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Kurzfassung

Das Feld der Personaleinsatzplanung im Allgemeinen und des Nurse Rostering Problems
(NRP) im Speziellen wird seit geraumer Zeit wissenschaftlich untersucht. Oft liegt bei
diesen Studien der Fokus auf einzelnen Bereichen wie Krankenhäusern und stationären
Einrichtungen. In dieser Diplomarbeit wird ein Problem beschrieben, welches dem NRP
ähnelt, den Fokus aber auf geringfügig beschäftige Arbeitskräfte legt. Diese gelegentlichen
Mitarbeiter unterscheiden sich von traditionellen Vollzeitmitarbeitern in vielen Bereichen,
am Gravierendsten allerdings in deren Zeitvorgaben. Von ihnen wird erwartet, dass sie im
Laufe eines Monats und im Rahmen ihrer zeitlichen Möglichkeiten eine gewisse Anzahl
von Stunden bzw. Tagen einsatzbereit sind, und das potenziell an unterschiedlichen
Arbeitsplätzen und örtlichen Gegebenheiten. Aus den von ihnen bereitgestellten Angaben
ihrer Verfügbarkeit muss danach eine Arbeitseinteilung erstellt werden.

Diese Diplomarbeit beschreibt einen Algorithmus, der in der Lage ist, solch eine Einteilung
mittels der Angebote der Mitarbeiter und den Anforderungen der Arbeitsplätze zu
erstellen. Neben der Optimierung der Anforderungen für die diversen Arbeitsplätze,
wird auch die Fairness der Einteilung sowie die Präferenzen der Mitarbeiter an welchen
Arbeitsplätzen sie arbeiten wollen, berücksichtigt.

Das Problem wird formell definiert und von zwei unterschiedlichen methodischen Perspek-
tiven beleuchtet: ein Constraint Programming (CP) und ein metaheuristischer Ansatz
werden implementiert und hybridisiert. Die gewählte Metaheuristic ist eine Variable
Neighbourhood Search, welche als General VNS (GVNS) mit einem integrierten Variable
Neighbourhood Descent (VND) implementiert wird. Die zu verbessernde initiale Lösung
wird durch CP oder durch eine zusätzlich implementierte greedy Heuristik geliefert.

Von zehn verschiedenen realen Instanzen werden verschiedene Konfigurationen des GVNS
und VND mit unterschiedlich generierten initialen Lösungen getestet und verglichen.

Durch die Komplexität des Problems ist CP nicht in der Lage, kompetitive Resultate
zu erzielen. Resultate, die mittels einer initialen Lösung und einem darauf folgenden
VNS erzielt werden, sind generell erfolgsversprechender. Für einen realen Einsatz liefern
Lösungen, die durch eine greedy Heuristik generiert und mittels GVNS verbessert werden,
die besten Ergebnisse. Unser Lösungsansatz ist ein mächtiges Werkzeug für menschliche
Planer, um innerhalb weniger Stunden hochqualitative Lösungen zu generieren, die mit
wenig Adaptionsaufwand in der Praxis benutzt werden können.
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Abstract

The field of personnel scheduling in general and of the nurse rostering problem in particular
has been studied for a long time, most often focused on unique real-world applications.
In this thesis, a problem similar to the nurse rostering problem but focused on casual
employees is studied. Casual employees as described in the thesis differ from full-time
employees in many aspects, most important of which are time constraints. Casual
employees are expected to work a few days a month on days they choose, at possibly
different locations, and a roster has to be created from their offerings.

This thesis provides an algorithm that is able to generate such a roster when given the
offerings from casual employees and the requirements of their workplaces. In addition to
maximizing the amount of employees than can be staffed at any open shift, the fairness
of the assignments as well as the preference of workplace of the casual employees is
considered. The problem is formalised and approached from two different methodic
perspectives. A constraint programming as well as a metaheuristic approach are developed
and later hybridised. The chosen metaheuristic is a variable neighbourhood search (VNS),
implemented as a general VNS (GVNS) with an embedded variable neighbourhood
descent (VND). The initial solution is given by constraint programming (CP) or an
additionally implemented greedy construction heuristic.

Different configurations of either GVNS or VND with different types of initial solutions
are tested on ten real-world instances and subsequently compared.

Due to the complexity of the problem, pure constraint programming is not able to deliver
competitive solutions, whereas approaches combining an initial solution obtained from
either CP or a greedy heuristic with the VNS are more promising. Our experimental
evaluation indicates that in practice, initial solutions from the custom greedy heuristic
that are subsequently improved by the GVNS are most promising. While our approach
was not designed to automatically handle all real-world peculiarities arising, it serves
as a powerful tool to generate high quality solutions within a few hours to be further
adapted by the human planner.
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CHAPTER 1
Introduction

The setting of this thesis is a prominent art institution in Austria, consisting of multiple
museums. Each of those museums has their own opening hours, event schedule and
requirements for customer service employees. While the baseline of this need is provided
by conventionally employed full-time employees, there is much more potential work than
there are full-time employees. For this reason, casual employees are employed. These
are generally, but not exclusively, university students wanting to earn a bit extra while
pursuing their education. Their contract is much more fluid—they can choose when they
want to work during a month and only work between one and six shifts a month. The
total number of shifts covered by casual employees every month generally hovers around
a thousand. The assignments of employees to shifts are currently done manually. As
can be expected, this is difficult, exhaustive work that has to be repeated every month
during a very short time frame. Due to the nature of the problem, the name used in this
work is Casual Employee Scheduling Problem (CESP). The motivation for this project
is to provide an alternative for the manual scheduling. Besides offering an immediate
real-life application for the result of the research project, the problem as such is unique
enough in its definition that it warrants a thorough investigation.

In the course of the project, the real life problem is formally defined and two solution
approaches, on the basis of constraint programming and a variable neighbourhood search
are discussed, implemented and measured.

The problem ramifications will be described next. For the formal definition, see Chapter
4. Fundamentally, as with most personnel scheduling problems, the goal is to fill a various
range of demands with offers. In this case, shift demands are to be satisfied by employees.
The planning horizon is a month. A shift consists of a location and a date. Locations
can be either one of the houses or events, which can be either during the regular opening
hours of a house or run extra. The construction work for a new exhibition is an example
for a regular event, while an exclusive late-night guided tour would be an example for a
shift running extra. All of the houses that are adding demands to the scheduler for the

1
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1. Introduction

CESP are located in Vienna, although locality does not factor into the planning problem.
Every location also defines the length of a shift.

The employees can choose the days they may be scheduled for a shift. They separately
apply for any shifts outside the general time range by applying to special events. This is
because the general expectation when applying to a specific day is that the work will be
full-time and generally during the business day, while special events often run late at
night or only for a few hours. An employee cannot choose the locations they want to work
at directly, simply because in the worst case, if everybody wants to work at location A
which has no demands but nobody wants to work at location B which has high demand,
the system could not work at all. Special shifts are obviously exempt from this rule, since
they are applied to separately. Employees can, however, mark non-event locations as
favourite houses, which tells the scheduling personnel—or the algorithm—their location
preferences. A person can only be scheduled for one shift a day. An employee can also
specify the maximum number of shifts they want to work. This can range from one to
six shifts and excludes separately chosen special shifts, since the employee specifically
requests them. If an employee selects at least a certain number of shifts for a month, they
are also eligible for standby and reserve shifts. These shifts are distributed in addition to
the chosen shifts and serve as a buffer for the administrative side of the scheduling. For
example, if somebody who is supposed to cover a shift at a certain day falls sick, there
are employees on standby to cover the now vacant shift. Ultimately, there is another
hard cut-off for employee working hours—they cannot earn more than a certain amount,
which is defined in Austria as "Geringfügigkeitsgrenze". Earning less than this amount
per month is favourable from a taxation and insurance standpoint, so even if somebody
chooses to work six shifts a month and volunteers for seven additional events, they will
not be scheduled for more than they can earn without crossing this threshold.

When scheduling, the important goals to keep in mind is that every shift demand should
be filled. Shift demands should be covered fairly, i.e., five shifts missing one of eight
required employees each is better than one shift missing five. Additional resources can
be shifted easier that way, and in the worst case, it is easier for seven employees to have
the workload of eight than it is for three employees. Furthermore, shifts assigned should
also be covered fairly. This means that it is important that if only half of the work offers
given by employees can be filled because there is not enough demand, everybody should
be scheduled for half the shifts they wanted. This is, of course, impossible to do in reality,
so the best that can be done is as close an approximation as possible. Furthermore, the
favourite house selections done by the employees should be adhered to, if at all possible.
If not, they should also be distributed as fairly as possible. Naturally, there are also
many obvious problems to look out for, e.g., everybody has to cover at least one shift,
nobody can be over the hour threshold and so on. This is, in brief, the extent of the
problem. Some intricacies have been omitted, as the problem description is complicated
enough as-is. As stated before, it will be revisited and formally defined in Chapter 4.

The CESP is a personnel scheduling problem, and shares many characteristics with a
lot of them, most notably the Nurse Rostering Problem (NRP), which will be used as

2
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a reference point. The solution approaches considered and implemented are constraint
programming (CP) and a variable neighbourhood search (VNS). An introduction to these
methods can be found in Chapter 3. As a first step, the problem was formalised and
implemented as a CP problem. If an exact method could solve the problem optimally in
a reasonable amount of time, that would be the best case. Unsurprisingly, that did not
turn out to be the case. Next, a general VNS (GNVS) was implemented and used to
improve the solutions provided by the CP. Afterwards, a greedy construction heuristic
was implemented to help with diversification and with real-world applicability of the
problem, since it uses far less resources than the CP solver. Implementation details will
be shown in Chapter 5. The results of the methods and of their hybridization are further
discussed in Chapter 6.

Following this chapter, Chapter 2 offers a general view of the NRP and the most striking
differences to the CESP, followed by an overview of the current field. Chapter 3 addresses
the methodology used to create the solution approaches. Chapter 4 defines the problem
formally and also includes a proof for NP-hardness. Chapter 5 describes the solution
approaches in detail. Finally, Chapter 6 gives an overview of the computational results
and Chapter 7 deals with future plans and a reflection of the work.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 2
State of the Art

2.1 Overview of the Nurse Rostering Problem

The nurse rostering problem (NRP), also called the nurse scheduling problem (NSP) is a
combinatorial timetabling problem about scheduling a set of nurses over a certain time
frame. It has been studied for decades [6] and is still a very relevant problem in modern
times. In general, the main aspects of the problem definition are that there is a set of
employees, often nurses in a hospital or another healthcare environment, which should be
scheduled for a certain period of time, usually about a month. In most cases, the needed
variables and constraints are roughly as follows, as stated by Burke et al. [6]:

• Planning period: the time frame for which the planning is undertaken—often
between a week and a month.

• Skill category: different nurses can have different skills or responsibilities and certain
shifts can require certain skills.

• Shift type: hospitals often operate on several shifts per day, a common system is
having three 8-hour shifts; there can also be different stations, some of which may
have certain shift requirements.

• Coverage constraints: these constraints represent the requirements for nurses and
skill sets for every shift.

• Time constraints: these constraints represent every time related constraint on
the schedule, like personal preferences, amount of shifts a week per person or the
common rule of not being able to do two consecutive shifts, even across days (i.e.,
having a morning shift on the day after a night shift).

5
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2. State of the Art

• Work regulations: constraints from the workplace, often affecting time constraints,
i.e., laws that prevent two shifts without a minimum resting time between.

The constraints just presented are often divided into hard and soft constraints. Hard
constraints must be satisfied to produce a feasible solution, while soft constraints should
be adhered to, but can be violated in order to generate a viable solution, i.e. it is
encouraged to give a nurse a day off if she requests it, but if it is not possible, it is still a
valid solution. There can be quite a few soft constraints in any schedule, and the relation
between the different constraints is very important for the quality of the solution in
practise, and very subjective. A good example might be that a shift needs to be staffed
with at least 15 nurses, but 20 would be ideal. A nurse could work the shift, but has
requested a day off. If the amount of scheduled nurses is below 15, the answer is obvious,
but if they are 15 or 19, the correct answer, and therefore, the better solution, might be
more ambiguous. Furthermore, some regulations could be both hard and soft constraints;
if a nurse is employed for a full-time job of 40 hours a week, scheduling 45 hours might
be allowed, but discouraged, while anything over 50 hours might be forbidden.

Since the problem is firmly rooted in the real world and many studies have been made
with real-world examples first and foremost, there are lots of special cases for every
variable or variation which was just presented. The way that time-related constraints are
handled is probably the most flexible of all, since a lot of the details are just between the
nurses and their supervisors — there are many variations of different regulations on how
shifts may follow each other, how many free days must be given after a certain number
of shifts and how much importance is given to scheduling around personal preferences. A
good indication of the different approaches can be seen in Burke et al. [6].

After this brief overview, here is a simple example for a possible NRP variant:

Facet Text Definition

Nurses 3 N = {A, B, C}
Planning period 2 days P = {D1, D2}
Skill category 2 categories S = {S1, S2}
Shift types 2 shift types, early and late T = {E, L}

• Hard coverage constraints: at least one nurse per shift, regardless of skills

• Soft coverage constraints: all shifts covered

• Time constraints: no two shifts without a shift rest in between

Following this is the exact roster of available employees and requirements in Table 2.1.
Two possible solutions for this problem are shown in Tables 2.2 and 2.3.
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2.2. Differences Between the NRP and the CESP

Table 2.1: NRP overview: Nurses and shift requirements

Nurse Skills

A S1

B S1, S2

C S1

Requirements DE
1 DL

1 DE
2 DL

2

S1 1 1 2 2
S2 0 1 1 0

Sum 1 2 3 2

Table 2.2: NRP overview: Solution A

Requirements DE
1 DL

1 DE
2 DL

2

S1 A C A B,C
S2 B

Sum 1(1) 2(2) 1(3) 2(2)

Table 2.3: NRP overview: Solution B

Requirements DE
1 DL

1 DE
2 DL

2

S1 A C A C
S2 B

Sum 1(1) 1(2) 2(3) 1(2)

As can be seen in the example, even such a simple problem can have multiple solutions.
While solution A has a higher amount of scheduled nurses and therefore less unfilled
demands, it schedules only one person for a shift which requires three nurses at best,
while solution B schedules two nurses for this shift. Without knowing more about the
penalties of the soft constraint violations and the objective function of the problem, even
these simple solutions cannot be easily compared.

While it is obvious that most variants of the NRP are complex to solve, it is difficult to
find the definitive NRP version due to the sheer possibilities of variants and the origin as
a real-world problem. The NRP can generally be seen as a timetabling problem, which
has been proven to be NP-complete[8] in the general form. A general mathematical model
and NP-hard cases are presented in Brucker et al. [4]. In Chapter 4.6, NP-hardness will
be shown for the specific variant presented in this thesis.

In reality, the NRP is still highly relevant as a general scheduling problem, since it
can be encountered everywhere in the real world. The smallest private clinic or even a
supermarket can be seen as solving a variant of the NRP on a regular basis, often using
highly unique variants of the constraint types presented earlier, or entirely different ones.

2.2 Differences Between the NRP and the CESP

While there are many similarities between the NRP and the problem discussed in this
thesis, there are also enough differences to warrant a dedicated overview, which will be
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2. State of the Art

given in this chapter. Differences will first be explained and summarised at the end of
the chapter in Table 2.6.

The NRP generally schedules employees with a fixed employment contract, mostly full-
time. They can generally be expected to be available at all times (or at least working in
a predictable, steady pattern), while holidays or sick leave are special cases that have to
be managed. Employee recruiting also follows this trend, it is comparably slow and an
important decision, since employees cannot easily be hired for just one tough month and
then let go again. This is more of an organizational problem with one possible solution
being a regional pool of nurses, described by Gutjahr and Rauner [13].

The challenges in scheduling are often based on real workplace constraints which involve
relationships between several days. For example, a common constraint is that after a
night shift, the nurse has to have a free day (or at least not a morning / day shift). Thus,
days are interconnected, and if day d1 is changed, day d2 might be violating constraints
because of this change.

In contrast to this, the CESP schedules part-time employees who can decide on which
days they want to work. They can be scheduled at any day they want to work without
any constraints depending on the day before or afterwards. Additionally, they are only
available for a certain amount of time each month—far less than expected from a full-time
employee. It is possible that an employee is only available for two days in one month
and ten in the next. These core rules produce interesting effects. For example, if a shift
on day d1 cannot be staffed with enough personnel, it is possible to staff it adequately
by unassigning person A from a shift on day d2 and assigning them to day d1, while
assigning person B to day d2. This could be possible if person A chose both day d1 and
d2, but person B chose only day d2. For better clarity, a slightly expanded example of
this is shown in Table 2.4 and 2.5.

Table 2.4: CESP example: Employee and shift requirements

Employee Days

A d1

B d1, d2

C d2, d3

D d3

Requirements d1 d2 d3

Employees 2 1 1

Table 2.5: CESP example: Solutions

Solution A d1 d2 d3

Employees A B C

Solution B d1 d2 d3

Employees A,B C D

Solution A could be a generated by a simple greedy approach, where B is assigned to y,
because y is still empty and it is normally regarded as a better move than fully staffing
x. At the end, D is not scheduled to any shift, because z was filled by C, and x is left
one employee short.
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2.3. Literature

In the CESP, it is not uncommon to have the number of requirements fluctuate wildly
between different days, depending on factors like the day of the week, events and general
on-goings in the facilities. The employees requesting shifts do not know about this and
request based on their personal preferences, which means that there can be substantial
discrepancies during meaningful dates, i.e., Christmas. In general, it is best if the amount
of work offered is enough to fill all requirements but does not exceed the requirements
too much, since it is ideal if everybody can get all the shifts they request. In any case, a
very relevant part of the assignment is fairness. Either to the shifts in how far they are
understaffed, or to the employees in how many of their shift requests cannot be granted.

Following is Table 2.6, granting a rough overview of the core differences between the
NRP and CESP. Coverage constraints and working regulations have been omitted since
they are the most domain-specific and do not contribute a lot to the list of differences.

Table 2.6: Differences between NRP and CESP

Category NRP CESP

Planning
period

Usually 2 – 8 weeks, often 4 4 weeks

Skills Often used and critical to constraints No different skill sets

Shift types Generally 2-3 shifts per day One shift per day

Employee
contract

Conventional long-term contracts Fluid, month-by-month basis

Employee
working
hours

Significant amount of time, generally
full-time, around 160 hours / month

Small-medium amount of time, be-
tween 5 – 60 hours / month

Employee
days

Most days can be used for scheduling,
often working in set rotation

Employee chooses which and how
many days can be scheduled each
month

Number of
employees

Often dozens Hundreds

Time con-
straints

Days are dependant on each other—
e.g., no day shift after night shift

Days only indirectly depend on each
other because of complicated re-
quested day situation of each indi-
vidual employee

2.3 Literature

The fields of personnel scheduling in general and the NRP in particular have been
well-studied for decades, see the extensive research by Burke et al. [6] and Van den
Bergh et al. [32]. There have been many variants of the NRP which have been solved
with different approaches. Since many of the NRP variants are sourced from real world
applications with unique needs and methodology, there are many approaches tailor-made
for one particular variant. To increase the comparability of approaches, standardised
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2. State of the Art

testing instances have been introduced over the decades. Two major examples being the
First and Second Nurse Rostering Competition[7], which both introduced a problem and
different instances to apply it to. Those instances are often used as benchmarks for new
proposed algorithms in the field.

A sizeable amount of the research surrounding the NRP is centred around metaheuristics,
with metaheuristic hybrids[28] being the norm. There have been solution approaches using
tabu search, simulated annealing, variable neighbourhood search as well as population-
based approaches like genetic algorithms and ant colony optimisation.

In Burke et al. [5] the authors develop an algorithm incorporating a tabu search. They
initialise their schedule by either beginning from a previous solution or by starting from
an empty schedule and randomly adding or removing shifts until they have a feasible
schedule. Afterwards, they apply a tabu search that they hybridised with one of two
custom heuristics to further improve their results. The two custom heuristics differ in
their effectiveness and time-consumption. The authors also stress that they took care
to develop a solution that would generate schedules which are not easy to improve by
humans. This is how their second custom heuristic works—it considers and applies
every beneficial shift exchange between two employees, which is similar in concept to
neighbourhood operations from other research.

In Bai et al. [2], a memetic algorithm comprised of a simulated annealing hyper-heuristic
(SAHH) and a genetic algorithm is implemented. The genetic algorithm uses a stochastic
ranking method to rank feasible and infeasible individuals. It does so by using both an
objective function and a penalty function. Each individual is then further improved by
the SAHH. Since the main purpose of the SA is finding local optima, the temperature is
updated throughout the algorithm and not reset at the start of every SA run. Furthermore,
the performance of the low-level heuristics are tracked by the hyper-heuristic and used
to guide which heuristics are used in the future.

In Tassopoulos et al. [31], a two-phase adaptive variable neighbourhood search is imple-
mented. Phase 1 deals with the initialization and developing of an initial, randomised
solution. In Phase 2, the authors developed two algorithms, one deterministic and
stochastic respectively, which are selected by a dynamic probability reflecting their prior
successes. These algorithms swap parts of the roster. Afterwards, six different neighbour-
hoods are applied sequentially. When the algorithm has not produced any improvements
for a certain amount of cycles, it is considered to be stuck in a local optimum and a
perturbation move is applied.

In Jaradat et al. [16], an elitist ant system metaheuristic is hybridised with an iterated
local search (ILS). After constructing an initial solution per ant, the ILS is employed. If
the ILS can improve the best solution, an intensification phase is triggered, in which the
neighbours of the best solution are randomly explored. If not, a diversification phase is
triggered, which perturbs the solution by evaporating the current pheromone trail and
generating a new population of ants based on the current elite solution. Afterwards, the
algorithm starts the next cycle by using the ILS.
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2.4. Analysis, Comparison, and Summary

In recent times, exact methods have also been used successfully to solve the NRP. While
it is not common to be able to solve any sufficiently large instance of a NRP entirely via
exact methods, hybrids of an exact method and a metaheuristic or hybrids between two
exact methods have shown good results.

In Qu and He [26], the authors hybridise a constraint programming (CP) approach with
a variable neighbourhood search (VNS). The authors focus on the CP aspect and note
that due to the size and complexity of most NRP definitions, traditional applications
of CP approaches have not been very successful for large instances. Therefore, they
implemented a decomposition approach. First, partial high-quality weekly rosters are
created by using a satisfiability approach within CP. Then, these weekly rosters are
extended and connected by an iterative forward search using an extended model and an
optimisation approach. Afterwards, the whole solution is improved by using a VNS.

In Stølevik et al. [30], CP and a variable neighbourhood descent (VND) are used within
an ILS. At first, CP builds an initial solution using only hard constraints, which is
subsequently improved using the VND. Afterwards, diversification is executed by deleting
all the schedules for a random (2% to 30%) number of nurses. Half of the chosen schedules
are random, half are picked because of their high penalty scores. After deleting those
schedules, CP is employed to create new assignments. This is one cycle of the ILS.

In Rahimian et al. [27], an integer programming (IP) approach is coupled with a VND.
In the initialization phase, a greedy algorithm is employed to build the initial solution.
Afterwards a VND is used to improve this algorithm until the VND can find no more
improvements. The IP aspect is then applied as part of a ruin-and-recreate operation,
which means that parts of the solution are destroyed before being recreated by IP. After
the final solution is found this way, this solution is once-again improved by IP.

As noted before, the NRP encompasses a lot of variants, among which some are closer to
the CESP than the traditional models. In Gutjahr and Rauner [13], the authors consider
a dynamic problem variant in which a regional group of hospitals is supported by a pool
of nurses to cover shift shortages. The nurses can define their own working hours and
can be assigned to any corresponding hospital needing their services during the time they
specified. This problem definition resembles the way casual employees request shifts. The
authors also go into detail about the common troubles with dynamic problem definitions
like imperfect information and delaying assignments. The authors consider a SA and an
ACO, but found that the output of the SA was below their expectations. In contrast, the
ACO algorithm performed very well in their experiments, which is attributed to ACOs
general good viability regarding highly-constrained problems.

2.4 Analysis, Comparison, and Summary

The literature around the personnel scheduling and the NRP in particular is vast and
loaded with history. There have been successful applications of tested methods for lots of
different variants, and new advances are still being made today. It can be easily seen that
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2. State of the Art

nearly every moderately-known metaheuristic has been successfully applied to the NRP
in one way or another. In recent years, research using population-based metaheuristics,
especially ant colony optimisation, seems to yield good results, especially when coupled
with strategies which can help improve candidate solutions further. The capability of
ACO as being both a construction heuristic as well as a diversification strategy are a
good fit for a highly constrained problem like the NRP usually is. This combination is
pursued in our preliminary work [10], where we applied ACO with an embedded VND
for intensification to improve initial CP solutions.

The usage of exact methods to generate an initial solution — particularly using a relaxed
set of constraints — has also found success. Afterwards, improvement strategies like a
VND or SA can be utilised, depending on the further need for intensification. Furthermore,
solution approaches using exact methods to only improve subsets of the instance, thereby
reducing the search space have also been successful. These are generally hybridized with
another method to deal with the problem as a whole or to combine the improved subsets.

For the solution approaches using improvement methods, many can be reduced to similar
basic neighbourhoods which are being used in many other problems, like the exchange
of a single shift between two employees. On the other hand, there are also interesting
and complex applications that seem tailor-made for personnel scheduling problems, such
as moving a connected chunk of assigned shifts for a single employee. This move can
leverage the existence of small but connected high-quality assignments without disturbing
them. Moves like this are especially powerful in highly-constrained environments like
the NRP, where the existing roster already follows several complex rules with regards to
their structure. Simple shift-exchanges are far more likely to result in infeasible moves in
such problems. Although methodically interesting, due to the differences between the
CESP and the NRP as stated in Chapter 2.2, these pattern-shifts are not applicable in
the CESP. This is because the strength of the pattern-shift—keeping the relationship
between consecutive days—is not relevant to the CESP.

The different use of diversification strategies is also interesting. As discussed in the
previous subsection, two relevant strategies found in the literature were deleting the
least-quality parts of the roster and deleting the complete roster of an employee. The
first strategy seems obvious, and is generally used in a probabilistic function with random
assignments. If only the least-quality parts of the roster would be deterministically
removed, this strategy might get stuck in another local optimum if the shaking it
performs is too narrow. The second strategy, deleting the whole roster of a single
employee—in comparison to just deleting single assignments—also feels logical for the
NRP. If one assignment of an employee is deleted, due to the highly constrained nature of
the problem, it is very possible that there are no additional moves that can be performed,
since the other assignments given to the employee more or less force this assignment
anyway. This is not the case in the CESP, though, since the schedules of casual employees
are generally much more open. If a single assignment is deleted, it is quite possible that
the employee can be assigned to a dozen or more other assignments, depending on the
offerings of the employee and the state of the schedule.
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CHAPTER 3
Methodology

In this chapter, we follow Papadimitriou and Steiglitz [25]. The CESP is fundamentally
a combinatorial optimisation problem. Optimisation in this context refers to finding
the best possible solution for a problem from a set of possible solutions. This can be
contrasted to a satisfaction problem, where the relevant output is only if something
is possible or not and there is no notion of solution quality. A question that would
be answered by a satisfaction problem is "Is it possible to get from A to B?" while a
similar question for an optimisation problem is "What is the shortest way from A to B?".
Optimisation problems divide into two groups—problems with continuous and problems
with discrete variables. The later group is also called combinatorial problems, and this is
the focus of this chapter and the problem presented here.

We define an optimisation problem as follows:

Definition 1 An optimisation problem is a set of instances. An instance is a pair (S, f),
where S is the set of all feasible solutions (also known as a solution space or search space)
and f is a cost function f : S → R , often called objective function. The problem is to
find an x ∈ S so that f(x) ≤ f(y) ∀y ∈ S, which is called a globally optimal solution.

The methods in this chapter are geared towards problems that are in the complexity
class of NP-hardness. NP-hard problems are at least as hard as any problem in NP.
Problems in the complexity class of NP are defined as such that they can be solved in
polynomial time by a non-deterministic Turing machine. It is, however, possible, to verify
the validity of a solution in polynomial time.

To define the non-deterministic Turing machine, we will use the definition used by Karp
[17, p. 91]:

Definition 2 A nondeterministic algorithm can be regarded as a process which, when
confronted with a choice between (say) two alternatives, can create two copies of itself,
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3. Methodology

and follow up the consequences of both courses of action. Repeated splitting may lead
to an exponentially growing number of copies; the input is accepted if any sequence of
choices leads to acceptance.

In practical terms, this means that after a certain instance size, it is widely believed that
there exists no algorithm that can reliably find a valid solution for an NP-hard problem
without requiring an unreasonable amount of time. Instance size matters for practical
purposes since all possible combinations for a tour through four cities is still solvable
on paper, and computers are capable of many thousands of calculations per second, so
small instances can still be computed in—in human terms—reasonable time. Although
computation might be fast enough, the process is still not efficient.

f

solution space

1 2

Figure 3.1: Objective function graph with global (1) and local (2) minimum

Figure 3.1 shows an approximation of the solution space and the objective function for an
optimisation problem. For ease of reference, all problems in this thesis will be assumed
to be minimisation problems. The y-axis denotes the objective function while the x-axis
describes a 1D embedding of the solution space of a problem instance. There are two
interesting points in the figure. Point(1) has already been encountered in the definition
before, and is called the global minimum or optimum. It is the lowest point in the graph
and accordingly, the best solution in the solution space. Finding this point is the main
objective. Point (2) is called a local minimum. This is the lowest point in the immediate
vicinity — in each direction along the solution space, the objective function increases. In
NP-hard problems, it is generally not easy to verify if any point is the global minimum.

The problems in this chapter are often complex and generally very time-consuming to
solve once they approach a certain instance size. There exist two general approaches
to solving those problems, exact and heuristic methods. Exact methods have to reason
about the whole solution space and are guaranteed to find the global minimum eventually.
This is not to be confused with simply examining every single possible solution, however.
There are many different techniques and algorithm in existence which enables them
to reduce the amount of time needed and solutions to check. For example, in some
problems it is possible to identify certain variable values and then exclude any part of the
solution space including this value. Some of these algorithms will be shown in the next
section. Often, exact methods are not feasible because the time it would take them to
terminate is too long. Heuristic methods, in contrast, make no claims about finding the
global minimum. Instead, they take shortcuts through the solution space and generally
try to follow the most promising lead in an effort to find good enough solutions in a
reasonable time frame. Since heuristic methods do not work through the solution space
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3.1. Constraint Programming

in an exhaustive manner, they are generally not able to identify a solution as the optimal
solution, either. Because of the complexity of many optimisation problems, heuristic
methods are often the only way to find reasonable solutions in time.

In the following sections, these ways of solving problems will be described in more detail.
First, constraint programming, an example of an exact method will be shown. Afterwards,
the the general idea of heuristic methods and especially the Variable Neighbourhood
Search will be explained.

3.1 Constraint Programming

In this chapter, we follow Rossi et al. [29]. Constraint Programming (CP) is a pro-
gramming paradigm and is generally used to solve constraint satisfaction problems
(CSP).

Definition 3 A CSP P is a triple P = (V, D, C), where V is a set of n variables V =
(v1, ..., vn), D is a set of n domains that corresponds to these variables D = (D1, ..., Dn)
and C is a set of t constraints C = (C1, ..., Ct). Each constraint Cj is a pair Cj = (Rj , Sj)
whereby Sj ∈ V is a subset of variables and Rj is a relation on those variables. The
objective is to find a set of values A = (a1, ..., an) where ai ∈ Di and each Cj is satisfied
for the chosen domains of the variables in Sj. Possible solutions of a CSP can be a valid
instantiation of values for each variable or the information that the problem is infeasible.
Rossi et al. [29, Chapter 2.2.1]

A simple example of a well-researched problem in CSP is the following map colouring
problem (MCP). In MCP, there is a set of nodes, which are adjacent to any number of
other nodes. The task is to assign each node a colour that is different from any colour
that an adjacent node has assigned. It is inspired by colouring a given map of countries
and trying to have no country be the same colour as any of their neighbours. The decision
variant is to find out if a given problem instance can be solved with x colours, while the
optimisation variant minimises x.

In this problem instance, there are three variables. All of them have the same domain,
consisting of (red, green, blue), the available colours that can be chosen. The constraints
ensure that adjacent variables cannot have the same value, so that bordering regions of
the map cannot have the same colour.

The definition of this problem is as seen on Table 3.1.

As can be seen in the depiction of the problem in Figure 3.2, B and D are not adjacent.
Since they both have the same two adjacent neighbours, a solution can only be valid if B
and D have the same colour. A valid solution for this problem is therefore

(A=red ,B=green ,C=blue ,D=green )
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3. Methodology

Table 3.1: Example of a simple map-colouring problem instance

V Dv

A (red,green,blue)
B (red,green,blue)
C (red,green,blue)
D (red,green,blue)

n Cn

1 ( A 6= B)
2 ( A 6= C)
3 ( A 6= D)
4 ( B 6= C)
5 ( C 6= D)

A: r,g,b

B: r,g,b

C: r,g,b

D: r,g,b

Figure 3.2: Simple map-colouring problem instance

Generally, a CSP will be solved by a CP-solver, a specialised type of software that takes
CSP-instances as input and outputs solutions. CP-solvers have been in development for
decades and employ a vast array of optimised methods and algorithms to solve applicable
problems very fast and in an efficient manner, but in their most basic form, they use two
central techniques which are called backtracking and constraint propagation.

Backtracking Backtracking is essentially a depth-first search of the solution space
represented by a search tree [20]. In backtracking, the variables are sequentially assigned
values, which is referred to as partial instantiation. After every assignment, all relevant
constraints are checked. If the solution candidate is still viable, the next variable will be
assigned. If not, the solver will revert the assignment and assign another value from the
domain to the most recently changed variable that still has alternative values in their
domain. Since the solver is working with partial instantiation, infeasible parts of the
solution space can potentially be eliminated without having to exhaust them fully. For
this, consider a slightly different map-colouring problem as shown in Figure 3.3.

In contrast to our original problem from Figure 3.2, the variable D has been omitted and
the domain of B has been reduced to include only Db = (red). The constraints containing
D have also been omitted. If the CP-solver starts by instantiating A to red and then tries
to instantiate B, it can discover instantly that there are no possible solutions starting
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3.1. Constraint Programming

A: r,g,b

B: r

C: r,g,b

Figure 3.3: Slightly different MCP as Fig. 3.2, reduced domain of B, removal of D

with this partial instantiation. Therefore, C does not have to be instantiated at all and
the solver can backtrack to a different value for A.

In the same vein, backtracking suffers from a fundamental problem: consider three
variables Vi, Vj , Vk which are instantiated in this order and a constraint C1 that leaves no
valid instantiation for Vk if Vi = a. If Vi is instantiated to a, the algorithm will continue
by instantiating Vj successfully to any value and ultimately fail with Vk. It will backtrack
to Vj and subsequently fail to instantiate any value for Vj before finally backtracking
to Vi and will encounter the same sort of problem for any instantiations stating Vi = a.
Referring back to our previous example in Figure 3.3, this would be the case if the solver
started with A and then moved to C before moving to B. This problem can be solved by
a technique called constraint propagation.

Constraint Propagation Constraint propagation is used to remove invalid parts from
the search space before the search begins, thereby decreasing the search space. This does
not exclude any valid solutions, since everything that is removed cannot be part of a
valid solution anyway. There are two major types, node and arc consistency.

Node consistency is enforced by considering every unary constraint and deleting any
values that violate the constraint. Consider yet again Figure 3.3 with the added constraint
C4 = {C = blue}. Clearly, any instantiation of C <> blue is invalid and can be safely
removed from the domain Dc before starting the search. The problem looks like Figure
3.4 afterwards.

Arc consistency is the binary, directional equivalent to node consistency. An arc (Vi, Vj)
is considered consistent, if for every instantiation of Vi there is a valid instantiation for
Vj . Note that it is directional, so a consistent arc (Vi, Vj) does not imply a consistent arc
(Vj , Vi). If there are instantiations for Vi that do not allow for any valid instantiations
for Vj , the instantiation for Vi is discarded from the domain of Vi. This is then repeated
for every arc in the problem. The deletion of values from the domain of a variable can
cause any arcs that the variable is part of to lose arc consistency. This means that an arc
can be revisited a number of times during the enforcement process. If every arc between
variables is arc consistent, the whole problem is arc consistent.
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3. Methodology

A: r,g,b

B: r

C: b

Figure 3.4: Constraint on C restricting it to blue, node consistent

To further illustrate the functionality of arc consistency, the AC-3 algorithm [22] will
now be presented in detail. The AC-3 is perhaps the most well-known arc consistency
algorithm and is both simple to understand and efficient. It is described in its entirety in
Algorithms 2 and 1.

Algorithm 1 Revise

Input: variable i

Input: constraint c

Output: boolean change, which states if the arc has been revised
Output: potentially reduced domain Di

1: procedure Revise(i,c)
2: change← false

3: for ai ← each element of Di do

4: if 6 ∃aj ∈ Dj in c that supports assignment to ai then

5: remove ai from Di

6: change← true

7: end if

8: end for

9: return change

10: end procedure

Algorithm 2 shows the main loop. In it, every directed arc is added to a list, which is
then sequentially revised by calling the function of the same name. Revise, as described
in Algorithm 1 basically reduces the domain of variable vi by checking if, for any value
ai ∈ D(vi) a value aj ∈ D(vj), j ∈ V (c) so that the constraint c is satisfied. If not, ai is
removed from Di. In simpler terms, if i cannot be instantiated to ai without violating c,
ai is removed from the domain of vi. If the call to Revise reduces Di, each constraint
including vi is then added to Q. The algorithm ends if Q is empty or a domain has
been completely exhausted. As domains are only ever reduced and if no domain is
reduced, the queue is reduced, this algorithm does not cycle. Furthermore, since only
constraints which include vi are added to Q after a successful Revise, it is also quite
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3.1. Constraint Programming

Algorithm 2 AC3

Input: set of variables V

Input: set of constraints C

Output: true if arc consistent, false if any domain is empty
1: procedure AC3(V ,C)
2: Q← {(vi, c)|c ∈ C, vi ∈ V (c)} ⊲ binary arcs are therefore two occurrences
3: while Q 6= {} do

4: remove (vi, c) from Q

5: if Revise(vi, c) then

6: if D(vi) = {} then

7: return false

8: else

9: Q← Q ∩ {(vj , c′)|c′ ∈ C ∧ c′ 6= c ∧ vi, vj ∈ V (c′) ∧ j 6= i}
10: end if

11: end if

12: end while

13: return true

14: end procedure

effective in reducing unneeded calls to Revise. There are more efficient algorithms, but
the AC3 shows the fundamental way that arc consistency can be easily implemented in a
polynomial algorithm.

The problem of backtracking mentioned before can be efficiently solved by enforcing arc
consistency. Figure 3.5 shows the former problems of Figure 3.3 and Figure 3.4 adjusted
for arc consistency. As can be seen, the problem in Figure 3.4 is already solvable without
resorting to backtracking at all.

4)

A: g,b

B: r

C: g,b

5)

A: g

B: r

C: b

Figure 3.5: Arc consistent problems from Figure 3.3 and Figure 3.4
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3. Methodology

Variable Ordering Heuristics Another interesting and central technique is the
selection on where to begin the instantiation. This is known as a variable ordering
heuristic. There are basically two categories of heuristics for variable ordering. The first
category is concerned with the domain size of variables, while the second is concerned
about the structure of the CSP. For the first category, it is often most promising to
begin with the most restricted variables. In small problems, it is easy to work out which
variable is the most constrained, but in large instances, this might not be the case. In
those cases, domain knowledge can be used to tell the solver which variables to focus
on first. The second category uses the fact that a CSP can be represented as a graph.
Heuristics in this group can work in different ways, e.g., finding cycles in the graph and
instantiating variables to cut those cycles, thereby making it a tree. The tree can then
easily be solved via arc consistency.

For the next example, constraint propagation will not be considered, for the sake of
keeping the problem simple. In reality, of course, it works especially well with variable
ordering by domain size. We are going back to the state of our problem during the
backtracking example in Figure 3.3, in which the domain of variable B was reduced
to B = (red). A variable ordering heuristic that assigns the variable with the smallest
domain first would encourage the instantiation of B first, which is promising for this
problem. If the solver would start instantiation with A = red, it might need to exhaust a
good number of guesses before coming to the conclusion that A = red is not part of any
feasible solution, especially if it continues by instantiating C afterwards. When starting
with B, there is no other way than starting with B = red.

More details about constraint propagation and ordering heuristics can be found in
Chapters 3 and 4 of [29].

3.2 Heuristic Optimisation

In this chapter we follow Blum and Roli [3]. In contrast to exact methods, heuristic
methods do not aim to prove optimality. Instead, they try to provide good—ideally near-
optimal—solutions in a reasonable time-frame. Heuristic methods applied to NP-hard
problems can never know if they found an optimal solution on their own. One of the
most relevant ways to categorise different types of heuristic methods is by how they
are applied to solutions. This differentiation yields two categories—construction and
improvement heuristics. Construction heuristics usually start with an empty solution
and add parts until the solution is at least feasible. This then yields a minimally feasible
solution. Construction heuristics can also just build a complete solution, which is then
simply called an initial solution. Improvement heuristics, on the other hand, start with an
initial solution (often provided by a construction heuristic) and then iteratively improve
this solution. The biggest part of this chapter will be devoted to improvement solutions.

The simplest way to employ an improvement heuristic is in form of a neighbourhood
search, also called local search or local neighbourhood search.
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3.2. Heuristic Optimisation

Definition 4 A neighbourhood structure is a function N : S → 2S that assigns to every
s ∈ S a set of neighbours N(s) ⊆ S. N(s) is called the neighbourhood of S. [3, p. 269]

The selection of the neighbours is done by a step function or improvement strategy, which
is generally a simple change in the solution. For this thesis, neighbours do not have
to be feasible, which means that the change applied to the solution could move them
from a feasible to an infeasible state. A neighbourhood in a scheduling problem could be
swapping the shifts of two employees or adding another shift to an employee. A neighbour
y ∈ N(x) of a solution x therefore is a solution that had a corresponding neighbourhood
operation applied upon it. The neighbour is then evaluated and if it meets certain
conditions, is selected as the next solution. Otherwise, the neighbour is discarded. There
are different ways to select neighbours, which are either deterministic or non-deterministic
and the most common ones are referred to as first improvement, best improvement, and
random ordering. First improvement, also known as next improvement, is a strategy that
searches the neighbourhood in a specified order and returns the first neighbour that has
a better objective value than the original solution. Best improvement is a deterministic
strategy searches through the whole neighbourhood and returns the best neighbour.
Random ordering is, as the name implies, non-deterministic and returns a random
neighbour. For first improvement and random ordering the order of the neighbours is of
relevance, therefore different implementations of first improvement can lead to different
results with the same inputs. Best improvement searches the whole neighbourhood and
is therefore not affected by ordering, but is slower than first improvement. The general
local search is presented in Algorithm 3.

Algorithm 3 Local search

Input: solution x

Input: neighbourhood structure N

Output: improved solution w.r.t. neighbourhood N x

1: procedure Local search(x, N)
2: repeat

3: choose an y ∈ N(x) ⊲ generally best or first neighbour
4: if f(y) ≤ f(x) then

5: x← y

6: end if

7: until stopping criteria met
8: return x

9: end procedure

Heuristics have a problem that exact methods do not: they are not guaranteed that
they find the best solution, or even any particularly good solution at all. As discussed
before, the solution space in any moderately difficult problem is complex and heuristics
can easily get stuck in local optima, as seen in Figure 3.6, where f denotes the objective
value reachable by the neighbourhood. Since the goal is to minimise the objective value,
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3. Methodology

when starting at this particular part in the solution space, local search (as presented in
Algorithm 3) has no possibility of escaping from the local optima.

f

solution space

Figure 3.6: local search converging toward local minimum

The solution to this problem lies in metaheuristics. Whereas heuristics are generally
simple constructs that solve a specific problem, metaheuristics are algebraic frameworks
that are problem-independent. They use subordinate, more problem-specific heuristics
and guide them to efficiently exploit and explore the solution space.

A central aspect to how metaheuristics work are the terms intensification and diversifica-
tion. Intensification is a measure of the capability of a method to improve the current
solution. Local search is a simple example for an intensification method. Diversification
is the ability to search different parts of the solution space than the current one. This is
what the local search method sorely lacks. A simple example would be to randomly gen-
erate solutions. Both capabilities need to be present for a metaheuristic to be successful.
There are many different metaheuristics, each of them providing different advantages and
disadvantages depending on the problem, so care must be taken which metaheuristic is
applied to solve a specific problem. For example, there exist specialised metaheuristics for
very large problem instances and for very constrained problems. Furthermore, different
metaheuristics can be customised and tuned in very different ways.

3.2.1 Variable Neighbourhood Search

For this problem, a General Variable Neighbourhood Search (GVNS) was chosen, which is
a variant of the Variable Neighbourhood Search (VNS) . The VNS was first introduced by
Mladenović and Hansen [23] together with a few variants. Generally, metaheuristics tend
to have a theme, which in the case of VNS is the structured change of neighbourhoods.
Compared to many other metaheuristics, VNS is conceptually relatively simple and can
therefore easily be tuned or adapted. This problem in particular lends itself to a VNS,
since there are many naturally arising neighbourhoods.

VNS is a single-solution metaheuristic. These kinds of metaheuristics start with an initial
solution and try to improve it incrementally by utilizing neighbourhood moves. In the
following, the basic concepts of the VNS as described in Hansen and Mladenović [14] will
be outlined.

VNS is based upon the three following facts:
Fact 1 A local minimum w.r.t. one neighbourhood structure is not necessary so with
another.
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3.2. Heuristic Optimisation

Fact 2 A global minimum is a local minimum w.r.t. all possible neighbourhood struc-
tures.
Fact 3 For many problems, local minima w.r.t. one or several neighbourhoods are
relatively close to each other.

From Fact 3 follows that knowledge of one local minimum is helpful in the search of the
global minimum, although it may not be the global minimum itself. The authors further
explain that those three facts can be used in three different ways:

• Deterministic

• Stochastic

• Both

Variable Neighbourhood Descent The Variable Neighbourhood Descent (VND)
is obtained when implementing the deterministic method. It is obtained by changing
neighbourhoods in a predictable manner and by exhausting the neighbourhoods. It is very
efficient and thorough in finding the local minimum w.r.t. the present neighbourhoods.
The VND does not have any means of randomness, which would help travel to different
parts of the solution space. Instead, it relies on many neighbourhoods that aim to
cover a large part of the solution space. Often, there are neighbourhoods of different
sizes present in a VND, with the smaller neighbourhoods placed at the beginning of the
neighbourhood set and the large and computationally expensive neighbourhoods at the
end of a neighbourhood set. The VND is shown in Algorithm 4 with a best improvement
step function. The algorithms in the later chapters also use best improvement, although
first improvement is also possible.

Reduced VNS The stochastic method is called Reduced VNS (RVNS), and is achieved
by including a shaking operation instead of a local search, i.e. choosing a random
neighbour from the neighbourhood. Through the shaking operation, a jump in the
solution space is performed, and local minima can be evaded this way. It is useful on
very large problem instances, when local search is costly. The downside is that the
improvements are not applied in an efficient, structured form and thus results can be
erratic and non-repeatable. The algorithm is presented in Algorithm 5. For the RVNS
(and any non-deterministic algorithms), additional stopping criteria must be created,
since the random nature of shaking will never be exhausted. Such stopping criteria are
generally time- or iteration-related, e.g. n cycles without improvement.

Basic VNS Finally, both approaches to the problem are combined in the basic VNS
(VNS). It features the shaking mechanism from the RVNS together with a local search
procedure. It is shown in Algorithm 6. The shaking gives the VNS the needed properties
of diversification, while the local search procedure subsequently provides intensification.
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3. Methodology

Algorithm 4 Variable Neighbourhood Descent

Input: solution x

Input: set of neighbourhood structures N , for N1, ..., Nkmax

Output: improved solution w.r.t. set of neighbourhood structures N

1: procedure VND(x, N)
2: k ← 1
3: repeat

4: find y with f(y) ≤ f(y′),∀y′ ∈ Nk(x)
5: if f(y) < f(x) then

6: x← y

7: k ← 1
8: else

9: k ← k + 1
10: end if

11: until k > kmax

12: return x

13: end procedure

Algorithm 5 Reduced Variable Neighbourhood Search

Input: solution x

Input: set of neighbourhood structures N , for N1, ..., Nkmax

Output: improved solution w.r.t. set of neighbourhood structures N

1: procedure RVNS(x, N)
2: repeat

3: k ← 1
4: repeat

5: y ← random Nk(x)
6: if f(y) < f(x) then

7: x← y

8: k ← 1
9: else

10: k ← k + 1
11: end if

12: until k > kmax

13: until stopping criterion met
14: return x

15: end procedure

General VNS As an additional variant, the General VNS was introduced in Hansen
et al. [15]. It is simply a VNS where the embedded local search has been replaced with
a VND. It has both the advanced intensification capabilities that the VND possesses
(with regards to local search) and the diversification properties of the VNS. It has to be
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3.2. Heuristic Optimisation

Algorithm 6 Basic Variable Neighbourhood Search

Input: solution x

Input: set of neighbourhood structures N , for N1, ..., Nkmax

Input: local search LS

Output: improved solution w.r.t. set of neighbourhood structures N

1: procedure VNS(x, N)
2: repeat

3: k ← 1
4: repeat

5: y ← random Nk(x)
6: y′ ← LS(y)
7: if f(y′) < f(x) then

8: x← y′

9: k ← 1
10: else

11: k ← k + 1
12: end if

13: until k > kmax

14: until stopping criterion met
15: return x

16: end procedure

noted that the neighbourhoods of the VND and the VNS are generally disjunct since
their purpose is completely different. VND neighbourhood structures tend to focus
on intensification by (deterministic) improvement while VNS neighbourhoods focus on
diversification by shaking and disrupting the solution. A common neighbourhood for the
shaking is a neighbourhood that randomly destroys part of the solution. The resulting
solution is generally worse than the original solution, but will be improved by the VND
in the next step. If the VND-improved solution is better than the original, it will become
the new best solution. This is further illustrated in Algorithm 7.

As a simple example of different neighbourhoods working together, a VND will be
introduced. The structural change of neighbourhoods is the central aspect of any of the
introduced VNS-variants, and the VND is most concise for a presentation. Consider
the Travelling Salesman Problem (TSP). In the TSP, a travelling salesman needs to
travel through all the cities on his route in the most efficient way possible. A simple
TSP-instance with a feasible, but obviously inefficient initial solution is illustrated in
Figure 3.7. The example was originally taken from [19] and subsequently modified to
better fit this explanation. The solution is to be improved by a VND as described in
Algorithm 4 and has a set of neighbourhoods N with |N | = k = 2 defined as follows:

• N1: 2-opt: in the TSP, 2-opt is generally defined as exchanging two links in a
tour—that is, removing two links and then reattaching the open segments in a
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3. Methodology

Algorithm 7 General Variable Neighbourhood Search

Input: solution x

Input: set of VND neighbourhood structures ND, for ND
1 , ..., ND

kmax

Input: set of VNS neighbourhood structures NS , for NS
1 , ..., NS

lmax

Output: improved solution w.r.t. set of neighbourhood structures ND, NS

1: procedure GVNS(x, ND, NS)
2: repeat

3: l← 1
4: repeat

5: x′ ← random NS
l (x)

6: k ← 1
7: repeat

8: find x′′ with f(x′′) ≤ f(x′′′),∀x′′′ ∈ ND
k (x′)

9: if f(x′′) < f(x′) then

10: x′ ← x′′

11: k ← 1
12: else

13: k ← k + 1
14: end if

15: until k > kmax

16: if f(x′) < f(x) then

17: x← x′

18: l← 1
19: else

20: l← l + 1
21: end if

22: until l > lmax

23: until stopping criterion met
24: return x

25: end procedure

different manner than before

• N2: 3-opt: similar to 2-opt, only that three links are exchanged

Note the order of the neighbourhoods. The 2-opt, which is narrower and computationally
less intensive is used first. Afterwards, if the 2-opt neighbourhood is exhausted, the 3-opt
neighbourhood is used to apply larger changes to the solution. If the 3-opt is able to
improve the solution, 2-opt might find different changes again, so the VND goes back to
the first neighbourhood, 2-opt. VND does not require neighbourhoods to be of different
sizes, they can also just tackle different parts of the solution space, like a neighbourhood
that adds nodes and one that moves nodes.
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3.2. Heuristic Optimisation

A

B

C

D

E

F

G

Figure 3.7: Initial TSP solution

When executing the VND, the first iteration of the 2-opt neighbourhood will return the
best neighbour of the current solution, which might be a straightening of the left side
of the links in Figure 3.7. A solution for that is A → C and B → D and looks like
illustrated in Figure 3.8.

A

B

C

D

E

F

G

Figure 3.8: TSP after 2-opt

A

B

C

D

E

F

G

Figure 3.9: TSP after subsequent 3-opt
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3. Methodology

After the 2-opt improvement, the tour looks far better, but it is still not very efficient. The
remainder of the tour is tangled in a more complex way though, and 2-opt will be unable
to improve this problem. At some point, it will fail to find even minor improvements and
k will be incremented by one, therefore triggering the usage of the 3-opt neighbourhood.
The 3-opt neighbourhood will in turn be able to fix the problem by changing the links
to C → E, E → F and G → D. The result looks like Figure 3.9. Afterwards, the
neighbourhood value k will be reset to 1 and 2-opt will be active again. In this instance,
there are no more improvements to be made and both 2-opt and afterwards 3-opt will
not find better solutions and terminate with the proposed solution.

There are many different metaheuristics that can be used to solve complicated problems,
and they differ in key aspects. Depending on the problem and the preferred implementa-
tion as well as the existence of certain capabilities, different metaheuristics can be chosen.
A common factor to divide metaheuristics by is if they work on a single solution or if they
are population-based. Examples for single-solution metaheuristics are tabu search [12], in
which a set of previous configuration is stored in a tabu list which cannot be returned to,
or simulated annealing [18], which will allow a neighbourhood move to a neighbour with
a higher objective value than the original with a certain probability in order to escape
local optima. Examples for population-based metaheuristics are genetic algorithms,
which work with a set of individuals which change via mutations and recombination
or ant colony optimisation [9], in which individuals lay pheromone trails proportional
to their fitness and to which other individuals feel drawn to. For more information on
metaheuristics, see [3].
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CHAPTER 4
Problem Formalization

In this chapter, we explain and define our problem formally. First, inputs will be
introduced, followed by hard and soft constraints. The objective function will then be
described, and the chapter will be closed by showing that the problem is in the complexity
class of NP-hard problems.

4.1 Input

Employees A group of people working in the customer service, which is our main
resource to be scheduled.

W = {w1, ..., wnw}

Days Employees have to be scheduled for every day in the considered time period,
which is a month.

D = {d1, ..., dnd
}

Holidays are also of special interest because the payment is different. Working on a
holiday is paid twice the usual amount.

DH ⊆ D

Houses There are several museums that need regular staffing. They require a
varying amount of employees every day.

H = {H1, ..., Hnh
}

Events Events are special occurrences which are normally one-time only (although
they can repeat) and can happen at any day, at any time and at any place. They can
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4. Problem Formalization

also take a varying amount of time. Both special exhibits, which can last for months,
and the closing of a hall for repairs for a few hours can be such events.

E = {E1, ..., Enp}

Additionally, there is a special type of event, for which employees register themselves
separately. These events are generally out of expected time-boundaries, often late at
night. When applying for general shifts, it is generally understood that they are in a
certain range of time, mostly between 8 o’clock and 20 o’clock, and normally last a
full workday. Therefore, when there are events that defy this understanding, they are
published separately and employees specifically sign up for each special event they would
like to work at.

Es ⊆ E

Favourite Houses Every employee can have zero or more favourite houses. Those
are the places they would like to be stationed at the most. Choosing no favourite house
is internally the same as choosing every house, since both choices essentially mean that
there is no preference. These nominations have the character of a wish, not a need, and
will be adhered to if possible. It is not possible to favourite events. This would not be
useful anyway, since every application towards an event is only valid for this event.

Hw ⊆ H

Locations A location is the logical unit an employee can be assigned to. It consists
of houses, events and the special virtual units standby and reserve. Reserve and standby
will be converted to a real house or event prior to taking place, and are only for
organizational purposes. Internally, they are used for redundancy reasons. Employees
assigned to the reserve will definitely have a shift to work at, but will not know where
until the same day. Employees on standby might be called during the morning if there is
an unexpected shortage for this day.

L = {Standby, Reserve} ∪ E ∪H

There are additional constants that define how many standby and reserve shifts employees
may have each month.

Csta = 1 — formerly, this was defined as Csta = ⌊1
4 ·Nw + 0.5⌋ - where Nw is the number

of shifts an employee requests for themselves—but the current distribution of employees
to shifts allows an easier formulation, simply limiting every employee to one of these
shifts.

Cres = 1

CminShift = 2 — the minimum number of shifts an employee has to choose before being
eligible for reserve or standby shifts.
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4.2. Solution

Shifts The central unit of work is a shift. Shifts are defined by day and location.
Therefore, only one shift exists per day and location. Shift duration is measured in hours.

S ⊆ D × L

Requirements For every shift, there is a requirement for employees.

Rs ∈ N0 ∀s ∈ S

Time of shifts Every shift has a start and an end time. The duration of the shift
can be computed from those times and is expressed in hours.

Tss ∈ [0, 24]

Tes ∈ [0, 24]

Shifts are generally required to be possible, starting before they end.

Tss < Tes

Furthermore, the duration of a shift is defined as the time between start of a shift and
end of a shift.

∆s = Tes − Tss

Number of Shifts Every employee may request anything from one shift upwards.
The actual number of shifts assigned to a person is capped by the maximum amount of
money they may earn each month. This is based on a regulation in Austria. Special event
shifts Es for which an employee signed up separately are not affected by this number.

Nw ∈ N

CmaxWork ∈ N — this constant defines how many hours a month a person may work
while adhering to the governmental regulation

Chosen Shifts Every employee may choose any shift where they have time to work.
From the chosen shifts, up to Nw will be assigned to the employee, while making sure
that CmaxWork is not exceeded. Usually, an employee will select more shifts than the
number of desired shifts.

Sw ⊆ S ∀w ∈W

4.2 Solution

A solution describes when and where which employee will work at a shift, and is modelled
as a set of assignments A, one for each employee.
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4. Problem Formalization

Assignment An assignment consists of a set of shifts which have been assigned to a
certain employee.

Aw ⊆ Sw ∀w ∈W

4.3 Constraints

Generally, there are two types of constraints—hard constraints and soft constraints. If
any hard constraint is violated, the solution is infeasible. This means that any solution
must satisfy every hard constraint for every part of the solution. Soft constraints are used
to give an indication of quality to the solution. The amount of soft constraint violations
will be used to compute the overall fitness of a solution.

Hard Constraints:

1. Everybody has to work at least one shift.

Ch
1 = |Aw| ≥ 1 ∀w ∈W

2. Nobody may do more shifts than requested—except special shifts, for which people
register separately.

Ch
2 = |{(d, l) ∈ Aw|l 6∈ Es}| ≤ Nw

3. Nobody may work for longer than the regulation in Austria permits. Working on
holidays yields twice the payment, so every hour working on an holiday is worth
double the time.

Ch
3 =

∑

(d,l)∈Aw

((|{d} ∩DH | +1) ·∆(d,l)) ≤ CmaxWork ∀w ∈W

4. Requirements cannot be exceeded.

Ch
4 = |{w ∈W |s ∈ Aw}| ≤ Rs ∀s ∈ S

5. Employees with fewer than CminShift chosen shifts cannot be assigned a reserve or
standby shift.

Ch
5 = (d, l) ∈ Aw : l 6∈ Res, Sta ∀w ∈W : |Sw| < CminShift

6. No employee may have more than Cres Reserve shifts.

Ch
6 = |{(d, l) ∈ Aw|l ∈ Res}| ≤ Cres ∀w ∈W

7. No employee may have more than Csta standby shifts.

Ch
7 = |{(d, l) ∈ Aw|l ∈ Sta}| ≤ Csta ∀w ∈W

8. No employee may have two assigned shifts that intersect each other.

Ch
8 = ∀d ∈ D,∀l1, l2 ∈ L, l1 6= l2 : (d, l1) ∈ Aw → ¬∃(d, l2) ∈ Aw ∧ (Ts(d,l1) ≤

Ts(d,l2) < Te(d,l1)) ∀w ∈W
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4.3. Constraints

9. There may be no unassigned Reserve or Standby shift.

Ch
9 = |{w ∈W |(d, l) ∈ Aw}| = R(d,l) ∀(d, l) ∈ S|l ∈ {Sta, Res}

Soft Constraints The soft constraints of this problem are split between two fairly
conventional constraints, Cs

1 and Cs
4 and two rather unique constraints concerning fairness,

Cs
2 and Cs

3 . Cs
1 is a typical constraint which drives the main objective, assigning shifts

to employees, while Cs
4 minimises employee assignments to houses that are no favourite

of theirs. Cs
2 and Cs

3 are fairness constraints, which means that they try to balance
the number and type of shifts each employee is assigned to in relation to the global
utilization. Cs

1 and Cs
4 are modelled using the mean squared error (MSE), while Cs

2 and
Cs

3 are modelled using variance.

1. There should not be any unassigned (open) shifts. If that is not possible, balance the
shifts between all open possibilities so that many shifts will have small deficiencies
and no shift will have an unreasonably large number of missing assigned employees.

Cs
1(A) = 1

|S|

∑
s∈S

(1− |{w∈W |s∈Aw}|
Rs

)2

2. The rate of employment should be fair—the ratio of assigned shifts to ideally
wanted shifts should be as constant as possible for all employees. The constraint is
expressed in hours instead of shifts since some shifts only take a few hours, while
others are a full workday. Employees generally assume to be given a full day when
applying for shifts, so if someone gets assigned five shifts of three hours each, that
is a big difference from someone getting assigned five shifts eight hours each.

Dmax = maxs∈S ∆s

x̄ = 1
|W |

∑
w∈W

∑
s∈Aw

∆s

Nw·Dmax

Cs
2(A) = 1

|W |

∑
w∈W

(

∑
s∈Aw

∆s

Nw·Dmax
− x̄)2

3. The reserve and standby shifts should be split fairly between the eligible employees.
The relevant variables for this constraint are the hours spent doing reserve and
standby shifts versus all the hours assigned to a person.

x̄ = 1
|W |

∑
w∈W

∑
d∈D

∑
l∈{Sta,Res}

∑
s∈Aw∩{(d,l)}

∆s

∑
s∈Aw

∆s

Cs
3(A) = 1

|W |

∑
w∈W

( 1∑
s∈Aw

∆s
(

∑
d∈D

∑

l∈{Sta,Res}

∑

s∈Aw∩{(d,l)}
∆s)− x̄)2

4. If at all possible, employees should not work in any house that is not a favourite of
theirs, and if they have to work this way, the misses should be balanced between
employees as well as possible.

Cs
4(A) = 1

|W |

∑
w∈W

( |{(d,l)∈Aw|l 6∈H\Hw}|
|Aw| )2
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4. Problem Formalization

4.4 Example Assignment

Following the definitions, Figure 4.1 shows a small example of a CESP instance as a
graph. Chosen shifts can be seen as black lines between employees w and shifts d, l,
favoured shifts as green lines. Assignments are bold lines, while the red lines denote
constraint Ch

7 , the inability to be assigned two shifts on the same day. Other constraints
have been kept out of the representation for greater clarity.

The solution in the Figure is A = {{(d1, l1)}, {(d1, l1), (d2, l2)}, {(d2, l1)}}. All require-
ments are satisfied, and favoured shifts are respected as much as possible, although the
only real choice was which shift w2 and w3 would be assigned on d2.

d1, l1

d1, l2

d2, l1

d2, l2

w1

w2

w3

Employee Days FavLoc

w1 d1 l1
w2 d1, d2 l2
w3 d2 -

Requirements d1 d2

l1 2 1
l2 0 1

Figure 4.1: Sample CESP instance in graph representation. Green lines point to a
favourite location, red lines are shifts that cannot be assigned to the same person, bold
lines are the actual assignments.

4.5 Objective Function

The fitness of our solution will be determined by the objective function. It is implemented
as a weighted sum approach, whereby each of the soft constraint computation functions
are multiplied by a custom weight and then summed up to generate a single value. As
stated before, the goal for this problem is minimization, so the smaller the value, the
better. The objective function f for an assignment A thus looks like the following:

f(A) = λs
1Cs

1(A) + λs
2Cs

2(A) + λs
3Cs

3(A) + λs
4Cs

4(A)

Finding the correct weights λs for any of the constraints is difficult work at best, since
it is directly shaping the solution. If the weights are incorrect, the solution will feel
bad or skewed. This work can only be done right by domain experts, and even then
it is an approximation. For this problem, we focused on Cs

1 — trying to fulfil all shift
requests. This is the primary goal of the algorithm after all, and the chances for anything
to disrupt this goal should be slim. The fairness constraints have been left at a default
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4.6. NP-Hardness

— they generally balance themselves out quite well and can be used with any weight
λs > 0 to ensure that if a fairer way to schedule a shift without losing the assignment
or violating a favourite house constraint exists, it will be taken, which is exactly how
they are intended. The favourite houses constraint is granted a little extra weight. This
means that, in accordance with its quadratic nature based on each employee, solutions
which are ignoring the preferences of an employee too much will not be considered unless
they offer tremendous upsides.

Therefore, the final weights to be used to guide the algorithm have been determined to
be as follows:

λs
1 = 10, λs

2 = 1, λs
3 = 1, λs

4 = 2

4.6 NP-Hardness

There are different complexity classes for problems, and defining which class a problem
belongs to is important for choosing approaches to solve the problem. Defining a problem
as NP-hard is possible by performing a reduction from any NP-complete [17] problem to
this problem. To prove that this is the case, following is a reduction from the NP-complete
[11] bin-packing problem.

Proposition 1 The Casual Employee Scheduling Problem as presented in this chapter
is NP-hard.

Proof Recall that the Bin-Packing problem asks if a set of items of different sizes can
be packed in a defined number of bins with a uniform capacity.

Let j items a1, ..., aj with size s1 > 0, ..., sj > 0 as well as a bin capacity B and a number
k of bins b1, ..., bk be given. Let c(a, b) = 1 if an item is placed in a certain bin and 0
otherwise. The decision version of the bin-packing problem can then be defined as such:

∑k
l=1 c(ai, bl) = 1 ∀i ∈ {1, ..., j}

∑j
i=1 c(ai, bl)si ≤ B ∀l ∈ {1, ..., k}

Informally, each item must be placed in exactly one bin and the capacity of no bin may
be exceeded.

This can be transformed into a CESP-instance in the following way: The number of days
D is equal to the number of items j. Each bin b is an employee with CmaxWork = B, who
has chosen every shift. The amount of shifts for each employee is Nw = j. Each item ai

is a house Hi which requires exactly one open shift at day i with a duration of si. There
are no standby or reserve shifts.

Since it is not possible to set constraint weights, all constraints need to be accounted for.
Cs

4 can be ignored if every employee favours every house, since then there will never be

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4. Problem Formalization

a penalty. Cs
3 can similarly be ignored since there are no standby or reserve shifts. Cs

2

can potentially introduce problems, since the growth rate is different from the growth
rate of Cs

1 . This can also be addressed in a simple matter. Simply set Nw to a high
number approaching infinity. Any value of Nw > j is irrelevant for the conclusion of the
CESP, and setting it high enough basically ensures that x̄, being dependent on Nw in the
denominator, approaches zero. This will then be subtracted from essentially the same
number, also having Nw in the denominator, before being squared, summed up |W | times
and being divided by |W |. Meanwhile, each unassigned item is a whole house worth of
non-assignments, since Rs = 1 and each house consisting of only one shift. Therefore,
each unassigned item adds 1

|S|λ
1
s to the objective function, which is surely higher than

the result of of Cs
2 .

i1

i2

i3

i4

i5

i6

D1 D2 D3 D4 D5 D6

H1

H2

H3

H4

H5

H6

Figure 4.2: Sample set of items from a bin-packing problem transformed to CESP houses
with open shifts of certain length

i1 i1 i3 i3 i3

i6 i6 i6 i6

i2 i4 i5 i5

W1

W2

W3

a) b)

Figure 4.3: Sample set of employees, each block corresponding to a shift length of one,
before (a) and after (b) being assigned shifts from the list of Figure 4.2.

As a simple example of this, imagine k = 3 bins of size B = 5. Further, let there be j = 6
items with sizes (2,1,3,1,2,4) respectively. The resulting CESP instance is portrayed in
Figures 4.2 and 4.3. Figure 4.2 shows the resulting houses and days that are created
from the items, with their respective shift lengths. Figure 4.3 first shows the number of
employees with their potential capacity CmaxWork = 5, whereby each block denotes one
possible shift size. Then, a possible solution with the items / shifts from Figure 4.3 is
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4.6. NP-Hardness

shown. In terms of the CESP, this reads as such that employee W1 has shifts at H1 at
D1 and H3 at D3. Therefore, the problem is solved.

This transformation clearly does not exceed polynomial time constraints. When solving
the problem, employees will be assigned shifts. The amount of shifts assigned will be
maximised by Cs

1 , with the goal of not leaving any shift open. The shifts assigned to an
employee will never exceed CmaxWork, so the capacity constraint of bin-packing is fulfilled.
If every shift requirement can be assigned to an employee, the value of the constraint Cs

1

will be 0, and the bins can be packed that way. If the result is not 0, the items do not fit
in the bins. The resulting set of assignments will include the way the bins are packed.

To show that the hard constraints are not violated by this transformation, they will be
explained in order.

Ch
1 can probably introduce problems, if there are less items than bins. This can be

circumvented by simply removing any excess bins until there is an item for every bin
before reducing to CESP.

Ch
2 is easily fulfilled by the transformation setting it Nw to the maximum number of

items / houses.

Ch
3 is the pivot on which the whole transformation rests and it being fulfilled is paramount

to the reduction.

Ch
4 is also easy to ensure and important to fulfil.

Ch
5 to Ch

7 and Ch
9 are generally irrelevant since there are no standby or reserve shifts, or

already explained during Ch
1 . Ch

8 is impossible to violate in this instance, since there is
only one shift every day. Therefore, all constraints are fulfilled by the transformation.
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CHAPTER 5
Solution Approaches

As mentioned before, the problem was considered from both an exact and a metaheuristic
perspective, and algorithms for both approaches have been implemented. These were then
combined into a hybrid approach, which is the version that is used for the computational
study and real-life application. Note that the metaheuristic approach alone cannot
be utilised to solve the problem because the chosen metaheuristic, the VNS, is an
improvement heuristic and therefore needs an initial solution to start with.

5.1 Constraint Programming Approach

The exact approach to the problem was implemented with MiniZinc [24], a constraint
programming wrapper for a language called FlatZinc. FlatZinc in turn utilises different
CP-solvers like Gecode to actually solve the problems. The goal of the implementation
was a faithful reproduction of the mathematical model presented in Chapter 4.

In general, the implementation of the model in MiniZinc was relatively straightforward.
The most relevant distinction is probably the logical difference between sets and MiniZinc
arrays, which resulted in an additional constraint in the MiniZinc model, since the subset
function was not implemented at the time of implementation.

Recall that Aw ⊆ Sw ∀w ∈ W defines the set of assignments for employee w as a
subset of the shifts w has chosen. Therefore, an assignment can never be a shift that was
not chosen by w. In the MiniZinc model, this relation is modelled by the constraint Ch

0 :

c o n s t r a i n t f o r a l l (w in Workers , l in Locat ions , d in Days )
( ( w in a s s i gn [ l , d ] −> w in worker_sh i f t s [ l , d ] ) ) ;

Furthermore, while the mathematical model defines assignments as a set of shifts assigned
to employees, the MiniZinc model is defined the other way around. There is an array of
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5. Solution Approaches

shifts with a set of employees for each possible shift. This was done because it is easier
to model and compute the MiniZinc model this way.

array [ Locat ions , Days ] o f var s e t o f Workers : a s s i gn ;

Another important part of MiniZinc models is the specification of the actual objective the
solver is supposed to accomplish. There are three parts that can be changed to influence
the solver for this. First, all variables that are supposed to be computed by the solver
are declared like this:

var i n t : so lu t i onVa lue ;

The var keyword tells the solver that this variable should be computed. There are, as
discussed previously, two ways that a problem can be solved: optimisation or satisfaction.
In satisfaction problems, the solver just searches for one variable combination that does
not violate any constraints, whereas in optimisation problems, the solver tries to minimise
a variable. In this problem, the corresponding line of code is this:

minimize ( so lu t i onVa lue ) ;

Optionally, MiniZinc offers the functionality of telling the solver on how to achieve the
stated goal in the most promising way. Ideally, all decision variables in a problem would
be linked in a way that only a set few variables could be directly influenced by the solver.
In our case, the solutionV alue variable is defined as the sum of our soft constraints. The
soft constraints meanwhile are functions of one variable, assignments. The only way
to change solutionV alue, therefore, is to change assignments. In some problems, that
might be not as clear. Parts of the variable might also be more interesting than others.
In our model, the following statement could be used to solve the problem:

s o l v e : : seq_search ( [
set_search ( [ a s s i gn [ index_standby , d ] | d in Days ] , f i r s t _ f a i l ,

indomain , complete ) ,
set_search ( [ a s s i gn [ l , d ] | l in Locat ions , d in Days ] , f i r s t _ f a i l

, indomain , complete )
] )

While this is not the actual configuration of our problem, it serves as a good example.
This statement tells the solver to solve sequentially for two sets—first for assignments for
the standby shifts, and afterwards for all the remaining shifts. This might be a good idea
because the standby shifts are part of a hard constraint that fails if a standby shift is
not accounted for. The other interesting part here is the second parameter, first_fail,
which states that the variables assigned should be ordered by their domain size, ascending.
This way, incompatible variable configurations will be more likely to fail early, which
results in less overall runtime.

Another problem of the implementation were the backend solvers, since the problem
utilises floating-point variables for soft constraints Cs

2 and Cs
3 . Most solvers do not
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5.2. Metaheuristic approach

support floating-point variables, while others do not support other required functions.
Others are not freely available for use in non-university environments, in which the
solution will be used in reality. For those reason, the backend solver that was ultimately
chosen was Gecode [1].

The best case would be to be able to solve all real-world instances to proven optimality. It
was expected from the beginning that this was not very realistic because of the complexity
of the problem and the instance sizes. This prediction came through, and while the
creation of the first solution that MiniZinc provides is generally fast enough (see Chapter
6 for details), the solution itself is woefully unoptimised and further improvements are
rare and not really relevant, taking hours or days to find a better solution that simply
switches two assignments. In short, while satisfaction is generally fast, optimisation is
very slow.

5.2 Metaheuristic approach

The main part of the implementation in this thesis is the metaheuristic approach. It
is a GVNS as presented in Chapter 3 with two shaking neighbourhoods and five VND
neighbourhoods. The VND-algorithm is described in Algorithm 8, while the complete
GVNS does not differ in execution from the version in the prior chapter. Furthermore,
an extension to the VND has been developed and implemented.

The main idea behind the extension is the observation that the neighbourhoods for this
problem divide the solution space between them. Therefore, it would be reasonable
that a neighbourhood would generate a lot of good improvements for a while, and then
diminish very rapidly as other parts of the solution space become more interesting,
thereafter generally only providing very little improvement while costing a lot of time.
The extension of the VND tries to smooth over this behaviour by systematically shifting
the VND neighbourhoods when they are not able to find new solutions. It does so by
introducing an offset that gets incremented when a neighbourhood is not able to produce
a better neighbour than the original in a certain amount of steps or time. The offset
itself influences with which neighbourhood the VND will start the next time it finds an
improvement via this computation: i← (k + offset)mod|N |. In this version, i is used to
refer to the current neighbourhood while k is the original neighbourhood. i is in in the
domain of |N |, the number of neighbourhoods. For example, the VND generally starts
with neighbourhood 1 after finding an improvement, but with an offset of 1, it would start
with neighbourhood 2. At any given time, it will still travel through all neighbourhoods
before deciding that there is no improvement to be made any more. The extension can
be toggled by inputs, and if it is turned off, the algorithm works like a conventional VND.
This extension is similar in spirit to hyper-heuristics guiding which heuristic should be
used to improve a solution based on prior performance, but far more simplistic.

For increased efficiency, delta evaluation was implemented. After finding a neighbour,
it is generally necessary to ensure that the new neighbour is feasible, and if it is, the
objective value has to be calculated. Feasibility can be ensured by the neighbourhood
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5. Solution Approaches

structures themselves, in that they do not allow infeasible moves in the first place or
by checking every new neighbour after generation. This can be better or worse for
performance depending on the application. In this algorithm, new neighbours are checked
for feasibility after generation. Because of all this, the checking for general fitness of the
new neighbour is a task that is done very often, and the runtime of the algorithm will
depend greatly on how efficient it is implemented. The simple way is to check the whole
solution after each move, while delta evaluation evaluates just the parts that have been
changed during the neighbourhood move. This is equivalent to a runtime of O(nw) or
O(|S|), depending on the constraint, for checking the whole solution and a runtime of
O(1) for delta evaluation. It was implemented by each neighbourhood providing a list of
suggested changes instead of modifying the solution directly. The list of changes and the
solution are then used by the methods used for fitness checking to infer which parts of
the solution should be evaluated again.

For most hard constraints, this is an easy task. If the changes propose only one employee
to gain or lose assignments, it is only relevant to check if this employee now has potentially
too many hours versus verifying the hours of every employee. For soft constraints, this is
not as easy. While Cs

1 and Cs
4 are relatively straightforward, the variance of Cs

2 and Cs
3

as presented in Chapter 4 cannot be partially evaluated and was calculated using the
Steiner translation theorem. After every successful move, e.g., after a neighbour has been
accepted as the new current solution, an additional full feasibility check and objective
value calculation is done for increased reliability and to reduce potential drift by floating
point inaccuracies.

Neighbourhoods, as explained before, are the backbone of any kind of VNS. Since a
GVNS was implemented as a solution approach for this problem, there are both shaking
and VND neighbourhoods. These neighbourhoods are not the same, nor should they be.
The idea behind the VNS is to provide diversification, while the idea of the VND is to
provide intensification, so the neighbourhoods need to be different.

5.2.1 VND Neighbourhoods

The goal in creating the VND neighbourhoods for this problem is to partition the solution
space. In many other problems, especially ones with less complex constraints and a
clearer way to an obviously better solution (e.g. unmodified TSP), it is advisable to
create neighbourhoods of different sizes for a VND, so that the small neighbourhoods
can be exhausted before bigger jumps in the solution space are made. In this problem,
the best objective value is a compromise.

As an example for the compromise, Cs
1 and Cs

4 can be fundamentally working against
each other. If a shift is unassigned and could be assigned to an employee who has not
favoured this shift, Cs

1 would urge the solution towards making this move, while Cs
4

would be violated. The weights of the constraints and the seriousness of the infraction
would decide if this step were to be taken. To illustrate this point, there is the following
example, as seen in Table 5.1.
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5.2. Metaheuristic approach

Algorithm 8 Variable Neighbourhood Descent with neighbourhood shifting

Input: solution x

Input: set of neighbourhood structures Nk, for N1, ..., Nkmax

Output: improved solution w.r.t. set of neighbourhood structures N x

1: procedure VND(x, N,shift)
2: offset ← 0
3: offsetWait ← false
4: k ← 1
5: repeat

6: i← (k+offset)%kmax

7: y ← best neighbour of Ni(x)
8: if f(y) ≤ f(x) then

9: x← y

10: k ← 1
11: if offsetWait == true then

12: offset ←offset +1
13: offsetWait ← false
14: end if

15: else

16: if shift == true ∧ shift criteria met then

17: offsetWait ← true
18: end if

19: k ← k + 1
20: end if

21: until k > kmax

22: return x

23: end procedure

Table 5.1: Example of soft constraint effects on sample solution, original state

w Nw Hw Sw

1 1 {1} {1}
2 1 {1} {1}
3 1 {1} {1}
4 1 {} {1}
5 1 {} {1}

(l, d) 1
R A

1 5 {1, 2, 3}

Cs Weight Value

1 1 4
2 0 0
3 0 0
4 1 0

Total 4

In this example, there is one shift, S1, with a requirement of 5 employees. Three employees
are already assigned to the shift, and all of them have the shift in their favourite houses.
There are two other employees, who are not yet assigned to the shift, but could potentially
be. Those employees do not have the shift favoured. In this example, the constraint
weights are purposely simple, with Cs

2 and Cs
3 being completely left out. In the initial

case, our objective function is initially 4. As a next step, the algorithm adds another
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5. Solution Approaches

employee to the shift, depicted in Table 5.2.

Table 5.2: Soft constraint example, additional employee assigned

(l, d) 1
R A

1 5 {1, 2, 3, 4}

Cs Weight Value

1 1 1
2 0 0
3 0 0
4 1 1

Total 2

W4 is assigned to the shift, and therefore the constraints change their value. Cs
1 decreases

from 4 to 1, while Cs
4 increases to 1. All in all, the assignment decreases our objective

value by 2. Finally, the algorithm assigns the last employee W5 to the shift. This is
shown in Table 5.3.

Table 5.3: Soft constraint example, all employees assigned

(l, d) 1
R A

1 5 {1, 2, 3, 4, 5}

Cs Weight Value

1 1 0
2 0 0
3 0 0
4 1 4

Total 4

It is easily observable that the objective value is now back to 4, and that this is a worse
solution for these constraint weights. If λs

1 = 5, that is, the weight of Cs
1 was much

higher, this would be the preferable case. This example should showcase how the different
constraints value different outcomes for the solution and how the different neighbourhoods
that will be explained in the following sections try to address those demands.

In the following, each neighbourhood will be introduced in turn. Every neighbourhood
influences soft constraints Cs

2 and Cs
3 , although it is not especially obvious at first glance.

Both Cs
2 and Cs

3 scale with the hours worked by an employee and each neighbourhood
either influences the assignments of an employee, of a shift, or both. In the case of
changing an employee, it can change the hours an employee works. In the case of changing
shift, it can change which shift is worked, which in turn can change the hours of the
employees working the shift. Therefore, no meaningful change in assignments can exist
that could not influence Cs

2 or Cs
3 .

MoveShift

This neighbourhood move changes the location of an assignment, while keeping the same
day as the original. This is intended to move employees from a saturated shift to a shift
that needs more people. Furthermore, it can also resettle an employee to a shift that is
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5.2. Metaheuristic approach

at one of their favourite houses. All soft constraints are impacted by this neighbourhood.
It is not possible to move away from a standby or reserve shift with this neighbourhood,
since then it would not be fully staffed and this would violate hard constraint Ch

9 . Figure
5.1 shows a working example of the neighbourhood.

W1 W2 W3 W7 W1 W2 W3

W4 W5 W6 W4 W5 W6

W1 W2 W3 W1 W2 W3

W4 W5 W6 W7 W4 W5 W6

D1

L1

(a) original

D2

L2

L1

(b) after move shift

L2

Figure 5.1: Move Shift

AddShift

This is a very simple neighbourhood. It simply tries to add another assignment to the
solution. It is the only way to change the amount of assignments present in a solution.
There is no way to delete assignments within the VND, since the central problem to
be solved by this algorithm is the assignment of employees to shifts and the VND is
responsible for intensification. The neighbourhood influences all soft constraints. As
before, Cs

3 cannot be changed by additional shifts, since it has to be completely filled by
hard constraints. Figure 5.2 illustrate the workings of the neighbourhood.

ReassignShift

This neighbourhood move reassigns a shift to a different employee. It does so by
deassigning the original employee and then assigning a different employee to the same
shift. Figure 5.3 illustrates the concept. It is used to assign a shift to someone who would
fit it better than the original employee. This can be because the other person has fewer
assignments than should be—which is the case for Cs

2 and Cs
3 or because the original
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5. Solution Approaches

W1 W2 W3 W1 W2 W3

W4 W5 W6 W4 W5 W6

W1 W2 W3 W7 W1 W2 W3

W4 W5 W6 W4 W5 W6

D1

L1

(a) original

D2

L2

L1

(b) after add shift

L2

Figure 5.2: AddShift

assignee has not favoured a shift whilst the replacement employee has, which is the case
for Cs

4 . Cs
1 is not affected, since no change in shifts is done.

ReassignToDifferentDayShift

This neighbourhood move changes both the location and the day of an assignment
while keeping the employee. It thereby changes the whole shift. This is one of two
neighbourhoods that can change the day on which an employee is scheduled to work
after an initial assignment is set. The neighbourhood is relevant to all soft constraints.
The algorithm is described in Figure 5.4. Having a neighbourhood that only changes the
day while keeping the location has been considered, but the idea has been ultimately
discarded. The reasoning for this is twofold. First, locations are different from each other
(some are events, some are in favourite houses, some are not) while days are not. Any
day that an employee is willing to work is fundamentally the same for the employee.
Second, it would severely restrict the neighbourhood for some cases. For example, there
are at times event shifts that only need staffing for a single day, in which the originally
proposed neighbourhood would not be able to do anything.

SwapShift

This kind of neighbourhood is very common in many problems, it simply swaps two
assignments. This is the biggest neighbourhood in the VND and while it generally does
not change the objective value too much by itself, it keeps the balance and helps with the
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5.2. Metaheuristic approach

W1 W2 W3 W7 W1 W2 W3

W4 W5 W6 W4 W5 W6

W1 W2 W3 W8 W1 W2 W3

W4 W5 W6 W4 W5 W6

D1

L1

(a) original

D2

L2

L1

(b) after reassign shift

L2

Figure 5.3: ReassignShift

W1 W2 W3 W7 W1 W2 W3

W4 W5 W6 W4 W5 W6

W1 W2 W3 W1 W2 W3

W4 W5 W6 W4 W5 W6 W7

D1

L1

(a) original

D2

L2

L1

(b) after ReassignToDifferentDayShift shift

L2

Figure 5.4: ReassignToDifferentDayShift

fairness constraints. Furthermore, it often allows to reach different parts of the solution
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5. Solution Approaches

space due to its size. Informally, the swap shift is also an easy human behaviour to
emulate. The algorithm is detailed in Figure 5.5. The affected constraints are Cs

2 , Cs
3 ,

Cs
4 , since everybody keeps the same amount of shifts and the shifts do not get changed

either.

W1 W2 W3 W7 W1 W2 W3

W4 W5 W6 W4 W5 W6 W8

W1 W2 W3 W8 W1 W2 W3

W4 W5 W6 W4 W5 W6 W7

D1

L1

(a) original

D2

L2

L1

(b) after swap shift

L2

Figure 5.5: SwapShift

5.2.2 Shaking Neighbourhoods

Neighbourhoods of a VNS are generally designed to add diversification capabilities to
a solution, i.e. to enable shaking. In this VNS, two neighbourhood types have been
included, one being a very simple destruction neighbourhood and one being a very
domain-specific shaking mechanism. It is not enough to simply disturb the original
solution if it is done deterministically (e.g. by destroying the five worst assignments),
chances are that the subsequent recreation might just reassign them in the same way
and the solution would still be in a local minimum. Therefore, these neighbourhoods
generally operate in a random fashion and will perform their move even if the result is
worse than before, which it normally is.

In contrast to the VND neighbourhoods, the shaking neighbourhoods in this problem
can be parametrised. That is, the amount of shaking they perform can be defined, and
they can also be employed multiple times.
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5.2. Metaheuristic approach

RemoveShifts

This is a basic neighbourhood that is very common amongst any kind of perturbation
scheme. It simply removes a number of randomly chosen assignments from the solution.
The only restriction implemented in the neighbourhood is in form of the hard constraints—
the last shift of an employee cannot be removed and neither can any standby or reserve
shifts. Improvements from the literature have also been investigated. One improvement
[30] works by destroying a number of the worst rosters together with random rosters. This
keeps the random aspect while also providing some disturbance in areas that obviously
need the improvement. Destroying the whole roster of a person in a general NRP is more
valuable than in this problem, though, since the days are interconnected in the NRP and
only destroying part of the schedule of a single employee might not be enough to reassign
different shifts. In the CESP, this does not apply, so the destruction of a whole roster
does not seem to be that valuable when compared to simply deleting random assignments.
A bad roster with regards to the CESP could be defined as a roster with particularly
high penalty scores for the soft constraints, meaning either over/underdeployment or
deployment to the wrong shifts. Destroying the worst rosters as such is probably difficult,
but an easy way to implement something like that would be view every assignment
that violates Cs

4 as a bad assignment, and to dedicate a number of deletions to those
assignments.

SwapReserveAndStandbyShifts

This is an unusual neighbourhood for a VNS and very domain-specific. Furthermore, it is
dedicated to an area that the previous neighbourhood cannot touch. This neighbourhood
swaps a number of standby and reverse shifts with regular shifts, like the swap neigh-
bourhood. Since standby and reserve shifts are so highly constrained that they cannot
be unassigned by the RemoveShifts neighbourhood explained previously, another method
of shaking those shifts needed to be found. This neighbourhood achieves part of that
idea. It is basically the same procedure as the swap neighbourhood done in sequence,
only choosing the affected assignments randomly.

Summary

The following Table 5.4 sums up the presented neighbourhoods as well as some relevant
attributes of them. The values used in the table are defined beforehand and are based
upon the definitions in Chapter 4.

nl = |L| (5.1)

nw = |W | (5.2)

ns = |S| (5.3)

na =
∑

w∈W

|Aw| (5.4)
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5. Solution Approaches

As we know that S = (D×L), it is clear that nl ≤ ns. Just from the variable definitions,
na cannot be set in relation to ns or nw, but when including the constraints, particularly
Ch

1 , which states that each employee has to work at least one shift, the lower bound of
na can be set as nw, so nw ≤ na. In real applications, na is the variable to be maximised
and should ideally be:

|Aw| =
∑

s∈S

Rs ∀(w ∈W ) (5.5)

which will result in ns < na for most real-world applications, but depending on Rs, it
does not have to be. If there are many shifts with zero requirements and the rest of the
shifts also require a low number of employees, it is possible that ns > na.

Table 5.4: Overview over neighbourhood move properties

Move Name O(·) Affected Cs Summary

MoveShift na · nl Cs
1 ,Cs

2 ,Cs
3 , Cs

4 Changes location of assignment

AddShift ns · nw Cs
1 ,Cs

2 ,Cs
3 , Cs

4 Adds another assignment

ReassignShift na · nw Cs
2 ,Cs

3 , Cs
4 Changes employee of assignment

ReassignDayShift na · ns Cs
1 ,Cs

2 ,Cs
3 , Cs

4 Changes shift of assignment

SwapShift na · na Cs
2 ,Cs

3 , Cs
4 Swaps assignments between employees

5.2.3 Hybrid Approach

Due to the GVNS being an improvement metaheuristic, it always needs an initial solution
which it cannot generate itself. This initial solution can be provided by MiniZinc, but a
custom construction heuristic has also been implemented for this purpose.

Generation

This problem, like many other problems, needs an initial solution, which is different from
just starting with an empty schedule and adding assignments. This is because there are
a few hard constraints that would be violated by an empty schedule. Therefore, the task
of creating an initial feasible solution and the task of improving this solution is not the
same. While it is theoretically possible to just create a perfect initial solution, this is,
as discussed earlier, not realistic. The most realistic way of arriving at a good solution
in a reasonable time-frame for this problem is therefore to construct an initial, feasible
solution by one means and then to try to improve it further.

In addition to generating initial solutions with MiniZinc, a simple greedy construction
heuristic was implemented and integrated in the algorithm. It features random initial
solutions to help with diversification, since the VNS is a single-solution metaheuristic.
In general, it is a simple greedy routine with some domain-specific improvements. The
results obtained by using an initial solution created by this heuristic are comparable to
starting with a MiniZinc solution in terms of quality. There is the additional benefit of
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5.2. Metaheuristic approach

using far less computation time and space than MiniZinc, generally requiring only a few
seconds. Furthermore, the generated solutions have a vastly reduced runtime because
the greedy heuristic takes care of a greater amount of trivial assignment choices than
the MiniZinc solver and includes some domain-specific improvements. For more detailed
results, refer to Chapter 6.

An interesting observation of the workings of MiniZinc and the greedy construction
heuristic are that the MiniZinc initial solution is adhering to all constraints introduced
in Chapter 4, while the greedy heuristic only tries to assign the maximum amount of
shifts, preferably while adhering to the favourite house preferences set by the employees.
While the greedy heuristic does not explicitly check if all constraints are considered, the
resulting initial solution is checked after completion, and the heuristic automatically
restarts if invalid. Due to its randomness, the greedy heuristic typically does not exceed
more than five restarts while often needing none before being able to generate an initial
solution.

The algorithm of the greedy construction heuristic is relatively simple. Algorithm 9
illustrates the concept. First, two sorted lists are generated: employees by number of
days they applied for shifts and shifts by number of employees that are applicable for
the shift. Both lists are sorted ascending, so that the most constrained variables will
be used first. The heuristic works by iterating through those lists, starting by the most
constrained shifts and employees. This is supposed to mimic the behaviour of constraint
programming (and general logic) in choosing the least open variable first. Then, in this
order, event shifts, standby and reverse shifts and general shifts are assigned. The event
shifts are assigned first because they are generally the most constrained and can easily be
overwritten by a relatively unimportant normal shift for which many alternatives exist.
This is done deterministically and illustrated in Algorithm 10. Furthermore, they do
not consume any of the number of shifts an employee wants to work and are seldom so
numerous as to outright deny other constraints. Afterwards, standby and reserve shifts
are assigned randomly. Finally, the remaining shifts are filled semi-randomly, choosing a
random candidate when the sorting algorithm is tied for any spot, described in Algorithm
11.

Algorithm 9 Greedy construction heuristic main body

Input: solution with no assignments x

Output: initial solution x

1: procedure generateInitialSolution(x)
2: e← sortEmployees(x)
3: s← sortShifts(x)
4: x← assignEvents(x,getEventShifts(s),e)
5: x← randomAssignStandbyAndReserve(x)
6: x← assignShifts(x,getRemainingShifts(s),e)
7: return x

8: end procedure
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5. Solution Approaches

Algorithm 10 assignEvents

Input: solution x

Input: set of sorted shifts to be assigned s

Input: sorted list of employees e

Output: solution x

1: procedure assignEvents(x,s,e)
2: update ← true
3: while update == true do

4: update ← false
5: while update == false do

6: e′ ← nextEmployee(e)
7: while update == false ∧s′ 6= NULL do

8: s′ ← nextShift(s)
9: if shift applicable for employee then

10: x← new Assignment(e′, s′)
11: update ← true
12: e← sort(e′)
13: s← sort(s′)
14: end if

15: end while

16: end while

17: end while

18: return x

19: end procedure

Improvement

The two methods of generating solutions in this thesis are generation by MiniZinc and
generation by the greedy construction heuristic presented just now.

After generation, the valid solutions are then further improved by a metaheuristic, in
this case, VND or the whole GVNS . For these two approaches, different termination
criteria exist. For a pure VND, which is deterministic, the solution is improved until it
is optimal with respects to the neighbourhoods in the VND (or optionally, until some
sort of timeout is reached before the locally optimal result is reached). When using the
GVNS, the shaking makes it impossible to run out of solutions to try, and since it also is
not possible to decide if any given solution is optimal, there can be no definitive stopping
point. Therefore, the only viable way to stop the GVNS or any metaheuristic with a
randomised component is to use a timeout or an iteration limit.
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5.2. Metaheuristic approach

Algorithm 11 assignShifts

Input: solution x

Input: set of sorted shifts to be assigned s

Input: sorted list of employees e

Output: solution x

1: procedure assignShifts(x,s,e)
2: update ← true
3: while update == true do

4: update ← false
5: for e′ ← next applicable employee that needs shifts do

6: for s′ ← next shift still needing employees do

7: if shift s′ applicable for employee e′ then

8: if shift in favourite house of e′ then

9: x←new Assignment(e′, s′)
10: update ← true
11: e← sort(e′)
12: else

13: backlog ← s′

14: end if

15: end if

16: end for

17: if backlog not empty and e’ still needs shifts then

18: x←new Assignments(e′,backlog)
19: update ← true
20: e← sort(e′)
21: end if

22: end for

23: end while

24: return x

25: end procedure
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CHAPTER 6
Computational Study

In this chapter, the computational results of the presented algorithms will be discussed.
The study has been conducted by using ten real-world instances over the course of two
years. Different data points have been chosen based on the different circumstances of
the particular planning horizon. A brief overview can be seen in Table 6.1. Instances of
the CESP can generally be in one of two different states:

∑
w Nw >

∑
s Rs or vice versa.

That is to say, either there is more potential work than requirements (e.g., February
2019), or more requirements than people who could fill them (e.g., December 2019). To
give those statements a little bit of context, February is often a slow month — it is right
after the holidays and university students often have less university arrangements than
during the semester. In stark contrast, during the winter months, there are often the
largest exhibitions of the year. If there is an abundance of offered work, then the main
problem will be to satisfy the fairness constraints as well as possible while minimizing
the amount of shifts that ignore the favourite houses declarations of the employees. Else,
the main challenge is to assign employees to open shifts as fairly as possible.

Technically, the study has been run on a virtualised system with a 12-core Intel Xeon
Gold 6134 at 3.20 GHz and 20 GB of RAM. Java 13.0.1 and MiniZinc 2.3.2 with GeCode
6.1.1 have been used. The order of the VND-neighbourhoods has been optimised by
using irace [21], using the same instances as in the study. All VND neighbourhoods use
the BestImprovement-strategy.

The order determined by irace was:

• moveShift

• addShift

• reassignShift

• reassignToDifferentDayShift
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6. Computational Study

• SwapShift

The shaking neighbourhoods have also been optimised by irace, although confidence in
the optimality of this configuration is not very high. For one, it is quite a complex task in
itself to even choose a right order, and for the shaking neighbourhoods, order and size had
to be optimised. Furthermore, VND neighbourhoods were also set to be optimised again,
because there might be different optimal configurations when using the GVNS versus
running just the VND. Another big part is that the GVNS has random elements within
the shaking neighbourhoods which are being optimised and single results indicating one
configuration being better than another are never absolute. Since optimising using irace
is very resource-intensive, some options needed to be constrained a bit. For the process,
irace was only allowed to choose in step sizes of 10, so nothing < 10 could have been
chosen. Furthermore, the number of shaking neighbourhoods was fixed. The VND results
determined were the same as above, and the shaking neighbourhood order and sizes were
as such:

• RemoveShifts 20

• SwapReservesAndStandbyShifts 20

• RemoveShifts 40

• SwapReservesAndStandbyShifts 30

All neighbourhoods are described in detail in the corresponding Chapter 5.2.1.

Due to the nature of the problem, there are a few pitfalls when reading the data, which
will be explained in the following. Even if

∑
w Nw >

∑
s Rs holds, this does not mean

that every requirement can be satisfied. It is possible that nobody is available for a
certain shift, or more realistically, shifts on special days like Christmas might have high
requirements but a small amount of people who want to work on that day.

Furthermore, there are two types of shifts. Normal shifts are assigned based on employees
opting in for a specific day, and are counted against the shift limit Nw. For event shifts,
employees will choose a specific shift, which is not counted against the limit Nw. Instead,
it is assumed that every special shift that an employee volunteers for is intended to
be worked. Therefore, the numbers are shifted again—

∑
Nw <

∑
s Rs still does not

necessarily mean that shifts will be left unassigned.

The table definitions are the same as seen in Chapter 4. For added clarity, the in-
stance overview in Table 6.1 will have both

∑
s Rs and

∑
s R′

s, which is defined as∑
{(d,l)∈S|l 6∈Es} Rs — requirements without special event shifts. While |H| and |E| will

be separate in the following table, in all the other tables, where applicable, they will be
combined into |L| as per the definition.

1
∑

{(d,l)∈S|l6∈Es}
Rs — requirements without special event shifts
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Table 6.1: Overview of the instances

Instance |W| |D| |H| |E|
∑

w Nw
∑

s Rs
∑

s R′
s

1

June 2018 198 30 14 5 851 1064 910
July 2018 196 31 14 3 823 1150 1057
September 2018 183 30 12 4 777 917 834
October 2018 261 31 12 16 980 1059 804
February 2019 172 28 11 4 746 678 567
April 2019 170 30 11 7 718 914 786
August 2019 200 31 13 3 767 944 879
December 2019 281 31 12 12 1160 1524 1275
February 2020 177 29 11 7 628 760 698
March 2020 234 31 12 10 987 970 798

The rest of the chapter consists of evaluations of the algorithms. In this order, the initial
solution construction algorithms, the VND performance and the GVNS performance will
be showcased. Afterwards, the non-deterministic algorithms will be run multiple times
and their statistical values will be presented in Chapter 6.4. An overview and summary
of all the results is presented in Chapter 6.5 followed by some in-depth objective values
for some of the results. At the end of the chapter, a careful comparison to the results of
the human planners with many caveats will be presented.

In the vast majority of the sections, three configurations will be evaluated. Each of the
configurations uses the same neighbourhood order and settings as presented previously,
their difference is in the generation algorithm for their initial solution and whether
neighbourhood shifting is enabled or not.

The three configurations are:

• GG: The first configuration uses initial solutions by greedy construction heuristic
and no neighbourhood shifting

• MZ: The second configuration uses initial solutions by MiniZinc generation and no
neighbourhood shifting.

• GGNBS: The third configuration uses initial solutions by greedy construction
heuristic and utilises neighbourhood shifting.

As can be seen, there is no configuration that uses an initial solution by MiniZinc
generation and has enabled neighbourhood shifting. This is because it is reasonable to
assume that the differences between GG and MZ and GG and GGNBS can be used to
extrapolate possible benefits of another configuration. Therefore, another set of tables
with probably very similar results does not seem relevant.

For efficiency, delta evaluation was implemented as a second step after the algorithm as
such was already finished. It was therefore possible to measure performance and runtime
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6. Computational Study

of a sample instance both before and after introducing delta evaluation. The results can
be seen in Table 6.2.

Table 6.2: Time used for calcuation of different tasks of algorithm on Instance December
2019 configuration GGNBS

Type Neighbourhoods Feasibility Objective value Rest ∆t[m]

Delta 92% 4% 3% 1% 166
Full 28% 20% 51% 1% 514

6.1 Generation

In the following, the initial solution construction algorithms, generation by MiniZinc
and by greedy construction heuristic, will be shown and contrasted. For the greedy
construction heuristic, each instance was used to generate an initial solution 100 times,
as can be seen in Table 6.3.

Table 6.3: Statistics for the runs for initial solutions by greedy construction heuristic

Instance # runs f min f max f ∆t[s]

June 2018 100 0.508737 0.292888 0.704425 1.102
July 2018 100 2.06908 1.69798 2.36706 0.989
September 2018 100 0.67476 0.509202 0.829376 0.821
October 2018 100 0.386239 0.364701 0.408151 1.666
February 2019 100 0.355947 0.329626 0.376256 0.654
April 2019 100 0.611008 0.444807 0.754155 1.184
August 2019 100 0.914605 0.795904 1.01204 0.942
December 2019 100 0.626811 0.547968 0.723275 2.495
February 2020 100 0.340465 0.283001 0.46238 0.582
March 2020 100 0.343198 0.325177 0.363557 1.348

The median over those instances was then used as a single greedy heuristic sample for
later runs of the VND or GVNS which require a single initial solution. The median result
was chosen because it is the fairest depiction of the greedy heuristic before the subsequent
tests which would only generate one result and improve this. If the minimum result was
chosen instead, it could skew the study unfairly in favour of the greedy heuristic. The
median initial solutions can be seen in Table 6.4.

For the MiniZinc generation, MiniZinc was invoked once and the result can be seen in
Table 6.5. While using the same exact instance as has been used for the greedy heuristic

2In December 2019, a main favourable house was not used as such because of organizational details,

therefore the amount of C
s
4 misses is very high because many employees did not update their preferences

accordingly.
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6.1. Generation

Table 6.4: Chosen median initial solutions by greedy construction heuristic

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f

June 2018 198 30 19 1064 1046 67 0.511753
July 2018 196 31 17 1150 994 11 2.06385
September 2018 183 30 16 917 877 77 0.675832
October 2018 261 31 28 1059 1059 71 0.386344
February 2019 172 28 15 678 672 88 0.357097
April 2019 170 30 18 914 864 89 0.609888
August 2019 200 31 16 944 877 109 0.922087
December 2019 2 281 31 24 1524 1419 236 0.626041
February 2020 177 29 18 760 742 112 0.336798
March 2020 234 31 22 970 969 125 0.342923

instances, two instances could not be resolved by the chosen solver within the allotted
time-frame of one hour. These will be highlighted in this table, but omitted in all the
latter tables. Therefore, there will only be eight instances used for the MiniZinc-based
solutions.

Table 6.5: Initial solutions by MiniZinc solver

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 915 199 2.03043 4.76
July 2018 196 31 17 1150 929 215 3.21263 4.13
September 2018 183 30 16 917 834 227 1.5328 3.35
October 2018 - - - - - - - 60
February 2019 - - - - - - - 60
April 2019 170 30 18 914 773 197 2.12269 3.48
August 2019 200 31 16 944 819 276 2.01435 4.03
December 2019 281 31 24 1524 1259 393 2.64121 11.13
February 2020 177 29 18 760 710 240 1.25008 3.42
March 2020 234 31 22 970 956 323 0.696922 7.22

While not being on the tables, relevant points to consider when comparing the generation
approaches are:

• Computation time and cost: while the greedy heuristic takes a few seconds and
a few hundred megabyte of RAM, the MiniZinc solver takes between 3 and 12
minutes for the first solution and uses between 2 and 15 gigabyte of RAM.

• Reliability: as seen in Table 6.5, MiniZinc is not always able to find a solution
within the time limit, which was one hour in this case. It is generally possible to
manipulate an instance slightly for MiniZinc to be able to solve it in a reasonable
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6. Computational Study

time frame, but that takes time, effort and knowledge. At some point, instance
size is also a real problem.

• Solution quality: Without wanting to pre-empt interesting conclusions from the
latter tables, solution quality is a factor. Initial solutions by MiniZinc generally
start in a less desirable state than greedy generated solutions and will increase
runtime until the VND reaches the local minimum—if the program is only used for
a short amount of time, this is paramount. Interestingly, solutions using greedy
generated initial solutions and MiniZinc initial solutions do show very similar results
when being run until the VND reaches its local minimum, with no clearly superior
algorithm. It is relevant to note at this point that MiniZinc solutions work with
more information from the start—it includes the soft constraints and all hard
constraints, while the greedy heuristic just tries to build a good initial roster based
on a minimum of rules and restarts if the generated roster is not feasible.

6.2 VND

The following section shows the results of solving the instances with different configurations
while only running a VND. The types of initial solutions are explained in the previous
section, being generated by the greedy heuristic (GG and GGNBS) or by MiniZinc
(MZ). The greedy heuristic configurations are with (GGNBS) and without (GG) shifting
underperforming neighbourhoods, as explained in Chapter 5.2. In general, the recently
presented median initial greedy generated solution is used for both GG and GGNBS.

6.2.1 15 Minutes

The first results have been measured after running the VND for 15 minutes. As can be
seen from Tables 6.6, 6.7 and 6.8, the initial solution by GGNBS shows better runtimes
and can get a little ahead in bigger instances especially. The solutions using MZ meanwhile
are not competitive at all after the first 15 minutes.

Table 6.6: VND configuration GG after 15 minutes

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 1050 29 0.0651353 15
July 2018 196 31 17 1150 1007 9 0.234874 15
September 2018 183 30 16 917 878 11 0.161932 15
October 2018 261 31 28 1059 1059 33 0.0819516 15
February 2019 172 28 15 678 672 19 0.0471305 11.17
April 2019 170 30 18 914 870 24 0.11497 15
August 2019 200 31 16 944 882 30 0.212428 15
December 2019 281 31 24 1524 1428 217 0.303567 15
February 2020 177 29 18 760 749 21 0.0936465 12.98
March 2020 234 31 22 970 969 17 0.0486883 15
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6.2. VND

Table 6.7: VND configuration MZ after 15 minutes

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 1044 89 0.0973182 15
July 2018 196 31 17 1150 1006 49 0.257491 15
September 2018 183 30 16 917 878 20 0.165259 15
April 2019 170 30 18 914 862 41 0.129369 15
August 2019 200 31 16 944 879 78 0.23685 15
December 2019 281 31 24 1524 1425 221 0.286973 15
February 2020 177 29 18 760 751 25 0.103586 15
March 2020 234 31 22 970 969 104 0.188905 15

Table 6.8: VND configuration GGNBS after 15 minutes

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 1048 17 0.0605393 15
July 2018 196 31 17 1150 1001 7 0.236282 15
September 2018 183 30 16 917 877 13 0.165798 15
October 2018 261 31 28 1059 1059 22 0.0606749 15
February 2019 172 28 15 678 672 19 0.0467215 10.7
April 2019 170 30 18 914 867 22 0.116186 15
August 2019 200 31 16 944 877 21 0.215636 15
December 2019 281 31 24 1524 1424 214 0.303317 15
February 2020 177 29 18 760 747 17 0.0947747 11.77
March 2020 234 31 22 970 969 13 0.0465501 15

6.2.2 Completion

The following is a run to completion, which means that the VND has no time limit and
can run until it is unable to find a better result in any of its neighbourhoods, also referred
to as reaching a local minimum. Since the VND is a deterministic algorithm without
diversification, this is bound to happen. Here, both the final result as well as the duration
of the run are of importance, and the results are interesting. The results of configuration
GG are shown in Table 6.9, and will be used a baseline for the other two configurations.

When utilizing neighbourhood shifting as seen in Table 6.11 , the time needed to converge
is lowered while the results are pretty similar. It would seem reasonable that GGNBS
would give worse results if the neighbourhood ordering we used is optimal, since the
shifting cycles the order of the neighbourhoods, thus using non-optimal configurations
more often than not. The differences between the generated solutions and the MiniZinc
solutions as seen in Table 6.10 is also interesting—while none of the solutions are very
far apart in either objective value or actual results, the MiniZinc solutions seem to be
a bit better in assigning shifts and a bit worse with the Cs

4 constraint, while obviously
taking far longer than either of the other results. Furthermore, plots of the changes
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6. Computational Study

in neighbourhoods for configurations GG and GGNBS have been created. For each
configuration, there is a plot over the whole improvement process and a plot over only
the last hour. For GG, these are Figures 6.1 and 6.2 respectively. For GGNBS, they
are Figures 6.3 and 6.4. The most interesting part of the visualisation is how the
neighbourhood changes are different in the two configurations. GGNBS usually exhausts
one neighbourhood and then moves on, which leads to very uniform looking curves. GG
instead adheres to the neighbourhood order, which is especially nice to compare in the
more detailed Figures 6.2 and 6.4.

Table 6.9: VND configuration GG to completion

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 1056 10 0.0535215 44.72
July 2018 196 31 17 1150 1008 6 0.229451 35.38
September 2018 183 30 16 917 878 11 0.161147 24.57
October 2018 261 31 28 1059 1059 0 0.0319417 38.72
February 2019 172 28 15 678 672 19 0.0471305 11.57
April 2019 170 30 18 914 870 22 0.112915 24.67
August 2019 200 31 16 944 886 19 0.196101 26.72
December 2019 281 31 24 1524 1448 49 0.159002 224.42
February 2020 177 29 18 760 749 21 0.0936465 12.27
March 2020 234 31 22 970 969 0 0.0387968 32.38

Table 6.10: VND configuration MZ to completion

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 1047 7 0.0549755 60.88
July 2018 196 31 17 1150 1010 10 0.236646 38.63
September 2018 183 30 16 917 880 9 0.158936 31.2
April 2019 170 30 18 914 865 24 0.116743 30.15
August 2019 200 31 16 944 885 21 0.198219 43.87
December 2019 281 31 24 1524 1446 44 0.157538 225.1
February 2020 177 29 18 760 751 24 0.102661 16.8
March 2020 234 31 22 970 969 1 0.0387589 56.93

A succinct comparison for only the core values of these tests can be found in Chapter 6.5.

6.3 GVNS

In this section, the same tests as before have been run, this time using a GVNS. Since
the GVNS is a combination of a VND with a diversification mechanism in form of a VNS,
no runs to completion can possibly be achieved. Therefore, a run with a timeout of 12
hours has been done. This leaves the GVNS enough time to repeatedly apply shaking
algorithms for even the largest instances. These results are based on one execution for
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6.3. GVNS

Table 6.11: VND configuration GGNBS to completion

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f ∆t[m]

June 2018 198 30 19 1064 1050 8 0.0530264 38.42
July 2018 196 31 17 1150 1009 4 0.225622 29.53
September 2018 183 30 16 917 878 13 0.161547 18.52
October 2018 261 31 28 1059 1059 0 0.0315137 40.48
February 2019 172 28 15 678 672 19 0.0467215 9.23
April 2019 170 30 18 914 873 25 0.111193 18.88
August 2019 200 31 16 944 882 17 0.201962 28.47
December 2019 281 31 24 1524 1435 38 0.162306 166.62
February 2020 177 29 18 760 747 17 0.0947747 10.38
March 2020 234 31 22 970 969 1 0.0386226 31.35

Figure 6.1: Visualisation of the improvements done by VND GG for Instance December
2019. Each neighbourhood is their own colour, described in the legend.

every instance, and since GVNS has random elements, are not completely representative.
They should only be used to show the approximate results. In the next chapter, Chapter
6.4 all algorithms have been run multiple times on a single instance to get a closer look
on their performance. As before, the first table, Table 6.12 shows the solutions generated
by configuration GG, Table 6.13 shows the results for MZ and 6.14 shows the results for
GGNBS.

Additionally to the results of the algorithm, some additional properties of the GVNS
have also been recorded. Figures 6.5 and 6.6 show the change of objective function over
time for the instances September 2018 and August 2019, respectively. Each node in
the visualisation corresponds to a shaking and subsequent improvement by the VND
which ultimately found a new best solution. Both plots start relatively skewed at around
the one hour mark, which is the time for the first completion of the VND. As can be
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6. Computational Study

Figure 6.2: Visualisation of the improvements done by VND GG for Instance December
2019. Closeup of the last few hours to see the neighbourhood changes in detail.

Figure 6.3: Visualisation of the improvements done by VND GGNBS for Instance
December 2019. Each neighbourhood is their own colour, described in the legend.

seen, improvements come fast during the first hours, and while they do slow during the
latter half, none show real signs of stagnating. Also, the visualisations have been done
for comparably smaller instances, with larger instances presumably showing the same
pattern, only stretched out over a large time-frame, since the completion of each shaking
and subsequent improvement just takes a lot longer.

Since the 12 hour GVNS run is the longest test that has been done with the instances, it
is the perfect place to provide additional statistics on how each of the neighbourhoods
is performing. For this behalf, there are two tables, detailing the VND and shaking
neighbourhood performance of configurations GG and GGNBS.
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6.3. GVNS

Figure 6.4: Visualisation of the improvements done by VND GGNBS for Instance
December 2019. Closeup of the last few hours to see the neighbourhood changes in detail.

Table 6.12: GVNS solution configuration GG after 12h

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f

June 2018 198 30 19 1064 1058 2 0.0501021
July 2018 196 31 17 1150 1018 3 0.214228
September 2018 183 30 16 917 880 6 0.155464
October 2018 261 31 28 1059 1059 1 0.0303422
February 2019 172 28 15 678 672 12 0.0415056
April 2019 170 30 18 914 876 18 0.0988159
August 2019 200 31 16 944 895 14 0.175012
December 2019 281 31 24 1524 1452 38 0.15679
February 2020 177 29 18 760 751 13 0.0867861
March 2020 234 31 22 970 968 0 0.0382205

Table 6.13: GVNS solution configuration MZ after 12h

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f

June 2018 198 30 19 1064 1058 2 0.0503643
July 2018 196 31 17 1150 1022 4 0.208552
September 2018 183 30 16 917 880 4 0.153827
April 2019 170 30 18 914 878 17 0.100181
August 2019 200 31 16 944 893 14 0.180825
December 2019 281 31 24 1524 1454 36 0.154181
February 2020 177 29 18 760 753 13 0.0848931
March 2020 234 31 22 970 969 1 0.038306
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6. Computational Study

Table 6.14: GVNS solution configuration GGNBS after 12h

Instance |W| |D| |L|
∑

s Rs
∑

w |Aw| Cs
4 miss f

June 2018 198 30 19 1064 1057 3 0.0505064
July 2018 196 31 17 1150 1018 3 0.213172
September 2018 183 30 16 917 880 5 0.154967
October 2018 261 31 28 1059 1058 0 0.0299924
February 2019 172 28 15 678 672 12 0.0414375
April 2019 170 30 18 914 878 19 0.0987089
August 2019 200 31 16 944 897 13 0.173479
December 2019 281 31 24 1524 1445 35 0.15652
February 2020 177 29 18 760 751 7 0.0851367
March 2020 234 31 22 970 968 0 0.0385363

Figure 6.5: Visualisation of the improvements done by GVNS for Instance September
2018. Starting points are the construction heuristics, which are not shown to preserve
focus. GG, GGNBS: 0.6758, MZ: 1.5328

The VND neighbourhood statistics tables will be discussed first. The results can be seen in
Tables 6.15 and 6.16. For each neighbourhood, the number of successful moves is written
first, followed by the number of unsuccessful moves. One of the most interesting parts in
this comparison is the number of additional VND neighbourhood moves the GGNBS has
completed in relation to the GG. The GGNBS configuration consistently has a higher
successful to unsuccessful move percentage than the GG configuration. It can also be seen
how the GGNBS configuration is skewed to use the SwapShift neighbourhood more often.
This is the largest neighbourhood which provides lots of mostly small improvements. This
is not to say that each move is of the same value—by shifting the neighbourhoods from
their normal position, a situation where a suboptimal neighbourhood move is performed
by the currently first neighbourhood, while the original first neighbourhood would have
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6.3. GVNS

Figure 6.6: Visualisation of the improvements done by GVNS for Instance August 2019.
Starting points are the construction heuristics, which are not shown to preserve focus.
GG, GGNBS: 0.9220, MZ: 2.014

had a better move, is a very realistic possibility.

Table 6.15: GVNS solution configuration GG after 12h, VND neighourhood statistics

Instance Move Add Reass ReassDay Swap

June 2018 4.7k/7.1M 3.0k/194.4k 4.1k/22.1M 1.6k/926.4k 13.4k/26.3M
July 2018 12.4k/21.5M 16.4k/774.1k 1.3k/9.2M 3.2k/22.8M 10.5k/28.4M
September 2018 8.5k/12.6M 5.8k/176.9k 21.5k/37.8M 2.0k/1.1M 18.8k/32.1M
October 2018 5.2k/8.3M 3.1k/248.8k 35.0k/189.6M 76/24.3k 6.3k/23.4M
February 2019 15.2k/16.7M 8.3k/367.9k 103.7k/218.4M 1.5k/60.0k 11.1k/19.9M
April 2019 10.6k/14.4M 7.9k/307.4k 9.6k/10.0M 3.2k/3.6M 26.7k/30.7M
August 2019 13.5k/23.2M 12.3k/346.2k 2.3k/6.8M 3.3k/15.4M 24.8k/42.2M
December 2019 2.0k/5.2M 662/91.5k 2.4k/16.9M 566/2.4M 4.4k/12.0M
February 2020 13.4k/16.3M 8.3k/243.3k 34.9k/38.7M 2.2k/745.0k 17.0k/25.1M
March 2020 6.4k/10.0M 3.9k/208.0k 50.2k/155.7M 743/20.4k 7.2k/18.3M

As can also easily be seen, some neighbourhoods, in particular ReassignToDifferentDay,
really do not perform well on certain instances. It is entirely possible that it suffers
from being so far in the back of the queue, but it also does not fare much better using
the GGNBS configuration. Another interpretation would be that it is unreasonable
to find open shifts in some instances, and that it can be emulated by a combination
of other neighbourhoods, maybe MoveShift and SwapShift. On the other hand, this
neighbourhood provides relatively high impact moves when it is able to find neighbours,
as can be seen on Figures 6.1 and 6.3.

The shaking neighbourhood statistics can be seen in Tables 6.17 and 6.18. They are
similar to the VND statistics, having first the shaking operations that resulted in a
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6. Computational Study

Table 6.16: GVNS solution configuration GGNBS after 12h, VND neighbourhood statistics

Instance Move Add Reass ReassDay Swap

June 2018 2.4k/1.4M 3.5k/181.6k 5.6k/9.7M 851/515.2k 18.2k/35.9M
July 2018 12.3k/9.2M 22.2k/1.1M 1.2k/3.8M 4.1k/14.4M 16.1k/47.1M
September 2018 3.7k/1.7M 5.6k/192.8k 21.1k/22.9M 559/241.5k 24.8k/42.6M
October 2018 1.8k/778.0k 4.4k/311.0k 32.3k/145.7M 311/118.6k 11.7k/44.9M
February 2019 6.3k/2.5M 11.4k/485.3k 124.9k/220.8M 2.9k/127.6k 21.4k/41.9M
April 2019 5.0k/2.5M 7.7k/181.9k 6.7k/3.6M 1.1k/805.8k 30.8k/36.7M
August 2019 10.4k/6.9M 13.9k/344.6k 2.4k/2.1M 1.4k/3.3M 31.3k/56.4M
December 2019 1.6k/1.2M 1.5k/94.0k 3.2k/10.9M 620/981.6k 8.2k/25.3M
February 2020 8.2k/3.8M 12.5k/389.8k 49.5k/38.7M 3.0k/944.1k 33.9k/51.0M
March 2020 2.0k/808.5k 4.2k/229.3k 52.3k/128.5M 909/28.0k 8.9k/24.3M

new local minimum after subsequent VND operations followed by all the valid shakings.
Furthermore, the sum of all successful shakings and the time that the last solution has
been found are also depicted.

Table 6.17: GVNS solution configuration GG after 12h, shaking neighbourhood statistics.
The first four columns are the shaking neighbourhoods, afterwards is the sum of successful
shaking attempts and the time the last solution has been found.

Instance Rem20 Swap20 Rem40 Swap30 #Shakingsucc Last Sol ∆t[h]

June 2018 10/25 3/15 0/11 2/11 15 11.60
July 2018 6/65 8/59 4/51 4/46 22 8.93
September 2018 17/37 3/20 4/16 0/12 24 11.28
October 2018 1/12 2/11 2/9 0/7 5 6.93
February 2019 10/40 2/30 2/28 0/26 14 10.48
April 2019 13/51 5/38 5/32 1/27 24 11.52
August 2019 10/64 13/54 4/40 5/36 32 11.92
December 2019 6/9 2/3 0/0 0/0 8 10.73
February 2020 12/45 2/33 3/30 2/27 19 9.77
March 2020 3/14 1/11 3/10 0/7 7 8.88

An interesting part here is the last time that the GVNS made any improvement to the
solution. There are some values that definitely stand out, like the 3.55 hours for the
March 2020 instance in Table 6.18. However, none of the very low numbers in any of the
two tables are replicated in the other, and most of the instances found improvements in
the last hours, so it can be argued that the GVNS could be let run even longer to achieve
better results. For a closer view of the improvements over time, refer to Figures 6.5 and
6.6 earlier in the section.
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6.4. Statistics for Variable Results

Table 6.18: GVNS solution configuration GGNBS after 12h, shaking neighbourhood
statistics. The first four columns are the shaking neighbourhoods, afterwards is the sum
of successful shaking attempts and the time the last solution has been found.

Instance Rem20 Swap20 Rem40 Swap30 #Shakingsucc Last Sol ∆t[h]

June 2018 6/24 3/18 2/15 4/13 15 11.45
July 2018 14/93 5/79 1/74 4/72 24 9.80
September 2018 10/29 0/19 2/18 0/16 12 11.18
October 2018 7/20 2/13 5/10 0/5 14 10.93
February 2019 21/59 1/38 1/36 0/35 23 11.27
April 2019 14/50 4/36 0/32 3/32 21 7.63
August 2019 26/89 22/63 2/40 6/38 56 11.92
December 2019 8/13 2/5 0/3 0/2 10 8.88
February 2020 12/61 2/49 6/47 2/41 22 9.63
March 2020 8/19 0/11 2/11 1/9 11 3.55

6.4 Statistics for Variable Results

In this chapter are some of the previous results with variable outcome (that is, diver-
sification strategies of any kind) and their performance over several runs based on one
instance. This can be seen in Table 6.19 and should give a feeling on how random and
diverse the solutions generated can be and what kind of performance should be expected
from each of them.

The first lines of the table are titled "Reference"—these are two results that have been
pulled from the respective tables already presented for convenience, to see how the
repeated results measure up against the others. The other tests are VND runs on freshly
generated instances for each run, which is the only way to randomise the VND, and some
variations of VNS runs.

Table 6.19: Statistics for multiple runs of different algorithms for instance August 19

Algorithm # runs f min f max f

VND GG Completion Ref 1 0.196101 0.196101 0.196101
VNS GGNBS 12h Ref 1 0.173479 0.173479 0.173479
New gen. VND Completion GG 10 0.200017 0.191796 0.203353
New gen. VND Completion GGNBS 10 0.204342 0.199288 0.212167
VNS GG 8h 10 0.178225 0.175471 0.181294
VNS MZ 8h 10 0.180952 0.177056 0.183412
VNS GGNBS 8h 10 0.17862 0.17512 0.183775

As can be easily seen, running VND multiple times to completion with different instances
is not a viable alternative to running a VNS. If we compare the minimum from the 10
runs of VND with the maximum of the 10 VNS runs, the difference is still huge and
shows no sign of being close.
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6. Computational Study

As a second observation, the VNS results suggest that greedy generated initial solutions
with or without neighbourhood shifting (GGNBS and GG) achieves comparable results,
while solutions based on MiniZinc are slightly worse. GGNBS and GG being very close
can be relatively easy to argue—the problem has a lot of possible solutions, and the
configurations just take different ways to arrive at similarly good ones. Coupled with
shaking by the VNS, it is possible that the differences between the configurations are
negligible. MZ delivering worse results is not that obvious, though. It could be argued
that the additional time they take to complete the first VND gives them a disadvantage
at the VNS stage, or that the initial solutions generally lead them in slightly worse areas
of the solution space. It could also be just an issue of this specific instance. Additionally,
Figure 6.6 in the GVNS chapter can give a visualisation of how the GVNS behaves.

6.5 Comparison Between Modes

This chapter offers a quick reference and overview of the presented configurations and
their performances in the case of a VND to completion and a GVNS after 12 hours, in
Tables 6.20 and 6.21 respectively.

Table 6.20: Comparison VND to completion

Instance GG MZ GGNBS

June 2018 0.0535 0.0550 0.0530

July 2018 0.2295 0.2366 0.2256

September 2018 0.1611 0.1589 0.1615
October 2018 0.0319 - 0.0315

February 2019 0.0471 - 0.0467

April 2019 0.1129 0.1167 0.1112

August 2019 0.1961 0.1982 0.2020
December 2019 0.1590 0.1575 0.1623
February 2020 0.0936 0.1027 0.0948
March 2020 0.0388 0.0388 0.0386

6.6 Human Planning Results

In an effort to compare the results of the work to the currently used methods, the finalised
used schedules developed by hand have also been evaluated based on the objective function
and weights used in the rest of the study. Sadly, this is not as easy as it might seem at
first, and all of the results presented are comparatively inaccurate. There are a couple of
reasons for this, which can be reduced to three differences:

• The time the schedule was submitted: most of the schedules were submitted
after the month was over, and there is no former version. That means that any
changes between the initial schedule and the end of the month are in the schedule,
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6.6. Human Planning Results

Table 6.21: Comparison VNS over 12h

Instance GG MZ GGNBS

June 2018 0.0501 0.0503 0.0505
July 2018 0.2142 0.2086 0.2131
September 2018 0.1555 0.1538 0.1550
October 2018 0.0303 - 0.0300

February 2019 0.0415 - 0.0414

April 2019 0.0988 0.1002 0.0987

August 2019 0.1750 0.1808 0.1734

December 2019 0.1568 0.1542 0.1565
February 2020 0.0867 0.0849 0.0851
March 2020 0.0382 0.0383 0.0386

thus changing it. For example, people get sick or additional shifts are needed.
Furthermore, as can be seen, there are generally always more employees—and
sometimes even locations—in the finished schedules than at the beginning, owing
to people responding later or short-term requirements.

• The state of the schedule: The schedule generated by the algorithms in this thesis is
used as an initial solution for the human planners which can then further be refined
depending on the circumstances, as discussed in the first point. The objective
function does reflect that.

• The freedom of the planners: The algorithms work with constraints which are
defined in a manner that enables the human planners to then break some of them.
It could, for example, be beneficial to assign more people than strictly required
to a shift, but the algorithm does not have the knowledge (or need) to know or
understand that.

The results of these differences are that some hard constraints are broken, especially Ch
2 ,

Ch
4 and Ch

6 / Ch
7 . Ch

2 is violated if a person does more shifts than they chose. This is
easily done in reality because of two possibilities. Shifts can be switched or taken over
from somebody else or there might be additional need for a specific shift later in the
month, which will be communicated and where employees can volunteer. Both of these
occurrences can push somebody over the amount of chosen shifts they initially stated,
but it is not possible to decide which kind of shift it is.

Ch
4 is violated if more people than required are assigned to a shift, and it is a simple matter

of a planner seeing that there are more offers than demand and assigning additional
shifts where they feel it would be useful. This is not a planning error, just a call that
the algorithm is not able to make. The objective function is not able to handle these
assignments, though, which is why the fairness constraints will be skewed starkly.
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6. Computational Study

Ch
6 and Ch

7 are violated if somebody has more than the maximum amount of reserve or
standby shifts. This does not happen often, but is possible, since it is actually a nice
to have for the planners. While the algorithms are instructed to adhere strictly to the
maximum, human planners can overrule this. Furthermore, the current maximum used
for the study was one shift, while it was two at the time some of the instances have been
used.

Ch
9 is violated if there are not enough standby- or reserve shifts assigned. Since these

shifts are virtual and are transformed to real shifts anyway, this is also okay. It is
generally a sign that there was a shortage of work offers, though.

To prepare for the first table, a few unique columns have to be explained. Since there is
overbooking of the required employees for individual shifts (

∑
w Aw >

∑
s Rs ), it is no

longer enough to just have those two values, because the amount of open shifts can no
longer be gleaned from those numbers. Therefore, a new column opSh (open shifts) has
been introduced, which denotes that number. The rest of the columns show the amount
of violations for the respective constraints. This can be seen in Table 6.22.

Table 6.22: Human planning results

Instance |W| |D| |L|
∑

s Rs
∑

w Aw opSh3 Cs
4 Ch

2 Ch
4 Ch

6/7 Ch
9

June 20184 212 30 19 1064 902 162 76 43 0 0 56
July 2018 201 31 17 1150 974 184 42 92 8 2 59
September 2018 201 30 16 944 878 66 69 46 0 3 2
October 2018 250 31 28 1059 1222 6 12 17 65 0 0
February 2019 173 28 15 678 720 7 14 8 38 0 1
April 2019 174 30 18 914 832 82 52 6 0 1 2
August 2019 201 31 16 944 878 66 61 46 0 3 2
December 2019 311 31 23 1533 1567 22 109 123 34 3 2
February 2020 176 29 18 760 769 18 50 32 20 1 1
March 2020 239 31 25 985 1021 17 23 8 42 0 0

As can clearly be seen, the numbers do not line up well with the algorithm-solved
instances. The closest way to to compare them seems to be to compare the open shifts
with the respective number of the algorithms (

∑
s Rs−

∑
w |Aw|) and the Cs

4 misses. This
gives a rough insight to two of the objective function components, with no easy way to do
the same for the other two. A rough comparison can be seen in Table 6.23. The only real
deduction to be made from this is that the algorithms seem more adapt at minimizing
Cs

4 misses, which is easily explained, since the strong point of any computer is to do
monotonous tasks willingly and without error, such as every shift with every other shift
to reduce misses, which is practically impossible for a human.

4open shifts
4final schedule for this month misses a lot of information required for correct comparison, therefore

values here are especially unreliable
5Algorithmic input—since the number of locations and workers differs from human planning results

and algorithmic inputs, the input values for the algorithms are denoted extra
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6.6. Human Planning Results

Table 6.23: Human planning results compared to algorithm instances, configuration
GGNBS

Human planning Alg input5 GVNS12 VND Full
Instance |W | |L| opSh Sh% Cs

4 |W | |L| opSh Sh% Cs
4 opSh Cs

4

June 2018 212 19 162 15.2% 76 198 19 7 0.6% 3 14 8
July 2018 201 17 184 16% 42 196 17 132 11.5% 3 141 4
September 2018 201 16 66 6.9% 69 183 16 37 4.0% 5 39 13
October 2018 250 28 6 0.5% 12 261 28 1 0.1 0 0 0

February 2019 173 15 7 1.0% 14 172 15 6 0.8% 12 6 19
April 2019 174 18 82 8.9% 52 170 18 36 3.9% 19 41 25
August 2019 201 16 66 6.9% 61 200 16 47 5.0% 13 62 17
December 2019 311 23 22 1.4% 109 281 24 79 5.2% 35 89 38
February 2020 176 18 18 2.3% 50 177 18 9 1.2% 7 13 17
March 2020 239 25 17 1.7% 23 234 22 2 0.2% 0 1 1

Lastly, there is a comparison of soft constraint violations for algorithmic and human
values which can be seen in Table 6.24. As can be seen, the algorithmic results are
generally more optimised and consistent, as the σ values are lower. The different Cs

3 x̄

values exist because the number of assigned shifts is different for human and algorithmic
results.

Table 6.24: Algorithmic vs. human soft constraint comparison. First column are
algorithmic values, second are human values. Cs

1 and Cs
4 are computed by using the

RMSE of the soft constraint value, Cs
2 and Cs

3 by using the mean x̄ and the standard
deviation of the soft constraint in parenthesis. All values interpreted as percentages.
Algorithmic values are from VNS 12h GGNBS. The algorithmic approach is almost
dominant regarding the defined objectives.

Instance RMSE CS
1 Algorithmic / Human x̄(σ) CS

2 x̄(σ) CS
3 RMSE CS

4

June 2018 1.26%/44.14% 76.09%(21.07%)/73.10%(52.46%) 6.51%(6.37%)/0.83%(2.38%) 1.50%/15.83%
July 2018 10.71%/45.50% 82.70%(30.66%)/91.85%(55.71%) 6.34%(6.36%)/0.57%(1.64%) 1.55%/13.63%
September 2018 10.26%/18.72% 80.10%(21.08%)/84.09%(39.81%) 7.14%(6.65%)/9.21%(12.03%) 1.95%/19.58%
October 2018 0.25%/4.64% 75.10%(15.50%)/86.21%(43.12%) 7.75%(7.68%)/9.25%(13.21%) 0.00%/6.49%
February 2019 1.65%/3.82% 56.63%(17.22%)/78.40%(60.57%) 11.48%(8.30%)/12.22%(16.47%) 3.28%/10.15%
April 2019 5.34%/16.43% 80.36%(22.23%)/88.49%(36.40%) 8.53%(7.87%)/10.08%(12.26%) 8.53%/13.13%
August 2019 8.10%/18.72% 77.76%(31.59%)/84.09%(39.81%) 7.44%(7.33%)/9.21%(12.03%) 3.66%/17.55%
December 2019 9.80%/7.95% 87.27%(22.59%)/96.38%(37.72%) 5.33%(7.06%)/7.04%(13.78%) 4.73%/16.70%
February 2020 3.54%/7.50% 74.78%(25.24%)/81.36%(31.59%) 9.03%(8.53%)/11.20%(13.84%) 2.86%/16.05%
March 2020 1.02%/10.07% 64.09%(17.83%)/42.78%(23.44%) 8.74%(7.56%)/8.02%(11.13%) 0.00%/7.15%
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CHAPTER 7
Summary and Future Work

This thesis presents a new problem in the field of personnel scheduling that is closely
related to the nurse rostering problem, the casual employee scheduling problem. It is
formally defined in the thesis on the basis of a real-world occurrence and shown to be
NP-hard. Both an exact and a heuristic solution are developed, based on the formal
definition. The exact solution is based on constraint programming, and can be used to
generate initial solutions most of the time, but not consistently. It is not performant
enough to find competitive solutions. As an alternative, a greedy construction heuristic
has been implemented, which consistently generates reasonable initial solutions tailored
to this exact problem. The heuristic solution developed is a GVNS, consisting of a
VND and a shaking mechanism, each with their own set of neighbourhoods. Different
variants of the VND and GVNS are tested against real-world instances and found to give
high-quality initial solutions for actual real-life rostering efforts.

In retrospective, starting from a naturally grown real-world problem and defining it
with the input of multiple people was an organizational challenge that could have been
handled a lot smoother. Aspects like fairness and phrases like ’should not happen’ can
mean something very different to different people, and some of the more complex rules
have taken quite a few iterations to be developed in the way they are now. Some changes
have only been made after the first schedules have been delivered and required quite a
bit of redesigning.

The algorithms as presented in this thesis are efficient enough to solve the real-world
problem they were designed to do. Of course, there is still a lot that could work better.
There are always efficiency tweaks that could also be implemented, since most code is
never truly optimal. Inquiries could be made into the GVNS algorithm to check how
much a solution changes from the first completed VND run to a GVNS solution a set time
later. How much of the initial solution is still intact—and is it because it is near-optimal
or because the GVNS is not able to shake enough? Additional time could be used to
change the balance between VNS and VND, either by removing VND neighbourhoods or
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7. Summary and Future Work

by limiting the time of each VND run within the VNS. Furthermore, as discussed when
introducing the shaking neighbourhoods, research on their performance could still be
done. From a purely practical standpoint, it would be interesting to adapt the system to
allow for slight changes. Given a current best solution, change the input a little bit—like
adding or subtracting an additional employee—and let it recalculate a new solution.
The problem here is less in the technical aspects, since this can be done already, but
from organizational aspects. Rosters are given out before the start of the month and
not changed in any meaningful way afterwards, if they do not absolutely have to be.
Furthermore, it is basically a question of good user interface design to make this process
easier for the end user than just scheduling the additional shift themselves. This is, while
being part of the real-world problem, not in the scope of the thesis.
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APPENDIX A
MiniZinc model

%%%

% input variables

%%%

% number of employees

int: workers;

% number of days

int: days;

% number of houses

int: houses;

% number of events

int: n_events;

% locations = houses + n_events

int: locations;

% the array index of the reserve category

int: index_reserve;

% the array index of the standby category

int: index_standby;

% minShift for standby/reserve shifts (C_minShift)

int: sr_minshift;

% (C_reserve) - maximum number of reserve shifts

int: r_maxshift;

% (C_standby) - maximum number of standby shifts

int: s_maxshift;

% h4: maximum hours per employee per month

int: max_hours;

set of int: special_events;

set of int: Houses = 1..houses;

set of int: Locations = 1..locations;

set of int: LocsWOStandby = Locations diff {index_standby};

set of int: Days = 1..days;

set of int: Workers = 1..workers;

% requirements for employees

array[Locations,Days] of int: requirements;

% number of shifts that employees want to do this month

array[Workers] of int: num_shifts;

% the durations of the shifts
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A. MiniZinc model

array[Locations] of int: durations;

array[Workers,Locations] of var int: dur_arr;

% maximum time that durations can take

int: max_duration = max(durations);

% set of holidays

set of int: holidays;

% the times where an employee can work

array[Locations,Days] of set of Workers: worker_shifts;

% the solution variable - the assigned shifts for an employee

array[Locations,Days] of var set of Workers: assign;

% which houses are favouritable?

set of int: favable_houses;

% favourite houses per employee

array[Workers] of set of Houses: fav_houses;

% helper statistics

var int: shift_num;

var int: asg_num;

%%%

% hard constraints

%%%

% h0: only work when you have time (not needed in model)

constraint forall (w in Workers, l in Locations, d in Days) (( w in assign[l,d] ->

w in worker_shifts[l,d]) );

% h1: everybody has to work at least one shift

constraint forall (w in Workers) (sum([ w in assign[l,d] | l in Locations, d in

Days ]) > 0 \/ num_shifts[w] == 0);

% h2: not more than possible for each employees

constraint forall (w in Workers) (sum([ w in assign[l,d] | l in LocsWOStandby, d in

Days ]) <= num_shifts[w]);

% h3: not more than maximum hours

constraint forall (w in Workers, l in Locations) (dur_arr[w,l] = (sum([ w in assign

[l,d] | d in Days]) + sum([ w in assign[l,d] | d in holidays])) * durations[l]);

constraint forall (w in Workers) (sum([ dur_arr[w,l] | l in Locations]) <=

max_hours*60);

% h4: not more employees than stated in requirements

constraint forall (l in Locations, d in Days) (sum([ w in assign[l,d] | w in

Workers ]) <= requirements[l,d]);

% h5: employees with few shifts cannot be assigned to reserve or standby

constraint forall (w in Workers) ( num_shifts[w] < sr_minshift -> (sum([ w in

assign[sr,d] | d in Days, sr in {index_standby,index_reserve}]) == 0));

% h6: cannot surpass max reserve shifts

constraint forall (w in Workers) (sum([w in assign[index_reserve,d] | d in Days])

<= r_maxshift);

% h7: cannot surpass max standby shifts

constraint forall (w in Workers) (sum([w in assign[index_standby,d] | d in Days])

<= s_maxshift);

% h8: time - no two shifts on the same day

constraint forall (w in Workers, d in Days, l1 in Locations, l2 in Locations) (l1

== l2 \/ ((w in assign[l1,d]) -> ({w} intersect assign[l2,d] == {})));

% h9: no unassigned reserve or standby shifts

constraint forall (l in {index_standby,index_reserve}, d in Days) (sum([w in assign

[l,d] | w in Workers]) == requirements[l,d]);

%%%

% soft constraints

%%%
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% helpers

array[Workers] of var int: numbers_of_assigned_shifts;

constraint forall (w in Workers) (numbers_of_assigned_shifts[w] = sum([w in assign[

l,d] | l in Locations, d in Days]));

array[Workers] of var float: assigned_shift_hours;

constraint forall (w in Workers) (assigned_shift_hours[w] = sum([(w in assign[l,d])

*durations[l]/60.0 | l in Locations, d in Days]));

array[Workers] of var float: assigned_floating_shift_hours;

constraint forall (w in Workers) (assigned_floating_shift_hours[w] = sum([(w in

assign[index_reserve,d])*durations[index_reserve]/60.0 | d in Days]) + sum([(w in

assign[index_standby,d])*durations[index_standby]/60.0 | d in Days]) );

% s1: minimize mse of shift shortage

array[Locations,Days] of var 0.0..1.01: shift_shortage_arr;

constraint forall (l in Locations, d in Days) (if requirements[l,d] > 0 then

shift_shortage_arr[l,d] = 1.0 - card(assign[l,d])/requirements[l,d] else

shift_shortage_arr[l,d] = 0.0 endif);

var 0.0..1.01: shift_shortage_mse;

var int: number_of_non_empty_shifts = sum([requirements[l,d] > 0 | l in Locations,

d in Days]);

constraint shift_shortage_mse = 1/number_of_non_empty_shifts*sum([

shift_shortage_arr[l,d]*shift_shortage_arr[l,d] | l in Locations, d in Days]);

% s2 and s3: shift fairness among employees

array[Workers] of var 0.0..1.01: workers_desired_shifts_satisfaction;

constraint forall (w in Workers) (if num_shifts[w] > 0 then

workers_desired_shifts_satisfaction[w] = 0.00001+assigned_shift_hours[w]/(

num_shifts[w]*max_duration/60.0) else workers_desired_shifts_satisfaction[w] = 0

endif);

var 0.0..1.01: workers_desired_shifts_satisfaction_mean;

constraint workers_desired_shifts_satisfaction_mean = 1.0/workers*sum([

workers_desired_shifts_satisfaction[w] | w in Workers]);

var 0.0..1.01: workers_desired_shifts_satisfaction_variance;

constraint workers_desired_shifts_satisfaction_variance = 1.0/workers * sum([(

workers_desired_shifts_satisfaction[w] - workers_desired_shifts_satisfaction_mean)

*(workers_desired_shifts_satisfaction[w] -

workers_desired_shifts_satisfaction_mean) | w in Workers]);

array[Workers] of var 0.0..1.01: workers_floating_shift_hours_fractions;

constraint forall (w in Workers) (if assigned_shift_hours[w] > 0 then

workers_floating_shift_hours_fractions[w] = assigned_floating_shift_hours[w]/

assigned_shift_hours[w] else workers_floating_shift_hours_fractions[w] = 0.0 endif

);

var 0.0..1.01: workers_floating_shift_hours_fractions_mean;

constraint workers_floating_shift_hours_fractions_mean = 1.0/workers*sum([

workers_floating_shift_hours_fractions[w] | w in Workers]);

var 0.0..1.01: workers_floating_shift_hours_fractions_variance = 0.00001+1.0/

workers * sum([(workers_floating_shift_hours_fractions[w] -

workers_floating_shift_hours_fractions_mean)*(

workers_floating_shift_hours_fractions[w] -

workers_floating_shift_hours_fractions_mean) | w in Workers]);

% s4: house preferences

array[Workers] of var 0.0..1.01: workers_unpreferred_shifts_ratio;

constraint forall (w in Workers) (if numbers_of_assigned_shifts[w] > 0 then

workers_unpreferred_shifts_ratio[w] = sum([w in assign[l,d] | l in Locations, d in

Days where (l in (favable_houses diff fav_houses[w]))])/

numbers_of_assigned_shifts[w] else workers_unpreferred_shifts_ratio[w] = 0.0 endif

);

var 0.0..1.01: workers_unpreferred_shifts_ratio_mse;

constraint workers_unpreferred_shifts_ratio_mse = 1.0/workers * sum([

workers_unpreferred_shifts_ratio[w]*workers_unpreferred_shifts_ratio[w] | w in
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A. MiniZinc model

Workers]);

%%%

% computation of values and statistics

%%%

% statistic: number of assigned assignments

constraint asg_num = sum([card(assign[l,d]) | l in Locations, d in Days]);

% statistic: number of total shifts that should have been assigned

constraint shift_num = sum([num_shifts[w] | w in Workers]);

array[1..4] of var float: g_arr_unweighted;

constraint g_arr_unweighted = [shift_shortage_mse,

workers_desired_shifts_satisfaction_variance,

workers_floating_shift_hours_fractions_variance,

workers_unpreferred_shifts_ratio_mse];

array[1..4] of var float: g_arr = [10*shift_shortage_mse,

workers_desired_shifts_satisfaction_variance,

workers_floating_shift_hours_fractions_variance,

workers_unpreferred_shifts_ratio_mse];

var float: g_ges = sum(g_arr);

solve ::seq_search([

set_search([assign[index_standby,d] | d in Days],first_fail,indomain,complete),

set_search([assign[l,d] | l in Locations, d in Days],first_fail,indomain,complete)

])

%satisfy;

minimize (g_ges);

%%%

% output

%%%

output [

"asg_num = " ++ show(asg_num) ++ "\n" ++

"shift_num = " ++ show(shift_num) ++ "\n" ++

" unweighted = "++ show(g_arr_unweighted) ++ "\n" ++

" ges = "++ show(g_ges) ++": " ++ show(g_arr) ++ "\n" ++

""];
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6.5 Visualisation of the improvements done by GVNS for Instance September
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preserve focus. GG, GGNBS: 0.6758, MZ: 1.5328 . . . . . . . . . . . . . . 66

6.6 Visualisation of the improvements done by GVNS for Instance August 2019.
Starting points are the construction heuristics, which are not shown to preserve
focus. GG, GGNBS: 0.9220, MZ: 2.014 . . . . . . . . . . . . . . . . . . . . 67
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