seen in Fig. 4.3(a), where
the circular metallic scatterer is surrounded by randomly placed Teflon scatterers.
We can clearly see that the state has a strong intensity build-up on all sides of
the scatterer. In order to emphasize the ability of applying a large pressure onto a
target, we shown in Fig. 4.3(b) an eigenstate with a small eigenvalue which clearly
avoids the target.

The next property of a target that we want to investigate now is the dielectric
Constant e. We find that the corresponding GWS-operator (). yields eigenstates
uE ) whose eigenvalues 79 are proportional to the integrated intensity I of the wave
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Fig 4.2: Intensity of the electric field for eigenstates of @), for a metallic target
(white outline) for (a,b) an asymmetric target in an empty waveguide and for (c,d)
a square target in a waveguide filled with randomly placed scatterers. The region
displayed here corresponds to the red-shaded area in Fig. 4.1. (a) Intensity of the
eigenstate corresponding to the largest eigenvalue Tgo(max) showing a focus on the point
of maximal lever, thus transferring the most torque. (b) Intensity of a superposition
of the eigenstates with the two largest eigenvalues, that transfers only angular, but
no linear momentum to the target. The corresponding intensity builds up on both
of the most protruding parts of the target. (c,d) For a metallic square target inside
the disordered waveguide, we compare the eigenstates with the (c) largest eigenvalue

74| & 5.85 to an eigenstate that has a (d) small eigenvalue |7, | ~ 0.2,

field inside the target. Specifically, we find

1@ = / W y)PdA = 279 /12, (4.5)

where the integral domain A is the area of our target scatterer, for which ¢ is
changed in the differentiation of Q. = —iS™'9S/0e and 1 is the electric field

distribution of the corresponding eigenstate @.”. Equation (4.5) tells us that if
we want to maximize the intensity of a wave inside a target, we can just inject
eigenstates of (). into the system with large eigenvalues. Transferring this idea
to our microwave experiment, we implement an effective change in the dielectric
constant necessary to calculate Q. (from e = 1.4884 to 1.7689 to 2.0736) by varying
the height (from h = 4 to 6 to 8mm) of the target Teflon cylinder with radius
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Fig 4.3: (a) Intensity distribution of a scattering state obtained by injecting the eigen-

vector of Qi with the largest eigenvalues |7-1§max)| ~ 709 into the waveguide showing

a strong focus on the boundaries of the target (radius R = 14mm). (b) Intensity dis-
tribution corresponding to an eigenstate of Qr with a small eigenvalue |7_}%small)| ~ 86.
The measured experimental data verify our prediction that we can tune the degree of

pressure applied to the target by choosing eigenstates with different eigenvalues.

R = 3.75mm. In Fig. 4.4(a) we display the intensity distribution corresponding
to the injection of the eigenstate @™ with the largest eigenvalue which shows a
strong intensity build-up inside the chosen target. Injecting, in turn, an eigenstate
with a small eigenvalue [see Fig. 4.4(b)| yields a wave distribution which clearly

avoids the target — in perfect agreement to our theory.

Fig 4.4: (a) Intensity distribution of the eigenstate of (). with the largest eigenvalue

’ 7_E(max

)\ ~ 1.96 showing a clear intensity build-up inside the circular target. (b) Inten-
sity distribution of an eigenstate corresponding to a small eigenvalue |7'5(Smau)| ~ 0.46
showing that the wave clearly avoids the target.

In a last step we consider the GWS-operator we obtain when the parameter « is
the position of a target, i.e., the corresponding eigenvalues have the dimension of
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Chapter 4 Generalized Wigner-Smith operator 77

a momentum. For a metallic target with radius R, the result reads

@)

) R 21 2
Fla1 =it [ (5n%) oto = Py = - (46)

sin ¢

where the direction of the shift and the corresponding momentum transfer is pa-
rameterized by the unit vector 77 and the integral is performed along the boundary
of the circular target. The symbol F' is chosen since in the stationary case the
momentum transfer is equal to the average force. In practice this means that we
are able to find states that receive a well-defined momentum shift when spatially
moving one scatterer in a certain direction 7. Until now we only consider the case
where we have access to the full scattering matrix S, however, it is experimentally
very challenging to measure the entire scattering matrix. We show now that the
GWS-concept, in particular the operator ()5, works also for the case where we
have only access to parts of the scattering matrix [69]. Specifically, we consider
the same microwave setup as shown in Fig. 4.1 but now at an operation frequency
of 15.5 GHz where 10 transverse lead modes can propagate that can be controlled
with 10 antennas placed in the input lead. For this experiment, we restrict our-
selves to the measurement of the 10x 10 transmission matrix ¢ and consider the case
where we shift the metallic target scatterer in transverse direction, i.e., n = y. In
analogy to the time-delay operator (), we use now its non-Hermitian counterpart
q, = —it~'0t/dy involving only the transmission matrix ¢. In Fig. 4.5(a) we can
see the intensity distribution of the scattering states associated to the eigenstates
with the three largest eigenvalues. The displayed intensity profiles demonstrate
clearly that the states with the largest eigenvalues show a strong intensity build up
at one side of the target, thus applying a large momentum in y-direction onto it.
The eigenstates with the smallest eigenvalues, in turn, produce intensity patterns
with negligible intensity in the vicinity of the target, see Fig. 4.5(b). Since the
construction of the operator g, involves only the transmission matrix, its complex
eigenvalues no longer correspond directly to the transferred momentum in Eq. (4.6).
However, there is still a strong correlation between these two quantities as shown
in the supplemental material of Ref. [69]. For the case of singular transmission
matrices, where the ordinary inverse of ¢ cannot be calculated anymore, we can
again apply the procedure described in appendix A.4 to still calculate the operator
- |

The relations between the eigenvalues TOEZ) and the physical quantity they are
connected to in Eqs. (4.3), (4.4) and (4.6) are all derived for metallic targets. We
show in the supplementary material of Ref. [70] that similar relations can also be
derived for dielectric targets, which are still strictly linear.

We expect that our GWS-approach presented in this chapter can be particularly
useful for the community of optical micromanipulation. The key idea in that field is
that the field pattern of laser beams creates forces at the position of the target that
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can be used for very different purposes such as cellular manipulation [128, 129, fluid
dynamics [130], microrobotics [131] and for tests of fundamental physics [132, 133].
A critical challenge, especially for applications in biology, stems from the fact that
the target is often embedded inside complex media (e.g., tissue) or that the target is
arbitrarily shaped. With our GWS-concept we can overcome both limitations, i.e.,
we can micromanipulate an arbitrarily shaped target which can also be embedded in
a disordered environment. Thus, we expect that our work may serve as a guide-post
towards a new generation of micromanipulation experiments based on wavefront
shaping techniques.

(a)

40

@

(b)

- -

-

Fig 4.5: (a) Intensity distributions corresponding to eigenstates of ¢, with the three

largest eigenvalues |7'y(i)| ~ 96.9,81.6 and 66.9 showing a clear intensity build-up at one
side of the metallic scatterer resulting in a large momentum transfer onto it. (b) Inten-
sity distributions corresponding to the eigenstates with the three smallest eigenvalues
’Ty(l)’ ~ 1.9,2.1 and 6.0 which clearly avoid the scatterer to transfer the least amount
of momentum onto it.

In the last chapter of this thesis we introduce the idea of a random anti-laser,
which is the time-reversed process of a random laser. This concept combines both
core topics of this thesis — disorder and absorption — in an elegant way allowing
us to perfectly absorb an incoming wave through a lossy element embedded in a
complex scattering environment.
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Chapter 5

Random anti-lasing through
coherent perfect absorption”

One of the most important inventions in modern physics is that of the laser. In its
simplest form, a laser consists of a gain medium that is placed inside a resonator.
An incident light beam gets trapped inside the resonator and gets amplified each
time it passes the gain material. At some specific gain value (lasing threshold),
the medium starts to emit coherent radiation without sending in light from the
outside. In the framework of scattering theory, this scenario can be described as
follows: in systems without gain and loss, the scattering matrix S features poles
and zeros in the extended complex plane of frequency v. Poles are located in the
lower half [Im(v) < 0] and zeros in the upper half [Im(v) > 0] of the complex plane,
symmetrically around the real axis. Adding gain to the system moves the poles
up towards the real v-axis until one pole hits it. At this specific frequency v, the
laser starts lasing. Also the opposite is possible: adding loss to the system drags
the zeros down until one reaches the real axis. At this frequency and absorption
strength, incoming light gets perfectly absorbed, resulting in a so-called coherent
perfect absorber (CPA) [3, 4, 134, 135].

Such coherent perfect absorbers can be seen as the time-reversed process of a
laser and have been experimentally realized in several setups [4, 135-142|, with
the notable exception of a CPA in a disordered medium. Such a “random CPA”
would be the time-reverse of a “random laser” [40, 71|, in which light is resonantly
enhanced by multiple scattering inside a disorder. Realizing such a random CPA is
challenging because the wavefront emitted by a random laser is spatially complex
and requires the time-reversing of this light field in all its degrees of freedom. Here,
we present the first experimental realization of such a random CPA (or random
anti-laser) in a microwave waveguide, similar to the setup used in the last chapters.

9 The results presented in this section were achieved in collaboration with my colleagues Kevin
Pichler, Matthias Kithmayer, Philipp Ambichl, and Ulrich Kuhl, Julian Béhm from the Univer-
sité Cote d’Azur. Kevin Pichler carried out the experiment that was designed by Julian Béhm
under the supervision of Ulrich Kuhl. Matthias Kiihmayer performed the numerical tasks
whereas the theory was developed by Philipp Ambichl, Matthias Kiihmayer, Stefan Rotter
and myself. The text and the figures partially go back to our joint publication [7].
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The system in which we investigate the random CPA is a microwave waveguide
as shown in Fig. 5.1. The operation frequency between 6 GHz and 7.5 GHz allows
four transverse modes to propagate in the waveguide. In order to control all degrees
of freedom of the wave — which is necessary for the realization of a CPA — we place
four antennas on each end of the waveguide. Inside the waveguide we randomly
place 60 cylindrical Teflon scatterers to simulate the disorder. In the middle of
the scattering region we insert an antenna, which provides a localized and very
strong loss channel. In order to change the degree of loss in the system, the length
of the absorbing antenna inside the waveguide can be changed. The goal of the
experiment is to find the correct absorption strength of the central antenna and
the correct frequency and shape of the wavefront (in amplitude and phase) injected
through the eight antennas such that the incident wave scatters in the disorder to
get finally perfectly absorbed by the central antenna without any back-reflections.

Absorber

Teflon scatterers

Central antenna

Absorber

a*’?a—ﬂ:a:,% ) wanlm nas

Fig 5.1: Microwave waveguide where waves can be injected through the eight antennas
(four on each side) connected to |IQ-modulators to independently control amplitude and
phase of each antenna signal. The waveguide has a width of 10cm such that at an
operation frequency between 6 GHz and 7.5 GHz four transverse modes can propagate.
Absorbers are placed at the ends of the waveguide to avoid back-reflections. The central
scattering region contains a disorder formed by 60 randomly placed Teflon scatterers
with radius » = 2.55mm. In the middle of the scattering region a monopole antenna
is inserted through the top plate of the waveguide (not shown). This central antenna
introduces loss into the waveguide that can be tuned by varying the length of the
antenna inside the waveguide. This setup allows for the measurement of the scattering
matrix S of the system by measuring the field in the space between the scattering region
and the external antennas using a movable antenna (not shown).
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Chapter 5 Random anti-lasing through coherent perfect absorption 81

The central quantity that allows us to find the correct wavefront for a CPA
is the scattering matrix S. A random CPA-state would be an eigenstate of the
scattering matrix S with eigenvalue 7cpa = 0 such that Sucpa = 6, where Ucpa i
the incoming radiation field and the empty 0 field is the outgoing one. In order to
obtain the CPA-state icpsy we measure the scattering matrix S of the system in
a frequency interval broad enough to contain many zeros of S and for a number
of loss values of the central absorbing antenna that are strong enough to drag the
zeros with the smallest imaginary parts down to the real r-axis. In a next step,
we evaluate the eigenvalues of all these different scattering matrices S and identify
the parameter configuration for which we get the smallest eigenvalue. Finally, we
adjust the frequency and the absorption strength to the point at which CPA occurs
and inject the eigenstate corresponding to this small eigenvalue into the system and
evaluate the degree of absorption.

Following the above protocol, we end up with a scattering state that gets absorbed
by 99.78%. In Fig. 5.2(a) we show the ratio between the outgoing and the incoming
intensity I,y /I of one specific CPA-state as a function of the frequency v (blue
line). We can see a very pronounced minimum at the frequency where the CPA-
state was evaluated, which is a first revealing hallmark of a CPA.

In the following we perform a number of tests to make sure that we have, indeed,
realized a disordered CPA rather than a coherent enhancement of absorption (CEA)
[5] or one of the previously employed focusing schemes [36, 143-145]. First of all,
since we expect our CPA-state to be mainly absorbed by the central absorbing
antenna, the time-reversed state should be a state that features no back-reflections
when being injected through the central absorbing antenna. Such a time-reversal
is easy to implement in our setup and we find indeed, that the signal injected
through the central absorbing antenna shows no reflections back into the antenna
at the target frequency, see Fig. 5.2(a) red dashed line. The observed dip is slightly
shifted (by 0.025%) with respect to the frequency of the CPA found before because
of the weak global absorption caused primarily by the absorption in the metallic
plates on the top and bottom of the waveguide.

In a second test, we study how the CPA minimum changes as a function of the
coupling strength of the central antenna. As described above, a CPA requires a
zero of the scattering matrix S to be located exactly at the real frequency axis.
Increasing or decreasing the coupling strength of the antenna would move this zero
away from the real axis such that we should find a reduced amount of absorption
of the CPA-state not only when we reduce the coupling strength but even if we
increase it. The coupling strength of the central antenna can easily be changed
by varying the length of the central antenna inside the waveguide. We, indeed,
find that not only a smaller, but also a larger amount of loss (i.e., the central
antenna reaching deeper into the waveguide) leads to a dramatic decrease of the
CPA minimum, see Fig. 5.2(b). We find that an antenna extending 7mm into the
waveguide yields the optimal CPA-state.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

{a) Scattewing signatures of a CPA {b) External antennas Central anienna
i bemerrees brrennnn — : : : Tl
mn' mw'
Mo - ==
b #
- J
1 P 1 " H 1”
CPA frequancy 1'|, !
1
1 [l 1
i0 E ] i0
H Toct 1y a
£ 7.0 mm r 7.0 mm 1 i IR
bl i 7.5 mm 7.5 mm Ill
g e : £.0 8.0 mvn f ™
- |R| :
68 a7 (2] 69 Ta .1 1.2 T3 7.4 T.10 788 Toa 7.0 T.18
Fraquancy [GHZ] Fraquency [GHz] Fraquancy [GHz]
ﬂt] Ampliluds deluning Phass detuning
10" 10
B o
10 o / 10
= -\-'\"""-H.._\_\_\\ — )
Z o 4
2 -
= b ,.-"#/ 1‘\""'l. ."llr
E 10§ \ 3 E I'-, i F 10
Ant. 2 \ Al 2 |
Anl_ 4 \ ' Aal 4
107 4 AnL. & \\'/' 3 1 Al 6 J e
- - ' T v
[ 1 a -a ] n
AlArps, A

Fig 5.2: (a) Ratio I,y /I, of a CPA-state as a function of the frequency v (blue line),
where [, is the incoming intensity injected through the external antennas (measured
in the space between the external antennas and the disordered region) and I,y is
the corresponding outgoing intensity. The red dashed line is the reflection signal |R|?
measured when the microwave signal is injected through the central antenna. Both
curves show a pronounced minimum at the CPA-frequency around 7.1 GHz that depends
very sensitively on the frequency. (b) Ratio I,/ (left) and reflection coefficient |R|?
(right) as a function of the frequency v for different lengths of the central absorbing
antenna. Starting with an antenna length of 6 mm, the CPA absorption dip in both
Iout/Iin and |R|? first deepens when increasing the antenna length until a minimum is
reached for an antenna length of 7mm. Increasing the loss of the antenna by further
increasing its length results in less absorption efficiency and a larger reflection signal.
(c) Sensitivity of the CPA minimum on detunings of the amplitude A (left) and phase ¢
(right) of antenna 2, 4 or 6 while the signals at all other antennas are injected as required
for the CPA-state (amplitude Acps and phase ¢cpa). We can see that the absorption
efficiency of the CPA-state is very sensitive to changes of the CPA configuration.

In a next test we study the sensitivity of the CPA with respect to changes in the
input wavefront. Specifically, we show what happens when either the amplitude or
the phase of just one of the eight input antennas is detuned away from the perfect
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Chapter 5 Random anti-lasing through coherent perfect absorption 83

CPA-state ticpa. In Fig. 5.2(c) we show that the CPA dip (i.e., the minimum of
the ratio Iy /i) gets dramatically shifted upwards by factors up to approximately
10% when the phase (right panel) or the amplitude (left panel) of antenna 2, 4 or 6
are detuned.

In a fourth test we study the wave function of the CPA-state around the absorbing
antenna, since we expect that the corresponding flux as given by the Poynting
vector S is solely pointing inwards close to the antenna. The field is, however,
experimentally not accessible in the direct vicinity of the central antenna, such
that we reconstruct the entire scattering system numerically with a finite-element
code (for details on the simulation see methods section in Ref. [70]). We find
that the numerically simulated CPA wave function has a 95.6% correlation with
the experimentally realized one such that we can use the simulated CPA-state to
study its field in the vicinity of the absorbing antenna, see Fig. 5.3(a). We find,
indeed, that the corresponding flux pattern is directed solely towards the absorbing
antenna, see inset in Fig. 5.3(a).

In a last test we verify that the transmission into the central absorbing antenna
has a maximum at the CPA-frequency, as shown in Fig. 5.3(b). The CPA-state
gets thus mostly absorbed by the central antenna and is only weakly affected by
the global loss in the waveguide.

To summarize, we present the first experimental realization of a random CPA
(or random anti-laser), which provides the proof-of-principle that coherent perfect
absorption can also be realized in disordered structures. The high sensitivity of
the CPA-state with respect to the incident wavefront can be exploited, e.g., for
designing tunable absorbers whose degree of absorption can be controlled by a
phase-detuning of the incident wave. Our approach requires only the knowledge of
the scattering matrix of the system — no information of the inner structure of the
medium is necessary. We expect that our results serve as a bridge between the two
communities of wavefront shaping and non-Hermitian physics.
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Fig 5.3: (a) Simulated intensity of the CPA-state in the disordered waveguide. The
white arrow marks the position of the central absorbing antenna. In the vicinity of the
antenna the time-averaged Poynting vector S o (i (0/0.0)*, 1 (0/D,0)*, 0)T (see
inset) only has inward pointing components, where the semi-transparent circles in the
inset mark the scatterers and the filled white circle represents the central absorbing
antenna. (b) Measured transmission of a CPA-state into the absorbing antenna. Close
to the CPA-frequency vcpa, where the absorption of the CPA-state is most efficient,
the transmission into the absorbing antenna has its maximum. The plot compares the
normalized transmission |Tyorm|? (normalized with respect to its maximum within the
measured interval) into the absorbing antenna with the ration I, /. As reference
measurement we also investigate the transmission 7 into the absorbing antenna of
the same CPA-state but in the absence of any scatterers in the waveguide. Since the
CPA-state is customized for each specific scatterer configuration, the transmission into

the absorbing antenna is strongly reduced when the scatterers are removed.
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Summary and outlook

As we show in this thesis, we can overcome the detrimental effects of loss and
disorder and take advantage of them either by designing the corresponding loss
and disorder landscape in a system or by shaping the incident wavefront.

We first introduce the concept of constant-intensity waves which are waves that
get perfectly transmitted without any back-reflections or intensity variations even
in the case of localizing media if a proper gain and loss distribution is added. We
study the frequency stability of such constant-intensity waves and demonstrate
how to design unidirectionally invisible structures by engineering their gain and
loss distribution. In order to do so, we tune the transmission phase of a constant-
intensity wave to match exactly the phase a wave would accumulate in a uniform
structure. Extending this concept to three dimensions would result in an invisibility
cloak, which would not guide the light around a given object (as in traditional
cloaks) but rather right through the object, without, however, distorting the wave
at inhomogeneities. We show that the general frequency stability of constant-
intensity waves even allows for a pulse to propagate without diffraction through a
disordered constant-intensity structure. We transfer the idea of constant-intensity
waves to discrete systems allowing us to implement them in an acoustic setup.
Specifically, we present the first experimental realization of constant-pressure waves
in a one-dimensional disordered acoustic waveguide, thus nicely demonstrating our
concept. Generalizing the idea of constant-intensity waves also allows us to create
scattering states with any predetermined intensity profile rather than a constant
one. We expect this method to fall on a fertile ground since controlling a wave’s
intensity profile is an important task in many fields of wave physics. Furthermore,
we show that constant-intensity waves can be extended to full two-dimensional
systems allowing us to study a much broader class of structures.

In the context of wavefront shaping, we work with the Wigner-Smith time-delay
operator and its eigenstates, the so-called principal modes. They have the remark-
able property that their output pattern is robust to first order against changes of
the frequency. Some of these principal modes have the counterintuitive property of
having a particle-like wave function. We successfully implement such particle-like
states in a microwave cavity showing that they can be used for efficient, focused
and robust transmission through complex environments. Moreover, we numerically
show how to address individual branches of the complex propagation pattern evolv-
ing when waves propagate through a correlated disorder. This separation works by
injecting time-delay eigenstates into the system since different branches can be asso-
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ciated to different time-delays. We expect that our work will soon be implemented
in the experiment where branched flow was recently observed.

The functional principle of the Wigner-Smith time-delay operator involving a
frequency derivative of the scattering matrix can be generalized to a whole new op-
erator class that involves the derivative of the scattering matrix with respect to any
parameter of the scattering system. Choosing different parameters, we demonstrate
in a microwave experiment that these new operators allow us to create wave states
that transfer onto a target a well-defined momentum, pressure or torque as well as
to achieve a focus inside the target. The target can be arbitrarily shaped and can
even be surrounded by a strongly disordered environment. We are confident that
the results presented here can be particularly useful for optical micromanipulation
where manipulating a target with light fields is essential. We envision, for example,
developing a new concept for the so-called optical tweezer that allows us to navigate
a movable object along a predetermined path through a disordered environment by
directing well-defined wavefronts onto the medium from the outside. Using a similar
concept, one could also set up a protocol for reconstructing images of objects which
are hidden inside a strongly disordered medium. While imaging techniques are
usually limited by the scattering strength of the surrounding medium, our concept
has the potential to work even in the strongly scattering regime.

In the last part of this thesis we show that carefully shaping the incident wavefront
impinging onto a disordered lossy structure can lead to perfect absorption of the
wave’s incoming flux. This phenomenon of coherent perfect absorption in disordered
media is studied for the first time in the experiment using a microwave setup. Our
approach requires only the knowledge of the scattering matrix — no information
on the inner structure of the medium is necessary. Our work can be relevant
for practical applications, including perfect focusing of electromagnetic signals and
sound fields in complex environments, such as in office spaces or in biological tissue.

We are confident that with the results presented in this thesis we could contribute
to changing the prevailing view that loss and disorder are solely detrimental ingre-
dients of photonic structures that have to be stayed away from. Loss and disorder
can indeed be useful tools for certain tasks and they still have considerable potential
for innovation in photonics.
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Appendix

A.1 Derivation of the Helmholtz equation

In the following we derive the equations describing the time-harmonic electric field
of a light wave propagating in an inhomogeneous, linear and isotropic medium. We
start from the full Maxwell’s equation (in SI units)

V- D(7,t) = py(7 1), (A1)
V- B(Ft) = 0, (A.2)
6xﬁmn:-%§m@, (A.3)
. L . 0 -

V x H(7 1) = jy(7.1) + 5 D7 1), (A.4)

where D is the electric flux density (or displacement field), E the electric field
strength, B the magnetic flux density, H the magnetic field strength, jf the free
current density, py the free charge density and 7 = (x,y,2)" the position vector.
First we assume that there are no free charges (p; = 0) and no free currents (7; = 0).
Assuming furthermore that the medium is linear, the relation between D and E,
and B and H is given by:

) ) t) by
D(F, t) = 6087,(7_", t)E( ) = £&p 8,321(7:’, t) Er 22(7;), t) €r,23(F7 t) E(F, t), (A5)
t t) t)

(7t /
B(7,t) = popr (7, 1) H(7, 1) = g ,ur,Zl(F: t)  proa(Tyt)  peos(Ft) | H(7, 1),
(7t (7t t

where €,(7,t) is the relative permittivity tensor, w,.(7,t) the relative permeability
tensor, g9 the (scalar) vacuum permittivity and j the (scalar) vacuum permeability.
In the following we only consider non-magnetic materials, i.e., p,.(7,t) = 1, with a
static relative permittivity, i.e., €,.(7,t) = €,(7). Depending on their permittivity
tensors, we can classify materlals into four groups: structures where the permittiv-
ity tensor is diagonal (but not proportional to the unit matrix) with three (two)
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88 A.1 Derivation of the Helmholtz equation

different elements are called biaxial (uniaxial) anisotropic structures, whereas struc-
tures without any symmetry are simply called anisotropic. In this thesis we only
consider isotropic media, where the permittivity tensor is proportional to the unit
matrix such that the permittivity tensor can be replaced by a (position-dependent)
scalar, i.e., D(F,t) = eoe, (F,t)E(F, t).

Applying the curl operator onto Eq. (A.3) and using the vector calculus identity
V x (Vx A)=V(V-A) - V24, we get

V x [ﬁ « B(7, t)} —v [6 CB(7, t)} ~ V2E(F, 1)
t

0= = = =
= —a—V X B(7,t) = _MOEV x H(Tt), (A7)

derive the following expression:

—

V- E(Ft) = ———=—Ve, () - E(7,1)

&r(7)
= —Vn[e,(F)] - E(7,1). (A.8)

Inserting Eq. (A.8) and Eq. (A.4) into Eq. (A.7), we get

”? o L 0% 5
—uoﬁD(r,t) = —,uogga,,(r)@E(r,t).
(A.9)

éssuming a time-harmonic dependence of the electric field with frequency wy, i.e.,

E(7,t) = Ey(7)e“", we get the following equation for the (position-dependent)

electric field Ey(7):

= V{Vnle, (7)) - B )} - V2E =

2
— — 5 — 5 — o = W, - 5

—V{Vinle(7)] - Bo(7) } = V2 Eo = e, (%) Bo(), (A.10)

where we use ¢? = “0160 with ¢ being the speed of light in vacuum. Writing out this

vector equation into its components yields

0? 0? 0?
(@ + o + @) Eog (A.11)
wh 0 0 0 0
= C;) STEO,I % |:E07x% 11’1(87-) + E07ya—y 1n(€7-) + E[)’Z% IH(ST):| >
0? o o
(? + a—y2 + @) Eq,y (A.12)
wi 0 0 9, 9,
= _C_;)gTEO’y - a_y |:E0,x% IH(ET) + E07ya—y 1H(€T> + Eoyza 11](87.):| y
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82 82 82
- L~ 4+~ _\E Al
(8:62 + 0y? * 8z2) " )
2
wi 0 0 9 0
i |:E0,x% In(e,) + E’o,ya—y Infer) + Eoz5-1In(er) |,

where we skipped all arguments for better readability. In the following we show
how these equations simplify for one- and two-dimensional systems.

First consider the case where the relative permittivity (also called dielectric func-
tion) shows variations along only one direction (say x) and stays constant in y- and
z-direction. Due to this translation invariance in y- and z-direction, all derivatives
with respect to y and z vanish. Thus, Egs. (A.11)-(A.13) turn into

o 2 9 0

) = T 5 TE T A Em_l r y A.14
or2 " 028 0 ox [ 0% 9 n( >} ( )
82 2

@Egy = —%&}Eoy, (A15)
82 w?

@EO,Z = _C_ggrEO,m (A16)

which are three decoupled differential equations for each component of the electric
field. Choosing the incident field as, e.g., Ey = (0,0, Ey )T, the propagation of
the z-component of the electric field can easily be calculated with the Helmholtz
Eq. (A.16), whereas the x and y components stay zero.

For systems showing variations in two dimension (say = and y), ie., (7)) =
er(x,y), all derivatives with respect to z vanish. Thus, Eqgs. (A.11)-(A.13) turn
into

2 2 2
< ” 9 ) Eo, = —%@Eo,w _9 [onﬁln(er) + Eo,y%1n<er)} . (A17)

Ox? + Oy? ox ox
2 Wl 0 0 0

(@ + 8_1;2) E07y = —§6TE07y - 8_y |:E0,x8_x ln(gr) + EO,ya_y 1n(5r):| ’ (A18)
82 32 2

(% + 8_]./2) EO,Z = _%57‘E07z7 (Alg)

where Eq. (A.17) and (A.18) are coupled differential equations for the = and y
component, of the electric field and Eq. (A.19) is a decoupled equation for the z-
component. Choosing again the incident field as, Ey = (0,0, Ey.)T, the propagation
of the z-component of the electric field can easily be calculated with the Helmholtz
Eq. (A.19), whereas the x and y components stay zero.

For systems where the dielectric function shows variations in all three dimensions,
Eqgs. (A.11)-(A.13) do not decouple anymore such that the full vectorial problem
has to be solved.
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90 A.2 Transfer-matrix method

In this thesis, we only consider one- and two-dimensional systems where we study
the out-of-plane component Ej ., of the electric field. Labeling this field component
as ¢ = Ejy ., using the dispersion relation for electromagnetic waves wy = koc (with
ko being the wave number) and substituting the relative permittivity e, by the
square of the refractive index n, i.e., n?> = ¢,, we get the following version of the
Helmholtz equation used throughout this thesis:

0* 0 5 5
{@ + a7 + n*(z, y)ko] Y(z,y) =0, (A.20)
derived from Eq. (A.19) for two-dimensional structures and:
0? 5, \19
[@ +n (x)ko} P(x) =0, (A.21)

derived from Eq. (A.16) for one-dimensional systems.

A.2 Transfer-matrix method

In order to solve the Helmholtz Eq. (A.21) for a one-dimensional structure we can
use the transfer-matrix method [146]. This method divides a continuous (complex)
refractive index n(z) into a large number N of small slices of width d, assuming that
the refractive index is constant within each slice. This allows us to decompose the
electric field in the m-th layer with refractive index n,, into two counter-propagating

plane waves, . .
Vm = Epe™omm® 4 B! emikonm (A.22)

where E,, and E! are the complex amplitudes of the wave traveling to the right
and left side, respectively. At the interface between two consecutive layers, these
amplitudes have to fulfill the following boundary condition:

11\ (B [ 1 1 o
(”m —”m> (Efn> B (”m+1 —”m+1) (Eﬁnﬂ)' (4.23)

The propagation of the wave within one layer of width d leads to a phase accumu-
lation which can be described by the following matrix:

E,, elom 0 E,,
B0 )E e

where E,,, E! denotes the amplitudes at the beginning of the layer, E’m,E,’n the
amplitudes at the end of the layer and ¢,,, = kon,,d is the accumulated phase. Since
both operations (the propagation within one layer as well as the transition from
one layer to the next one) can be described by matrices, it is possible to derive the
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transfer-matrix M;, connecting the electric field at the beginning of the structure
(m = 0) with the electric field in the j-th layer (m = j), just by iteratively using
matrices in Eq. (A.23) and in Eq. (A.24):

E)\ _[e% 0 1 1\ /1 1
<E§'> _( 0 6_i¢j> <”j _nj) (”j—l —nj—l) (A.25)
6i¢1 0 1 1 - 1 1 E(] . MH M12 E(]
. 0 e~ ny —ny ng —No E(I] o My, Moo E(I] ’

where M,, are the elements of the matrix M;. Knowing the electric field at the
beginning of the structure, i.e., £y and £, one can easily calculate the electric field
in the entire structure using the transfer-matrices M; and Eq. (A.22).

On the basis of the transfer-matrix My, i.e., the transfer-matrix connecting the
first with the last layer, we can easily calculate the scattering matrix S, connecting
incoming with outgoing amplitudes,

Eq S11 512) < Eq )
= , : A.26
(o) = (50 52) (o, (4.26)

with the help of the following relations:

Moy, 1
g — 2 g
11 M227 12 M227
Mo Mo, Mis
Sop = My, — —272L g, — 12 A27
21 11 M22 22 M22 ( )

The elements of the scattering matrix S can be interpreted as following,

S = (: f,) : (A.28)

where r, t are the complex reflection and transmission amplitudes for injection from
the left-hand side of the structure, and »/,t" are the corresponding amplitudes for
injection from the right-hand side (see Chapter 1 details on the scattering matrix).

A.3 Transmission line model and constant-pressure
waves!?

The propagation of sound waves in an acoustic waveguide loaded with a set of
discrete inclusions at low frequency, where only one single mode can be excited,

10 The derivation of the transmission line model and the equations for the constant-pressure
waves shown in this section partially follow the bachelor thesis of Nikolaus de Zordo that I
co-advised [62].



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

(]
i
r

M YOU

92 A.3 Transmission line model and constant-pressure waves

can be described by the transmission line model [86]. The acoustic pressures p;
and volume flows ¢; in front of each inclusion are connected by

pi\ _ (1 Zj) <Aj Bj) (pj+1> A.99

<qg') (0 L)\C; Dj) \gj41)’ (A.29)
where Z; is the impedance of the j-th inclusion and M; = [A;, B;; C;, D,] is the
transfer-matrix connecting inclusion j and j + 1 (see Fig. A.1).

d

P »
< »

q1 qz n dn+1

A Tpl M, sz M, Tn My Fnﬂ ZR

Fig A.1: Schematic of the transmission line model where we consider a one-dimensional
chain of n inclusions with acoustic impedances Z;. The pressures p,; and the volume
flows ¢; are connected through transfer matrices A/;. The beginning and the end of
the system is connected to two semi-infinite leads with impedances Z; and Z.

In the experiment presented in Section 2.3, the transfer-matrix M; can be built
from three sub-matrices representing three segments of one tube section as can be
seen in Fig. A.2. These three sections have the length d;, ds and d — d; — dy with
corresponding impedances Zy, Z, and Z;. Our transfer-matrix M; is then just a
multiplication of the partial transfer matrices My:

A, B,
M; = (Cj Dj‘) = My(Zo, di) My(Z2, do) My(Zo, d — dy — da), (A.30)
with
_( cos(kox)  iZsin(kox)
M,(Z,x) = (isin(k‘ox)/z cos(koz) |- (A31)

The goal of Section 2.3 is to realize a constant-pressure wave in the experiment
described by the transmission line model, therefore, we make an ansatz for the
constant-pressure wave p;,

J
Dj+1 = €xp <ikro > ¢l> p1, (A.32)

=1

where ¢; is the accumulated phase in the j-th section. Just like the generating
function W (z) in our Cl-waves in Eq. (2.2), the phases ¢, can be chosen arbitrarily.
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Pa Ps Pc Po

2r 2rqy 2r;

dy d,
——

Fig A.2: One tube segment of the acoustic waveguide presented in Section 2.3 consist-
ing of three parts with lengths d; = 2.6cm, dy = 2.8 cm, d = 34.4 cm and corresponding
impedances Zy, Zo = S/(S—S5)Zy with S = 7r? = 40.7cm? and Sy = 773 = 37.4cm?
and 7.

Our aim is to find the acoustic impedances Z; that enable such a constant-pressure
wave in Eq. (A.32). From Eq. (A.29) we find

7 — Pi = Apjr1 — Bigji (A.33)
! Cipj+1+ Djgjm

i.e., the acoustic impedances Z; as a function of the pressures p; and volume flows g;.
Since the pressures p; are determined by Eq. (A.32), we have to find an expression
for the volume flows ¢;. Solving the recursive formula for the volume flows g;
obtained from Eq. (A.29), ¢; = C;pj11 + Djgj41, yields

j—1

1 C
9 = =71 401 — ——1 ~ Pi+1- (A~34)
T ST D,

Assuming an incident wave from the left with amplitude p;,. = 1Pa, we can use
the boundary conditions

pn-&-l/‘]n-i—l = ZRa (A35)
P1/Pinc = 1+ R, (A.36)
¢1/Pnc = (1 —R)/Zy, (A.37)

with R being the reflection coefficient. With these boundary conditions and
Eq. (A.34) we know all p; and ¢; as a function of R. In order to calculate the
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94 A.4 Time-delay operator for non-regular transmission matrices

reflection coeflicient R, we use Egs. (A.32), (A.35) and (A.36):

(1 + R) exp (1]{30 Z qbl) = ZR “Qni1- (A38)

Inserting Eq. (A.34) for ¢,41 into Eq. (A.38) yields

(1 + R) exXp (1k0;¢l> = (Hl 1qu1 Z Hm lD pl_H) . (A39)

We now know all quantities except the reflection coefficient R, such that we can
resolve Eq. (A.39) for R,

Zin - ZL
== = A.40
Zin+ 21 ( )
with Z;, being the input impedance
1 1
Ziw = Zpg (A.41)

Hl 1 Dl exp (lk’o Zl 1 le) + ZR Zl 1 Hn eXp (lkO Zfﬂzl ¢T’)

Now, that we know all acoustic quantities, we are able to calculate the acoustic
impedances Z; with Eq. (A.33) for a given set of phases ¢;.

To summarize our protocol for generating constant-pressure waves, we first choose
values for our phases ¢; determining the pressures p; [via Eq. (A.32)] as a function
of either p; or R, respectively. In a next step, we solve the recursion for g;, such
that we know all ¢; as a function of R. Using Eqgs. (A.41) and (A.40) we are able
to calculate IR that finally allows us to determine our acoustic impedances Z; with
Eq. (A.33). Fixing all the phases ¢;, the reflection coefficient R and the impedances
Zj are fixed as well. Our aim, however, is to generate reflectionless scattering states,
i.e., R = 0. To realize this, we have to relax two degrees of freedom, e.g., ¢; and ¢
(i.e., two phases) and tune them in such a way that the reflection coefficient R is
minimized. Since there are many other parameters such as the wavelength of the
incident wave )\, the length and the size of the tube etc. it is not possible to get
R = 0 for every arbitrary parameter set. For most cases, however, it is possible to
get a constant-pressure wave featuring zero reflection.

A.4 Time-delay operator for non-regular
transmission matrices
The construction of g, = —it 19t /dw involves the inverse of the transmission matrix

t~1. If ¢ is non-square or singular, which can be the case in poorly transmitting
systems, an ordinary inversion cannot be computed anymore. However, an effective
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inverse can be calculated by separating off poorly transmitting channels of ¢, as we
explain in the following. We start with a singular value decomposition (SVD) of
the transmission matrix t = UXVT, where U consists of the eigenvectors of tt'
stored in its columns and V consists of the eigenvectors of tit, respectively. For an
M x N transmission matrix, the matrices U and V are square M x M and N x N
matrices. The rectangular M x N matrix 3 contains the singular values ¢ on its
diagonal, which are the square roots of the common eigenvalues of both ¢t and t¢f.
For a singular or non-square transmission matrix ¢, at least one singular value is
zero. In a next step, we only keep a certain number N, of singular values S that are
larger than some cutoff value 1 with corresponding singular vectors stored in U and
V. Projecting the full transmission matrix ¢ onto the kept transmitting channels
according to t = UttV, we end up with an N,, x N, invertible transmission matrix
t. Projecting back onto the original vector space gives the effective inversion

tL=V(UtV) Ut (A.42)

Projecting also the derivative onto the selected subspace with the corresponding
projection operators Py = UU' and Py = VVT, we end up with the construction
rule for the operator

-~ e O ~ ~
G = —iV(UTtV)lUTUUTg—wVVT, (A.43)

from which its eigenvectors can now be calculated.

A.5 Green’s function method

In order to solve the Helmholtz Eq. (A.20) in two dimensions numerically, we dis-
cretize the scattering region on a Cartesian grid with a grid spacing A, = A,
that is about a factor 20 smaller than the considered wavelength A\y. This dis-
cretization allows us to reformulate the scattering problem as a standard matrix
equation involving very large matrices. The central quantity in our approach is
the so-called Green’s function, that contains the information on how any incom-
ing wave produces a certain wave pattern inside the entire scattering system. We
calculated this Green’s function through an efficient “modular” approach [126, 127]
that involves the inversion of large matrices on a computer cluster using efficient
linear algebra packages. The computer code using this Green’s function method
was written by Florian Libisch [127].

A.6 Correlated disorder

A correlated disorder, as used in Section 3.2, can be generated as follows: (i)
for each grid point 7 of the scattering region a random number for the quantity
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96 A.6 Correlated disorder

n?(r’) — 1 =: x(r’) is drawn uniformly between 0 and 1. (ii) These random numbers
are smoothed with a Gaussian correlation function

C(1F = 7)) = {[al) = (=] - [2(7) = () (A44)
| 7
e ()

with a certain correlation length £. (iii) The mean value is subtracted from all x (7).
(iv) We rescale all values by

a

i) = o) (
such that (z()) = b and (#?(7")) = a®/12 + b*. For the calculation used in Section
3.2 we choose a = 0.21 and b = 0.105. (v) In a last step we subtract the minimum
value, i.e., Z'(F) = Z(F) — min[Z(7)], to assure Z'(7") > 0 [since n*(7) has to be
larger than 1] and, finally, obtain the refractive index by n(7") = /1 + &/(7). We
end up with a correlated refractive index n(r") characterized by a correlation length
¢ = 6 = 3\, minimum/maximum values: min[n(r’)] = 1 and max[n(r)] ~ 1.19, a
mean value mean[n(7’)] &~ 1.1 and a standard deviation std[n(7")] ~ 0.03.
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