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Abstract

Big data analysis has attracted enormous attention during the last decade. In this
field, graph signal processing is widely used in order to analyze data on graphs
using a signal processing perspective. One of the key problems in this area is
clustering, i.e., partitioning the data in homogeneous subgroups (clusters, com-
munities) corresponding to subsets of nodes in the graph. The nodes within a
cluster usually tend to be connected by edges that represent similarity relations.
The ultimate goal in the clustering problem is to keep the number of nodes that
are attributed to a wrong cluster as low as possible. Semi-supervise clustering is
a special case of this problem in which some of the cluster labels are assumed to
be known in advance and this prior knowledge is exploited to label (cluster) the
rest of the data.

In this work, we explore the use of error correcting codes in the context of semi-
supervised multi-class clustering problems. The key idea here is to employ error
correcting codes for the cluster (class) labels in connection with various clustering
schemes and to use the decoder of the error correcting code in order to detect and
correct miss-classified data. The proposed algorithms for clustering with error-
correcting code labels are studied experimentally in several different scenarios
(graph size and topology, number and size of clusters). The performance of these
methods is compared to conventional semi-supervised spectral clustering with one-
hot encoded labels. The results show that with some modifications of the codeword
structure of one-hot encoding, our error correcting approach outperforms existing
clustering methods.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Acknowledgements

First and foremost, I would like to thank Ao.Univ.Prof. Dipl.-Ing. Dr.tech. Gerald
Matz, for his continuous support and understanding. His guidance and motivation
has steered me in the right direction throughout this work.
Furthermore, I am very grateful to Univ.Ass. Dipl.-Ing. Thomas Dittrich, for
his patience and enthusiasm. I could not have imagined having a better advisor.
Without his comprehensive knowledge and great support, I would not have been
able to complete this work.
And my biggest thanks, from the bottom of my heart, goes to my beloved wife,
Morvarid. Her encouragement and unconditional support kept me going on. Also,
I would like to appreciate her effort for proofreading this thesis.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Contents

1 Introduction 7

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10

2.1 Graph Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Graph Laplacian Matrix . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Graph Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Semi-Supervised Spectral Clustering . . . . . . . . . . . . . 15

2.4 Existing Methods in Error Correcting Codes for Multi-class Clus-
tering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Stochastic Block Model . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methodology 19

3.1 Semi-Supervised Multi-Class Clustering
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Linear Constrained Optimization . . . . . . . . . . . . . . . 19
3.1.2 Harmonic Function Solution . . . . . . . . . . . . . . . . . . 23

3.2 Error Correcting Code for Clustering . . . . . . . . . . . . . . . . . 25
3.2.1 Encoding with One Bit Per Cluster . . . . . . . . . . . . . . 25
3.2.2 Higher Distance Compact Encoding . . . . . . . . . . . . . . 26
3.2.3 Error Correcting Code Strategy . . . . . . . . . . . . . . . . 26
3.2.4 Increasing the Number of Clusters with Fixed Bits . . . . . 27

3.3 Implementation Based on Semi-Supervised
Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Projected Power Method . . . . . . . . . . . . . . . . . . . . 30
3.3.2 CVX Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Implementation Steps on a Toy Example . . . . . . . . . . . . . . . 32

4 Results 35

4.1 Constrained Optimization Problem . . . . . . . . . . . . . . . . . . 35
4.1.1 Ordinary One-Hot Encoding . . . . . . . . . . . . . . . . . . 35
4.1.2 Higher Distance Compact Encoding . . . . . . . . . . . . . . 37

4.2 Harmonic Function Solution . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Comparing the Applied Encoding Schemes . . . . . . . . . . . . . . 45
4.4 Comparison of Different Minimum Hamming Distances . . . . . . . 46
4.5 Increasing Number of Clusters . . . . . . . . . . . . . . . . . . . . . 48
4.6 Performance Analysis on Real Data Set . . . . . . . . . . . . . . . . 50

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5 Conclusion and Outlook 52

5.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Symbols and Terms 54

Bibliography 58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Figures

1.1 Example of friend connections in Facebook network graph [1] . . . . 7
1.2 Example of different groups in LinkedIn network graph [2] . . . . . 8

2.1 Unweighted graph with 4 nodes . . . . . . . . . . . . . . . . . . . . 11
2.2 The idea of graph cut minimization for 2 clusters . . . . . . . . . . 12
2.3 Disadvantage of graph cut . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 ECDF curve of the number of errors (N) for ordinary one-hot en-
coding and Hamming code on top for k=4 clusters. . . . . . . . . . 37

4.2 ECDF curve of the number of errors (N) for ordinary one-hot en-
coding and Hamming code on top for k=10 clusters. . . . . . . . . . 37

4.3 ECDF curve of the number of errors (N) for HDCE and Hamming
code on top for k=4 clusters. . . . . . . . . . . . . . . . . . . . . . . 39

4.4 ECDF curve of the number of errors (N) for HDCE and Hamming
code on top for k=10 clusters. . . . . . . . . . . . . . . . . . . . . . 39

4.5 Comparison of HDCE and Hamming code in terms of AE against
the probability of having edge within the clusters (p). Probability
q is fixed to 0.35 and the graph is generated with 1000 nodes and
k=4 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Comparison of HDCE and Hamming code in terms of AE against
the probability of having edge between the clusters (q). Probability
p is fixed to 0.55 and the graph is generated with 1000 nodes and
k=4 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Comparison of HDCE and Hamming code in terms of NER against
the number of nodes for k=4 clusters. SBM setting: p=0.55 and
q=0.35. Clustering algorithm 1 is applied. . . . . . . . . . . . . . . 41

4.8 k=4 clusters performance. Comparison of the performance for clus-
tering algorithm 2 (based on harmonic function) for two different
SBM settings with respect to ECDF curve for number of errors (N). 43

4.9 k=10 clusters performance. Comparison of the performance for
clustering algorithm 2 (based on harmonic function) for two differ-
ent SBM settings with respect to ECDF curve for number of errors
(N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Comparison of HDCE and Hamming code in terms of AE versus
probability of having edges within the same clusters (p) for k=4
and q=0.20. Clustering is based on harmonic function (Algorithm 2). 44

4.11 Comparison of HDCE and Hamming code in terms of AE versus
probability of having edges between clusters (q) for k=4 clusters
and p=0.80. Clustering is based on harmonic function (Algorithm 2). 44

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.12 Comparison of HDCE and Hamming code in terms of error rate
vs. number of nodes for 4 clusters and SBM settings p=0.55 and
q=0.35. Clustering algorithm 2 is applied. . . . . . . . . . . . . . . 45

4.13 Comparing the applied encoding schemes in terms of ECDF curves
of number of errors (N) for clustering based on algorithm 1 . . . . . 46

4.14 Comparing the applied encoding schemes in terms of ECDF curves
of number of errors (N) for clustering based on algorithm 2 . . . . . 46

4.15 Performance analysis for 4 clusters with two different minimum
Hamming distances in terms of ECDF curve for number of errors
(N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.16 Comparison of different number of clusters (k) for encoding with 4
bits in terms of AE bars for clustering algorithm 1. . . . . . . . . . 49

4.17 Comparison of different number of clusters (k) for encoding with 4
bits in terms of AE bars for clustering algorithm 2. . . . . . . . . . 49

4.18 ECDF plot of error rate for HDCE and Hamming code encoding for
the case of first modification, which keeps the number of clusters
(42) and nodes (1005) unchanged. The number of known labels in
each cluster is 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.19 ECDF plot of error rate for HDCE and Hamming code encoding
for the case of second modification, which reduces the number of
clusters and nodes. This modification led to 727 nodes and 15
clusters for 26 known labels in each cluster. . . . . . . . . . . . . . . 51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 1

Introduction

The field of big data analysis belongs to the wide range of machine learning ap-
plications, from pattern recognition and image segmentation to biological appli-
cations like protein networks. In recent years, big data is even more involved in
our lives. One example is social networks like Facebook (figure 1.1) and LinkedIn
(figure 1.2), and the other one is web-based purchasing networks like Amazon,
which makes the importance of analysing the data in this field more obvious.

Figure 1.1: Example of friend connections in Facebook network graph [1]
”Colored dots (nodes) are friends and the lines (edges) are friendship

connections. Since this is a Facebook friend network, everyone is connected to
the central node (Facebook account owner).” There are 6 different communities

(clusters) in this example.
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Chapter 1

Figure 1.2: Example of different groups in LinkedIn network graph [2]
This is a subgraph of the Linkedin, showing a Linkedin user (the author of [2]) as
the central node and his network of 163 connections (nodes). Each color (cluster)

represents a group of his connections in the same geographical location.

Graph signal processing (GSP) is a method of representing and processing large
data sets. The idea is to apply digital signal processing concepts and theories in
graph domain [3]. In this form of data representation, the data points are the
nodes (vertices) of the graph and the relation between the nodes is shown with
the edges of the graph. For example in social networks, the users can be defined
as graph vertices and the friendship between users as graph edges. Many similar
scenarios can be analysed based on this strategy, such as speech recognition [4],
communication networks [5] and road networks [6].

In general, the data can be analysed from different perspectives in the context
of graph-based representation, such as graph learning, inpainting and clustering.
In graph learning, we are dealing with a huge database, where the goal is figuring
out the connections of the graph, which is referred to as graph adjacency matrix.
Once the graph is learned, inpainting can be performed. In this kind of analyse,
it is assumed that some of the node values are observed, and the goal is finding
value of the rest of nodes. A novel approach for this kind of problem, which is
also known as semi-supervised learning can be found in [7].

Another aspect that can be studied in this field is clustering data, such that
each cluster is a group of the nodes with certain relations. In other words, we are
trying to split the graph into sub-graphs. In this work, semi-supervised clustering
is considered. Key assumption in semi-supervised clustering is that the class
label for some of the nodes is known in advance and we exploit this information
to classify the remaining nodes. Numerous approaches can be found for solving
semi-supervised clustering problems from different perspectives. For example, in
[8] spectral clustering perspective is applied. Harmonic functions point of view is
considered in [9]. In [10], manifold regularization is proposed for the problem of
pattern recognition. More ideas can be studied in [11], [12] and [13].
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Chapter 1

1.1 Objectives

In this work, the idea of incorporating error correcting codes to represent cluster
labels in semi-supervised clustering algorithms is proposed. The goal is to increase
clustering accuracy by means of error detection and correction capability of error
correcting codes. We analyse the performance of this approach by applying error
correction on two different semi-supervised methods.

First we apply semi-supervised spectral clustering and then integrate it with
error correcting codes.

Next, we apply the same steps on the semi-supervised clustering based on
harmonic functions. However, this idea can be applied on any kind of semi-
supervised clustering method in general. Also this idea is applicable on multi-class
(two or more) clustering schemes.

The idea of error correcting codes as cluster labels is previously applied in paper
[14] for supervised learning methods. In our work, we extend the idea to semi-
supervised multi-class clustering methods. Basically, it also can be considered as
an extension of one-hot encoding for categorical data [15]. In one-hot encoding, as
it will be explained in section 3.1, the goal is to represent the cluster labels by the
sequence of bits, such that ”1” is set in the bit position number of the cluster and
”0” elsewhere. By applying it on all clusters, a codebook will be created, which
is an identity matrix. We refer to this method as ordinary one-hot encoding.
Then, by applying an error correcting approach, the rows of this codebook will
be transformed to a higher domain. For example, in case of 4 clusters, where a
4× 4 codebook is created by ordinary one-hot encoding, it can be transformed to
a 4× 7 codebook by applying a Hamming code (7,4) encoding [16] on top of that.

In our clustering approach, we exploit Stochastic Block Model (SBM) to gener-
ate a graph from a random model. This model is based on probabilities of having
edges between different clusters and within the same cluster. After generating a
random graph based on this model, we can apply our approach for different prob-
ability values for SBM. Also the performance will be analysed over a wide range
of graph sizes with different number of clusters. Hamming codes are considered
as an encoding method for our experiments.

As the final step, real data will be used as an input for our algorithm and the
performance will be analysed.

It is expected that error correcting code on top of semi-supervised clustering
algorithms outperforms the existing algorithms or at least represents the same
level of accuracy.
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Chapter 2

Background

An essential task in data analysis is clustering, which helps to see similarities
between different data points. Basically, the goal is to group the nodes of the
graph under some assumptions.

This chapter covers graph basics and clustering methods. More specifically,
the concept of semi-supervised spectral clustering for multiple classes, which is
the base of our approach, will be explained. Also some of the related algorithms
in literature will be presented. In the last part, SBM is covered, which is used as
our data model for simulating algorithms.

2.1 Graph Notation

A graph G is defined as G = (V , E ,W), where V = {V1, ...,Vn} is the set of nodes
or vertices, E is the edge set and W is the weight matrix of the graph, which
contains the edge weights. If there is a similarity between nodes Vi and Vj, there
is an edge connecting those nodes. A given graph can be weighted or unweighted.
Weighted graph means that there is a weight Wij ≥ 0 for the edge connecting
node Vi to Vj. In this case, there is a similarity between the nodes i and j. If there
is no edge, that means Wij = 0. In case there is no weight for the edges, a graph
is called unweighted. Within this work, a graph is assumed to be undirected; that
means Wij = Wji.

Basically, any graph is determined by its weight matrix, which is an n × n

matrix (for n nodes). In case of unweighted graph (which is the case for our
experiments throughout this thesis), we have Wij = 1 where there is a similarity
between nodes and Wij = 0 elsewhere. Degree matrix and graph laplacian matrix
are also matrices which are associated with any graphs.

2.2 Graph Laplacian Matrix

Before going into details of clustering methods, it is necessary to understand the
concept of graph Laplacian matrix. In graph theory, graph Laplacian is defined
as

L = D−W, (2.1)
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Chapter 2

4

1

2

3

Figure 2.1: Unweighted graph with 4 nodes

where D is the degree matrix (diagonal) and W is the weight matrix. The degree
matrix of a graph G is a diagonal matrix containing the degree of each node on
its diagonal. A degree of a node is defined as the sum of weights of the edges
that have incidence on that node. For example, consider an unweighted graph like
figure 2.1 with 4 nodes. For this graph, the weight matrix will be as

W =







0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0






.

For diagonal matrix D, as the graph is unweighted, we just need to count the
number of edges connected to each node. This leads to matrix D as

D =







2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1






.

Based on that, Laplacian matrix L will be

L = D−W =







2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1






.

Basically, L is a symmetric positive semi definite matrix. One important prop-
erty of the graph Laplacian matrix is that we have equation

fTLf =
1

2

n∑

i,j=1

Wij(fi − fj)
2,

for every vector f ∈ R
n (proof in [17]). As we will see in the next section, this

property plays an important role in relaxation of the graph cut optimization prob-
lem.

2.3 Graph Clustering

Most of the concepts of this section are derived from [17] which is an extensive
tutorial on spectral clustering.
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Figure 2.2: The idea of graph cut minimization for 2 clusters

One of the important tasks of graph-based big data analysis is to cluster the
graph in order to group similar vertices (nodes). Spectral clustering is a powerful
technique in this field, which has attracted a huge attention in recent years [18,
19, 20]. In what follows, we start from an intuitive idea to cluster the data points,
which is the graph cut. Then concept of spectral clustering is presented.

2.3.1 Graph Cut

As mentioned in section 2.1, a graph G = (V , E ,W) can be weighted with the
weight matrix W. The idea of graph cut is having a minimum number of edges
between clusters, which is illustrated in figure 2.2 for two clusters. It can be seen
in this figure that there is a minimum of two edges between two clusters. In order
to cluster the graph based on graph cut concept, this graph is partitioned by a
dashed line.

For a vertex set V = {1, ..., N}, edge set E ⊆ V×V , and edge weight (adjacency)
matrix W ∈ R

N×N , graph cut for two clusters is defined (according to [21]) as

C(A1, A2) =
∑

i∈A1

∑

j∈A2

Wij.

A1 and A2 are two partitions of the vertex set, which means they are disjoint and
their union is a full vertex set. For a set of K clusters, graph cut, which shall be
minimized, is defined (according to [17]) as

C(A1, ..., AK) :=
1

2

K∑

i=1

W(Ai, Ai), (2.2)

where A is a complement of A and the factor 1

2
is introduced to avoid considering

the edges twice. By defining the degree of a vertex Vi ∈ V as

di =
∑

j∈N
Wij,
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4

5

1

2

3

Figure 2.3: Disadvantage of graph cut

W (A,A) for two sets A and A can be defined as

W (A,A) =
∑

i∈A

∑

j∈A

Wij.

In order to cluster based on the concept of graph cut, this equation shall be
minimized. Therefore, for the case ofK clusters, graph cut minimization is defined
(according to [21]) as

min
A1,...,AK

K∑

k=1

(
∑

i∈Ak

∑

j∈A\Ak

Wij). (2.3)

In general, a labeling function f can be defined for each node i as

f(i) =

{

1 i ∈ A1

−1 i ∈ A2

,

in order to label the nodes with 1 and -1 as two cluster labels. As we will see in
the chapter 3, graph cut point of view is a basis for clustering method based on
optimization problem with linear constraints (algorithm 1).

2.3.2 Spectral Clustering

This section summarizes spectral clustering, which is based on [17] unless otherwise
noted.
The disadvantage of minimization in graph cut perspective is that it separates one
individual vertex from the rest of the graph. For example, in figure 2.3, node 4
is separated from the rest of the graph. The reason is that graph cut does not
consider the cluster size.

To overcome this issue, the concept of Ratio Cut (RC) is defined as

RC(A1, ..., AK) :=
1

2

K∑

i=1

W(Ai, Ai)

|Ai|
, (2.4)

in order to balance the number of nodes in each cluster. With this optimization
problem, in the ideal case RC is minimized when all the clusters have the same
number of nodes. It can be shown that this minimization makes the problem
NP-hard (Non-deterministic Polynomial problem) [22]. Therefore, in [23] some
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Chapter 2

relaxation on this problem is proposed, in order to get approximation of the solu-
tion. First the approximation on two clusters is applied, then it is generalized to
multiple clusters.

As mentioned in previous section, we can define a labeling function for the
nodes. For the case of two clusters (sets A and A), N nodes and node set V , it
can be defined as a vector function f = (f1, ..., fN)

T ∈ R
N with the entries

fi =







√
|A|
|A| Vi ∈ A

−
√

|A|
|A| Vi ∈ A

. (2.5)

If we sum up all the values of fi, that will be equal to zero, which indicates that
the vector f is orthogonal to the vector of all ones (proved in section 5.1 of [17]).
Also, we have the equation

‖f‖2 =
N∑

i=1

f2i = |A| |A||A| + |A|
|A|
|A|

= |A|+ |A| = n (2.6)

for the norm of f . Recall from section 2.2, fTLf is related to Ratio Cut as

fTLf =
1

2

N∑

i,j=1

Wij(fi − fj)
2 ∝ RC(A,A).

We can conclude that minimization of the RatioCut equation (2.4) is equivalent
to minimization of fTLf with linear constraints as

min
A⊂V

fTLf

s.t.f⊥1, ‖f‖ =
√
N

(2.7)

for the graph with N nodes, 2 clusters and Laplacian matrix L. The challenge
of NP hard problem still exists as it is a discrete optimization problem, where
the vector f can only take two values in this case. We can relax this problem by
allowing f to take any real values and solve the optimization problem

min
A∈RN

fTLf

s.t.f⊥1, ‖f‖ =
√
N

(2.8)

instead. According to [24] (section 5.5.2) this optimization problem can be solved
by Rayleigh-Ritz theorem, which leads to the eigenvector corresponding to the
second smallest eigenvalue of L. Finally, the last step is to assign a discrete value
for each element of the vector f , because of the relaxation. In case of two clusters,
one simple way is to distinguish two clusters as

{

Vi ∈ A fi ≥ 0

Vi ∈ A fi < 0
(2.9)

based on the sign of the values.
To generalize the idea toK clusters, the solution consists ofK indicator vectors

like X:j = (X1,j, ...,Xn,j)
T with entries
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Chapter 2

Xi,j =

{
1√
|Aj |

Vi ∈ Aj

0 otherwise
, (2.10)

where i = {1, ..., N} and j = {1, ..., K}. This way, we partition the vertex set V
into K sets A1, ...,Ak. Solution of the optimization problem will be the matrix
X ∈ R

N×K with K indicator vectors. It can be shown that one property of the
matrix X is that its columns are orthogonal to each other. In other words, we
have XTX = I. Similar to the case of two clusters, minimization of the RC is
equivalent to minimization of XT

:jLX:j for j = {1, ...K}. It leads us to the RC
equation

RC(A1, ..., Ak) =
K∑

j=1

XT
:jLX:j =

K∑

j=1

(XTLX)jj = Tr(XTLX) (2.11)

for K clusters. That means minimizing the RC is equivalent to minimizing the
trace of the matrix XTLX. Then the optimization problem can be written as

min
A1,...,Ak

Tr(XTLX)

s.t.XTX = I
(2.12)

which is NP-hard and needs a relaxation. Therefore, any real values RN×K for the
entries of the matrix X is acceptable. It leads us to the trace minimization

min
X∈RN×K

Tr(XTLX)

s.t.XTX = I
(2.13)

as our optimization problem. As mentioned for the case of two clusters, the solu-
tion consists of the K first eigenvectors of the matrix L, which builds the matrix
X. Final step is to apply a clustering method (traditionally k-means algorithm)
on the rows of the matrix X, in order to find the cluster label of the nodes set.

As it will be explained in the chapter 3, in our proposed algorithm, one of the
steps is to replace the k-means step by a decoder of error correcting codes.

2.3.3 Semi-Supervised Spectral Clustering

The key assumption in semi-supervised method is that some cluster labels are
known. With this assumption, the goal is to ’split a dataset which is characterized
by a graph into disjoint clusters ’ [25]. In the framework of big data, one has to
deal with a large amount of nodes, where only for a small number of nodes the
label is known. In this work, two kinds of semi-supervised clustering methods,
based on spectral clustering and harmonic functions are considered.

In the context of semi-supervised spectral clustering, by incorporating prior
information, we are actually adding a linear constraint to the optimization problem
in equation 2.13. So we need to solve the optimization problem

min
X∈RN×K

Tr(XTLX)

s.t.XTX = I,XL: = C
(2.14)
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Chapter 2

for the case, where we have a set L containing the nodes with the known clusters.
Matrix C is defined to represent the respective clusters label in each row. As it
will be presented in chapter 3, in our approach, each row is a codeword related to
the individual cluster label and the number of columns is equal to the number of
bits used.

2.4 Existing Methods in Error Correcting Codes

for Multi-class Clustering Problem

As mentioned in chapter 1, the objective of this work is to incorporate error cor-
recting codes to represent the cluster labels for semi-supervised clustering methods.
The idea of employing error correcting codes for class labels is first used in [14],
where it is applied on supervised learning methods. In supervised learning, we
have a labeled training data and the goal is to estimate a function f(x) as a gen-
eral solution for a new data x [14]. This could be very challenging for many cases,
for example in speech recognition, where we would need really large amount of true
labeled data in order to have an accurate result. Implementing error correcting
code on top of this kind of supervised learning would make it even more challeng-
ing. For example in case of 15 bits codeword as an error correcting code for each
cluster, we need to estimate the function f for each bit separately. In multiclass
learning method introduced in [14], a codeword of the length n is assigned to each
cluster as a distributed output representation. Then, a function f is learned for
each of those n bits as a binary classifier. For a new example output data x (with
n bits), calculating the function f for each bit of x would result in a n bit string
as an output. Now the class, which has the minimum distance (minimum number
of different bits) to this output, will be assigned as a true cluster label. This step
can also be interpreted as a decoder of the error correcting code, where it can
correct the bits which are in the wrong position. As a general rule, depending on
the minimum Hamming distance d between cluster codewords, this approach can
correct up to ⌊d−1

2
⌋ bits [14]. In general, the method of ”dividing one multi-class

classification problem into a certain number of sub-problems of binary classifiers”
is called Error Correcting Output Code (ECOC) [26]. It is shown in [14] that the
idea of ECOC in supervised learning outperforms the algorithms used to learn
decision trees (based on the dataset from [27]) and neural networks.

The major difference between the ECOC algorithm in [14] and our work is
that we are applying the algorithm on semi-supervised learning techniques. The
advantage is that there is no need to have a whole set of labeled training data to
estimate a function for a new data. Another difference of the approach introduced
in [14] with our work, is that in [14] the idea is applied on binary classifier (function
f) estimation, whereas we implement the idea of error correcting code on top of
multi-class learning approaches. The assumption is that there is a small number
of labeled data available as a prior knowledge for the problem. The details of the
algorithm will be presented in the chapter 3.

The idea of ECOC strategy for multi-class learning is combined with Sup-
port Vector Machine (SVM) algorithm in [26] for speech recognition (ECOC-SVM
method). In general, SVM is a method of learning binary classifiers by defining a
seperating hyperplane [28]. The reason that SVM algorithm is chosen for speech
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Chapter 2

recognition is that in can work with small amount of training data [28]. Experi-
mental results in [26] shows that ECOC-SVM method outperforms the traditional
method for speech recognition based on Hidden Marcov Model (HMM).

One perspective of analysing ECOC is the design of the codewords. In [14]
they formulated a property which should be satisfied for codeword design, accord-
ing to which there should be no dependency between different rows and columns
simultaneously. The dependency between different codewords is also analysed in
[29] where it is concluded that ”The dependence among codeword bits reduces the
error recovering power of ECOC”.

2.5 Stochastic Block Model

Before applying any kind of clustering algorithm, it is necessary to generate a
graph and determine the weight matrix W. In our work, the concept of random
graphs is used, which is based on the probability of existing an edge in the graph.
This idea initially introduced by Erdos-Renyi [30] called ER model for a graph
with only one cluster. That means, only one probability (p) is defined for having
edge between the nodes.

SBM is generalization of ER model for graphs with more than one cluster.
According to [31], SBM model is defined by two probabilities: Probability of
having edge between two nodes within the same cluster (p) and probability of
having edge between two nodes that are from different clusters (q). It has been
considered as a simplified model to present real networks [31]. In paper [32] a
model is proposed for dynamic networks, which is defined as a network whose
edges can be evolved over time, like social media networks.

In our work, SBM is used as our data model. The MATLAB implementation
from [33] is applied in this work. For this model, first we define the number
of clusters and size of each cluster. Assume we have defined a class membership
vector c, which classifies the graph into k clusters {c1, ..., cK}. According to [32], in
order to generate a weight matrix based on SBM, two conditions must be fulfilled:

• For any nodes i 6= j, the random variables Wij are statistically independent.

• For any nodes i 6= j and i
′ 6= j

′

, if i and i
′

are in the same class, i.e. ci = ci′ ,
and j and j

′

are in the same class, i.e. cj = cj′ , then the random variables
Wij and Wi

′
j
′ are identically distributed.

For k clusters, the k × k matrix P is defined as a probability matrix, which
contains the probabilities of forming edges between different clusters. From defini-
tion of the SBM, it is clear that the diagonal elements of the matrix P are equal to
the probability value p and the off-diagonal elements are equal to the probability
value q. According to the definition in [32], the elements of the weight matrix W

can be either Wij = 1 if there is an edge between nodes i and j and Wij = 0
otherwise. In other words, its elements has a Bernoulli distribution, which takes
the value 1 with probability p and 0 with probability q. As an example, consider
a graph with 9 nodes and 3 clusters with class membership vector

c0 =
[
1 1 1 2 2 2 3 3 3

]T
.
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Chapter 2

Assuming a SBM setting as p = 0.80 and q = 0.10, the 3 × 3 probability matrix
will be

P =





0.80 0.10 0.10
0.10 0.80 0.10
0.10 0.10 0.80



 .

Based on this probability matrix, a random weight matrix W for the graph will
be generated. As it will be presented in chapter 4, due to the randomness of our
graph generating method in this work, the results are based on average behavior
over a large number of simulations, so the results are reliable enough.
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Chapter 3

Methodology

In this chapter, the proposed error correcting approach for semi-supervised clus-
tering is presented. The idea is modifying semi-supervised clustering algorithms,
such that there is less number of miss-clustered nodes in the algorithm output. To
do so, cluster labels are presented by error correcting codes. Then, semi-supervised
clustering method is applied by imposing the code-words, generated by applying
error correcting codes to the known cluster labels. For the clustering output, the
labels will be assigned to the data, based on their minimum distance to the known
code-words.

Two semi-supervised clustering methods, which are used in our work, will be
explained in the first section. The proposed error correcting approach is defined
and explained in the second section. In the third section, the implementation of
our approach is presented. Finally, the implementation steps are explained within
an example.

3.1 Semi-Supervised Multi-Class Clustering

Methods

In most of the cases, clustering methods lead to solving a quadratic optimiza-
tion problem, like the one in equation (2.14) to find optimum values for class
labels. For solving such optimization problem for clustering, we applied one spec-
tral method based on linear constraints and one non-spectral method based on
Harmonic function solution from [8] and [9] respectively.

3.1.1 Linear Constrained Optimization

First clustering method, used in our approach is based on spectral clustering. As
explained in section 2.3, semi-supervised spectral clustering leads to minimization
of the form

min
X∈Rn×k

Tr(XTLX)

s.t.XTX = I,XL: = C.
(3.1)
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Chapter 3

One way of solving this optimization problem is to exploit the idea of projected
power method which is introduced in [8]. In this paper, a method is proposed to
solve the minimization of the form

min
x∈Rn×k

xTLx

s.t.‖x‖ = 1,Bx = c,
(3.2)

for any positive semi-definite matrix L. The steps of finding the solution for
minimization in equation (3.2) will be presented in implementation part in section
3.3. In this section, we will explain how it would be possible to extend the algo-
rithm from vector to matrix and compute the minimization of the form of equation
(3.1). With some modifications, this method is applicable on the matrix X. From
optimization problem in equation (3.1), it can be seen that for semi-supervised
spectral clustering we have the condition that the norm of individual columns of X
has to be equal to 1. In general, that’s the condition for spectral clustering. With
semi-supervised spectral clustering, additional constraint is imposed on some of
the rows of X as shown in equation (3.1).
Consider an error correcting approach for the graph G = (V , E ,W) with V and E
as a node set and edge set respectively. We assume that the set L ⊂ V contains
the known labels. Therefore, for the corresponding rows of the matrix X, we have
the equation

Xl: = Ci:,

where l ∈ L and Ci: is the corresponding codeword for the lth node with i ∈
{1, ..., k} for k clusters. With this optimization method, the goal is to calculate
the remaining rows of the matrix X which is equal to N − L rows.

As it can be seen in equation (3.2), the linear constraint Bx = c is very similar
to what we have in Xl: = Ci: for the matrix X. Therefore, if we want to write
the equation (3.1) in the context of error correcting codes and similar to equation
(3.2), then c is equivalent to one of the column vectors of the codebook C and
Bx needs to be a sampling matrix, which selects the lth row of the matrix X to
be equal to the ith codeword. We refer to the matrix B as selector. Essentially,
matrix B has to be constructed such that we have

Bx = C:l

for each column vector of C. The construction of the codebook for error correcting
approach will be explained in the next section. In this section, we just assume
that the cluster labels are represented by a codeword, which are the rows of the
codebook C.

As mentioned in section 2.3.2, for spectral clustering, we have to take k smallest
eigenvectors of Laplacian matrix of the graph for the case of k clusters. But if we
perform the optimization with just one vector, which is the case in equation (3.2),
we will get the smallest eigenvector. Therefore, the solution of this optimization
problem will be one vector at the output. In order to generalize idea of the
algorithm for solving equation 3.2 from vector x to matrix, the vectors of the
matrix X should be computed in an iterative way, such that in each iteration one
column vector of the matrix X (smallest eigenvector of the Laplacian matrix L)

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 3

is calculated for the respected column vectors of the codebook C with the linear
constraint Bx = C:l. The iterations shall be continued until all column vectors of
C are considered.

In order to make sure that the columns of the matrix X are not equal, one way
is to modify the selector matrix B, such that the solutions are orthogonal to each
other. To do so, the solution of the previous iteration will be appended to the last
row of the matrix B (we should take the transpose of the solution to convert it to
the row vector). In order for matrix dimensions to be agreed, after appending the
solution of the previous iteration, 0 is appended at the end of the corresponding
column vector of C so that BX:j = C:j holds true for all iterations j ∈ {1, ..., N}
with N being the number of columns of C (equal to the number of bits used for
the codewords). This way, matrix B will be updated at the end of each iteration
with the solution from previous iteration.

Another point is that in order to guarantee the orthogonality, we should use
1 and −1 for the matrices C and X instead of 1 and 0. The reason is that if
we consider the vectors v1 and v2 as two successive solutions of the matrix X, in
order to get the orthogonality, the equation vT

1 v2 = 0 must be fulfilled. If we use
1 and 0, then we would get strictly positive eigenvectors at each iteration, which
would not be beneficial for having orthogonality.

Nevertheless, it turned out that enforcing orthogonality to X is not beneficial
in general, because in practice the structure of matrix C can be different such that
two consecutive columns are the same (for example in repetition code). In this
kind of situation, at the second iteration the first and second vectors have the same
labels, but in order to get orthogonality, they would need to have different values
on all the other elements. That means, the second vector must be the inverted
version of the first one so that they totally add up to zero. This would result
in systematic errors, specially in case of repetition codes. However, this kind of
situation might happen only in case of 0/1 encoding.

There is still some points that need to be considered when applying the algo-
rithm from paper [8] to solve the minimization problem in our context. As it can
be seen in equation (3.2), the solution is normalized to 1. It could make a problem
to find the solution. For example, consider the extreme case where all the nodes
are labelled in prior (although it is not the case that we are interested in). In
that case, matrix B would be an identity matrix, which means all the nodes are
labeled. As a consequence, column vector x will be equal to the respective column
vector of the matrix C. In such situation, column vector of C will have the norm
equal to

√
n with n being the total number of nodes. In this case, in order to have

a norm 1 for our solution, we need to rescale the labels in C. To do so, we divide
the element of the matrix C to

√
n so that it guarantees the norm 1 condition for

the solution.
Another modification that is made on the algorithm, is enforcing an intended

mean for each vector x. The goal is to have an optimization solution close to the
ground truth labels. As we have different mean of the ground truth labels (mean
of the column vectors of matrix C) for each iteration, it makes sense to enforce
each vector of matrix X to have a mean of ground truth labels. As a consequence
of that, for each iteration of the optimization, we have a different mean for the
respective vector of X which is close to the ground truth labels. This mean is

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 3

calculated as

X:j =

n∑

i=1

Cij

n
,

for n nodes and j = {1, ..., N} where N is the number of bits.
The steps are explained in algorithm 1 for the graph with weight matrix W

which is generated by SBM.

Algorithm 1: Solve min
X∈Rn×k

Tr(XTLX) s.t.XTX = I,XL: = C

Input: matrices W,B,C

1. calculate laplacian matrix of the graph from W → L

2. rescale matrix C → C√
n

3. add intended mean for the solutions as a last row to B

4. j = 1

5. repeat

solve equation 3.2 for C:j

j ← j + 1

6. until j is equal to the number of columns of C

Output: matrix X

Similar Approaches

In what follows, some related approaches in literature is presented. An alternative
method to extend the algorithm in [8], from two classes to multiclass is studied
in paper [34]. The algorithm is called ’Multi-Class Constrained Normalized Cut’
which is applied for object segmentation problem, where the goal is to partition an
image into multiple segments based on the number of objects. Two different kinds
of priors have been considered, namely Unary priors (for single elements) and
pairwise priors (connection between the nodes). Also for each kind of prior, hard
and soft constraints have been considered. In the context of unary priors, hard
constraint indicates that whether a segment belongs to specific part of the object,
and a soft constraint indicates a probability of belonging to some parts of the
object. In the second type of the priors, pairwise priors, there could be ’must-link ’
and ’cannot-link ’ prior, which indicates that two specific segments belong to the
same clusters or different clusters respectively. Traditionally, it was not possible
to incorporate soft and cannot-link type of constraints into multiclass clustering
optimization framework. The algorithm introduced in [34] is capable of handling
multiclass problems with such priors. This can be considered as an alternative
approach to algorithm 1 which we developed for multiclass clustering problems.
One of the differences with our approach is that in [34], k smallest eigenvectors of
the Laplacian matrix is computed, however in algorithm 1 the smallest eigenvector
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is considered in each iteration.
Optimization problem with pairwise linear constraint is also studied in [35].

Again the goal is to incorporated the ’cannot-link ’ type of constraints (in addition
to ’must-link ’ constraints) in order to develop an algorithm for multiclass spectral
clustering. The idea which proposed in this paper, is to transform the data into
spectral domain, then impose the constraints to the data in this transformed do-
main. Then, the ideal representation of the data is achieved based on the pairwise
constraints. Based on the new representation in spectral domain, a cost function
is defined. The optimization problem would be minimizing this cost function. The
steps of this algorithm which is referred to as ’Constrained Clustering with Spectral
Regularization’ is summarized in algorithm 1 of paper [35].

One of the limitations of the mentioned algorithms is that all of them are
dealing with binary or pairwise constraints (’must-link ’ and ’cannot-link ’). Paper
[36] introduces an approach for general type of constraints. Another assumption
in [36] is that there is no need to satisfy all the constraints to solve the problem.
Instead of that, they define a lower bound for constraints satisfaction. In other
words, there is ’a flexibility in both representing and satisfying the constraints ’
in [36]. In the next step, in order to solve the optimization problem, a group
of possible solutions is derived. Out of this group, the solution which minimizes
the optimization problem will be selected as a final solution. The steps of this
approach can be studied in Algorithm 1 of paper [36].

Another approach for multiclass clustering based on graph cut optimization
problem with linear constraints is studied in [37] for image segmentation problem.
Lagrangian dual formulation is incorporated in this paper to solve the problem of
minimizing the graph cut. For multiclass problem, constrained normalized cuts in
the form of

Nk
cut =

k∑

l=1

C(Al, V )

assoc(Al, V )

is solved in an iterative way for k partitions. In each iteration, they decompose
the optimization problem, so it ends up with a simple bipartition problem at the
end of each iteration. This approach is studied and improved in paper [38], where
’Biased Normalized Cuts ’ approach is proposed.

3.1.2 Harmonic Function Solution

There is an alternative approach to calculate columns of the matrixX based on [9].
In this paper, the problem of semi-supervised learning for the graphs with small
amount of known labels is considered. The idea is to propagate nodes with the
known clusters labels through unlabeled nodes in order to find the cluster label
for unlabeled nodes based on the assumption that similar nodes are possessing
similar labels. That’s the motivation to perform energy minimization to solve the
problem, because similar nodes need less energy to be connected to each other.
The energy which should be minimized is (equation 2 in [9])

E(f) =
1

2

∑

i,j

Wij(fi − fj)
2. (3.3)

This is the energy which needed to connect an edge between the nodes i and j

for the graph with known weight matrix W. In this equation, f is a labeling
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function for the nodes such that fi ∈ {0, 1} in case of 2 clusters for i in the
node set V . This minimization problem needs a relaxation as it is NP-hard to
be computed. Therefore, the constraint to solve the problem is modified to fi ∈
R. According to paper [9], minimization of the equation (3.3) can be solved by
exploiting ’Gaussian Random Fields ’. The point is that, minimization problem is
equivalent to minimizing probability distribution of the labeling function f , which
leads to minimizing an exponential function as (based on section 2 of [9])

p(f) ∝ exp(−E(f))|fl=L = exp (−1

2

∑

i,j

Wij(fi − fj)
2) |fl=L, (3.4)

where the condition fl = L means that clusters labels are known for the node set
L ⊂ V . It is shown in [9] that the function f which minimizes the distribution,
satisfies the harmonic condition △f = 0 for the unlabeled nodes set U . △ is the
Laplacian which is computed in the context of graphs as

△UU = D−W

That means, it is required to decompose the degree matrix D and weight
matrix W into blocks as

D =

[
Dll Dlu

Dul Duu

]

and

W =

[
Wll Wlu

Wul Wuu

]

such that Wuu, Wll and Wlu means the weight of the edge connecting two unla-
beled nodes, two labeled nodes and one labeled and one unlabeled nodes respec-
tively. Also the vector function f needs to be decomposed into the labeled and
unlabeled nodes as

f =

[
fL
fU

]

.

So the goal is to find the minimum of the distribution of the unlabeled nodes with
the condition on labeled nodes. This minimum happens at the mean of distribution
where it has the minimum energy state. It can be calculated as (equation 5 of [9])

fu = (Duu −Wuu)
−1Wulfl. (3.5)

Equation (3.5) is applied on all unlabeled nodes which leads to the vector fU.
After calculating the vector fU, vector fL (for the nodes with the known cluster
labels) will be stacked on top of that, which creates one column vector of the
matrix X for the optimization problem of equation (3.1).

As shown in equation (3.5), there is no iteration in this approach to find the
solution. Main computational effort is a matrix inversion. So this algorithm is
simpler and expected to be faster than the algorithm 1. The steps of finding each
column are summarized in algorithm 2.
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Algorithm 2: Compute real-valued function f : V → R on graph G
Input: W, fL

1. Calculate degree matrix D ← diag(sum(W))

2. Decompose W and D in order to separate unlabeled nodes

3. Solve harmonic function equation 3.5 → Linear system of equations

4. Create the vector f by stacking fL and fU on top of each other

Output: Vector f =

[
fL
fU

]

3.2 Error Correcting Code for Clustering

The key point of our proposed algorithm is using error correcting codes as cluster
labels and creating a code-book. Basically, this algorithm can be considered as an
extension of one-hot encoding for cluster labels. The concept of one-hot encoding
and error correcting code on top of that will be explained in the following sub-
sections.

3.2.1 Encoding with One Bit Per Cluster

In machine learning, in order to quantify categorical data, the method of encoding
with one bit per cluster is applied, which is referred to as One-hot encoding [15].
Another example, where one-hot encoding is applied, is the unrelaxed version of
the spectral clustering, which leads to a N × K matrix X with the entries as
equation (2.10). For better understanding, a simple example from [15] will be
explained. Consider a categorical data with three categories {’red’,’green’,’blue’}.
In order to be able to work with most of the algorithms, these categories need to
be converted to integer values, for example {1,2,3}. For some of machine learning
algorithms, this ordered relationship between clusters is not acceptable. Therefore,
transformation from integer encoding to one-hot encoding is necessary. In order
to do so, integer values are replaced with the binary values, such that ’1’ is placed
for the position of the cluster and ’0’ elsewhere. Table 3.1 illustrates this idea [15].
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Table 3.1: One-hot encoding for cluster labels in categorical data

CodeWord

red 1 0 0
green 0 1 0
blue 0 0 1

As a consequence, instead of labeling clusters with {1,2,3}, we have a matrix
with the size 3 × 3, where each row indicates a cluster label. It is in general a
codebook as

C =





1 0 0
0 1 0
0 0 1



 .

We refer to this kind of encoding as ordinary one-hot encoding. In this kind
of encoding, the Hamming distance between all clusters (rows) is 2 and it is not
the maximum distance.

3.2.2 Higher Distance Compact Encoding

In case of 4 clusters, we could create the code-bookC, such that Hamming distance
is higher and not the same for all clusters. For example, we could have Hamming
distances of 3 as

C1 =







0 1 1 0
1 0 0 1
1 1 1 0
0 0 1 1






.

In general, the idea of maximizing the minimum Hamming distance can be applied
to k ≥ 4 clusters.

In our work, We refer to this modified encoding as Higher Distance Compact
Encoding (HDCE). This codebook will then be transformed to higher dimension
by applying error correcting codes. As we will see in the results, in order to have
an improvement in clustering accuracy with error correcting codes, it is necessary
to generate code-words with the maximum minimum Hamming distance.

3.2.3 Error Correcting Code Strategy

The idea of error correcting approach is to exploit code-book matrix C in ordinary
one-hot encoding (or matrix C1 in HDCE) as our base data and transform it
to higher dimension base. For example, if we use repetition code as our error
correcting code and have the vector [1 0 0 0] associated to first cluster (first row
of Code-book matrix), by applying repetition code, we will get the vector [1 0 0 0
1 0 0 0]. It will give us a matrix C with

• number of rows equal to the number of clusters

• and number of columns equal to the number of bits used for encoding.

That means at the output of the semi-supervised clustering algorithms, the clus-
tered data will be transformed to higher dimensions. Nevertheless, repetition
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codes are not recommenced to be applied, because there is no column separation
in such encoding. As it will be explained in section 4.4, one of the codebook de-
sign requirements is having column separation as much as possible, which is not
fulfilled in the codebooks based on the repetition code.

Assume that the output of the clustering algorithm is a n× k matrix X with
n nodes and k clusters. By applying error correcting codes, matrix X will have
higher dimension, such that the number of rows remains equal to the number of
nodes, but the number of columns will be equal to the number of bits which is
used for encoding. After applying clustering method, the rows of the matrix X

shall be decoded based on the error correcting code applied.
In general, our approach consists of the following steps:

1. Specify the class membership vector → c0

2. Create a code-book matrix based on the number of clusters → C (or C1)

3. Generate a random graph (SBM in our case) based on the probability values
p and q, as explained in section 2.5

4. Apply a semi-supervised clustering method based on the encoded known
labels → matrix X as an output

5. Map the values of unlabeled nodes to real code-words by applying minimum
distance decoding.

It is very important to choose a suitable clustering method, because we would
have different performance for error correcting approach on top of different clus-
tering methods. In this work, we analyse the performance of two semi-supervised
clustering algorithms, which are explained in previous section.

3.2.4 Increasing the Number of Clusters with Fixed Bits

One aspect which should be considered when applying error correcting code is
computational complexity of the clustering methods, which is increased by adding
more bits. Therefore, in order to keep the complexity low, some experiments has
to be performed to figure out the maximum amount of information that could be
represented with the fixed number of bits. For this purpose, instead of increasing
bits for the fixed number of clusters, we keep the number of bits to the fixed values,
then we increase the number of clusters and evaluate the performance.

We experimented this aspect for 4 bits. Also Hamming code (7,4) has been
applied as an error correcting method. The experiment setup and numerical result
of this experiment will be presented in section 4.4. In this part, codebook design
of the experiment will be explained. With 4 bits, there are 24 = 16 possibilities
for the datawords as
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words =































0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1































,

which will be transformed to a 16 × 7 matrix by applying Hamming code (7,4).
That means there is a capacity for a maximum of 16 clusters. The starting point
is choosing 4 cluster labels and creation of the codebook. After analysing the
clustering performance with respect to this codebook, we add a new codeword
from the remaining ones to the last row of the codebook to create a new one for 5
clusters. Then we continue this procedure until we achieve a codebook for which
the error rate at the end of the clustering is more than 0.50. Based on that, we
can estimate the number of clusters that can be packed in 4 bits with this specific
settings.

In order to create the codebook, the design criteria introduced in [14] and [29]
has been followed, based on which there should be minimum dependency between
rows and columns of the codebook. With Hamming code (7,4) it is possible to
achieve a maximum minimum Hamming distance of 4 between cluster labels for
the case of 4 clusters. Based on that we constructed the codebook

C4 =







0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0






.

At the next step, a 5th cluster should be added to the last row of the matrix C4,
such that the design criteria is still fulfilled. With 5 clusters the maximum mini-
mum Hamming distance between cluster labels will be decreased to 3. As it will be
explained in section 4.3, in order to satisfy the codebook design requirements, it is
not feasible to choose the vectors of all zeros or all ones as cluster labels. Based on
that, it remains 10 possibilities for the next codeword. Based on our experiments,
adding the codeword [1 0 1 1 0 1 0] leads to lower number of errors among other
possibilities, because it leads to the less dependency between columns. Based on
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that, the codebook

C5 =









0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0
1 0 1 1 0 1 0









was constructed for 5 clusters. The same strategy is applied for adding the next
codewords. For the case of 6 clusters, the codebook

C6 =











0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 1 0











was constructed. As it can be seen, the maximun minimum Hamming distance is
still 3. For 7 and 8 clusters, we constructed the codebooks C7 and C8 as

C7 =













0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 1 0
1 0 0 0 1 1 1













and

C8 =















0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 1 0
1 0 0 0 1 1 1
1 1 1 0 1 0 0















respectively. Considering columns of the codebooks, we can see that correlation
between the columns are being increased by adding a new codeword. For 9 clusters,
adding the codeword [1 0 1 0 0 0 1] has been resulted in less errors among other
possibilities. With this codeword, the codebook

C9 =















0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 1 0
1 0 0 0 1 1 1
1 1 1 0 1 0 0
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was constructed for 9 clusters. Although the minimum Hamming distance of the
codewords for all clusters from 5 to 9 was equal to 3, the correlation between
column vectors of the codbooks increases by adding new codewords. As it will
be illustrated in experimental results in section 4.5, for 9 clusters the number of
errors is more than half of the total number of the nodes. Based on this results,
we could say that for 4 bits, maximum number of 8 clusters can be achieved.

3.3 Implementation Based on Semi-Supervised

Spectral Clustering

In this section, the minimization procedure for the equation (3.2) will be explained.
In this work, two methods have been applied to compute this optimization prob-
lem. The first one was based on the algorithm introduced in [8] and the second
one was based on the CVX toolbox of MATLAB. In what follows, both implemen-
tations will be presented and their performance will be compared.

3.3.1 Projected Power Method

The algorithm that is proposed in [8] is referred to as projected power method. It
is proposed for an optimization problem of the form of equation (3.2) for a general
semi-definite matrix L. The idea is that they consider the constraint Bx = c

as a hyperplane which intersects with the sphere with ‖x‖ = 1. The solution is
computed in an iterative scheme. In each iteration, the vector xj starting from the
origin and ending on the intersection of the hyperplane and the sphere is considered
as a valid solution. In order to update the solution in each iteration, the previous
solution is multiplied with the matrix L, then projected to the hyperplane Bx = c.
After some normalization, the vector is added to n0 which is ”the vector from the
origin to its projection on the hyperplane Bv = c” according to [8]. This will
produce a new solution for x which is greater than the previous one.

It is proven in [8] that this algorithm converges, and the solution is upper
bounded by the maximum eigenvector of L. As this projection method was origi-
nally intended for solving the maximization problem of the form

max
x

xTLx,

in paper [8] it is recommended to define a large α so that our original minimization
problem is equivalent to solving the maximization problem

max
x

xT (αI− L)x.

In our work, we set α to the value of the maximum eigenvalue of the matrix L.
This way, it is also shown that the solution of the minimization problem is

basically the minimum eigenvector of the matrix L. For more details regarding
geometrical point of view of the algorithm refer to [8].

All steps of this algorithm are summarized in Algorithm 3. The matrices L,
B and C are the Laplacian matrix, sampling matrix and codebook respectively.
This algorithm shall be applied in every iteration of the algorithm 1 (introduced
in section 3.1.1) to compute a vector of the matrix X.
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Algorithm 3: solve min
x

xTLx s.t. ‖x‖ = 1,Bx = c

Input: matrices L,B,C

1. Calculate maximum eigenvalue of L ⇒ α

2. P = I - BT (BBT )−1B , j = 0

3. n0 = BT (BBT )−1c

4. γ =
√

1− ‖n0‖2

5. x0 = γ PLn0

‖PLn0‖ + n0

6. repeat

uj+1 = γ
PLxj

‖PLxj‖
xj+1 = uj+1 + n0

j = j + 1

7. until x converges

Output: column vector x

The idea of power method is also applied in [39] for estimating eigenvectors in
order to overcome numerical complexities.

3.3.2 CVX Toolbox

As an alternative way to solve the optimization problem (3.2) is to apply con-
vex optimization toolbox of the MATLAB (CVX). According to [40], ”CVX turns
Matlab into a modeling language, allowing constraints and objectives to be spec-
ified using standard MATLAB expression syntax”. We need only to write down
the problem we have, including the constraints exactly as it is shown in algorithm
4.

Algorithm 4: solve min
x

xTLx s.t. ‖x‖ = 1,Bx = c

Input: L,B, c

cvx-begin

variable x

minimize(x’ * L * x)

subject to

B * x == c

cvx-end

Output: column vector x

The advantage of applying CVX toolbox is the simplicity of this method. We
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Chapter 3

don’t need to implement those iterations in algorithm 1. There is an engine which
is picking the reasonable optimizer once we run that. However, the simulation
time is significantly higher than implementation of algorithm 3. That’s the rea-
son we perform the implementation based on ”Projected Power Method” in our
simulations.

3.4 Implementation Steps on a Toy Example

In order to understand the idea of error correcting approach, a simple example
including all steps will be explained in this part. As in our work, we generate
the graph by SBM, the graph which shall be clustered is totally random and we
have a redundancy in cluster labels. We need to specify probability values for
SBM model, as well as number of known labels. For example, consider a graph
with 200 nodes, 4 clusters and 5 known labels in each cluster. Also assume that
following setting is defined for the SBM model:

• Probability of having edges between nodes within the same cluster is p = 0.65

• Probability of having edges between nodes of two different clusters is q = 0.35

We also need to specify class membership vector as an input to generate a graph
with SBM model. For simplicity, we assume that 4 clusters have the same size.
That means the class membership vector c0 will be a 200 by 1 vector as

c0 =

(

1 . . . 1
︸ ︷︷ ︸

50×1

2 . . . 2
︸ ︷︷ ︸

50×1

3 . . . 3
︸ ︷︷ ︸

50×1

4 . . . 4
︸ ︷︷ ︸

50×1

)T

.

Our goal is to label the rest of the nodes with having miss-classified nodes as
least as possible. First step is to encode cluster labels and create a code-book
matrix. In this work, all simulations are implemented in MATLAB.

As we have 4 clusters in this example, we can apply Hamming code (7,4) [16].
We perform two simulations, first based on one-hot encoding with 4 bits and in
the second simulation we apply Hamming code encoding to create the code-book
with 7 bits for each cluster label. If we apply HDCE, the output of the encoding
will be (following the design criteria explained in section 4.4)

C =







0 0 0 1
0 0 1 0
0 1 1 1
1 0 0 1













cluster1
cluster2
cluster3
cluster4







,

which will have a Hamming distance of maximum 4 in the Hamming encoded code-
book. As a next step we create the selector matrix B based on the position and
the number of known labels in each cluster in order to define a linear constraint
Bx = c in our optimization problem. We assume that we know the first 5 labels
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of each cluster. That makes the 200 by 4 (number of bits) matrix

−1 −1 −1 1

...
...

...
...

−1 −1 −1 1
· · · · · ·
· · · · · ·
−1 −1 1 −1
...

...
...

...

−1 −1 1 −1
· · · · · ·
· · · · · ·
−1 1 1 1

...
...

...
...

−1 1 1 1
· · · · · ·
· · · · · ·
1 −1 −1 1

...
...

...
...

1 −1 −1 1
· · · · · ·
· · · · · ·



























































































5× known

45× unknown

5× known

45× unknown

5× known

45× unknown

5× known

45× unknown

as the matrix X. At this point, it is the task of semi-supervised clustering method
to calculate those unknown values. For this example, we applied algorithm 1 from
linear constrained optimization method as a function in MATLAB. It calculates
the matrix X such that all the unknown nodes will be a real value between -1 and
1.
In the next step, those calculated values will be rounded to +1 and -1. Then we
map them to the real code-words by using minimum distance decoder. This is
our soft-decoding step. Finally, we need to convert this soft-decoded output to
discrete values (from 1 to 4) and compare it to the class membership vector c0.
Then we count the number of miss-classified nodes. In this work, we applied the
formula

AE =
number of miss-classified nodes

total number of simulations
(3.6)

to derive Average Error (AE). For this particular example, if we do the simulation
10 times, it gives AE = 43 with one-hot encoding.
Now if we want to apply Hamming code encoding on top of one-hot encoding, all
the steps are the same except the first step. As mentioned, we applied Hamming
code (7,4). Therefore, the code-book matrix C would be as

C =







0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0













cluster1
cluster2
cluster3
cluster4







.
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After applying the same steps as before and running the simulation for 10 times, it
produces the AE = 24, which shows a great performance of error correcting codes.
In the next chapter, simulation results for graphs with large number of nodes will
be presented.
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Results

Numerical experiments from different perspectives are performed and the results
are presented in this chapter. Hamming code is applied as error correcting code.
The results of following experiments will be shown in this chapter:

• Ordinary one-hot encoding

• Hamming code on top of one-hot encoding

• HDCE

• Hamming code on top of HDCE

• Comparison of different minimum Hamming distances

• Increasing number of clusters for the same bits

• Performance analysis over real data-set

These experiments are done for different number of nodes and clusters, different
SBM settings and applied on different optimization methods. All simulations are
done in MATLAB R2016b on a PC with 1.8 GHz CPU and 8 GB RAM. For SBM
model, MATLAB function from [33] is used.

4.1 Constrained Optimization Problem

As a first experiment, clustering algorithm 1 is applied with one-hot encoding and
Hamming code on top of that. The performance is compared based on Empirical
Cumulative Distribution Function (ECDF) plots for 4 and 10 clusters. Also the
AE against wide range of SBM settings and number of nodes is studied (for the
case of HDCE and Hamming code on top). The range of p and q values in SBM
settings is defined such that the error rate is between 5 and 25 percent.

4.1.1 Ordinary One-Hot Encoding

We consider a graph generated with 1000 nodes. The total number of simulations
is M = 500. Number of known cluster labels in each cluster is assumed to be 5
and 10 for the case of 4 and 10 clusters respectively. The SBM settings are defined
as
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• p = 0.55 , q = 0.35 for k = 4 clusters

• and p = 0.55 , q = 0.20 for k = 10.

It can be seen in figures 4.1 that ECDF curve of the number of errors for both
cases one-hot and Hamming code encoding is roughly the same, so there is no im-
provement by Hamming code in this case. The reason of this behavior is that there
is only Hamming distance of 2 between codewords for ordinary one-hot encoding
scheme (as presented in section 3.2.1). However, one main design criterion when
applying error correcting code is having row separation in codewords as much as
possible according to paper [14]. Another point is the error correction capability of
Hamming codes. As discussed in section 2.4, there is a general rule which states:
for the minimum Hamming distance of d, up to ⌊d−1

2
⌋ bits can be corrected with

Hamming codes. Considering this general rule, it makes sense that ordinary one-
hot encoding with d = 2 doesn’t have error correcting capability. Nevertheless,
from figures 4.1 and 4.2 it is obvious that the performance with error correcting
codes doesn’t get worse than one-hot encoding. Specially from figure 4.2 it can
be seen that even in case of ordinary one hot encoding for 10 clusters there is still
a little improvement with Hamming code encoding. There are two reasons for
having an improvement for the case of 10 clusters:

1. For 10 clusters, we have defined more optimum values for SBM setting (q
value) in order to keep the error rate in a range of 5 to 25 percent.

2. For the case of 10 clusters, there are 10 known cluster labels in each cluster
which means 100 known labels in total, whereas for the case of 4 clusters
there are 5 known labels in each cluster or 20 known labels in total.

In general, it is better to apply the Hamming code with minimum number of bits,
because of computational complexity of clustering algorithms for higher bits. How-
ever, for the case of 10 clusters, it was required to apply the Hamming code (15,11)
as it is not possible to encode 10 clusters with 7 bits (with one-hot encoding).

It should be noted that, as we are dealing with random graphs, by increasing
the number of clusters and keeping the SBM settings unchanged, the algorithm
is prone to produce more errors. Therefore, in order to have a trade off between
number of clusters and SBM settings, for the case of 4 clusters we set the SBM
settings to p = 0.55 and q = 0.35, then we update the settings to p = 0.55 and
q = 0.20 for 10 clusters. This point will be studied in section 4.5, where we
increase the number of clusters by keeping both SBM settings and the number of
bits unchanged.
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Figure 4.1: ECDF curve of the number of errors (N) for ordinary one-hot encoding
and Hamming code on top for k=4 clusters.
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Figure 4.2: ECDF curve of the number of errors (N) for ordinary one-hot encoding
and Hamming code on top for k=10 clusters.

4.1.2 Higher Distance Compact Encoding

By applying HDCE, minimum Hamming distances of 4 could be achieved in Ham-
ming code (7,4) encoded clusters. This way, we could achieve error detection of
up to 2 bits and error correction of 1 bit. Therefore, it is expected to have a
better performance in terms of ECDF curves by applying Hamming code on top
of of HDCE. Figures 4.3 and 4.4 proves this improvement. The settings of the
experiments are set the same as previous section in order to have a meaningful
comparison.

Since the graphs are generated randomly with SBM model, it is interesting to
analyse the performance over different SBM settings. The results are presented
for k = 4 clusters. First we experiment the behavior in terms of AE against p

value of the SBM settings. To do so, we keep the q = 0.35 unchanged and perform
the simulations for a range of p values. All other experiment settings are the
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same as before. As it is expected, the AE is decreasing by increasing p values.
The complementary experiment is performed for a range of q values by keeping p

unchanged. For this case, AE is increased by increasing q. Nevertheless, it can
be seen in figures 4.5 and 4.6 that there is a boundary for each SBM settings
for which the algorithms perform well. If we fix the probability of having edge
between clusters to q = 0.35, then according to figure 4.5, p value in SBM setting
shouldn’t be less than 0.50. For the second case, where we fix p = 0.55, the q value
shouldn’t be larger that 0.40. It can be concluded that there is a good flexibility
in terms of SBM settings for the case of clustering with algorithm 1.

As a next step, the performance is studied with respect to the number of the
nodes. For this case, Node Error Rate (NER) is considered, so the number of er-
rors is divided by the total number of the nodes. This experiment is performed for
4 clusters and SBM settings as p = 0.55 and q = 0.35 and M = 500 simulations.
Number of the known cluster labels is 5 in each cluster. As it can be seen in figure
4.7, the error rate is decreasing. In general The reason for this behavior is that we
are dealing with random graphs generated by SBM model. It shows that with this
SBM settings, for smaller number of nodes there is higher uncertainty in graph
generation with specified number of clusters, whereas for the bigger graphs, the
results are less dependent on SBM settings, therefore it has less uncertainty. How-
ever, this decreasing starts at some point depending on the clustering algorithm
applied for the experiment. As it is illustrated in figure 4.12, where algorithm 2 is
applied, there won’t be error rate decreasing behavior until the end, where it just
starts showing flat behavior.

It is worth mentioning that according to figure 4.7 error correcting code out-
performs HDCE for all number of the nodes, which is the expected behavior.

Comparing figures 4.4 and 4.2, there is an improvement with Hamming code
on top of both encoding schemes (one-hot and HDCE), however with HDCE, the
number of errors is substantially lower.
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Figure 4.3: ECDF curve of the number of errors (N) for HDCE and Hamming
code on top for k=4 clusters.
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Figure 4.4: ECDF curve of the number of errors (N) for HDCE and Hamming
code on top for k=10 clusters.
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Figure 4.5: Comparison of HDCE and Hamming code in terms of AE against the
probability of having edge within the clusters (p). Probability q is fixed to 0.35
and the graph is generated with 1000 nodes and k=4 clusters.
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Figure 4.6: Comparison of HDCE and Hamming code in terms of AE against the
probability of having edge between the clusters (q). Probability p is fixed to 0.55
and the graph is generated with 1000 nodes and k=4 clusters.
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Figure 4.7: Comparison of HDCE and Hamming code in terms of NER against the
number of nodes for k=4 clusters. SBM setting: p=0.55 and q=0.35. Clustering
algorithm 1 is applied.

4.2 Harmonic Function Solution

Implementation of the error correcting algorithm based on clustering with har-
monic function is illustrated in this section. Similar to previous case, with ordi-
nary one hot encoding there is not much improvement comparing to the HDCE.
Therefore, only the results of HDCE and Hamming code on top of that are pre-
sented.

The graphs are created with 1000 nodes and total number of simulations was
M = 500. Similar to previous case, number of known cluster labels in each cluster
was 5 and 10 for k = 4 and k = 10 clusters respectively. As it is shown in figures
4.8(a) and 4.9(a), with the same SBM settings as applied for algorithm 1, the
behavior is not optimum and the number of errors are not in a reasonable range
(range of having error rates between 5 and 25 percent), although Hamming code
improves the performance. The reason is that with clustering algorithm 2, there
is no iteration to improve the solution of the optimization problem. This is the
reason for having weak behavior for clustering based on algorithm 2 comparing
to algorithm 1. Therefore, in figures 4.8(b) and 4.9(b), the SBM settings are
improved in order to obtain the same behavior as algorithm 1.

The performance over different SBM settings for this clustering algorithm is
also studied. The results are presented for 4 clusters. Similar to the clustering
algorithm 1, the results with error correcting codes over HDCE is promising from
all perspectives. The figures are plotted for 200 simulations. Other experiment
settings remained unchanged.

The performance against number of nodes in figure 4.12 shows the fact that
clustering based on harmonic function is very sensitive to SBM settings. As ex-
plained in section 4.1.2, the error rate curve in figure 4.12 is flattening at the end,
so the shape is similar to the figure 4.7 in general, but the difference is that the
error rate is not decreased at the beginning of the curve like figure 4.7.

Based on the experiments, algorithm 1 and algorithm 2 can be compared from
two perspectives: boundaries and computational complexity.
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Boundaries

Boundaries are compared in terms of SBM settings for which the algorithm works
without producing high amount of errors. Comparing figures 4.5 and 4.10, it can
be seen that algorithm 1 runs into trouble for probability values p less than 0.50,
whereas for algorithm 2 this threshold is 0.70, which means there is more flexibility
for p values of SBM settings with algorithm 1. Performing the same comparison
between figures 4.6 and 4.11 for q values shows the same conclusion, because the
q value must be upper bounded by 0.40 for algorithm 1 and by 0.30 for algorithm
2.

Computational complexity

According to [8], algorithm 1 has complexity of O(n3) for computing each column
vector of the matrix X. Assuming the number of bits for the codewords equal to
m, the computational complexity of algorithm 1 is O(mn3), without considering
the bound on the number of iterations.

The computational complexity of algorithm 2 involves matrix inversion which
is performed on m column vectors of the matrix X. That means the complexity is
O(mn3). However, this algorithm runs much faster than algorithm 1. The reason
is that the algorithms for Harmonic Function Solution are implemented in C which
is much faster than an implementation in MATLAB.
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(a) SBM setting: p=0.55 , q=0.35
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(b) SBM setting: p=0.80 , q=0.20

Figure 4.8: k=4 clusters performance. Comparison of the performance for clus-
tering algorithm 2 (based on harmonic function) for two different SBM settings
with respect to ECDF curve for number of errors (N).
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(a) SBM setting: p=0.55 , q=0.20
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(b) SBM setting: p=0.75 , q=0.25

Figure 4.9: k=10 clusters performance. Comparison of the performance for clus-
tering algorithm 2 (based on harmonic function) for two different SBM settings
with respect to ECDF curve for number of errors (N).
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Figure 4.10: Comparison of HDCE and Hamming code in terms of AE versus
probability of having edges within the same clusters (p) for k=4 and q=0.20.
Clustering is based on harmonic function (Algorithm 2).
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Figure 4.11: Comparison of HDCE and Hamming code in terms of AE versus
probability of having edges between clusters (q) for k=4 clusters and p=0.80.
Clustering is based on harmonic function (Algorithm 2).
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Figure 4.12: Comparison of HDCE and Hamming code in terms of error rate vs.
number of nodes for 4 clusters and SBM settings p=0.55 and q=0.35. Clustering
algorithm 2 is applied.

4.3 Comparing the Applied Encoding Schemes

In this section the comparison of four presented encoding methods is shown. Figure
4.13 illustrates the behavior of algorithm 1 in section 4.1. Performance of algorithm
2 in section 4.2 is also shown in figure 4.14. The graphs are generated from 500
nodes and 4 clusters, with 5 known labels in each cluster. SBM settings are
p = 0.55 and q = 0.35 for 4 clusters and p = 0.80 and q = 0.20 for 10 clusters .
The total number of simulations is 500 (all the settings are the same as experiments
of sections 4.1 and 4.2).

Both figures 4.13 and 4.14 show that the proposed error correcting approach
with Hamming code on top of HDCE scheme outperforms other encoding schemes
for both clustering algorithms 1 and 2. For clustering based on algorithm 2, it
can be seen that HDCE-based encoding performance is better than one-hot and
Hamming code on top of one-hot encoding, however the error rate is lower than
clustering based on algorithm 1. Finally, from both figures it is obvious that
encoding with higher minimum Hamming distance improves the performance of
clustering.
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Figure 4.13: Comparing the applied encoding schemes in terms of ECDF curves
of number of errors (N) for clustering based on algorithm 1
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Figure 4.14: Comparing the applied encoding schemes in terms of ECDF curves
of number of errors (N) for clustering based on algorithm 2

4.4 Comparison of Different Minimum Hamming

Distances

The results that are shown so far for higher Hamming distances, are related to the
minimum Hamming distance of 4 for Hamming code encoded code-words with 7
bits (for the case of 4 clusters). In this section, the performance for lower minimum
Hamming distance is studied for the graphs generated with 1000 nodes, 4 clusters
and 5 known labels in each cluster. SBM settings are set to p = 0.55 and q = 0.35
in order to be consistent with the experiments of the section 4.1.2.
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As it is illustrated in figure 4.15, in case of encoding with Hamming code (7,4),
it is required to use the code-words in HDCE (4bits) which produces Hamming
code-words (7bits) of minimum Hamming distance equal to 4 (figure 4.15a). Of
course there would be a lot of possibilities of codewords combinations for having
these minimum Hamming distances. In this case, with Hamming code encoding
of (7,4), there is 16 codewords in total. For 4 clusters we need a combination of 4
codewords, which means there will be

(
16

4

)

=
16!

4!(16− 4)!
= 1820

combinations in total. As mentioned, Hamming code (7,4) is applied, therefore
all codewords have 7 bits with maximum minimum Hamming distance of either 3
or 4. As it is not feasible to experiment all these combinations, the figure 4.15(b)
is plotted for a randomly chosen of the codewords combination with minimum
Hamming distance of 3. However, we can employ the codebook design criterion
which is suggested in papers [29] and [14] (also shortly discussed in section 4.1.1).
In these papers, it has been proven that there are two main requirements to
design the codebood. First requirement which is already discussed in section 4.1.1
has to do with maximizing the Hamming distance between different codewords
(rows of the codebook). In order for this condition to be fulfilled, the codebook
with maximum minimum Hamming distance of 4 has to be chosen. The second
requirement is related to the column separation of the codebook. That means, the
columns of the codebook must be as uncorrelated as possible. According to [29],
when considering this condition, two points have to be taken care of:

• The columns shouldn’t be complementary of each other, because in case of
wrong bit position at the output, both will be affected.

• Columns of all zeros or all ones are not recommended, because of the row
dependency.

We can incorporate these conditions to justify the figure 4.15(a). The codebook
that is applied for this experiment has the structure as

C =







0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 1 1 0 0 0
1 0 0 1 1 0 0






.

As it can be observed, this codebook fulfills all the conditions related to rows and
columns and has a minimum Hamming distance, which achieves the maximum of
4. however, consider another codebook as

C
′

=







0 0 0 1 0 1 1
0 0 1 0 1 1 0
1 0 0 1 1 0 0
1 0 1 0 0 0 1






.

This codebook also has the maximum minimum Hamming distance of 4 as the
previous one. However as it can be seen, it violates the second condition, because
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(a) minimum Hamming distance=4

0 200 400 600
0

0.2

0.4

0.6

0.8

1

N

E
C
D
F

HDCE Hamming code

(b) minimum Hamming distance=3

Figure 4.15: Performance analysis for 4 clusters with two different minimum Ham-
ming distances in terms of ECDF curve for number of errors (N).

the second column has all zeros. Also all other columns are complementary of
each other.

This codebook design criteria holds true for the general case of codebook design
for K clusters.

4.5 Increasing Number of Clusters

Experimental result of the section 3.2.4 is illustrated in this section. As already
explained, the goal is to estimate the maximum number of clusters that can be
packed in the fixed number of bits (4 bits in our experiment). To do so, the
number of clusters with four bits is increased and the performance is analysed
for both algorithm 1 and algorithm 2 clustering methods. Both experiments are
done for the graphs with 500 nodes and 20 known cluster labels. Total number
of simulations is M=500. SBM settings for algorithm 1 is defined as p = 70 and
q = 0.35 and for the algorithm 2 the values are set to p = 80 and q = 0.20. As it
is not possible to apply one-hot encoding for more than 4 clusters with 4 bits, the
experiments are done only for the case of Hamming code encoding.

As it is shown in figures 4.16 and 4.17, from 9 clusters, the AE with 4 bits is
more than half of the total number of the nodes, which is equivalent to random
guess for cluster labels. For both cases one can see a jump in the average errors
from 8 to 9 clusters. It can be concluded that for 4 bits with this specific exper-
iment settings, up to twice the number of bits can be clustered with having an
error rate of less than 0.50.
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Chapter 4
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Figure 4.16: Comparison of different number of clusters (k) for encoding with 4
bits in terms of AE bars for clustering algorithm 1.
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Figure 4.17: Comparison of different number of clusters (k) for encoding with 4
bits in terms of AE bars for clustering algorithm 2.
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Chapter 4

4.6 Performance Analysis on Real Data Set

As a final experiment, error correcting approach is applied on real data set. Stan-
ford Network Analysis Project (SNAP) library from [41] is used as a source of
large data sets. Since most of the datasets in SNAP had a huge number of nodes,
a dataset with 1005 nodes was chosen from this library so that was possible to
perform simulations on a conventional machine. The dataset was related to the
email network with 42 clusters. Each cluster is an indication of one department
of an institute. The graph is generated from department membership labels and
Email communication links between members of the institution. According to
[41] ”There is an edge (u, v) in the network if person u sent person v at least one
email”. Number of simulations was 200 and number of the known cluster labels
in each cluster assumed to be L=26.

As expected, the performance is different comparing to the previous experi-
ments as the graph is now deterministic and the number of clusters is much higher
than our previous experiments on random graphs. One problem is that when the
number of known labels in each cluster is specified by L, in some clusters there is
less than L nodes. To overcome this issue, two different modifications are applied
to have a good performance with such graphs:

1. Clusters that have less than L nodes get sampled completely and reduce the
total number of labels (figure 4.18)

2. Clusters that have less than L nodes are removed from the graph and by
that reducing the total number of nodes (figure 4.19)

As we are comparing two curves with different number of nodes, it makes sense
to consider error rate instead of number of the errors. Also clustering algorithm
1 is applied for both cases. For this experiment, we are using a (15,11)-Hamming
code with HDCE and a resulting minimum Hamming distance of 2.

It can be seen from figures 4.18 and 4.19 that both modifications performs well
in terms of error rate. The second modification shows a slightly better performance
regarding Hamming code, but both are almost in the same range.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 4

0 4 · 10−2 8 · 10−2 0.12 0.16
0

0.2

0.4

0.6

0.8

1

NER

E
C
D
F

HDCE Hamming code

Figure 4.18: ECDF plot of error rate for HDCE and Hamming code encoding for
the case of first modification, which keeps the number of clusters (42) and nodes
(1005) unchanged. The number of known labels in each cluster is 26.
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Figure 4.19: ECDF plot of error rate for HDCE and Hamming code encoding for
the case of second modification, which reduces the number of clusters and nodes.
This modification led to 727 nodes and 15 clusters for 26 known labels in each
cluster.
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Chapter 5

Conclusion and Outlook

In this thesis, clustering perspective of the big data analysis in the field of GSP has
been studied. The main focus was on semi-supervised clustering task for graphs
with known number of clusters. We developed a framework to incorporate prior in-
formation regarding cluster labels more efficiently. To do so, error correcting codes
has been applied to represent cluster labels. Unlike previous methods that apply
error correcting codes on supervised clustering for two clusters, our algorithm is
able to work with semi-supervised multi-class clustering methods. We extend the
idea of one-hot encoding, which is a method to represent categorical data. The
goal was to reduce clustering errors by exploiting error correction capability of
such encoding.

For the experiments, we applied SBM in order to generate random graphs. We
experimented our idea on two different semi-supervised clustering methods based
on spectral clustering and harmonic functions. For each clustering method, our
algorithm has been applied over different number of clusters and a wide range
of SBM settings and number of the nodes. We also experimented the algorithm
on a real dataset in order to analyse the performance over deterministic graphs.
Hamming code encoding scheme has been applied to represent cluster labels.

As the first experiment, we applied the algorithm on top of one-hot encoding
method, but there was no improvement for the general number of clusters (only
for 10 clusters). It turned out that the algorithm works well only with certain
codebook design criteria. Therefore, we made some modifications in codebook
representation of one-hot encoding, then applied Hamming code on top of that.
With this modification, we could achieve a great improvement by applying er-
ror correcting codes. Based on the experimental results, we concluded that our
algorithm outperforms the existing algorithms on semi-supervised multi class clus-
tering for both random and real datasets.

5.1 Outlook

Although the experiments lead to desired results, the algorithm can be improved
further. One possibility is related to the real graphs with heterogeneous structure
and node number of hundreds of thousands. In such cases, other linear error
correcting codes like Low-Density Parity Check (LDPC) or Turbo codes can be
checked.

Regarding the boundaries of the SBM setting, there could be other semi-
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Chapter

supervised clustering methods on top of which our algorithm gains more flexibility
in choosing probability values of SBM model.

Last point is related to the codebook design criteria. The requirement re-
garding independent rows and columns is limiting the choices and requires more
computational effort in order to find the best codebook which suits the problem.
Future works can be performed in this field.
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Appendix A

Symbols and Terms

Symbols

G = (V , E ,W) Graph with node set V , edge set E and adjacency matrix W

C(A1, A2) Graph cut between two subsets A1 and A2

RC(A1, A2) Ratio cut between two subsets A1 and A2

f ∈ R
N Vector notation (lower case, boldface letter)

W ∈ R
N×N Matrix notation (upper case, boldface letter)

I Identity matrix
W:j jth column of the matrix W

Wj: jth row of the matrix W

Operators

(.)T Transpose of a matrix or vector
Tr(W) Trace of the matrix W

‖.‖ norm operator
△ Laplacian
diag(f) Square diagonal matrix with the elements of vector f in the main diagonal
(
n

k

)
Binomial coefficient – n choose k

Acronyms

SBM Stochastic Block Model
GSP Graph Signal Processing
ECOC Error Correcting Output Code
AE Average Error
ECDF Empirical Cumulative Distribution Function
NER Node Error Rate
SNAP Stanford Network Analysis Project
RC Ratio Cut
SVM Support Vector Machine
LDPC Low-Density Parity Check
HDCE Higher Distance Compact Encoding
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licher Form in anderen Prüfungsverfahren vorgelegt.

Datum
Unterschrift
Name Iman Rezaei

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

