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Abstract

With the increasing production volatility in the power grids due to renewable energy
sources, an exact and individualized energy demand forecast of industrial customers
is becoming more important to ensure the supply-demand balance at any time. In
this thesis three commonly used deep learning algorithms, Artificial Neural Networks
(ANNs), Convolution Neural Networks (CNNs) and Long-Short Term Memory Net-
works (LSTMs) are tested for their ability to predict the load demand of three indus-
trial data sets one day in advance with an accuracy of 15 minutes. The results were
compared to each other and to the method currently used by the industrial partners. It
was found that deep learning algorithms can improve the prediction accuracy by 20%
- 45% compared to the currently used method. Among the Deep Learning algorithms,
LSTM achieved the best results, but only by 2% - 5% compared to the second-ranked
algorithm, with a much higher training effort. Therefore, LSTM models generally are
to be prefered over ANN or CNN algorithms. However, in cases requiring frequent
retraining, using a second-ranked ANN or CNN algorithm may be advisable, as they
are faster in training.
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Kurzfassung

Der steigende Anteil erneuerbar Energietrdger fiihrt zu Schwankungen in der Strom-
produktion und reduziert damit aufgrund erhohter Planungsunsicherheit die Netzsta-
bilitat. Um das Stromangebot und die Stromnachfrage im Gleichgewicht und somit die
Netzstabilitdt zu gewahrleisten, gewinnt eine genaue Bedarfsvorhersage zunehmend
an Bedeutung. In dieser Arbeit werden Artificial Neural Networks (ANNs), Convo-
lution Neural Networls (CNNs) und Long-Short Term Memory Networks (LSTMs),
drei haufig verwendete Deep Learning Algorithmen, in ihrer Fahigkeit verglichen, den
Strombedarf von drei Industriedatensets einen Tag vorab mit einer Genauigkeit von
15 Minuten vorherzusagen. Die Ergebnisse der Algorithmen wurden zueinander sowie
mit der, von den Industriepartnern, aktuell verwendeten Methode verglichen. Die Deep
Learning Algorithmen konnten, verglichen mit der aktuell verwendeten Methode, die
Vorhersagegenauigkeit um 20% - 45% verbessern. Dabei erzielten die LSTM Modelle
die besten Ergebnisse, allerdings nur um 2% - 5%, verglichen mit dem jeweils zweit-
besten Algorithmus. Damit sind LSTM Modelle gegeniiber ANN oder CNN Modellen
grundsatzlich zu bevorzugen. Da allerdings LSTM Modelle wesentlich aufwendiger
zu trainieren sind, kann es bei Problemstellungen, in denen haufiges neu-trainieren
notwendig ist, vorteilhaft sein, ein zweitplatziertes ANN oder CNN Modell zu wahlen.
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ARIMA
ARMA
BPTT
CAE
CEC
CNN
ESM
LSTM
MA
MAE
MLP
MSE
NN
RMSE
RNN
TF

Autoregressive Models

Autoregressive Integrated Moving Average
Autoregressive Moving Average
Backpropagation-Through-Time
Cumulative Absolute Error

Constant Error Carousel

Convolution Neural Network

Seasonal Exponential Smoothing Method
Long Short-Term Memory
Moving-Average Models

Mean Absolute Error

Multilayer Perceptron

Mean Square Error

Neural Network
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Recurrent Neural Network

Transfer Function
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Preamble

This work was carried out as part of the master's programme in Biomedical Engi-
neering. Due to data availability, deep learning algorithms for time series prediction
were compared using power consumption data. Nevertheless, the gained knowledge
is relevant for the biomedical engineering field and can be applied to biomedical en-
gineering problems. For example, the algorithms can assist to make the health care
system more efficient or to ease everyday life for patients with chronic diseases.

Recently, a variety of problem settings in health care have been approached using
deep learning for time-series prediction. Masum et al. (Masum et al. 2019) applied
LSTM, Bi-LSTM and CNN deep learning algorithms to forecast blood pressure 30
minutes in advance, aiming to detect critical conditions early. Similarly, Zhu et al.
(Zhu et al. 2020) utilizes recurring neural networks to predict the upcoming glucose
levels of Type | Diabetes patients 30 minutes ahead, to improve insulin application
planning.

Shih and Rajendran (Shih et al. 2019) tested the performance of classical statistical
methods (ARMA, ARIMA, ESM) and machine learning algorithms (ANN, multiple
regression) predicting the blood supply in Taiwan to minimize outdating and shortage
of stored blood.

Lastly, Kaushik et al. (Kaushik et al. 2020) predicted the average expenditures
on pain medication using ARIMA, MLP and LSTM for supply demand planning.
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1 Introduction

1.1 Introduction Electricity Markets

Since electricity cannot be stored easily, the amount of electric energy introduced into
the electric grid must be equal the amount of electric energy consumed. To achieve
equilibrium, producers and consumers are organized in balance groups and each group
is liable to balance energy consumption and production within. This can be achieved
by either adjusting demand and supply within the group or by purchasing and selling
energy on the electricity spot markets.

Balance groups are geographically bundled and overseen by a control area manager
(“Bilanzgruppenfiihrer”). In case of a demand-supply-mismatch due to inaccurate
demand prediction, power plant failures or availability changes of renewables, the
control area manager restores equilibrium by utilizing primary (< 30 sec), secondary
(< 15 min) or tertiary spinning reserve, consuming balancing energy. The balancing
energy is provided by specialized, quick-reaction electric energy sources. Costs for the
balance energy can be a multitude of the normal electricity rates and are charged to
the balance group responsible for the mismatch. (APG 2020)

1.2 Forecasting Motivation

The global electric energy demand is increasing exponentially and expected to con-
tinue growing. As electric energy cannot be stored, the electric energy production
and demand need to be in equilibrium. If the equilibrium is distorted, the network fre-
quency raises with a surplus of energy or falls with energy shortage. Heavy distortions
can cause equipment damage or even blackouts and must be avoided at all costs.
Precise demand prediction enables power suppliers to plan for the future demand and
match the production accordingly.

Inaccuracies in demand prediction can result in two major problems. First, an
over-estimation will cause power suppliers to schedule higher capacities, unnecessary
spinning reserve and will ultimately lead to a waste of energy resources and distribution
inefficiencies (Hong 2009). Second, an under-estimation of load prohibits providing
sufficient load capacities, spinning reserve and causes high costs in the peaking unit,
discouraging any economic and industrial development (Hong 2009).

The European electricity consumption splits into three major segments: “house-
holds”, “commercial & public service” and “industry”, shown in Figure 1.2. Each
segment represents approximately one-third of the consumption, with “industry” be-
ing the largest (Agency 2020). With the rise of building automation and the wide
adaption of smart meters, demand prediction for homes, office buildings and entire
districts have been covered extensively by the scientific community (Wei et al. 2018;
Chen et al. 2017; Valgaev et al. 2017). However, the industrial sector has received
limited attention. The reasons can only be assumed, but are most likely to be found
in the lack of publicly available data. By partnering with Campfire Solutions, a start-
up at the TUW i®ncubator, the author was able to obtain three extensive industrial
electric power consumption datasets, that will be introduced in Section 4.2
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Figure 1: European Electricity Consumption by Consumer Type (Agency 2020)

1.3 Time Series Prediction

Electricity demand data is time series data, with a energy consumption measurement
for every quarter-hour. Predicting future energy demand is a time-series prediction
problem. Time series predictions usually aim to forecast a value at some future point
in time ¢ 4 ¢’ using available observations of a time series up to time ¢. Time series
prediction problems can take various forms and are grouped according to the following
categories. (Han et al. 2019)

1.3.1 Time Intervals of Observations

The majority of existing studies presume equidistant intervals of time for the data at
hand. This condition simplifies data handling and the problem can be formulated as
(Han et al. 2019)

Tppn = f(@4, To1y ooy T N) (1)

with Z;,, being the predicted result, x;, x;_1, ..., x;_x referring to the sequence the
prediction is based upon and N being the number of inputs. h can be 1 (C.-H. Lee
et al. 2014, Miranian et al. 2013) for one-step ahead predictions or, for multi-step
predictions, any positive integer (Taieb et al. 2012, Parlos et al. 2000, Han et al.
2019).

In some cases equidistant time intervals cannot be assumed (Ramasso et al. 2012,
Aladag et al. 2012) and the problem of time series prediction has to be extended by
l1,1a, ..., Ly, representing the various time spaces (Han et al. 2019)

JA?H_h = f(l't_ll, .’L’t_l2, cevy $t_lN, ll, l27 cevy lN) (2)

1.3.2 Prediction Strategy

To predict several time steps ahead, either a recursive or a direct prediction strategy
can be deployed. The recursive prediction strategy is an iterative process (Young
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2012, Mirikitani et al. 2010, H. Liu et al. 2012), using subsequent predicted values
to predict the next and can be expressed as follows (Han et al. 2019)

Tep1 = f(ffn Tg—1y o0y :Et—N)
Do = f(fftﬂa Ly oeny xt7N+1> (3)
Tyt = f(Trpm—1, TegM—2s oo, Te—N+M)

with M being the number of values to be predicted, i; a predicted value, z; a
measured value and N the number of values used for one prediction. The disadvantage
of the recursive prediction is the accumulation of prediction error and thereby the
gradual deterioration of prediction accuracy.

For this reason some researchers (Zhao et al. 2015, Han et al. 2016) focus on pre-
dicting multiple data points at once. This direct prediction strategy can be expressed
as (Han et al. 2019)

X = f(:(]t,:L‘t_l,...,ZL‘t_N) (4)

with X = [#,1, Z149, ..., 224 m]" being the predicted vector.

1.3.3 Univariate and Multivariate Modelling

A model with solely one input variable is a univariate model (Pankratz 2009) and
with more than one input variable it is a multivariate model (Khashei et al. 2011).
Univariate models are defined according to Equation 1 and multivariate models are
defined as (Han et al. 2019)

j:t+1 = f(x%u "'7'T%7N7x?7 "'7xt27N7 "'7xtL7 "'7xthN) (5)

with L representing the number of input variables.

1.4 Research Question and Objectives

The main research question is, which standard deep learning algorithm is best suited
for day-ahead electric load forecasting in 15 minute accuracy for industrial production
data?

The following objectives should be accomplished during this master thesis:

1. Obtain three industrial production datasets covering a minimum of 1.5 years
2. Select three standard deep learning algorithms to test
3. Construct a real-life baseline approach

4. Build a machine learning pipeline to pre-process data, train models and auto-
matically perform hyper-parameter tuning

5. Select and suggest the model exhibiting the smallest error
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2 State of the art

Electricity demand prediction models are classified by type, as introduced in Section
2.1, or the predicted time horizon. Models can be built to create short-term, medium-
term and long-term forecasts (Suganthi et al. 2012). Short-term forecasts targets time
spans of hours to weeks, mid-term forecasting covers a duration of weeks to a year
and long-term forecasts cover anything beyond (Suganthi et al. 2012).

2.1 Model Types

Prediction problems can be solved by utilizing white-box, black-box or grey-box ap-
proaches. White-box models rely on a deep understanding and mathematically mod-
elling of underlying physical or chemical processes and their boundary conditions for
both, building operations and production activities (Ferrarini et al. 2019). Using
white-box models, a forecast can be created by solving the modelled set of equations
for every point in time. White-box models provide good interpretability, however the
model creation requires in-depth process knowledge, is labour intensive and solely
applicable to the process the model was created for. Ferrarini et al. (Ferrarini et al.
2019) applied white-box modelling to create an energy model of a multi-storey resi-
dential building and Vaccaro et al. (Vaccaro et al. 2012) used a white-box model as
a baseline in wind intensity predictions.

ﬁwﬁable

Figure 2: Black-Box concept inspired by (Bunge 1963)

Input Variable
—

Contrary, a black-box model is a purely data-driven approach. The system is
viewed as unknown entity and its properties are derived (“learned”) from the re-
lationship between input and output variables (Bunge 1963), as shown in Figure 2.
Black-box models do not require system specific expert knowledge and algorithms can
be easily applied to multiple problem settings of the same kind. On the down-side,
black-box models lack transparency and interpretability of derived predictions, not
being able to explain why a specific decision has been made (Holzinger et al. 2017).
Deep learning algorithms are black-box models, since their high level of recursiveness
limits interpretability (Rudin 2019).

A hybrid form between white-box and black-box models can be classified as grey-
box models. Grey-box models have been applied for energy demand prediction in
office and residential buildings (Berthou et al. 2014, Li et al. 2016, Afram et al.
2018) and to predict output power of both, photovoltaic (Paulescu et al. 2017) and
wind power plants (Ferrarini et al. 2019).

2.2 Short-term load forecasting using statistical methods

In the field of short-term load forecasting, any type of timeseries forecasting tech-
nology being en-vogue at that time, has been applied, aiming to improve prediction


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

performance. Historically Box and Jenkins models have shown to be well-suited in
forecasting short term loads (Hagan et al. 1987), which have then been surpassed by
ARIMA models (Amjady 2001)

Historically, many different statistical methods have been deployed in the field of
short-term load forecasting. Moghram and Rahman (Moghram et al. 1989) compared
the performance of multiple linear regression, stochastic time series, general exponen-
tial smoothing, state space method and a knowledge-based approach, which can be
considered traditional statistical forecasting methods.

2.2.1 Multiple Linear Regression

In the multiple linear regression model, the load is calculated by inferring from ex-
planatory variables and the model is expressed according to Moghram and Rahman
(Moghram et al. 1989) as

y(t) = ag + arz1(t) + ... + anz,(t) + a(t) (6)

y(t)  electrical load

x,(t) explanatory variable correlated with (%)

a(t)  random variable with zero mean and constant variance
a, regression coefficients

These explanatory variables are identified by performing a correlation analysis be-
tween the independent variables and the load. The regression coefficients, used to
calculate the prediction, are determined using the least square estimation technique.
To determine the significance of the regression coefficients, statistical tests, for ex-
ample the F-Test, are performed. (Moghram et al. 1989)

2.2.2 Stochastic Time Series

Stochastic time series modelling infers the prediction as output of a linear filter with
random series input, zero mean and unknown fixed variance. Depending on the filter
used, Autoregressive Models (AR), Moving-Average Models (MA), Autoregressive
Moving-Average Models (ARMA), Autoregressive Integrated Moving Average Models
(ARIMA), Seasonal Models, as an extension to AR, MA, ARMA or ARIMA, or Transfer
Function (TF) Models can be built (Moghram et al. 1989).

2.2.2.1 Autoregressive Models (AR)

In the autoregressive model, the current values of y(¢) is inferred linearly from its
previous values y(t — 1),...,y(t — p) and a random noise a(t). The order p of the
model depends on the temporal oldest value used to calculate the predicted value.
The AR model can be written as (Moghram et al. 1989)

y(t) = ry(t — 1) + Poy(t — 2) + ... + Ppy(t — p) +alt) (7)
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y(t) electrical load
(

y(t —n) historic values of y(t)
a(t) random variable with zero mean and constant variance
D, weight determining the importance of historic value, based on previous random noises

2.2.2.2 Moving-Average Models (MA)

In the moving-average model, the current value y(t) of the time series, is inferred
linearly from current and previous values of a white noise series a(t), ..., a(t —q). The
noise series is calculated from the forecast errors between prediction and true value,
once the true value becomes available. The order ¢ of the model depends on the
oldest considered value a(t — q) (Moghram et al. 1989). According to Moghram and
Rahman (Moghram et al. 1989), the model can be written as

y(t) = a(t) — ©1a(t — 1) — Oqa(t — 2) — ... — Oqa(t — q) (8)
y(t) electrical load
a(t) white noise
a(t —n) previous values of white noise
O, weighting factor

2.2.2.3 Autoregressive Moving-Average Models (ARMA)

In the autoregressive moving-average model, the current value of the time series y(t),
is inferred linearly from values of previous periods y(t — 1),...,y(t — p) as well as
current and previous values of a white noise series a(t),...,a(t — q). The order of
the model depends on the oldest previous series value and oldest previous white noise
value used (Moghram et al. 1989). According to Moghram and Rahman (Moghram
et al. 1989), the model can be written as

y(t) =01yt — 1)+ ... + Oyt — p) + a(t) + Pra(t — 1) + ... + Pyalt —q) (9)

y(t) electrical load

y(t —n) historic values of y(t)

a(t) white noise

a(t —n) previous values of white noise
O, weighting factor for AR part
o, weighting factor MA part
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2.2.2.4 Autoregressive Integrated Moving-Average Models (ARIMA)

The previously described models presume stationary processes, bearing that the mean
and covariance among observations do not change with time. Having a non-stationary
process, the observations first have to be transformed by differencing d times until the
process becomes stationary. This is achieved by introducing the V operator, with V¢
representing the d' differentiation and Vy(t) the d'* derivative of ARIMA model
y(t). To obtain the original time series y(t), V9y(t) hast to be integrated d times.
(Moghram et al. 1989)

According to (Moghram et al. 1989), the differential model of the ARIMA can be
written as

®(B)Vy(t) = O(B)a(t) (10)

y(t) electrical load

a(t) white noise

S} weighting factor for AR part
) weighting factor MA part

B backshift operator

\Y4 differential operator

with the backshift operator B connecting y(t — 1) = By(t).

2.2.2.5 Seasonal Models

Due to daily, weekly, yearly or other effects, many time series exhibit a periodic
behaviour. The AR, AM, ARMA and ARIMA models can be utilized, but require
to be extended by seasonal terms. According to Moghram and Rahman (Moghram
et al. 1989) the extended ARIMA model (Equation 11) shows the ARIMA model of
Section 2.2.2.4 extended by the seasonal terms ¢(B°), V4V and 6(B®), capable
of modelling one seasonality.

(B)o(BS)VIVP sy(t) = O(B)I(BS)a(t) (11)

y(t) electrical load

a(t) white noise

e weighting factor for AR part
0(B%) weighting factor AR part seasonal
) weighting factor MA part

#(B®) weighting factor MA part seasonal
B backshift operator

v differential operator

V*¥s  seasonal differential operator
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Of course, the model introduced above can be further extended to account for
two or more seasonalities, simply by adding the respective terms for further periodicity
as introduced by Moghram and Rahman (Moghram et al. 1989)

®(B)¢(B%)¢'(B*)VIV" sV gy(t) = ©(B)I(B*)0' (B )a(t)

electrical load

white noise

weighting factor for AR part

weighting factor AR part seasonal

second weighting factor AR part seasonal
weighting factor MA part

weighting factor MA part seasonal
second weighting factor MA part seasonal
backshift operator

differential operator

seasonal differential operator

second seasonal differential operator

2.2.2.6 Transfer Function Models

(12)

The models introduced in Section 2.2.2.1 to Section 2.2.2.5 express univariate time-
series y(t), based on their history and white noise. To account for the effect of other
variables, a transfer function model is combined with a noise model n(t) discussed in

Section 2.2.2.1 to Section 2.2.2.5 , as shown in Figure 3 (Dale 1981).

White Noise

Figure 3: Transfer Function Model according to Moghram and Rahman (Moghram

et al. 1989)
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2.2.3 General Exponential Smoothing

Standard exponential smoothing (Holt-Winters Exponential Smoothing) was intro-
duced by Winters (Winters 1960) and is able to capture one pattern of seasonality.
An additive trend is assumed and the local slope T} is estimated by smoothing sub-
sequent differences (S; — S;_1) on a local level S;. The local seasonal index I, is
determined by smoothing the ratio of observed value X; to local level S; (Taylor
2003). According to Taylor (Taylor 2003), the k-step-ahead forecast X, (k) can be
calculated by

Xi(k) = (St + kT I si (13)
with the level defined as
Xy
Sy = a + (1 —a)(Sie1 + Tiq) (14)
t—s

the trend defined as
T, = ’Y(St — St—l) + (1 - 'Y)Tt—l (15)

and seasonality defines as

X
I, = 5# + (1 =8I, (16)

t

Xy observed value
Xi(k) k-step-ahead forecast
«,v,0 adjustable smoothing parameters

T; local slope
Sy local level
1; local s-period seasonal index

Standard exponential smoothing is limited to one seasonality. Taylor (Taylor 2003)
extended the standard exponential smoothing to be better suited for short-term elec-
tricity demand forecasting by adding multi-seasonal capabilities.

2.3 Short-term forecasting using machine learning

Machine Learning algorithms can be categorized in two major architecture types:
Generative Models and Discriminative Models. Generative models converge faster
whereas discriminative models provide a better asymptotic error performance (B. Liu
et al. 2010). Therefore, generative models are preferably used with little trainings
data available and a discriminative approach is used with enough data at hand (B.
Liu et al. 2010).
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2.3.1 Generative Models

Generative models learn the joint probability p(z, y) of inputs x and target y. Predici-
tons are made by calculating p(y|z) for all y for a given x and selecting the most
likely as prediction for y (Ng et al. 2002).

Examples for generative models are Gaussian Process, Bayesian Networks, Hidden
Markov Model, Restricted Boltzman Machine, Deep Believe Network and Generative
Adverseral Network (Han et al. 2019).

2.3.2 Discriminative Models

Discriminative models learn a direct mapping of input x to target y, minimizing the
error function (decision risk) without estimating p(z,y), p(z|y) or p(y|x) ( B. Liu
et al. 2010).

2.3.2.1 Artificial Neural Network (ANN)

Neural networks are universally applicable and have been deployed to problems ranging
from regression, classification to feature extraction, inference and others. The most
common neural network configuration is the so-called Multilayer Perceptron (MLP)
combined with Back Propagation (Hecht-nielsen 1992, Wong 1991).

An artificial neural network resembles the neural structure of the human cortex.
A single neuron is shown in Figure 4 with x being the input, w being the weight of
the edge, b the neurons bias, y the output and F(x) the activation function. F(z)
calculates the neuron output based on the sum of the neuron inputs. Based on Figure
4, the neuron can be described as (S.-C. Wang 2003)

y=F(xxw+b) (17)

Figure 4: Neuron model according to (S.-C. Wang 2003)

Multiple neurons grouped in layers form the ANN, with the first layer denoted as
input layer and the last layer as output layer. Figure 5 depicts a simple ANN. The
output of the model is calculated by forward propagation and the model is refined
during training using back propagation. (Hirasawa et al. 1996, Che et al. 2011).

ANNs have been used for forecasting tasks and have been combined with other
techniques to improve prediction performance. Mellit and Pavan (Mellit et al. 2010)
used an ANN to predict the solar irradiance of a PV plant in Italy. Heng et al. (Heng
et al. 1998) introduced an ANN with genetic algorithm to perform short term load
forecasting, which was subsequently extended by Liao et al. (Liao et al. 2006) to
a fuzzy neural network with chaos genetic algorithms to perform short term load
forecasting. Recently, Eseye et al. (Eseye et al. 2019) tested various feature selection

10
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Input Layer Output Layer

Hidden Layers

Figure 5: Artificial Neural Network with two Hidden Layers

algorithms and evaluated the forecasting performance of the selected feature subsets
using a feedforward artificial neural network. “Dynamic neural network” introduced
by Mordjaoui et al. (Mordjaoui et al. 2017) is a dynamic load forecasting approach
based on artificial neural networks, able to adaptively learn patterns from the data.

Recurrent Neural Networks extend classical neural networks by connecting the
neurons’ output to their inputs, creating a closed loop and thus gaining the ability
to memorize information involving trend and tendency. The training process is called
Backpropagation-Through-Time (BPTT) (Werbos 1990) and has been described by
Connor et al. (Connor et al. 1994), Anbazhagan and Kumarappan (Anbazhagan et al.
2012) and Guresen et al. (Guresen et al. 2011).

2.3.2.2 Convolutional Neural Network (CNN)

CNNs are inspired by a unique neuron structure in a cat's receptive fields, discovered
in 1959 by two neurobiologists, Hubel and Wiesel (Hubel et al. 1959). LeCun and
Bengio (LeCun et al. 1995) initially applied CNNs for speech, time series and image
processing in 1995.

Similar to ANNs, a CNN consists of an input layer, multiple hidden layers and
an output layer. Each layer contains activation functions such as Rectified Linear
Unit (ReLu). Hidden layers come in three types: fully connected layers, convolutional
layers and pooling layers. Convolutional layers learn to extract specific features of the
sample (i.e. edges in an image) whereas pooling removes unnecessary information
reducing the matrix size for subsequent processing and increasing processing speed.
Fully connected layers have the neuron architecture of an MLP, connecting all of their
input neurons and generating the output of the network (Han et al. 2019). Deep
believe networks, a generative model, use a similar technique, but adding probability
in the pooling process (K. Lee et al. 1992).

For univariate sequences, the CNN operates using a set of filters in the convolution
layer and the output of the layer is obtained by computing the dot product between
overlapping input and the filter weights in an autoregressive manner (Han et al. 2019).
Multivariate sequences can be thought of as 2D images, with time being one axis and
variables the other (Han et al. 2019).

11
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In literature CNNs have been used to predict chaotic as well as real-world time
series (Han et al. 2019). In the field of autonomous driving, Hoermann et al. (Ho-
ermann et al. 2018) applied CNNs to predict data from multiple sensors in a down
town scenario with multiple road users. Ding et al. (Ding et al. 2015) applied a
dilated CNN architecture for event driven stock market prediction and Wang et al.
(H.-z. Wang et al. 2017) deployed a combination of wavelet transform and CNNs for
wind power forecasting. Further, CNNs have been heavily used for image recognition
(Han et al. 2019).

2.3.2.3 Long-Short Term Memory (LSTM)

RNNs, as introduced in Section 2.3.2.1 suffer from a vanishing or exploding gradi-
ent problem. The BPTT procedure depends exponentially on the weights for each
timestep, failing to learn information over more than 5-10 timesteps (Han et al. 2019).
The Long-Short Term Memory (LSTM) extends the RNN architecture by introduc-
ing a linear unit, the Constant Error Carousel (CEC) holding information that can
be added to each timestamp. The error flow control of the CEC is performed using
‘gates’, the input gate controls the information added to the cell, the output gate
controls the information contributed to the rest of the network and the forget gate
controls the decay of the information. Therefore, LSTMs can maintain temporal
information for many timesteps and it has been used in sequential data analysis, pre-
diction and classification tasks (Hochreiter et al. 1997, Filonov et al. 2016) for both,
univariate and multivariate (Fu et al. 2016, Filonov et al. 2016) problems.

2.4 Standardization and Normalization

Machine learning models learn a mapping from input variables to output variables.
These variables might be given in different units (kWh, GWh, sec, hr, ...) and are
likely to be differently scaled. Differences in scaling may increase the complexity of
the problem being modelled and lead to large weight values of the model. Models with
large weights are often unstable and prone to bad generalization abilities (Brownlee
2020). Standardization or normalization techniques can be applied to mitigate this
problem.

2.4.1 Normalization

Using normalization, the data is rescaled to a fixed range, usually to the range of 0
and 1, by subtracting the minimum value and dividing by the range of minimum and
maximum value (Witten et al. 2002). Clearly, the minimum and maximum observable
values have to be known or estimable (Brownlee 2020). A value is normalized as
follows (Brownlee 2020)
y = _P T Tmin_ (18)
Tmaz — Tmin

with x,,;, being the minimum value and x,,,,, the maximum value.

A value outside the minimum-maximum range is going to transform to a value
below 0 or above 1.

12
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2.4.2 Standardization

Standardization is rescaling the observed data distribution to a mean of zero and a
standard deviation of one. This is achieved by subtracting the mean from each value
and dividing the result by the standard deviation (Witten et al. 2002). A value is
standardised as follows (Brownlee 2020)

T —p

y=—7 (19)

Using standardization can prove more robust than normalizing, especially in respect

to outliers. Furthermore, the values are not limited to a specific range. In this

work, RobustScaler of scikit-learn is used to standardize data. RobustScaler uses

percentiles to determine mean and standard deviation, making it even more resilient
against outliers (s. scikit 2020).

13
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3 Methodology

3.1 Data Analysis Pipeline

A standardized process is utilized to perform the machine learning experiments and
Figure 6 depicts the overall data analysis pipeline. First, the data is loaded and all
necessary representation specific preprocessing (merging of files, adjustment of the
representation of numbers, ...) is performed. Second, the data is manually inspected
(Section 3.1.1). If a data specific preprocessing is necessary, it is conducted as third
step of the data analysis pipeline (Section 3.1.2). The implementation of the first
three steps is highly specific for each dataset, aiming to transform each into a co-
herent data structure usable by all following processing steps. After pre-processing,
a baseline, serving as a performance reference for more elaborate algorithms, is es-
tablished (Section 3.2). All processes relevant for training deep learning models are
discussed in Section 3.3, relying on the baseline to discriminate well and poorly per-
forming algorithms. Finally, the results are compared across all datasets available in

Section 5.
-"<

Figure 6: Applied Data Analysis Pipeline

3.1.1 Manual Data Exploration

The goal of the manual data exploration is to get a feeling for the processed data and
to answer the following key questions:

(a) Do outliers exist?
(b) Is there a significant trend?

(c) Are recurring patterns observable?

For the use-case of electric demand prediction, load peaks (outliers) can worsen the
prediction outcomes and must be removed. Outlier removal is introduced in Section
3.1.2.

A trend is a continuous change, for example an increase or a decrease, of electricity
demand over time, beyond seasonal patterns. Since neither of the datasets introduced
in Section 4.2 experiences trend, it will not be elaborated further.

The presence of recurring patterns impacts feature selection for the algorithms
used. All available datasets are experiencing recurring daily, weekly and annual pat-
terns, as shown in Section 4.2. Therefore, the univariate power consumption is ex-
tended by calendric features (Section 3.3.1), to broaden the algorithms’ prediction
basis and improve prediction performance.

14
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3.1.2 Pre-Processing Data

The only dataset requiring further pre-processing is Dataset 1 by Company A in-
troduced in Table 1, showing major load peaks in manual data exploration (Section
4.2.1).

Without considering these load peaks as outliers and removing them, the regu-
lar electric load pattern would be reduced in importance during normalization and
significantly harm prediction performance.

Listing 1 shows the code used to remove the outliers. The z-score threshold of
Line 4 is selected empirically based on a all-time load plot, to remove all outliers
excelling the regular electric load pattern.

Listing 1: Outlier removal for Dataset 1 according to (stackoverflow 2020(c))

import pandas as pd

from scipy import stats

df = pd.read pickle("dataset 1.pkl")

mask = (np.abs(stats.zscore(df[ power’])) > 0.18)
df . power = df.power.mask(mask).interpolate ()

3.2 Baseline

A baseline is a meaningful reference point, a basis for the comparison of results
of deep learning algorithms. Usually, a baseline is the simplest possible prediction,
a random result or the most common prediction approach (Brownlee 2014). This
work utilizes the prediction method used by Company B and Company C, the so
called “last-year-consumption” approach, to construct a baseline. In the “last-year-
consumption”, the electric energy consumption of the previous year is shifted to match
the corresponding week days (Monday to Monday, Tuesday to Tuesday, ...) of the
current year and is compensated for holidays according to Listing 2. The for loop of
Line 18 creates the averages to compensate past holidays, becoming work days, in the
prediction period, with the average consumption of a workday (“avg_workday”) and
to compensate past work days turning into holidays with the average consumption of
a holiday (“avg_holiday”). In the for-loop of Line 30, those averages are applied to
the prediction in cases of holiday/workday mismatches.

Listing 2: Code generating the Baseline

data #Standardized electric load consumption data as pandas dataframe

# 2018 is used as prediction for 2019

split date = datetime.datetime(2019,1,1,0,0,0)

days = datetime.timedelta (364)

start date=split date—days #Algorithm takes values starting from beginning of

2018

stop date = split_date + datetime.timedelta (365) #Algorithm takes values until
end of 2019

historic data = data.loc[start date:stop date]

historic _index = historic data.index

future index = data.loc[split date:stop date].index

future year = np.zeros(data.loc[split date:stop date].shape[0])

past _year shape = historic_data.shape[0] — future year.shape[O0]

count offdays = 0
sum_offdays = 0
count workday = 0
sum_workday = 0

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

18
19
20

for i in range(0,past year shape):
ci = historic_index[i] #ci = current index
if (ci in at_ holidays) or (calendar.weekday(ci.year, ci.month, ci.day)
>=5):
count offdays = count offdays + 1
sum _offdays = sum_offdays + historic data.iloc[i:i+1].values
(ol[o]
else:
count workday = count workday + 1
sum_workday = sum_workday + historic_data.iloc[i:i+1].values
[o][o]

avg workday

= sum_workday/count workday

avg offday = sum_offdays/count offdays

for i in range (0, future year.shape[0]):
if (historic _index[i] in at_ holidays)and(future index[i] in at_ holidays):
future year[i] = historic _data.iloc[i:i+1].values[0][0];
else:
if (future index[i] in at_ holidays):
future year[i] = avg offday;
else:
if (historic index[i] in at_ holidays):
future year[i] = avg workday
else:

future year/[i

] = historic data.iloc[i:i+1].
values [0][0];
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Similar to the data analysis pipeline introduced in Figure 6, the deep learning experi-
ments are implemented as a modular process, depicted in Figure 7.

The process starts by loading the pre-processed data and transforming the uni-
variate electric load data into a multivariate dataset by adding calendric information
as additional features (Section 3.3.1). Adding calendric information simplifies learn-
ing date and time based recurring patterns. Next, the available data is split into
training and test sets (Section 3.3.2) and the actual training loop is started (Section
3.3.3). Finally, the methods to compare the results for each algorithm and dataset
are introduced in Section 3.4

Training Loop

Figure 7: Deployed Deep Learning Pipeline
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3.3.1 Calendric Information Extraction

The datasets described in Section 4.2 are limited to univariate historic electric con-
sumption data, making it difficult to identify recurring patterns. Electric load demand
is considered to be highly correlated with calendaric events, as for example time of
day, weekday, overall season or holidays.

Providing algorithms with primed calendaric information enables them to directly
learn the correlation between time patterns and energy consumption. Listing 3 depicts
the function used to add calendric information to the dataset.

Listing 3: Calendric Feature Extraction
import holidays

def extract calendric_information(data):
at_holidays = holidays. Austria ()

data[ 'dow'|=data.index.dayofweek
data['m_year']=data.index.month

data['q_hour'] = np.round(data.index.minute/15)
data [ "hour ']=data.index. hour

data [ "isWorkday '|=1 #Initialising 'isWorkday ' with 1
data['beforeHoliday '|=0 #lnitialising 'beforeHoliday ' with 0
filterl = data.index.dayofweek==5 #Saturday

filter2 = data.index.dayofweek==6 #Sunday

#Setting 'isWorkday' to zero for Saturdays

data.loc[filterl , 'isWorkday'] = 0
#Setting ’'isWorkday' to zero for Sundays
data.loc[filter2 , 'isWorkday'] = 0

#The following loop iterates over all datapoints and assesses if
#the datapoint is indeed a workday and the next day will be a workday.
for index, row in data.iterrows():
if (index in at_holidays):
data.loc[index, 'isWorkday ']=0
index offset = index+pd.DateOffset (1)
if(index offset.dayofweek >= 5 or index offset in at holidays):
data.loc[index, 'beforeHoliday'] =1

return data

3.3.2 Training/Test Split

Machine learning algorithms infer rules, based on the data they are trained on, becom-
ing proficient on the training data. As the algorithms are deployed on new, unseen
data, it is important to assess their generalization abilities. This is achieved by ap-
plying the algorithms to the test set, comprised by data not used for training. It is
created by splitting the provided dataset into a larger training set and a smaller test
set. The test set must never be used for training or training decisions. Therefore,
the training set is split further to create the actual training set and a validation set.
The validation set is used during the model training process to determine the models
performance after every epoch.

The algorithms in this work are designed to learn annual patterns, thus the mini-
mum duration of the training data must be at least one year, to model one full annual
cycle and the minimum duration of the test data should be one year too, to measure
the performance on one full annual cycle. Dataset 2 is the smallest, providing a total
of 21 month from January 2018 to September 2019 (Section 4.2.2). As the other
datasets cover significantly larger timespans and include the year 2019 too, Tuesday
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01.01.2019 00:00 is selected as universal training/test split date, defining all mea-
surements of 2019 as test data. Listing 4 shows the code used to split training and
test set. During training, the training set will be randomly split into actual training
and validation data for each subsequent training epoch, preventing the model from
being subject to bias.

Listing 4: Performing Training/Test Split according to (stackoverflow 2020(b))
import pandas as pd

import datetime

## This function requires a splitting date, not a splitting index ##
def training test split (data, splitting date):

training = data.loc[data.index<splitting date]

test = data.loc[data.index >= splitting date]

return training , test

split date = pd.datetime(2019,1,1,0,0,0)
training , test = training test split(data.copy(),split_date)

3.3.3 Model Training Process
3.3.3.1 Normalization

The deep learning algorithms used for this thesis operate best, if the provided data
is mapped to the range of 0 to 1. This is achieved by normalizing the training set
as introduced in Section 2.4.1, using MinMaxScaler of the sklearn library. Listing 5
depicts the respective code.

Listing 5: Instatiation of normalization object according to (scikit 2020)
scalingTransformer = MinMaxScaler(feature range=(0,1)).fit(training.copy())

scaling Transformer is calibrated using only the training set, assuming the test set
would not be available in production setting at the time of training. It is applied to
the datasets in the create supervised trainingset function (Line 10), introduced in
Listing 6

3.3.3.2 Sample Generation

The deep learning algorithms require a supervised dataset with each input X mapped
to the corresponding output Y and each of these input-output pairs is called a sam-
ple. The extended electric load demand is provided in a stream of datapoints as
shown in Figure 8, one measurement for each feature every 15 minutes and has to
be transformed to constitute a supervised problem. Listing 6 shows the function
create supervised _trainingset, used to dynamically transform the raw data.

Listing 6: Transforming Time Series Data to Supervised Learning Problem inspired
by (Brownlee 2017)

def create supervised trainingset(data, output shape, n_steps in, n_steps out,

time shift=1, univariate=True, scalingTransformer=None):
n_steps_in = int(n_steps in)
n_steps out = int(n_steps out)
time shift = int(time_ shift)

#Normalization has to be done, before creating the supervised dataset
#scalingTransformer has been initialized in Listing 5
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if (scalingTransformer!=None):
orig = data.copy()
data = pd.DataFrame(scalingTransformer.transform(data))

if (time shift <1):
return None

else:
X,y = list(),list ()
i=0
while (i+n_ steps in+n_ steps out) < data.shape[0]:
end x = i+n_steps in
end y = end x 4+ n_steps out
seq_x = data.iloc[i:end x,:].to_numpy()

seq_y = data.iloc[end x:end y,0].to numpy()
X.append (seq x)
y . append(seq_y)
i = i+time_ shift

Xa = np.array (X)

ya = np.array(y)

if (univariate):

Xa=Xa[:,:,0]
if (output shape = "3D"):
Xa = np.expand dims(Xa,—1)

## Multivariate datasets generate a three—dimensional
datastructure. For ANN/MLP algorithms a two—dimensional
structure is required.

if (output shape="2D" and Xa.ndim>2):

## Flattening , with keeping the amount of samples the
same ##
Xa = Xa.reshape(Xa.shape[0], Xa.shape[l]*Xa.shape[2])

#2D: [sample, timesteps]

#3D: [samples, timesteps, features]
return Xa, ya, data,orig

featurel feature2 .. featureN

time

Figure 8: Structure of original data

In Line 17 to Line 26, the data is transformed to a three-dimensional structure.
Assuming multivariate data with N features, the original dataset is grouped into
samples with a fixed number (#steps in) of measurements per feature to form the
input X and #steps out subsequent measurements of the target feature featurel are
grouped to form the output Y. This work aims to predict a full day, day-ahead and
therefore #steps out is set to 96, the number of quarter hours a day. #steps in
is a variable for hyperparameter optimization, introduced in Section 3.3.3.4. Line
24 utilizes the variable time shift, determining the step-size between subsequent
samples. time shift = 1 produces the maximum overlap, shifting only 15 minutes
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for each sample whereas time shift = 96 shifts the subsequent samples by a full day,
not producing an overlap. This is directly impacting the number of samples drawn
from a given dataset, expanding the supervised dataset for small original datasets for
better learning outcomes (useful for Dataset 2) and shrinking down large datasets to

increase training speed (useful for Dataset 1).

The resulting three-dimensional structure is shown in Figure 9 and required for
CNN and LSTM models.

#steps_in

featurel feature2

samples

X

samples Y

... featureN featurel

H#steps_out
®

Figure 9: 3D shaped supervised dataset

Artificial neural networks require a two dimensional datastructure, each sample
represented by one line in the matrix. The three-dimensional datastructure is folded
(Kourti 2003) into a two dimensional datastructure, by keeping the sample-axis static
and flattening the two-dimensional time-feature matrix (Line 34). The result is an
array with the data of each feature subsequently aligned, shown in Figure 10

samples

v

featurel featureN featurel

ing ..ing ing ...ing, out, ... out,
® EEEE— ]
samples v

Figure 10: 2D shaped supervised dataset with m as #steps in and p as #steps out
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3.3.3.3 Model Definition

The function define_model (Listing 7) is designed to easily support further mod-
els and to be included in automated hyperparameter optimization (Section 3.3.3.4).
Currently, basic artificial neural networks (MLP in Listing 7), CNNs and LSTMs are
supported. The number of neurons, number of hidden layers as well as kernel and
pooling size for CNNs are variables for hyperparmeter optimization.

Listing 7: Deep Learning Model Definition according to (Brownlee 2018c)

def define model (model, config, actv="relu’):

input _shp, n_output, n_ neurons, batch size, hidden layers, n_kernel,
n_pool, shapeX, shapeY = config

n_neurons = int(n_neurons)

batch size=int(batch size)

hidden layers = int(hidden layers)
n_kernel = int(n_kernel)

n_pool =int(n_pool)

if (model = "MLP"):
model = tf.keras.models.Sequential ()
model.add (tf. keras.layers.Dense(n_ neurons, activation=actv,
input _shape=input_shp))

for i in range(1l,hidfden layers):
model.add(tf. keras.layers.Dense(n_neurons, activation=
actv))
model.add (tf. keras.layers.Dense(n_output[0]))
model . compile(loss="mse’', optimizer="adam")
if (model = "CNN"):
model = tf.keras.models. Sequential ()
model.add (tf. keras.layers.ConviD(filters=n_neurons, kernel size=
n_ kernel, activation=actv, input shape=input shp))
for i in range(1l,hidden layers):
model.add (tf. keras.layers.ConviD(filters=n_neurons,
kernel size=n_kernel, activation=actv))

model.add (tf. keras.layers.MaxPoolinglD (pool size=n_pool))
model .add (tf. keras.layers.Flatten ())
model.add(tf. keras.layers.Dense(n_output[0]))

model . compile(loss="mse’', optimizer="adam')
if (model = "LSTM"):
model = tf.keras.models.Sequential ()

if(stateful):
batch input sh = (batch size,)+input_shp
model.add (tf. keras.layers.Lambda(lambda x:x,
batch input shape=batch input sh))

else:
model.add(tf. keras.layers.Lambda(lambda x:x, input shape
=input_shp))
for i in range(1l,hidden layers):

model.add (tf. keras.layers .LSTM(n_neurons,
return sequences=True, stateful=stateful))
model.add (tf.keras.layers .LSTM(n_ neurons, stateful=stateful))
model.add (tf. keras.layers.Dense(n_output[0]))
model . compile(loss="mse’', optimizer="adam')

return model

3.3.3.4 Hyperparameter Optimization

Hyperparameter optimization is the problem of optimizing a loss function, by search-
ing the space of possible model and training process configurations (J. S. Bergstra
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et al. 2011, J. Bergstra et al. 2015) to improve the overall model performance. Hyper-
parameters can be discret, ordinal or continuous values (J. S. Bergstra et al. 2011).
Possible approaches for hyperparameter optimization are (J. Bergstra et al. 2015)

a) Manual tuning

c) Random search

(a)
(b) Grid search
()
(d)

d

Bayesian search

Manual hyperparameter optimization relies on human experience and quickly be-
comes infeasible for high-dimensional search spaces. Grid-search sets fixed and dis-
crete values to test each algorithm, fixing the parameters to a specific grid. In ran-
dom search, parameters are selected randomly, within some pre-defined bounds. For
high-dimensional hyperparemeter optimization problems, random search has proven
advantageous over manual- or grid-search (J. Bergstra et al. 2015). The Bayesian
search strategy executes a few random search runs to obtain measurements of the
multidimensional fitness surface of the loss function, before applying the Bayesian
search gradient in gradient decent manner to approximate the model configuration
with minimized loss function (J. Bergstra et al. 2015).

This work uses hyperopt, a Bayesian search library for python introduced by (J.
Bergstra et al. 2015).

The tuned hyperparameters are learning rate, number of neurons, activation func-
tion, number of hidden layers, input data window size in days (“days in"), batch size
as well as kernel size and pooling window size for CNNs. The search space is defined
according to Listing 8. The desired model algorithm was selected manually for each
experiment.

Listing 8: Hyperopt Search-Space Definition according to (J. Bergstra et al. 2013)

space = {

"learning rate’':hp.loguniform('learning rate’' ,np.log(0.005) ,np.log(0.9))
, "model algorithm ':hp.choice( 'model algorithm',
[{ "model algorithm': '"MLP', 'data output shape':'2D'},
{'model algorithm':'CNN', "kernel size':hp.quniform('kernel size',2,10,1)
, 'n_pool’ :hp.quniform('n_pool’',1,5,1), 'data_ output shape’':'3D’},
{'model algorithm':'LSTM', 'data output shape’':'3D'}]),
"neurons’:hp.quniform('neurons’,5,100,1),
"actv':hp.choice('actv' ,['relu’, "tanh’']),
"hidden layers':hp.quniform('hidden layers',1,6,1),
"days_in’':hp.quniform('days in',3,21,1),
"batch size':hp.quniform('batch _ size', 20,200,1)
¥

The hyperopt function “fmin” expects the space object defined in Listing 8 and
the loss function to be optimized. In this case, the loss function (objective function)
defines the individual models to be trained and evaluated, as shown in Listing 9.
"“EPOCHS" is a global variable, defining the number of training epochs for one model.
“params” is the configuration object for one specific experiment created by hyperopts'’
“fmin” based on the space object defined in Listing 8.
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Listing 9: Hyperopt Objective-Function Definition

def objectiveFunction (params):
epochs=EPOCHS
batch size=100
kernel size=0
n_pool=0
actv = params|['actv ']
hidden layers = params['hidden layers']
learning rate=params|['learning rate’]
neurons=params|[ 'neurons’]

univariat = params['univariat data ']

days _in = params[ 'days_in']

batch size = int(params[’'batch size'])

algo object = params[ ' model algorithm ']

model algorithm = algo object[ ' model algorithm ']

output shape = algo object['data output shape’]

if (model algorithm == 'CNN'):
kernel size = algo object['kernel size']
n_pool=algo object['n_ pool’]

Xtr, ytr, a, b = create supervised trainingset(training.copy(),

output shape=output shape, scalingTransformer=scalingTransformer ,
n_steps_in=int(96*days _in), n_steps out=96, univariate=univariat,
time shift=global timeshift)

model = define _model(model algorithm ,[ Xtr.shape[1:], ytr.shape[1l:],
neurons ,epochs, batch size,6 hidden layers ,h kernel size ,n pool, Xtr.
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shape, ytr.shape], actv=actv)
doShuffle=True
if (take best val model):
callbacks .append(TakeMinWeights())

history = model. fit (Xtr,ytr,epochs=epochs,h batch size=batch size,
validation split=0.2, shuffle=doShuffle, callbacks=callbacks,

verbose=verbose))

val losses = history.history['val loss']
training losses = history. history['loss ']
if (take best val model):
val loss=min(val losses)
else:
val loss = val losses[len(val losses)—1]
of connection = open(out file, 'a’)
writer = csv.writer (of connection)
time diff = int(time.time())—gobaltime

#All results of a hyperopt run are collected in a csv for rapid

evaluation

writer . writerow ([time diff, val loss, params, val losses, training losses

, time.time()])
#Independent of the model performance, each model
evaluation using the test dataset.

model path = trainpath+'/models/hyperopt search %s model %s '%(

experiment nr, time diff)
of connection.close ()
model . save (model path)

return {'loss’': val loss, ’'params': params, 'history':history.history,
status ':STATUS OK, ’'model’':model, 'train_ loss':training losses}

3.4 Performance Evaluation

3.4.1 Performance Metrics

Performance metrics are vital components for the evaluation of regression models
(Botchkarev 2019). This work utilizes four performance metrics, the mean square er-
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ror, the root mean square error, the mean absolute error, and the cumulative absolute
error to evaluate the forecasting accuracy. These metrics allow comparison between
models and with the baseline.

Mean square error (MSE) is the mean value of the sum of squared differences,

calculated as follows
N

MSE =3 (i~ )’ (20)

=1
The mean absolute error (MAE) is the mean value of the sum of absolute differences
(Bouktif et al. 2018), calculated as follows

N
1
MAE = — i — Ui 21
N 2l = (1)

The root mean square error (RMSE) is the root of the mean value of the sum of
squared differences (MSE), calculated as follows (Bouktif et al. 2018)

N
1
R FE = - E . )2
MS N — (yl yl> (22)

The RMSE is large for large errors and penalizes outliers more severely than MAE
when used during model training (Bouktif et al. 2018). The cumulative absolute
error (CAE) is the sum of absolute differences and is used to assess the absolute
improvements. The CAE is calculated according to Equation 23.

N
CAE = |y~ il (23)
=1

For all equations listed above, y; is the observed value, y; the predicted value and
N the total number of observations.

3.4.2 Training and Validation Loss Plots

Training and validation loss plots give a good indication, whether a training process
is going to deliver promising results, or not. The training loss value for a specific
epoch is the mean loss of each batch processed within. The validation loss value
of a specific epoch is the error of the model applied to the validation set. Plotting
training- and validation loss for each epoch of a models training can give valuable
insights of training performance. Figure 11 shows an ideal epoch-loss plot with the
training loss converging towards zero and the validation loss following closely. In
Figure 12, the validation loss starts diverging from the training loss at epoch 60.
This indicates that the model is overfitting, a common problem of deep learning
algorithms.  When overfitting occurs, the algorithm learns the trainings data too
closely, sacrificing generalization abilities. According to Brownlee (Brownlee 2018b)
possible countermeasures are

24


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

()

Weight Regularization

An indicator for overfitting can be large network weights. With large network
weights, a small change in network input might result in a large change in
the network output, reducing the networks reliability. Weight regularization
encourages small weights during network training. (Brownlee 2018g)

Activity Regularization
Activity regularization encourages neural networks to learn sparse features or
internal representations of raw observations. (Brownlee 2018e)

Dropout

Dropout is a computationally cheap way to regularize a deep neural network.
It works by probabilistically removing inputs to a layer, which has the effect of
simulating many networks with a different network structure each. (Brownlee
2018f)

Noise
Noise has shown to have a regularizing effect on under-constrained neural net-
work models with a small training dataset. (Brownlee 2018d)

Early Stopping

Choosing the training duration is a major challenge in training neural network
models. Too little training will result in underfitted training- and test sets. Too
much training will result in an overfitted model on the training set and poor
performance on the test set. Early stopping aborts the training process and
saves the model on a given condition before the model starts overfitting the
training data, improving generalization. (Brownlee 2018a)

1.0
—— training loss
— validation loss
0.8 1
0.6
b
8
0.4 1
0.2 1
0.0 A
T T T T T T T
0 20 40 60 80 100 120
Epoch

Figure 11: Ideal training and validation loss progression

25


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.0 4
\ —— training loss
\ —— validation loss
0.8 1 \
0.6 1
@
3
0.4 1
0.2 1
H‘/
0.0 4
T T T T T T T
0 20 40 60 80 100 120
Epoch

Figure 12: Training and validation loss progression with overfitting

In this thesis, a combination of dropout, weight constraint and a special form of

early stopping (“take best” approach) have been applied.
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By utilizing hyper opt hyperparameter optimization, a multitude of models is
trained in one batch, with the same number of epochs each. To select the best
model before overfitting starts, the ‘take best’ methodology is applied as callback
to the model training process (Listing 9, Line 27). In this methodology, the best
performing weights on the validation set (val loss) are stored (Listing 10, Line 19)
and reloaded into the model after training has finished (Listing 10, Line 23). This
ensures that the best model of a training is returned and stored as final model.

Listing 10: Callback Function “TakeMinWeights" inspored by (Core 2020)

#Callback class, provided to TensorFlow
class TakeMinWeights(tf.keras.callbacks.Callback):
def  init_ (self):
super(TakeMinWeights, self). init ()

#lnitialize best weights with none.
self . best weights = None

def on train_begin(self, logs=None):
# Initialize the best as infinity.
self.best = np.Inf

def on epoch end(self, epoch, logs=None):
current = logs.get('val loss")
#Check if current validation loss is better, than the best
if np.less(current, self.best):
#If yes, replace.
self.best = current
self.best weights = self.model.get weights ()

def on_ train_end(self, logs=None):
#Load best weights into model, before saving.
self.model.set weights(self.best weights)

3.4.3 Result Evaluation

The obtained prediction is transformed back to the original space. In production
settings, the prediction in original space would be used for demand planning.

To compare the results across datasets, standardisation (Section 2.4.2) is applied
to the predicted data. Listing 11 shows the function scale backY used to transform
the prediction from normalized to original space (Line I) and the function evalStan-
dardScaling used to standardize the predicted data (Line 7).

Listing 11: Transformation of Predicted Data inspired by (stackoverflow 2020(a))

def scale backY (yData, scalingTransformer, nrColumns):
y _reshaped = np.zeros((yData.shape[0]xyData.shape[1l],nrColumns))

y reshaped[:,0] = np.reshape(yData,(yData.shape[0]*yData.shape[1l]))
scaled back = scalingTransformer.inverse transform(y reshaped)
return scaled back[:,0]

def evalStandardScaling(prediction, ground truth):
#Standard Scaler
df=pd.DataFrame(ground truth)
df= df.append(pd.DataFrame(prediction))
df . reset index ()
robust transformer = RobustScaler (). fit (df)
pred rb = robust transformer.transform(pd.DataFrame(prediction))
gt _rb = robust transformer.transform (pd.DataFrame(ground truth))
return pred rb, gt rb

Standardized predicted data is used for all plots and performance metrics of Sec-
tion 4.
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4 Experiments and Results

4.1 Infrastructure and Software

The data preprocessing and baseline experiments were run on a Lenovo ThinkPad
Yoga 370 with an Intel Core i7 2.9 GHz CPU and 16GB RAM running Windows 10.
Data preprocessing and baseline experiments were conducted with Python 3.7.3, and
Spyder 3.3.3 was used as IDE. Additionally the python packages pandas, matplotlib,
datetime, sklearn, calendar, holiday, hyperopt and numpy have been used.

Machine learning experiments were executed on Google Cloud Compute Engine
using the provided Deep Learning VM Image in region europe-west1l-d with Tensor-
Flow 2.1 environment on a machine with 2 CPUs, 13 GB RAM and a NVIDIA Tesla
K80 x1 GPU. Code was deployed using pre-configured Juypter Lab.

4.2 Introduction and Exploration of Datasets

In this thesis three real-world industrial electricity consumption datasets have been
analysed, introduced in Table 1.

Table 1: Introduction of Datasets

Company A Dataset 1 The provided dataset has been recorded at a plant
producing medical packaging.

Company B Dataset 2 The facility in which this data set was recorded
produces packaging for food & beverages, fast-
moving-consumer-goods and hygiene products.

Company C Dataset 3 This dataset was provided by an electric utility com-
pany aiming to improve their in-house forecasting.
It was recorded at an industrial plant, however the
goods produced are unknown.

4.2.1 Dataset Exploration Company A

Company A is a plastic packaging manufacturer and the given plant is producing
pharmaceutical packaging. The dataset holds five years of electric power consumption
data, between January 2013 and December 2019. Figure 13 depicts the electric
power consumption for 2018, showing major load peaks in October and December.
It is known that this company is experiencing load peaks frequently. For this work,
the load peaks will be considered as outliers and are removed according to Section
3.1.2. Figure 14 shows the electric power consumption of Company A for 2018 with
outliers removed. Some peaks still remained, but within reasonable bounds. Figure
14 indicates a cyclic yearly pattern with a increased energy consumption in Summer,
which is supported by Figure 15, showing monthly box plots for 2018 and 2019. The
box plot of Figure 15 suggests a seasonal pattern.

Figure 16 shows the power consumption in the range February 1%t 2018 until
February 14" 2018, with February 3'¢ and February 10" being Saturdays and February
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Figure 13: Electric power consumption of Company A in 2018
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Figure 14: Electric power consumption of Company A in 2018 with outliers removed

4" and February 11" being Sundays. A drop in power consumptions can clearly be
seen for weekends, however, Figure 16 does not indicate any further weekly patterns.
Figure 17 shows the power consumption of two subsequent days, Tuesday February
6" 2018 00:00 until Wednesday February 8t" 2018 23:59, not indicating a predominant
inter-day pattern, suggesting a 4-shift-work cycle being run by Company A.
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Figure 17: Electric power consumption of Company A in the range February 6" 2018
00:00 until February 8th 2018 23:59
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4.2.2 Dataset Exploration Company B

Company B is a paper goods manufacturer and this specific plant is producing pack-
aging for food & drinks, fast-moving-consumer-goods and hygiene products. The
dataset provides one year and nine month of electric power consumption data, be-
tween January 2018 and September 2019. Figure 18 depicts the electric power con-
sumption for 2018, not showing any significant outliers nor indicating any seasonal
trend. This is supported by Figure 19 showing the box plot for 2018 and 2019. The
median drop in 2018-12 of Figure 19 is due to a two week production stop during
the Christmas period.

Company B

Standardized Consumption

T T T T T T T
oY o o2 ol o %y o
10%° 0¥ 0% 2 0%

Date

Figure 18: Electric power consumption of Company B in 2018

Figure 20 shows the power consumption in the range February 1%t 2018 until
February 14" 2018, with February 3'¢ and February 10* being Saturdays and February
4*" and February 11*h being Sundays. A drop in power consumptions can clearly be
seen for weekends. The end of each workday is clearly identifiable by an overnight
drop in power consumption.

Figure 21 shows the power consumption of two subsequent days, Tuesday February
6" 2018 00:00 until Wednesday February 8" 2018 23:59 with the power consumption
starting at 5:00 and dropping again at 21:00, representing a total 16 hours of active
work, thus suggesting a non-overlapping two shift work cycle.
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Figure 19: Electric power consumption box plot of Company B in 2018 and 2019
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Figure 20: Electric power consumption of Company B in the range February 1°* 2018

until February 14th 2018
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Figure 21: Electric power consumption of Company B in the range February 6" 2018

00:00 until February 8th 2018 23:59

34


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.2.3 Dataset Exploration Company C

The dataset of Company C has been provided by a utility company and its field of
operation is unknown. The dataset holds five years of electric power consumption
data, between November 2015 and February 2020. Figure 22 depicts the electric
power consumption for 2018, indicating two weeks of work interruptions in August
2018 and three weeks in October 2018, not showing any significant load peaks. The
box plot shown in Figure 23 suggests a minor seasonality, with electricity consumption
having its yearly minimum between July and August.

Company C
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Figure 22: Electric power consumption of Company C in 2018

Figure 24 shows the power consumption in the range February 1%t 2018 until
February 14" 2018, with February 3™ and February 10" being Saturdays and February
4" and February 11t being Sundays. A drop in power consumptions can clearly be
seen for weekends. The end of each workday is clearly identifiable by an overnight
drop in power consumption. It is important to point out, that some Fridays also show
a significant drop in power consumption compared to the other workdays, suggesting
a reduced workload.

Figure 25 shows the power consumption of two subsequent days, Tuesday February
6t" 2018 00:00 until Wednesday February 8t 2018 23:59 with the power consumption
starting at 6:30 and dropping again at 16:30, representing a total 10 hours of active
work, thus suggesting a overlapping two shift work cycle.
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Figure 23: Electric power consumption box plot of Company B in 2017, 2018 and

2019
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Figure 24: Electric power consumption of Company C in the range February 1% 2018

until February 14th 2018
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Figure 25: Electric power consumption of Company C in the range February 6" 2018
00:00 until February 8th 2018 23:59
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4.3 Demand Prediction

In this Section, the prediction results for the baseline algorithm, neural network mod-
els, convolution neural network models and long-short term memory models are dis-
cussed for each dataset independently. The overall results across datasets are dis-
cussed in Section 5

To assess the prediction results across models, the performance metrics introduced
in Section 3.4 are used and the predicted and actual (“ground truth”) standardized
electricity consumption is plotted for the test set.

Additionally, four comparison time ranges have been selected, aiming to obtain a
zoomed-in view on time periods of interest:

(a) Zoom 1 (1.3.2019 - 16.3.2019)
was selected to represent two normal weeks, without holidays

(b) Zoom 2 (13.5.2019 - 26.5.2019)
was selected because Monday, March 21t 2019 was Whit Monday, a public
holiday, and is therefore directly impacting the baseline predictions

(c) Zoom 3 (17.6.2019 - 1.7.2019)
includes Corpus Christi 2019 (Thursday June 20" 2019), a public holiday

(d) Zoom 4 (29.7.2019 - 25.8.2019)
includes Assumption Day 2019 (August 15" 2019) and company holidays or
maintenance shutdowns for Company C

The performance metrics presented in the following sections have been calculated
using standardized data (Section 2.4.2) and are without unit.

4.3.1 Processing Dataset 1

Following, Dataset 1 is predicted using the Baseline and the best performing neural
network model, convolution neural network model and long short-term memory model.

4.3.1.1 Baseline

Figure 26 shows the baseline prediction, as introduced in Section 3.2, for Dataset
1. The overall, seasonal pattern of 2018 is matching the seasonal pattern of 2019,
but the predictions show significant divergence with an overall RMSE of 0.798 and
absolute error of 20115, suggesting improvement potential. The error statistics listed
in Table 2 have been calculated using standardized energy demand and therefore do
not have a unit. The drop in electricity consumption at the end of 2019 is explained
by Christmas and New-Year holidays. Table 2 lists the performance metrics for the
baseline of Dataset 1.

Figure 27 depicts Zoom 1 of the baseline prediction for Dataset 1, suggesting
major divergences between ground truth and prediction. This is confirmed by a high
RMSE value, compared to the other zoom segments.

Figure 28 is depicting Zoom 2, with the algorithms holiday compensation of Whit
Monday 2020 clearly recognisable from May 20" to May 21%t. For Zoom 2, the
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Table 2: Dataset 1 Baseline Error Statistics

MAE MSE  RMSE  CAE

[Wh/Wh] [Wh/Wh] [Wh/Wh] [Wh/Wh]
Full 0574 0637 0798 20115
Zoom1 0524 0411  0.641 754
Zoom?2 0327 0169 0411 408
Zoom3 0544 0438  0.662 731
Zoom4 0339 0177 0.420 879

historic values used for the baseline prediction, show a better resemblance with the
ground truth than in Zoom 1, confirmed by a lower RMSE value of 0.1609.

Figure 29 shows the baseline prediction for Zoom 3. The holiday correction to
the mean off-days is clearly identifiable. For Zoom 3, predicted consumption is higher
than actual consumption levels resulting in a higher RMSE value compared to Zoom
2 and a similar error compared to Zoom 1.

Figure 30 is showing the baseline prediction for Zoom 4. The prediction approxi-
mates the ground truth comparatively well, resulting in a low RMSE value of 0.177.
The holiday compensations introduced by the baseline for 15.8.2018 (Assumption Day
2018) and 16.8.2019 (Assumption Day 2019) are clearly visible.
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Figure 26: Baseline Prediction for Dataset 1
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Figure 27: Baseline Prediction for Dataset 1, Zoom 1 (01.03.2019 until 16.03.2019)
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Figure 28: Baseline Prediction for Dataset 1, Zoom 2 (Whit Monday 2018)
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Figure 30:
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Baseline Prediction for Dataset 1, Zoom 4 (29.07.2019 until 25.08.2019)
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4.3.1.2 Artificial Neural Network

Table 3: Dataset 1 ANN Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.33 0.214 0.462 11310 42 44
Zoom 1 0.256 0.113 0.336 369 48 51
Zoom 2 0.303 0.189 0.435 378 -6 7
Zoom 3 0.342 0.19 0.435 460 34 37
Zoom 4 0.266 0.112 0.335 689 20 22

A total of 41 ANN models have been tested on Dataset 1, with an overall mean
RMSE of 0.559 and a mean absolute error of 13947.

The selected model showed the best prediction performance of ANN models
trained on Dataset 1. It used 7 days as input and had 3 hidden layers, with 58
neurons each and deployed relu as activation function.

The prediction for 2019, shown in Figure 31, resembles the ground truth better
than baseline, especially from July 2019. However, until July 2019, the model predicts
many drops in consumption not occurring in the baseline.

Overall the model achieves an RMSE of 0.462 and an absolute error of 11310,
providing improvements of 42% and 44% respectively.

Figure 32 shows the ANN prediction of Zoom 1. Until March 11t the ground
truth presents a weeky pattern, with consumption drops in the early morning hours
and at weekends (weekends: March 2" to March 3™ and March 8t to March 10t).
The ANN model learned to approximate the weekly pattern, but starts to diverge from
March 11th. The ANN model achieved an RMSE value of 0.336 and a absolute error
of 369 compared to baseline. This is an improvement of 48% and 51%, respectively.

Figure 33 depicts prediction and ground truth for Zoom 2, with the model ac-
curately predicting the daily and weekly consumption patterns. Whit Monday 2018
does not impact the prediction in Zoom 2 (19.5.2019 - 20.5.2019). However, a
consumption drop at night between March 20" and March 21t results in prediction
inaccuracies, persisting until the end of March 21t. With the beginning of March
22" the prediction is again a good estimate for the ground truth. The reason for the
inaccuracy lasting a bit more than 24 hours is to be found in the assumption, that,
from midnight of a given day, the next 24 hours have to be predicted., limiting the
algorithms capabilities to adapt to changes.

For Zoom 2 the ANN model achieves an RMSE value of 0.435 and a cumulative
absolute error of 378, performing by 6% worse on the RMSE than baseline, but 7%
better on CAE.

In Zoom 3, shown in Figure 34, the model roughly approximates the ground truth,
but the intra-day consumption characteristics are different compared to Zoom 2,
worsening the prediction performance. The ANN model accounts for Corpus Christi
2019 by reducing the predicted consumption level, but is too conservative in its
prediction for the following bridging day. The ANN model achieves an RMSE value of
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Figure 31: ANN Prediction for Dataset 1

0.435 and an cumulative absolute error of 460, representing an improvement of 34%
and 37% compared to the baseline.

In Zoom 4, the ANN model follows the weekly consumption pattern of the ground
truth and accounts for Assumption Day 2019 while bouncing back comparatively slow
the day after. The ANN model achieves an RMSE value of 0.335 and an cumulative
absolute error of 689, representing an improvement of 20% and 22%, respectively.

43


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

>
—
- o .
AN
= ] 58] o]
I o
Eg| | & 7 S 5 '
R i — i
52k | B = 8 2
2B | |7 g 5 %
| _ m > .
— [ =l
_ _ . e &
3 N
Lo =
(=]
~ =
= —
S o=
= m MM ™~
[
= = =
= D
g e
o]
2 S -
S
9 E = =
3 5 v £
D =
5 =l =
o 0]
= £ WW
s oz 1|
_I_....H ANn o
T T |nﬂ_mu . T L T T T T T Bm
L2 o mw om o 2TER g oo o 4@ g
[upnypa] wondwnsuo [UaUM] 20ussaLI] L [upnum] wondwnsuoy [Yauml 2ousssyig
=
[}
i

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

te

a

2019
B
Figure 33: ANN Prediction for Dataset 1, Zoom 2 (Whit Monday 2018)
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Figure 34: ANN Prediction for Dataset 1, Zoom 3 (Corpus Christi 2019)
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Figure 35: ANN Prediction for Dataset 1, Zoom 4 (29.07.2019 until 25.08.2019)
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4.3.1.3 Convolution Neural Network

Table 4: Dataset 1 CNN Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.338 0.235 0.485 11686 39 42
Zoom 1 0.271 0.132 0.364 391 43 48
Zoom 2 0.31 0.226 0.476 387 -16 5
Zoom 3 0.386 0.24 0.49 519 26 29
Zoom 4 0.271 0.119 0.345 702 18 20

For Dataset 1, a total of 35 CNN models have been trained and tested, of which
26 achieved better results than baseline, with an overall mean RMSE of 0.907 and a
mean absolute error of 26442.

The selected model showed the best prediction performance of all CNN models
trained on Dataset 1. It used 4 hidden layers, with 39 neurons each a kernel size of 3,
a pooling size of 5, 4 days as input and relu as activation function. Table 4 lists the
error statistics for the whole dataset (“full”), Zoom 1, Zoom 2, Zoom 3 and Zoom 4.

Figure 36 shows prediction and ground truth using the CNN model for the whole
test data. Similar to Section 4.3.1.2, the model is predicting drops in electricity
demand up to July 2019 that are not present in the ground turth. Overall, the CNN
model performs slightely worse than the ANN model presented in Section 4.3.1.2 with
an achieved RMSE value of 0.485 and an absolute error of 11686, representing an
improvement of 39% and 42% respectively.

Figure 37, Figure 38, Figure 39 and Figure 39 show the graphs for Zoom 1, Zoom
2, Zoom 3 and Zoom 4, respectively.

Similar to the ANN model presented in Section 4.3.1.2, the model has learned
the weekly pattern for the first half of Zoom 1. Starting from March 10", the CNN
model has difficulties to accurately predict the volatile energy consumption data.

In Zoom 2, the model is approximating the daily patterns of the first week and
first weekend very well, is over estimating the consumption of March 20t and has,
like the ANN model, a 24h delay before adapting to the dropped energy consumption
of March 21%t.

In Zoom 3, the CNN model is over-estimating the consumption for normal week-
days and Corpus Christi (March 20*), but is tremendously under-estimating the con-
sumption for the bridge day (March 21%).

For Zoom 4, the CNN model is generally approximating the demand curve, how-
ever, compared to the ANN model, the CNN model is over-estimating many of the
normal load peaks.

Table 4 lists the performance metrics for the whole testset, Zoom 1, Zoom 2,
Zoom 3 and Zoom 4.
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Figure 40: CNN Prediction for Dataset 1, Zoom 4 (29.07.2019 until 25.08.2019)
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4.3.1.4 Long-Short Term Memory

Table 5: Dataset 1 LSTM Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.318 0.195 0.441 10840 45 46
Zoom 1 0.274 0.127 0.357 395 44 48
Zoom 2 0.269 0.118 0.344 336 16 18
Zoom 3 0.295 0.139 0.373 397 44 46
Zoom 4 0.267 0.108 0.328 693 22 21

A total of 9 LSTM models have been tested on Dataset 1, achieving a mean
RMSE of 0.469, a mean absolute error of 11650 and every model performed better
than the Baseline. The LSTM training process took on day (24h) per model, for
Dataset 1, limiting the number of trained models.

The selected LSTM model showed the best prediction performance of LSTM
models trained on Dataset 1. It used 3 hidden layers, with 94 neurons each, relu as
activation function and utilized 9 days of input data.

Figure 41 depicts prediction and ground truth for Dataset 1, using the LSTM
model for the whole test dataset, showing that the model has a tendency of over
estimating. Further, the LSTM model is forecasting drops in energy demand not
present in ground truth data, similar to the ANN an CNN models. Overall, the
LSTM model achieves an RMSE of 0.441 and a cumulative absolute error of 10840,
achieving an improvement of 45% and 56% compared to the Baseline.

Figure 42, Figure 43, Figure 44 and Figure 45 show the graphs for Zoom 1, Zoom
2, Zoom 3 and Zoom 4.

Similar to the ANN and CNN models, evaluated in Section 4.3.1.2 and Section
4.3.1.3, the model has learned the weekly pattern for the first half of Zoom 1 and
produces error, when the ground truth experiences a negative peak on Match 10"
The LSTM prediction requires slightly above 24h to adapt to the change in electricity
demand, due to the prediction precondition introduced in Section 4.3.1.2. On Zoom
1, the model achieved an RMSE of 0.357 and an cumulative absolute error of 395,
improving by 44% and 48%, respectively.

In Zoom 2, the model is anticipating the load demand for the work week between
March 13t and March 18", but it is under-estimating the demand compared to the
ANN and CNN model. The load peak of March 20" is predicted with less error
compared to the CNN model and the following predicted peak (March 21°t) is smaller
than for the ANN and CNN model. Further, the LSTM model is underestimating the
demand for the period from March 22", compared to Figure 33 and Figure 38. The
LSTM model achieved an RMSE of 0.344 and a cumulative absolute error of 336,
improving by 16% and 18% compared to the Baseline.

In Zoom 3, the LSTM model is producing less error during Corpus Christi 2019
(June 20t") and bounces back faster for the bridging day (June 21%%), compared to
the ANN and CNN model. The LSTM model achieved an RMSE of 0.373 and a
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Figure 41: LSTM Prediction for Dataset 1

cumulative absolute error of 397 for Zoom 3, improving by 44% and 46% compared
to the Baseline.

Assessing Zoom 4, the LSTM mdoel is generally less over-predicting and more
often under-predicting, compared to the ANN and CNN model. It achieves an RMSE
of 0.328 and a cumulative absolute error of 693, improving by 22% and 21% compared
to the Baseline.

4.3.1.5 Summary

Dataset 1 was provided by a pharmaceutical packaging manufacturer, with a high
volatility in load demand. The bes prediction results were achieved by the LSTM
model, reducing the error by 45% for the RMSE and 46% for the cumulative absolute
error, compared to baseline. Performing worst was the CNN model, with an improve-
ment of 39% and 42%, respectively. The ANN model achieved an improvement of
42% (RMSE) and 44% (CAE), achieving just 3% or 4% worse results, than the LSTM
model. With on hour average training time, the ANN models have been significantly
cheaper to train than the LSTM models, requiring an average of 24h each on Dataset
1. Depending on the required retraining frequency, it may be advisable to use the
cheaper ANN instead of the more accurate LSTM model.

51


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

difference
24 25

12 13 14 15
3

22

2

20

— ground truth
Date

—  predicted

& 19

17

15 16

14

—  ifference
— ground truth

—_— predicted

o1 02 03 04 05 06 07 08 09 10 11

i = — ™ = ]
[ I - =

[upypa] wondwinsuoy [upium] sousdagig

= w o
— = [==]
[unupa] vondwinsuod [upm/ym] oustaug

0.0 A
Mar
2019
1
0
i

Figure 42: LSTM Prediction for Dataset 1, Zoom 1 (01.03.2019 until 16.03.2019)

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

13
May
2019

te

a

O
Figure 43: LSTM Prediction for Dataset 1, Zoom 2 (Whit Monday 2018)

qny a8pajmoud| INoA

Saylolqie

52


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

— ground tru

—_—  predicted

th

=
[}

o
L
i

=
=]
i

— difference

Difference [Wh/Wh] Consumption [Wh/Wh]

17 18 19 20

Jum
2019

a2 3

24 2 2% 27T 2B 29 30

Date

Figure 44: LSTM Prediction for Dataset 1, Zoom 3 (Corpus Christi 2019)

1

[==]

—_— ground tru
_1 { =— predicted

A

=
=
i

Difference [Wh/Wh] Consumption [WhWh]
=
L

=
[

difference

293031010203 04 0506 0708091011121314151617 1819 2021 2223 24

Aug
2019

Figure 45: LSTM Prediction for Dataset 1, Zoom 4 (29.07.2019 until 25.08.2019)

53

Date


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3.2 Processing Dataset 2

Following, the test data of Dataset 2 is predicted using the Baseline and the best
performing neural network model, convolution neural network model and long-short
term memory model.

4.3.2.1 Baseline

Table 6: Dataset 2 Baseline Error Statistics

MAE MSE RMSE CAE
[Wh/Wh] [Wh/Wh] [Wh/Wh] [Wh/Wh]
Full 0141 0041 0202 3693
Zoom 1 0.178 0.071 0.266 257
Zoom?2 0148 0038  0.196 185
Zoom3 0156  0.047 0217 209
Zoom 4 0.134 0.040 0.200 349

Figure 46 shows the Baseline prediction, using the baseline algorithm introduced
in Section 3.2, for all test data of Dataset 2. The weekly demand cycles are clearly
recognisable in the full plot. Figure 46 suggests that the baseline is overestimating
the demand from June 2019 until October 2019. Overall, the Baseline achieved an
RMSE of 0.202 and a cumulative absolute error of 3693 on Dataset 2. Figure 47,
Figure 48, Figure 49 and Figure 50 are depicting the baseline predictions for Zoom
1, Zoom 2, Zoom 3 and Zoom 4.

For Zoom 1, the baseline is predicting a steep drop in Friday March 8", producing
significant error. In Zoom 2, the historic data used for the Baseline accurately predicts
the energy demand of the test data. The holiday compensation for Whit Monday
(March 20t is clearly recognisable.

Looking at Zoom 3, the holiday adjustment for Corpus Christi 2019 can be de-
tected easily and the bridgeday prediction (March 21%) is predicting the amplitude
correctly. For Zoom 3, the Baseline achieves an RMSE of 0.217 and a cumulative
absolute error of 209.

In Zoom 4, the adjustments for Assumption Day 2018 and 2019 are clearly recog-
nisable on March 14t and March 15", respectively. The Baseline achieves an RMSE
of 0.2 and a cumulative absolute error of 249 for Zoom 4.
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4.3.2.2 Artificial Neural Network

Table 7: Dataset 2 ANN Error Statistics

MAE MSE ~ RMSE  CAE  RMSE CAE

[Wh/Wh] [Wh/Wh] [Wh/Wh] [Wh/Wh] [%]  [%]

Full 0.112 0023  0.152 2866 25 22
Zoom1l  0.126 0.03  0.174 181 35 30
Zoom 2 0.1 0.02  0.142 137 28 26
Zoom3 0143 0036  0.191 192 12 8
Zoom4 0102 0018  0.134 265 33 24

For Dataset 2, a total of 30 ANN models have been trained and tested. 11 mod-
els performed better than baseline, with an overall RMSE of 0.283 and a cumulative
absolute error of 5728. The selected model achieved an RMSE of 0.152 and a cumu-
lative absolute error of 2866 on the test data. This is an improvement of 25% and
22%, compared to the baseline.

Figure 51 shows the prediction of the test data for Dataset 2, using the selected
ANN model. Figure 52, Figure 53, Figure 54 and Figure 55 depict prediction and
ground truth for Zoom 1, Zoom 2, Zoom 3 and Zoom 4.

When comparing Zoom 1 and Zoom 2, it can be seen, that the ANN model
learned a specific pattern, approximating the actual consumption pattern. In Zoom
1, the time at the beginning of March 4™ and March 11*" produces a large error, not
occurring in Zoom 3, indicating that the model learned a “generalized” pattern that
is interrupted by irregularities. In Zoom 3, this “generalized” pattern is interrupted by
Corpus Christi 2019, indicating that the model can cope with calendric variation.

The ANN model has learned to predict Fridays as work days, with slightly reduced
load (e.g. May 17t or May 24" in Zoom 2). However, Fridays are not necessarily
following the learned,“generalized’ pattern (for example Friday March 15" in Zoom 1),
deteriorating the prediction performance. The reason for the demand divergence can
probably be found in the plants order situation or operative planning, not providing a
learnable signal. Without a learnable signal, the algorithm is not able to discriminate
between normal and reduced load Fridays.

The ANN model is accurately predicting the consumption drop, inflicted by As-
sumption Day 2019 (August 15%), but it is not expecting a bridge day with reduced
demand on August 16", introducing error by significantly over-estimating the load de-
mand. This error could be circumvented by adding plant internal planning information
to the algorithms input.

For Zoom 1, the algorithm achieved an RMSE of 0.174 and a cumulative absolute
error of 181, improving by 35% and 30% compared to the baseline. For Zoom 2, an
RMSE of 0.142 and a cumulative absolute error of 137 was achieved, improving the
prediction by 28% and 26% respectively. In Zoom 3, the ANN model is performing
worse than in Zoom 1, Zoom 2 or Zoom 4, achieving an RMSE of 0.191 and a
cumulative absolute error of 192, improving the baseline by just 12% and 8%.

Lastly, the ANN model was able to improve the RMSE by 33% and the cumulative
absolute error by 24% for Zoom 4, compared to the baseline, achieving an RMSE value
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Figure 51: ANN Prediction for Dataset 2

05 1

00

—0.5 1

— ground truth
- predicted

Difference [Wh/wh] Consumption [Wh/Wh]

—  ifference

ol
[Mar
2019

02 03 M 05 06 07 068 09 10 11 12 13 14 15

Date

Figure 52: ANN Prediction for Dataset 2, Zoom 1 (01.03.2019 until 16.03.2019)
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Figure 53: ANN Prediction for Dataset 2, Zoom 2 (Whit Monday 2018)
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Figure 54: ANN Prediction for Dataset 2, Zoom 3 (Corpus Christi 2019)
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4.3.2.3 Convolution Neural Network

Table 8: Dataset 2 CNN Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.113 0.023 0.151 2872 25 22
Zoom 1 0.125 0.026 0.163 179 39 30
Zoom 2 0.095 0.016 0.126 119 36 36
Zoom 3 0.166 0.048 0.22 224 -1 -7
Zoom 4 0.105 0.021 0.146 272 27 22

A total of 35 CNN models have been trained on Dataset 2, of which 12 performed
better than the Baseline established in Section 4.3.2.1. All CNN models combined
achieved an overall mean RMSE of 0.567 and a mean cumulative error of 18404. The
selected model is comprised of 6 hidden layers with 80 neurons each, uses a kernel
size of 3 and a pooling size of 4, relu as activation function and 8 days of input data.

Figure 56 shows the prediction and ground truth of Dataset 2. The selected CNN
model achieved an RMSE value of 0.151, improving the prediction accuracy by 25%
compared to the Baseline and a cumulative absolute error of 2872, improving the
prediction accuracy by 22%.

Figure 57, Figure 58, Figure 59 and Figure 60 depict prediction, ground truth and
error for Zoom 1, Zoom 2, Zoom 3 and Zoom 4.

The predicted demand pattern shown in Zoom 1 indicates, that the model learned
a general regression function, smoothing the load patterns. Due to this smoothing
property, the model performs bad in predicting steep demand changes, causing the
prediction error to increase each Monday (e.g. March 4™ or March 11*" in Zoom 1).
The absolute errors for work days are comparable with the absolute errors produced
by the ANN model, levelling around 0.2 for both.

Generally, the CNN model has difficulties to accurately predict the demand for the
days before and after Corpus Christi 2019, generating absolute errors of about 0.5,
exceeding the work week error of Zoom 1 twice.

In Zoom 4, the CNN model is achieving results comparable to the ANN model,
producing absolute errors between 0.2 and 0.25 for normal work weeks. However,
the bridge day after Mary Assumption (August 16%) is significantly overestimated,
generating absolute errors of 0.75 and more, compared to the ANN model producing
absolute errors of 0.4 — 0.5 in Figure 55.

The CNN model achieved an RMSE of 0.163 and a cummulative absolute error of
179, for Zoom 1, improving by 39% and 30%. For Zoom 2, it achieved an RMSE of
0.126, improving by 36% and a cumulative absolute error of 119, improving by 36%.
On Zoom 3, the model achieved worse results compared to the Baseline, scoring
an RMSE of 0.22 and a cumulative absolute error of 224. For Zoom 4, the model
achieved a improvement of 27% and 22% respectively, producing an RMSE value of
0.146 and a cumulative absolute error of 272.
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Figure 57: CNN Prediction for Dataset 2, Zoom 1 (01.03.2019 until 16.03.2019)
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Figure 58: CNN Prediction for Dataset 2, Zoom 2 (Whit Monday 2018)
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Figure 59: CNN Prediction for Dataset 2, Zoom 3 (Corpus Christi 2019)
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Figure 60: CNN Prediction for Dataset 2, Zoom 4 (29.07.2019 until 25.08.2019)
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4.3.2.4 Long-Short Term Memory

Table 9: Dataset 2 LSTM Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.103 0.022 0.148 2671 27 28
Zoom 1 0.117 0.029 0.17 168 36 35
Zoom 2 0.105 0.019 0.138 132 30 28
Zoom 3 0.13 0.037 0.191 174 12 17
Zoom 4 0.105 0.027 0.165 273 18 22

For Dataset 2, a total of 30 LSTM models have been trained and tested, and 22
models performed better than the Baseline, with an overall mean RMSE of 0.188 and
a mean cumulative absolute error of 3217. The selected model uses one hidden layer,
with 73 neurons each, facilitated a tanh activation function and used three days as
input data. The model achieved an RMSE of 0.148 and a cumulative absolute error
of 2671 on the test data, improving the prediction by 27% and 28%, respectively.

Figure 61 shows the LSTM prediction and ground truth for Dataset 2, indicating
that the majority of absolute errors are peaking between 0.25 and 0.5.

Figure 62, Figure 63, Figure 64 and Figure 65 depict prediction, ground truth and
error for Zoom 1, Zoom 2, Zoom 3 and Zoom 4.

Comparing Zoom 1 to Zoom 4 indicates, that the selected LSTM model is gener-
ally under-estimating the load demand for Mondays and that the model has learned
to condense the demand pattern to a regression function, generally ignoring intra-
days patterns. The LSTM model has the same difficulties to predict low-load Fridays
(March 15t in Zoom 1) correctly, as the ANN and CNN model, supporting the
assumption that signals are missing to correctly predict Fridays load demand. Addi-
tionally, the LSTM model is equally bad in predicting the bridge day (August 16t")
of Zoom 4.

4.3.2.5 Summary

Dataset 2 was provided by a paper manufacturing plant. The demand pattern is
repetitive, with daily and weekly variations clearly identifiable. The ANN and CNN
model are performing equally well, reducing the error by 25% (RMSE) or 22% (cumu-
lative absolute error). The best results are achieved by the LSTM mode, improving
prediction performance by 27% (RMSE) or 28% (CAE) compared to the Baseline.
Besides intra-day variation, the most significant error is caused by unpredictable load
patterns on Fridays and unexpected load reduction on bridge days. When implement-
ing LSTM for Company B, it is suggested to provide internal planing information
as algorithm input to eliminate prediction inaccuracies for Fridays, bridge days and
intra-day deviations.
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4.3.3 Processing Dataset 3
4.3.3.1 Baseline

Table 10: Dataset 3 Baseline Error Statistics

MAE MSE  RMSE CAE

[Wh/Wh] [Wh/Wh] [Wh/Wh] [Wh/Wh]

Full 0.203  0.095  0.309 7128
Zoom 1 0.156 0.037 0.193 224
Zoom 2 0.210 0.086  0.293 262
Zoom3 0233 0118  0.343 313
Zoom 4  0.162 0.064  0.253 420

Figure 66 shows the Baseline prediction for Dataset 3 using the Baseline algorithm
introduced in Section 3.2 for the entire test set, indicating a repetitive load demand
pattern, with three maintenance or holiday periods. Overall, the Baseline achieved
an RMSE of 0.309 and a cumulative absolute error of 7128.

Figure 67, Figure 68, Figure 69 and Figure 70 depict prediction, ground truth and
error for Zoom 1, Zoom 2, Zoom 3 and Zoom 4.

Zoom 1 to Zoom 4 reinforce the assumption of highly repetitive demand pat-
terns, suggesting limited improvement potential. In Zoom 2, the baseline algorithm
is generating error by replacing Whit Monday 2018 with the mean consumption of
a workday. The drop of Corpus Christi 2019 (June 20t") is accounted for by using
the mean consumption of off-days as forecast. However, the bridge day after Cor-
pus Christi 2019 (June 21%*) has been a normal workday in 2018, resulting in a false
prediction.

Zoom 4 shows a two week holiday/maintenance period of Company C. The data of
the previous year is accurately predicting the consumption for the first week. For the
second week, the Baseline Algorithm is generating an error by replacing Assumption
Day 2018 (August 14" in Figure 70) with the workday mean and Assumption Day
2019 (August 15t in Figure 70) with the off-day mean, both forecasting higher loads
than necessary for the holiday period. Table 10 lists the performance statistics for
the Baseline of Dataset 3.

70


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2.0 —— ground truth

15 —— predicted
1.0
0.5

0.0

Consumption [Wh/Wh]

0.5

i
o

— difference

L
[&,]

Difference [Wh/Wh]
(ol
(=]

0.5
0.0
T
o
45
Figure 66: Baseline Prediction for Dataset 3
= 5
;é:' —— ground truth
E % —— predicted
1 !
£ J '
'
o
Eo
Wi
=
i - : 2 : ; . :
pp 02 03 04 05 06 OF 08 09 10 11 12 13 14 15
Mar
2019
Date
= 075
'._:.E- —— difference
£
= 050
[:5]
1=
g 0.25
=
o 0.00 ! : 4 : 3 . : : 2 |
ppL 02 03 04 O5 OB O7F 08 09 10 11 12 13 14 15
Mar
2019

Date

Figure 67: Baseline Prediction for Dataset 3, Zoom 1 (01.03.2019 until 16.03.2019)
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4.3.3.2 Artificial Neural Network

Table 11: Dataset 3 ANN Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.21 0.098 0.313 8168 -1 -15
Zoom 1 0.219 0.094 0.306 315 -58  -40
Zoom 2 0.21 0.088 0.296 262 -1 0
Zoom 3 0.22 0.102 0.319 296 7 5
Zoom 4 0.186 0.111 0.333 482 -32 -15

For Dataset 3, a total of 60 models have been trained, of which none has per-
formed better than Baseline. The selected model has performed best among the
trained models, achieving an RMSE of 0.313 and a cumulative absolute error of
8168, performing 1% and 15% worse then Baseline.

Figure 71 shows the overall ground truth, predicted load demand and the absolute
errors. Figure 72, Figure 73, Figure 74, and Figure 75 show prediction, ground truth
and absolute errors for Zoom 1, Zoom2, Zoom 3 and Zoom 4.

The model has learned a regressive function to predict the future load demand, but
as the demand patterns of 2018 and 2019 are highly recurring, the learned regression
curve is performing significantly worse than the Baseline, achieving an RMSE of 0.306
and a cumulative absolute error of 315, deteriorating the performance by 58% and
40% compared to Baseline.

Only for Zoom 3, the ANN model is able to outperform the Baseline by 7%
for the RMSE and 5% for the cumulative absolute error, as it is good in predicting
the reduced load demand for the bridge day. The ANN model has learned to quickly
identify holiday/maintenance periods completely adjusting to the drop in load demand
after an adoption period of 24h, as shown in Zoom 4. However, while adapting to the
holiday /maintenance mode quickly, the model is not anticipating the return no normal
demand behaviour requiring another adaptation period of 24h. The performance
metrics for the whole testset, Zoom 1, Zoom 2, Zoom 3 and Zoom 4 are listed in
Table 11.
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Figure 75: ANN Prediction for Dataset 3, Zoom 4 (29.07.2019 until 25.08.2019)
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4.3.3.3 Convolution Neural Network

Table 12: Dataset 3 CNN Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.161 0.055 0.234 6516 24 9
Zoom 1 0.173 0.053 0.231 249 -20  -11
Zoom 2 0.149 0.039 0.198 187 32 29
Zoom 3 0.13 0.033 0.18 174 48 44
Zoom 4 0.192 0.09 0.299 499 -18  -19

A total of 35 CNN models have been trained and tested on Dataset 3, achieving
a mean RMSE of 0.567 and a mean cumulative absolute error of 18404. 12 models
performed better than the Baseline. The selected CNN model was built using one
hidden layer, 65 neurons, a kernel size of 3 and a pooling size of 4, utilizing tanh as
activation function and four days as input data. The selected CNN model achieved
an RMSE of 0.234 and a cumulative absolute error of 6516 on the whole test set,
improving by 24% and 9% compared to baseline.

Figure 76 shows the overall ground truth, predicted load demand and the absolute
errors. Figure 77, Figure 78, Figure 79, and Figure 80 show prediction, ground truth
and absolute errors for Zoom 1, Zoom2, Zoom 3 and Zoom 4.

Comparing the weekday predictions for Zoom 1, Zoom 2 and Zoom 4, it is obvious
that the model has learned different patterns, for different load conditions (higher load
demand predicted for Mondays in Zoom 1 and equal to lower load demand predicted
for Mondays in Zoom 2 and Zoom 4). The model is accurately predicting Corpus
Christi 2019 (June 20*") and is also performing well in predicting the bridge day after
Corpus Christi 2019 (June 21%*). In Zoom 1, the model seems to have issues predicting
the intra-day demand accurately and in Zoom 4, the model had difficulties reducing
the predicted load to zero for the holiday/maintenance period.

The CNN model is performing worse than the Baseline for Zoom 1 and Zoom 4,
scoring RMSEs of 0.053 and 0.09 and cumulative absolute errors of 249 and 499.

Table 12 lists the performance metrics for the selected CNN model.
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Figure 77: CNN Prediction for Dataset 3, Zoom 1 (01.03.2019 until 16.03.2019)
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Figure 78: CNN Prediction for Dataset 3, Zoom 2 (Whit Monday 2018)
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Figure 79: CNN Prediction for Dataset 3, Zoom 3 (Corpus Christi 2019)
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Figure 80: CNN Prediction for Dataset 3, Zoom 4 (29.07.2019 until 25.08.2019)
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4.3.3.4 Long-Short Term Memory

Table 13: Dataset 3 LSTM Error Statistics

MAE MSE RMSE CAE RMSE CAE

[Wh/Wh]  [Wh/Wh] [Wh/Wh] [Wh/Wh]  [%] [%]

Full 0.155 0.053 0.23 6272 26 12
Zoom 1 0.132 0.029 0.17 190 12 15
Zoom 2 0.149 0.04 0.2 186 32 29
Zoom 3 0.125 0.029 0.171 168 50 46
Zoom 4 0.156 0.08 0.282 404 -12 4

A total of 29 LSTM models have been trained and tested on Dataset 3, with 27
performing better than the Baseline. Together, the models achieved a mean RMSE
of 0.273 and a mean cumulative absolute error of 7217. The selected model uses
a relu activation function, three days as input data and five hidden layers, with 41
neurons each.

Overall, the model achieved an RMSE of 0.23 and a cumulative absolute error
of 6272, improving by 26% and 12%. Unlike to the CNN model, the LSTM model
predicts very similar patterns for normal work weeks, predicting relatively constant
demand levels across working days. However, the model is still outperforming the
Baseline for Zoom 1, Zoom 2 and Zoom 3. Similar to the ANN and CNN model,
the LSTM model has difficulties predicting if a Monday is the beginning of a holi-
day/maintenance period, but is able to adapt to the drop in energy demand within
24h. Having those issues, the LSTM model is achieving an RMSE of 0.282 and a
cumulative absolute error of 404, performing by 12% worse than the Baseline for the
RMSE. This drop in prediction performance can be improved by providing company
internal planning information to the model input data.

Table 13 lists the performance metrics for the selected LSTM model.

4.3.3.5 Summary

Dataset 3 was provided by a utility company and the true origin of the dataset
is unknown. The demand pattern is highly recurring, with little volatility and the
company is scheduling fixed holiday/maintenance periods. On Dataset 3, the CNN
and LSTM models are performing better than baseline, with the LSTM outperforming
the CNN model by 2% for the RMSE and 3% for the cumulative absolute error. Overall
it is possible to reduce the prediction error by 26% for the RMSE and 12% for the
cumulative absolute error, using LSTM.

All algorithms had difficulties predicting holiday/maintenance periods. Providing
internal planning information as algorithm input could significantly strengthen the
prediction performance.
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Figure 82: LSTM Prediction for Dataset 3, Zoom 1 (01.03.2019 until 16.03.2019)
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Figure 83: LSTM Prediction for Dataset 3, Zoom 2 (Whit Monday 2018)
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Figure 84: LSTM Prediction for Dataset 3, Zoom 3 (Corpus Christi 2019)
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5 Conclusion

In the context of this master thesis, three different deep learning algorithms were
tested for their ability to predict industrial electricity demand one day in advance with
a consumption accuracy of 15 minutes. Due to their widespread use, Artificial Neural
Networks (ANN), Convolution Neural Networks (CNN) and Long-Short Term Memory
Networks (LSTM) were selected for the experiments. The baseline algorithm deployed
is the method used by Company B and Company C in practice, which assumes last
year's consumption as a prediction for future consumption. The experiments were
conducted on three industrial data sets, each of which has different consumption
characteristics and covers at least a period of one year and nine months up to a pe-
riod of seven years. Before the baseline algorithms or deep learning algorithms could
be applied to the data, the datasets were first manually inspected to understand their
properties and then unified into a coherent data structure (pre-processing). Subse-
quently, a separate baseline was calculated for each data source in order to be able to
decide on the performance of the predictions during the deep learning experiments.
To conduct the experiments efficiently, all Deep Learning specific activities were com-
bined in a Deep Learning Pipeline, in which the power consumption data was extended
by date and holiday information, the dataset was divided into a training and test set
and the Deep Learning models were trained, evaluated and optimized. Normalized
data were used for the training process and, to ensure comparability between the
datasets, standardized data was used for the documentation within the scope of this
writing.

To find the best hyperparameter configuration for each dataset and model, more
than 200 models were trained and evaluated. For every dataset, LSTM models gave
better results than the baseline, ANN and CNN models. The ANN and CNN models
alternate in 2nd and 3rd place in terms of prediction accuracy. The level of improve-
ment in prediction accuracy varies, depending on the consumption volatility of the
dataset studied, between approximately 20% and 45% per model, compared to the
baseline. When demand volatility is high, the consumption data from the previous
year is a poor approximation of actual demand and this leads to a high divergence
between predicted and actual demand. Dataset 1 has the highest demand volatility,
and the selected LSTM model achieved a 45% RMSE improvement. The ANN model
was not significantly worse, with a 42% RMSE improvement. The CNN model was
“only” able to achieve an RMSE improvement of 39%. Applied to Dataset 2, the best
LSTM model achieved an RMSE improvement of 27% while both the ANN model
and the CNN model achieved an RMSE improvement of 25%. Dataset 3 has the
highest percentage of recurring consumption patterns, so the baseline is already a
passable approximation to the actual consumption. With the LSTM model selected
for Dataset 3, an RMSE improvement of 26% was achieved. In this case, the CNN
model selected for Dataset 3 came second, with an RMSE improvement of 24%, and
none of the trained ANN models achieved better results than the baseline. Compar-
ing the prediction improvement of the LSTM models with the second placed models,
the LSTM models achieve an improvement of only 2-3%. Since LSTM models are
much more expensive to train than ANN or CNN models, due to the complexity of
the models, it may be preferable to use ANN or CNN models despite their poorer
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performance compared to LSTM models in applications requiring frequent re-training,
for example when new consumption data is to be incorporated into the model quickly.
If frequent re-training is not necessary, LSTM models should be chosen over ANN or
CNN models.

On all datasets the algorithms had to cope with changes in demand patterns, due
to bridge days, changes in production processes or order situation and unpredictable
holiday/maintenance periods. Overall, the algorithms managed to adapt their fore-
casts quickly to a changing demand situation.

As a next step, the partner companies will be informed about the achieved results.
Furthermore, the Deep Learning Pipeline allows to easily test more complex model
architectures, further generalization methods or changes of the used input data.
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