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Abstract

Proton magnetic resonance spectroscopy of the brain is a noninvasive

technique to extract neurochemical information from the brain and al-

low the analysis of primary and secondary brain tumors and metabolic

diseases. Acquired spectra are inevitably degraded due to many factors,

such as line-broadening, low signal-to-noise ratio, overlapping metabolic

signals, and variability in spectral baselines. Current software for spec-

tral fitting and metabolite quantifications are based on nonlinear least

squares fitting algorithms. These approaches are not suitable for all MR

metabolic signals and are, moreover, very time consuming. Thus, mag-

netic resonance spectroscopic imaging still is rarely used in daily clinical

routine regardless of its high potential.

This thesis investigates how deep learning can accelerate spectral fit-

ting and metabolite quantification. A convolutional neural network (CNN)

called Superfit and consisting of two serialized autoencoders, was devel-

oped to remove the baseline from the original spectra and to disassemble

the baseline free spectra into their metabolic components. For training,

validation, and testing of Superfit, almost 70,000 spectra were simulated

based on a basis set of the metabolites of interest and in vivo spectral

baselines from earlier studies.

The trained Superfit was capable of disassembling the metabolites and

quantifying the concentrations of the total metabolites with a mean abso-

lute percentage error of 8.99% ± 7.41%. Furthermore, Superfit could fit

and quantify over 10000 spectra in less than 40s implying that subminute

metabolite quantification via deep learning is possible.
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1 Introduction

In this very first chapter, after a brief introduction to the physical ba-

sics of nuclear magnetic resonance (NMR), the basic concepts of proton

magnetic resonance (MR) imaging (MRI) and magnetic resonance spec-

troscopy (MRS) are described. The following section follows with a focus

on metabolic quantification in MRSI, especially via LCModel, which is

still the method primarily used for quantification. Finally, the concept

of deep learning and deep neural networks, the tools that used in the

Methods chapter of this thesis, is introduced. For a more detailed in-

troduction to the physical and technical NMR-related part, ”In Vivo

NMR Spectroscopy” by de Graaf [1] is highly recommended, whereas

readers interested in further information about LCModel should consult

Provencher’s ”Estimation of Metabolite Concentrations from Localized in

Vivo Proton NMR Spectra” [2]. A broad introduction to deep learning

and its tools is presented in ”Deep Learning” by Goodfellow et al. [3].

1.1 Introduction to MR Spectroscopic

Imaging

MRSI is a noninvasive technique to extract biochemical information like

metabolite concentrations from a body tissue of interest, whereas MRI

obtains only information about the structure of the tissue. Thus, MRSI

has a great potential for clinical and scientific purposes. For example,

it can be used to examine prostate cancer, as reported by Müller-Lisse

et al. [4]. The main medical focus of MRSI is set on the brain: Cecil

and colleagues used MRSI spectra to investigate many metabolic dis-

eases, including lysosomal disorders, peroxisomal disorders, mitochon-

drial disorders, white-matter disorders, disorders of amino and organic

acid metabolism, and some miscellaneous disorders [5]. One of the most

prominent MR-visible metabolites is the neuronal marker N-acetylaspartate

(NAA). A reduced concentration in NAA is associated with white mat-

1
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1 Introduction

ter diseases and brain tumors [6]. Creatine (Cr) and phosphocreatine

(PCr) are brain metabolites, which play a role in the energy metabolism.

Although their concentrations may be reduced by pathologies like brain

tumors, their concentrations are considered to be stable and, thus, can

be used to calculate the concentrations of other metabolites [6]. Phos-

phocholine (PC) and glycerophosphocholine (GPC) are involved in the

synthesis of membrane; their concentrations correlate with the malig-

nancy of tumors [6]. Other prominent MR-visible metabolites include

myo-inositol (m-Ins), glutamate (Glu) and glutamine (Gln). The neu-

rotransmitter with the highest inhibitory effect is gamma aminobutyric

acid (GABA) and is related to several nervous system disorders; it was

reproducibly quantified quantified by Bogner et al. [7].

In MR spectroscopy, as written in the word itself, the goal is to observe

spectra which enable conclusions to be derived about the concentration

of a certain molecule. This observation is achieved by the effect of the

magnetic resonance of nuclei. Therefore, before getting to the basics of

MRI and MRS, it makes sense to understand the physical principles of

NMR, which will be described in a semi-classical way in the following.

1.1.1 Physical Basics of NMR

NMR relies on the quantum mechanical concept of nuclear spin. If a

particle rotates about a fixed point, its motion is referred to as the an-

gular momentum. In quantum mechanics, the angular momentum L of

elementary particles is assumed to have discrete values and is quantized

and the amplitude specified by

L = ~

√

I(I + 1) (1.1)

with ~ being the reduced Planck’s constant (Planck’s constant h di-

vided by 2π), and I being the either integral or half-integral spin number.

The direction of the rotation, i.e., the direction of angular momentum, is

defined by the second quantum number m, which can have 2I +1 values

given by

m = I, I − 1, I − 2, . . . , −I,

with respect to a given direction z. For such given direction, Lz denotes

2
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1.1 Introduction to MR Spectroscopic Imaging

Figure 1.1: The two energetic states of a particle with spin I = 1/2 split
when an external magnetic field B0 is applied. This effect is
called Zeeman Splitting [1].

the corresponding part of the angular momentum and is specified by

Lz = ~m (1.2)

In NMR, especially in medical context, nuclei of major importance are

those with a spin number I = 1/2, primarly 1H and 31P.

Related to the angular momentum, elementary particles further have

a magnetic moment µ,

µ = γL, (1.3)

where γ denotes the gyromagnetic ratio. Analogously to Lz, the com-

ponent of the magnetic moment with respect to the longitudinal axis z,

can be quantized as

µz = γLz = γ~m (1.4)

If an external magnetic field B0 is applied, magnetic energy E is acquired

by the particle:

E = −µzB0 = −γ~mB0 (1.5)

Hence, for particles with spin number I = 1/2, only two energy levels,

m = ±1/2, exist and the energy difference, ∆E, is shown in Figure 1.1

and specified by

∆E = γ~B0. (1.6)

If an oscillating magnetic field perpendicular to µz with a frequency of

ν0 is applied, the energy arising from the electromagnetic wave is given

by

E = 2π~ν0. (1.7)

3
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1 Introduction

Figure 1.2: (A) A particle with a spin I = 1/2 has a precessing magnetic
moment with a Larmor frequency ν0 and an angle θ between
µ and µz.. (B) The position of the magnetic moment depends
on m and is parallel, i.e. has low energy, for m = +1/2 and
is denoted as α. The antiparallel state m = −1/2 has high
energy and is denoted as β. The possible positions of µ form
the surface of two cones [1].

If both, ∆E given by equation (1.6) and E given by equation (1.7) have

the same energy, the fundamental resonance phenomenon of NMR is

achieved and the important Larmor equation is obtained by

ν0 =
( γ

2π

)

B0 (1.8)

weher ν0 is called the Larmor frequency, which denotes the frequency

at which a particle’s magnetic moment precesses around the external

magnetic field B0.

Considering just one particle, there is just one energetic state, as show

in Figure (1.2 A). But, in a sample, there is a whole population of par-

ticles and the corresponding spins and realizations (see Figure (1.2 B)).

The magnetization M of a sample is the sum over all magnetic mo-

ments within the sample. To detect a sample’s nuclear magnetization

M , the net longitudinal magnetization M0 in equilibrium induced by

B0 must be rotated toward the transverse plane by applying a second

magnetic field B1. B1 oscillates in radio frequency (RF) and is usually

applied as an RF pulse, i.e. turned on for a certain time and then turned

off again. Due to B1, the initially equilibrial longitudinal magnetization

M0 receives a torque and starts rotating towards the transverse plane

(see Figure 1.3). This generates a transverse magnetization that rotates

around B0 at the Larmor frequency, ν0. This process is called excitation

and induces an electromotive force (EMF) that can be measured by the

receiver coil surrounding the sample. In NMR, the magnetization M

4
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1.1 Introduction to MR Spectroscopic Imaging

Figure 1.3: The initially longitudinal magnetization by B0 rotates toward
the XY-plane due to B1 [1].

itself is not measured, but rather, the relaxation or decay back to the

equilibrium is measured right after excitation through the RF pulse.

The magnetization of a sample in a laboratory frame is described by

the so-called Bloch equations:

dMx(t)

dt
= γ[My(t)B0 −Mz(t)B1y]−

Mx(t)

T2

dMy(t)

dt
= γ[Mz(t)B1x −Mx(t)B0]−

My(t)

T2

dMz(t)

dt
= γ[Mx(t)B1y −My(t)B1x]−

Mz(t)−M0

T1

(1.9)

The first part of each equation specifies the excitation process, and the

second part part pictures the relaxation process. B1x, and B1y denote

the components of B1 in the direction of the x- and y-axis, respectively.

The transverse components ofM (Mx andMy) relax with a different time

constant T2 than the longitudinal component Mz which relaxes with time

constant T1.

1.1.2 Basics of NMR Spectroscopy

In NMR spectroscopy, the signal of interest decreases according to the

transverse magnetization right after the RF pulse is detected by the re-

ceiver coil. Due to the transverse relaxation time T2, the EMF measured

in the receiver coil decreases exponentially as a function of time. This de-

cay is called free induction decay (FID). However, because of the sample’s

macroscopic and microscopic inhomogeneities in B0, we see a distribution

5
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1 Introduction

Figure 1.4: The FID as a complex function of time detected as a real and
an imaginary FID component on the x- and y-axis respec-
tively [1].

of locally different Larmor frequencies. In praxis, this results in a faster

decrease of the transverse magnetization compared to only T2 relaxation:

Mxy(t) = Mxy(0) exp

(−t

T ∗
2

)

(1.10)

with Mxy being the transverse magnetization right at the end of the RF

pulse and t denoting the time. T ∗
2 denotes the the adapted transverse

relaxation constant described by:

1

T ∗
2

=
1

T2

+
1

T
′

2

(1.11)

where T
′

2 is inversely proportional to the mentioned macroscopic field

inhomogeneity.

Fourier Transform NMR

Since the transverse magnetization Mxy rotates, its motion and thus the

FID is a complex function over time:

Mxy = Mx + iMy (1.12)

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1.1 Introduction to MR Spectroscopic Imaging

Mx(t) = M0 cos[(ω0 − ω)t+ φ] exp

(−t

T ∗
2

)

My(t) = M0 sin[(ω0 − ω)t+ φ] exp

(−t

T ∗
2

) (1.13)

ω0−ω describes the reduced precessional frequency. φ denotes the phase

at t = 0. The receiving FID signal contains all the relevant information

and Mx and My as the real and imaginary part of the FID are detected

separately using the so-called quadrature detection. However, this time-

domain data is usually converted to frequency-domain data, i.e. the

spectrum. This is achieved by a Fourier transformation:

F (ω) =

∞̂

−∞

f(t) exp(−iωt)dt or F (ν) =

∞̂

−∞

f(t) exp(−i2πνt)dt

(1.14)

Fourier transforming the time-domain signal yields the real and imag-

inary part of the spectrum:

R(ω) = A(ω) cosφ−D(ω) sinφ

I(ω) = A(ω) sinφ+D(ω) cosφ
(1.15)

with

A(ω) =
M0T

∗
2

1 + (ω0 − ω)2T ∗
2
2

D(ω) =
M0(ω0 − ω)2T ∗

2
2

1 + (ω0 − ω)2T ∗
2
2

(1.16)

where A(ω) and D(ω) represent the absorption and dispersion parts of

Lorentzian lineshapes. In ideal circumstances, the phase φ equals zero

and the absorption and dispersion match the real and imaginary part,

respectively. However, in praxis, both parts are mixed and a so called

phasing must be done by:

A(ω) = R(ω) cosφc + I(ω) sinφc

D(ω) = I(ω) cosφc −R(ω) sinφc

(1.17)

with φc being the phase correction performed according to:

φc = φ0 + (ω0 − ω)φ1 (1.18)
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1 Introduction

Chemical Shift

Typically, the examined sample does not consist of only one type of spin

that shows one resonance frequency. Instead, nuclei of the same element

resonate at different frequencies since not only the gyromagnetic ratio

γ and the external magnetic field, but also the chemical environment of

the nuclei within a molecule, affects the resonance frequency. This effect

is referred to as the chemical shift and is represented by a dimensionless

shielding constant, σ. Thus, the resonance condition must be updated

by modifying the equation (1.8) to:

ν =
( γ

2π

)

B0(1− σ) (1.19)

Since this expression depends on the magnetic field strength, it is rather

cumbersome to compare to chemical shifts with different external mag-

netic fields. Therefore, chemical shifts are expressed in parts per million

(ppm) and conveniently are defined by:

δ =
ν − νref
νref

· 106 (1.20)

with ν being the frequency of the investigated compound and νref rep-

resenting the frequency of a reference compound. Common reference

compounds include 3-(trimethylsilyl) propionate (TSP) or 2,2-dimethyl-

2-silapentane-5-sulfonate (DSS), which both resonate independently of

pH and temperature at a certain frequency and are usually placed adja-

cent to the sample.

Digital Fourier Transform NMR

Two indicators of the spectral quality are the signal-to-noise ratio (SNR)

and the full width at half maximum (FWHM) ν1/2 which is 1/(2πT ∗
2 ) for

the absorption. In digital Fourier transform NMR, SNR, and FWHM can

be improved by multiple manipulations of the spectrum. By averaging n

consecutive, identical observations, the SNR is increased by a factor of
√
n.

Another modification to improve the SNR is the so-called time-domain

filtering, which multiplies the original FID with a filter function:

ffiltered(t) = foriginal(t) · ffilter(t) (1.21)
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1.1 Introduction to MR Spectroscopic Imaging

The idea is to attach importance to the beginning of the FID, which

has a higher SNR than the end of the FID. This can be achieved by an

exponentially decreasing function that apodizes the end of the FID. A

commonly used filter function is exponential weighting:

ffilter(t) = exp

(−t

Tw

)

(1.22)

which becomes a decreasing monoexponential function for TW > 0. In

addition to the SNR improvement, the FWHM also becomes larger since

the resultant T ∗
2W becomes:

1

T ∗
2W

=
1

T ∗
2

+
1

TW

Another widely used filter function is the so-called Lorentz-Gaussian fil-

tering defined by:

ffilter(t) = exp

(

+t

TL

)

exp

(−t2

TG
2

)

(1.23)

While the first exponential function graduates the exponential decay (and

the resultant Lorentzian lineshape) due to T ∗
2 relaxation, the second ex-

ponential function induces apodization of the end of the FID signal, but

also a Gaussian lineshape of the spectrum. For TL = T ∗
2 the Lorentzian

lineshape disappears completely and is replaced by a fully Gaussian line-

shape for a fairly long TG. Gaussian lineshapes are steeper and thus

improve the resolution in the frequency-domain.

FIDs, theoretically, are continuous, analog signals. However, for prac-

tical reasons, they are transformed to discrete signals by an analog-to-

digital converter (ADC), which in a signal of N points over an acquisition

time, Tacq. Due to the use of discrete Fourier transformation, the spec-

trum will also contain N points with a spectral resolution of 1/Tacq. One

way to improve the spectral resolution is to increase the acquisition time.

But, as mentioned above, for higher t, the SNR decreases rapidly and the

additional achieved signal would mostly contain noise. By simply filling

an FID with zeros rather than actually measuring for a longer time, the

SNR can be improved significantly while also improving the spectral res-

olution.
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1 Introduction

1.1.3 Basics of MR Imaging

Magnetic resonance imaging (MRI) has proven to be a powerful but non-

invasive and nondestructive technique with which to generate images of

living objects. These images obtain the spatial boundaries and distribu-

tion of different tissues within the object, which must be known before

using any localization technique for in vivo MRS. Furthermore, many

MRS techniques apply the same principles underlying MRI, thus, this

subsection will discuss MRI principles.

Magnetic Field Gradients

Rather than spectral information, the resonance condition of equation

(1.8) is used to provide spatial information by using magnetic field gra-

dients. While the magnetic field is always directed in one direction, the

gradients point in the direction in which the strength of the magnetic

field changes. Magnetic field gradients can be used to make the external

magnetic field position-dependent by:

B(r) = B0 + rG (1.24)

where B(r) is the total magnetic field at position r and G represents the

magnetic field gradient. Consequently, the resonance condition must be

modified and the resonance frequency becomes dependent on position r:

ω(r) = γB(r) = γB0 + γrG (1.25)

Using magnetic field gradients, all three dimensions can be encoded.

Slice Selection

To avoid a considerable expenditure of time due to independently en-

coding all three dimensions, 3D imaging is reduced to several 2D images

which results in the desired 3D image. Such a 2D slice is selected by

simultaneously combining an RF pulse, which excites only a certain fre-

quency range, with a magnetic field gradient in one dimension, e.g. z.

The resulting thickness of the slice, ∆z, is specified by:

∆z =
∆ω

γGz

(1.26)
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1.1 Introduction to MR Spectroscopic Imaging

Figure 1.5: The relation between slice thickness, bandwidth, and the
slope of the z-component of the magnetic field gradient [1]

.

with the bandwidth of the RF pulse, ∆ω, and the magnetic field gradient

in the z-direction, Gz.

Frequency Encoding

Frequency encoding provides a favorable method for imaging along one of

the two dimensions of the selected slice. The idea is to make the signal

frequency position dependent on a magnetic field gradient before and

during acquisition, thus generating a 1D projection. First, an encoding

gradient, G1, is applied, generating a specific phase shift of the transverse

magnetization dependent on position r:

φ1(r, t) = γr

t
ˆ

0

G1(t
′)dt′ (1.27)

Consequently, due to the position-dependent phase shift, spins rotate

differently at each position and the frequencies, ω(r), rely on the phase

shift according to:

ω(r) =
dφ(r, t)

dt
with φ(r, t) = φ1(r, t1) + γr

ˆ t

0

G2(t
′)dt′ (1.28)

where t1 is the length of G1 and G2 denotes the second so-called readout

gradient which has the opposite sign and double the amplitude of the
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1 Introduction

Figure 1.6: The construction of the k-space image slice by means of phase
encoding and frequency encoding (readout) [8].

first one. During G2 the signal is acquired and Fourier transformation

obtains the spatial spin distribution.

Phase Encoding

To obtain the second spatial coordinate of the slice, phase encoding is

performed: the phase of the signal is encoded as a function of r prior

to the signal acquisition. This is accomplished by repeating the same

frequency-encoding procedure with appropriately modified phases. The

frequency encoding can be described as the readout of a row, and the

phase encoding as the selection of the row position.

The image projection, which is generated by frequency and phase en-

coding, is the built-in spatial-frequency domain and is called k-space.

The image itself is then ’reconstructed’ via 2D Fourier transformation.

k-Space

The observed transverse magnetization, Mxy(t), in the context of a mag-

netic field gradient dependent on time, G(t), can be described as:

Mxy(G, t) =

+∞
ˆ

−∞

M0(r)e
+iγr

´ t

0
G(t′)dt′dr (1.29)
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1.1 Introduction to MR Spectroscopic Imaging

with M0(r) denoting the spin density at position r and t the time after

a 90➦ pulse. Let k(t),

k(t) = γ

t
ˆ

0

G(t′)dt′ (1.30)

define the spatial frequency variable. Then equation (1.29) reduces to:

Mxy(k(t)) =

+∞
ˆ

−∞

M0(r)e
+ik(t)rdr (1.31)

The achieved equation (1.31) illustrates that the inverse Fourier transfor-

mation of the spin density equals the time-domain signal that generates

the 2D k-space of the spatial frequencies. Consequently, the dimensions

of the k-space correspond to the dimensions of the image. However, ev-

ery pixel in the k-space maps to the whole image and every pixel in the

image maps to the whole k-space.

1.1.4 Basics of MR Spectroscopic Imaging

The principles of MRSI are very similar to the above-discussed phase

encoding of MRI. In particular, the basic pulse sequences are analogous

to the MRI spin echo sequences. The main difference between MRSI and

MRI is the additional axis for the chemical shift dispersions: after select-

ing a slice, for both transverse dimensions phase encoding is performed

and for each point in the k-space an FID signal is acquired. A (spa-

tial) Fourier transformation with respect to the applied phase-encoding

gradient will obtain the spatial distribution; Fourier transformation of

the localized time-domain signal will then reveal the frequency-domain

spectrum. Considering the x-direction, the total acquired time-domain

signal, S(t), equals the sum of the time-domain signal from all elementary

volume elements, s(x, t)dx, from each point x in the sample:

S(t) =

+∞
ˆ

−∞

s(x, t)dx (1.32)
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1 Introduction

Applying the k-space formalism and Fourier transformation, the total

spectrum of the sample, F (ω), obtained by:

F (ω) =

+∞
ˆ

−∞

S(t)e−iωtdt =

+∞
ˆ

−∞

f(x, ω)dx (1.33)

To obtain the spatial distribution, f(x, ω), a phase-encoding gradient,

Gx, is applied that includes a phase shift on each elementary volume

element. The entire spectrum can then be described by:

F (Gx, ω) =

+∞
ˆ

−∞

f(x, ω)eiγxGxtdx (1.34)

Using the k-space formalism, i.e., kx = γGxt, equation (1.34) becomes:

F (kx, ω) =

+∞
ˆ

−∞

f(x, ω)eikxxdx (1.35)

The phase-modulated spectra of the whole sample, F (kx, ω), represents

the inverse Fourier transformation of the spatially distributed spectra,

f(x, ω), from the individual volume elements. f(x, ω) can hence be re-

vealed by Fourier transformation of F (kx, ω):

f(x, ω) =

+∞
ˆ

−∞

F (kx, ω)e
−ikxxdkx (1.36)

This illustrate only one of the three spatial dimensions, but it can easily

be extended to all of them by independently and subsequently applying

three orthogonal gradients. The volume elements are then calculated as:

f(x, y, z, ω) =

+∞
ˆ

−∞

+∞
ˆ

−∞

+∞
ˆ

−∞

F (kx, ky, kz, ω)e
−i(kxx+kyy+kzz)dkydkydkz

(1.37)

Although written as continuous infinite integrals, in praxis, the k-space is

sampled at discrete positions over finite time points and the correspond-

ing spectra are obtained by a discrete Fourier transformation.
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1.2 Metabolite Quantification in MR Spectroscopy: LCModel

1.2 Metabolite Quantification in MR

Spectroscopy: LCModel

The main intention of MR spectroscopy is to determine the concentra-

tions of the molecules under observation. The concentration of a molecule

is directly proportional to the relative integral of its spectrum in the

frequency domain. Thus, a molecule’s concentration can be quantified

by determining its spectrum. In praxis, the acquired spectrum consists

of the individual metabolic spectra, the spectral baseline, the macro-

molecule baseline, and the spectral noise. Therefore, the acquired spec-

trum must be noise-corrected, the baseline removed, and the metabolic

spectra disassembled. It is essential to obtain quantification results that

are accurate and reliable. To obtain the disassembled, noise-corrected,

and baseline-free spectra, there are several methods and algorithms. For

brain MRSI, a broadly used commercial software is LCModel. In this

chapter, the basic concept of LCModel and its limitations, as well as its

disadvantages, will be described.

1.2.1 Basic Concept

The basic concept and origin of the name ’LCModel’ is to analyze a

spectrum as a linear combination of a basis set of complete model spec-

tra of metabolite solutions. LCModel uses a parametric, constrained

regularization method, which attempts to choose the best compromise

between bias and artifacts. That can lead to instabilities due to find-

ing the smoothest lineshape and baseline consistent with the data. The

only necessary input of LCModel is the time-domain data; no user in-

teraction is required apart from setting several (admittedly optional)

starting-parameters and soft constraints.

The in vivo spectra, as well as the NM in vitro model spectra in the

basis set, are first zero-filled in the time-domain. The time domain in

vitro spectra, ml(t), for time t and 1 ≤ l ≤ NM , correspond to their

frequency-domain counterparts

Ml(ν; 0, 0) = FFT (ml(t)).

To account for the differences between the in vivo and in vitro spectra,

the basis sets are modified. First, for T2 broadening and due to possi-
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1 Introduction

Figure 1.7: The basis set used by LCModel with the names of the metabo-
lites on the y-axis and the chemical shift on the x-axis [2].

ble referencing errors, the broadening parameters, γl, and the shifting

parameters, ǫl, are applied in the time-domain.

Ml(ν; γl, ǫl) = FFT(ml(t) exp(−(γl + iǫl)t)) (1.38)

where FFT denotes the fast discrete Fourier transform. For the whole

basis set, a convolution with vector S of 2NS lineshape parameters Sn

corresponding to field inhomogeneities, eddy currents, and frequency in-

stabilities is performed; to achieve the different possible concentrations,

the model spectra are then multiplied by the respective concentration

parameter, Cl.
NM
∑

l=1

Cl

NS
∑

n=−NS

SnMl(νk−n; γl, ǫl)

Due to the appearance of macromolecules in the in vivo spectra, a base-

line must be added. This baseline is represented as a basis set of NB cu-

bic B-splines, Bj(ν). Zero- and first-order phase corrections are achieved

by the respective parameters, φ0 and φ1. Thus, the discrete in vivo

frequency-domain spectrum data points, Y (νk), are represented by LCModel
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1.2 Metabolite Quantification in MR Spectroscopy: LCModel

as:

Ŷ (νk) = exp[−i(φ0+νkφk)][

NB
∑

j=1

βjBj(νk)+

NM
∑

l=1

Cl

NS
∑

n=−NS

SnMl(νk−n; γl, ǫl)]

(1.39)

With the constraints

Cl ≥ 0, γl ≥ 0 and

NS
∑

n=−NS

Sn = 1. (1.40)

To estimate the metabolite concentrations and their uncertainties, a con-

strained, nonlinear, least squares analysis is performed to minimize the

criterion

1

σ2(Y )

N
∑

k=1

(Re(Y (νk)− Ŷ (νk)))
2 + ‖αSRSS‖2 + ‖αBRBβ‖2

+

NM
∑

l=1

(

(γl − γ0
l )

2

σ2(γl)
+

ǫ2l
σ2(ǫl)

)

= minimum,

(1.41)

where the first term corresponds to the common least squares criterion of

the real parts of both the in vivo and modeled spectra. The second and

third terms are the regularization terms for the lineshape parameters

and the βj of the cubic B-splines, denoted as vector β, respectively,

with RS, RB being the particular regularizer matrices. The last sum of

the criterion constitutes the prior normal probability distributions of the

broadening and shifting parameters, γl and ǫl.

1.2.2 Limitations and Problems

As do most of the state-of-the-art approaches for quantification, LCModel

also uses a nonlinear least squares fitting method. Since all of these non-

linear least squares analyses are iterative processes and one whole brain

scan usually contains several thousands of spectra, all these analyses are

computationally intensive and, depending on the volume size and reso-

lution, may take several hours.

Another problem is the software packages themselves. Bhogal et al.

compared four research institutions; each obtained the exact in vivo spec-

tra of 30 individuals and had to process these with LCModel. All four

institutions returned different results due to individual preferential ini-
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1 Introduction

Figure 1.8: The different compounds of a spectrum disassembled by
LCModel: (A) Original (gray) and fitted (black) spec-
tra. (B)+(C) Individual metabolite resonances. (D) Recon-
structed macromolecule baseline. (E) Reconstructed spectral
baseline. (F) Spectral noise [1].
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1.2 Metabolite Quantification in MR Spectroscopy: LCModel

tialization parameters as well as optimized standards and constraints [9].
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1 Introduction

1.3 Introduction to Deep Learning

This section is a broad introduction to deep learning and its tools as

presented in ”Deep Learning” by Goodfellow et al. [3].

1.3.1 Motivation

In the past few years, machine learning has had an enormous impact

on science and technology since computers are able to handle the huge

amount of data required for it. Deep learning, in particular, as possibly

most prominent part of the machine learning family, has been applied

broadly, e.g., computer vision, speech recognition, and medical image

analysis. Some of the first medical applications for deep learning ap-

peared in the early 1990s, e.g., lung nodule detection [10], micro calcifi-

cation mammography [11], or classification of breast tissue [12].

The basic concept of deep learning involves deep neural networks, arti-

ficial neural networks inspired by neuroscience. The first artificial neuron

was described by Warren McCulloch and Walter Pitts in 1943. They cre-

ated a mathematical model for a single biological neuron [13]. In 1958,

Frank Rosenblatt illustrated a similar model, but focused on its applica-

tion, such as pattern recognition, and called it a perceptron [14].

Figure 1.9: Simple artificial neuron with three inputs, x1, x2, and x3.
The processing of the input occurs in the center, resulting in
the output [15].

An artificial neuron or perceptron consists of its inputs, xi, the corre-

sponding weights, wi, the activation function, φ, and the output, y, of

the neuron:

y = φ(wTx) = φ

(

∑

i

wixi

)

,

with w, x the vectors of the weights and inputs, respectively. The activa-

tion function, φ, describes whether the neuron is activated or not (which
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1.3 Introduction to Deep Learning

usually equals 0) and is often a nonlinear threshold function. Rosen-

blatt’s perceptron used this structure with the heavyside function as the

activation function, and created a binary classifier. This perceptron is

the simplest neural network and approximates a target function that

discriminates between two classes based only on the input values. This

illustrates the basic idea; but, more complex and nonlinear problems need

more complex structures.

1.3.2 Feedforward Neural Networks

Deep neural networks are designed to approximate some target function

f ∗ : X → Y, f ∗(x) = y by a mapping f(x) = f(x;Θ) = ŷ with inputs x

in the input data set X, the desired output y ∈ Y, and function parame-

ters Θ. X and Y hereby form the training set T = X,Y. To get as close

as possible, the parameters are optimized by training the network with

training data. This optimization or learning depends on the network’s

output ŷ and the target function’s output y. The learning is classified as

supervised and unsupervised learning. Supervised learning requires y to

be targets or labels associated with the input x. This association is made

prior and the network is trained to clearly match the input with the cor-

responding label or target, e.g., like a classifier. Unsupervised learning

requires less prior knowledge and tries to learn unknown properties of

the input data set to estimate its probability distribution explicitly or

implicitly to perform synthesis or denoising of the input. To quantify the

disparity of the network f and the desired function f ∗, an overall loss

function, J(X;Θ), over the whole training must be defined. Typically,

the loss, J , relies on a per-example loss, L(f(x;Θ),y), and decomposes

as a sum of those losses:

J(X;Θ) = E
x,y∈T

L(f(x;Θ),y) =
1

N

∑

x,y∈T

L(f(x;Θ),y),

with N being the number of elements in T . The loss, J(Θ) = J(X;Θ),

needs to be minimized with respect to Θ and an optimal approximation,

f , of f ∗ is determined by the training criterion

Θ∗ = argmin
Θ

J(Θ).

Deep neural networks differ according to their flow of information. In
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1 Introduction

feedforward neural networks (FNN), information always moves in one

direction from input to output like a directed acyclic graph, whereas in

recurrent neural networks, loops are possible and information may flow in

both directions. Since the architecture used in this thesis is a feedforward

neural network, attention is paid to this kind of structure.

While a perceptron consists of only one function, FNNs are a chain

of two or more functions called layers. The layers between the input

and the output layer are referred to as hidden layers and their number

corresponds to the depth of a network. Given three layers f 1, f 2 and

f 3 and input, x, the FNN is a function f(x) = f 3(f 2(f 1(x))). Each

layer f i typically has its individual parameters, Θi, describing an affine

transformation function, K, on the layer’s input xi and, in addition to

this an activation function, φi, resulting in

f i(xi) = f i(xi; Θi;φi) = φi(K(xi;Θi)).

The individual output of each layer is usually a vector and each element

of this vector is called a unit or a node and is the result of a vector-

to-scalar function operating in parallel. The transformation function,

K(xi;Θi), is referred to as the kernel (function) of the layer. The basic

kernel used in FNNs is a simple matrix multiplication with weights for

matrix, W, and bias, b. For such a kernel, K(xi;Wi,bi) = WT
i xi + bi,

the layer

f i(xi) = φi(W
T
i xi + bi),

is called a fully connected layer (FCL).

Figure 1.10: Typical architecture of a simple feedforward neural network
with an input layer, two hidden layers and one output [15].
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1.3 Introduction to Deep Learning

Given an FNN of the structure of Figure 1.10, the network’s function

becomes

ŷ = f(x) = f 3(f 2(f 1(x))) = φ3(W
T
3 φ2(W

T
2 φ1(W

T
1 x+ b1) + b2) + b3)

approximating the target function f ∗(x) = y. All three layers are FCLs.

Commonly used activation functions are threshold functions. The most

prominent one is probibly the

rectifier: a(x) = max{x, 0},

and its modification

leaky rectifier: a(x) = max{x, 0}+min{αx, 0},

with α > 0 as the slope of negative values. Units with the rectifier

or leaky rectifier as their activation function are called rectified linear

units (ReLU) and leaky rectified linear units (leakyReLU) respectively.

Other very often used activation functions are the logistic function, the

hyperbolic tangent and many more.

1.3.3 Learning and Backpropagation

When an FNN f with parameters Θ is fed with an input x, information

flows forward to the output layer computing every layer’s output one

after the other, which results in a final output, ŷ, of the network and a

loss, J(Θ). This procedure from the input x to the loss J(Θ) is called

forward-propagation. During training, when the parameters, Θ, are op-

timized, a forward-propagation is performed to calculate the loss, J(Θ).

To know how to manipulate Θ, the information of the loss flows back-

ward through the layers to compute the gradient of the whole network,

f . The gradient of a network is the transposition of the first derivative

of the loss function, J , with respect to Θ for a given input, x. The neg-

ative gradient −∇ΘJ(Θ) characterizes the direction of largest decrease

of J with respect to Θ. This so-called backpropagation or backprop is

the fundamental step of training the model. This backprop that uses

a learning technique which relies on the network’s gradient is therefore

called gradient-based learning.
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1 Introduction

Gradient Descent Optimization

Gradient Descent Optimization is an iterative learning algorithm that

updates the network’s parameters at each epoch of iteration until the

criterion or loss, J(Θ), converges, or a maximum of epochs is reached. By

knowing the gradient, ∇ΘJ(Θ), following its direction to the minimum

of J will yield an optimal Θ∗. This principle is used by gradient descent

optimization, an iterative optimization process that forms the basis for

nearly all optimization algorithms used in deep learning. Let Θ(t) be

the state of the parameters, Θ, at time point t. Then, at each time step,

t+ 1, the parameters are updated as follows and

Θ(t+ 1) = Θ(t) + ∆Θ(t) = Θ(t)− γg

denotes the learning rule of the gradient descent optimization algorithm

with the scalar γ > 0 the learning rate and

g = ∇ΘJ(Θ(t))

denotes the gradient.

In praxis, training sets can be extremely huge, and thus, the parameter

update of one time step happens to be computationally expensive. There-

fore, at each epoch, only a random minibatch, B ⊂ T , of the training set

is used. This variation is called stochastic gradient descent optimization

and is the most popular optimization used in deep learning. The learning

rule becomes then

Θ(t+ 1) = Θ(t)− γĝ,

with

ĝ = E
x,y∈B

L(f(x;Θ),y)

denoting the estimated gradient.

The standard stochastic gradient descent learning corresponds only to

the gradient of the last epoch. Therefore it may happen that the learning

oscillates and thus converges slowly. Including the gradients of the past,

the stochastic gradient descent with momentum implements a velocity

term called ’momentum’ to update the parameters. The learning rule is

given by

Θ(t+ 1) = Θ(t) + v(t+ 1),

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1.3 Introduction to Deep Learning

with

v(t+ 1) = αv(t)− γ E
x,y∈B

L(f(x;Θ),y)

being the momentum at epoch t + 1, with hyperparameter α ∈ [0, 1)

determining the influence of the previous gradients.

Backprop Algorithm

The analytical term of the gradient ∇ΘJ(Θ) may be mathematically

straightforward; its numerical computation, however, is computationally

quite expensive. The backprop algorithm provides a rather inexpensive

solution.

The basic idea of brackprop is to calculate the partial derivatives of

J(Θ) with respect to every parameter in Θ by applying the chain rule

for derivatives of composite functions recursively, beginning at the final

layer. Revisiting the FNN of Figure 1.10, for simplification, the bias

may be assumed to be zero and all activation functions to be the same

φ. Let x again be the input vector, h1 and h2 be the output vectors of

the hidden layers before applying the activation function, φ, and ŷ the

output of the last layer. Let wk denote the weights of the last layer; then,

the partial derivates with respect to wk are calculated as

∂L

∂wk

=
∂L

∂ŷ

∂ŷ

∂wk

.

Next, the partial derivatives with respect to the weights, wkj, from h1
j to

h2
k are calculated as

∂L

∂wkj

=
∂L

∂φ(h2
k)

∂φ(h2
k)

∂h2
k

∂h2
k

∂wkj

=
∂L

∂ŷ
wk

∂φ(h2
k)

∂h2
k

∂h2
k

∂wkj
.

Analogously the partial derivatives with respect to the weights, wji, from

xi to h
1
j are calculated. This illustrates how the backprop works for FCLs.

1.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special class of FNNs. CNNs

are used for any data with a known topology, such as images or time series

data. In general, a CNN is a regular FNN with at least one convolutional

layer.
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1 Introduction

Convolution Operation

Similar to fully connected layers, a convolutional layer consists of an affine

transformation followed by an activation function. In contrast to a fully

connected layer, the affine transformation function, K, of a convolutional

layer is the eponymous mathematical operation convolution

s(t) = (g ∗ h)(t) =
ˆ

g(τ)h(t− τ)dτ

of two functions g and h. Since data is always discrete, the discrete

convolution is the proper operation:

s(t) = (g ∗ h)(t) =
∞
∑

τ=−∞

g(τ)h(t− τ).

The input data, I, and the kernel, K, of convolutional layers are usually

one- or multi-dimensional tensors with certain entries stored in every

point of the tensor. I and K can be seen as a finite and convex subset

in reference to the infinite d-dimensional space. Thus, I and K can be

assumed to be zero everywhere but in the points stored with values.

Thus, it appears that the infinite sum of the discrete convolution can be

expressed as a sum over a finite number of elements. Let I and K be

two-dimensional, then

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n)

denotes the discrete 2D-convolution over input I and kernel K.

Convolutional Layer

The kernel K in convolutional layers is mostly referred to as the filter and

the output of the convolution as the feature map. Filters used in CNNs

usually are much smaller than the input, I. Due to this, for every node

in the input, there is only one region of the filter’s shape that is affected

by that neuron. The layer obtains sparse local connectivity. This means

that local patterns or features in I are enforced and only appear in the

same region of the output. Thus, the output is also called the feature

map. Another property of smaller filters is parameter-sharing, since only

one tensor is used for all nodes in I. A great benefit of this is the decrease
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1.3 Introduction to Deep Learning

Figure 1.11: Example of 2-D convolution of a 3 × 4 input and a 2 × 2
kernel resulting in a 2× 3 feature map [3].

of memory needed to store the filter’s values compared to fully connected

layers. Furthermore, a mathematical consequence of parameter-sharing

is translation equivariance; for a layer, f i, its input xi and a translation

function, T , then holds the expression f i(T (xi)) = T (f i(xi)).

The shape of the filter used in a convolutional layer is an important

hyperparameter and affects the shape of the feature map. It further

defines the subspace of the input, which defines a single point in the

feature map. This subspace is known as the receptive field of a unit.

Another hyperparameter that influences the size of the feature map is

the step size of the filters, i.e., the number of points the filter moves

in the input at each step of the convolution. This hyperparameter is

called stride. Yet another hyperparameter to be chosen is zero-padding

or simply padding. Zero-padding of the input adds zeros at the borders

of the input volume to prevent the shape of the input and to balance the

loss of informational influence of the values at the border. The padding

parameter typically is logical, deciding whether or not zeros should be

added to prevent the original shape (or ratio) of the input.

In deep learning praxis, usually more than one filter per layer is used
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1 Introduction

to gain more features of the input. This results in a new dimension called

channels, with one channel for each filter and feature map. So the output

consists of several feature maps that form a feature space. In conclusion,

all hyperparameters’ filter shape, number of filters, stride and padding

define the shape of the feature space. Let I be an input tensor of shape

M × N × C, with C channels and M × N data. Further, let K × L be

the shape of the F filters in a convolutional layer with stride S. Then

M −K

S
+ 1× N − L

S
+ 1× C · F

defines the size of the feature space without zero-padding and

M

S
× N

S
× C · F

defines the size of the feature space with zero-padding. A stride of 1

preserves the data shape; a stride of 2, for instance halves each dimen-

sion. The process of decreasing the dimensions of the input is called

downsampling and is an often-used property of convolutional layers. It

also is a property and aim of a layer commonly used subsequently to a

convolutional layer: pooling.

Pooling

The pooling layer is used right after a convolutional layer to further

modify its outcome. The pooling layer performs a summary statistic of

the neighborhood of a node and replaces it with the statistic’s outcome.

Commonly used pooling functions involve the maximum of a neighbor-

hood (called max-pool), its average, the L2 norm, or a weighted average

depending on the distance from the node in the center. Similar to convo-

lutional layers, a pooling size that defines the rectangular neighborhood

to be analyzed and a stride are hyperparameters to be set for a pooling

layer. With strides greater than 1, downsampling can be achieved. An-

other property of pooling is translational invariance: small translational

changes in the input do not change the pooling layer’s outcome.

A convenient structure used in CNNs is the blockwise use of one or

more convolutional layers that includes an activation function and a pool-

ing layer at the end of the block. Figure 1.12 shows a typical CNN ar-

chitecture with three convolutional layers, each followed by a max-pool

layer.
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1.3 Introduction to Deep Learning

Figure 1.12: A typical CNN with two convolutional layers and two max-
pool layers followed by three dense layers.

Backpropagation

The backpropagation of convolutional layers works basically as indicated

above. A big advantage is due to parameter-sharing the relatively low

number of partial derivatives to be computed for such a layer. As pool-

ing layers do not use any trainable parameters, no updates must be per-

formed here.

1.3.5 Autoencoders

Autoencoders are a special class of artificial neural networks that use un-

supervised learning. The aim of autoencoders is to adopt a representation

(so-called encoding) of the input data in a usually lower dimension and

then reconstruct it in the original space (decoding). Autoencoders thus

consist of an encoding function, f(x), and a decoding function, g(f(x)).

Autoencoders are built to learn the properties of an input to synthesize

it or to denoise a corrupted input. Therefore autoencoders are not about

the output of the network itself, but rather about learning the properties

and features that represent the input.

In most real-world cases, the decoding function, g, is a predefined

function with little or no parameters to learn. It can be a model function

or regression function using prior knowledge of the data. Hence, the

decoding function is usually not the crucial part unlike the encoding

function.

Because their hidden layers have smaller dimensions than the input,

so-called undercomplete autoencoders use the principle of downsampling

to delete useless features and keep those that have a larger impact on the

decoding function.
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1 Introduction

1.3.6 Training, Initialization, and Regularization

Training

The goal in deep learning is to learn an approximation, f(x), of the true

function, f ∗(x), to fulfill the condition

f(x) ≈ f ∗(x), ∀x ∈ Ω,

with Ω being the population of all possible observations. In real life, it is

neither possible to acquire all possible observations nor computationally

feasible to train a network on such an infinitely large population set.

Thus, deep learning attempts to learn on a finite subset, X(Train) ⊂ Ω,

a training set, to achieve a generalization on the whole population Ω. A

large enough X(Train) must be chosen with independent and identically

distributed x to obtain generalization.

Also, the network must be designed properly. A too-small number of

trainable parameters may result in large training costs that cannot be

minimized, and f ∗ cannot be approximated. This case is called underfit-

ting. A too-large number, on the other hand, may result in a very small

training cost. But, if new unknown input data is fed to the network, the

cost might be very high, known as overfitting. The capacity the num-

ber of trainable parameters defined by the network’s depth and width,

determines whether the network can achieve generalization or not. The

capacity also describes the hypothesis space, the space of all possible

functions the network can adopt.

To quantify a network’s performance on unknown data, another subset

of Ω, the so-called test set, is needed. After the network is trained, the

test set is fed forward to compute its test cost. During training, the

training loss, J(f(X(Train)), f ∗(X(Train))), of the network is minimized;

but the goal is to rather minimize the test loss, J(f(X(Test)), f ∗(X(Test))).

Regularization

One way to achieve generalization is to choose the perfect capacity. This

is rather difficult, as assuming a reasonable range of capacity requires

solid prior knowledge. Another way to improve the learning is to modify

the learning algorithm. Those modifications are referred to as regular-

ization.
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1.3 Introduction to Deep Learning

An easy modification is the early-stopping method. A maximum num-

ber of epochs is scheduled with regard to when to stop the training. But,

stopping at the optimal time point is more or less luck.

A common regularization is to use a third set, a validation set. All

three sets must not overlap and have to be independent and identically

distributed. During the training process, backpropagation and weight

updates are performed based on the training set and training error. How-

ever, the validation error must be minimized. The learning algorithm,

therefore, stops when the minimum of the validation error is accom-

plished assuming the generalization error to be minimized as well.

Yet another method forces the weights to decay by adding a regulariza-

tion term to the loss. The regularization term depends on the network’s

parameters,Θ, and a decay parameter, λ. The training criterion becomes

J(Θ) = E
x,y∈T

L(f(x;Θ),y) + λR(Θ),

with R being the regularization term. A broadly used regularization term

is the L2 norm of the parameters, Θ.

Initialization

When training is established, a parameter state at epoch zero must be

initialized. This initialization influences if, how fast, and at what level

the learning algorithm converges. An easy way is to set all parameters

to a constant. But, since many layers are often designed similarly and

units have the same activation function, equal parameters would result

in equal unit outputs. Consequently, input as well as gradient patterns

can get lost, making it difficult for the algorithm to learn. Thus, random-

ized initialization is generally recommended. One common initialization

method is to assume the parameters to be uniformly distributed. The

range of the uniform distribution depends on the number of inputs and

outputs of a layer. Another initialization method depends on the Gaus-

sian distribution. While, in the majority of cases, the mean is set to zero,

the standard deviation depends on the input and/or output of a layer.

For example, the Glorot normal initializer assumes, for the weights of an

FCL, a Gaussian distribution with a default mean of zero and a standard

deviation

SD =

√

2

Min +Mout

,

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1 Introduction

with Min, Mout being the number of input and output units of the layer

[16]. The underlying Gaussian distribution i,s in praxis, often truncated

to avoid extreme outliers. To conclude, random parameter initialization

is recommended. However, one explicit way of initialization does not

exist.
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2 Methods

2.1 Data Simulations

All spectra were simulated using self-made MATLAB scripts [17]. The

spectra consisted of a metabolite part and a baseline part. While the

baseline part was provided from formerly processed in vivo data, the

metabolite spectra were generated using a basis set of the single metabo-

lite spectra. The metabolites used in the simulation were: NAA; NAAG;

PC; GPC; Cr; PCr; m-Ins; Glu; and Gln. The basis set was simu-

lated using jMRUI [18] without apodization with fixed T2 values for

each metabolite. After the metabolite part was simulated, a Gaussian

noise with random SNR was added as well as the baseline part.

2.1.1 Simulation of Metabolic Spectra

The foundation of the metabolic part of the spectra is the basis set. The

basis set was derived from further studies on the 3T whole-body MR

scanner (Prisma-fit, Siemens Healthcare, Erlangen, Germany) with a 32-

channel head coil. The initial FID signals and the time vector had a

length of 637 points and were zero-filled to a total size of 4,096 points.

Each basis FID mi was then normalized by dividing by the maximum

magnitude of the summed basis set. The normalized basis set was saved

and had a size of 9× 4, 096 for the nine metabolites.

To generate a total of N = 75, 000 spectra, a metabolite concentration

matrix, C of size N × 9, was built containing random metabolite spe-

cific concentration factors following a uniform distribution, with ranges

of the minimum and maximum concentrations factors of the respective

metabolite.

First, by multiplying C with the basis set, a matrix of N = 75, 000

raw FIDs of length 4,096 was created. Second, for the spectral line-

shape, a mixture of Lorentzian and Gaussian broadening (called Voigt
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2 Methods

Metabolite Concentration Ranges (in mmol L−1)
Metabolite Lower Bound Upper Bound
Cr 4.5 10.5
GPC 0.25 1.0
Gln 3.0 6.0
Glu 6.0 12.5
m-Ins 4.0 9.0
NAA 7.5 17
NAAG 0.5 2.5
PC 0.5 2.0
PCr 3.0 5.5

Table 2.1: Metabolite concentration ranges according to De Graaf [1].

broadening) was applied in the time domain:

FIDVoigt = FIDraw ⊙ exp

(−t

L

)

⊙ exp

(−t2

G2

)

,

where t refers to the time vector. L ∈ [0.05, 0.25] and G ∈ (0, 1] are

the Lorentzian and Gaussian parameters respectively. For each raw FID,

random values for L and G were sampled from the uniform distribution in

the particular ranges. The operator ⊙ represents the Hadamard or Schur

product, i.e., the element-wise multiplication of two vectors or matrices

of equal shape. To obtain realistic shapes, only those spectra were kept

with a linewidth of ∼5 to ∼12.3 Hz.

Third, the signals were Fourier transformed:

SVoigt = FFT(FIDVoigt)

and the zero-frequency component was shifted to the center of the ar-

ray. Fourth, zero-order, and first-order phase shifts were performed by

applying

Sraw = |SVoigt| ⊙ exp(i(φ(SVoigt) + (φ0 + φ1t))),

with φ(SVoigt) denoting the angle of SVoigt φ0 and φ1 being the zero-

order and first-order phase shift. Both were sampled from a uniform

distribution with a range of[−π, π]. Normalizing the resulting spectra
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2.1 Data Simulations

according to Parseval’s theorem,

Sreal = real

(

1√
4096

Sφ1

)

denotes the noise-free metabolic part of the spectra; only the real part

of the spectra was used.

Before adding the noise, too flat and broken spectra were removed;

only spectra with an FWHM (measured at the Cr peak at about 3.0

ppm) between 5 and 12.3Hz were kept, which resulted in N = 69, 970

spectra.

The SNR for each spectra was set randomly by applying a uniform

distribution in the range of 6.8 to 18.2 with a mean SNR of 12 and an

SD SNR of 2. The SNR referred to the maximum peak of the noise-free

metabolic spectra. Thus, the absolute amplitude of the maximum peak

of each spectra was identified and divided by the particular SNR value

to obtain the standard deviation, σnoise, of the Gaussian noise of each

spectrum. A gaussian noise with mean zero and SD, σnoise, was added.

To simulate a shift in frequency, each spectrum was shifted randomly in

a range from about -5 to 5 Hz. At the end, each spectrum was normalized

to [−1, 1] and cropped to 1, 024 data points in a range from ∼5 to ∼1.5

ppm.

2.1.2 Baseline Acquisition

The baselines were provided from formerly fitted spectra of in-house pre-

viously acquired images. From LCModel-fitted images, the baseline part

was obtained and upsampled to the desired size of 1,024. All baselines

were then standardized and each baseline normalized to [−1, 1] so that

either the maximum or minimum of each baseline was 1 or −1, respec-

tively.

2.1.3 Preprocessing of Simulated Spectra

After the metabolite part and baseline part were prepared, both were

added together at a ratio of 1 : 0.8, respectively. This ratio was manip-

ulated randomly in a range of +/ − 25%. Afterward, all spectra were

normalized to [−1, 1]. The spectra were then shuffled randomly and split

into a training set of 41,745 spectra and a validation set of 8,946 spectra
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2 Methods

and a test set of 10,335 spectra.

The training, validation, and test set, as well as the time vector and

the basis set, were saved and then imported into the Python script of

Superfit [19].

For the simulated test spectra, the individual SNRs per metabolite

were calculated by dividing the value of the highest peak of each metabolic

spectrum by the SD of the spectral noise.

2.2 Implementation of Superfit

2.2.1 Concept

The basic idea is to build an autoencoder, such that the input spectrum

is denoised, and separated into the single metabolite spectra and the

baseline. In a first stage, the baseline features of the spectrum are en-

coded. Then, a decoder reconstructed the baseline to subtract it from

the input spectrum, resulting in a baseline-free spectrum. This was used

as the input spectrum for the second stage, which encoded the metabolic

feautures to then model the metabolites in a final decoding step. By

adding the baseline and the metabolites, for each input spectrum, a re-

construction was built and compared to the input to train the network.

In 2019, Gurbani et al. [20] built an analogous structure and showed,

that such a trained network can remove the baseline and quantify simple

metabolic singlets. Superfit has a similar structure and also uses the

baseline reconstruction via upsampling and convolution with a coiflet

low-pass filter like that introduced by Gurbani et al. [20]. Moreover,

Superfit was also built to manage the j-coupled appearances of the major

metabolites visible in brain MRS.

Baseline Model

To model the baseline, a total of 32 baseline parameters have to be

achieved by Superfit. These parameters act as the baseline’s nodes as-

suming a degree of freedom of 32. The vector

θB = (β1, . . . , β32)
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2.2 Implementation of Superfit

Figure 2.1: Coiflet5 low-pass filter.

of the 32 baseline parameters is upsampled by zipping with a vector of

equal length containing only zeros:

β64 = (β1, 0, β2, 0, . . . , β32, 0)

followed by a convolution:

β64
∗ = β64 ∗ coif5,

with coif5 being the fifth-level coiflet low-pass filter [21].

This process is repeated until a vector of a total length of 2, 048 is

achieved. To avoid the edge effects of upsampling and convolution (zero

values and zero slope), only the central 1, 024 points are used, resulting

in the reconstructed baseline, β.
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2 Methods

Figure 2.3: The basis set used for the simulation and the reconstruction
in the metabolite model.

Figure 2.2: Four reconstructed baselines with random input parameters.
All plots are in arbitrary units on the y-axis and indeces on
the x-axis.
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2.2 Implementation of Superfit

Metabolite Model

To model the metabolic part, the basis set of the simulation was modified

for each spectrum by

M =
1√
P

∣

∣

∣

∣

∣

M
∑

i

Ci · FFT
[

Mi · exp (ω) · exp
(−t

TL

)

· exp
(−t2

TG
2

)]

∣

∣

∣

∣

∣

· exp(i(φ+ (φ1 · t+ φ0))),

(2.1)

with Ci being the concentration factor for each of the M metabolites,

Mi of the basis set. t denotes the time vector, TL and TG denote the

Lorentzian and Gaussian lineshape parameters, respectively. φ denotes

the angle of the spectrum, and phi0 and φ1 represent the zero- and first-

order phasing. ω denotes the shift in frequency defined by

ω = 2πωLωs10
−6,

with ωL denoting the Larmor frequency and ωs the shift in frequency

in ppm. P stands for the total number of points of the spectrum. The

resulting metabolic spectrum was cropped to 1, 024 points in a range from

4.5 to 1.5 ppm. While the concentration parameters, Ci, differ between

every metabolite, TL, TG, φ0, φ1 and ωs are assumed to be equal for all

metabolites in one spectrum. Having nine metabolites of interest thus

leads to a vector θM of 14 metabolite-related parameters that must be

computed by Superfit.

To conclude, Superfit is trained to determine a total of 46 parameters

to model and reconstruct the noise-free spectrum. By reconstructing the

spectrum with two separate models, the input spectrum can be disas-

sembled into the baseline and each single metabolite of interest- which

allows its quantification.

2.2.2 Network Architecture

Superfit was designed and optimized using tensorflow 2.0 on one GPU

[22].

Structure

The network consisted of two serialized autoencoders for baseline and

metabolite encoding and reconstruction. The baseline encoder consisted
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2 Methods

of three convolution blocks followed by a flattening layer and two dense

layers, which resulted in the 32 baseline parameters. Applying the model

above, the baseline was reconstructed and subtracted from the input.

The resultant baseline-free spectrum was passed to the metabolite en-

coder. The metabolite encoder consisted of four convolution blocks, one

flattening layer and three dense layers, which resulted in the 14 metabo-

lite parameters. By using the metabolite model, the metabolic resonances

were reconstructed. Finally, the baseline and metabolite reconstructions

were added, resulting in the reconstructed spectrum.

Convolution Blocks

Each convolution block consisted of four repetitions of a convolutional

layer, followed by batch normalization and a leaky rectifier activation

function. At the end of each convolution block, a max pooling was per-

formed.

2.2.3 Hyperparameters

The input shape of the network was batch size × 1, 024 × 1 × None.

The batch size was 64, the size of each spectrum was 1024 × 1 (real

part) and the last dimension represents the channel dimension, which was

’None’ initially. For the three convolution blocks of the baseline encoder,

32, 64, and 128 filters were used; for the four blocks of the metabolite

encoder 32, 64, 128, and again, 128 filters were used, respectively. All

filters had a size of 13 × 1 and the convolutional layers were applied

with zero-padding and a stride of 1. Max pooling was done with a pool

size of 2 × 1 with zero-padding and a stride of 2. Leaky ReLUs with

α = 0.5 were used as the activation functions in the convolutional layers,

as well as in the dense layers. For the final dense layer, the identity

function was used as the activation function. All layers were used without

bias and initialized according to Glorot normal initialization. To prevent

overfitting, all kernels were regularized using L2-Norm with λ = 0.01.
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2.2 Implementation of Superfit

Figure 2.4: Structure of Superfit.
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2 Methods

Figure 2.5: Convolution Block.

2.2.4 Training, Validation, and Testing of Superfit

The chosen loss object was the root mean squared error (RMSE) defined

as:

RMSE(ypredicted, ytrue) =

√

1

1024

∑

(ypredicted − ytrue)2 (2.2)

The loss function was defined as the mean of the per-element RMSE

within one batch. Superfit was trained using stochastic gradient descent

with a decaying learning rate and Nesterov momentum. The momentum

was set to 0.83. The initial learning rate was set to 0.0001 and decayed by

a factor of 0.5 after an initial step size of 25 epochs; the step size grew by

50 after every step with regard to the approximately exponential decay

of a loss function over time.

At the end of each epoch, the loss was computed for the validation set.

The training process continued until the validation loss converged or the

maximum epoch of 500 was reached.

After training, the test loss was calculated for the test set. For all

spectra in the test set, the model parameters were calculated, and, using

the metabolic model, the metabolite-wise spectra were reconstructed.
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2.3 Evaluation of Superfit in Metabolite Quantification

2.3 Evaluation of Superfit in Metabolite

Quantification

To compare the relative metabolite quantifications estimated by Superfit

with the ground truth, every metabolic component for all test spectra was

reconstructed separately to calculate the individual relative metabolite

concentrations. For all relative metabolite concentrations, the absolute

percentage errors (APE) and the corresponding mean absolute percent-

age errors (MAPE) and SD were calculated. APEs were also calculated

for total NAA (tNAA), total choline (tCho), total creatine (tCr) and total

glutamate and glutamine (Glx). Furthermore, median APEs (MedAPEs)

were calculated for all metabolites. For the ratios of tCho, tCr, Glx and

m-Ins with respect to tNAA, and for the ratios NAAG/NAA, PC/GPC,

Cr/PCr, and Gln/Glu, the individual MAPEs and the corresponding

Pearson correlation coefficients were calculated.

The expected concentration ranges of the metabolic concentrations

with respect to tNAA were calculated as the mean ± twice the SD.

To compare the results of Superfit with the ground truth, the cor-

relations were plotted and the corresponding Bland-Altman plots were

created [23]. Furthermore, a paired t-test was performed. A p-value

< 0.05 was considered to be statistically significant.
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3 Results

3.1 Simulated Spectra

The simulation created 59,635 spectra for the training process: 41,745

training spectra and 8,946 validation spectra. For testing and statistics,

another 10,335 spectra were simulated.

The individual SNRs per metabolite were 10.57 ± 4.79 for tNAA, 4.76

± 1.81 for tCho, 11.12 ± 2.63 for tCr, 3.14 ± 1.32 for Glx and 4.70 ±
1.87 for m-Ins. The individual SNR distribution per metabolite is shown

in Figure 3.1. The FWHM of the simulated spectra was 7.39Hz ± 1.90Hz

and is illustrated in Figure 3.2.

Figures 3.3, 3.4 and 3.5 show spectra of a minimal SNR of 7, a mean

SNR of 12, and a maximum SNR of 18, including all metabolic compo-

nents, baseline, and noise.
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3 Results

Figure 3.1: Individual SNR distribution per metabolite

Figure 3.2: Histogram of FWHM of the simulated test spectra.
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3.1 Simulated Spectra

Figure 3.3: Spectral components of a spectrum with SNR = 7. The green
spectrum on the top illustrates the final input spectrum con-
taining all metabolic components, the baseline, and the noise.
The second line shows the baseline, followed by the individual
metabolite spectra, and, finally, the noise.
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3 Results

Figure 3.4: Spectral components of a spectrum with SNR = 12. The
green spectrum on the top illustrates the final input spectrum
containing all metabolic components, the baseline, and the
noise. The second line shows the baseline, followed by the
individual metabolite spectra, and, finally, the noise.
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3.1 Simulated Spectra

Figure 3.5: Spectral components of a spectrum with SNR = 18. The
green spectrum on the top illustrates the final input spectrum
containing all metabolic components, the baseline, and the
noise. The second line shows the baseline, followed by the
individual metabolite spectra, and, finally, the noise.
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3 Results

3.2 Training and Performance of Superfit

The training process stopped at the 501st epoch because a maximum

number of 500 epochs was defined.

The optimal generalization loss (RMSE of all true and noisy data)

was 0.0193547. The RMSE loss and the accuracy (1 - mean absolute

error) were 0.0198515 and 98.4174% for the training set, 0.0198196 and

98.4204% for the validation set, and 0.0197522 and 98.4262% for the test

set, respectively. The SD of the test RMSE was 0.008886539. For loss

and accuracy history during the training process, see Figure 3.6 and 3.7.

In the test set, the minimum RMSE of a spectrum was 0.004032349,

the RMSE closest to the mean was 0.0197522, and the maximum was

0.08043192. For all three RMSEs, input and reconstruction are illus-

trated in Figures 3.9, 3.9 and 3.10.

The total elapsed run time for fitting the test set (N = 10,335) was

39s on a PC using one GPU [GeForce GTX 1050/PCIe/SSE2]: 1s for

loading and preprocessing the spectra, 2s for building the network and

model, 29s for computing the metabolite (and baseline) parameters by

Superfit, and another 7s to reconstruct the baseline and metabolites.
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3.2 Training and Performance of Superfit

Figure 3.6: Loss history of the training of Superfit showing a rapid de-
crease at the beginning and three peaks illustrating crucially
wrong weightings during the training process. After the third
peak, the loss converges.

Figure 3.7: Accuracy history of the training of Superfit showing a rapid
increase at the beginning. Three times the accuracy crashed,
but then converges.
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3 Results

Figure 3.8: Reconstructions of Superfit for a spectrum with a mini-
mum RMSE. From top to bottom: 1) noisy input spectrum
(green), Superfit reconstruction (blue), and reconstructed
baseline(pink); 2) metabolite-only ground truth (green) and
reconstruction (blue); 3) ground truth metabolic components;
4) reconstruction of metabolic components; 5) difference be-
tween the input and reconstructed spectrum. For such a low
SNR and loss, the input spectrum was fit very accurately.
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3.2 Training and Performance of Superfit

Figure 3.9: Reconstructions of Superfit for a spectrum with mean RMSE.
From top to bottom: 1) noisy input spectrum (green), Super-
fit reconstruction (blue), and reconstructed baseline(pink);
2) metabolite-only ground truth (green) and reconstruction
(blue); 3) ground truth metabolic components; 4) reconstruc-
tion of metabolic components; 5) difference between the input
and reconstructed spectrum. Even though the SNR seems to
be high, the input spectrum could be fit.
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3 Results

Figure 3.10: Reconstructions of Superfit for a spectrum with maximum
RMSE. From top to bottom: 1) noisy input spectrum
(green), Superfit reconstruction (blue), and reconstructed
baseline(pink); 2) metabolite-only ground truth (green) and
reconstruction (blue); 3) ground truth metabolic compo-
nents; 4) reconstruction of metabolic components; 5) dif-
ference between the input and reconstructed spectrum. The
input spectrum could not be fit; the reconstructed spectrum
appears as a rather flat line, which results in a high differ-
ence.
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3.3 Metabolite Quantification

3.3 Metabolite Quantification

The resulting relative metabolite quantifications, the MAPEs, and the

MedAPEs from all simulated test spectra by using the implemented

metabolite reconstruction are shown in Table 3.1. The overall MAPE

for all nine metabolites was 18.50% ± 16.10%. NAAG, GPC, PC, and

Gln had a MAPE> 20%. Excluding these, the overall MAPE was 12.32%

± 9.81%. For NAA (6.4% ± 5.58%) and m-Ins (9.19% ± 7.78%), the

MAPEs were ¡ 10%. For tNAA (6.08% ± 5.30%), tCho (9.77% ± 8.51%),

and tCr (5.75% ± 5.34%), the MAPEs were < 10%; for Glx (14.14% ±
10.10%) it was < 20%. The MedAPEs, which are more robust to bias,

were, in general, lower than the calculated MAPEs. The MedAPEs were

4.95% for NAA, 25.70% for NAAG, 22.15% for GPC, 39.28% for PC,

10.08% for Cr, 14.49% for PCr, 7.40% for m-Ins, 14.04% for Glu, and

22.31% for Gln. For tNAA, tCho, tCr, and Glx, the MedAPEs were

4.75%, 7.74%, 4.43%, and 12.58%, respectively.

Metabolite Concentrations
Metabolite Ground

Truth
Prediction MAPE (in %) MedAPE

(in %)
NAA 14.40 ± 4.13 14.54 ± 4.20 6.40 ± 5.58 4.95
NAAG 2.96 ± 1.26 2.78 ± 0.96 34.29 ± 33.35 25.70
GPC 3.71 ± 1.33 3.76 ± 1.51 27.98 ± 24.31 22.15
PC 1.81 ± 0.84 1.75 ± 4.13 53.06 ± 50.95 39.28
Cr 9.18 ± 3.29 8.97 ± 0.98 12.17 ± 9.76 10.08
PCr 5.22 ± 1.62 5.45 ± 3.36 18.16 ± 15.12 14.49
m-Ins 7.99 ± 2.37 7.98 ± 1.41 9.19 ± 7.78 7.40
Glu 8.39 ± 2.08 8.01 ± 2.27 15.66 ± 10.85 14.04
Gln 4.11 ± 1.00 3.27 ± 1.38 27.84 ± 22.50 22.31
tNAA 16.54 ± 4.28 16.60 ± 1.25 6.08 ± 5.30 4.75
tCho 5.45 ± 1.74 5.44 ± 4.43 9.77 ± 8.51 7.74
tCr 14.25 ± 4.33 14.28 ± 1.77 5.75 ± 5.34 4.43
Glx 12.00 ± 2.39 10.90 ± 4.42 14.14 ± 10.10 12.58

Table 3.1: Mean metabolite concentrations and SD of ground truth and
prediction, the respective MAPEs, and the MedAPE.

The MAPEs of the metabolite concentrations are also illustrated as

boxplots in Figure 3.11. Figures 3.12 - 3.20 show the scatter plots for

the true and predicted concentrations per metabolite (except for GPC,

PC, PCr, and Cr) and the corresponding Bland-Altman plots. These

plots illustrate the similarity of prediction and ground truth; the blue
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3 Results

line highlights the mean difference between the two ’measurements’ and

the red line highlights the limits of agreement, which were ±2 SD.

For m-Ins, the p-value was 0.4149, so the true and predicted concentra-

tions of m-Ins are not significantly different. The same applied for tCho

with a p-value of 0.0553. For all other metabolites, the corresponding

p-values were < 0.05; thus, their true and predicted concentrations are

significantly different.
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3.3 Metabolite Quantification

Figure 3.11: (M)APEs per metabolite illustrated as boxplots. The blue
boxes show the interquartile range, the red lines inside the
boxes represent the corresponding medians. The dashed
whiskers show the range of ±2.7 SD, which covers about
99.7% of the data. The green and the red line highlight 10%
and 20%, respectively.
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3 Results

Figure 3.12: Correlation and Bland-Altman plot for NAA. For NAA, the
p-value was < 0.0001.
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3.3 Metabolite Quantification

Figure 3.13: Correlation and Bland-Altman plot for NAAG. For NAAG,
the p-value was < 0.0001.
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3 Results

Figure 3.14: Correlation and Bland-Altman plot for m-Ins. For m-Ins,
the p-value was p = 0.4149.
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3.3 Metabolite Quantification

Figure 3.15: Correlation and Bland-Altman plot for Glu. For Glu, the
p-value was < 0.0001.
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3 Results

Figure 3.16: Correlation and Bland-Altman plot for Gln. For Gln, the
p-value was < 0.0001.
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3.3 Metabolite Quantification

Figure 3.17: Correlation and Bland-Altman plot for tNAA. For tNAA,
the p-value was < 0.0001.
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3 Results

Figure 3.18: Correlation and Bland-Altman plot for tCho. For tCho, the
p-value was p = 0.0553.
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3.3 Metabolite Quantification

Figure 3.19: Correlation and Bland-Altman plot for tCr. For tCr, the
p-value was p = 0.0063.
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3 Results

Figure 3.20: Correlation and Bland-Altman plot for Glx. For Glx, the
p-value was < 0.0001.
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3.3 Metabolite Quantification

Figure 3.21: MAPE of tNAA, tCho, tCr, Glx and m-Ins in relation to
the respective SNR.

Furthermore, for tNAA, tCho, tCr, Glx, and m-Ins, MAPEs were plot-

ted against their individual SNRs in five intervals from −2· SD to +2·
SD (Figure 3.21). Except for Glx, for all the other four metabolites, the

MAPEs decreased with increasing SNRs. For Glx, the MAPE was lowest

at the mean SNR and decreased with increasing distance from the mean

SNR.
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3 Results

Figure 3.22: MAPE of tNAA, tCho, tCr, Glx and m-Ins in relation to
the FWHM.

Also, to illustrate the relation between the MAPEs and the FWHM,

Figure 3.22 shows the individual MAPEs corresponding to seven equal

intervals from FWHM < 6 to FWHM > 11. Similar to the SNR, the

MAPEs of all metabolites except Glx decreased with increasing FWHM.

The MAPE of Glx increased significantly with increasing FWHM.
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3.3 Metabolite Quantification

The ratios of NAAG/NAA, PC/GPC, Cr/PCr, and Gln/Glu had MAPEs

> 20%. In particular, PC/GPC had a MAPE of 460% ± 5200%. All

four relative metabolite concentrations with respect to NAA, except

Glx/tNAA (14% ± 9.50%) had a MAPE < 10%. MAPEs were 5.80%

± 4.90% for tCr/tNAA, 9.50% ± 8.20% for tCho/tNAA, and 9.70% ±
8.10% for m-Ins/tNAA. The corresponding MedAPEs were lower than

the MAPEs. All mean true and predicted ratios, the corresponding

MAPEs and SD, as well as the MedAPEs, are shown in Table 3.2 and

illustrated as boxplots in Figure 3.23.

Relative Metabolite Concentration Ratios
Ratio Ground

Truth
Prediction MAPE (in %) MedAPE

(in %)
tCho/tNAA 0.34 ± 0.12 0.34 ± 0.12 9.50 ± 8.20 7.48
tCr/tNAA 0.89 ± 0.29 0.89 ± 0.29 5.80 ± 4.90 4.70
Glx/tNAA 0.76 ± 0.21 0.68 ± 0.14 14.00 ± 9.50 12.66
m-
Ins/tNAA

0.51 ± 0.18 0.50 ± 0.17 9.70 ± 8.10 7.79

NAAG/NAA 0.22 ± 0.10 0.20 ± 0.07 37.00 ± 36.00 27.45
PC/GPC 2.50 ± 1.50 10.00 ± 99.00 460.00 ± 5200.00 56.60
Cr/PCr 1.80 ± 0.53 1.60 ± 0.38 26.00 ± 20.00 22.24
Gln/Glu 0.51 ± 0.15 0.41 ± 0.13 30.00 ± 23.00 25.06

Table 3.2: Mean relative metabolite concentration ratios and SD of
ground truth and prediction, the respective MAPEs, and the
MedAPEs.

The relative metabolite concentration ranges (containing about 95%

of the spectra) were 0.34 ± 0.24 in the simulated and 0.34 ± 0.24 in

the predicted spectra for tCho/tNAA, 0.89 ± 0.58 in the simulated and

0.89 ± 0.58 in the predicted spectra for tCr/tNAA, 0.76 ± 0.42 in the

simulated and 0.68 ± 0.28 in the predicted spectra for Glx/tNAA and

0.51 ± 0.36 in the simulated and 0.50 ± 0.34 in the predicted spectra for

m-Ins/tNAA.

To visualize the relation between the true and predicted ratios, scatter

plots were created for each of the ratios, which clearly showed the strong

positive correlation between the true and predicted relative metabolite

concentrations with respect to tNAA (Figure 3.24). For tCho/tNAA,

tCr/tNAA and m-Ins/tNAA, a Pearson correlation coefficient of Rho >

0.9 showed a strong correlation between the ground truth and the esti-

mated ratios. Also Glx/tNAA with a Rho = 0.8019 showed a correla-
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3 Results

Figure 3.23: (M)APEs per ratio illustrated as boxplots. The blue boxes
show the interquartile range, the red lines inside the boxes
represent the corresponding medians. The dashed whiskers
show the range of ±2.7 SD, which covers about 99.7% of the
data. The big green and the big red line highlight 10% and
20%, respectively.
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3.3 Metabolite Quantification

tion between ground truth and estimation. Although NAAG/NAA still

showed a positive correlation (Rho = 0.5526), all four ratios, includ-

ing NAAG/NAA, PC/GPC, Cr/PCr, and Gln/Glu, appeared to have a

low correlation or no correlation at all corresponding to the respective

MAPEs. For all ratios except tCho/tNAA, the p-values were < 0.05. For

tCho/tNAA, the p-value was 0.2467.
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3 Results

Figure 3.24: Scatter plots of all ratios with the corresponding correlation
coefficient Rho.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4 Discussion

In a routine clinical setting, brain metabolite spectra are inevitably de-

graded due to many factors: i.a. line broadening, low SNR, overlapping

metabolic signals, spectral baselines and artefacts originating from lipids

or water. Currendtly used software for metabolite quantifications are

based on nonlinear least squares fitting algorithms, which are not suit-

able for all MR metabolic signals [2] [24]. Furthermore, these algorithms

are extremely time-consuming; consequently, MRSI is still mainly used

in research, but rarely in clinical protocols [9].

In the few past years, several studies have proven a potentially high

applicability of deep learning in the context of proton MRSI of the brain.

Kyathanahally et al. reported detection and removal of spectroscopic ar-

tifacts via deep learning [25]. Das et al. quantified major metabolic peaks

using machine learning in simulated and in vivo spectra [26]. Hatami and

colleagues reported deep learning-based metabolite quantification in the

time domain [27].

In particular, the studies of Gurbani et al. and Lee et al. were a

motivation for this thesis: Gurbani et al. managed to improve spec-

tral quality and to remove the spectral baseline by a CNN trained with

unsupervised learning. These authors focused only on the three singlet

peaks of NAA, Cho, and Cr [20]. Lee et al. proved the quantification of

all representative MR-visible brain metabolites using a CNN, but opti-

mized with supervised learning, and first-order phase distortion was not

included [28].

4.1 Concept and Performance of Superfit

Inspired by Lee et al. and Gurbani et al., and also motivated by the

great potential of MRSI applications in clinical protocols, Superfit was

developed, which is a CNN that consists of two serialized autoencoders

that can disassemble simulated spectra into spectral baseline, noise, and
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4 Discussion

the metabolite components, including NAA, NAAG, GPC, PC, Cr, PCr,

m-Ins, Gln, and Glu. The simulated spectra were degraded by noise

and baseline, line broadening, frequency shift, zero- and first-order phase

distortions, and overlapping metabolic signals.

After training, Superfit performed on the test set with a RMSE of

0.0197522 ± 0.0088865, which was close to the optimal generalization

RMSE of 0.0193547. Loading, fitting, and reconstructing the 10,335

test spectra took less than 40s. For 3D MRSI volumes of 32×32×16

containing over 16,000 spectra, for instance, spectral fitting could be

performed by Superfit in less than a minute.

However, Superfit was limited. Low SNR, but especially extreme line

broadening and first-order distortions made it difficult, and in some cases

impossible, to fit the spectrum. In Figure 3.9 such a case is illustrated.

4.2 Metabolite Quantification by Superfit

In this study, the concentrations of NAAG, GPC, PC, and Gln were

quantified with a MAPE > 20%. Quantification of the corresponding

concentrations is, therefore, difficult and not that reliable. The weakness

of Superfit in quantifying those metabolites may be explained by their

overlapping peaks. NAAG with its low amplitudes overlaps with NAA

due to line broadening and has a naturally small amplitude. Gln overlaps

with Glu, which has higher amplitudes compared to Gln [1]. Another

consequence of the low amplitudes of NAAG and Gln is a low SNR,

which also leads to higher MAPEs.

In general, GPC and PC are not separatible, because the acquired

spectral resolution (especially in vivo) is too low to differentiate between

both metabolites and, thus, their individual concentrations, as well as

their ratio GPC/PC, are negligible. The same applies for PCr, Cr, and

Cr/PCr, respectively. Instead, the total concentrations of tCho and tCr

are examined.

NAA and m-Ins were quantified with a MAPE < 10%. While m-

Ins has a unique position and does not overlap with neighboring peaks,

NAA naturally has a high amplitude [1]. Thus, both metabolites could

be quantified very well compared to Glu, with a MAPE between 10%

and 20%.

Examining total metabolic concentrations, Superfit quantified tNAA,
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4.3 Conclusion

tCho, and tCr, with a MAPE< 10%, which enabled the robust prediction

of their concentrations. Also, Glx still had a MAPE < 20%.

Only m-Ins and tCho had p-values > 0.05. However, considering the

Bland-Altman plots, true and predicted concentrations of NAA, m-Ins,

tNAA, tCho, and tCr correlate and, considering the respective MAPEs,

the predicted concentrations were significantly accurate.

For all metabolites, extreme outliers influenced the MAPEs and, thus,

the corresponding median APEs were calculated, which, in general, were

lower than the MAPEs.

An interesting observation was the increasing MAPE of Glx with in-

creasing FWHM. While the MAPEs of tNAA, tCho, tCr, and m-Ins

decreased with increasing FWHM (with their high amplitudes still de-

tectable at higher FWHM); the smaller peaks of the Gln and Glu multi-

plets might be too flat to be separated from the spectral baseline.

With regard to the relative concentration ratios, tCr/tNAA, tCho/tNAA,

and m-Ins had MAPEs < 10%, correlating to the corresponding MAPEs

above. Glx had a MAPE < 20%. For all four total metabolite concen-

trations, a mean MAPE of 8.99% ± 7.41% was recorded. Significantly

high MAPEs were recorded for NAAG/NAA and Gln/Glu, showing how

Superfit struggled with the separation of overlapping peaks.

4.3 Conclusion

In summary, Superfit fit a broad range of spectra degraded by many fac-

tors and managed to disassemble them into their metabolic components.

Although struggling with the separation of overlapping peaks, Superfit

could sufficiently quantify the total metabolic concentrations of the ma-

jor metabolites visible in brain MR: tNAA; tCho; tCr; m-Ins; and Glx.

While Gurbani et al. dealt only with singlets, Superfit’s approach using

basis sets enabled the management of j-coupled metabolites as well [20].

In contrast to the CNN implemented by Lee et al., Superfit was trained

by unsupervised learning [28]. Thus, Superfit can be trained without a

dependence on ground truth.

The concept of Superfit could be expanded, modified and improved to

quantify the metabolite concentrations more accurately. For example,

during the training, prior knowledge could be used to detect outliers and

penalize the loss; thus, the quantification results might more accurate. In
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4 Discussion

addition to that, the number of metabolites that are investigated could

be expanded by including , e.g., lactate or GABA.

Furthermore, the concept and performance of Superfit could be ex-

amined under more realistic conditions by using only in vivo data and

comparing them directly to the results of, e.g., LCModel.

As in other previous studies, Superfit also proved that sub-minute

metabolite quantification in brain MRSI can be achieved using deep

learning, a critical step toward implementing MRSI in the daily clini-

cal routine.
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[27] Nima Hatami, Michaël Sdika, and Hélène Ratiney. “Magnetic Reso-

nance Spectroscopy Quantification using Deep Learning”. In: June

2018.

[28] Hyeong Hun Lee and Hyeonjin Kim. “Intact metabolite spectrum

mining by deep learning in proton magnetic resonance spectroscopy

of the brain”. In: Magnetic Resonance in Medicine 82.1 (2019),

pp. 33–48. doi: 10.1002/mrm.27727. eprint: https://onlinelibrary.

wiley . com / doi / pdf / 10 . 1002 / mrm . 27727. url: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27727.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

