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Kurzfassung

Separation Logic (zu Deutsch etwa “Trennungslogik”) ist eine Erweiterung des Hoare-
Kalkiils, welche logische Schlussfolgerungen iiber imperative Computer-Programme, die
dynamische Heap-Speicher verwenden, erlaubt. Es ist ein beliebter Formalismus fiir
Programme, welche dynamische Ressourcen manipulieren und wird bereits industriell
eingesetzt. Die grofie Ausdruckskraft der Separation Logic erlaubt es modular komplizierte
Konzepte, wie dynamisch allokierte Arrays, uneingeschriankte Zeigerarithmetik und
rekursive Prozeduren abzubilden.

SLj4tq ist ein Fragment der Separation Logic, die auf einen Kompromiss zwischen Aus-
druckskraft und Komplexitéit abzielt und erméglicht Aussagen iiber im Heap-Speicher
gespeicherte Daten zu treffen. Dabei liegen das Erfiillbarkeits-Problem in NP und das
Giltigkeits-Problem von Implikationen in CONP. SLj,,, kann auf Theorien reduziert
werden, welche in gdngigen SMT-Solvern verfigbar sind, und zur Darstellung von Daten
eine beliebige Theorie verwenden.

Mit Separation Logic and Theories (SLOTH) existiert bereits eine Implementierung der
Entscheidungsprozedur, diese ist jedoch noch eingeschrankt. SL},;, erlaubt das Auswéhlen
einer Adress- sowie Datentheorie, was jedoch von SLOTH nicht unterstiitzt wird. Zusétzlich
wurde SLOTH noch nicht auf Performance optimiert und die Entscheidungen fiir einige
Probleminstanzen dauern sehr lange.

Wir schlagen Optimierungen fiir die SL},;,-Entscheidungsprozedur vor. Zusétzlich ha-
ben wir die Entscheidungsprozedur sowie die Optimierungen implementiert und einige
Einschrankungen von SLOTH iiberwunden. Die Prozedur wurde in Z3, einem gangi-
gen SMT-Solver integriert. Wir zeigen, die Effektivitidt der Optimierungen mit einer
empirischen Studie.
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Abstract

Separation Logic is an extension of Hoare Logic that allows reasoning about imperative
programs that use dynamic data structures. It is a popular formalism for programs
that manipulate the heap and on top of that has been proven on an industrial scale.
Its expressive power permits modular definitions of complex concepts like dynamically
allocated arrays, unrestricted pointer arithmetic and recursive procedures and data
structures.

SL}4tq is @ Separation Logic fragment with emphasis on data constraints and decidability.
It aims to strike a balance between expressibility and complexity, with satisfiability being
decidable in NP and entailment in CONP. SL},,, can be encoded into theories supported
by off-the-shelf SMT-solvers and can be combined with arbitrary data theories.

While with SLOTH a decision procedure implementation exists, it is still limited. The
theory allows for configurable location and data sorts, but is not supported by SLOTH.
Moreover, SLOTH has not yet been optimised for performance and the decision of some
specific instances takes a long time.

We propose optimisations for the decision procedure of SL},,,. In addition, have imple-
mented the decision procedure that overcomes some of the current limits of SLOTH and
integrated it within Z3, a state-of-the-art SMT solver. We show the effectiveness of the
proposed optimisations with empirical benchmarks.
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CHAPTER

Introduction

1.1 Motivation

Reasoning about imperative programs with dynamic data structures and about the data
that such programs process is an important task of modern theoretical computer science.
It has potential uses in verification of hardware and software relevant in practice.

Separation Logic is an extension of Hoare Logic that allows reasoning about imperative
programs that use dynamic data structures [19]. It is a popular formalism for programs
that manipulate the heap and has been proven on an industrial scale [I1]. Most notably
there are Facebook’s static analyzer INFER, which is used in production to prove memory
safety upon check-ins within a huge code base consisting of millions of lines of code [6],
or Microsoft’s SLAYER, which is capable of automatically discovering memory defects
and issues in C programs [5].

While Separation Logic is undecidable in general, several decidable fragments have been
proposed, which will be briefly introduced in Section 2.2.2. Still, for most of their decision
procedures computational complexity is unsatisfactory (EXPTIME or PSPACE).

The priority of this work lies in improving upon an existing decision procedure — SLOTH
[12] — that allows reasoning of some relevant verification problems in practice and aims
to overcome present shortcomings which are outlined in the next section.

1.2 Problem Statement

SL},., is a Separation Logic fragment with emphasis on data constraints (i.e. constraints
about the memory content instead of just its shape) and decidability. It aims to find
a balance between expressibility and complexity, with satisfiability being decidable in
NP and entailment in CONP [I1]. The details on these results will be explained in
Section [3.4.
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1.

INTRODUCTION

SL},., can be encoded into a format for off-the-shelf SMT-solvers. SMT-Solvers are
solvers of satisfiability problems with respect to theories. Those theories are expressed
in First-Order Logic (FOL) with equality. They consist of additional axioms and
interpretations for functions and predicates, and feature efficient decision procedures [10].
The satisfiability problem of SL},,, can be reduced to existing theories and can be
combined with arbitrary data theories (i.e. it can use an arbitrary theory supported
by the SMT-Solver for its data constrains) [11]. We offer an introduction to SMT and
supported theories in Section |2.3.

A decision procedure for SL},;, has been proposed by encoding the formula in SMT [I1].
The encoding is described in Chapter 4. However, SLOTH [12], the only implementation
of the proposed decision procedure, has several limitations:

1. SLj,,, is parametric in sorts (also known as types in other contexts) and theories
representing the memory locations and stored data. In contrast, SLOTH uses a
single fixed theory [12].

2. For some large and important instance classes SLOTH has performance issues. In par-
ticular, some instances could be efficiently solved without a complete interpretation
of SL},;, semantics.

3. In addition, benchmarks also show that for many of the instances the interfacing
between the encoder and SMT solver has significant impact on the run-time. SLOTH
is not tightly integrated within an SMT solver, which has proved detrimental, as
not all features are exposed as public interfaces.

1.3 Contribution and Objectives

The goal of this thesis was to extend the state-of-the-art SMT solver Z3 by a robust
implementation of a decision procedure for SL},,,. As mentioned in the previous section,
there is an existing implementation of the decision procedure called SLoTH [12]. With
our implementation overcome some of the limitations mentioned before:

1. We extended upon available SMT syntax to allow specifying theory and sort
combinations for the location and the data.

2. We identified poorly performing instances empirically, researched possible optimisa-
tions, and evaluated them. Encoding the formula step-wise and reducing the size
of formulas by a semantically aware equality propagation could potentially lead to
significantly lower run-times.

3. We embedded our implementation of the decision procedure directly into the
SMT solver source code, rather than using its public API. This allowed better
optimisations and eliminated interfacing overhead.
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1.4. Methodology

1.4 Methodology

After an initial literature research, we implemented the decision procedure and integrated
it within Z3. The research revealed Separation Logic formulas which served as a baseline
for a run-time comparison. In addition to those, we identified low-performing formulas,
we proposed and implemented optimisations that overcome problems of the decision pro-
cedure. A benchmark against the baseline was used to empirically show the effectiveness
of the optimisations. After several iterations, we used the best performing combination
of optimisations for a comparison against the existing implementation of the decision
procedure SLOTH. Our procedure is illustrated in Figure [1.1.

Preparation Optimisation Evaluation

Literature research Formula Final
. . Refinement Benchmarks .
Implementation selection analysis

Figure 1.1: Ilustration of our working procedure

1.5 Thesis Structure

State of the art
In Section 2| “Related Work”, we will introduce Separation Logic in general and
SMT solvers in the next section. Using that as the cornerstone, we will describe
SL},;, and how to encode it to SMT in the following sections 3 “Introduction to
SLui and “Encoding SL,, to SMT)”.

Optimisations
We will propose possible optimisations for the existing decision procedure in Sec-
tion 5 “Optimisations for the SL},,, Decision Procedure]”. We will briefly describe
the optimisations and the reasoning behind their effectiveness on an algorithmic
level.

Implementation
To test the proposed optimisations, we will implement the decision procedure as
well as the optimisations. The implementation will be integrated into the existing
SMT-Solver “Z3”. The details will be described in Section |6 “Implementation’”.

Evaluation and results
We will test the performance of the decision procedure using benchmarks. In
Section [7] “Results]’, we will compare our implementation to the existing decision
procedure as well as evaluate the optimisations and their impact on the run-time.
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CHAPTER

Related Work

2.1 A Motivating Example

Consider the simple algorithm in Listing [2.1. It computes the maximum value of a linked
list. If we wanted to prove its correctness using Hoare triplets, we would need to express
pre- and post-conditions according to our specifications: “The argument a is a valid
list”. “No element within a is greater than m”. With traditional propositional logic, we
would need to introduce additional constraints to model the memory structure as well
as constraints that handle aliases (i.e. values that point to the same memory). Such
constraints would not be concise and for more complex programs might quickly become
unintelligible. As we will later see Separation Logic and SL},,, in particular allows
reasoning to express these kinds of assertions in a concise and clear manner.

function max(a: list<int>)
b=a
m = head(a)
while b # null do
if head(b) > m then
m = head(b)
fi
b = next(b)
od
return m
end

Listing 2.1: max-function for computing the maximum of a linked list
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2.1. A Motivating Example

Another problem that occurs when proving correctness using Hoare triplets is composition.
Consider we have two sub-routines foo and bar and have proven facts about them:

{F} foo() {G} and {F'} bar() {G'}
Consider further that both routines do not share memory locations and bar has no effects
on the precondition of foo and vice versa. When working with programs one is often
encountering compositions of sub-routines. For example:

{F NF'} foo();bar() {G AG'}

Traditional Hoare calculus only offers the sequence rule for composition:

{¢} a {9} {0} e2 {1}
{0} c1;3e2 {9}

However, it can only be applied if the pre- and post-conditions match exactly. To be
able to apply our rules about foo and bar, we need to apply the consequence rule:

p = ¢ {}c{y} Y =
{6} c{v}

FAF' = Fso{FAF'} foo() {G} is sound. Unfortunately, by applying the rule and
strenghten the precondition we lose information about F’. At this point we no longer
have a generally valid rule to apply. We need to prove that foo does not alter any fact
about F' (i.e. {F A F'} foo(){G A F'} is sound). For that we need to revisit our proof
for foo in this new context. A solution to this problem would be a rule of the following
form:

{0} c {v}
{onptc{yYnep}

However, the rule is not admissible in general for heap manipulating programs. Consider
the following example:

{z = v} (xz) = w {z — w}
{z oAy —v} (xx) =w {r > wAy — v}

If z and y point to the same memory address, after executing the assignment (where (*z)
is a pointer dereference i.e. access to the memory where z is pointing to) both z — w
and y — w must be true, however, using the rule above we can derive + — w and y — v.
Since semantics of pointer arithmetic are so powerful, seemingly local actions can have an
effect on global constraints. In the next section, we will take a closer look at Separation
Logic, which can help overcome this problem as well.
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2.

RELATED WORK

2.2 Separation Logic

2.2.1 Introduction to Separation Logic

Separation Logic was created in order to counter problems that arise in analysis of dynamic
memory when using [FOL| as assertion language. In FOL, modelling the heap involves
introducing global invariants to forbid situations that are not possible or considered bugs
in practice (e.g. double allocation, access of unallocated memory and similar problems).
Those invariants tend to become unnecessarily long and even simple examples can be
difficult to comprehend. This is bad for several reasons: It is hard to “naturally” express
assertions about the code, and the tools used for analysing them will have larger inputs
and potentially a large computational overhead [19].

Separation Logic circumvents those problems by introducing a memory separating con-
junction. It is denoted by the asterisk symbol k. The formula F' * G (pronounced F'
and separately ) asserts similarly to the traditional conjunction that both F' and G are
true, but also asserts that F' and G do not share any memory locations. In other words,
operands of the separating conjunction are guaranteed to describe disjoint portions of

the heap [19].

This fact lets us formulate the so-called frame rule:

{F} c{G}
{Fx ¢} c{G* ¢}

Going back to the example from the previous section, the expression with the facts

{F'} foo() {G} and {F"} bar() {G'}

we can alter our claim to:

{F % F'} foo();bar() {G » G'}

We can then proceed and apply the new frame rule to prove {F % F'} foo() {G % F'} and
in a further step {G * F'} bar() {G x G'}. Note that our previous counter-example

{z = v} (xz) = w {z — w}
{r svxy—=v} (xz) =w{z > wxy - v}

is still sound when using the new rule. * — v * y — v is unsatisfiable if x and y are
aliases to the same memory location.
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2.3. Satisfiability Modulo Theories SMT

This shows that it is sufficient to reason about the local heap (i.e. the part of the heap
that is modified by a code segment) without side effects involving other parts of the heap.
This allows compositional reasoning about different parts of the program [19].

In turn, this leads to expressive power that permits definitions of complex concepts like
dynamically allocated arrays, unrestricted pointer arithmetic, recursive procedures, and
data structures [19].

Since its introduction, Separation Logic has proven to be an effective tool for reasoning
about dynamic data structures in imperative programming languages. It is popular in
academical studies regarding deductive verification [16, [I7] and symbolic execution [4].
In addition, it has already been adopted by industry (for instance Facebook’s INFER [6]).
or Microsoft’s SLAYER [5]).

2.2.2 Decidable Fragments of Separation Logic

One of the drawbacks of Separation Logic is that validity of formulas is undecidable
in general [§]. Therefore, the use of Separation Logic is often restricted to decidable
fragments. Many ways were proposed to obtain such a decidable fragment. However, the
obtainment of decidability comes at a cost: the fragments restrict the heap to lists 7}, 3],
only support constraints on data structures (i.e. the shape of the heap) but not on the
data itself [7, [3] or the other way around [I8]. Also, the fragments often have undesirable
run-times for their decision procedures [14] (ExpPTIME or PSPACE). In contrast SL},,,
supports lists, trees and data. On top of that, its satisfiability problem lies in NP, while
entailment lies in CONP [11]. We will concentrate on comparing similar fragments with
inductive predicates (i.e. recursively defined predicates) for lists [16] and trees [17], that
also feature encodings in SMT.

2.2.3 First Order Logic and SMT Encodings of Separation Logic

Several encodings for Separation Logic fragments were proposed. Many only solve parts
of problems that are dealt with in SL},,, (e.g. reachability theory [I3] or particular data
structures [I5]). A complete quantifier-free fragment of SL, including the separating
conjunction and separating implication (magic wand operator) has been proposed but
is lacking an encoding for inductive predicates [I§]. Two of the fragments mentioned
in the previous subsection feature encodings for lists [16] and trees [I7]. However, they
require inclusion of theories, that are not available in SMT-LIB [I]. In contrast, the
proposed encoding for SL,,, only relies on SMT-LIB defined theories [11], making it
readily applicable in a number of off-the-shelf SMT-solvers.

2.3 Satisfiability Modulo Theories SMT

When dealing with [FOL| one is often concerned with satisfiability of formulas. While there
has been progress for general FOL| solvers, many applications only require satisfiability
with respect to certain interpretations of predicates. For example if we look at applications
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RELATED WORK

based on integer arithmetic and consider the formula x -2 > y + z, we are only concerned
with usual interpretations of >, +,- and 2. Satisfiability Modulo Theories, is a technique
dedicated to analysing satisfiability of first-order formulas with respect to some underlying
theory 7. Often even two or more theories are involved. In that case it is necessary that
the theories do not have common symbols, which are interpreted differently (otherwise a
renaming must be considered) [2]. Throughout this thesis, we will use the symbol & for
a combination of disjoint theories (e.g. T2 @ T2 denotes a combined theory which consists
of all axioms and symbols from both theories).

2.3.1 Common SMT theories

Equality with uninterpreted functions (EUF)
In the most general case, all interpretations for predicates and functions are allowed
except for the interpretation of the equality predicate and functional consistency
(the same function returns the same value given equal arguments). A formula
consisting of conjunctions of ground EUF-formulas is decidable in polynomial time
using a procedure called congruence closure [2].

Linear integer arithmetic (LIA)
Linear integer arithmetic includes EUF and introduces binary predicates <, >, <
and > as well as binary functions + and — and symbols from Z (e.g. 0, 1, -5 etc.)
using their usual interpretations. The satisfiability of LIA-formulas is NP-complete.
It is noteworthy that adding multiplication to linear arithmetic makes it undecidable
in general [2].

Arrays
There have been several SMT array theories. For the encoding in Chapter {4,
a theory with store(-) and read(-) operations will be necessary. In addition, it
requires a constant combinator K and a mapy combinator. They have the following
properties ViK(c)[i] = c respectively Vimapy(ai,...,a,)[i] = f(ai[i],...,an[i]). A
NP-complete decision procedure for such a theory has been proposed by L. de
Moura and N. Bjgrner [9].

Fized width bit-vectors
Several theories for bit-vectors have been proposed. Typically bit-vectors are
represented by constant symbols with a bit-width associated with each constant.
The functions and predicates include bit-wise boolean and arithmetic operations.
For non-trivial theories of bit-vectors decidability is NP-complete, as it can be
easily reduced to SAT [2].

2.3.2 SMT-LIB and SMT

SMT-LIB is an initiative for research and development in SMT. The aims of the initiative
include standard descriptions of theories, a common input (and output) language for
SMT-solvers and to connect researchers, developers and users of SMT. They provide the
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2.3. Satisfiability Modulo Theories SMT

SMT-LIB language specification and organise frequent competitions (SMT-COMP) to
drive the development and improvements of SMT-solvers [1].

SMT-LIB language

The SMT-LIB language describes the common input and output format used by most
SMT-solvers. Each well-formed expression has a unique sort (known as a type in some
other contexts). The only pre-defined sort is Bool, other sorts may be defined by specific
theories [1].

All conforming SMT-solvers use S-expressions for their input and output. S-expressions
are easily parsable as they only consist of simple tokens, as shown in Listing 2.2, and use
prefix notation. Comments may be used and are preceded by the ; character. Listing 2.3
shows some examples of S-expressions [1].

Custom function symbols are reserved keywords in SMT-LIB and may only be used in
specific contexts. They have special semantics for the SMT solvers. In the following,
we will describe selected function symbols, which will be used in the examples in the
following chapters:

set-logic
may be used as the first statement for specifying a logic family. E.g. (set-logic
QF_LIA) is used to limit all further input to linear integer arithmetic symbols. The
logic’s classes available in SMT-LIB are shown in Table 2.1| while a full illustration
of all standardised logics is depicted in Figure 2.1.

declare-fun
is used for declaring a new function symbol or constant (a function without argu-
ments). The following (declare-fun x (Int Int) Bool) declares a function
x of sort Bool that takes two Int arguments.

define-fun
similar to declare-fun but also provides a definition for the function. E.g.
(define-fun a ((x Int)) Bool (ite (= x 3) true false) ) defines
a function a that takes an Int argument x and returns true if xt =3 or false
otherwise.

assert
is used to assert a top-level conjunct of the formula. E.g. (assert (= x 3))
asserts x = 3.

check-sat
is used to check satisfiability of asserted conjuncts. It prints sat if the formula
is satisfiable, unsat if the formula is not satisfiable or unknown otherwise (the
latter may occur with certain theories if quantifiers are used).
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2. RELATED WORK
get-model
is used to obtain a satisfying model for the asserted conjuncts. The output uses the
same syntax as the input. A possible output for the formula described in Listing
is shown in Listing
true false ; booleans
255 #xFF #xb11111111 ; numeral, hex—-numeral and binary numeral
"hello world" ; String
12.34 3.1415¢6 ; decimals
x y f n QF_LIA ; Symbols
Listing 2.2: Examples for tokens
() ; an empty S—expression
123 ; a single token
(123 "hello" "world" ) ; an S—-expression with 3 tokens
(+x ( =y z ) ) ; a nested S-—-expression
Listing 2.3: Examples for S-expressions
(set-logic QF_LIA) ; specify logic family
(declare—-fun x () Int) ; declare constants of sort Int
(declare—-fun y () Int)
(declare-fun z () Int)
(assert (> (- 2 x) (+vy 2))) ; assert top level conjuncts
(assert (= z 15))
(check-sat) ; check for satisfiability
(get—-model) ; pbrint the satisfying model
Listing 2.4: A possible SMT input
10
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2.3. Satisfiability Modulo Theories SMT

sat

(model
(define-fun x () Int 0)
(define—-fun y () Int (- 14))
(define-fun z () Int 15)

Listing 2.5: A possible SMT output

Table 2.1: Categories of theories available in SMT-LIB. They can be combined e.g.

QF_UFBVA is the quantifier-free theory of bit-vector arithmetic with uninterpreted

functions and arrays

Linear real arithmetic

LRA

Linear integer arithmetic

LIA

Mixed linear arithmetic

LIRA

Uninterpreted functions

UF

Array theories

A/AX

Bit-vector arithmetic

BV

Nonlinear real arithmetic

NRA

Nonlinear integer arithmetic

NIA

Mixed nonlinear arithmetic

NIRA

Quantifier-free

QF__

11
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Figure 2.1: Standard SMT-LIB logics (image source SMT-LIB [I])
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CHAPTER

Introduction to SL} .,

3.1 Introduction to SL,,

This chapter is based on the paper which first proposed SL},;, [L1] by J. Katelaan et
al., which we advise on reading for a complete and formal definition of the logic. We
describe the syntax and semantics of SL},;, in a more informal and intuitive manner.
After that, we apply it to prove the example from the previous chapter (Listing 2.1).

SL},., is a Separation Logic with data. It aims to strike a balance between decidability
and expressiveness. While many NP-hard fragments of Separation Logic only allow
reasoning about the memory structure, SL},,, also allows assertions about interesting
data properties within the memory. For example, it is possible to model sorted lists or
binary search trees, all while maintaining decidability in NP.

Other properties of SL},,, include:

1. Boolean closure (with restrictions as this would otherwise lead to PSPACE-hardness)

2. Support for list-segments and partial trees for defining heaps that locally violate
shape or data properties

3. Per-field allocation to allow easy extension of SL},,,

3.2 Syntax of SL},,,

SL} . relies upon two background theories: a location theory 7, and a data theory 7gq:.
They are used for the location (i.e. “memory address”) and the data domain, respectively.
Figure 3.1 shows the syntax of the core logic, where Fj,. and Fy,; denote quantifier free
formulas from the theories 7j,. and Tgq, respectively.

13
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3. INTRODUCTION TO SL},;,
t = nullyee | T € Xppee
I = nullig |z € Ay
d = =z € Xdata
ASpatz’al =ttt | t—,1 ‘ t—gqd | [ —p 1 | [ —qd Spatial atoms
| IiSt(l7§> ‘ tfee(tw‘?) | Floc | Fdata
FSpatial n= ASpatial | FSpatial * FSpatial Spatial formulas
F = Fspatiat | "F|FVF|FANF SL 44, formulas
Figure 3.1: Syntax of the core Separation Logic SL},;, with lists, trees, and data [11]

SL},;, requires two sorts S = {loc,data} [I1]. As we will later see, interpretations for
locations of trees and lists need to be disjunct (except for null). For this reason, the
loc sort is separated into locjsy and lociree and thus differs from the definition in [I1]. It
can be considered syntactic sugar to disallow some UNSAT-formulas on syntactic level.
Ultimately, during the encoding we ensure the two refer to the same sort.
Xist and Xyee are countable sets of sort locs; and locyree respectively, while Xyq, is a
countable set of sort data. § denotes a vector (si, ..., s9) of variables from Xj;s; or Xypee
and $7 - $5 is used for the concatenation of two vectors.
Following the definition, it is apparent that boolean structure is not allowed in spatial
formulas and negation can only occur on the top level of a spatial formula, but not at its
atoms if those are connected by the separating conjunction * (i.e. formulas of the form
F % =G are not allowed).
3.2.1 Spatial atoms
The spatial atoms include points-to predicates (—) as well as two inductive predicates
list and tree. The predicates have the following signatures:

—n: locjist X locjist —> Bool —4: loc x data — Bool

—1: loCiree X l0Ctree —> Bool —p: 10Ctree X 10Ctee — Bool

list : locyst X locjig, — Bool tree : 10Ciree X 10CH e — Bool
For abbreviation we use x =y, s, (y1,...,yn) instead of & = y1 * ... %z =, yn (e.g.
T —nd (Vs Tdate) instead of & —,, Y% —g Tgate), list(x) and tree(x) instead of list(z, null)
and tree(z, null), respectively.
3.2.2 Data predicates
What is not shown in Figure [3.1)is the fact that the inductive predicates can be parame-
terised by so called data predicates. There are two types of data predicates: unary and
binary predicates. Unary data predicates are formulas of the form P(«) and the binary

14
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3.3. Semantics of SL,,,

data predicates are of the form (f, P(a, 8)) where f € {n,l,r}. Both can contain other
variables from Xj,. (for f = n) respectively Xy (for f € {l,r}). Both list and tree can
include data predicates as arguments.

Table 3.1/ shows examples of valid formulas.

3.3 Semantics of SL},,

To be able to interpret SL},,, formulas we must first define a heap interpretation. A
heap interpretation is a sorted set X’ of of location values (of sort loc) including a constant
null. Each location can relate to one or multiple other locations, which defines the heap’s
structure. In addition, every location (except null) can point to a value of the data-sort.
List locations (or nodes) relate to other list locations via the point-to predicate next
(—n). Tree locations (or nodes) relate to other tree locations via the point-to predicates
left and right (—;, —,). Both can relate to data via the point-to predicate data (—g),
but no location can relate to both a tree and a list location at the same time. Note
that nodes are not always fully allocated. It is possible for a heap interpretation to be
incomplete, i.e a node can only have a next successor without a data successor, also a
node can only have a left successor without a right successor. This way we can have a
model that violates list and tree properties locally. Figure 3.2/ shows a simple example of
such a heap.

Figure 3.2: Example of a heap

SL},., formulas fulfill the following semantical rules:

location and data formulas: Fi,., Fyq
Sub-formulas from the two theories 7j,. or Tgq: are interpreted as usual in those
theories, with the additional constraint that they describe an empty heap.

Conjunction: FANG
A heap interpretation M = FAG iff M | F and M = G.

Disjunction: FV G
A heap interpretation M = FV G if M |= F or M = G.
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3. INTRODUCTION TO SL,,,

Negation: —F
A heap interpretation M |= —F iff M [~ F.

separating conjunction: F x G
The separating conjunction is very similar to a usual conjunction. If we find a
heap interpretation M |= F x G, then (like with conjunction) both M = F and
M = G are true as well. However, it separates the heap into two disjoint heaps
such that M = My @ M, while M = F and My = G. By My & M, we denote
a (disjoint) combination model combination, which consists of all locations and
data from both models.

locations
Locations are any possible value of sort loc interpreted by the means of 7Tj,.. In the
heap, one can think of them as a memory address that has the potential to be a
tree or list node and can contain data (with the exception of null).

null location
null is a dedicated constant of sort loc that is both a tree and a list node. However,
null itself must not point to any other location nor data (null — ¢ x is unsatisfiable).

data
Data is any possible value of sort data interpreted by the means of 7.

points-to-next: xr —, y
For a location z, the points-to-next predicate indicates that x is a list-location and
the next location of that list is y. x can not point to two different list nodes i.e.
T —=p YANT —p 2 = y = z. In addition, x can not point to a tree node via —;
or —>.

points-to-left and points-to-right: x —;y, v —, 2
For a location z, the points-to-left (or points-to-right) predicate indicates that =
is a tree node and the sub-tree to the left is y (respectively to the right is z). z
can not point to two different tree nodes via the same predicate i.e. x —; y A x —y
z = y=zand x -, y Az —, 2 = y = z. In addition, x can not point to a
list node via —,.

points-to-data: r —y d
A tree- or list-location = can point to data d but can not point to two different
data points i.e. x »>gaAx —43b — a =0b.

list: list(z,y)
list(xo,y) expresses that: (1) xg is a list node starting at xg, (2) there is a cycle free,
possibly empty, path {x, ..., 2;,y} following —, predicates, and (3) each location
along the way also has an allocated data point i.e. for each of the x;, z; —4 d is
true for some data point d. Note that there are no claims about y itself in particular
y can be equal to null.

16
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3.3. Semantics of SL,,,

Table 3.1: Examples for SL},,, formulas

Formula Informal description

‘ Status ‘Model

list(x,z,{n,a < }) The heap consists of a sorted list
segment from x to z

SAT

My

r =4 (Y, 2,d) * (d > 0) The heap consists of a tree node x
that points to two other nodes y
and z, and x points to a data value
d that is greater than 0

SAT

Mo

tree(z, {(l,a < B),(r,a > /3),}) | The heap consists of a binary search
tree

SAT

M

tree(x) A true The heap consists of a tree with root
node z and at the same time it is
empty

UNSAT

tree: tree(r,3)

tree(zo, y) denotes that: (1) xg is a tree node starting at xg, (2) there is a cycle
free, possibly empty, path {zg, ..., z;, s} to each of the stop points (i.e. leaf nodes)
s € § following —; and pto, predicates, and (3) each location along the way also
has an allocated data point i.e. for each of the x;, x; —4 d is true for some data
point d. Again, there are no claims about the leaf nodes themselves.

unary data predicates: tree(z, s, {P(a)}) resp. list(z, 3, {P(x)})

Inductive predicates with unary data predicates are interpreted like ones without,
but they constrain the data according to the predicate P(«). For each data point
d along the path, P(d) must hold true, while P is interpreted by the means of the
theories Tjoe ® Tgqe- If there is more than one predicate, all of them must hold true.

binary data predicates: tree(z, s, {f, P(a,p)}) resp. list(z, s, {P(a,[)})
Binary data predicates are interpreted similarly to unary data predicates. However,
they include a pointer selector f. For each two nodes along the path x —; y where
x —q dy and y —4 dy, the predicate P(d) must hold true. Like for unary predicates,
P is interpreted by the means of the theories Tjo. ® Tgq¢ and if there are more than

one predicate all of them must hold true.

Table [3.1] shows some examples and in Figure 3.3 heap interpretations that satisfy them,

while Figure 3.4 shows some invalid heaps.

17
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(a) two descendants (b) tree and list descendants (c) double allocation

Figure 3.4: Invalid heap interpretations

3.4 Complexity Results for SL},,,

As mentioned previously, general Separation Logic is undecidable in general, so it
remains to back up the statement about SL},_,,’s complexity. Recall that we claimed
that the satisfiability problem of SLj,,, is NP-hard. In the next chapter (Chapter [4)),
we will introduce a reduction to SMT using the theories Torray ® Tioe ® Tdar- Since
Tarray is decidable in NP [9], we can choose the data and location theory carefully
such that Tj,. ® Tgq: is also decidable in NP. This is the case for linear arithmetic (e.g.
ﬁoc = 7;lat = LIA)

It remains to show that the reduction is linear in size. This is also the case, because of the
small model property of SL},,, [II]. Assume there is a heap interpretation that models a
satisfiable SL};,,, formula. Furthermore assume that formula has ny; list variables, ngee
tree variables, my;s list predicates with data constraints, my.c. tree predicates with data
constraints and a maximum of £ > 1 leaf nodes per tree predicate. The small model
property tells us, there is a satisfying heap interpretation M that is linear in size i.e.
’M| < ma$(47 235t + (3 + k)ntree + 2myist + mtree)-

For the entailment in SL},,, consider the following:
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3.5. Symbolic Execution with SL};,

FEG

true = F = G
F = G walid
-FVG walid
FAN-G unsat

1o

F N =G is a permissible SL},,, formula and we can encode it in SMT using the encoding
from the next chapter. Since we need to negate the answer, the entailment problem lies
in CONP.

3.5 Symbolic Execution with SL},,

Now that we know the semantics and syntax of SL},,, we can illustrate a practical use of
SLj4ta by proving that the algorithm from 2.1 is partially correct and indeed computes
the maximum of a linked list.

First, we now know how to express “The argument a is a valid list”, since we introduced
a predicate for it: it is simply list(a). Exploiting data predicates, we can express “No
element within a is greater than m” as well: list(a, {a < m}).

Next, we establish a few Hoare triplet rules. We already know the frame rule:

{F} c{G}
{F %0} c{G o}

Note the traditional Hoare Logic rules for while and if:

{Inepp{l}
{I'} whileedopod {I A —e}

(wh)

{F ne} p{G} FA-e = G

{F}ifethenpfi {G} (if)

If we disallow heap manipulations within evaluation of the boolean expression e, we can
simply replace the boolean conjunction with the separating conjunction to obtain the
Separation Logic counterparts of those rules:

{Ixe}p{l} .
{I} while e do p od {I * —e} (wh)

19
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3. INTRODUCTION TO SL,,,
{Fxe}p{G} Fx—-e = G (i)
. i
{F}ifethenpfi{G}
Similarly, we can say about the forward assignment rule:
as
{F}z=e{32 . Flz/2'| Nz = e[|z/2]} (as})
The rule is sound as long as the assignment 2’ does not occur in F and e. If we wanted
to replace the conjunction with the separating conjunction, by the semantics of x we
only need to ensure that F[z/z'] and e[z/z'] does not have an alias to z. Since we
replaced every occurrence of x with 2/, this can only occur for pointer arithmetics i.e.
the statement is of the form x = f(z). Therefore the rule
as™
{F}z=e{32 .Flz/2] xx = e[x/2]} (as™4)
is sound as well, but only if the right hand expression does not contain the memory
location z that is being assigned.
Now it remains to formalise the semantics of the heap manipulating sub-routines that
are used within the algorithm.
head(x)
If z is an allocated list location, head will return the data that list location is
pointing to. If x is null or not a list location it will act like an abort statement.
Formally, we can express that as the Hoare triplet
head
{list(z) * F'} d = head(z) {3d' . F[d/d'] * © —p, 4 (14, d) * list(xyqi) } ( Y
for partial correctness. For total correctness, we need to ensure z is a valid list
location and = # null as well:
{list(z) x z # null x F'} d = head'(z) {3d'.F[d/d'] * © =, 4 (Ttair, d) * list(xra) }
Note that every data predicate P, P[d/d'] needs to be preserved in the list(xq;)
call as well. This is omitted for brevity. Further, it is also sound that for every
P, P(d)[d/d'] needs to be true. However, omitting it is admissible, since that only
weakens the post condition and is sound by the rule of logical consequence. Binary
predicates are not used in the proof, but similar constraints might be required. For
brevity we also use the predicate head(x) in assertions. It is simply a placeholder
for the value that head(x) evaluated to during the execution. Note that it is a pure
function i.e. it will always evaluate to the same value for a fixed heap for the same
argument.
20
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3.5. Symbolic Execution with SL};,

next(x)
If x is an allocated list location, next will return the next list location z is pointing
to. If x is null or not a list location, it will act like an abort statement. Formally,
we can express that as the Hoare triplet

{list(z) * F} v = next(z) {3, d.Fv/V] x © = q (v,d) * list(v)} (nexty)

for partial correctness and for some x4, that does not occur in F. For total
correctness, we need to ensure that x is a valid list location and x # null :

x # null x {list(z) * F'} v = next(z) {F',d.Flv/v'] x x =, 4 (v,d) * list(v)} (next))

Again, we need to take care of data predicates and every data predicate P needs
to be preserved as Plv/v'] in the list(x4q) call as well. Omitting the validity
for skipped locations is admissible as well, since it again only weakens the post
condition and is sound by the rule of logical consequence.

Finally, we have the means for proving the maz sub-routine. We can annotate the
program using annotation calculus according to the Hoare rules we defined:
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function max(a)
{list(a) }
b=a
{3 .list(a) xa=b} (as*)]
{list(a) xa=b} (lc)
m = head(a)
{3m list(atair) * @ —n.a (aair,m) xa =0}  (head)|
{ 1: list(atair) * @ —n.a (atair,m) xa=>b}  (lc)
{2: list(a,b,{a <m})} (wh*)
while b £ null do
{list(a,b,{a <m})*b#mnull} (wh*)
b = next(b)
{3:3,d . list(a,t,{a <m}) «b/ #null 0’ —, 4 (b,d)) }  (next)|
if head(b) > m then
{3V, d . list(a,V,{a <m})«b#null b’ —, 4 (b,d) * head(b) > m}  (if*)
m = head(b)
{4: 3, d,m' . list(a,V/, {a < m'}) x b # nullx
b —na (b,d) xhead(b) > m' «+m = head(b)} (as*){
] {5: list(a,b,{a <m})} (H")"
{5: list(a,b,{a <m})} (wh*)
od
{6: list(a,b,{c <m})*xb=mnull} (wh*)
{7: list(a,{a <m})}
return m
end

It remains to show the entailments of several assertion pairs.

1 = 2
The validity of this implication seems to be true intuitively. However, it requires
the formal semantics of the list predicate to be proven. We omit the proof here but
use our decision procedure to show its correctness. It is part of the benchmarks
in the Results Results. We used the input 1 A =2 which was proven UNSAT by
our tool and thus proves the validity of the entailment. The formula is named
entailment-max and can be found in the |Appendix in Section (8.2l

3+ head(b) < m = 5 (premise for if*-rule )

', d . list(a, b, {a <m}) « b’ #null x V' —, 4 (b,d)) * head(b) < m =
', d . list(a, b, {a <m}) xb' =4 (b,d) =
list(a, b, {a < m})
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3.5. Symbolic Execution with SL};,

4 = 5
3, d,m’" . list(a, V', {o < m'}) x b # null
# b —p, 4 (b,d) * head(b) > m' * m = head(b) =
', d,m' . list(a,b', {a <m'}) xb#null b —, 4 (b,d) xm >m' =
3, d . list(a, V', {o < m}) *b % null x5 5,4 (b,d) =
', d . list(a,b,{a < m}) =
list(a, b, {a < m})
6 — 7

list(a,b,{a < m})*b=null =
list(a,null, {oe < m}) =
list(a, {a < m})

This proves partial correctness of the algorithm. The proof for total correctness is very
similar, but requires a weaker precondition list(a) * a # null because of the assignment
m = head(a) without a null-check. Also, we would need to prove the termination of the
while loop. This is simple, since we know that the list must be cycle free (by semantics of
list) and in each body execution the list segment is growing by one, so at some point, it
will reach the end of the list (list(a, b) * b = null) and since b # null is the loop condition,
the loop will terminate.
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CHAPTER

Encoding SL} ;, to SMT

4.1 Basics

This chapter is based on the encoding from the SL,,, paper [11]. Again, it describes the
SMT encoding in an more informal and intuitive manner.

The basic idea of encoding SL},,, to SMT is to define partial functions that map the
relations between the locations. Since all functions in SMT solvers are total functions, we
need to encode the partial domains of the functions. This is where the aforementioned
array theory 7Tqrrqy comes into play. Along with the usual store(-) and read(-) operations,
we require a constant combinator K and a map; combinator for which K(c)[i] = ¢
respectively mapg(ax, ..., an)[i] = f(a1[d], ..., ani]) holds.

Using those operations, we can encode a set (and thus also a domain of a function). A
set is then simply an infinite array of boolean values whose indices are of sort loc. We
can define set operations as follows:

Empty set:
An empty set is simply the constant false array i.e. K(false). We can define an
isempty(X) predicate for an array X as X = K(false).

Adding elements:
Adding elements to an array can be done via the store operation. X U {z} :=
store(X, x,true) (i.e. “set X[x] to true”). In particular, a single element set can
be defined as {x} := store(K(false), z, true).

Membership check:

We can easily check if x € X by evaluating the array at that point read(X, z) (X|x]
for short).
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4.1.

Basics

Set conjunction and disjunction:
By using the map operator, we can define both conjunction and disjunction, namely
XUY :=map,(X,Y)and X NY :=map,(X,Y).

Subset relations:
We can also check easily if a set is a subset by mapping implication and checking if
the result is the constant true array: X CY := map_ (X,Y) = K(true).

In the following, we will use the set notations as a brief notation for the above encodings.
In addition, a big-letter variable X will represent a set, an arrow over the variable Z will
represent a vector (a big letter vector X is a vector of sets). We will use predicates with
vectors that are defined for scalars in a point-wise manner e.g.

isempty(X) < /\ isempty(X)
XeX

and

X=YUZ <= ) Xi=Y,UZ
i=1..|X|
(for binary and n-ary predicates all vectors are expected to have equal dimensions).

For a heap interpretation of size N (e.g. obtained by the small model theorem), we encode
the N possible locations as x1, ..., zx of sort loc. For each of the possible heap relations
(n,l,r and d), we define a partial function i.e. f,, fi, fr and fg with associated domains
X, X, X, and X4. We also define a set of locations X such that X = X,, U X;UX, U Xy
and X C xq,...,xN.

We can now encode the heap interpretation by the following formula:

AY, = (X = X, UXJUX, UX)AX C {z1,...,xn} Anull & X Aisempty(X,,N(X;UX,))
Ag ;, makes sure that:

1. the heap has at most size N: X C {z1,...,zn}
2. null is not allocated: null € X

3. no location is a tree and a list node at the same time: isempty(X,, N (X; U X,))

Figure 4.1|shows an example for a model of Ag 1, and how it relates to a heap interpretation.
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4. ENCODING SLj,, TO SMT
X ={0,1,2,3,4} X,={0} X;={2} X,=1{2,4} X;=1{1,3,4}
1 =0 4 =2
Jo(@) =45 r=1 filz) =45 =4
undef. else undef. else
3 x = 72 z=1
fr(z) =145 x = 42 x=3
' Ja(z) =
undef. else 69 T =
undef. else
Figure 4.1: A graphical representation of an SMT encoding of the heap depicted in
Figure (3.2
4.2 Encoding of Simple Formulas
In the following, we will use X = (Xn, X1, X, Xg) and will refer to it as the footprint of
a formula.
The encoding of a spatial formula F' is defined by a translation function 7T that yields a
formula pair (A, B). A captures the structure of F' while B uses the set operations we
defined in the previous section to keep track of the domains of the points-to relatioins, i.e
the footprint of the sub-formula. Ty is defined recursively on the structure of F'. It relies
on two helper functions: T3 for spatial and T]l\’, for boolean sub-formula. The result of
the encoding is then defined as Fgpr := AAB A AgL where (A, B) = Tn(F). Fsyr is
satisfiable if and only if the SL},,, formula F' is satisfiable.
Location and data subformula
For a location formula Fj,. or a data formula Fy4, the semantics of SL},,, dictate
an empty heap:
26
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4.2. FEncoding of Simple Formulas

TR (Fioes Y) = (Floe, isempty(Y))

T3 (Faat, Y) = (Fyat, isempty(Y))

Point-to predicates
For the point-to predicates, we know the result of their partial function, as well as
their domain. The domain consists of a single element for that particular function,
while all the others are empty.

=y, Y, = {a} Aisempty(Y \ {Y,}))

=y, Y, = {z} nisempty(Y \ {¥}))

=y, Y, = {z} Aisempty(Y \ {¥;}))
)

=1y, Yy = {z} Aisempty(Y \ {Yy}))

Separating conjunction
For two sub-formulas connected by a speparating conjunct Fj x Fy, we know that
both of their constraints A; and A, must still hold. In addition, their combined
footprint is the union of the sub-footprints and by the semantics of the separator,
they are disjoint. Thus, for two fresh footprint variables Y; and Ya:

Ty (Fy + Fo,Y) = (A1 A Ay Aisempty(Y1 NY2), By A Bo AY = Y] UYs)
where <A1,Bl> = T]%(Fl,}?l) and <A27B2> = T]%(FQ,}?Q)

Boolean conjunction
Boolean operands do not change anything about the footprint. Only the structure
constrains are preserved:

T}{;(Fl A FQ) = (Al VAN AQ,Bl A BQ>
where <A1,Bl> = T}{;(Fl) and <A2,B2> = T]Q](FQ)

Boolean disjunction
Boolean operands do not change anything about the footprint. Either one of the
structure constraints can be true:

T}{;(Fl AN FQ) = (Al V AQ,Bl A BQ>
where <A1,Bl> = Tg(Fl) and <A2,BQ> = T]Q](FQ)
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Negation
Boolean operands do not change anything about the footprint. Just the structure
constraints must be false:

T%(=F) = (A, B) where (A, B) = T}(F)

Top level conjuncts
For a fresh footprint variable Y, we can constrain that its sub-footprint is equal to
the footprint of the entire heap:

TY(F) = (AN X =Y, B) where (A, B) = T3(F,Y)

4.2.1 Encoding a simple formula by example

We will now encode the simple formula Fgr, = x —, y *y —p 2 using Tjoe = Tgu = LIA.
An obvious upper bound is 3, since there are no inductive predicates and 3 location
variables used in the formula. Thus, AgL = (X = X, UXiUX, UXg)AX C {xy, 29,23} A
null ¢ X Aisempty(X,, N (X; U X))

current sub-formula encoding result next sub-formulas

(A1, B1) =

Tn(x =, yxy =, 2 F = ALABIAAYN, AY =X
N(ET =nyxy —n 2) SMT 1A\ By LAY TS (@ —m y 5y —m 2)

T (x =py*xy —p 2) A = Ay AN A3 A isempty(Y_; N }73) (Ao, Bo) = TR (x —p y)
By =By, AB3ANY; =YoUY3 <A3,Bg>=Tﬁ;(y—>n Z)

TR (z —n y) Ay = fo(x) = v, - -
By := Y3, = {z} AYa \ {Y2,}

T]‘%(y —n Z) Az = fn(y) =2z, . -
B3 :=Y3, = {y} AY3 \ {YE’m}

Since the formula only contains —, predicates, one can shorten the formula. Since
all the other footprint sets are empty, one could shorten it by assuming X = X, and
Y; = Y;,. This example expressed in the SMT-LIB file format as well as an output by
the SMT-Solver Z3 can be found in the Appendix|in subSection [8.2.

4.3 Encoding of Inductive Predicates

To encode the list and tree predicates, we first need to define helper predicates. These will
help use ensure the semantics of both predicates are correctly simulated in the resulting
formula. We will consider the predicates tree(z, 3, P) and list(z, s, P). We also assume
a fresh footprint Y. § are the leaf nodes and P the unary and binary data predicates.
Moreover, we will introduce a reachable location set Z as the set of all locations reachable
from zx.
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4.3. Encoding of Inductive Predicates

The following is true for a node x if that node is a leaf node. Note that null is an implicit
leaf node for all valid lists and trees. The affected nodes are depicted in Figure [4.2.

isleaf(z) :==zx =nullVz =35, V..z =3,

-

& &
Figure 4.2: Leaf nodes as selected by isleaf(x) marked in bold red

The successor predicate is true if y is a direct successor of . There are two variants, one
for trees and one for lists.

Sust(2,y) = fa(z) =y
Stree(®,y) = filz) =y V fr(z) =y
The following will ensure that every location within the reachable set Z is fully allocated,

i.e. every reachable tree location is allocated with respect to —;, —, and —4 and every
reachable list location is allocated with respect to —,, and —.

defineYyst =Y =ZANYy3=ZNY, =0NY, =0

defineYipee i =Y = ZANY, =ZANYy=ZNY, =0

The following helper predicate will define fresh reachability constraints r(x;, ;) which
are true for each direct successor pair z; and z;, where x; is within the reachable set Z
and x; is not a leaf node of the inductive predicate.

Ry = /\ rl(mi,xj) < (l’z e ZN ﬂisleaf(xj) VAN S(l‘l,l‘]))
4,j€[1..N]

The Ry predicates will define fresh reachability constraints rx (z;,y;) which are true for
a path starting in z; and ending in z; in K steps or less, where z; is within the reachable
set Z and x; is not a leaf node of the inductive predicate.

Ry = /\ rK(xi,xj) = (TK_l(.%'i,ZL‘j) V \/ (’I”K_l(xi,l'k) /\Tl(.%'k,l‘j))
4,j€[1..N] ke[1..N]

It consists of two parts: either the reachability constraint is already true with one step
less (rx—1(xi, xj)) or there exists a zj, that is reachable from z; by K — 1 steps and
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r.(x,z)

e
r 0

r3(X,y)

————
=z (s

r1 (y,Z)

Figure 4.3: Depiction of a single reachability constraint r4(z, -), selected nodes marked
in bold red

x; is reachable in the next step (rix—_1(zi, k) A ri(ag, z;)). The existence quantifier
is eliminated by applying a logical or on all possibilities. An example is depicted in
Figure 4.3: r4(z, 2) is true because r3(x,y) and ri(y, z) are true, while r4(z,y) is true
because r3(x,y) is true.

The following predicate defines the reachability constraints used in later predicates.

reachability := Ry A Ro A ... A Ry

Note that in the original decision procedure [11], M = N but this is not always necessary.
It is possible to choose a bound per predicate, i.e. an upper bound Ny, for list predicates
and an Ny for tree predicates. Depending on the formula they can differ from the
upper bound N. The details for that are described in chapter (Optimisations for the
SL7,., Decision Procedure in Section |5.1.

emptyZ is true when the footprint should be empty, this is the case when x itself is a leaf
or not element of our heap.

emptyZ :=isleaf(z) Vx & {z1,...,xN}

footprint ensures that Z is the set of locations reachable from x

footprint := Z C x1,...,xN
A (emptyZ = Z = 0)
A (memptyZ = Njcpion(@i € Z2) <= (2 =2V ru(z,z;)))

nobranch dictates that a if node has two equal successors, then all of them must be null.
This predicate only makes sense for structures with a branching structure, i.e. trees in
SLtlata'

nobranch := /\ i € Z = (fi(z;) = fr(z;) = fi(z;) = null)
t€[1..N]
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4.3. Encoding of Inductive Predicates

successor dictates that if two different nodes have the same successor, then it must be
null as well. There are two variants, one for list and one for tree predicates:

SUCCESSOr ;51 = /\ (i, xj € ZNay #x5) = (fulx) = fulzj) = fu(z;) = null)
4,j€[1..N]

SUCCESSOr yee := /\i,je[l..N](m%xj €EZNz; #£x;) = ((filzi) = filz;) = fi(zs)

Next, we ensure that the elements are not part of a cycle, and that no double allocations
occur:
structure;s; := (—isleaf(x) = x € Z) A successorjss A —rpr(x, )

structurey,ee == (—isleaf(z) = x € Z) A nobranch A successory ee A =7 (z, )

For leaf nodes, we need to ensure that they are pairwise different, occur exactly once
and are the only leaf nodes of the structure. Furthermore for trees, they are ordered as
defined in the vector §= (s1, ..., sg).

To ensure pairwise difference and if the root z is a leaf, then all leafs must be equal to
the root we use:

leafseq := | isleaf(z) — /\ r=s|A /\ Si # Sj

s€EF 1<i<j<k

To ensure leafs occur exactly once (i.e. no two elements of the leaf-vector § are equal) we
use:
leafsoccur := —isleaf(z) — /\ \/ x; € Z N\ S(zi, )
s€8 i€[l1..N]

To ensure the leafs are the only leafs we use:
stopleaves;;y, := (z; € Z A fu(x;) & Z) = isleaf(fn(x;))

Stopleavestr@e = (xz €EZN fl(xl) ¢ Z) == iSIeaf(fl(xi))
A (i € ZN fr(x;) & Z) = isleaf (f-(x;))

To assure the leafs are ordered, we define two helpers. fstop; assures for a given x; and
leaf node s that s is either the direct left successor of x; (fj(z;) = s) or it can be reached
by going left first \/;c1 ) rZ (1,2, x;) Ny € Z A S(x;,8). Similarly, fstop, assures s is
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the direct right successor or can be reached by going right first. In other words, they
assure s is in the left or right sub-tree of ;.

i (0, 2,y) = (fp(2) =y V (fp(2) € Z Arar(fp(2),9)))

fstop; (x4, 8) := fi(z;)) = sV \/ r& Lz, 25) Naj € Z A S(xj, )
JE[L.N]

fstop, (x;, ) := fr(z;) = sV \/ rf(rxi,x) ANy € Z A S(xj,8)
jE[1..N]

Now for each two subsequent leaf nodes s; and s;41, we know there must exist a node
where s; is in the left and s; is in the right sub-tree, namely their first common ancestor.
We eliminate the existence by a disjunction over all possibilities and end up with:

leafsordered := /\ \/ x; € Z Nfstopy(xj, s;) A fstop,.(x;, Sit+1)
i€[l..k—1] je[1..N]

In Figure 4.4, we can see that x is the common ancestor of s; and s and y is the common
ancestor of s and s3. Indeed, s is in the left sub-tree of x while so is in the right one.
The same is true for y, so and s3. However, we cannot find any node for which ss is in
the left sub-tree, while s; is on the right one.

DU eeE ™
Figure 4.4: An illustration of a tree structure with three specified leaf nodes s1, so and s3
The leaf constraints are combined in the leafs predicates: leafs;;s; := leafseq A leafsoccur A
stopleaves;;,; and leafs... := leafseq A leafsoccur A stopleaves,,... A leafsordered.

Next, we need to encode the data constraints as dictated by the data predicates P.

For a single unary predicate P € P we have:

udata(P) := /\ v, € Z = P(fa(xi))
1€[1..N]


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.3. Encoding of Inductive Predicates

This can be shortened to two maps and a comparison if the partial function f; is converted
to an array.

udata(P) := map_,(Z, mapp(fa)) = K(true)

For next constrained binary predicates, we have two elements x; and x; of the footprint
Z. If z; is a direct successor of z; (fn(x;) = x;) or is reachable by a direct successor
(rar(fn(zi),x;5)), then this implies that the predicate is true for the data behind those
two elements P(fq(x;), fa(x;)).

bdatan(P) = /\ (l‘i,l'j e ZN T‘ﬁ(n,l’i,l’j) — P(fd(l'l),fd(l'j))
4,j€[1..N]

Similarly, for left and right constrained predicates we have:

bdata((P) := N (zi,3j € ZAr§(Lwi,xj) = P(fa(xs), faz;))
4,j€[1..N]

bdata,(P) := N\ (wi,2; € ZArf(r,zi,25) = P(fa(x:), fa(z;))
1,j€[1..N]

Combining the data predicate encodings we end up with:

dataj;s == /\ udata(P) N /\ bdatan(Py)
PePy nPpePyp

datagee := /\ udata(P) A /\ bdata;(F;) A /\ bdata,(F;)
PePy |IP,eP; rPr.ePr

Finally, we can put all the helper predicates together to define the translation of the
predicates for a list:

T% (list(z, 5,P),Y) = (A, B) where
A = structurey; o A leafsy;g A datags:
B = reachability A footprint A defineY/; 4

and a tree:
T5 (list(x, 5,P),Y) = (A, B) where
A = structuregee A leafsyce A datagree

B = reachability A footprint A defineYy,.c.

Note that for both, the reachability constraints need to be fresh definitions, as they only
make sense in the footprint Z we defined. Outside Z they, can be interpreted arbitrarily.
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CHAPTER

Optimisations for the SL} .,
Decision Procedure

5.1 Encoding Size Reduction

Deciding the satisfiability of an SMT formula F' € Torray ® Tioe ® Tdar is NP hard. This
means, that in the worst case, the run-time for the solver is exponential in time, with
respect to the formula size. In other words, reducing the formula size a little bit can
lead to a big impact on the overall run-time. Our central optimisations therefore aim to
minimise the input size for the SMT solver. We have found several ways to do so:

1. One of the advantages of using Directed Acyclic Graph (DAG)s for storing the
Abstract Syntax Tree (AST) is that all syntactically equivalent sub-formulas are
represented by the same node. Technically, this means that when encoding an
SL},;, formula, we will encounter the same references for syntactically equivalent
sub-parts of it. This allows several optimisations. If we cache the encoding per
node, we can reuse the encoding of the identical sub parts. This reduces the number
of footprint symbols in the formula.

2. If a formula does not contain any list and —,, predicates, this means that we do not
need to keep track of the domain of f, in the encoding. This means we can omit
that part of the footprints (i.e. X,, and all helper Y;,). Analogously, if a formula
lacks tree, —; and —, predicates, we can omit the domains of f; and f;.

3. The reachability constraints are a big portion of the encoding as each inductive
predicate needs fresh constraints. If we split the bound calculation into one bound
per data structure, the reachability constraints can have separate bounds too.
For formulas describing both trees and lists, this can lead to significantly smaller
formulas.
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5.2. Spatial Equality Propagation

5.2 Spatial Equality Propagation

Modern SMT solvers keep track of equalities and implied equalities of formulas. Doing so
helps reduce the size of the search space. Since we introduced a new spatial conjunction
operator, equality propagation is limited as the solver has no deeper insight into the
semantics of the operator. We therefore need to reintroduce the semantics of equalities
within a spatial formula. In order to do so, the spatial equality propagation optimisation
keeps track of equalities as an early step. It does so by creating bins of variables related
by an equality. It then replaces the occurrences of variables by a single representative
from the bins. As every unique location in the formula increases the formula footprint by
one, every unique equality we find prevents this.

As an example, take a look at the following formula: x —,, y * list(x) * z = y. It is easy
to see that, since both list locations are equal, the formula is in fact unsatisfiable because
the separating conjuction implies disjunct heaps and in particular x # y. If we apply
the above strategy to the formula we end up with list(z) * list(xz) * x = x and after a
simplification step list(z) * list(x).

Another example where equality propagation could help is list(z) A list(y) * z = y. We
end up with list(z) A list(x) * x = = and after simplification, we get list(x).

5.3 Stepwise Encoding

In many cases, it is possible a formula is unsatisfiable even without the axioms of a
theory. E.g. if the boolean skeleton of the formula is unsatisfiable, then the whole formula
cannot be satisfiable. In such cases, handling the specifics of a theory often only make the
formula bigger and potentially increases run-time. This is even more true for encodings
that can make the formula much bigger such as SL},,,-

As an example, take a look at the following formula: list(x) * z = y A —list(y). It is easy
to see that in order to hold true, both list(x) and —list(z) must be true and thus, the
formula is unsatisfiable.

The fact is of course implied by the encoding. This, however, is not immediately apparent
to the solver. Therefore, the entire encoding must be performed for it to find a conflict.

The idea behind stepwise encoding is to not perform the encoding in its entirety but
leave out the most expensive parts of the encoding, namely the list and tree predicates,
as uninterpreted function calls.

Since the reachability constraints required by those two predicates are no longer required,
the resulting size of the encoded formula is much smaller and a conflict can be found
much faster.

For the example above, in the first step our encoder would only produce an encoding of the
separating conjunction and leave out the encodings for —list(y) and list(x). Because the
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encoding of the separating conjunction produces, among others, the top level conjuncts
=list(y), list(z) and x = y this step is already enough to prove the formula are unsatisfiable.

Following the same idea, can go further than that and try to encode the list and tree
predicates iteratively: Instead of using the calculated upper bound for the footprint,
we start at one and try to find a counterexample. If we cannot find one, we increase
the footprint by one and try again until we find a counterexample or reach the upper
bound for the footprint (because only then, we can guarantee there will be no conflict by
increasing the bound further).

For example, take the formula list(z) * list(y) * list(z). The first step would only encode
the separating conjunction. This time that does not help us to prove that the formula
is unsatisfiable. Next we would try to encode the list predicates, but assume a heap of
size 1. This produces a significantly shorter formula for the SMT-solver than a heap size
according to the calculated bound. It is, however sufficient to find a solution with a heap
size of 1: © =y = z = null.
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CHAPTER

Implementation

6.1 Integrating SL) ,, Within Z3 SMT-Solver

Our decision procedure was integrated within the state-of-the-art SMT-solver Z3. Because
of that, we utilise both internal and external interfaces, allowing us to implement optimi-
sations, which would not be possible by just using the public |Application Programming
Interface (API). An overview of the implementation is depicted in Figure|6.1. Due to the
architecture of Z3, the implementation can be separated into three logical components:

Lexical analysis and syntax parsing:
In Z3, the entire parsing is done in advance. The parser builds up an AST and
stores the parsed code in a DAG. Since we are introducing new symbols, we need to
inform the parser of these new symbols. This is done by implementing a so-called
declaration plugin.

Decision procedure:

After the input has been parsed, Z3 decides which decision procedure to instantiate.
Decision procedures are loosely called tactic within the Z3 source code. This
is because a tactic might not be a full decision procedure but might also define
intermediate steps (such as formula simplification, normal form conversion etc.)
that are used by multiple decision procedures. Typically, a decision procedure
consists of multiple interacting tactics. This is decided based on the logic set by
the SET-LOGIC expression. If no such expression is provided, Z3 will decide which
decision procedure is best, based on the sorts and assertions used in the specified
formula. Our decision procedure, however, needs to be explicitly specified.

Model conversion:
By utilising different tactics to find a solution, Z3 comes up with a model that does
not necessarily represents a model as defined by the theory that was requested.
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6. IMPLEMENTATION

For example, Z3 might find a solution for a bit-vector formula just by utilising a
SAT-solver. To produce a model that is correct in terms of the specified theory
model converters are used. Coming back to the previous example, the result of a
SAT-solver would be value assignments for individual bits instead of vectors, the
bit-vector model converter would keep track of the separated bits and construct
them back into a vector. Since our decision procedure entirely encodes the input
into a regular [SMT)| formula, we rely heavily on a model converter to produce a
heap interpretation for the input SL},,, formula.

parser

Other decision
procedures

v v

FeSL data M' € model(¢)
. Model conversion
SL_d_ata
decision yes M € model(F)
procedure ¢
P€Ti0c®Tgat®Tarray SAT
¢ M

produce
model?

Figure 6.1: Implementation overview
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6.1. Integrating SL,;, Within Z3 SMT-Solver

6.1.1 Syntax Implementation

73 relies on so-called declaration plugins for introducing sorts and predicates. Our syntax
introduces the following sorts:

ListLoc
The list location sort is parametric in sorts and expects up to two parameters. The
first parameter specifies the sort which will be used to represent the location during
the later encoding. The second parameter specifies the sort that will be used to
represent data in the encoding. Both sorts default to Int and can be omitted.

Ultimately, those two sorts determine the parametric theories 7Ty, and Tgq; of SLY0-
If we, for example, specify both to Int, then LIA will be used as both theories (as
long as the data and location formulas do not contain quantifiers or multiplication);
if we specify them to (_ BitVec 64) (i.e. a 64-bit vector), then BV theory will
be used.

Since the encoding depends upon all locations and data to be of the same sort,
specifying two variables with two different ListLoc variants results in a syntax
€rTor.

Treeloc
The tree location sort is similar to the list location sort. It, too, takes the same
two parameters to guide the encoding. The only difference is the context in which
both may be used. ListLoc can only be used in predicates describing lists,
while TreeLoc in predicates describing trees. Even though they are different on

syntax level, the encoding uses the same sorts for representing data and locations.

Specifying a TreeLoc and a ListLoc variable with different data and location
sorts results in a syntax error.

Dpred
Dpred is an internal helper sort and cannot be used for variables. It is used to
identify data predicates during parsing.

NullSort
NullSort is an internal helper sort and cannot be used for variables. It is used
to represent null and must be cast into a specific location sort when used in a
formula.

Apart from the sorts, the syntax defines the following predicates:

sep represents the separating conjunction. F'x G < (sep F G)
It has variable arity with at least two arguments. More than two arguments can
be used to abbreviate a formula e.g. (sep F G H) is semantically the same as
(sep F (sep G H)).
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ptol

ptor

represents the —; predicate. © —;y < (ptol x vy)
It has arity of two and expects two TreeLoc arguments.

represents the —; predicate. ¢ —, y <> (ptor x vy)
It has arity of two and expects two TreeLoc arguments.

ptolr represents the —;, predicate. x =, (y,2) < (ptolr x y z)

It has arity of three and expects three TreeLoc arguments.

pton represents the —,, predicate. x —, y) < (pton x vy)

It has arity of two and expects two ListLoc arguments.

ptod represents the —,, predicate. z —4y) <> (pton x y)

tree

It has arity of two and expects either a (ListLoc TLoc TDat) or (TreeLoc
TLoc TDat) argument as the first and the generic TDat argument.

represents the tree predicate.

tree(x,5,P) <> (tree P1 P2 ... P_j x sl s2 ... s_i)

It has variable arity with at least one TreeLoc argument. It expects a variable
number of data predicates, followed by a TreeLoc argument, last it expects a
variable number of TreeLoc arguments for the leaf nodes.

list represents the list predicate.

null

list(z,s,P) <> (list P1 P2 ... P_3 x sl s2 ... s_i)

It has variable arity with at least one ListLoc argument. It expects a variable
number of data predicates, followed by a TreeLoc argument, last it expects a
variable number of ListLoc arguments for the leaf nodes (semantically, only one
makes sense).

represents the null location. null < null It is a constant and thus has no
arguments. It has sort NullSort and needs to be cast to a specific location sort
(e.g. (as null ListLoc))

unary used to mark an expression as a unary data predicate.

list(z, {(a =0)}) « (list x (unary (= alpha 0)))

left used to mark an expression as a left-constrained binary data predicate.

tree(z,{(l,« < B)}) <> (tree (left (< alpha beta)) x )

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.
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right used to mark an expression as a right-constrained binary data predicate.
tree(z, {(r,a > )}) < (tree (right (>= alpha beta)) x)

next used to mark an expression as a next-constrained binary data predicate.
tree(z, {(n,a < 8)}) < (list (next (< alpha beta)) x)

alpha used as an argument for unary and binary data predicates. a@ <> alpha
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6.1. Integrating SL,;, Within Z3 SMT-Solver

beta

used as an argument for binary data predicates. § <> beta
If a data sort different from INT is used, it needs to be cast.

Examples

To illustrate the syntax of the input format, we show the input files for a few example
formulas.

T —rd (Y, z,d) *y =y x y # null* (d > 0):

© 0 N O s W Ny =

[ T T =
S © 0 N o ks W N = O

list(z

1

(set-logic SLSTAR)

(declare—-const x Treeloc)
(declare—-const y Treeloc)
(declare-const z Treeloc)
(declare—const yl Treeloc)
(declare—-const d Int)

(assert
(sep
(ptolr x y z)
(ptod x d)
(ptol y yl)
(not (= yl (as null Treeloc)))
(> d 0)

(check-sat)
(get—-model)

,{(n,a < /8)}) Nz _>n,d (yaa) *y _>n,d (Z,b)!

The following example demonstrates redefining the location and data sorts, as well

as data predicates. Here we used (_ BitVector 3) i.e. a 3-bit bit-vector for

the location, resulting in 7;,. = BV and Real for data, resulting in 74, = LRA.
(set-logic SLSTAR)

(define—-sort BV () (_ BitVec 3))
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6. IMPLEMENTATION

© 00 N O U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare-const
declare-const

( (ListLoc BV Real))
(

(declare—-const

(

(

(ListLoc BV Real))
(ListLoc BV Real))

O 0 N K X

declare-const Real)
declare—-const Real)
(assert
(list (next (< (as alpha Real) (as beta Real)
(unary (> (as alpha Real) 15.0))
x)
)
(assert
(sep
(pton x vy)
(ptod x a)
(pton y z)
(ptod y b)

(check-sat)
(get—-model)

tree(z, {(I,a < B), (r,a > B)}):

© 0w N O A W NN =

== =
No= O

42

The following example demonstrates usage of a location theory formula.

(set-logic SLSTAR)

(declare—-const x Treeloc)
(assert
(sep
(tree (left (< alpha beta))
(right (>= alpha beta))
X)
(> (as x Int) 15)

)
(check-sat)
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6.1. Integrating SL,;, Within Z3 SMT-Solver

Technical Details

As mentioned previously, Z3 uses a so-called declaration plugin to define new symbols. This
is simply done by extending the abstract class dec1l_plugin and implementing two meth-
ods: get_sort_names, which returns the names of new sorts, and get_op_names,
which returns the names of constants, functions and predicates. During parsing, the
parser calls the methods mk_sort and mk_func_decl. Those are responsible for
checking arity and types of arguments as well as actually creating node objects for the
AST and DAGL A simplified class diagramm of our declaration plugin is depicted in
Figure 6.2,

«abstract»
decl_plugin

ExtTnds

slstar_decl_plugin

get_sort_names()
get_op_names()
mk_sort()

mk_func_decl()

Figure 6.2: Declaration plugin class

6.1.2 Implementing the Decision Procedure

The implementation of the decision procedure consists of several parts:

1. Simplification (before encoding)
2. Bound calculation

3. Encoding to SMT formula ¢

4. Simplification (after encoding)
5. Decision procedure for ¢

An overview is depicted in Figurel6.3. First, a simplification is performed. This consists of
flattening the formula by eliminating and-operands, removing redundancies and rewriting
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6. IMPLEMENTATION
the formula to Conjunctive Normal Form (CNF). This is done by exploiting Z3 built-in
functionality (denoted as “Simplify” and “Propagate values” in the overview). We end
up with a list of top level conjuncts, each of which is either already a spatial formula or
spatial formula connected by logical or-operands. Since the built-in tactics are not aware
of the semantics of the spatial atoms, we then perform a spatial equality propagation.
The details of this steps are described later in this chapter in Section [6.2.2.
. Bound
FeSL gata calculation
Simplify 5 FeF
- E Niist: Ntree
\ 4 Encoder
Propagate
values ' debug output
R v
—Y i
Spatial Equality PeTi0c®Tyat®Tarray .smt2 file
Propagation '
: Simpli
i n Propagate
values
CEEER——
SMT-Solver
% oy
@ M' € model(o)
Figure 6.3: SL},,, decision procedure
After simplification, Z3 might already be aware of a conflict. If this is the case, we can
report that the formula is not satisfiable. If there is no conflict, we proceed by calculating
an upper bound for the heap size. The bound calculation is ispired by the implementation
in SLoTH [12]. There are several rules used to determine the bounds:
1. The bound N is separated in N = Njst + Niree
44
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6.1. Integrating SL,;, Within Z3 SMT-Solver

. If there is a top level conjunct that is not a negation or a disjunction, without an

inductive predicate (list or tree), this gives us a hard bound: Ny is equal to the
number of unique list locations on the left side of —,, and ptod predicates, while
Nyree 1s equal to the number of unique tree locations on the left side of —;, —, and
ptod predicates. In particular, a formula F' € Tj,. or F € Ty, dictates an empty
heap and thus a bound of 0.

If there is no such conjunct (i.e. every conjunct is a negation (—F'), a disjunction
(FV G) or contains an inductive predicate), the bound is the maximum of each
conjunct’s bound.

A bound of a negation is the bound of the non-negated formula but it has impact
on data predicates within, so we need to keep track of negations.

. A bound of a disjunction is the maximum of each disjunct.

. Njist of a top level spatial conjunct with inductive predicates is equal to the number

of unique list locations plus the number of inductive list predicates. If the conjunct
is negated, 1 is added for each unary data predicate and 2 for each binary data
predicate.

Similarly, Niyee is equal to the number of unique tree locations plus the number of
inductive tree predicates plus the number of leaf nodes. If the conjunct is negated,
1 is added for each unary data predicate and 2 for each binary data predicate.

In Table 6.1 are some examples for bound calculation:

Table 6.1: Examples for bound calculation

Yor el @ fusess) {(a20) (ha> B — Niree =9
+1 +1 +1 +0, not unique +3.2 10, not negated

+1 +1 +1

—~ I ——
—|(|IS ( T 7{(a:0)})*‘tree,(‘ T, <51332a53>)7{(r705>5)}) _>Nlist:3aNtree =10

1+l +3-2 +2
x—=ry  A-(tree(z, (s1,52))) — Nppee = 1

——

+1, no list or tree +0

Following the bound calculation, the SMT encoding is performed. The implementation
closely complies with the encoding described in Chapter |4. There are two noteworthy
differences:

1. The bound used for defining the reachability constraints, differ. The original

encoding always uses the bound N = Ny 4+ Nyee to define the reachability
constraints, when encoding list and tree predicates. In contrast, our encoding uses
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W
(@)}

Ny;st as the upper bound for the reachability constraints in list predicates and Ny e
as the upper bound for the reachability constraints in the tree predicates.

2. If one of the two bounds Ny or Nyee is equal to zero, the footprint parts used to
keep track of the corresponding predicates are eliminated. Specifically, if Nys = 0
then X, ¢ X and if Ngpee = 0 then X; and X, ¢ X. This is also true for all the
footprint helper variables (17)

Technical Details

Decision procedures are called tactic in Z3. Tactics do not always describe a full
decision procedure but might also define intermediate steps. Our decision proce-
dure is implemented in the slstar_tactic. It consists of multiple other tactics:
slstar_spatial_eq propagation_tactic slstar_reduce_tactic, as well
as the Z3 built-in simplify_tactic and propagate_values_tactic. In addi-
tion to providing boilerplate and glue code, it also implements the calculation of the
bounds.

The slstar_spatial_eq propagation_tactic implements the spatially aware
equality propagation optimisation, described in Section 5.2 and its implementation in
Section [6.2.2. The slstar_reduce_tactic implements the encoding. The name
“reduce” is following Z3 naming conventions as the encoding is a reduction to some
other theory. The encoding itself is implemented in the slstar_encoder class. For
extensibility reasons, the encoding of the predicates is separated into separate classes:
list_encoder and tree_encoder, while the common functionality is implemented
in pred_encoder.

A class diagram of the implementation is depicted in Figure |6.4.
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6.1. Integrating SL,;, Within Z3 SMT-Solver

simplify_tactic sistar_encoder

tactic

«abstract» /\

propagate_values_tactic

Extends uses V
pred_encoder

j Extends
Extends ‘

slstar_spatial_eq_propagation_tactic list_encoder

slstar_tactic slstar_reduce_tactic

tree_encoder

Figure 6.4: Encoding tactic class diagramm

6.1.3 Converting Z3 Models to SL,,, Models

73 SMT solving algorithm produces a model for the encoded formula. This model not
only contains interpretations that are used to describe the heap, but also consists of
definitions for every single helper predicate that we used to simulate the semantics of
SLj4tq- This is bad for several reasons: 1. the number of helper predicates can be quite
big. 2. the interpretations are always total functions and might contain values we do
not expect (e.g. f, might be defined for values that are not a valid location, i.e. not
one of z1,...,zy or null). 3. since we use arrays to simulate the footprint sets, the
interpretations will be arrays as well.

In order to address this and similar issues, Z3 offers model converters that can be attached
to decision procedures. Our model converter performs the following tasks:

1. It keeps track of all helper predicates and removes them from the interpretation
but caches the values for null and the other locations z1, ..., xn.

2. It evaluates each of the footprint arrays X,,, X;, X,;and Xy for the locations z1, ..., xn
in order to create concise lists of elements rather than array interpretations.

3. It evaluates each of the predicate functions f,,, f;, frandf; and cleans them up to
not contain any unnecessary definitions. They have the form of an if-then-else
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6. IMPLEMENTATION
Figure 6.5: The graphical representation of the model from Listing |6.1
chain that only contains equalities with location variables. The resulting model
resembles something similar to the following example:
3 z=2
fr(@) =45 z=4
0 else
Note that because SMT functions always are total functions, it has a fallback
value. We just make sure that the equalities are always of the form =z = y where
S {1‘1, ...,l‘N}
Listing 6.1) shows an example of a processed model in the SMT-LIB format. It describes
a heap interpretation, its graphical representation is depicted in Figure 6.5. The heap
interpretation is indeed a model for the formula x —, 4 (y, 2, d) xy —; yi*y; # nullx(d >
0). It includes:
1. The resolved locations for the variables t =0,y =2,z =3 and y; = 5
2. A null value null = 4
3. The function f_left and a domain XI = {0, 2}, f_left(0) = 2,f _left(2) = 5, repre-
senting the partial function f;
4. The function f_right and a domain Xr = {0}, f_right(0) = 3, representing the
partial function f;
5. The function f_dat_int and a domain Xd = {0}, f _dat_int(0) = 1, representing
the partial function fy
48
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6.2. Implementing the Proposed Optimisations
sat
(model
(define—fun X1 () Array ( 0 2))
(define—-fun x () Int 0)
(define-fun d () Int 1)
(define—-fun null () Int 4)
(define-fun y () Int 2)
(define—fun Xr () Array ( 0))
(define—fun Xd () Array ( 0))
(define—fun yl1 () Int 5)
(define-fun z () Int 3)
(define—fun f left ((x!0 Int)) Int
(ite (= x!0 0) 2
(ite (= x!0 2) 5
2)))
(define—fun f_right ((x!0 Int)) Int
(ite (= x!0 0) 3
3))
(define—-fun f_dat_int ((x!0 Int)) Int
(ite (= x!'0 0) 1
1))
)

Listing 6.1: The output of our decision procedure for the input file from page (41

6.2 Implementing the Proposed Optimisations

6.2.1 Encoding Size Reduction

Since the reduction of the size has been achieved by modifying the encoding, these
optimisations were not a distinct part of the implementation. Rather, they were guidelines
for the realisation of the encoding:

1. The encoding was implemented recursively. This means the encoding is performed
bottom up, joining encodings of the sub-formula according to the rules from
Chapter [4. Since Z3 is already providing a DAG] for us, we just need to use
a dictionary to cache already encoded sub-formula. We can therefore prevent
unnecessary encodings and the introduction of redundant symbols.

2. At all times during the encoding, we have the information about the bound N,
Nyist and Nipee. If one of the bounds is zero, we omit specifications about lists or
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trees, depending on which one is unnecessary. This includes all partial functions
fn, fiorf and their domains X,,, X;orX, and sub domains Y,,, Y;orY,.

3. Lastly, when encoding the inductive predicate, we encode the reachability only up
to Nyst or Nipee, respectively, not up to N.

6.2.2 Equality Propagation

The equality propagation was implemented using a list of equality bins. The bins
themselves were implemented using hash-sets. A better solution would be a union-find
data structure, however no readily available or reusable implementation was present within
the z3 source code. We did not find our implementation limiting, however union-find
would perform better for formulas with lots of equalities.

First, the equality bins are created using the algorithm depicted in Figure 6.6. Then for
each of the bins, a single representative is chosen, let it be x. For every other symbol y
in the bin, we create a rewrite rule “x <+ y”. The rewrite rules cause Z3 to substitute the
symbols accordingly.

Term T } Recursion with W,

is in negation b < each argument T' of 'Ij‘

!

is T an equality?

—no—>» (is T a negation? —yes—)‘ flip b
¢ I
no

let T be x=y

v

Search bins yes
for x and y

Y
Merge bins
or create new bin

A 4

isTa
disjunction?

Figure 6.6: Finding equality bins
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6.2.

Implementing the Proposed Optimisations

6.2.3 Stepwise Encoding

We implemented two variants of the Stepwise Encoding. The first variant encodes in two
steps: (1) encoding everything except the list and tree then (2) encoding the remaining
list and tree, predicates. This is depicted in Figure |6.7.

e

Encode formula

except tree and list

predicates

~

e

Calculate footprint

~

Q I Y
I
No

Encode tree and list

predicates

Figure 6.7: Modified part of the decision procedure for SL,,,using two-step stepwise

encoding

The second variant performs the encoding like the first variant but instead of using the
full footprint, it starts with a footprint equal to 1 and increases it with each step. This is
not done separately for Nj;s; and Nypee, which means there are at most Nyst + Nipee steps.
This variant is depicted in Figure 6.8l

o1
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Figure 6.8: Modified part of the decision procedure for SL,,,using iterative encoding
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CHAPTER

Results

The benchmarks were separated in two parts: an evaluation of the encoding run-time
and an evaluation of the decision procedure run-time.

Figure 7.1| shows the final results of the encoding run-time. Our encoding is faster by
several orders of magnitude, but likely because different programming languages used to
implement the encoders.

Figure 7.2 shows the total run-time comparison of our best performing variant of the
decision procedure, while Figure [7.3| depicts the comparisons for the run-times of the
SMTdecision. The total run-times show significant improvement over SLOTH. The
SMT]| run-times show the optimisations cause a small overhead for small formulas, but a
significant improvement for most other formulas.

The following two sections describe the details of the evaluations.

7.1 Benchmark: Encoding

The benchmark for the encoding consisted of using a family of SLj,,, formulas listy:

N
listy = 3k list(zy,) * distinct(xy...xy,)
n=1

The formulas grow linearly in size and consist of N list-predicates and N heap locations
that are all distinct. The bound for the formula is therefore N - 2. By exploiting the
linear growth and the fact all formulas are similar, we can easily compare the relation
between the formula size to the encoding run-time.

All run-time measurements were performed on an Intel Core i5-3230M clocked at 2.6GHz.
The timings were done three times, the resulting data is the arithmetic average of those

23



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7.

REsuULTS

[
e~

three runs. As a representative for our solution, we chose our decision procedure with
the optimisation variant SRed+Eq+UF. The optimisations are listed in Table 7.1. That
particular variant was chosen because it performed best.

In Figure 7.1, you can see the comparison between our encoder and the encoding part
of SLOTH. In the logarithmic diagram, we can see that both are parallel and flatten in
the same way. This shows that our encoding is not better on an algorithmic level. Both
flatten as the formulas grow, which shows that as the footprint grows, the run-time of
the encoding becomes more and more insignificant.

Although our encoding is faster by several orders of magnitude, it appears to be a
constant factor, which is easily explained by the different programming languages used to
implement the encoders. While |SLOTH was implemented using the Python programming
language, our encoder is implemented in C++. The former is an interpreted language,
while the latter is compiled to a bare metal executable.
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7.2. Benchmarks: Decision Procedure

CPU time
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listN
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.qg) : — SLOTH
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0.001
0.0001
1 2 3 4 ) ; 7 |
listN

Figure 7.1: Comparison of encoder-run-times

7.2 Benchmarks: Decision Procedure

For the second benchmark, we compared the run-times of the satisfiability of the decision
procedure. We are comparing the run-times for the satisfiability decision of the encoded
SMT formula as well as the footprints used by the encoder. The benchmark consists of
16 representative formulas. The following is the list of the formulas we used, while the
input files we used are listed in the Appendix in Section 8.2,

binary-search-tree
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7. RESULTS

This formula describes a binary search tree with two sub-trees to enforce a minimal
size.

tree(z, {(I,a < ), (r,a > )})
N(x = 0r) s (1=, U 0r)
*(r =0 rlrr) x (T =4 Tdata)

(
* (l —d ldata) * (T —d Tdata)

different-lists
This formula describes two lists: {z,b,null} and {y,d,null}. The data is con-
strained such that all elements must be equal. The data values for the list elements
staring in y are constrained not to be equal to A, while at the location x we have
the constraint, that it is not a list where all elements are equal to A, which forces
all elements to point to A.

list(z, {(n,a = a)}) *list(y, {(n,a # A)})
A =list(z, {(n,a # A)}) = list(y, {(n,a = ) })
ANA=9001x% (z —y b) * (b =, null) * (y =, d) * (d =, null)

* (3j —d xdata) * (b —d bdata) * (y —d ydata) * (d —d ddata)

different-lists-no-size-bound
Similar to the previous formula, this describes two different constant lists, but
without the size constrains, i.e. without in-between elements.

list(z, {(n,a = a)}) * list(y, {(n,a # A)})
A —list(z, {(n, a0 # A)}) * list(y, {(n,a = a)})

list-all-distinct
This formula describes a list with at least four elements. The data values behind
all the elements are constrained to be different.

list(a,{(n,a # B)}) A (a =4 b) * (b =y ¢) * (¢ = d) * (d —p €)

* (a —d adata) * (b —d bdata) * (C —d cdata) * (d —d ddata)

list-equal-zero
This formula describes a list with at least four elements. The data values are
constrained to be zero.

list(a,{(a=0)}) A(a =, b) * (b =y ¢) * (¢ =p d) * (d —p €)

* (a —d adata) * (b —d bdata) * (C —d Cdata) * (d —d ddata)
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list-increasing
This formula describes a list with at least four elements. The list is sorted and does
not contain equal elements.

list(a,{(n,a < B)}) A (a = b) x (b= ¢) % (¢c =p d) * (d —p €)

* (CL —d adata) * (b —d bdata) * (C —d cdata) * (d —d ddata)

mazx-heap
This formula describes a tree that is a maximum heap. The root node has two
sub-trees to enforce a minimal size.

tree(z, {(I,a > B), (r,a < B)}) A(z =, Lr) x (1=, U 1r)
% (r =, 7L7T) * (X =g Tdata) * (I =d ldata) * (T —d Tdata)

list-pivot
This formula describes a pivot element M that separates a list into two: one with
elements that point to data that is smaller than M, the other with elements that
are greater than M. In-between elements are used to enforce a minimal size.

list(zm, {(a < M)}) * list(y, {(a > M)}) % (m =, y) % (m —q M)
A(x —p a)* (@ —pb) % (b—pm)x(m —,y)
#(y = d) x (d—=ne) (e —=n f)*(f —ng)
# (T —d Tdata) * (@ —d data) * (b —d bdata) * (M —>a Mdata)
* (Y —d Ydata) * (d —d ddata) * (€ —d €data) * (f —a fdata)

list-pivot-distinct
Similar to the previous formula with the additional constraint that all elements
must be distinct.

list(z, m, {(a < M)}) * list(y, {(a > M)}) *x (m =y, y) * (m —q M)
Alist(z, {(n,ac # B)}A

A(x —=p a)* (@ —pb)x (b—pm)x(m —,y)

# (Y —=n d) x (d =€) x (e =y f)* (f =0 g)

* (T —d Tdata) * (@ —d Adata) * (b —d bdata) * (M —a Mdata)
* (Y —rd Ydata) * (d —q ddata) * (€ —d €data) * (f —d fdata)

double-alloc
The formula describes a double allocated list location.

(y =n x) * (y =5 null)

o7
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o8

entailment
The formula describes three locations that are trees and at the same locations they
are not. The result is UNSAT which indicates that first part of the formula implies
the second.

tree(a) * tree(b) * tree(c)
A —(tree(a) = tree(b) * tree(c))

entailment-eq
Similar to the previous formula, but with an equality that needs to be propagated.

tree(a) * tree(b) * tree(d)
A —(tree(a) = tree(b) * tree(c)) Ac=d

equal-lists
This formula describes three lists, that are at the same location. By the semantics
of the separating conjunction this is UNSAT. Equality propagation can help decide
it faster.
list(x) * list(y) * list(z) xx =y *y = 2

four-lists
A simple formula that describes four unconstrained lists.

list(z1) * list(zg) * list(xs) * list(x4)

four-list-cycle
This formula that describes a four element cycle.

(X1 —=n x2) * (T2 = x3) * (T3 —p T4) * (X4 —p 21)

entailment-max This formula comes from the proof in Section [3.5. We use it to prove
an implication that needs to be proven as part of the proof.

list(atqir) * @ —n.d (Gtair, m) * a = b A =list(a, b, {a < m})

All run-time measurements were performed on an Intel Core i5-3230M clocked at 2.6GHz.
The timings were done three times, the resulting data is the arithmetic average of those
three runs. In addition to the final solution with all optimisations, we measured the
impact of the optimisations themselves by only enabling one optimisation at a time.

Table 7.1 shows the abbreviations we used for labelling the combinations we used in
the benchmarks. Figures 7.4, 7.5, 7.6 and |7.7|illustrate individual comparisons between


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7.2. Benchmarks: Decision Procedure

tested variants, while Figures|7.2|and 7.3/ show comparisons between our best performing
variant and [SLOTH. Each axis represents the timing of one of the variants; the diagonal
line illustrates points of equal timing (z = y) and thus separates the measurements which
perform better in one or the other variant. The footprint sizes are shown in Figures |7.8,
7.97.10| and [7.11.

In a direct comparison of total run-time with SLOTH, our best variant performs signifi-
cantly better, as is evident in Figure [7.2. If we only compare the run-times of the decision
procedure for the SMT formula, as shown in Figure 7.3, the results are less significant
but still show that our procedure is favorable. Most of the formulas perform similar to
SLOTH. There are some outliers, especially for the very low run-time formulas. This
can be easily explained by the blow up produced by the [CNF| conversion. On the other
hand, we have significant performance improvements for edge cases, due to our proposed
optimisations.

Our other observations include:

e SRed performs good on decisions for entailments

¢ SRed performs better than [SLOTH for “mixed” formulas that contain both tree and
list predicates.

o« EQ is able to lower the footprint required by the encoding in serveral cases and
brings a small performance gain for those formulas

e When there is a lower bound than our bound calculation predicts, the Step variant
brings a overwhelming improvement for the run-time. On the other hand, if no
lower bound exists or the formula is UNSAT, it lowers the performance significantly.
This indicates that a better bound calculation heuristics could be a better choice
for an optimisation.

e UF has a small negative impact on performance but also brings significant improve-
ments for edge cases.

Table 7.1: Abbreviations of optimisation variants

Abbreviation Optimisation

SRed Encoding Size Reduction

EQ Spatial Equality Propagation
UF Stepwise Encoding (two steps)
Step Stepwise Encoding (iterative)
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-+ different-lists-no-size-bound ® entailment-max %X list-all-distinct = list-pivot-distinct
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Figure 7.2: Comparison of total decision procedure run-times between |SLOTH and
SRed+EQ+UF
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SRed+EQ+UF [s]
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©  binary-search-tree <& entailment % four-list-cycle = list-increasing
A different-lists v entailment-eq &  four-lists o list-pivot
Formula . . . . 4 . o
+ different-lists-no-size-bound ® entailment-max % list-all-distinct = list-pivot-distinct
% double-alloc % equal-lists @ list-equal-zero ¢ max-heap

Figure 7.3: Comparison of SMT run-times between |SLOTH and SRed+EQ+UF
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Figure 7.4: Comparison of SMT run-times between SRed and SRed+EQ
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Formula . . . . 4 . o
+ different-lists-no-size-bound ® entailment-max % list-all-distinct = list-pivot-distinct
% double-alloc % equal-lists @ list-equal-zero ¢ max-heap

Figure 7.5: Comparison of SMT run-times between SRed and SRed+Step
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Figure 7.6: Comparison of SMT run-times between SRed+EQ and SRed+EQ+Step
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SRed+EQ+UF [s]
I
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©  binary-search-tree <& entailment % four-list-cycle = list-increasing
A different-lists v  entailment-eq &  four-lists o list-pivot

Formula . . . . 4 . o
+ different-lists-no-size-bound ® entailment-max % list-all-distinct = list-pivot-distinct
% double-alloc % equal-lists @ list-equal-zero ¢ max-heap

Figure 7.7: Comparison of SMT run-times between SRed+EQ and SRed+EQ+UF
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SRed+EQ+UF [s]

8_
6_
4- *
2_
X
0- v
' ' ' ' '
0 2 4 6 8
SLOTH [s]
O binary-search-tree < entailment 4 four-list-cycle = list-increasing
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Formula 4 : : . . . o
+ different-lists-no-size-bound = entailment-max & list-all-distinct = list-pivot-distinct
% double-alloc *  equal-lists @ list-equal-zero ¢ max-heap

Figure 7.8: Comparison of footprint sizes between SLOTH and SRed+EQ+UF
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Formula : . . . 4 . B
+ different-lists-no-size-bound ® entailment-max % list-all-distinct = list-pivot-distinct
% double-alloc % equal-lists @ list-equal-zero ® max-heap

Figure 7.9: Comparison of footprint sizes between SRed and SRed+EQ
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7. RESULTS
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SRed+Step [s]

N
1

0 2
©  binary-search-tree o
A different-lists v
Formula ) i )
+ different-lists—-no-size-bound =
X

Figure 7.10: Comparison of footprint sizes between SRed and SRed+Step

double-alloc *

4
SRed [s]

entailment
entailment-eq
entailment-max

equal-lists

four-list-cycle
four-lists
list-all-distinct

list-equal-zero

list-increasing
list—pivot
list—pivot—distinct

max-heap
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7.2. Benchmarks: Decision Procedure

SRed+EQ+UF [s]
N

0 2 4 6 8
SRed+EQ [s]

©  binary-search-tree <& entailment % four-list-cycle = list-increasing
A different-lists v entailment-eq & four-lists o list-pivot

Formula : . . . 4 . B
+ different-lists-no-size-bound ® entailment-max % list-all-distinct = list-pivot-distinct
% double-alloc % equal-lists @ list-equal-zero ® max-heap

Figure 7.11: Comparison of footprint sizes between SRed+EQ and SRed+EQ-+UF
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CHAPTER

Conclusion

8.1 Summary

Separation Logic is an extension of Hoare Logic that allows modular reasoning about
imperative programs that use dynamic data structures. On the other hand Separation
Logic is not decidable in general. SL},,, is a fragment that aims for decidability and
expressiblity. A decision procedure for SL,,,, that reduces it to SMT was proposed and
implemented. We tackled some of the downsides of the original implementation: (1)
We integrated it within the state-of-the-art SMT solver Z3 and succeeded implementing
a faster encoding, which performs better by orders of magnitude. (2) We extended
the implementation by allowing choosing different location and data theories. (3) We
proposed optimisations for the decision procedure by looking at low performing edge
cases of the original implementation.

The resulting implementation can be used as an assistant for formal proofs or verification
of algorithms. Consequently it can act as a backend for an automatic and semi-automatic
verification tool. Moreover it might be useful as a platform for further development and
research on Separation Logic fragments.

8.2 Further Research

Our implementation is created to be extensible, the obvious choice would be implementing
other data structures beside trees and lists. An other possiblity would be adding other
predicates that allow to extend expressiblity of SL},,,. Useful predicates could include
expressing properties of the data structures (e.g, the size) or relations between them
(e.g. list a contains all the elements from list b). Care has to be taken however, as such
predicates could easily cost decidability.
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8.2. Further Research

Our best performing optimisations all have one in common: they helped decide the
formula before encoding or lowering the footprint size required for the encoding. Better
heuristics for calculating the upper bounds or finding undecidable cores before encoding
to SMT could improve performance even further.

Last but not least a possible connection point is using SL},,, and proving Hoare triplets
for common operations on lists and trees such as adding or removing elements, sorting
and similar.
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Appendix

Example encoding

The following is the formula x —, y *y —, 2z encoded to SMT in the SMT-LIB file
format. The encoded formula can be found in the chapter Encoding SLj,,, to SMT in
Section 4.2.1.

; define a Set to be an Array from Int —> Bool
(define-sort Set () (Array Int Bool))

; locations
(declare—const null Int)
(declare—-const x Int)
(declare—-const y Int)
(declare—-const z Int)
(declare—-const x1 Int)
(declare-const x2 Int)
(declare—-const x3 Int)

; encoding formulas

(declare—-const A1l Bool)
(declare—-const A2 Bool)
(declare—-const A3 Bool)

(declare—-const Bl Bool)
(declare—-const B2 Bool)
(declare—-const B3 Bool)

; encoding footprints
(declare—const X Set)
(declare—const Y1 Set)
(declare—const Y2 Set)
(declare—const Y3 Set)
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; encoding point-to—-functions
(declare-fun f n (Int) Int)

; encoding helpers

(define-const K_false Set
((as const Set) false) )

(define—-const K_true Set
((as const Set) true) )

(define—-const xi Set
(store
(store
(store K_false
x1 true)
x2 true)
x3 true))

(define—fun isElement ((e Int) (X Set)) Bool
(select X e) )

(define—fun isEmpty ((X Set )) Bool

(= X K_false) )
(define—-fun _union ((X Set ) (Y Set )) Set

( (_ map (or (Int Bool) Bool)) X Y) )
(define—-fun intersect ((X Set ) (Y Set )) Set

( (_ map (and (Int Bool) Bool)) X Y) )

(define—-fun _subset ((X Set ) (Y Set )) Set
( (_ map (implies (Int Bool) Bool)) X Y) )
(define—-fun isSubset ((X Set ) (Y Set )) Bool

(= K_true (_subset X Y) ) )

; Delta SL
(declare—const delta_SL Bool)
(assert (= delta_SL
(and
(isSubset X xi))
(not (isElement null X))

; F_smt
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N N

(assert (and Al Bl delta_SL (= Y1 X)

; Al
(assert (= Al
(and
A2 A3
(isEmpty (_intersect Y2 Y3))
)
))
g Bl
(assert (= Bl
(and
B2 B3
(= Y1 (_union Y2 Y3))
)
))
; A2
(assert (= A2
(= (f_n %) y)
))
=Y
(assert (= B2
(= Y2 (store K_false x true))
))
; A3
(assert (= A3
(= (fn y) z)
))
; B3
(assert (= B3

(= Y3 (store K_false y true))
))

(check-sat)
(get—model)

The output of the z3 SMT solver:

sat
(model
(define-fun y () Int
3)
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29
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(define—-fun Al () Bool

true)
(define—-fun x2 () Int
2)
(define-fun x1 () Int
3)
(define-fun null () Int
1)
(define-fun A2 () Bool
true)
(define—fun Y1 () (Array Int Bool)
(_ as—array k!'0))
(define—-fun B1 () Bool
true)
(define—fun X () (Array Int Bool)
(_ as—array k!0))
(define—fun Y3 () (Array Int Bool)
(_ as—array k!6))
(define—-fun x3 () Int
0)
(define—fun delta_SL () Bool
true)
(define—-fun B3 () Bool
true)
(define—-fun B2 () Bool
true)
(define—fun Y2 () (Array Int Bool)
(_ as—array k!5))
(define-fun x () Int
2)
(define—-fun z () Int
4)
(define—-fun A3 () Bool
true)
(define—-fun k!4 ((x!0 Int)) Bool
(ite (= x!0 3) true
(ite (= x!0 1) true
(ite (= x!0 2) true
(ite (= x!0 0) true
true)))))
(define—-fun k!1 ((x!0 Int)) Bool
(ite (= x!0 0) false
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47
48
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64
65
66
67
68
69
70
71
72
73
74
75
76
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78
79
80
81
82
83
84
85

76

(ite (= x!0 1)
(ite (= x!'0 2)
(ite (= x!'0 3)
false)))))
(define-fun f n
(ite (= x!'0 2)
(ite (= x!'0 3)
3)))
(define—-fun k!6
(ite (= x!0 0)
(ite (= x!'0 1)
(ite (= x!0 3)
(ite (= x!'0 2)
false)))))
(define—fun k!3
(ite (= x!'0 3)
(ite (= x!'0 1)
(ite (= x!0 2)
(ite (= x!0 0)
false)))))
(define—-fun k!0
(ite (= x!0 3)
(ite (= x!0 1)
(ite (= x!0 2)
(ite (= x!0 0)
false)))))
(define—-fun k!5
(ite (= x!'0 0)
(ite (= x!'0 1)
(ite (= x!0 2)
(ite (= x!'0 3)
false)))))
(define—fun k!2
(ite (= x!'0 0)
(ite (= x!0 1)
(ite (= x!0 2)
(ite (= x!'0 3)
false)))))

false
false
false

((x!'0 Int))

((x!'0 Int))
false
false
true
false

((x!'0 Int))
true
false
true
true

((x!'0 Int))
true
false
true
false

((x!0 Int))
false
false
true
false

((x!'0 Int))
false
false
true
true

Int

Bool

Bool

Bool

Bool

Bool
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tree(z, {(I,a < B), (r,a > B)})
Az =i Ur) s (L=, U0r)
¥ (r =, 7l7T) * (T —q Tdata)

(

* (I =g ldata) * (T —d Tdata)

(set-logic SLSTAR)

(declare—-const
(declare—const
(declare—const
(declare—const
(declare—const
(declare—-const
(declare—const
(declare—-const
(declare—const
(declare—-const
(assert
(tree

x Treeloc)
1 Treeloc)
r Treeloc)
11 Treeloc)
lr Treeloc)
rl Treeloc)
rr Treeloc)
xdata Int)
ldata Int)
rdata Int)

(left (< alpha beta))
(right (> alpha beta))

X))

(assert
(sep

ptolr x 1 r)
ptolr 1 11 1r)

ptod x xdata)
ptod r rdata)

(
(
(ptolr r rl rr)
(
(
(

ptod 1 ldata) ))

(check-sat)
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list(z, {(n,a = a)}) list(y, {(n, a0 # A)})
A =list(z, {(n,a # A)}) * list(y, {(n,a = a)})
ANA=9001 % (x =y b) * (b =, nulljse) * (y —p d) * (d =, nulljg)

* (-7; —d -'Edata) * (b —d bdata) * (3/ —d ydata) * (d —d ddata)

(set-logic SLSTAR)

(declare—-const x ListLoc
(declare-const y ListLoc
(declare—-const b ListLoc
(declare-const d ListLoc
(declare—const xdata Int
(declare—-const ydata Int
(declare—const bdata Int
(declare—-const ddata Int
(declare—-const A Int)

)
)
)
)
)
)
)
)

(define-fun notEgA ( (x Int) ) Bool (distinct x A) )
(assert
(sep
(list (unary (= alpha alpha)) x)

(list (unary (notEgA alpha)) y) ))

(assert (not (sep

(list (unary (notEgA alpha)) x)

(list (unary (= alpha alpha)) y) )))
(assert (sep

= A 9001)

pton x b) (pton b (as null ListLoc))
d) (pton d (as null ListLoc))
xdata)
bdata)
ydata)
ddata) ))

e}

&

(@]

(o8
QK O X K

(check-sat)
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list(x,{(n,a = a)})  list(y, {(n,a # A)})
A =list(z, {(n,a # A)}) * list(y, {(n,a =

(set-logic SLSTAR)

(declare—-const
(declare—-const
(declare—const
(declare—-const
(declare—const
(declare—-const
(declare—const
(declare—-const
(declare—-const

(assert
(sep (= A
(list
(list

(assert
(not (sep
(list
(list

(check-sat)

list-all-distinct

1

3

list(a,{(n,a # B)}) A (@ = b) x (b =y ¢) % (¢ =y d) * (d —p €)

* (CL —d adata) * (b —d bdata) * (C —d Cdata) * (d —d ddata)

x ListLoc)
y ListLoc)
b ListLoc)
d ListLoc)
xdata Int)
ydata Int)
bdata Int)
ddata Int)
A Int)

9001)
(unary (= alpha alpha))

X

)

(unary (distinct alpha A)) vy)

(unary (distinct alpha A)) x)

(unary (= alpha alpha))

(set-logic SLSTAR)

(declare—const

a ListLoc)

)
y

))))

a)})
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12
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16
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26
27

declare—-const
declare—-const
declare—-const
declare-const
(declare—-const
(declare—const
(declare—-const
(declare-const

(
(
(
(

(define—fun not-eq (

b ListLoc)
c ListLoc)
d ListLoc)
e ListLoc)
adata Int)
bdata Int)
cdata Int)
ddata Int)

(x Int)
next

b) (pton b c)
adata)

bdata)

cdata)

ddata) ))

(not (= x y))
(assert (list (
(assert

(sep

(pton a
(ptod a
(ptod b
(ptod c
(ptod d

(check-sat)

list-equal-zero

80

=
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(y Int) )

(not-eq alpha beta))

(pton c d)

Bool

a))

(pton d e)

list(a,{(a=0)}) A(a =, b) x (b =y ¢) * (¢ =p d) * (d —p €)

* (@ =4 adata) * (b —d bdata) * (¢ —d Cdata) * (d =4 ddata)

(set-logic SLSTAR)

declare-const
declare—-const
declare—-const
declare-const
declare—-const
declare-const

(
(
(
(
(
(

ListLoc
ListLoc
ListLoc
ListLoc
ListLoc
adata Int

® O Q O 9w

)
)
)
)
)
)
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(declare—const bdata Int)
(declare—const cdata Int)
(declare—-const ddata Int)

(assert (list (unary (= alpha 0)) a))
(assert
(sep
(pton a b) (pton b c) (pton c d) (pton d e)
(ptod a adata)
(ptod b bdata)
(ptod c cdata)
(ptod d ddata) ))

(check-sat)

list-increasing

© 0 N O U W NN =

e e e e e =
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list(a,{(n,a < B)}) A (a = b) x (b= ¢) % (¢ —=p d) *(d =€)
* (CL —d adata) * (b —d bdata) * (C —d Cdata) * (d —d ddata)

(set—-logic SLSTAR)

(declare—const a ListLoc)
(declare—-const b ListLoc)
(declare—-const ¢ ListLoc)
(declare—-const d ListLoc)
(declare—-const e ListLoc)

(declare—-const adata Int)
(declare—-const bdata Int)
(declare—const cdata Int)
(declare—-const ddata Int)

(assert (list (next (< alpha beta)) a))
(assert
(sep
(pton a b) (pton b c) (pton c d) (pton d e)
(ptod a adata)
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(ptod b bdata)
(ptod c cdata)
(ptod d ddata) ))

(check-sat)

mazx-heap
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tree(z, {(I,a > B), (r,a < B)}) Az =, Lr) * (1=, U1r)
s (r =, vlrr) * (2 =g Tdata) * (I =d ldata) * (T —d Tdata)

(set-logic SLSTAR)

(declare-const x Treeloc)
(declare-const 1 Treeloc)
(declare—-const r Treeloc)
(declare-const 11 Treeloc)
(declare—-const 1lr Treeloc)
(declare—-const rl Treeloc)
(declare—-const rr Treeloc)
(declare—-const xdata Int)
(declare—-const ldata Int)
(declare—-const rdata Int)
(assert
(tree

(left (> alpha beta))

(right (> alpha beta))

X))

(assert
(sep

(ptolr x 1 r)
(ptolr 1 11 1r)
(ptolr r rl rr)
(ptod x xdata)
(ptod r rdata)
(ptod 1 ldata) ))

(check-sat)
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list(xm, {(a < M)}) *list(y, {(a > M)}) *
(a —n b) *
(d—n €)%

A (x =y a) *

* (y —n d) *

* (T —d Tdata) *
(

*(Y —d ydata)

(set—-logic SLSTAR)

(declare—const
(declare—-const
(declare—-const
(declare—-const
(declare—const
(declare—const
(declare—-const
(declare—const
(declare—const
(declare—const
(declare—-const
(declare—const
(declare—-const
(declare—-const
(declare—-const
(declare—-const
(declare—const
(declare—-const

Q Hh O Q0 9K 3 X

X
O,
)
o
o)

mdata
ydata
adata
bdata
ddata
edata
fdata

M Int)

(a —d adata) *
(d —d ddata) *

ListLoc) ;;
ListLoc) ;;,
ListLoc) ;;
ListLoc)
ListLoc)
ListLoc)
ListLoc)
ListLoc)
ListLoc)

(m —py)* (m —gq M)
(b —pn m) * (M =, y)

(e =n f)x(f —n9g)
(b —d bdata) N

(e —d edata) *

(m —d mdata)

(f —d fdata)

head of first 1ist
pivot element
head of second 1ist

Int)
Int)
Int)
Int)
Int)
Int)
Int)
Int)
;; the pivot data

(assert (sep
(list (unary (< alpha M)) x m)
(list (unary (> alpha M)) vy)
(pton m vy)
(ptod m M) ))

;; Assert a few pointers as a classical conjunction

;; to force length

(assert
(sep

83


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

31 (pton x a) (pton a b) (pton b m) (pton m y)
32 (pton y d) (pton d e) (pton e f) (pton £ qg)
33 (ptod x xdata)
34 (ptod a adata)
35 (ptod b bdata)
36 (ptod m mdata)
37 (ptod y ydata)
38 (ptod d ddata)
39 (ptod e edata)
40 (ptod £ fdata) ))
41
42 (check-sat)
list-pivot-distinct
list(z,m, {(a < M)}) *list(y, {(a > M)}) x (m —, y) * (m —q M)
Alist(z, {(n, @ # B)})A
A(x = a)x(a—p0)x (b=, m)*x(m —y,y)
# (Y —n d) x (d —ne) x (e =y f) = (f =0 g)

(m —d mdata)

(f —d fdata)

(b =4 bdata) *
(6 —d edata) *

(a —d adata) *

(
* (T —q Tdata) *
( (d —d ddata) *

* (Y —d ydata)
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1 (set-logic SLSTAR)
2
3 (declare—-const x Listloc) ;,; head of first 1ist
4 (declare—-const m ListLoc) ;,; pivot element
5 (declare-const y ListlLoc) ,;,; head of second 1ist
6 (declare—-const a ListLoc)
7 (declare—-const b ListLoc)
8 | (declare—-const d ListLoc)
9 (declare—-const e ListLoc)
10 | (declare—-const f ListLoc)
11 | (declare-const g ListLoc)
12 (declare—const xdata Int)
13 (declare—const mdata Int)
14 (declare—const ydata Int)
15 (declare—const adata Int)
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(declare—const bdata Int)
(declare—const ddata Int)
(declare—-const edata Int)
(declare—-const fdata Int)
(declare-const M Int) ;,; the pivot data

(assert (sep
(list (unary (< alpha M)) x m)
(list (unary (> alpha M)) v)
(pton m vy)
(ptod m M) ))
;; Additionally assert that all elements are distinct
(assert (list (next (distinct alpha beta)) x))
;; Assert a few pointers as a
;; classical conjunction to force length
(assert

(sep

(pton x a) (pton a b) (pton b m) (pton m y)
(pton y d) (pton d e) (pton e f) (pton f qg)
(ptod x xdata)

(ptod a adata)

(ptod b bdata)

(ptod m mdata)

(ptod y ydata)

(ptod d ddata)

(ptod e edata)

(ptod £ fdata) ))

(check-sat)

double-alloc

"

gt W N

(y —n x) * (y —n nullIist)

(set-logic SLSTAR)
(declare—-const y ListLoc)
(declare—-const z ListLoc)

(assert
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6 (sep (pton y z) (pton y (as null Listloc)))
7 )
8 (check-sat)

entatlment

tree(a) * tree(b) * tree(c)
A —(tree(a) = tree(b)  tree(c))

=

(set-logic SLSTAR)

(declare—-const a ListLoc)
(declare-const b ListLoc)
(declare—-const c¢ ListLoc)

(assert (sep
(list a)
(list D)
(list c)))

© 0 N O U A W N

e
N o= O

(assert (not (sep
(list a)
(list Db)
(list c))))

[ S e O
D Ot s W

(check-sat)

[
-3

entailment-eq

tree(a) * tree(b)  tree(d)
A —(tree(a) = tree(b) * tree(c)) Ac=d

86


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

(assert (sep

(set—-logic SLSTAR)

(declare—-const a Treeloc)
(declare—-const b Treeloc)
(declare—-const ¢ Treeloc)
(declare—-const d Treeloc)

© 00 N O Ot A W Ny =

NN N = e e = = e e
N H O © 00 N U R W NN = O

e

(tree a)
(tree Db)
(tree d)

))
(assert (= c d))

(assert (not (sep
(tree a)
(tree Db)
(tree c)

)))

(check-sat)

equal-lists

© 0w N O W N =

= o= e
N = O

list(z) = list(y) x list(z) xx =y*y =2

(set-logic SLSTAR)

(declare—const x (ListLoc))
(declare—-const y (ListLoc))
(declare-const z (ListLoc))

(assert (sep
(list x)
(list vy)
(list =z)
(= x y)
(= vy z)
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13
14
15
16

; (not (= x (as null ListLoc)))
))

(check-sat)

four-lists

© 00 N O U W Ny =

[
N O O R W NN = O

list(z1) * list(z2) * list(zg) * list(x4)

(set-logic SLSTAR)

ListLoc)
ListLoc)
ListLoc)
ListLoc)

(declare—-const x1
(declare—-const x2
(declare—-const x3

)
)
)
(declare—const x4 )

—_~ o~~~

(assert
(sep

(check-sat)

four-list-cycle

88

Ju

(S A ™

(1 —n x2) * (X2 —p x3) * (T3 —p T4) * (T4 —p 1)

(set-logic SLSTAR)

(declare-const x1 (ListLoc))
(declare—-const x2 (ListLoc))
(declare—-const x3 (ListLoc))
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6 (declare—-const x4 (ListLoc))
7

8 (assert

9 (sep

10 (pton x1 x2)
11 (pton x2 x3)
12 (pton x3 x4)
13 (pton x4 x1)
14 )

15 | )

16

17 (check-sat)

list-not-list

list(z) A —list(z)

(set—-logic SLSTAR)
(declare—-const a ListLoc)
(declare—-const b ListLoc)

(declare—-const ¢ ListLoc)

(assert ((list a))

© 00 N O Ut A W Ny =

(assert (not (list a))

=
o

(check-sat)

_
[,

entailment-mazx

list(atqir) * @ —n.d (Qrair, m) * a = b A —list(a, b, {o < m})

(set—-logic SLSTAR)

1
2

3 (declare-const a (ListLoc))

4 (declare—-const atail (ListLoc))
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1.1

2.1

3.1
3.2
3.3
3.4

4.1

4.2

90

© 0w N O wt

11
12
13
14
15
16
17
18
19
20
21
22

(declare-const m (Int))
(declare-const b (ListLoc))
(assert
(sep
(ptod a m)
(pton a atail)
(list atail)
(= a b)
)
)
(assert (not
(list (unary (<= alpha m)) a b)
))
(check-sat)
[ ] [ ]
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