
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

SpecBMC

Bounded Model Checker for Speculative

Non-Interference

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Emmanuel Pescosta, BSc

Matrikelnummer 01326934

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass. Prof. Dipl.-Ing. D.Phil. Georg Weissenbacher

Mitwirkung: Ass. Prof. Dipl.-Math. Dr.techn. Florian Zuleger

RA Dipl.-Ing. Thomas Pani

Wien, 10. Oktober 2020

Emmanuel Pescosta Georg Weissenbacher

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

SpecBMC

Bounded Model Checker for Speculative

Non-Interference

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Emmanuel Pescosta, BSc

Registration Number 01326934

to the Faculty of Informatics

at the TU Wien

Advisor: Ass. Prof. Dipl.-Ing. D.Phil. Georg Weissenbacher

Assistance: Ass. Prof. Dipl.-Math. Dr.techn. Florian Zuleger

RA Dipl.-Ing. Thomas Pani

Vienna, 10th October, 2020

Emmanuel Pescosta Georg Weissenbacher

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Emmanuel Pescosta, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Oktober 2020

Emmanuel Pescosta

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Danksagung

Zuerst möchte ich mich bei meinen beiden Betreuern, Prof. Georg Weissenbacher und
Prof. Florian Zuleger, für die tolle Betreuung und wertvollen Rückmeldungen während
der gesamten Projektphase ausdrücklichst bedanken. Die vielen interessanten Diskus-
sionen und herausfordernden Fragen haben mich stets motiviert und mir immer sehr
weitergeholfen. Bei Georg möchte ich mich speziell dafür bedanken, dass er mir diese in-
teressante und lehrreiche Arbeit erst ermöglicht hat, dazu zähle ich auch seine großartige
Vorlesung “Software Model Checking” ohne die ich diese Arbeit wohl nicht durchführen
hätte können. Bei Florian möchte ich mich speziell dafür bedanken, dass er sich bereit
erklärt hat mein zweiter Betreuer zu sein und für seine wertvollen Ideen und Vorschläge,
durch diese ich meine Arbeit stets verbessern und vereinfachen konnte. Zudem möchte
ich mich bei Thomas Pani für seine Ideen und Anregungen speziell in der Anfangsphase
meiner Arbeit bedanken.

Zu tiefst möchte ich mich bei meinen Eltern, Martina und Oskar, für die liebevolle
Unterstützung und Motivation während meines gesamten Bildungsweges bedanken. Zu
guter Letzt möchte ich mich bei meiner Freundin Patricia herzlichst bedanken, die mir
über all diese Zeit ihre Liebe und großartige Unterstützung geschenkt hat – ohne dich
wäre diese Arbeit nicht möglich gewesen.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Moderne Prozessoren verwenden eine Vielzahl von Techniken für die Steigerung der
Ausführungsgeschwindigkeit, wie etwa Sprungvorhersage, spekulative Ausführung und
Instruktionsevaluierung unabhängig von der eigentlichen Programmreihenfolge, um nur
ein paar davon zu nennen. All diese Techniken kombiniert können Geschwindigkeits-
vorteile bringen, nämlich indem der Prozessor anstatt zu warten die nachfolgenden In-
struktionen spekulativ ausführt. Bei Verzweigungen zum Beispiel, kann die mögliche
Verzweigungsbedingung spekulativ angenommen werden anstatt zu warten bis die Be-
dingung tatsächlich ausgewertet werden kann. Ist die Annahme korrekt, so kann der
Prozessor die Wartezeit mittels Vorberechnung vermeiden. Ist die Annahme jedoch in-
korrekt, so werden die vorab berechneten Ergebnisse einfach verworfen und somit ist nur
die Wartezeit “verschwendet”.

Jedoch haben Wissenschaftler im Jahr 2018 gezeigt, dass manche Seiteneffekte der
spekulativen Ausführung auch nach dem Verwerfen der inkorrekten Spekulation erhal-
ten bleiben. Diese übriggebliebenen Seiteneffekte erlauben es sensitive Informationen aus
der spekulativen Ausführung heraus zu transferieren. Die sogenannten Spectre Attacken
waren geboren [7, 28]. Obwohl Spectre zu der Klasse der Hardware-Fehler zählt, gibt es
mehrere mögliche software-basierte Gegenmaßnahmen [7, 9, 25, 35, 41]. So kann zum
Beispiel durch das sorgfältige Einfügen von Spekulationsbarrieren die spekulative Aus-
führung von verwundbaren Instruktionen unterbunden werden. Wie jedoch die Vergan-
genheit gezeigt hat, sind Spectre Schwachstellen schwierig zu finden und zu unterbinden,
sowohl für Menschen als auch für Programm-Übersetzer.

Im Rahmen dieser Arbeit wird eine formale Semantikbeschreibung für spekulatives
Ausführungsverhalten entwickelt. Diese Semantik erlaubt es uns sowohl Spectre-PHT als
auch Spectre-STL Schwachstellen formal zu erfassen, die auf Kontrollfluss- beziehungs-
weise Datenfluss-Missspekulation beruhen. Des weiteren definieren wir eine Eigenschaft
von Programmen die es uns erlaubt, Aussagen über die Sicherheit im Bezug auf Spectre
Attacken zu treffen. Ein Programm wird als sicher angesehen, falls das Programm aus-
geführt auf einem Prozessor mit spekulativem Verhalten die selben erkennbaren sicher-
heitssensitiven Seiteneffekte erzeugt, wie das identische Programm ausgeführt auf einem
Prozessor ohne jegliche Spekulation. Basierend auf der formalen Beschreibung wird ein
statisches Analysewerkzeug entwickelt um Spectre Schwachstellen effizient auffinden zu
können. Das Analysewerkzeug, genannt SpecBMC, verwendet dazu das Konzept von
Bounded Model-Checking. SpecBMC wird gegen eine Vielzahl von Spectre-PHT und

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Spectre-STL Beispielprogrammen evaluiert, zudem zeigen wir das viele der vorgeschlage-
nen Gegenmaßnahmen nachweislich funktionieren. Zu guter Letzt führen wir eine kleine
Fallstudie durch in der wir SpecBMC auf den Linux Kernel anwenden, dabei zeigen wir
eine subtile Spectre-PHT Schwachstelle im Linux Kernel auf.

Das Resultat dieser Arbeit ist eine erweiterbare Semantikbeschreibung für spekula-
tives Ausführungsverhalten und ein statisches Programmanalyse-Werkzeug, das sowohl
Spectre-PHT als auch Spectre-STL Schwachstellen in ausführbaren Programmen auf-
spüren kann.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Modern processors employ a diverse set of techniques to improve their execution per-
formance, such as branch prediction, speculative and out-of-order execution to name
only a few of them. All these techniques combined allow to improve the computing
performance, e.g., by predicting branch outcomes and transiently executing subsequent
instructions if the processor would otherwise have to wait until the branch condition can
finally be evaluated. If the prediction is correct the processor avoids a costly delay by
pre-computing the results, while in case of a mis-prediction the speculatively computed
results are simply thrown away and thus only the waiting time is “wasted”.

In the year 2018 researchers have shown, that some side effects of the mis-predicted
speculative execution remain even after rollback, thereby allowing an adversary to leak
sensitive information from within the speculative execution. The so-called Spectre at-
tacks were born [7, 28]. Although Spectre belongs to the class of hardware bugs, some
software-based countermeasures have been proposed [7, 9, 25, 35, 41]. For example,
by carefully placing speculation barriers in the program code, speculative execution of
potentially vulnerable instructions can be prevented. But as history has shown, Spectre-
style vulnerabilities are hard to detect and mitigate, both for humans and compilers.

In the scope of this thesis a formal semantics for speculative execution is developed.
The semantics allows us to formally capture Spectre-PHT and Spectre-STL vulnera-
bilities, which rely on control- respectively data-flow mis-predictions. Furthermore, we
define a hyperproperty to reason about the security of a program in respect to speculative
execution attacks. A program is considered secure, if the program executed on a CPU
with speculation has the same adversary observable security sensitive side effects as if
the program is executed on a CPU without speculation. Based on the formal definition,
a bounded software model-checker for efficiently detecting Spectre-style vulnerabilities in
binary programs is implemented. The tool is named SpecBMC. We validate SpecBMC
against different Spectre-PHT and Spectre-STL examples and check if the different pro-
posed countermeasures actually work. Finally, we conduct a small case study and show
that SpecBMC is able to find a subtile Spectre-PHT bug in the Linux kernel.

The result of this thesis is an extensible speculative semantics and a static binary
analysis tool that detects Spectre-PHT and Spectre-STL vulnerabilities in binary pro-
grams.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1

1.1 Motivation . 2
1.2 Problem Statement . 4
1.3 Methodological Approach . 5
1.4 Notation . 6

2 Intermediate Representation 9

2.1 Syntax . 10
2.2 Default Semantics . 11

3 Speculative Execution 13

3.1 Transient Execution Attacks . 14
3.2 Setting . 22
3.3 Transient Execution Semantics . 22
3.4 Observations . 26
3.5 Speculative Non-Interference . 28

4 Microarchitecture 29

4.1 Cache . 30
4.2 AVX Unit . 35
4.3 Branch Predictor . 38
4.4 Combination of Microarchitectural Components 43

5 Implementation 45

5.1 Important Concepts . 46
5.2 Loader . 47
5.3 SpecBMC . 49
5.4 Solver . 71
5.5 Additional Features . 73

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Evaluation 75
6.1 Spectre-STL . 75
6.2 Spectre-PHT . 78
6.3 Kocher Examples . 82
6.4 Case Study . 96

7 Related Work 103
7.1 Spectector . 103
7.2 A Formal Approach to Secure Speculation 106
7.3 SCADET . 107
7.4 Spectre is here to stay . 108
7.5 CacheAudit . 108
7.6 SpecFuzz . 108

8 Conclusion 111
8.1 Future Work . 112

A Proofs 113
A.1 Trace obtained by ns(π) is valid . 113
A.2 Well-definedness of instruction’s microarchitectural effects 114
A.3 Single speculative state is enough . 115

B Miscellaneous 127
B.1 Predictor Comparison . 127
B.2 SpecBMC Environment Reference . 132

List of Figures 135

List of Tables 137

Bibliography 139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

Modern processors employ a diverse set of techniques to improve their execution perfor-
mance [47], such as branch prediction, speculative and out-of-order execution or caches
to name only a few of them. Branch prediction allows the processor to make educated
guesses about which execution path will be taken most-likely when hitting a branching in-
struction. Out-of-order execution allows the processor to re-order instructions to reduce
costly delays during execution, meaning that succeeding instructions may be executed
as soon as their operands are available instead of waiting until all preceding instructions
are finished. Caches reduce the average memory access latency [47] by buffering recently
accessed memory locations in a small but fast cache memory.

Speculative execution in combination with out-of-order execution allows the proces-
sor to execute succeeding instructions in advance, even before the results of all preceding
instructions are known [47]. Thereby, the processor tries to predict the most likely out-
come of a yet unknown value and speculatively executes succeeding instructions using
the predicted value. Once the actual value finally becomes available, the prediction is
verified. If the prediction was correct, the speculatively computed results are applied
and the execution continues. If the prediction was wrong, the speculatively computed
results are discarded and the instructions are re-executed but this time using the actual
value. The second case, a mis-prediction followed by a rollback, is usually denoted as
transient execution [7]. In brief summary this means: speculative execution can increase
the computing performance, namely if the prediction is correct the processor avoids a
costly delay, while in case of a mis-prediction only the waiting time is wasted.

But then came Spectre [28], a whole new family of attacks exploiting hardware bugs
in modern processors. In 2018 researchers have shown, that some effects of the tran-
sient execution remain even after rollback [28]. For example, after rollback the cache
may still contain memory locations accessed during transient execution. While these
remaining side effects don’t negatively affect the correctness of the computation, they
can reveal sensitive information about data accessed during transient execution. Since
then a huge amount of Spectre attacks have been demonstrated and numerous software-

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

and hardware-based countermeasures have been proposed [7]. In this work we focus on
software-based countermeasures and check their correct deployment.

1.1 Motivation

As the root cause of all Spectre-type attacks is the speculative behavior of modern
CPUs, a simple yet efficient approach to prevent them would be to completely disable
the speculative execution [28]. But this approach has serious negative consequences on
the overall execution performance of modern CPUs [7], therefore finer-grained mitigation
approaches are required. For example, speculation barriers allow to selectively prevent
speculative execution where the program code is vulnerable to Spectre attacks [25], while
for the rest of the program the CPU can still make use of speculative execution. The
goal is to add enough mitigations such that all transient execution attacks are prevented,
while avoiding unnecessary mitigations to minimize the possible performance losses. But
as the following two examples show, this goal is hard to achieve both for humans and
automated tools.

1.1.1 Linux Kernel: Backporting Error Reintroduced Spectre
Vulnerability

In June 2019, Dianzhang Chen found a potential Spectre-PHT vulnerability in the Linux
kernel. Via the sys_ptrace() system call an adversary was able to reach an unpro-
tected array access in the ptrace_get_debugreg() function, shown in Listing 1.1.
The input parameter n, which is used as the array index at line 7, is controllable from
userspace. An adversary could cause a speculative out-of-bounds read and thereby load
secret information into bp during transient execution. By using bp as a load address in
a successive load, the secret information stored in bp can be encoded into the cache.

1 ulong ptrace_get_debugreg(struct task_struct *tsk, int n)

2 {

3 struct thread_struct *thread = &tsk->thread;

4 ulong val = 0;

5

6 if (n < HBP_NUM) {

7 struct perf_event *bp = thread->ptrace_bps[n];

8 if (bp)

9 val = bp->hw.info.address;

10 }

11 ...

12 }

Listing 1.1: Linux Kernel: Original Spectre-PHT Vulnerability in Ptrace Function

Dianzhang Chen proposed a fix for this vulnerability, which is shown in Listing 1.2.
The sanitized input is highlighted in green, while the insecure input is highlighted in
red. The additional speculative load hardening at line 8 solves the problem by masking

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation

the array index during transient execution, thereby preventing an arbitrary speculative
out-of-bounds read at line 9. This correct fix landed in the upstream kernel1.

1 ulong ptrace_get_debugreg(struct task_struct *tsk, int n)

2 {

3 struct thread_struct *thread = &tsk->thread;

4 ulong val = 0;

5 int index = n;

6

7 if (n < HBP_NUM) {

8 index = array_index_nospec(index, HBP_NUM);

9 struct perf_event *bp = thread->ptrace_bps[index];

10 if (bp)

11 val = bp->hw.info.address;

12 }

13 ...

14 }

Listing 1.2: Linux Kernel: Fixed Ptrace Function

As bug fixes usually get backported from the upstream kernel into the stable kernels,
Chen’s changes also landed in the stable tree2. Because the original fix shown in List-
ing 1.2 triggered a compiler warning, the developer who backported the change corrected
the warning by slightly adopting the code. The adopted version of the fix is shown in
Listing 1.3. Swapping lines 8 and 9 eliminated the compiler warning, but mistakenly
reintroduced the Spectre-PHT vulnerability3, as the load hardening is now done after
the load. Therefore, the array access at line 8 again uses unsanitized input, indicated by
the red background color, allowing a speculative out-of-bounds read. Later the correct
fix has been re-applied to the stable tree. By using formal methods such a mistake could
quite likely have been detected in the first place.

1 ulong ptrace_get_debugreg(struct task_struct *tsk, int n)

2 {

3 struct thread_struct *thread = &tsk->thread;

4 ulong val = 0;

5 int index = n;

6

7 if (n < HBP_NUM) {

8 struct perf_event *bp = thread->ptrace_bps[index];

9 index = array_index_nospec(index, HBP_NUM);

10 if (bp)

11 val = bp->hw.info.address;

12 }

13 }

Listing 1.3: Linux Kernel: Reintroduced Spectre-PHT Vulnerability in Ptrace Function

1Upstream commit: 31a2fbb390fee4231281b939e1979e810f945415
2Stable commit: d1ba61ae4be5e5a5727e303c827591517b6188bb
3CVE: https://www.cvedetails.com/cve/CVE-2019-15902/

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31a2fbb390fee4231281b939e1979e810f945415
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=d1ba61ae4be5e5a5727e303c827591517b6188bb
https://www.cvedetails.com/cve/CVE-2019-15902/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.1.2 Microsoft Visual C/C++ Compiler: Missing Spectre
Mitigations

1 if (x < size) {

2 v &= a2[a1[x] * 512];

3 }

Listing 1.4: Standard Spectre-PHT Ex.

1 if (x < size) {

2 v &= a2[a1[x << 1] * 512];

3 }

Listing 1.5: Shift Left Spectre-PHT Ex.

The Microsoft Visual C/C++ compiler got support for automatically instrumenting
code which might be vulnerable to Spectre-PHT [36]. Microsoft advised all developers,
whose software is potentially affected, to recompile their code with the new /Qspectre

switch enabled. The compiler will then automatically insert speculation barriers where
necessary to protect against transient execution attacks. A typical example of a Spectre-
PHT vulnerability is depicted in Listing 1.4. As shown by Paul Kocher [27], the compiler
correctly detects the vulnerability in this example and inserts a speculation barrier before
the load. To reduce the performance impact of the mitigation, the compiler doesn’t
blindly add speculation barriers everywhere but instead relies on static analysis to find
vulnerable patterns in the code.

To test the effectiveness of the Spectre-PHT mitigation, Paul Kocher analyzed 15
variants of the standard example shown in Listing 1.4. Just two out of 15 vulnerable
variants were correctly mitigated [27]. Only examples which closely resemble the stan-
dard example are correctly identified by the compiler, other examples such as shown
in Listing 1.5 are missed. The only difference between the shift left and the standard
example is, that an additional left shift is applied to the index variable x. Paul Kocher
concluded that developers and users cannot rely on the current Spectre-PHT mitigation
of MSVC, as the speculation barriers are only effective if applied to all vulnerable code
patterns in a process [27]. More powerful analysis tools such as software model checking
could help to identify many of the missed Spectre-PHT vulnerabilities, but also help to
detect unnecessary mitigations to minimize the performance impact.

1.2 Problem Statement

In the scope of this thesis an automatic, static binary analysis tool for finding transient
execution vulnerabilities in binary programs has been implemented. The transient exe-
cution attacks of interest are Spectre style attacks [7, 28], more precisely the following
two Spectre variants: Spectre-PHT and Spectre-STL.

• First, an intermediate representation (IR) is defined. The syntax and semantics
of the IR is designed to capture all the relevant behavior of different RISC and
CISC target architectures, such as ARM or x86-64, while still being general enough
to ease the development of the tool and its underlying theory. This allows us to
transcompile binaries of different target architectures into one generic representa-
tion and perform the analysis on top of the generic representation.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Methodological Approach

• Additionally, the semantics of the IR captures the relevant transient execution be-
havior of modern CPUs. As Spectre-PHT exploits mis-predicted branching deci-
sions, the semantics of the branching instruction allows mis-prediction and thereby
continues the execution on the wrong path for some bounded number of steps be-
fore the mis-prediction is finally resolved. Similarly for Spectre-STL, which allows
to speculatively by-pass store operations and thereby giving access to stale data
during transient execution.

• Furthermore, different microarchitectural components, such as cache or branch
target buffer, are formalized. Microarchitectural components allow an adversary
to construct a message channel for leaking sensitive information obtained during
transient execution. The formalization of the components are independent from
each other, such that the components can selectively be included or excluded from
the analysis, depending on the concrete threat model. For instance, disabling hy-
perthreading or preventing processes of distinct trust boundaries to be scheduled
on the same hyperthreading siblings4 would allow to exclude some microarchitec-
tural components from the analysis, thereby increasing the analysis precision for
the specific threat model in use.

• Finally, an analysis tool based on the approach of bounded model checking (BMC)
is implemented and evaluated. The result of this thesis is an extensible semantics
and a static binary analysis tool that detects Spectre-PHT and Spectre-STL leaks
in binary programs.

1.3 Methodological Approach

• First, an extensive literature study must be conducted to gain a good understand-
ing of existing transient execution attacks and how the speculative behavior of
modern CPUs, different microarchitectural components and other low-level bits
are exactly related to each other. Additionally, the already existing static analysis
tool called “Spectector” [21] for detecting transient execution bugs needs to the
analyzed and understood, as this thesis is based on the ideas of Spectector. As
part of the first step, a comprehensive set of examples for Spectre-style transient
execution bugs should be developed.

• The next step is to define the semantics of the IR including the transient execution
behavior of modern CPUs as well as different microarchitectural components. The
usefulness of the transient execution semantics needs to be validated against the
previously generated example collection.

• Furthermore, a hyperproperty for secure speculative information flow needs to
be defined. Meaning that if the hyperproperty holds, the binary program under

4Coscheduling: scheduling in control groups https://lwn.net/Articles/764482/

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://lwn.net/Articles/764482/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

evaluation is free from Spectre-PHT and/or Spectre-STL leaks. Similar as in
Spectector, this hyperproperty will be denoted as “Speculative Non-Interference”
(SNI) [21].

• Based on the previously defined transient execution semantics and SNI hyperprop-
erty, a static binary analysis tool should be implemented. The analysis tool should
be based on the technique of bounded model checking (BMC), a well-known and
strong technique for catching software bugs [26]. The SNI hyperproperty should
be implemented by means of self-composition [6], an approach to reduce the secure
information flow problem into a safety verification problem.

• After implementing the tool, its detection capabilities should be validated against
our own set of examples as well as the well-known Kocher examples [27]. As Spec-
tector was also validated against Kocher’s examples, we can directly compare the
detection capabilities of both tools based on these examples. For reproducibil-
ity the pre-compiled Spectector benchmarks5 should be used. Furthermore, the
strengths and weaknesses of our tool should be compared to similar approaches,
namely Spectector [21] and “A Formal Approach to Secure Speculation” [10].

• Finally, a small case study should be conducted by running the tool on small-
or mid-size real-world programs. As part of this case study different performance
metrics, such as run-time or memory consumption as well as the number of detected
vulnerabilities in relation to the unwinding bound should be measured. In another
experiment the number of detected vulnerabilities in relation to a given time-bound
should be evaluated. Inspired by SpecFuzz [38] some potential candidates for the
case study are: the OpenSSL/LibreSSL library, the Brotli compression library or
the LibYAML parsing library.

1.4 Notation

1.4.1 Set

A set is an unordered collection of elements of same types. We write a set of elements as
{e0, e1, . . . , en−1} and the empty set as ∅. A set {e0, . . . , en−1} is of type T ∗ with ei ∈ T
for all 0 ≤ i < n.

1.4.2 Sequence

A sequence is a collection of elements of same types. In contrast to the set, a sequence
of elements has a particular order. We write a sequence of elements as [e0, e1, . . . , en−1]
and the empty sequence as []. A sequence [e0, . . . , en−1] is of type [T] with ei ∈ T for
all 0 ≤ i < n. The size of a sequence S is given by |S| ∈ N0. The i-th element of a
sequence S, with 0 ≤ i < |S|, can be accessed by S(i). For instance, let X be a list of

5https://github.com/spectector/spectector-benchmarks/tree/master/target

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/spectector/spectector-benchmarks/tree/master/target

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Notation

numbers [1, 2, 3], then we have |X| = 3 and X(0) = 1. In the remainder of this thesis,
list is used as a synonym for sequence.

1.4.3 Tuple

A tuple is a collection of elements of different types. We write a n-ary tuple of elements as
〈e1, e2, . . . , en〉 or (e1, e2, . . . , en). The later notation is mainly used for ease of reading
in case of nested tuples, like for example 〈x, (y, z)〉. A tuple 〈e1, . . . , en〉 is of type
〈T1, . . . , Tn〉 with ei ∈ Ti for all 1 ≤ i ≤ n.

1.4.4 Sequence Builder

We adopt the set-builder notation to sequences and write it as:

[f(x)︸ ︷︷ ︸
transform function

| x ∈ S︸︷︷︸
input sequence

∧ p(x)︸︷︷︸
filter predicate

]

Each element x of the input sequence S which satisfies the predicate p(x) will be in-
cluded in the resulting sequence. Additionally, if a transform function is given, the
transformation will be applied to all accepted elements. In contrast to the set-builder
notation, the sequence-builder is order preserving. For instance, let X be a list of num-
bers [1,−1, 1,−2, 2, 0], then [2x | x ∈ X ∧ x ≥ 0] will return a list [2, 2, 4, 0].

1.4.5 Sequence Constructor

We let x :: S denote a sequence constructor which based on the sequence S ∈ [T]
and element x ∈ T yields a new sequence with x prepended. Additionally, we let
S ⊳ x denote a sequence constructor which appends the element x to sequence S, hence
providing stack-like behavior. We allow to write x :: y :: S in place of x :: (y :: S)
respectively S ⊳ x ⊳ y in place of (S ⊳ x) ⊳ y. For instance, let X be a sequence [2, 3]
then 1 :: X will give the sequence [1, 2, 3].

1.4.6 Sequence Concatenation

We define S1 ⋊⋉ S2 as the concatenation of two sequences S1, S2 ∈ [T] such that
[x1, . . . , xm] ⋊⋉ [y1, . . . , yn] yields the sequence [x1, . . . , xm, y1, . . . , yn]. We allow to write
S1 ⋊⋉ S2 ⋊⋉ S3 in place of S1 ⋊⋉ (S2 ⋊⋉ S3).

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Intermediate Representation

C Source

1 if (x < array1_size) {

2 temp &= array2[array1[x] * 512];

3 }

x64 Binary

1 7F454C46 02010100 00000000

2 00000000 F30F1EFA 4883EC08

3 488B05D9 2F000048 85C07402

4 FFD04883 C408C300 00000000

x64 Disassembly

1 mov x(%rip), %edx

2 movl array1_size(%rip), %eax

3 cmpl %eax, %edx

4 jge .L3

5 movl x(%rip), %eax

6 leaq array1(%rip), %rdx

7 movzbl (%rax,%rdx), %eax

8 sall $9, %eax

9 leaq array2(%rip), %rdx

10 movzbl (%rax,%rdx), %edx

11 movzbl temp(%rip), %eax

12 andl %edx, %eax

13 movb %al, temp(%rip)

14 .L3:

µASM Source

1 eax <- x < array1_size

2 beqz eax, 7

3 load eax, array1 + x

4 eax <- eax << 9

5 load edx, array2 + eax

6 temp <- temp & edx

Compiler

Compiler
Disassembler

Transcompiler

Figure 2.1: From Binary to µASM

In this chapter we define the syntax and default semantics of a simplified assembly
language called µASM. Our definition of µASM closely follows the µASM definition from
the Spectector paper [21].

The language is designed as an intermediate representation (IR) for analysis pur-
poses and only specifies a limited number of basic instructions. Complex instructions,
as commonly found in CISC architectures, can be represented by a combination of one

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Intermediate Representation

or more basic instructions. The language allows for complex expressions, useful for ex-
ample when translating x86 address computations like mov (%esi,%ebx,4),%edx

to the corresponding µASM instruction load edx,esi+4*ebx. Additionally the lan-
guage supports an arbitrary number of registers, hence simplifying the translation from
different target architectures with varying number of registers.

Disassemblies available in x86-64, ARM or another assembly language can simply
be transcompiled into the corresponding µASM program. Figure 2.1 depicts how the
translation could look like. The disassembly can be generated from an existing binary
using a suitable disassembler or directly be emitted by the compiler. The transcompiler
then translates the disassembly into a µASM program, which can then be fed into the
analyzer.

2.1 Syntax

The µASM language is defined as follows [21]:

Registers x ∈ R

Values n, ℓ ∈ Word

Expressions e ::= n | x | ⊖e | e⊕ e

Instructions I ::= x← e | x
e
← e | load x, e | store x, e |

jmp ℓ | beqz x, ℓ | skip | spbarr | obs

Program ρ = [I1, . . . , Ik]

µASM operates on a register-based machine. Word corresponds to the machine word of
the concrete instruction set and usually has a size of 32 or 64 bits in modern computer
architectures. R is a finite set of registers, where each register is identified by a unique
name. A program ρ is a finite sequence of instructions, such that each instruction Ii is
labeled by an address i ∈Word. For a program location pc /∈ [1, k] we define ρ(pc) = ⊥.

x ← e denotes an assignment of expression e to register x. x
e2← e1 is a conditional

assignment, meaning that expression e1 is only assigned to register x if e2 is different
from 0, otherwise the assignment is skipped. load x, e loads the memory content from
address e into register x. store x, e stores the value of register x at memory address e.
jmp ℓ denotes an unconditional branch which jumps to program location ℓ. beqz x, ℓ is a
conditional branch, meaning that it only jumps to program location ℓ if register x is equal
to 0, otherwise the jump is skipped. Both branch instructions are currently limited to
static branch targets. spbarr is a speculation barrier, meaning that speculative execu-
tion will be stopped when hitting this instruction. obs is a pseudo instruction denoting
that an adversary can leak the program observations when reaching this instruction.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Default Semantics

2.2 Default Semantics

2.2.1 Configuration

The derivation relation −→ works on a configuration 〈ϕ, σ, pc〉, where pc ∈ Word is
the program counter corresponding to the program location of the current instruction,
ϕ ∈ R →Word is the current register assignment and σ ∈Word→Word is the current
memory state.

Our definition of equality relies on the concept of low- and high-equivalence, a well-
known concept from information-flow analysis [45]. Configurations are divided into low-
and high-security components, where low-security components may be known to the
adversary but high-security components are meant to stay secret. Two configurations
are considered low-equivalent if their low-security components are equivalent. As the
adversary can only observe low-security components, low-equivalent configurations are
indistinguishable for the adversary. Let the pair L = (RL,AL) be a security policy
consisting of a finite set of low registers RL ⊆ R and low memory addresses AL ⊆
Word. Two configurations are low-equivalent in respect to L, if and only if the register
assignments ϕ1, ϕ2 agree on the values of the low registers RL and the memory states
σ1, σ2 agree on the values of the low memory addresses AL.

〈ϕ1, σ1, pc1〉 ∼L 〈ϕ2, σ2, pc2〉 ≡ ∀r ∈ RL. ϕ1(r) = ϕ2(r) ∧

∀a ∈ AL. σ1(a) = σ2(a)

2.2.2 Trace

A trace π is an execution starting at an initial configuration with program counter equal
to 1 and terminating in a final configuration with program counter equal to pc′, such
that ρ(pc′) = ⊥.

π ≡ 〈ϕ, σ, 1〉 −→∗ 〈ϕ′, σ′, pc′〉

2.2.3 Expression Evaluation

All expressions are evaluated given a register assignment ϕ.

JnKϕ = n JxKϕ = ϕ(x) J⊖eKϕ = ⊖JeKϕ Je1 ⊕ e2Kϕ = Je1Kϕ⊕ Je2Kϕ

Where the unary operator ⊖ can be any of:

• Arithmetic operators: neg

• Bit-wise operators: not

• Extension operators: sext, zext

Where the binary operator ⊕ can be any of:

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Intermediate Representation

• Arithmetic operators: add, sub, mul, udiv, urem, srem, smod

• Bit-wise operators: and, or, xor

• Shift operators: shl, ashr, lshr

• Comparison operators: ule, ult, uge, ugt, sle, slt, sge, sgt

2.2.4 Instruction Evaluation

Skip
ρ(pc) = skip

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc + 1〉

Barrier
ρ(pc) = spbarr

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc + 1〉

Observe
ρ(pc) = obs

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc + 1〉

Assign
ρ(pc) = x← e ϕ′ = ϕ[x 7→ JeKϕ]

〈ϕ, σ, pc〉 −→ 〈ϕ′, σ, pc + 1〉

CondAssignApplied
ρ(pc) = x

e2← e1 Je2Kϕ 6= 0 ϕ′ = ϕ[x 7→ Je1Kϕ]

〈ϕ, σ, pc〉 −→ 〈ϕ′, σ, pc + 1〉

CondAssignSkipped
ρ(pc) = x

e2← e1 Je2Kϕ = 0

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc + 1〉

Load
ρ(pc) = load x, e a = JeKϕ ϕ′ = ϕ[x 7→ σ(a)]

〈ϕ, σ, pc〉 −→ 〈ϕ′, σ, pc + 1〉

Store
ρ(pc) = store x, e a = JeKϕ σ′ = σ[a 7→ ϕ(x)]

〈ϕ, σ, pc〉 −→ 〈ϕ, σ′, pc + 1〉

Jump
ρ(pc) = jmp ℓ

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, ℓ〉

BranchTaken
ρ(pc) = beqz x, ℓ ϕ(x) = 0

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, ℓ〉

BranchNotTaken
ρ(pc) = beqz x, ℓ ϕ(x) 6= 0

〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc + 1〉

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Speculative Execution

Modern processors make use of speculative execution to increase their overall perfor-
mance. The lower the mis-prediction rate is, the greater the possible performance gain
is. Speculative execution is made possible by the so-called out-of-order execution where
instructions can be evaluated independent from the program order. Meaning that the
processor doesn’t have to wait until all operands of an executed instruction are available
before it can continue with the next one, but instead the processor can eagerly execute
succeeding instructions.

time

load x, 10

z <- 0

y <- x + 1

Figure 3.1: Out-of-order Execution and Retirement

During the execution of out-of-order instructions, the state of all instructions is
collected in the reorder buffer. The changes are committed to registers and memory
once the instructions are retired. While instructions may be executed out-of-order, the
retirement happens in program order [47]. An example of this is shown in Figure 3.1.
Suppose that we have a program load x, 10; y ← x + 1; z ← 0. Then z ← 0 can
be executed before the assignment to y instead of waiting until the memory load is
done. The retirement of z ← 0 happens after the assignment to y as indicated by the
program order. The reorder buffer also keeps track of additional information, such as
if an instruction has been speculatively executed and what the prediction was. When

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

retiring an instruction which caused the speculation, all corresponding buffer entries
depending on the prediction are either committed or discarded [47].

Upon the retirement of an instruction the changes become visible on the architectural
level, for example by applying the computed results to the memory. Changes which are
discarded become not visible on the architectural level. In addition to the architectural
state, which consists mainly of registers and memory, there is the microarchitectural
state which consists of caches, buffers and other hidden processor internal state. While
discarded modifications don’t alter the architectural state, they may still have impacts on
the microarchitectural state, such as changing the state of the cache during a memory
fetch. We have that one architectural state maps to many microarchitectural states,
which is exactly the cause of speculative side-channel attacks [33].

3.1 Transient Execution Attacks

Transient Cause

Meltdown-type

Spectre-type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

fault

prediction

Figure 3.2: Simplified Transient Execution Attack Classification Tree [7]

Canella et al. [7] did a systematic evaluation of all currently known transient execu-
tion attacks and defenses. Their paper defines a consistent naming scheme as well as
a comprehensive classification tree for transient execution attacks. In Figure 3.2 a sim-
plified version of their classification tree is shown. All transient execution attacks have
in common, that they exploit transient execution to leak sensitive information through
microarchitectural covert channels. Based on the cause of the transient execution, the
attacks can be divided into Meltdown-type attacks and Spectre-type attacks [7].

Meltdown-type attacks exploit the fact that exceptions are only raised upon the re-
tirement of faulting instructions [7]. This means that there exists a small time span
between causing and raising an exception, in which succeeding instructions in the exe-
cution pipeline can use temporary computation results of the soon to be retired faulting
instruction, thereby allowing the transiently executed instructions to operate on values

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Transient Execution Attacks

architectural

time

exception raised

transient execution

(a) Fault: Meltdown-type

transient executionarchitectural

time

(b) Prediction: Spectre-type

Figure 3.3: Cause of Transient Execution (adopted from [18])

resulting from e.g. unauthorized data accesses, as depicted in Figure 3.3a. Once the
faulting instruction gets finally retired, the transiently computed results are discarded
and the exception is raised. Microarchitectural covert channels allow to leak the sensitive
information obtained during transient execution into the architectural state [28]. For ex-
ample, the original Meltdown attack [30] circumvents the user/supervisor authorization
check of virtual memory pages. Virtual memory pages with supervisor bit set belong
to the OS kernel and should therefore only be accessible from within kernel/supervisor
mode, accessing them from within user mode should result in an page fault instead. As
it turned out [30], the delay between the unauthorized read and the resulting page fault
allows an attacker to perform unauthorized reads of arbitrary kernel-memory locations
from within user mode. Meltdown mitigations required changes across OS kernels, hy-
pervisors as well as CPU microcode implementations. For a detailed explanation of all
the different Meltdown attacks and mitigations we refer to [7].

Spectre-type attacks exploit the speculative behavior of modern CPUs [7, 28]. In-
stead of waiting for the exact result, modern CPUs try to predict the most likely out-
come and transiently execute succeeding instructions in advance using the predicted
result, as depicted in Figure 3.3b. The prediction can be control- as well as data-flow
related, for example the possible outcome and jump target of a branch instruction or
data-dependencies between memory instructions. Once the exact result finally becomes
available, the prediction will be verified. If the prediction was correct, the transiently
computed results are committed and will therefore become visible on the architectural
level. If the prediction was wrong, the transiently computed results are discarded, mean-
ing that they never become visible on the architectural level. But discarding the tran-
siently computed results doesn’t completely revert all changes on the microarchitectural
level and therefore some effects of the transient execution will remain [7], for exam-
ple in the cache. While this doesn’t influence the correctness of computation on the
architectural level, it opens an interesting attack vector for side-channel attacks target-
ing the microarchitectural level. By mis-training diverse prediction units of the CPU,
an attacker can more or less choose the instructions which are transiently executed.
Thereby, the transiently executed instructions can reveal sensitive information that is
normally not accessible to the attacker. As with Meltdown, microarchitectural covert

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

channels allow to leak the sensitive information available during transient execution into
the architectural state [28].

As shown in Figure 3.2 there are currently four known classes of Spectre-style attacks.
Only Spectre-PHT and Spectre-STL are of interest for this thesis and will therefore be
explained in more detail in the following section. Spectre-BTB [28] and Spectre-RSB [29,
31] exploit the CPU’s branch target buffer (BTB) respectively return stack buffer (RSB)
to transiently redirect the control flow to arbitrary program locations. But given that
our mechanism doesn’t yet cover indirect jumps, we cannot deal with them. Therefore,
we ignore Spectre-BTB and Spectre-RSB for the time being.

3.1.1 Attack Phases

Prepare
Attacker prepares the microarchitectual state

Trigger
Attacker triggers the execution of the victim code

Encode
Secrets are encoded into the microarchitectual state

Observe
Attacker reconstructs secrets from microarchitectual state

architectural

transient

execution

architectural

covert

channel

Figure 3.4: Four Phases of a Transient Execution Attack

As shown in Figure 3.4, a transient execution attack can be divided into four phases
[7]: (i) The adversary prepares the microarchitectual state, for example by flushing the
cache and training the branch predictor. Thereby the microarchitectual components
are put into a well-defined state required for the later reconstruction of encoded secret
information during the final observe phase. (ii) The adversary triggers the execution of
the victim code. At some point the transient execution will start. (iii) During transient
execution, secret information is encoded into the microarchitectual state, for example by
interpreting the secrets as memory locations and loading them into the cache. At some
point the CPU will detect the mis-speculation and consequently rollback the transient
execution. As the rollback doesn’t affect microarchitectual components such as the
cache, all the previously encoded secrets will survive the rollback. (iv) The adversary
reconstructs the previously encoded secret information from the microarchitectual state,
for example by means of a cache timing-attack as explained in Section 4.1.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Transient Execution Attacks

3.1.2 Spectre-PHT

Spectre-PHT [7, 28], also known as Spectre variant 1 or Bounds Check Bypass (BCB),
is a Spectre-style attack which exploits mis-predicted branching decisions of conditional
branches. The branch predictor uses the Pattern History Table (PHT) to decide if a
conditional branch should be taken or not, based on past branching decisions [47]. By
training the PHT an adversary can influence the control-flow during transient execution,
thereby transiently executing instructions which would normally not be reachable. This
allows an attacker to perform arbitrary out-of-bounds reads as well as writes [28], thereby
gaining access to sensitive information. Microarchitectural covert channels allow to leak
the obtained secret information into the architectural state.

Once the real branch condition finally becomes available, the prediction is verified. In
case of a mis-prediction, the transiently computed results are discarded and the instruc-
tions of the correct branch are re-executed. Code sequences vulnerable to Spectre-PHT
roughly have the following form: (i) branch-based access guard, such as bounds check
(ii) read of sensitive information into x (iii) gadget for encoding x into the microarchi-
tectual state.

1 void adversary() {

2 // 1. Prepare

3 victim(0); // Train

4 flush(&public_len);

5 spbarr();

6

7 // 2. Trigger

8 victim(7);

9

10 // 4. Observe

11 char secret =

12 cache_decode();

13 }

Listing 3.1: Spectre-PHT Adversary

1 char* public = "PUBLIC";

2 char* private = "SECRET";

3 uint public_len = 6;

4

5

6 void victim(uint x) {

7 if (x < public_len) {

8 char c = public[x];

9

10 // 3. Encode

11 cache_encode(c);

12 }

13 }

Listing 3.2: Spectre-PHT Victim

Listings 3.1 and 3.2 show a small Spectre-PHT example. The victim code implements
a typical bounds check to guard access to the public array, only indices between 0 and
public_len are allowed to access it. As public_len was previously flushed from
cache by the adversary, it needs to be loaded from memory before the branch condition
can be evaluated. Thus, the CPU will start to speculate at line 7. Because the adversary
has pre-trained the PHT using victim(0), the branch predictor will now predict that
the then-branch should be taken. Given that the victim function was triggered with
x = 7, the transiently executed load at line 8 will read out-of-bounds, thereby loading
sensitive data from the subsequent private string into variable c. Finally, the sensitive
value stored in c is encoded into the cache at line 11. Once the load of public_len
is complete, the CPU will detect the mis-speculated branch and resolve it. But as the
secret value has already been encoded into the cache during transient execution, the

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

7

(A)

(B)

7

8

11

12

7

8

11

12

[speculate] [¬speculate]

[predict: ⊤]

c := public[x]

cache_encode(c)

[predict: ⊥] [rollback]

[commit]

[x < public_len]

c := public[x]

cache_encode(c)

[x ≥ public_len]

Figure 3.5: Control-Flow Graph and Transient Attack Path of Victim Function

adversary can reconstruct it from the cache.
Figure 3.5 depicts the (transient) execution path of the previously described Spectre-

PHT attack. By flushing public_len from cache, the adversary can trigger speculative
execution at (A). By training the PHT, the adversary can control the branching direction
at (B). Given that c := public[x] is now reachable without previous bounds-check
of index x, the adversary can read arbitrary memory content from public + x into c.

Spectre-PHT can be mitigated by inserting speculation barriers into vulnerable code
sequences [25]. Other proposed countermeasures are Index Masking [41] and Specula-
tive Load Hardening (SLH) [9]. Some compilers can automatically insert Spectre-PHT
mitigations [8, 36], but as outlined in Section 1.1.2 some Spectre-PHT vulnerabilities
may be missed [27].

1 void victim(uint x) {

2 if (x < public_len) {

3 char c = public[x];

4 spbarr;

5 cache_encode(c);

6 }

7 }

Listing 3.3: Spectre-PHT Mitigation - Speculation Barrier

Speculation barriers prevent the CPU from speculatively executing further instruc-
tions, meaning that the transient execution will stop as soon as a barrier instruction

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Transient Execution Attacks

is reached. Listing 3.3 shows the victim code mitigated by speculation barriers. The
additional barrier instruction at line 4 prevents the secret information obtained during
transient execution from being encoded into the cache.

1 void victim(uint x) {

2 if (x < public_len) {

3 uint mask = 0b111;

4 x &= mask;

5 char c = public[x];

6 cache_encode(c);

7 }

8 }

Listing 3.4: Spectre-PHT Mitigation - Index Masking

Index masking applies an additional bit mask to the index variable to protect from
arbitrary out-of-bounds reads, thereby reducing the possible index range. Listing 3.4
shows the victim code mitigated by index masking. While this approach drastically
reduces the set of available indices during transient execution, it doesn’t fully mitigate
the problem [41] as the mask is limited to values of the form 2n − 1 ≥ len. This leaves
behind a small set of indices, namely {len, . . . , 2n − 1}, which are still vulnerable. For
example, in the mitigated victim function shown in Listing 3.2, an adversary could still
read out-of-bounds using the indices 6 and 7.

1 void victim(uint x) {

2 if (x < public_len) {

3 char c = public[x];

4 char mask = (x >= public_len) ? 0x00 : 0xFF;

5 c &= mask;

6 cache_encode(c);

7 }

8 }

Listing 3.5: Spectre-PHT Mitigation - Speculative Load Hardening

SLH uses branchless code to ensure secure speculation [9]. In contrast to speculation
barriers, SLH doesn’t stop speculative execution but instead prevents the adversary from
leaking sensitive information during transient execution. Listing 3.5 shows the victim
code mitigated by SLH. The branchless conditional move at line 4 ensures that if the
branch condition is mis-predicted, the mask becomes 0x00 and thus the bitwise-and at
line 5 will zero out the sensitive information stored in c. Therefore, c will always be zero
when encoded into the cache during transient execution. Note that unlike for conditional
branches, the CPU doesn’t speculate on the condition of conditional moves, meaning that
in our example the mask will only be assigned if x ≥ public_len can be evaluated.
The advantage of SLH over speculation barriers is, that the Spectre-PHT mitigation
using SLH is about 1.77 times faster than using barrier instructions [9]. The reason for
the increased performance is, that instructions which don’t have a data dependency on
the mask can still be speculatively executed in case of SLH, whereas speculation barriers

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

prevent speculative execution for all instructions. The SLH mitigation requires of course
that the masking is compiled into conditional move instructions at machine code level,
such as CMOVcc in x86. If the compiler accidentally transforms the masking into code
with branches then the leakage of sensitive information isn’t prevented anymore.

3.1.3 Spectre-STL

Speculation is not limited to control-flow only, instead modern CPUs additionally spec-
ulate on data-flow dependencies [47]. Spectre-STL [7, 23, 35], also known as Spectre
variant 4 or Speculative Store Bypass (SSB), is a Spectre-style attack which exploits
mis-predicted data-flow dependencies during transient execution.

The CPU’s memory disambiguator calculates data-flow dependencies between store
and load instructions. For Spectre-STL we focus on Read-after-Write dependencies, also
called Store-to-Load (STL) dependencies [7]. An STL dependency requires that for a
load of memory location x, all preceding stores referencing the same memory location
x have been completed before the load is finally executed. Hence, if a load instruction
doesn’t have any STL dependency on preceding store operations, the load instruction can
immediately be executed instead of waiting for the completion of prior store operations.
This technique is known as store bypassing [47]. For existing STL dependencies another
technique called load forwarding [47] allows to directly forward values from store to
dependent load operations, thereby eliminating memory loads. Both techniques together
enable efficient out-of-order execution of memory instructions and may yield significant
performance improvements [47].

However, some memory locations may not be known prior the time of execution. For
example, an indirect memory store first requires to resolve the target address before the
actual store operation can be performed. In such a case, the CPUs’ memory disambigua-
tor can only speculate on possible data-flow dependencies [47]. Assuming that there are
no STL dependencies between a store and its succeeding loads allows the CPU to spec-
ulatively execute succeeding loads in advance, thus bypassing the store. Thereby, the
speculatively executed instructions operate on a memory state where the bypassed store
operation hasn’t been materialized. Meaning that speculatively executed loads, which
reference the same memory location as the bypassed store, operate on stale values. Once
the target address of the store operation finally becomes known, the predictions are ver-
ified. In case of a mis-prediction, the transiently computed results are discarded and the
instructions are re-executed.

As demonstrated by researchers from Google Project Zero [23] and Microsoft Se-
curity Response Center [35], mis-predictions by the memory disambiguator allow to
speculatively bypass store instructions. Stale values may contain sensitive information
which otherwise wouldn’t be accessible when executed in sequential order. Similar to
other Spectre attacks, microarchitectural covert channels allow to leak stale values and
thereby disclosing sensitive information during transient execution. Furthermore, oper-
ating on stale pointers may cause type confusion1 during transient execution [23]. Code

1CWE-843: Access of resource using incompatible type

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://cwe.mitre.org/data/definitions/843.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Transient Execution Attacks

sequences vulnerable to Spectre-STL roughly have the following form: (i) slow write to
memory location x (ii) fast read from memory location x into y (iii) gadget for encoding
y into the microarchitectual state.

Spectre-STL can be mitigated by inserting speculation barriers into vulnerable code
sequences [25]. Moreover, some CPUs allow to completely disable speculative store
bypass, thereby mitigating the problem directly on the microcode-level [25].

1

2 void adversary() {

3 // 1. Prepare

4 flush(&data_ptr);

5 spbarr();

6

7 // 2. Trigger

8 victim();

9

10 // 4. Observe

11 char secret =

12 cache_decode();

13 }

Listing 3.6: Spectre-STL Adversary

1 char data = '#';

2 char* data_ptr = &data;

3

4 void victim() {

5 // Set secret

6 data = choice('A'..'Z');

7

8 // Wipe secret (slow)

9 (*data_ptr) = '#';

10

11 // 3. Encode

12 cache_encode(data);

13 }

Listing 3.7: Spectre-STL Victim

6: store data

9: load data_ptr

9: store (*data_ptr)

12: load data

(a) Static

6: store data

9: load data_ptr

12: load data

9: store (*data_ptr)

STL

(b) Dynamic (Transient)

6: store data

9: load data_ptr

9: store (*data_ptr)

12: load data

STL

(c) Dynamic (Resolved)

Figure 3.6: Simplified Memory Instruction Sequence of Victim Function

Listings 3.6 and 3.7 show a small Spectre-STL example. The victim chooses a secret
value between 'A' and 'Z' and assigns it to data. Afterwards, to keep the secret
value secure, it’s wiped again by setting the global variable data back to value '#'. In
this case the write is done through pointer indirection, meaning that the target address
needs to be loaded before the store can be performed, thereby slowing down the actual
secret overwrite. Nonetheless, when taking a look at the static instruction sequence as
depicted in Figure 3.6a, data should always be equal to '#' when reaching line 12.

As the value of data_ptr needs to be loaded from memory (was flushed from
cache by the adversary) the CPU will start to speculate at line 9. One possible dy-
namic instruction sequence including the already known data-dependencies is shown in

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

Figure 3.6b. Because the memory disambiguator is initially unable to detect the data-
dependency between line 9 and 12, the load of line 12 is transiently re-ordered before
the store of line 9, meaning that the load speculatively bypasses the store. Thereby, the
stale value of data, which is the chosen secret value, is loaded and encoded into the
cache during transient execution. Once the load of data_ptr is complete, the CPU
will detect the mis-speculated data-dependency between line 9 and 12 and resolve it like
shown in Figure 3.6c. But as the secret value has already been encoded into the cache
during transient execution, the adversary can reconstruct it from the cache. Inserting a
speculation barrier between line 9 and 12 fixes the vulnerability.

3.2 Setting

We assume that the adversary is in full control of the predictor and microarchitectual
state prior to execution. Therefore, we allow the adversary to control for each individual
program location if and how to speculate. Furthermore, we assume that the adversary
can observe the full microarchitectual state on obs. Additionally, we assume that if
two microarchitectual states differ the adversary is always able to reconstruct secret
information, no matter if this is actually achievable in a real environment.

3.3 Transient Execution Semantics

In this section we extend the non-speculative semantics introduced in Section 2.2 with
speculative behavior. As we are interested in finding transient execution bugs, the fol-
lowing semantics only defines transient execution, meaning that speculative execution
is limited to mis-predict and rollback. Because speculative execution with correct pre-
diction is indistinguishable 2 from non-speculative execution, no explicit modeling is
required as its behavior is already covered by the non-speculative semantics. For the
time being, we limit mis-prediction to branch and load instructions only. Additionally,
we assume that all transient executions have the same maximum length Ω ∈ N0. This
is motivated by the bounded number of entries in the re-order buffer [47], which gives
a natural limit for the length of the transient execution [21]. The re-order buffer can
typically hold only a few hundred instructions, for example 224 instructions in case of
Intel Skylake CPUs or 192 instructions in case of AMD Ryzen CPUs [32].

3.3.1 Predictor

We introduce an predictor, denoted as Υ , of abstract type P which models the prepared
microarchitectural state given by the adversary. The predicate speculate(Υ, pc) ∈ P ×
Word denotes if speculative execution should be started at program location pc. In real
attacks the adversary would for example flush specific values from the cache to trigger
the speculative execution. The predicate taken(Υ, pc) ∈ P ×Word denotes if a branch,

2Indistinguishable in the sense of computation results and microarchitectural effects.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Transient Execution Semantics

when executed speculatively, should be taken or not. This models the behavior of the
branch predictor, more specifically the behavior of the PHT. In real attacks the adversary
would for example train the branch predictor accordingly to either take or not take the
branch. As we limit speculative execution to branch and load instructions only, we
require that speculate(Υ, pc) is false for all other instructions, i.e. ¬speculate(Υ, pc) if
ρ(pc) /∈ {beqz x, ℓ; store x, e}. The function speculation-window(Υ, pc) ∈ P×Word 7→
N0 returns the length of the speculation window, which can be any number between 0
and Ω.

3.3.2 Configuration

The speculative derivation relation
spec
−−→ works on a configuration 〈ϕ, σ, pc, Υ, ∆〉, where

the additional Υ denotes the current state of the predictor and ∆ defines the current
speculative state. ∆ = ⊥ denotes an empty speculative state, meaning that instructions
are executed non-speculatively. ∆ = (ω, ϕ̂, σ̂, p̂c) denotes the current state of an ongoing
speculative execution, where ω ∈ N0 is the remaining size of the speculation window, ϕ̂ as
well as σ̂ correspond to the register assignment and memory state before the speculative
execution has been started, and p̂c denotes the instruction which started the speculative
execution.

Let the pair L = (RL,AL) be a security policy consisting of a finite set of low
registers RL ⊆ R and low memory addresses AL ⊆ Word. Two configurations are low-
equivalent in respect to L, if and only if the register assignments ϕ1, ϕ2 agree on the
values of the low registers RL, the memory states σ1, σ2 agree on the values of the low
memory addresses AL and both predictor states are equal. The reason for including the
predictor state is, that the adversary can train the predictor and therefore its state is of
low security as well.

〈ϕ1, σ1, pc1, Υ1, ∆1〉 ∼L 〈ϕ2, σ2, pc2, Υ2, ∆2〉 ≡ ∀r ∈ RL. ϕ1(r) = ϕ2(r) ∧

∀a ∈ AL. σ1(a) = σ2(a) ∧

Υ1 = Υ2

3.3.3 Trace

A speculative execution trace π̃ is an execution starting at an initial configuration with
program counter equal to 1 and an empty speculative state, and terminating in a final
configuration with program counter equal to pc′, such that ρ(pc′) = ⊥, and an empty
speculative state.

π̃ ≡ 〈ϕ, σ, 1, Υ,⊥〉
spec
−−→

∗
〈ϕ′, σ′, pc′, Υ,⊥〉

A non-speculative execution trace ns(π̃) can be obtained by removing all speculative
configurations from a given speculative execution trace π̃. See Appendix A.1 for a proof
that the resulting non-speculation trace is semantically valid.

ns(π̃) ≡ [〈ϕ, σ, pc, Υ, ∆〉 | 〈ϕ, σ, pc, Υ, ∆〉 ∈ π̃ ∧∆ = ⊥]

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

3.3.4 Instruction Evaluation

For each instruction we define its behavior during non-speculative execution (-NS suffix)
as well as its behavior during speculative execution (-S suffix).

Both lifting rules perform the default instruction evaluation on top of the speculative
one for all instructions not affected by speculation.

lift-inst(i) =

{
false if i ∈ {beqz x, ℓ; store x, e; spbarr; obs}

true otherwise

SpecLift-NS
lift-inst(ρ(pc)) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ,⊥〉

SpecLift-S
lift-inst(ρ(pc)) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉 ω > 0

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

The obs instruction is a pseudo instruction and thus invisible to speculation. There-
fore, obs doesn’t affect the speculative state even when executed speculatively.

SpecObserve
ρ(pc) = obs

〈ϕ, σ, pc, Υ, ∆〉
spec
−−→ 〈ϕ, σ, pc + 1, Υ, ∆〉

The spbarr instruction stops the speculative execution by setting the remaining size
of the speculation window to 0, thus causing an immediate rollback. When executed
non-speculatively, the spbarr instruction behaves the same as a skip instruction.

SpecBarrier-NS
ρ(pc) = spbarr

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ, pc + 1, Υ,⊥〉

SpecBarrier-S
ρ(pc) = spbarr ω > 0

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ, σ, pc, Υ, (0, ϕ̂, σ̂, p̂c)〉

The beqz instruction may predict the branch decision, meaning that the path of
execution is given by the predictor instead of the condition value. In this case the
branching decision solely depends on the outcome of the branch predictor, represented
by the taken(Υ, pc) predicate. If speculate(Υ, pc) is true during non-speculative execu-
tion, a new speculation window of size between 0 and Ω is started. From there on the
execution is continued on the speculated path. The current program location, register
assignment and memory state are remembered in the speculative state for later rollback.
If speculate(Υ, pc) is true during speculative execution, no new speculation window is
started as we don’t keep track of nested speculative states. See Appendix A.3 for a proof
that this simplification is legit for our purpose. Note that this simplification requires
that the instructions’ effects are modeled as an unbounded set, such as a cache with

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Transient Execution Semantics

unbounded size. If the set is bounded this simplification is invalid.

SpecBranch-NS
ρ(pc) = beqz x, ℓ ¬speculate(Υ, pc) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ,⊥〉

SpecBranchPred-NS

ρ(pc) = beqz x, ℓ
speculate(Υ, pc) pc′ = ite(taken(Υ, pc), ℓ, pc + 1)

ω′ = speculation-window(Υ, pc)

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ, pc′, Υ, (ω′, ϕ, σ, pc)〉

SpecBranch-S

ρ(pc) = beqz x, ℓ
¬speculate(Υ, pc) ω > 0 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

SpecBranchPred-S

ρ(pc) = beqz x, ℓ
speculate(Υ, pc) ω > 0 pc′ = ite(taken(Υ, pc), ℓ, pc + 1)

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ, σ, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

The store instruction may be speculatively bypassed if the memory disambiguator
mis-predicts the Store to Load (STL) dependencies [7, 23]. As before, if speculate(Υ, pc)
is true during non-speculative execution, a new speculation window of size between
0 and Ω is started. As the memory write of the bypassed store instruction isn’t
completed yet, succeeding memory loads from the same memory address return stale
values during transient execution. This is reflected by continuing the transient execution
with the old memory state in case of speculation, both in SpecStoreBypass-NS and
SpecStoreBypass-S. Finally, bypassed store operations will be materialized when the
speculation is resolved.

SpecStore-NS
ρ(pc) = store x, e ¬speculate(Υ, pc) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ,⊥〉

SpecStoreBypass-NS

ρ(pc) = store x, e
speculate(Υ, pc) ω′ = speculation-window(Υ, pc)

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ, pc + 1, Υ, (ω′, ϕ, σ, pc)〉

SpecStore-S

ρ(pc) = store x, e
¬speculate(Υ, pc) ω > 0 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

SpecStoreBypass-S
ρ(pc) = store x, e speculate(Υ, pc) ω > 0

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ, σ, pc + 1, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

The terminate rule ensures that the speculative execution doesn’t get stuck when
reaching the end of the program. Instead, the rule triggers a speculative rollback by

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

setting the remaining size of the speculation window to 0.

SpecTerminate
ρ(pc) = ⊥ ω > 0

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ, σ, pc, Υ, (0, ϕ̂, σ̂, p̂c)〉

The rollback rule restores the non-speculative state when the speculative execution
ends, meaning that the speculation window reaches 0. This is done by re-evaluating
the instruction which started the speculative execution based on the saved register as-
signment and memory state, but this time using the non-speculative semantics. The
execution along the correct path is continued from there on.

SpecRollback
〈ϕ̂, σ̂, p̂c〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, (0, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ,⊥〉

For the remainder of this thesis, let rollback(∆) be a predicate which evaluates to
true if the speculative state ∆ reached the end of the speculation window and therefore
triggers a rollback, or false otherwise.

rollback(∆) =

{
true if ∆ = (ω, ϕ̂, σ̂, p̂c) ∧ ω = 0

false otherwise

3.4 Observations

The transient execution semantics as defined in Section 3.3 only covers the architectural
level, consisting of registers and memory. In this section we extend the transient execu-
tion semantics with an additional microarchitectural state, for capturing the instructions
effects on the microarchitectural level. The following definitions are all based on an ab-
stract microarchitectural component. For each concrete microarchitectural component
appropriate K-init(), K-equiv() and K-effects() functions as well as the microarchitec-
tural state type K need to be specified. Different implementations of microarchitectural
components are described in Chapter 4.

The microarchitectural derivation relation
µarch
−−−→ works on an extended configuration

〈ϕ, σ, pc, Υ, ∆, κ〉, where the additional κ defines the microarchitectural state. Let the
microarchitectural state κ be of abstract type K. We define a microarchitectural step
rule which evaluates the instructions using the previously defined transient execution se-
mantics and additionally evolves the microarchitectural state depending on the currently
executed instruction. Instructions which start a new speculative execution won’t have
any immediate effects on the microarchitectural state, instead their effects will become
visible once the speculation is finally resolved.

µArch

〈ϕ, σ, pc, Υ, ∆〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ ′, ∆′〉

κ′ =

K-effects(κ, ϕ̂, σ̂, p̂c, ϕ′, σ′, pc′) if rollback(∆) with ∆ = (ω, ϕ̂, σ̂, p̂c)

K-effects(κ, ϕ, σ, pc, ϕ′, σ′, pc′) if ¬rollback(∆) ∧ ¬speculate(Υ, pc)

κ if ¬rollback(∆) ∧ speculate(Υ, pc)

〈ϕ, σ, pc, Υ, ∆, κ〉
µarch
−−−→ 〈ϕ′, σ′, pc′, Υ ′, ∆′, κ′〉

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Observations

The instructions effects on the microarchitectural component are encoded using the
K-effects(κ, ϕ, σ, pc, ϕ′, σ′, pc′) function. Based on the current microarchitectural state
κ, the current register assignment ϕ, the current memory state σ, the current program
counter pc, the next register assignment ϕ′, the next memory state σ′ and the next
program counter pc′, the effects of the executed instruction are determined.

A microarchitectural execution trace πµ extends a speculative execution trace π̃ with
the additional microarchitectural state. The execution starts at an initial configuration
with an empty3 microarchitectural state κ and terminates in a final configuration with
a final microarchitectural state κ′.

πµ ≡ 〈ϕ, σ, 1, Υ,⊥, κ〉
µarch
−−−→

∗
〈ϕ′, σ′, pc′, Υ ′,⊥, κ′〉 with κ = K-init()

As the microarchitectural state isn’t directly accessible from the architectural level,
a microarchitectural covert channel [16] needs to be used. A microarchitectural covert
channel allows to transfer information from the microarchitectural state into the architec-
tural state, thereby making it visible on the architectural level. We use the obs instruc-
tion to model the information transfer of arbitrary microarchitectural covert channels.
Given a microarchitectural execution trace πµ, let observations() project it to a sequence
of observations for all executed obs instructions.

observations(πµ) ∈ K∗ ≡ [κ | 〈ϕ, σ, pc, Υ, ∆, κ〉 ∈ πµ ∧ ρ(pc) = obs]

Let K-equiv(κ1, κ2) be a predicate which evaluate to true iff both microarchitec-
tural states κ1, κ2 ∈ K are equivalent. Then two lists of observations O1,O2 ∈ K

∗ are
equivalent iff their effects on the microarchitectural component are identical.

O1 ∼Obs O2 ≡ |O1| = |O2| ∧ ∀i. K-equiv(O1(i),O2(i))

Two microarchitectural execution traces πµ
1, πµ

2 are observationally equivalent iff
their observable effects on the microarchitectural component are identical.

πµ
1 ≈Obs πµ

2 ≡ observations(πµ
1) ∼Obs observations(πµ

2)

To define observational equivalence for speculative execution traces, the microarchi-
tectural effects need to be obtained first. Let the function µarch-trace() map a speculative
execution trace π̃ into the corresponding microarchitectural execution trace.

µarch-trace(π̃) ≡ [〈ϕi, σi, pci, Υi, ∆i, κi〉 | 〈ϕi, σi, pci, Υi, ∆i〉 ∈ π̃]

where 〈ϕi, σi, pci, Υi, ∆i, κi〉 =

〈ϕ0, σ0, pc0, Υ0, ∆0, κ0〉 with κ0 = K-init() if i = 0

〈ϕi−1, σi−1, pci−1, Υi−1, ∆i−1, κi−1〉
µArch
−−−−→ 〈ϕi, σi, pci, Υi, ∆i, κi〉 otherwise

Two speculative execution traces π̃1, π̃2 are observationally equivalent iff their ob-
servable effects on the microarchitectural component are identical.

π̃1 ≈Obs π̃2 ≡ µarch-trace(π̃1) ≈Obs µarch-trace(π̃2)
3The definition of empty depends on the actual microarchitectural component.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Speculative Execution

3.5 Speculative Non-Interference

We define a 2-safety hyperproperty called speculative non-interference (SNI), similar
to the hyperproperty defined in [21]. A program respects SNI if its speculative execu-
tion doesn’t leak more information than its non-speculative execution. In other words,
information that is leaked during non-speculative execution can also be leaked during
speculative execution but not vice versa. More formally, a program respects SNI if two
speculative execution traces with low-equivalent initial configurations and indistinguish-
able non-speculative observations, result in indistinguishable speculative observations.

Definition 1 (SNI) A program ρ satisfies SNI given security policy L if and only if

∀π̃1, π̃2. π̃0
1 ∼L π̃0

2 ∧ ns(π̃1) ≈Obs ns(π̃2) =⇒ π̃1 ≈Obs π̃2

Let the security policy L be chosen such that it reflects all non-confidential infor-
mation visible to an attacker [45]. If a program satisfies SNI, then an attacker cannot
distinguish between two secret inputs to the program by observing the program’s ef-
fects on the microarchitectual components which happen during transient execution.
Hence, SNI guarantees secure speculative information flow and the absence of transient
execution leaks.

We argue that our definition of SNI is technically practical, as we let the program on
an processor without speculation be observable equivalent, while checking if the same
program executed on a processor with speculation gives adversary distinguishable se-
curity sensitive observations. This in turn means that the power of SNI inevitably
depends on the underlying transient execution semantics. Speculative behavior of a pro-
cessor which isn’t modeled by the transient execution semantics can give false negatives,
meaning that a program leaks while SNI holds. Our current definition of observational
equivalence is relatively powerful as it allows an adversary to basically count the number
of side effects, which is caused by the strict equivalence of two traces. Instead of forcing
strict equivalence a more liberal stuttering equivalence would maybe be more practical
in future. A comparison of our definition of SNI to Spectector’s definition of SNI is given
in Section 7.1.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Microarchitecture

As demonstrated by various different speculative execution attacks, diverse microar-
chitectural components can be used to encode leaked data, such as: cache [1, 7, 28],
DRAM [40], floating-point unit (FPU) [49], AVX unit [46], return stack buffer (RSB)
[29] or branch target buffer (BTB) [15]. By using an appropriate microarchitectural
covert channel [16], the secret information collected during speculative execution can
be transferred from the microarchitectural state into the architectural state, therefore
making the secret information visible on the architectural level.

In this chapter some microarchitectural components are formalized. For each com-
ponent we define an appropriate state as well as functions for manipulating the state.
Additionally, we define predicates to compare component states.

Example

1 if (x < array1_size) {

2 y = array1[x];

3 leak_least_significant_bit(y);

4 }

Listing 4.1: Spectre-PHT Example: Leak Least-Significant Bit of y

For explaining how the microarchitectural components can be used to encode leaked
data, we adopt the code shown in Listing 4.1 to each formalized component. We replace
the abstract leak_least_significant_bit(y) at line 3 with proper instructions,
such that the least-significant bit of y is encoded in the component’s state.

Assume that the code fragment depicted in Listing 4.1 is part of a function that has
an argument x of low security, meaning that x can be controlled by an adversary. The
intended behavior of the conditional branch at line 1 is, that the content of array1
should only be accessible if x lies within the array bounds. Therefore, preventing that
sensitive data can be read at line 2.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

Unfortunately, during speculative execution the load instruction at line 2 can be
executed with x ≥ array1_size by circumventing the bounds check. An adversary
can train the branch predictor to speculatively execute the then-branch, thus making it
possible to speculatively load sensitive data from (almost) arbitrary memory addresses
at line 2. Later when the processor detects the mis-speculation, the modifications on
the architectural level will be reverted, but the leaked data that has been encoded in the
microarchitectural state will remain.

4.1 Cache

Modern processors make use of caches to reduce the average memory access latency [47].
Given that the main memory usually works on a much lower speed than the processor,
the processor always has to wait until data is fetched from or written to main memory.
Because of this, recently accessed memory locations are buffered in a small but fast cache
memory. Hence, access requests to currently cached memory locations, called cache hits,
can be satisfied very quickly. Unfortunately, not the whole main memory content fits
into the cache. Access requests to uncached memory locations, called cache misses, still
need to wait until the data is fetched from main memory. Therefore, cache misses are
at least one order of magnitude slower than cache hits [50]. This measurable timing
difference can be exploited by cache attacks [20]. In the past a great variety of such
cache attacks have been demonstrated:

• Evict+Time [39]: First, the victim code is executed and its execution time is
measured. Then before executing the victim code a second time, the adversary
evicts some of the victim’s memory locations from the cache. Eviction works by
accessing memory locations corresponding to the same cache lines as the victim’s
memory locations, thus causing that the latter ones are dropped from the cache. By
comparing the execution time of both runs, the adversary can check if the victim
has accessed previously evicted memory locations. An increase of the execution
time is highly likely caused by a cache miss of an evicted memory location.

• Prime+Probe [39, 50]: First, the adversary fills the cache respectively the specific
cache lines of interest. Then after executing the victim code, the adversary checks
which of the previously cached memory locations have been replaced by the victim.
Based on timing measurement of consecutive memory accesses, the set of replaced
memory locations can be determined. Each cache miss corresponds to a memory
access performed by the victim.

• Flush+Reload [22, 52]: First, the adversary clears the cache respectively the
specific cache lines of interest using the flush instruction1. Then after executing
the victim code, the adversary checks which memory locations have been reloaded
by the victim. Based on timing measurement of consecutive memory accesses, the
set of reloaded memory locations can be determined. Each cache hit corresponds
to a memory access performed by the victim.

1cflush in x86-64 [24]

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Cache

• Evict+Reload [19]: This attack combines the first phase of Evict+Time with
the second phase of Flush+Reload. The adversary first evicts the victim’s memory
locations from the cache and then determines the set of reloaded memory locations
by timing the memory accesses. Unlike Flush+Reload, this attack works even if no
flush instruction is available.

• Flush+Flush [20]: This attack is another variation of Flush+Reload, using cache
line flushes instead of consecutive memory loads in the second phase. As with
memory accesses, the execution time of flush operations also depends on whether
memory locations are currently cached or not. Compared to the other cache at-
tacks, this attack is faster and stealthier2 as it doesn’t require any memory accesses.

All the previously mentioned cache attacks have two things in common: (i) The
victim alters the prepared cache state by accessing memory locations. (ii) The adversary
extracts the differences between the prepared and altered cache states by means of
a side-channel attack. Hence, our model should be independent from the underlying
cache attack and instead only focus on the accessed memory locations. For example,
a cache line is initially empty in case of an Flush+Reload attack, but occupied in case
of an Evict+Reload attack. In the first case a memory load by the victim only fills
the corresponding cache line, whereas in the second case a memory load will replace an
already filled cache line. Although started from contrary cache line states, both cases
end up in the same final cache line state.

n bits

Memory Address

Tag Index Block Offset

t bits i bits o bits

Figure 4.1: From Memory Address to Cache Tag, Index and Block Offset

Caches are organized into a number of fixed size cache lines, each one buffering a
non-overlapping portion of the main memory [47]. The size of the cache line defines the
granularity of the memory access, meaning that not only the specific bytes which are
currently required are put into the cache, but instead the whole memory block of the same
size as the cache line is copied from the main memory into the corresponding cache line.
Therefore, the cache enables spatial reuse in addition to temporal reuse [47], implying
that not only previously accessed memory locations highly likely result in a cache hit
but also nearby accessed memory locations. For addressing individual bytes within a
cache line the block offset of a memory location, as depicted in Figure 4.1, is used. The
number of bits for the block offset depends on the size of the cache line, for example 64
bytes in case of an Intel Skylake CPU3, hence we have o = log2(cache line size) where
cache line size is a power of two in bytes.

2
Flush+Flush attacks cannot be detected by monitoring cache hits/misses [20].

3https://www.7-cpu.com/cpu/Skylake.html

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.7-cpu.com/cpu/Skylake.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

Because the cache can only buffer a small subset of the main memory, sooner or
later existing cache lines need to be replaced. The replacement policy dictates which
cache line should be evicted from cache when a new one needs to be stored [47]. One
of the simplest replacement policies is Random Replacement (RR), which randomly
selects a cache line for eviction. Another commonly found replacement policy is Least
Recently Used (LRU), which selects the least recently used cache line for eviction and
therefore requires additional bookkeeping. Many different replacement policies have been
suggested in the literature [13, 43].

Depending on the placement strategy, a memory location can reside in on or multiple
different places within the cache. In a direct mapped cache each memory block has
exactly one possible cache line, in a set-associative cache each memory block has a fixed
set of possible cache lines, denoted as cache set, and in a fully-associative cache each
memory block can be stored in any cache line [47]. For direct mapped as well as set-
associative caches the index of a memory location, as demonstrated in Figure 4.1, is used
to link the memory location to the corresponding cache line respectively cache set. For
fully-associative caches the index is omitted. Because multiple memory locations map
to the same cache line, the tag as shown in Figure 4.1 is used to check if the already
cached memory block corresponds to the requested memory location.

Caching as described above doesn’t only apply to data. Instructions also need to
be read from the slow main memory, hence the memory access latency is also relevant
in this case. Therefore, processors usually have a dedicated instruction cache (I-cache)
in addition to the data cache (D-cache) to reduce the average instruction fetch latency
[47]. Unfortunately, some cache attacks shown above can also be used for attacking
the I-cache in a similar fashion, allowing an adversary to reveal the partial or entire
execution flow of the victim [1]. Nonetheless, our cache model only covers the D-cache.

4.1.1 Model

A cache state C ⊆ Word is a set of memory locations. In contrast to concrete cache
implementations which are typically based on tagged data structures [47], our abstrac-
tion keeps track of each individual memory location instead of a multitude of memory
locations. Additionally, our model doesn’t take cache lines into account, meaning that
memory locations are tracked individually instead of blockwise, which may lead to false
positives. Cache line awareness can easily be added by applying a bit-mask to all memory
locations, such that the block offset is ignored4.

Initially the cache is empty.

cache-init() ≡ ∅

Fetching a memory location into the cache means that the memory location is added
to set of cached memory locations.

cache-fetch(C, a) ≡ C ∪ {a} where a ∈Word

4Special care needs to be taken for memory accesses across cache line boundaries.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Cache

Two cache states C1, C2 are equivalent if both contain the same memory locations.

cache-equiv(C1, C2) ≡ C1 = C2

4.1.2 Configuration

The derivation relation
cache-effects
−−−−−−−→ works on a configuration 〈C, ϕ, σ, pc, ϕ′, σ′, pc′〉, where

C defines the current state of the cache, ϕ the current register assignment, σ the current
memory state, pc the current program counter, ϕ′ the next register assignment, σ′ the
next memory state and pc′ the next program counter.

4.1.3 Instruction Evaluation

Memory loads as well as memory stores fetch memory content into the cache, thereby
making their memory locations visible in the cache. As store instructions can be
speculatively bypassed, therefore their changes in memory as well as their effects on the
cache are ignored until rollback. On rollback, when the write materializes and the mis-
predicted STL dependencies are resolved, their effects on the cache will finally become
visible. Non-bypassed store instructions immediately become visible in the cache. As
the µarch semantics already implements this behavior, no special treatment is required
for the store and load instruction and thus both instructions always fetch the memory
location a into the cache. All other instructions leave the state of the cache unaffected.

CacheLoad
ρ(pc) = load x, e a = JeKϕ C′ = cache-fetch(C, a)

〈C, ϕ, σ, pc, ϕ′, σ′, pc′〉
cache-effects
−−−−−−−→ C′

CacheStore
ρ(pc) = store x, e a = JeKϕ C′ = cache-fetch(C, a)

〈C, ϕ, σ, pc, ϕ′, σ′, pc′〉
cache-effects
−−−−−−−→ C′

CacheIgnore
ρ(pc) /∈ {load x, e; store x, e}

〈C, ϕ, σ, pc, ϕ′, σ′, pc′〉
cache-effects
−−−−−−−→ C

4.1.4 Example

1 if (x < array1_size) {

2 y = array1[x];

3 y = y & 1;

4 z = array2[y * 16];

5 }

Listing 4.2: Cache Leak (C-Code)

1 c <- x < array1_size

2 beqz c, 6

3 load y, array1 + x

4 y <- y & 1

5 load z, array2 + y * 16

Listing 4.3: Cache Leak (µASM-Code)

Listings 4.2 and 4.3 adopt the example from the introduction part of Chapter 4. The
highlighted lines denote the implementation of leak_least_significant_bit(y).
Given a direct mapped cache of 64-byte in size with four cache lines, hence each cache

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

Address Data
xx|00|0000 -
xx|01|0000 -
xx|10|0000 -
xx|11|0000 -

y = 1?

Address Data
11|00|0000 z0 . . . z15

xx|01|0000 -
xx|10|0000 -
00|11|0000 y0 . . . y15

Address Data
xx|00|0000 -
11|01|0000 z0 . . . z15

xx|10|0000 -
00|11|0000 y0 . . . y15

false: load array2 + 0

true: load array2 + 16

Figure 4.2: Cache State Depending on the Least-Significant Bit of y

line contains 16-byte of data. The four least-significant bits of the memory location
correspond to the (byte-)offset within the cache line, the next higher two bits denote
the cache line index and the two most-significant bits are the cache tag. For example
0b10110100 has offset 0b0100, maps to cache line 0b11 and has tag 0b10. The xx tag
denotes that the cache line is currently unoccupied. We have x = 10, array1_size = 8,
array1 = 0b00110000 and array2 = 0b11000000. Assume that the processor
speculatively executes the code shown in Listing 4.3 and that the adversary runs a
Flush+Reload attack, hence the cache is initially empty.

Because the adversary is in control of x, the load instruction at line 3 can specu-
latively load sensitive data into register y. This load leaves an irrelevant footprint in
the cache, more interesting is the next load. The memory location of the consecutive
load at line 5 depends on the value of y. If y is 0 the memory location is 0b11000000,
otherwise if y is 1 the memory location is 0b11010000. Accessing 0b11000000 occu-
pies cache line 0 whereas accessing 0b11010000 occupies cache line 1. This way the
least-significant bit of y can be encoded into the cache. The two possible evolvements
of the cache are depicted in Figure 4.2.

Finally, the adversary can decode the information from the cache by means of a timing
attack. Measuring the execution time of memory loads reveals the least-significant bit of
y. If loading 0b11000000 results in a cache hit, indicated by a short delay, but loading
0b11010000 results in a cache miss, indicated by a long delay, then the least-significant
bit of y was 0. If exactly the opposite is true, then the least-significant bit of y was 1.
Note that for a bit-wise leak as shown in this example, timing a single memory access
would already be sufficient [30] to tell if y was 0 or 1, but in general multiple probes are
required.

Applying the cache model to the example shown in Listing 4.3 gives two possible
cache states C3 and C′

3 which are equivalent non-speculatively but differ speculatively
because of the secret-dependent speculative memory load at line 5. The simplified traces
of both runs are shown in Figure 4.3.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. AVX Unit

C1 = ∅

〈1,⊥, C1〉

Assign
−−−−→ 〈2,⊥, C1〉

SpecBranchPred-NS
−−−−−−−−−−−−−−→

¬taken(Υ,2)
〈3, (Ω, 2), C1〉

Load
−−−−−−−−−−−−−−−−−−−−→
C2=cache-fetch(C1,0b00111010)

〈4, (Ω− 1, 2), C2〉

Assign
−−−−→
ϕ(y)=1

〈5, (Ω− 2, 2), C2〉

Load
−−−−−−−−−−−−−−−−−−−−→
C3=cache-fetch(C2,0b11010000)

〈6, (Ω− 3, 2), C3〉

SpecTerminate
−−−−−−−−−−→ 〈6, (0, 2), C3〉

SpecRollback
−−−−−−−−−→ 〈6,⊥, C3〉

C3 = { 0b00111010,

0b11010000 }

C′
1 = ∅

〈1,⊥, C′
1〉

Assign
−−−−→ 〈2,⊥, C′

1〉

SpecBranchPred-NS
−−−−−−−−−−−−−−→

¬taken(Υ,2)
〈3, (Ω, 2), C′

1〉

Load
−−−−−−−−−−−−−−−−−−−−→
C′

2
=cache-fetch(C′

1
,0b00111010)

〈4, (Ω− 1, 2), C′
2〉

Assign
−−−−→
ϕ(y)=0

〈5, (Ω− 2, 2), C′
2〉

Load
−−−−−−−−−−−−−−−−−−−−→
C′

3
=cache-fetch(C′

2
,0b11000000)

〈6, (Ω− 3, 2), C′
3〉

SpecTerminate
−−−−−−−−−−→ 〈6, (0, 2), C′

3〉

SpecRollback
−−−−−−−−−→ 〈6,⊥, C′

3〉

C′
3 = { 0b00111010,

0b11000000 }

Figure 4.3: Cache Example Traces for LSB(y) = 1 and LSB(y) = 0

4.2 AVX Unit

The Advanced Vector Extensions (AVX) enhance the x86-64 instruction set architecture
with additional vector processing capabilities, including many new instructions and up
to 512-bit wide registers [24]. Many applications, such as cryptographic algorithms, can
benefit from SIMD5 processing. Instead of execution the same operation for each single
value one by one, the operation is applied only once to a vector of values.

However, performing vector instructions can consume significant power [17]. There-
fore parts of the AVX unit can be turned off by the processor’s power management if
idling for more than one millisecond [46]. The AVX unit will automatically be powered
on again as soon as a vector instruction needs to be executed. But the startup opera-
tion takes a while and thus will noticeably delay the execution of the subsequent vector
instruction. By measuring the execution time of a vector instruction, an adversary can
determine if the AVX unit was previously enabled or disabled. This observable timing
difference of vector instructions can be used as a microarchitectural covert channel to
transfer one bit of sensitive information at a time [46]. During preparation phase, an

5Single Instruction, Multiple Data

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

adversary can bring the AVX unit into the off state by simply keeping it idle for long
enough so that the power management will turn it off.

Motivated by the AVX-based variant of the NetSpectre attack [46], we model the
AVX unit for proving the absence of speculative leaks caused by the observable timing
differences of vector instructions.

4.2.1 Model

Let A ∈ {Off, On} represent the state of the AVX unit, where On signifies that the AVX
unit is enabled and Off signifies that the AVX unit is disabled.

Initially the AVX unit is disabled.

avx-init() ≡ Off

Enabling the AVX unit sets the state to On. Disabling the AVX unit isn’t modeled,
as its behavior solely depends on the processor’s power management as well as the
execution/idling time which we don’t model.

avx-enable(A) ≡ On

Two AVX unit states A1, A2 are equivalent if both are either enabled or disabled.

avx-equiv(A1,A2) ≡ A1 = A2

4.2.2 Configuration

The derivation relation
avx-effects
−−−−−−→ works on a configuration 〈A, ϕ, σ, pc, ϕ′, σ′, pc′〉, where

A defines the current state of the AVX unit, ϕ the current register assignment, σ the
current memory state, pc the current program counter, ϕ′ the next register assignment,
σ′ the next memory state and pc′ the next program counter.

4.2.3 Instruction Evaluation

Let requires-avx(e) be a predicate which evaluates to true if expression e contains a
vector expression or false otherwise. The AVX unit is only enabled when executing
assignment instructions which contain vector expressions. All other instructions as well
as assignment instructions without vector expressions leave the state of the AVX unit
unaffected.

AvxAssignVec
ρ(pc) = x← e requires-avx(e) A′ = avx-enable(A)

〈A, ϕ, σ, pc, ϕ′, σ′, pc′〉
avx-effects
−−−−−−→ A′

AvxAssignNonVec
ρ(pc) = x← e ¬requires-avx(e)

〈A, ϕ, σ, pc, ϕ′, σ′, pc′〉
avx-effects
−−−−−−→ A

AvxIgnore
ρ(pc) 6= x← e

〈A, ϕ, σ, pc, ϕ′, σ′, pc′〉
avx-effects
−−−−−−→ A

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. AVX Unit

4.2.4 Example

1 if (x < array1_size) {

2 y = array1[x];

3 if (y & 1) {

4 z = _avx_add(a, b);

5 }

6 }

Listing 4.4: AVX Leak (C-Code)

1 c <- x < array1_size

2 beqz c, 7

3 load y, array1 + x

4 c <- y & 1

5 beqz c, 7

6 z <- a avx_add b

Listing 4.5: AVX Leak (µASM-Code)

AVX: Off beqz c, 7

AVX: On

AVX: Off

branch not taken

branch taken

Figure 4.4: AVX Unit State Depending on the Least-Significant Bit of y

Listings 4.4 and 4.5 adopt the example from the introduction part of Chapter 4. The
highlighted lines denote the implementation of leak_least_significant_bit(y).
We have x = 10 and array1_size = 8. Assume that the processor speculatively
executes the code shown in Listing 4.5 and the AVX unit is off initially.

Because the adversary is in control of x, the load instruction at line 3 can specu-
latively load sensitive data into register y. The conditional jump at line 5 indirectly
depends on the value of y, because the least-significant bit of y is assigned to register
c at line 4. If c is 0 the jump is taken, causing that the vector instruction at line 6 is
skipped. Otherwise, if c is 1 the jump is skipped but in this case the vector instruction
at line 6 is executed, thereby enabling the AVX unit. Hence, depending on the value of
c the AVX unit is either on or off at the end of execution. This way the least-significant
bit of y can be encoded into the AVX unit. The two possible evolvements of the AVX
unit are depicted in Figure 4.4.

Finally, the adversary can decode the information from the AVX unit by means of
a timing attack. Measuring the execution time of a vector instruction reveals the least-
significant bit of y. A long execution time, caused by first powering up the AVX unit,
indicates that the AVX unit was off . This can only happen if the vector instruction
at line 6 has been skipped, meaning that the least-significant bit of y was 0. A short
execution time indicates that the AVX unit was already on when execution the vector
instruction. This can only happen if the instruction at line 6 has been executed, meaning
that the least-significant bit of y was 1.

Applying the AVX model to the example shown in Listing 4.5 gives two possible AVX
unit states A1 and A2, which are equivalent non-speculatively but differ speculatively.
The simplified traces of both runs are shown in Figure 4.5.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

〈1,⊥, Off〉

Assign
−−−−→ 〈2,⊥, Off〉

SpecBranchPred-NS
−−−−−−−−−−−−−−→

¬taken(Υ,2)
〈3, (Ω, 2), Off〉

Load
−−−→ 〈4, (Ω− 1, 2), Off〉

Assign
−−−−→
ϕ(c)=1

〈5, (Ω− 2, 2), Off〉

SpecBranch-S
−−−−−−−−−→ 〈6, (Ω− 3, 2), Off〉

Assign
−−−−−−−→
avx-enable()

〈7, (Ω− 4, 2), On〉

SpecTerminate
−−−−−−−−−−→ 〈7, (0, 2), On〉

SpecRollback
−−−−−−−−−→ 〈7,⊥, On︸︷︷︸

A1

〉

〈1,⊥, Off〉

Assign
−−−−→ 〈2,⊥, Off〉

SpecBranchPred-NS
−−−−−−−−−−−−−−→

¬taken(Υ,2)
〈3, (Ω, 2), Off〉

Load
−−−→ 〈4, (Ω− 1, 2), Off〉

Assign
−−−−→
ϕ(c)=0

〈5, (Ω− 2, 2), Off〉

SpecBranch-S
−−−−−−−−−→ 〈7, (Ω− 3, 2), Off〉

SpecTerminate
−−−−−−−−−−→ 〈7, (0, 2), Off〉

SpecRollback
−−−−−−−−−→ 〈7,⊥, Off︸︷︷︸

A2

〉

Figure 4.5: AVX Unit Example Traces for LSB(y) = 1 and LSB(y) = 0

4.3 Branch Predictor

Modern processors make use of branch prediction to increase their overall performance
[47]. Instead of waiting for the outcome of a branching decision, the processor specu-
latively executes instructions in advance by ”predicting“ their possible outcome. The
more accurate the predictions are, the larger the possible performance gain is.

One integral part of this machinery is the branch predictor, which consists of two
main components. One component is the Pattern History Table (PHT) which keeps
track if branches have been taken/not-taken in the past [47]. The processor uses the in-
formation stored in the PHT to predict if future conditional branches should be taken or
not. The second component is the Branch Target Buffer (BTB) which keeps track of the
recently used jump target addresses [47]. The processor uses the information stored in
the BTB to predict future target addresses when a branch is taken. Both components to-
gether allow the processor to speculatively execute conditional and unconditional branch
instructions using direct or indirect branch targets [47].

Motivated by the Branch Prediction Analysis (BPA) attack [2, 3, 15], we model
the BTB as well as the PHT for proving the absence of ”secret-dependent“ speculative
execution flows. The BPA attack uses the BTB as a microarchitectural covert channel.
A Prime+Probe like attack strategy allows to leak secret information used in branching
decisions [3]. The adversary first trains the BTB with known target addresses, which
map to the same BTB set as the victim branch. Then the victim function is executed,
which may or may not overwrite the attacker’s BTB entries depending on the branch
outcome. Afterwards the adversary can check if the previously trained target addresses

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Branch Predictor

have been evicted from the buffer. If so, the attacker knows that the victim branch has
been taken.

4.3.1 PHT Model

A PHT state P ∈ Word → {Taken, NotTaken} ∪ {⊥} is a mapping from program
locations to branching decisions, which can either be taken or not taken. In contrast
to concrete implementations which are typically based on tagged data structures [47],
our abstraction tracks the most recent branching decision for each individual program
location instead of a set of program locations.

Initially the PHT contains an unknown branching decision for each program location.

pht-init() ≡ {l 7→ ⊥ | l ∈Word}

Storing a new branching decision for program location l just overwrites the current
branching decision of l.

pht-taken(P, l) ≡ P[l 7→ Taken]

pht-not-taken(P, l) ≡ P[l 7→ NotTaken]

where l ∈Word

Two PHT states P1, P2 are equivalent if both contain the same branching decisions
for each program location.

pht-equiv(P1,P2) ≡ ∀l ∈Word. P1(l) = P2(l)

4.3.2 PHT Configuration

The derivation relation
pht-effects
−−−−−−→ works on a configuration 〈P, ϕ, σ, pc, ϕ′, σ′, pc′〉, where

P defines the current state of the PHT, ϕ the current register assignment, σ the current
memory state, pc the current program counter, ϕ′ the next register assignment, σ′ the
next memory state and pc′ the next program counter.

4.3.3 PHT Instruction Evaluation

Correctly predicted branching decisions are immediately stored in the PHT, both for non-
speculatively and speculatively executed branch instructions. Mis-predicted branching
decisions are ignored until rollback. On rollback, when the mis-speculation is finally re-
solved, the correct branching decisions of the mis-speculated branch instruction is stored
in the PHT. Intuitively, once the correct branch outcome is known, the correct branching
decision can be stored. As the µarch semantics already implements this behavior, no
special treatments is required for the beqz instruction and thus PhtBranchTaken
and PhtBranchNotTaken always update the PHT for the current program location
pc. All other instructions leave the state of the PHT unaffected.

PhtBranchTaken
ρ(pc) = beqz x, ℓ ϕ(x) = 0 P ′ = pht-taken(P, pc)

〈P, ϕ, σ, pc, ϕ′, σ′, pc′〉
pht-effects
−−−−−−→ P ′

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

PhtBranchNotTaken
ρ(pc) = beqz x, ℓ ϕ(x) 6= 0 P ′ = pht-not-taken(P, pc)

〈P, ϕ, σ, pc, ϕ′, σ′, pc′〉
pht-effects
−−−−−−→ P ′

PhtIgnore
ρ(pc) 6= beqz x, ℓ

〈P, ϕ, σ, pc, ϕ′, σ′, pc′〉
pht-effects
−−−−−−→ P

4.3.4 BTB Model

A BTB state B ∈ Word → Word ∪ {⊥} is a mapping from program locations to target
addresses. In contrast to concrete implementations which are typically based on tagged
data structures [47], our abstraction tracks the most recently used target address for
each individual program location instead of a set of program locations.

Initially the BTB contains an unknown target address for each program location.

btb-init() ≡ {l 7→ ⊥ | l ∈Word}

Tracking a target address t for program location l just overwrites the current target
address of l.

btb-track(B, l, t) ≡ B[l 7→ t] where l, t ∈Word

Two BTB states B1, B2 are equivalent if both contain the same target addresses for
each program location.

btb-equiv(B1,B2) ≡ ∀l ∈Word. B1(l) = B2(l)

4.3.5 BTB Configuration

The derivation relation
btb-effects
−−−−−−→ works on a configuration 〈B, ϕ, σ, pc, ϕ′, σ′, pc′〉, where

B defines the current state of the BTB, ϕ the current register assignment, σ the current
memory state, pc the current program counter, ϕ′ the next register assignment, σ′ the
next memory state and pc′ the next program counter.

4.3.6 BTB Instruction Evaluation

Correctly predicted branch targets are immediately stored in the BTB, both for non-
speculatively and speculatively executed branch instructions. Mis-predicted branch tar-
gets are ignored until rollback. On rollback, when the mis-speculation is finally resolved,
the correct branch target of the mis-speculated branch instruction is stored in the BTB.
Intuitively, once the correct branch outcome is known, the correct branch target can
be stored. As the µarch semantics already implements this behavior, no special treat-
ments is required for the beqz instruction and thus BtbBranchTaken always tracks
the branch target pc′ for the current program location pc if the branch is taken. If the
branch isn’t taken, then the BTB is left unchanged by BtbBranchNotTaken. Ad-
ditionally, the branch target pc′ of unconditional branches jmp is tracked as well. All

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Branch Predictor

other instructions leave the state of the BTB unaffected.

BtbBranchTaken
ρ(pc) = beqz x, ℓ ϕ(x) = 0 B′ = btb-track(B, pc, pc′)

〈B, ϕ, σ, pc, ϕ′, σ′, pc′〉
btb-effects
−−−−−−→ B′

BtbBranchNotTaken
ρ(pc) = beqz x, ℓ ϕ(x) 6= 0

〈B, ϕ, σ, pc, ϕ′, σ′, pc′〉
btb-effects
−−−−−−→ B

BtbJump
ρ(pc) = jmp ℓ B′ = btb-track(B, pc, pc′)

〈B, ϕ, σ, pc, ϕ′, σ′, pc′〉
btb-effects
−−−−−−→ B′

BtbIgnore
ρ(pc) /∈ {beqz x, ℓ; jmp ℓ}

〈B, ϕ, σ, pc, ϕ′, σ′, pc′〉
btb-effects
−−−−−−→ B

4.3.7 Example

Listings 4.6 and 4.7 adopt the example from the introduction part of Chapter 4. The
highlighted lines denote the implementation of leak_least_significant_bit(y).
Given a BTB and a PHT with four slots each, the two lowest bits of the program
location are used as the entry index. Hence, the conditional branch at line 2 has index
0b10 and the conditional branch at line 5 has index 0b01. We have x = 10 and
array1_size = 8. Assume that the processor speculatively executes the code shown
in Listing 4.7 and the adversary trained the BTB to contain 0b01010101 at index
0b01 and the PHT to contain Taken at the same index.

1 if (x < array1_size) {

2 y = array1[x];

3 if (y & 1) {

4 _skip();

5 }

6 }

Listing 4.6: BTB/PHT Leak (C-Code)

1 c <- x < array1_size

2 beqz c, 7

3 load y, array1 + x

4 c <- y & 1

5 beqz c, 7

6 skip

Listing 4.7: BTB/PHT Leak (µASM-Code)

Because the adversary is in control of x, the load instruction at line 3 can spec-
ulatively load sensitive data into register y. The conditional jump at line 5 indirectly
depends on the value of y, because the least-significant bit of y is assigned to register c at
line 4. If c is 0 the jump is taken and the target address 0b00000111 is stored at index
0b01, thereby overwriting the trained target address 0b01010101. Otherwise if c is 1
the jump is skipped and the buffer is left unchanged. This way the least-significant bit of
y can be encoded into the BTB. The two possible evolvements of the BTB are depicted in
Figure 4.6. The additional target address 0b00000111 at index 0b10 comes from the
conditional branch at line 2. The correct jump target of this branch is recorded after the
rollback of the mis-speculation. The same applies to the PHT which contains different
branching decisions depending on the least-significant bit of y, as shown in Figure 4.7.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Microarchitecture

Branch Target
xxxx xx00 -
xxxx xx01 0101 0101

xxxx xx10 -
xxxx xx11 -

beqz c, 7

Branch Target
xxxx xx00 -
xxxx xx01 0101 0101

xxxx xx10 0000 0111

xxxx xx11 -

Branch Target
xxxx xx00 -
xxxx xx01 0000 0111

xxxx xx10 0000 0111

xxxx xx11 -

branch not taken

branch taken

Figure 4.6: BTB State Depending on the Least-Significant Bit of y

Branch Decision
xxxx xx00 -
xxxx xx01 Taken
xxxx xx10 -
xxxx xx11 -

beqz c, 7

Branch Decision
xxxx xx00 -
xxxx xx01 Not Taken
xxxx xx10 Taken
xxxx xx11 -

Branch Decision
xxxx xx00 -
xxxx xx01 Taken
xxxx xx10 Taken
xxxx xx11 -

branch not taken

branch taken

Figure 4.7: PHT State Depending on the Least-Significant Bit of y

Finally, the adversary can decode the information from the BTB and PHT by means
of a timing attack. Measuring the execution time of a jump instruction, which maps to
the same BTB slot 0b01 as the victim’s branch instruction, reveals the least-significant
bit of y. Assume that the correct target address of the specially crafted jump instruction
is 0b01010101. A long execution time indicates that the target address at index 0b01

has been changed by the victim, thereby causing a mis-speculated jump to the buffered
target address 0b00000111. This can only happen if the branch at line 5 has been
taken, meaning that the least-significant bit of y was 0. A short execution time indicates
that the trained target address at index 0b01 hasn’t been overwritten by the victim and
therefore no costly mis-speculation is triggered. This can only happen if the branch at
line 5 hasn’t been taken, meaning that the least-significant bit of y was 1.

Applying the BTB model to the example shown in Listing 4.7 gives two possible
BTB states B2 and B′

3, which are equivalent non-speculatively but differ speculatively
for the branch instruction at program location 5. The simplified traces of both runs are
shown in Figure 4.8.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Combination of Microarchitectural Components

B1 = {2 7→ ⊥, 5 7→ ⊥}

〈1,⊥,B1〉

Assign
−−−−→ 〈2,⊥,B1〉

SpecBranchPred-NS
−−−−−−−−−−−−−−→

¬taken(Υ,2)
〈3, (Ω, 2),B1〉

Load
−−−→ 〈4, (Ω− 1, 2),B1〉

Assign
−−−−→
ϕ(c)=1

〈5, (Ω− 2, 2),B1〉

SpecBranch-S
−−−−−−−−−→ 〈6, (Ω− 3, 2),B1〉

Skip
−−−→ 〈7, (Ω− 4, 2),B1〉

SpecTerminate
−−−−−−−−−−→ 〈7, (0, 2),B1〉

SpecRollback
−−−−−−−−−−−−−→
B2=btb-track(B1,2,7)

〈7,⊥,B2〉

B2 = { 2 7→ 7, 5 7→ ⊥ }

B′
1 = {2 7→ ⊥, 5 7→ ⊥}

〈1,⊥,B′
1〉

Assign
−−−−→ 〈2,⊥,B′

1〉

SpecBranchPred-NS
−−−−−−−−−−−−−−→

¬taken(Υ,2)
〈3, (Ω, 2),B′

1〉

Load
−−−→ 〈4, (Ω− 1, 2),B′

1〉

Assign
−−−−→
ϕ(c)=0

〈5, (Ω− 2, 2),B′
1〉

SpecBranch-S
−−−−−−−−−−−−−→
B′

2
=btb-track(B′

1
,5,7)

〈7, (Ω− 3, 2),B′
2〉

SpecTerminate
−−−−−−−−−−→ 〈7, (0, 2),B′

2〉

SpecRollback
−−−−−−−−−−−−−→
B′

3
=btb-track(B′

2
,2,7)

〈7,⊥,B′
3〉

B′
3 = { 2 7→ 7, 5 7→ 7 }

Figure 4.8: BTB Example Traces for LSB(y) = 1 and LSB(y) = 0

4.4 Combination of Microarchitectural Components

As the microarchitecture typically consist not only of one but instead of many microar-
chitectural components, we lift the component type K as well as the associated functions
defined in Section 3.4 to a tuple of component types K1 × ... × Kn. This enables us to
simultaneously check multiple microarchitectural components in a single analysis, for
example cache in combination with the branch target buffer.

KT ≡ K1 × ...×Kn

κT = (κ1, ..., κn) ∈ KT

KT -init() ≡ (K1-init(), ...,Kn-init())

KT -equiv(κ′
T , κ′′

T) = true iff ∀n
i=1 Ki-equiv(κ′

i, κ′′
i)

κT = (κ1, ..., κn) ∀n
i=1 κ′

i = Ki-effects(κi, ϕ, σ, pc, ϕ′, σ′, pc′) κ′
T = (κ′

1, ..., κ′
n)

〈κT , ϕ, σ, pc, ϕ′, σ′, pc′〉
KT -effects
−−−−−−→ κ′

T

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Implementation

µASM File

µASM IR

Parsing

Assembly

Falcon IL

Disassembling & Lifting

Loader

SpecBMC

HIR

Control Flow Graph

MIR

Block Graph

LIR

Flat List

Function Inlining, Loop Unrolling,
Transient Execution Encoding,
SSA Transformation, Optimization

Optimization

TranslatingTranslating

Lowering

Lowering & Self-Composition

SpecBMC

Solver

SMT Formula

SAT/UNSAT

Encoding

Solving

Figure 5.1: Architecture of SpecBMC

In this chapter the implementation and components of SpecBMC are explained1. As
1The full source code of SpecBMC is available at https://github.com/emmanuel099/specbmc

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/emmanuel099/specbmc

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

show in Figure 5.1, the architecture of SpecBMC can basically be divided into three
distinct parts: (i) assembly loader (ii) the bounded model checker itself (iii) and an
off-the-shelf satisfiability modulo theories (SMT) solver. In the first step the program,
which can either be a µASM file or a binary program, is loaded and translated into a
unified intermediate representation, called high-level intermediate representation (HIR).
From there on a multitude of transformations and lowerings are performed to finally
arrive at an SMT formula. The SMT formula is then passed on to an SMT solver
which either returns unsatisfiable if the program is secure, or an satisfiable assignment
(counterexample) if the program is insecure.

In the following all the different intermediate representations and involved transfor-
mation steps are described in more detail. For ease of understanding, all the explanations
are based on the example program shown in Listing 5.1.

1 cond <- x < array1_size

2 beqz cond, EndIf

3 Then:

4 load v, array1 + x

5 load tmp, array2 + v << 8

6 EndIf:

7 skip

Listing 5.1: Kocher01 Example

5.1 Important Concepts

Before we dive into the implementation details of SpecBMC, we give a short recap of
the two import concepts in use.

5.1.1 Bounded Software Model Checking

BMC is an automated approach for proving program properties [26]. The user supplies
a program, some properties to be checked and an unwinding bound k. Then BMC does
its job without further user interaction. To check the validity of the program in respect
to the given properties, the program together with the properties is translated into a
satisfiability problem, such that the problem is unsatisfiable if the program is valid.

BMC tackles the state explosion problem by searching for counterexamples of bounded
length [12]. Therefore, all loops in the program are unrolled k times, resulting in a loop
free program where all execution paths are of finite length. The loop free program is
then translated into a logic formula. If the formula is satisfiable, then a property has
been violated. In this case the satisfiable assignment gives an counterexample to the
validity of the program. If the formula is unsatisfiable, then the program respects all
properties up to the given unwinding bound k. Note that a property can still be violated
for unwinding bounds greater than k, meaning that BMC is incomplete if k is not suffi-
ciently large. Nonetheless, BMC is known to be a strong technique for catching software
bugs [26].

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Loader

Roughly summarised, bounded software model checkers like LLBMC [34] or CBMC
[11] work as follows: (i) inline function calls (ii) unwind the control-flow graph (CFG)
up to k times to get a loop free CFG (iii) translate the CFG into static single assignment
(SSA) form (iv) encode the SSA representation as SAT/SMT formula.

5.1.2 Self-Composition

Self-composition is a technique to reduce secure information flow problems into safety
verification problems [6]. The reduction from the secure information flow policy of
program P to a safety property of program P ′ is done by composing P with a duplicate
of itself where are variables are renamed, e.g., x to xD. We have that P is secure if and
only if P ′ is safe. The self-composition approach allows us to check our SNI 2-safety
hyperproperty as defined in Section 3.5, over an execution of two copies of the program
using standard safety verification techniques, such as BMC.

5.2 Loader

Currently two different loaders are implemented. One loader for assembly files based on
Falcon and one loader for µASM files based on our µASM parser. In this section a short
overview of both loaders is given.

5.2.1 Falcon

enum Operation {

Assign { var: Variable, expr: Expression },

Branch { target: Expression },

Conditional { cond: Expression, operation: Operation },

Store { address: Expression, expr: Expression },

Load { var: Variable, address: Expression },

Intrinsic { intrinsic: String },

Nop,

}

Listing 5.2: Falcon Intermediate Language (IL)

Falcon2 is a Binary Analysis Framework for 32/64-bit x86 and MIPS. The frame-
work provides a multitude of ready to use components for implementing binary analysis
solutions on top of it. The whole framework is built around the Falcon intermediate
language (IL), which precisely captures the instruction semantics and control-flow. As
noted by the authors of Falcon3: “Falcon IL is a simple, expression-based, well-defined,
semantically-accurate intermediate language for the analysis of Binary Programs.”

The IL itself is surprisingly small and defines only seven operations as show in List-
ing 5.2. It consists of assignment, memory store and load as well as branching opera-
tions. The Intrinsic operation allows to capture instructions whose semantics cannot

2https://github.com/falconre/falcon
3https://docs.rs/falcon/0.4.12/falcon/il/index.html

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/falconre/falcon
https://docs.rs/falcon/0.4.12/falcon/il/index.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

be modelled by existing IL operations, e.g., speculation barriers. The Conditional

operation allows to make each operation conditional, e.g., conditional assignments like
CMOVcc or conditional branches like Jcc.

For instruction decoding Falcon relies upon the widely-used Capstone disassembly
framework4. Each decoded instruction is lifted into one or more semantically equiv-
alent Falcon IL instructions. The lifting itself is semantically accurate, meaning that
all the stack, register as well as status flag5 modifications are captured. Instructions
whose semantics cannot be modelled by Falcon IL are lifted as “intrinsic”. Such intrinsic
operations allow us to find and insert speculation barriers when translating IL into HIR.

Translating Falcon IL into HIR

As Falcon IL already has a control-flow graph, the HIR control-flow graph is simply
constructed from it. The IL operations itself are translated as follows:

• Unconditional assignments are translated as is.

IL::Assign{var, expr} ◮ HIR::Assign{var, expr}.

• Conditional assignments are translated into unconditional assignments, but instead
the expression itself is made conditional. The new conditional expression is defined
such that if the condition holds, the value of expr is assigned to var, otherwise
the value of var is assigned to itself.

IL::Conditional{cond, IL::Assign{var, expr}} ◮

HIR::Assign{var, Ite(cond, expr, var)}

• The translation of unconditional branches depends on target. If the target is the
address of a function as defined in the symbol table, then the branch operation is
translated into a call instruction, otherwise the branch operation is translated into
an unconditional branch instruction.

IL::Branch{target} ◮ HIR::Call{target} if target is a function
IL::Branch{target} ◮ HIR::Branch{target} otherwise

• Conditional branches are translated as is.

IL::Conditional{cond, IL::Branch{target}} ◮

HIR::ConditionalBranch{cond, target}

• Store and load operations are translated as is.

IL::Store{address, expr} ◮ HIR::Store{address, expr}

IL::Load{var, address} ◮ HIR::Load{var, address}

• Intrinsic operations are translated depending on the “raw” machine code instruc-
tion. Machine code instructions which behave as speculation barriers, like for

4https://www.capstone-engine.org/
5For example the carry, zero, sign and overflow flag in x86.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.capstone-engine.org/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

example “lfence”, are translated into barrier instructions. Others are simply trans-
lated into skip instructions.

IL::Intrinsic{intrinsic} ◮ HIR::Barrier if is a speculation barrier
IL::Intrinsic{intrinsic} ◮ HIR::Skip otherwise

• No operation is translated into a skip instruction.

IL::Nop ◮ HIR::Skip

5.2.2 µASM

For µASM files a parser has been written6. The input file is parsed and stored in the
µASM intermediate representation (IR), basically just an abstract syntax tree (AST).
The detailed syntax and semantics definition of µASM IR is given in Section 2.1.

Because HIR and µASM IR are closely related to each other, the translation into HIR
is straightforward and therefore the detailed description of the translation process is
omitted. The control-flow graph of HIR is constructed during translation. The resulting
HIR program is shown in Figure 5.2.

[Block: 0x0]
0 cond = ((bool2bv 64) (bvslt x array1_size))
1 branch 0x4 if (= cond 0x0)

[Block: 0x2]
2 v = load(_memory, (bvadd array1 x))
3 tmp = load(_memory, (bvadd array2 (bvshl v 0x8)))

(not (= cond 0x0))

[Block: 0x4]
4 skip

[taken]
(= cond 0x0)

[Block: 0x6]

[Block: 0x5]

Figure 5.2: High-level Intermediate Representation of Kocher01 Example

5.3 SpecBMC

SpecBMC is divided into three intermediate representations called high-, mid- and low-
level intermediate representation, in the following denoted as HIR, MIR and LIR. Fol-
lowing the principle of “separation of concerns”, each IR is optimized for a specific level

6
µASM Parser: https://github.com/emmanuel099/muasm-parser

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/emmanuel099/muasm-parser

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

of abstraction. While HIR has detailed knowledge about speculative execution, memory
operations and such, the more low-level the IR becomes, the more such details are ab-
stracted away. This more general representation of MIR and LIR allows to easily reuse
them for other similar problems as well, whereas HIR is closely tight to the problem of
this thesis.

Shared among all three intermediate representation of SpecBMC is an extensive
expression library which encapsulates all the necessary SMT-LIB theories7 in a type-
safe way. At the moment the theories of arrays, bit vectors and integers are available.
Additionally, a type-safe abstraction for lists, tuples, byte-based memory and all the
microarchitectual components, as defined in Chapter 4, is provided.

SpecBMC can fully be configured via an environment file. A full reference of the
environment file is given in Appendix B.2. Whenever we use the term environment in
the following, we actually refer to this environment file.

5.3.1 High-level Intermediate Representation (HIR)

enum Instruction {

Assign { var: Variable, expr: Expression },

Store { addr: Expression, expr: Expression,

mem_in: Variable, mem_out: Variable },

Load { var: Variable, addr: Expression, mem: Variable },

Call { target: Expression },

Branch { target: Expression },

ConditionalBranch { cond: Expression, target: Expression },

Skip,

Barrier,

Assert { cond: Expression },

Assume { cond: Expression },

Observable { expr: Expression },

Indistinguishable { expr: Expression },

}

struct PhiNode {

incoming: Map<BlockRef, Variable>,

out: Variable,

}

struct Block {

instructions: Vec<Node>,

phi_nodes: Vec<PhiNode>,

}

struct Edge {

condition: Option<Expression>,

}

7http://smtlib.cs.uiowa.edu/theories.shtml

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://smtlib.cs.uiowa.edu/theories.shtml

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

struct Function {

control_flow_graph: DirectedGraph<Block, Edge>,

}

struct Program {

functions: Vec<Function>,

}

Listing 5.3: High-level Intermediate Representation

Listing 5.3 shows the basic structure of HIR. A program consists of one or multiple
functions. Each function is defined by it’s control-flow graph (CFG), a directed graph
of basic blocks and control-flow edges. An edge can either be conditional, meaning that
the edge is taken only when the condition holds, or unconditional, meaning that the
edge is always taken. Each basic block holds a linear sequence of instructions and a
list of phi nodes. A phi node merges variables from different incoming control-flows,
meaning that the variable out is selected to be one of the incoming variables, depending
on from which predecessor basic block the control-flow is coming from [42]. Phi nodes
are initially empty until HIR is transformed into static single assignment (SSA) form.
The instructions of HIR closely follow the definition of Chapter 2. The only difference
is that HIR allows to model function calls, which becomes a necessity when checking
larger binary programs, as such programs are usually built of multiple functions. But
as we shall see later, calls are vanished once function inlining has been performed.

HIR uses a flat memory model with a single continuous address space, meaning
that each single byte in the memory is individually addressable. Flat memory models
are already successfully used in other model checkers, like for example LLBMC [48].
Additionally, the state of the memory is explicitly tracked for each memory operation.
This is different from typical IR implementations, where memory operations usually
work on an implicit memory state.

The instructions of HIR are as follows:

• Assign{var, expr} denotes an assignment of expression expr to variable var.

• Store{addr, expr, mem_in, mem_out} stores the value of expression expr
at the memory address addr. The store operation uses the memory state of
variable mem_in as input and results in a new memory state which is assigned to
variable mem_out.

• Load{var, addr, mem} loads the value at the memory address addr into vari-
able var. The load operation uses the memory state of variable mem.

• Call{target} denotes a function call, where target is the address of the func-
tion to be called.

• Branch{target} and ConditionalBranch{cond, target} denote an un-
conditional respectively conditional jump to program location target. Note that
the semantics of direct branches is already reflected by control-flow edges and thus

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

the branch instructions may seem to be partially redundant in HIR. The reason
for retaining direct branches is solely to keep track of their side-effects.

• Barrier denotes a speculation barrier.

• Assert(cond) assertions that condition cond is true.

• Assume(cond) assumes that condition cond is true.

• Observable(expr) denotes that the value of expression expr is visible to an
adversary. The observable instruction ensures that the expression has identical
values in all compositions. If the values are different, meaning that high-security
information has been leaked into expr, the program will be marked as insecure.

• Indistinguishable(expr) denotes that the value of expression expr is in-
distinguishable to an adversary. The indistinguishable instruction forces that the
expression has identical values in all compositions. This is useful, e.g., to initialize
low-security input variables and memory locations to identical values.

In the following the different HIR transformations are described. The first trans-
formation is function inlining, which transforms a program with multiple functions into
a single CFG. Then loops are unrolled, transient execution behavior is encoded and
observations are added. Finally, the CFG is transformed into SSA form.

Function Inlining

Function inlining replaces call instructions with a copy of the control-flow graph of the
target function. If a function f is called multiple times, then each call is replaced by
a new copy of f to preserve context-sensitivity. For recursive functions the number
of inlinings is limited by the recursion limit parameter, meaning that once the limit
for a recursive function g is reached, no further inlining of function g is performed. In
SpecBMC function inlining starts from the program entry function and repeatedly inlines
function calls until all calls have been processed. The result is a program with a single
CFG where all calls have been eliminated, meaning that all further transformations and
translations don’t have to deal with functions and call instructions anymore.

Figure 5.3 shows an example for function inlining. We have three functions A, B
and C where A calls B and B calls C. The corresponding call graph is depicted in
Figure 5.3d. Suppose that function A is the program entry function, then function
inlining will produce the CFG as shown in Figure 5.3e.

Loop Unrolling

Loop unrolling, also called loop unwinding, is an integral part of BMC [26]. Loops
are unrolled up to a given unwinding bound k by replacing them with a sequence of
k copies of their loop bodies. To avoid that more than k iterations are possible, an
unwinding assumption is added to the last iteration of each loop, making sure that the
loop condition is false at the end of the k-th iteration. Furthermore, control-flow edges
are inserted such that loops can be left before or after each iteration, making sure that

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

[Function A]
a = true
call B
a = false

(a) Function A

[Function B]
b = true
call C
b = false

(b) Function B

[Function C]
c = true

(c) Function C

A B C

(d) Call Graph

a = true

b = true

c = true

b = false

a = false

(e) CFG after Function Inlining Starting from Function A

Figure 5.3: Function Inlining Example

A

B

 L

C

not L

(a) CFG with Loop A-B

A1

B1
L

C

not L

A2
A3
assume (not L)

not L

not L

B2
L

(b) CFG after Unrolling Loop A-B Twice

Figure 5.4: Loop Unrolling Example

executing only 0, 1 up to k loop iterations is possible. By inserting unwinding assertions
instead of assumptions, the check would fail if for one loop the given bound k would
be exceeded. Therefore, unwinding assertions allow to prove that the chosen bound is
indeed large enough. SpecBMC allows the user to chose between unwinding assumptions
and unwinding assertions. The default is unwinding assumptions. After loop unrolling
the CFG forms a directed acyclic graph (DAG). During this transformation, all execution
paths which were previously of infinite length became finite/bounded.

An example for loop unrolling is shown in Figure 5.4. Assume that k is two, meaning
that the loop A-B is unrolled twice. A1-B1 is the copy for the first loop iteration and
A2-B2 is the copy for the second loop iteration. As the unwinding bound is limited to
two, no more loop iterations are expected and therefore an unwinding assumption with
the negated loop condition (not L) is added to block A3.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

[Entry]
1 x = false
2 y = false
3 branch 4 if c

[If.Then]
4 x = true
5 branch 7

(not c)

[If.Else]
6 y = true

c

[Exit]
7 skip

(a) Non-speculative CFG

[Entry]
1 x = false
2 y = false

[Trans]
_S_x = x
_S_y = y

(speculate 3)

[Entry]
3 branch 4 if c

(not (speculate 3))

[If.Then]
4 x = true
5 branch 7

(not (taken 3))

[If.Else]
6 y = true

(taken 3)

[Exit]
7 skip

[Rollback]
x = _S_x
y = _S_y

[rollback]

[If.Then]
4 x = true
5 branch 7

(not c)

[If.Else]
6 y = true

c

[Exit]
 7 skip

(b) CFG after Transient Execution Encoding

Figure 5.5: Transient Execution Transformation Example

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

Transient Execution

Up until now the CFG was non-speculative. In this transformation the transient execu-
tion semantics as described in Section 3.3 is encoded into the CFG. This is done by dupli-
cating basic blocks and adding additional speculate, predict and rollback edges between
them. The additional basic blocks and edges are added such that all execution paths
given by our transient execution semantics are represented in the CFG. Furthermore,
save and restore instructions for modified registers and memory are added, mimicking
the behavior of the speculation state ∆ = (ω, ϕ̂, σ̂, p̂c) from our semantics definition.

Figure 5.5 shows a simplified example for the transient execution encoding. The
given non-speculative CFG is shown in Figure 5.5a. As the branch instruction in the
entry block at program location 3 can be executed speculatively, the transient execution
behavior for this instruction is inserted into the CFG as depicted in Figure 5.5b. The grey
basic blocks denote the transiently executed blocks. First, the entry block is split into two
blocks such that all instructions before the branch instruction are executed independently
from the speculation. Then the blocks reachable from the branch instruction, namely
If.Then, If.Else and Exit, are duplicated. The depth of the duplicated sub-graph
is statically limited by the given maximum length of the speculation window, denoted
as Ω in our semantics definition. As the control-flow during speculation is given by the
predictor, (taken 3) respectively (not (taken 3)) edges are added, replacing the
c respectively (not c) edges from the non-speculative execution. From the last block
of the transient execution, a rollback edge is added such that the branch instruction is
re-evaluated after transient execution. The saving and restoring of the modified variables
x and y is done in Trans and Rollback. For simplicity all the additional resolve edges
have been omitted from the example.

Observations

Observations are automatically inserted by SpecBMC depending on the specified obser-
vation model. Note that we omit the abstract obs instruction of the transient execution
semantics and instead encode the observations directly into HIR, by making the rele-
vant expressions and variables observable respectively indistinguishable to an adversary.
Currently three different observation models are implemented:

• Trace: The trace observation model describes an adversary who can observe the
state of the microarchitectual components while running in parallel with the vic-
tim. The implementation of this model follows the definition in Section 3.4. For
each instruction with side effects on microarchitectual components, we trace the
microarchitectual state after the instruction’s effects have been encoded. The trace
is implemented as a list of component states. At the end of the program the traces
are compared. The program is secure if the traces of both executions are identical.
When we relate the implementation of the trace observation model to the SNI
hyperproperty described in Section 3.5, then @observe(trace) corresponds to
π̃1 ≈Obs π̃2 and the trace itself corresponds to observations(πµ) ∈ K∗.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

1 trace = nil

2 c <- x < array1_size

3 @track-pht(c)

4 @track-btb(EndIf) if c=0

5 trace = trace ⊳ 〈cache,pht,btb〉
6 beqz c, EndIf

7 Then:

8 @cache-fetch(array1 + x)

9 trace = trace ⊳ 〈cache,pht,btb〉
10 load v, array1 + x

11 @cache-fetch(array2 + v)

12 trace = trace ⊳ 〈cache,pht,btb〉
13 load tmp, array2 + v

14 EndIf:

15 skip

16 observable(trace)

(a) Trace Observation Model

1

2 c <- x < array1_size

3

4 @track-pht(c)

5 @track-btb(EndIf) if c=0

6 beqz c, EndIf

7 Then:

8

9 @cache-fetch(array1 + x)

10 load v, array1 + x

11

12 @cache-fetch(array2 + v)

13 load tmp, array2 + v

14 EndIf:

15 skip

16 observable(cache, pht, btb)

(b) Sequential Observation Model

1 c <- x < array1_size

2 @track-pht(c)

3 @track-btb(EndIf) if c=0

4 observable(cache, pht, btb)

5 beqz c, EndIf

6 Then:

7 @cache-fetch(array1 + x)

8 observable(cache, pht, btb)

9 load v, array1 + x

10 @cache-fetch(array2 + v)

11 observable(cache, pht, btb)

12 load tmp, array2 + v

13 EndIf:

14 observable(cache, pht, btb)

15 skip

(c) Parallel Observation Model

Figure 5.6: Observation Models applied to Kocher01 Example

Figure 5.6a shows the application of the trace observation model to the Kocher01
example. Initially the trace is empty as indicated by nil. Then on each side effect,
denoted by @, the components’ current state is appended to the trace. Finally at
line 16 the traces of both executions are compared.

• Sequential: The sequential observation model describes an adversary who can
observe the state of the microarchitectual components only once after the victim
code has been executed. The program is secure if the resulting microarchitectual
states of both executions are identical. The sequential observation model is basi-

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

cally a simplified version of the trace observation model, with a single element in
the trace. Therefore, we omit the list representation and instead directly compare
the microarchitectual states at the end of the program.

Figure 5.6b shows the application of the sequential observation model to the
Kocher01 example. The effects of the branch and load instructions are encoded
into the component states. Finally at line 16 the component states are compared.

• Parallel: The parallel observation model describes an adversary who can observe
the state of the microarchitectual components while running in parallel with the
victim. The parallel model is a simplification of the trace model, thereby sacrificing
analysis soundness in favor of a simpler and potentially faster to solve SMT formula.
Instead of collecting the microarchitectual states in a trace, we let an adversary
directly observe the microarchitectual states, thereby avoiding the need of the
theory of lists and tuples8. The direct comparison of the component states has of
course the implication, that the comparison can only be done if the observation is
actually performed in both executions. Roughly speaking, if we take a full trace
as generated by the trace observation model and only keep the pairs of elements
where both execution paths overlap, then we basically have the parallel observation
model. In the parallel model observations are added to all instructions with side
effects and additionally to each control-flow join.

The restriction of the parallel observation model has of course impacts on the leaks
which can be catched respectively which are missed. Suppose that we have a set
of side effects E1 and E2. Then the parallel observation model allows to catch the
following leaks:

if (cond︸ ︷︷ ︸
control leak if secret

) { permutation(E1)︸ ︷︷ ︸
data leak if contains secret

} else { permutation(E2)︸ ︷︷ ︸
data leak if contains secret

}

︸ ︷︷ ︸
control leak if (E1\E2)∪(E2\E1) 6=∅

The observation of the condition depends of course on the available components.
Suppose that only the cache is available, then control flow leaks can be detected if
the set of side effects of both branches differ, meaning that the symmetric difference
of E1 and E2 is not empty. The parallel observation model misses control flow leaks
if the set of effects E1 and E2 are equal, even if the effects appear in different order
in both branches. Meaning that the parallel model is less powerful than the trace
model, which allows to catch control flow leaks if the same set of effects appear in
different order. An example for this is @cache-fetch(1); @cache-fetch(2)

in the then branch and @cache-fetch(2); @cache-fetch(1) in the else
branch.

Figure 5.6c shows the application of the parallel observation model to the Kocher01
example. The side effects of the branch and load instructions are directly compared
after they have been encoded into the component’s state.

8SMT formulas generated with the parallel observation model only require the QF_AUFBV logic.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

[A]
y = false

[B]
x = y

[C]
y = true
x = y

[D]
z = x

(a) Non-SSA CFG

[A]
y.1 = false

[B]
x.1 = y.1

[C]
y.2 = true
x.2 = y.2

[D]
x.3 = phi [x.1, B] [x.2, C]
z.1 = x.3

(b) CFG after SSA Transformation

Figure 5.7: SSA Transformation Example

In addition to the observations, we add indistinguishable constraints to HIR such that
the non-speculative part of the program is observational equivalent to an adversary as
required by ns(π̃1) ≈Obs ns(π̃2). To achieve this we add non-speculative counterparts for
all microarchitectual components, denoted by the _ns suffix, which only incorporate side
effects of non-speculatively executed instructions, and force them to be indistinguishable.

In the following we make use of the sequential observation model.

Single Static Assignment (SSA) Transformation

The authors of SSA-based Compiler Design [42] informally define SSA form as follows:
“A program is defined to be in SSA form if each variable is a target of exactly one
assignment statement in the program text.” Adapted to HIR this means, that a program
is defined to be in SSA form if each variable is a target of exactly one assign, load or
store instruction.

A program with multiple assignments for the same variable can be transformed into
single-assignment form by means of variable renaming [42], thereby a new unique variable
is introduced for each assignment. Take the assignments to variable y in block A and B

as shown in Figure 5.7a as an example. The assignments are transformed into SSA form
by renaming the target variable y to y.1 respectively y.2, as shown in Figure 5.7b.
The process of variable renaming is repeated for each variable until all variables have
been renamed. As variables may be used (read) in other instructions, all the variable
uses have to been adjusted as well. Each use of a variable v is replaced by the latest
prior SSA definition of variable v. In our example the variable y is used twice, once in
block B and once in block C. In block B the latest prior definition of y is y.1, meaning
that the variable y in the assignment to variable x.1 is replaced by y.1. In block C

the latest prior definition of y is y.2, meaning that the variable y in the assignment to
variable x.2 is replaced by y.2.

Special care has to be taken at control flow joins, such as block D in Figure 5.7a.
Depending on from where the control-flow is coming from the value of x is different. But

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

in SSA form we have x.1 and x.2 instead of x, so which of them should be assigned
to z? – It depends on the control-flow. In SSA this choice is reflected by so-called phi
nodes, usually referred to as φ functions. A phi node merges variables from different
control-flows into a single variable, meaning the outgoing variable is selected to be one of
the incoming variables depending on from which predecessor basic block the control-flow
is coming from [42]. As shown in Figure 5.7b, the variables x.1 and x.2 are merged
into variable x.3, such that x.3 is selected to be x.1 if the control-flow is coming from
block B or x.2 if the control-flow is coming from block C.

SpecBMC implements the “pruned” SSA transformation algorithm [42]. The pruned
version inserts phi nodes only where absolutely necessary. The algorithm relies on live
variable analysis [4] to determine where phi nodes are required. In general the pruning
is rather expensive because of the live variable analysis and therefore often avoided in
favor of the less expensive semi-pruned SSA transformation [42]. But as all loops in
HIR are eliminated by means of loop unrolling, the analysis operates on DAGs only.
Therefore, the expensive worklist-based fixed-point computation required for the live
variable analysis can be replaced by a simple reversed top-sort ordering traversal, making
the live variable analysis almost as cheap as the global variable analysis required for the
semi-pruned version. For example, in Figure 5.7a only variable x is live at the entry of
block D, meaning that in block D only a phi node for x needs to be added, whereas the
phi node for y can be omitted. The semi-pruned SSA transformation would also add a
phi node for y, even if y is not used in D.

Optimization

After the HIR is in SSA form, some simple optimizations are performed. These opti-
mizations allow us for example to completely get rid of the additional save and restore
instructions introduced by the transient execution transformation. Currently the follow-
ing optimizations are implemented:

• Constant Propagation: Propagates all constant assignments but doesn’t re-
move them. Constant assignments are defined as x = c where c is a constant.
For example, suppose that we have x = c and y = load(x), then constant
propagation will give x = c and y = load(c). Constants are propagated to
instructions and control-flow edges.

• Copy Propagation: Propagates all simple assignments but doesn’t remove them.
Simple assignments are defined as x = v where v is a variable. For example,
suppose that we have x = v and y = load(x), then constant propagation will
give x = v and y = load(v). Copies are propagated to instructions, control-
flow edges and phi nodes.

• Expression Simplification: Tries to simplify expressions, e.g., x ∧ false will
become false. Expression simplification is done for all instructions and control-
flow edges. In total, approximately 50 simplification rules have been implemented.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

• Constant Folding: Tries to evaluate expressions to constants if all their operands
are constant, e.g. 1 + 2 will become 3. Constant folding is done for all instruc-
tions and control-flow edges. In total, approximately 20 folding rules have been
implemented.

• Dead Code Elimination: Removes unused variable assignments and phi nodes.
Implemented as a mark-and-sweep algorithm which in the first phase marks all
unused assignments and phi nodes, and in the second phase removes them.

• Phi Node Elimination: Replaces unnecessary phi nodes with assignments. Copy
propagation may produce phi nodes where all incoming variables are the same, i.e.,
x′ = phi [x1, b1] [x1, b2] . . . [x1, bn]. Such phi nodes are transformed into x′ = x1.

• Redundant Instruction Elimination: First computes the set of available in-
structions for each block and then removes all instructions which are already avail-
able at their position. This optimization is useful to get rid of redundant assertions
and assumptions.

When applying all the described transformations and optimization to the input pro-
gram shown in Figure 5.2, we get the CFG shown in Figure 5.8 as a result. This CFG
is then lowered into MIR as described in the following section.

5.3.2 Mid-level Intermediate Representation (MIR)

enum Node {

Let { var: Variable, expr: Expression },

Assert { cond: Expression },

Assume { cond: Expression },

HyperAssert { cond: Expression },

HyperAssume { cond: Expression },

}

struct Block {

execution_condition: Expression,

nodes: Vec<Node>,

}

struct Program {

block_graph: Graph<Block>,

}

Listing 5.4: Mid-level Intermediate Representation

The design of MIR has greatly been inspired by the ideas of LLBMC’s ILR [34], namely
the concept of execution conditions and phi node transformation.

As shown in Listing 5.4, a MIR program consists of a block graph. Each block is a list
of variable bindings, assertions and assumptions together with an execution condition.
The execution condition is basically a guard which tells if the block is executed or not.
The difference between assertions/assumptions and hyper-assertions/hyper-assumptions

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

[Block: 0x0]
0 cond.1 = ((bool2bv 64) (bvslt x.1 array1_size.1))

[Block: 0x7]
_cache.2 = phi [_cache.1, 0x0] [_cache.9, 0xE]
1 branch 0x4 if (= cond.1 0x0)

(not (speculate 0x1))

[Block: 0x8, Transient]
_win.1 = (spec-win 0x1)
assume (bvsgt _win.1 0x0)
assume (bvsle _win.1 0x64)

[speculate]
(speculate 0x1)

[Block: 0x2]
2 _cache_ns.3 = ((cache-fetch 64) _cache.1 (bvadd array1.1 x.1))
2 _cache.3 = ((cache-fetch 64) _cache.2 (bvadd array1.1 x.1))
2 v.2 = load(_memory.1, (bvadd array1.1 x.1))

cache_fetch((bvadd array1.1 x.1), 64)
3 _cache_ns.4 = ((cache-fetch 64) _cache_ns.3 (bvadd array2.1 (bvshl v.2 0x8)))
3 _cache.4 = ((cache-fetch 64) _cache.3 (bvadd array2.1 (bvshl v.2 0x8)))
3 tmp.2 = load(_memory.1, (bvadd array2.1 (bvshl v.2 0x8)))

cache_fetch((bvadd array2.1 (bvshl v.2 0x8)), 64)

[Block: 0x4]
_cache_ns.5 = phi [_cache_ns.4, 0x2] [_cache.1, 0x7]
_cache.5 = phi [_cache.4, 0x2] [_cache.2, 0x7]
4 skip

[Block: 0x6]
indistinguishable(_cache_ns.5)
observable(_cache.5)

[Block: 0x5]
_memory.1 = nondet()
array1.1 = nondet()
indistinguishable(array1.1)
v.1 = nondet()
indistinguishable(v.1)
array1_size.1 = nondet()
indistinguishable(array1_size.1)
_cache_ns.1 = nondet()
_cache.1 = nondet()
indistinguishable(_cache_ns.1)
indistinguishable(_cache.1)
array2.1 = nondet()
indistinguishable(array2.1)
tmp.1 = nondet()
indistinguishable(tmp.1)
x.1 = nondet()
indistinguishable(x.1)
_predictor.1 = nondet()
indistinguishable(_predictor.1)

(not (= cond.1 0x0))

[taken]
(= cond.1 0x0)

[Block: 0xA, Transient]
2 _cache.6 = ((cache-fetch 64) _cache.1 (bvadd array1.1 x.1))
2 v.3 = load(_memory.1, (bvadd array1.1 x.1))

cache_fetch((bvadd array1.1 x.1), 64)
_win.2 = (bvsub _win.1 0x1)

(not (taken 0x1))

[Block: 0xB, Transient]
_cache.8 = phi [_cache.1, 0x8] [_cache.7, 0x17]
_win.4 = phi [_win.1, 0x8] [_win.3, 0x17]
4 skip
_win.5 = (bvsub _win.4 0x1)

[taken]
(taken 0x1)

[Block: 0xE, Transient]
_cache.9 = phi [_cache.6, 0xA] [_cache.8, 0xB] [_cache.7, 0x17]

(bvsle _win.2 0x0)

[Block: 0x17, Transient]
3 _cache.7 = ((cache-fetch 64) _cache.6 (bvadd array2.1 (bvshl v.3 0x8)))
3 tmp.3 = load(_memory.1, (bvadd array2.1 (bvshl v.3 0x8)))

cache_fetch((bvadd array2.1 (bvshl v.3 0x8)), 64)
_win.3 = (bvsub _win.2 0x1)

(bvsgt _win.2 0x0)

(or (bvsle _win.5 0x0) (bvsgt _win.5 0x0))

[rollback]

(bvsgt _win.3 0x0)

(bvsle _win.3 0x0)

Figure 5.8: Transformed High-level Intermediate Representation of Kocher01 Example

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

is, that the former describe properties while the latter describe hyperproperties. There-
fore, conditions of assertions/assumptions only refer to variables of the same composi-
tion while conditions of hyper-assertions/hyper-assumptions refer to variables of different
compositions.

Note that MIR uses a graph structure only for ease of debugging, therefore the edges
of the block graph have no meaning beyond visually indicating the relationship among
blocks retained from the higher level. Technically this wouldn’t be necessary because
the execution condition makes the blocks order-independent.

Lowering (HIR → MIR)

Lowering of HIR into MIR consists of three parts: (i) computing the execution condition
of each block (ii) transforming phi nodes into conditional expressions and (iii) translating
HIR instructions into MIR nodes.

First, the execution condition exec(b) is computed for each basic block. Let the
execution condition exec(b) of basic block b be a predicate such that it evaluates to
true if either b itself is the CFG entry (no predecessors), or the execution condition
of an immediate predecessor block p of b is true and the edge from p to b is taken.
More formally: Let pred(b) denote the set of immediate predecessors of basic block b in
the CFG. Additionally, let t(p, b) be the condition of the edge from block p to b. For
unconditional edges t(p, b) is defined as true. The execution condition of a basic block
b is then computed as follows [34]:

exec(b) =

{
true if pred(b) is empty
∨

p ∈ pred(b). (exec(p) ∧ t(p, b)) otherwise

In the next step all phi nodes are transformed into conditional expressions similar as
done in LLBMC [34]. Let x′ = phi [x1, b1] [x2, b2] . . . [xn, bn] denote a generalized form
of a phi node as it appears in HIR. Additionally, let b′ denote the basic block where the
phi node is located. The meaning of the phi node is, that x′ is chosen to be xi if the
control-flow is coming from the predecessor block bi. By making use of the previously
defined execution condition, the implicit control-flow based on basic blocks can be made
explicit, meaning that x′ is chosen to be xi if exec(bi) ∧ t(bi, b′) holds. Hence, phi nodes
can be lowered into a sequence of conditional expressions as follows [34]:

x′ = phi [x1, b1] [x2, b2] . . . [xn, bn] ◮

MIR::Let{x′, Ite(exec(b1) ∧ t(b1, b′), x1,

Ite(exec(b2) ∧ t(b2, b′), x2,

Ite(..., Ite(exec(bn−1) ∧ t(bn−1, b′), xn−1, xn) ...)))}

Finally, the HIR instructions of each basic block are lowered as follows:

• The SSA-form of HIR guarantees that each variable is only assigned once [42].
Therefore, assignments can simply be lowered as variable bindings.

HIR::Assign{var, expr} ◮ MIR::Let{var, expr}

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

• Assertions and assumptions are translated as is.

HIR::Assert{cond} ◮ MIR::Assert{cond} respectively
HIR::Assume{cond} ◮ MIR::Assume{cond}

• As the memory state is already explicitly tracked as variable for all Store instruc-
tions, memory stores can be lowered as variable bindings and thereby transforming
them into store expressions.

HIR::Store{addr, expr, mem_in, mem_out} ◮

MIR::Let{mem_out, ((store «bitwidth») mem_in addr expr)}

As indicated by «bitwidth», the store operator depends on the actual bit-width
of the value to be stored. For example, if expr is of type BitVec<64>, the
resulting store operator is (store 64).

• Memory loads are lowered similar to memory stores. For memory loads the bit-
width is given by the type of the target variable var.

HIR::Load{var, addr, mem} ◮

MIR::Let{var, ((load «bitwidth») mem addr)}

• The Indistinguishable instructions causes that the expression is indistin-
guishable to an adversary. Therefore, such instructions are lowered as an hyper-
assumption which assumes that the expression is equal under self-composition.

HIR::Indistinguishable{expr} ◮

MIR::HyperAssume{expr@0 = expr@1}

• The expression of an Observable instruction is visible to an adversary. As leaks
should be avoided, it must be assured that the expression doesn’t actually contain
secret information. Therefore, such instructions are lowered as an hyper-assertion
which asserts that the expression is equal under self-composition.

HIR::Observable{expr} ◮ MIR::HyperAssert{expr@0 = expr@1}

• Other instructions, namely Skip, Call, Branch, ConditionalBranch and
Barrier, don’t need to be explicitly lowered as they are already implicitly encoded
into the CFG by the various different HIR transformations.

Figure 5.9 shows the Kocher01 example lowered to MIR. The execution condition
of each block is given in the squared brackets beside the block ID. An example for an
lowered phi node can be found at line 1 of block 0x4.

5.3.3 Low-level Intermediate Representation (LIR)

LIR is designed to be simple and close to SMT while still being solver-agnostic. This
allows us to easily target a wide range of different SMT solvers, even using their own
proprietary API instead of the SMT-LIB9 interface, without duplicating all the lower-
ing and self-composition work. As shown in Listing 5.5, LIR only consists of variable

9SMT-LIB Language: http://smtlib.cs.uiowa.edu/language.shtml

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://smtlib.cs.uiowa.edu/language.shtml

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

Block 0x0 [_exec_0 = (or _exec_5)]
0: let cond.1 = ((bool2bv 64) (bvslt x.1 array1_size.1))

Block 0x7 [_exec_7 = (or (and _exec_0 (not (speculate _predictor.1 0x1))) _exec_E)]
0: let _cache.2 = (ite _exec_E _cache.9 _cache.1)

Block 0x8 [_exec_8 = (or (and _exec_0 (speculate _predictor.1 0x1)))]
0: let _win.1 = (spec-win _predictor.1 0x1)
1: assume (bvsgt _win.1 0x0)
2: assume (bvsle _win.1 0x64)

Block 0x2 [_exec_2 = (or (and _exec_7 (not (= cond.1 0x0))))]
0: let _cache_ns.3 = ((cache-fetch 64) _cache.1 (bvadd array1.1 x.1))
1: let _cache.3 = ((cache-fetch 64) _cache.2 (bvadd array1.1 x.1))
2: let v.2 = ((load 64) _memory.1 (bvadd array1.1 x.1))
3: let _cache_ns.4 = ((cache-fetch 64) _cache_ns.3 (bvadd array2.1 (bvshl v.2 0x8)))
4: let _cache.4 = ((cache-fetch 64) _cache.3 (bvadd array2.1 (bvshl v.2 0x8)))
5: let tmp.2 = ((load 64) _memory.1 (bvadd array2.1 (bvshl v.2 0x8)))

Block 0x4 [_exec_4 = (or _exec_2 (and _exec_7 (= cond.1 0x0)))]
0: let _cache_ns.5 = (ite (and _exec_7 (= cond.1 0x0)) _cache.1 _cache_ns.4)
1: let _cache.5 = (ite (and _exec_7 (= cond.1 0x0)) _cache.2 _cache.4)

Block 0x6 [_exec_6 = (or _exec_4)]
0: hyper-assume (and (= _cache_ns.5@0 _cache_ns.5@1))
1: hyper-assert (and (= _cache.5@0 _cache.5@1))

Block 0x5 [_exec_5 = true]
0: let _memory.1 = nondet()
1: let array1.1 = nondet()
2: hyper-assume (and (= array1.1@0 array1.1@1))
3: let v.1 = nondet()
4: hyper-assume (and (= v.1@0 v.1@1))
5: let array1_size.1 = nondet()
6: hyper-assume (and (= array1_size.1@0 array1_size.1@1))
7: let _cache_ns.1 = nondet()
8: let _cache.1 = nondet()
9: hyper-assume (and (= _cache_ns.1@0 _cache_ns.1@1))
10: hyper-assume (and (= _cache.1@0 _cache.1@1))
11: let array2.1 = nondet()
12: hyper-assume (and (= array2.1@0 array2.1@1))
13: let tmp.1 = nondet()
14: hyper-assume (and (= tmp.1@0 tmp.1@1))
15: let x.1 = nondet()
16: hyper-assume (and (= x.1@0 x.1@1))
17: let _predictor.1 = nondet()
18: hyper-assume (and (= _predictor.1@0 _predictor.1@1))

Block 0xA [_exec_A = (or (and _exec_8 (not (taken _predictor.1 0x1))))]
0: let _cache.6 = ((cache-fetch 64) _cache.1 (bvadd array1.1 x.1))
1: let v.3 = ((load 64) _memory.1 (bvadd array1.1 x.1))
2: let _win.2 = (bvsub _win.1 0x1)

Block 0xB [_exec_B = (or (and _exec_8 (taken _predictor.1 0x1)) (and _exec_17 (bvsgt _win.3 0x0)))]
0: let _cache.8 = (ite (and _exec_17 (bvsgt _win.3 0x0)) _cache.7 _cache.1)
1: let _win.4 = (ite (and _exec_17 (bvsgt _win.3 0x0)) _win.3 _win.1)
2: let _win.5 = (bvsub _win.4 0x1)

Block 0xE [_exec_E = (or (and _exec_A (bvsle _win.2 0x0)) (and _exec_B (or (bvsle _win.5 0x0) (bvsgt _win.5 0x0))) (and _exec_17 (bvsle _win.3 0x0)))]
0: let _cache.9 = (ite (and _exec_17 (bvsle _win.3 0x0)) _cache.7 (ite (and _exec_B (or (bvsle _win.5 0x0) (bvsgt _win.5 0x0))) _cache.8 _cache.6))

Block 0x17 [_exec_17 = (or (and _exec_A (bvsgt _win.2 0x0)))]
0: let _cache.7 = ((cache-fetch 64) _cache.6 (bvadd array2.1 (bvshl v.3 0x8)))
1: let tmp.3 = ((load 64) _memory.1 (bvadd array2.1 (bvshl v.3 0x8)))
2: let _win.3 = (bvsub _win.2 0x1)

Figure 5.9: Mid-level Intermediate Representation of Kocher01 Example

bindings, assertions and assumptions, which makes the SMT encoding of LIR relatively
straightforward. A LIR program is just a list of variable bindings, assertions and as-
sumptions.

enum Node {

Let { var: Variable, expr: Expression },

Assert { cond: Expression },

Assume { cond: Expression },

}

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

struct Program {

nodes: Vec<Node>,

}

Listing 5.5: Low-level Intermediate Representation

The simplicity of LIR also allows us to easily perform a great variety of different
optimizations respectively simplifications before handing the program over to the solver.
Currently the following optimizations are implemented:

• Constant Propagation: Propagates all constant assignments but doesn’t remove
them. Constant assignments are defined as let x = c where c is a constant.
For example, suppose that we have let x = c and let y = x, then constant
propagation will give let x = c and let y = c.

• Copy Propagation: Propagates all simple assignments but doesn’t remove them.
Simple assignments are defined as let x = v where v is a variable. For example,
suppose that we have let x = v and let y = x, then constant propagation
will give let x = v and let y = v.

• Expression Simplification: Tries to simplify expressions, e.g., x ∧ false will
become false. In total, approximately 50 simplification rules have been imple-
mented.

• Constant Folding: Tries to evaluate expressions to constants if all their operands
are constant, e.g. 1 + 2 will become 3. In total, approximately 20 folding rules
have been implemented.

• Dead Code Elimination: Removes unused variable bindings. Implemented as
a mark-and-sweep algorithm which in the first phase marks all assertions and
assumptions including their dependencies, and in the second phase removes all
unmarked variable bindings.

• Assertion Elimination: Removes assertions whose condition is already assumed.
For example, suppose we have a program with assume(x) and assert(x), then
the assertion always holds and can therefore safely be removed.

• Redundant Node Elimination: Removes duplicated assumptions and asser-
tions from the program.

Lowering (MIR → LIR)

Lowering of MIR into LIR consists of two parts. One part is the flattening of the block
graph to a list of nodes. The other part is to transform the 2-safety problem into a
safety problem by means of self-composition [6]. The flattening of MIR into LIR is done
as follows:

• The execution condition ei of each block Bi is made explicit. This is achieved by
introducing a fresh boolean variable exec_Bi and bind the execution condition ei

to it, i.e., LIR::Let{exec_Bi, ei}.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

• Variable bindings are lowered as is.

MIR::Let{var, expr} ◮ LIR::Let{var, expr}

• The condition cond should only be asserted if the assertion is actually executed,
meaning that an assertion should be lowered s.t. it trivially holds if not executed.
This is done by adding the execution condition exec_Bi of the surrounding block
Bi as premise.

MIR::Assert{cond} ◮ LIR::Assert{exec_Bi =⇒ cond}

• Similar to assertions, the block’s execution condition is added as premise.

MIR::Assume{cond} ◮ LIR::Assume{exec_Bi =⇒ cond}

After flattening, the list of nodes is duplicated by means of eager self-composition.
During this process all variables are renamed by assign the composition ID to each copy
of the variable (indicated by the @ID suffix). After self-composition the hyperproperties
are lowered as follows:

• Let Bi denote the block surrounding the hyper-assertion. By self-composition
we have two execution conditions exec_Bi@0 and exec_Bi@1. Given that the
condition cond should only be asserted if the hyper-assertion is actually executed
in all compositions, we add exec_Bi@0 ∧ exec_Bi@1 as premise.

MIR::HyperAssert{cond} ◮

LIR::Assert{exec_Bi@0 ∧ exec_Bi@1 =⇒ cond}

• Similar to hyper-assertions, the block’s execution conditions are added as premise.

MIR::HyperAssume{cond} ◮

LIR::Assume{exec_Bi@0 ∧ exec_Bi@1 =⇒ cond}

Listing 5.6 shows an excerpt of the Kocher01 example lowered to LIR. Line 8 shows
the explicit execution condition of block 0xA, the self-composition copy of it is shown
at line 29. An example of a lowered hyper-assumption can be found at line 49 and an
example for a lowered hyper-assertion is shown at line 50.

1 // Block 0x8@0

2 let _exec_8@0 = (speculate _predictor.1@0 0x1:64)

3 let _win.1@0 = (spec-win _predictor.1@0 0x1:64)

4 assume (=> _exec_8@0 (bvsgt _win.1@0 0x0:10))

5 assume (=> _exec_8@0 (bvsle _win.1@0 0x64:10))

6

7 // Block 0xA@0

8 let _exec_A@0 = (and _exec_8@0 (not (taken _predictor.1@0 0x1:64)))

9 let _cache.6@0 = ((cache-fetch 64) _cache.1@0 (bvadd array1.1@0 x.1@0))

10 let v.3@0 = ((load 64) _memory.1@0 (bvadd array1.1@0 x.1@0))

11 let _win.2@0 = (bvsub _win.1@0 0x1:10)

12

13 // Block 0xB@0

14 let _exec_B@0 =

15 (or (and _exec_8@0 (taken _predictor.1@0 0x1:64))

16 (and _exec_17@0 (bvsgt _win.3@0 0x0:10)))

17 let _cache.8@0 =

18 (ite (and _exec_17@0 (bvsgt _win.3@0 0x0:10)) _cache.7@0 _cache.1@0)

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

19 let _win.4@0 = (ite (and _exec_17@0 (bvsgt _win.3@0 0x0:10)) _win.3@0 _win.1@0)

20 let _win.5@0 = (bvsub _win.4@0 0x1:10)

21

22 // Block 0x8@1

23 let _exec_8@1 = (speculate _predictor.1@1 0x1:64)

24 let _win.1@1 = (spec-win _predictor.1@1 0x1:64)

25 assume (=> _exec_8@1 (bvsgt _win.1@1 0x0:10))

26 assume (=> _exec_8@1 (bvsle _win.1@1 0x64:10))

27

28 // Block 0xA@1

29 let _exec_A@1 = (and _exec_8@1 (not (taken _predictor.1@1 0x1:64)))

30 let _cache.6@1 = ((cache-fetch 64) _cache.1@1 (bvadd array1.1@1 x.1@1))

31 let v.3@1 = ((load 64) _memory.1@1 (bvadd array1.1@1 x.1@1))

32 let _win.2@1 = (bvsub _win.1@1 0x1:10)

33

34 // Block 0xB@1

35 let _exec_B@1 =

36 (or (and _exec_8@1 (taken _predictor.1@1 0x1:64))

37 (and _exec_17@1 (bvsgt _win.3@1 0x0:10)))

38 let _cache.8@1 =

39 (ite (and _exec_17@1 (bvsgt _win.3@1 0x0:10)) _cache.7@1 _cache.1@1)

40 let _win.4@1 = (ite (and _exec_17@1 (bvsgt _win.3@1 0x0:10)) _win.3@1 _win.1@1)

41 let _win.5@1 = (bvsub _win.4@1 0x1:10)

42

43 // Self-Composition Constraints

44 assume (= _predictor.1@0 _predictor.1@1)

45 assume (= _cache_ns.1@0 _cache_ns.1@1)

46 assume (= _cache.1@0 _cache.1@1)

47 assume (= array1.1@0 array1.1@1)

48 assume (= array2.1@0 array2.1@1)

49 assume (=> (and _exec_4@0 _exec_4@1) (= _cache_ns.5@0 _cache_ns.5@1))

50 assert (=> (and _exec_4@0 _exec_4@1) (= _cache.5@0 _cache.5@1))

Listing 5.6: Low-level Intermediate Representation of Kocher01 Example (Excerpt)

5.3.4 SMT Encoding

Encoding LIR as a satisfiability problem is straightforward. The current implementation
makes use of the rsmt2 library10, a generic library to interact with SMT-LIB 2 compliant
solvers. Thereby, the solver runs as separate process and communicates via Unix pipes.
SpecBMC uses Yices2 as the default solver, but Z3 and CVC4 are also available. The
SMT encoding of LIR is done as follows:

• Variable bindings LIR::Let{var, expr} are encoded as constants. The type
of the constant, indicated as «type», is given by the type of the variable var.

(declare-const var <<type>>)

(assert (= var expr))

• Assumptions LIR::Assume{cond} are encoded as assertions.

(assert cond)

10https://github.com/kino-mc/rsmt2

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/kino-mc/rsmt2

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

• Encoding assertions LIR::Assert{cond} is a little bit more involved, as we
want to find assertion violations. Meaning that the resulting formula should be
satisfiable when an assertion is violated, but unsatisfiable if all assertions hold.
This can be achieved by asserting the negation of the condition cond. As the
program may contain multiple assertions, a single assert command with the
negated conjunction of all assertions’ condition is added.

For example, suppose that a program contains two assertions, LIR::Assert{a}
and LIR::Assert{b}, then the encoding will yield the following:

(define-const _assertion0 Bool a)

(define-const _assertion1 Bool b)

(assert (not (and _assertion0 _assertion1)))

Listing 5.7 shows an excerpt of the Kocher01 example encoded as SMT formula.
An example of an encoded variable binding can be found at line 13, an example of an
encoded assumption can be found at line 15 and an example of an encoded assertion can
be found at lines 42-44.

1 (declare-const _exec_8@0 Bool)

2 (declare-const _win.1@0 (_ BitVec 10))

3 (declare-const _exec_A@0 Bool)

4 (declare-const _cache.6@0 Cache)

5 (declare-const v.3@0 (_ BitVec 64))

6 (declare-const _win.2@0 (_ BitVec 10))

7 (declare-const _exec_B@0 Bool)

8 (declare-const _cache.8@0 Cache)

9 (declare-const _win.4@0 (_ BitVec 10))

10 (declare-const _win.5@0 (_ BitVec 10))

11

12 ; Block 0x8@0

13 (assert (= _exec_8@0 (pred-speculate _predictor.1@0 (_ bv1 64))))

14 (assert (= _win.1@0 (spec-win _predictor.1@0 (_ bv1 64))))

15 (assert (=> _exec_8@0 (bvsgt _spec_win.1@0 (_ bv0 10))))

16 (assert (=> _exec_8@0 (bvsle _spec_win.1@0 (_ bv100 10))))

17

18 ; Block 0xA@0

19 (assert (= _exec_A@0 (and _exec_8@0 (not (pred-taken _predictor.1@0 (_ bv1 64))))))

20 (assert (= _cache.6@0 (cache-fetch64 _cache.1@0 (bvadd array1.1@0 x.1@0))))

21 (assert (= v.3@0 (mem-load64 _memory.1@0 (bvadd array1.1@0 x.1@0))))

22 (assert (= _win.2@0 (bvsub _win.1@0 (_ bv1 10))))

23

24 ; Block 0xB@0

25 (assert (= _exec_B@0

26 (or (and _exec_8@0 (pred-taken _predictor.1@0 (_ bv1 64)))

27 (and _exec_17@0 (bvsgt _win.3@0 (_ bv0 10))))))

28 (assert (= _cache.8@0

29 (ite (and _exec_17@0 (bvsgt _win.3@0 (_ bv0 10))) _cache.7@0 _cache.1@0)))

30 (assert (= _win.4@0

31 (ite (and _exec_17@0 (bvsgt _win.3@0 (_ bv0 10))) _win.3@0 _win.1@0)))

32 (assert (= _win.5@0 (bvsub _win.4@0 (_ bv1 10))))

33

34 ; Self-Composition Constraints

35 (assert (= _predictor.1@0 _predictor.1@1))

36 (assert (= _cache_ns.1@0 _cache_ns.1@1))

37 (assert (= _cache.1@0 _cache.1@1))

38 (assert (= array1.1@0 array1.1@1))

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. SpecBMC

39 (assert (= array2.1@0 array2.1@1))

40 (assert (=> (and _exec_4@0 _exec_4@1) (= _cache_ns.5@0 _cache_ns.5@1)))

41

42 (define-const _assertion0 Bool

43 (=> (and _exec_4@0 _exec_4@1) (= _cache.5@0 _cache.5@1)))

44 (assert (not (and _assertion0)))

Listing 5.7: SMT Formula of Kocher01 Example (Excerpt)

As told in the beginning of this section, SpecBMC provides an extensive expression
library which abstractions for lists, tuples, memory and microarchitectual components.
All these abstractions aren’t part of SMT-LIB and need therefore be encoded in SMT
as well. In the following the relevant SMT encodings are presented. The actual type
of the abstract Word type depends on the architecture to be analyzed, e.g., for 64-bit
architectures Word would be instantiated with (_ BitVec 64).

• Predictor: The predictor, as defined in Section 3.3, is encoded using the theory
of uninterpreted functions.

1 (declare-sort Predictor 0)

2 (declare-fun spec-win (Predictor Word) (_ BitVec 10))

3 (declare-fun pred-speculate (Predictor Word) Bool)

4 (declare-fun pred-taken (Predictor Word) Bool)

• Memory: The byte-based memory [48] is encoded using the theory of arrays. Mul-
tiple functions for loading respectively storing in different bit widths are provided.
They are simply mapped into a sequence of array stores and selects depending
on the number of bytes to be stored or loaded. For example, the mem-load16

function selects the bytes at index addr and addr+1 from the memory array
and concatenates them into a single 2-byte value. Storing works similar, e.g.,
mem-store16 splits the 2-byte value into two individual bytes and stores the
first byte at index addr and the second byte at index addr+1.

1 (define-sort Memory () (Array Word (_ BitVec 8)))

2

3 (define-fun mem-load8 ((mem Memory) (addr Word)) (_ BitVec 8)

4 (select mem addr)

5)

6

7 (define-fun mem-load16

8 ((mem Memory) (addr Word)) (_ BitVec 16)

9 (concat

10 (select mem (bvadd addr (_ bv1 64)))

11 (select mem addr))

12)

13

14 (define-fun mem-load32 ...)

15 (define-fun mem-load64 ...)

16 (define-fun mem-load128 ...)

17 (define-fun mem-load256 ...)

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

18 (define-fun mem-load512 ...)

19

20 (define-fun mem-store8

21 ((mem Memory) (addr Word) (v (_ BitVec 8))) Memory

22 (store mem addr v)

23)

24

25 (define-fun mem-store16

26 ((mem Memory) (addr Word) (v (_ BitVec 16))) Memory

27 (store

28 (store mem (bvadd addr (_ bv1 64)) ((_ extract 15 8) val))

29 addr v)

30)

31

32 (define-fun mem-store32 ...)

33 (define-fun mem-store64 ...)

34 (define-fun mem-store128 ...)

35 (define-fun mem-store256 ...)

36 (define-fun mem-store512 ...)

• Cache: The cache is implemented as defined in Section 4.1. The set semantics of
the cache is given by the array of booleans, meaning that an address x is in the set if
the array is true at index x. The only difference compared to the formalization is,
that similar to the memory, the cache also addresses individual bytes. Therefore,
multiple cache fetch functions for different bit widths are provided.

1 (define-sort Cache () (Array Word Bool))

2

3 (define-fun cache-fetch8 ((cache Cache) (addr Word)) Cache

4 (store cache addr true)

5)

6

7 (define-fun cache-fetch16 ((cache Cache) (addr Word)) Cache

8 (store (store cache addr true) (bvadd addr (_ bv1 64)) true)

9)

10

11 (define-fun cache-fetch32 ...)

12 (define-fun cache-fetch64 ...)

13 (define-fun cache-fetch128 ...)

14 (define-fun cache-fetch256 ...)

15 (define-fun cache-fetch512 ...)

• Branch Target Buffer: The BTB is implemented as defined in Section 4.3.4,
meaning that for each program location the branch target is tracked in an array.

1 (define-sort BTB () (Array Word Word))

2

3 (define-fun btb-track ((btb BTB) (loc Word) (target Word)) BTB

4 (store btb loc target)

5)

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Solver

• Pattern History Table: The PHT is implemented as defined in Section 4.3.1,
meaning that for each program location the branch decision is tracked in an array.

1 (define-sort PHT () (Array Word Bool))

2

3 (define-fun pht-taken ((pht PHT) (location Word)) PHT

4 (store pht location true)

5)

6

7 (define-fun pht-not-taken ((pht PHT) (location Word)) PHT

8 (store pht location false)

9)

• List: Lists are implemented using parametric recursive datatypes. The empty list
is represented by nil. The cons11 function, called the list constructor, is used to
build a new list given an element head and an existing list tail. Note that Z3 has
builtin support for the theory of lists, therefore this declaration is only necessary
for CVC4.

1 (declare-datatypes ((List 1)) ((par (T) (

2 (nil)

3 (cons (head T) (tail (List T)))

4))))

• Tuple: Tuples are a heterogeneous product of types. They are build using the
tuple constructor tuple«n», where n defines the number of fields of the tuple.
Individual fields of a tuple can be accessed by the tuple«n»-field«i» function,
where i, with 0 ≤ i < n, defines the index of the field to access. As shown in
Listing 5.7 at line 4, tuples are used to hold the microarchitectual state in the
trace.

1 (declare-datatypes ((Tuple1 1)) ((par (T0) (

2 (tuple1 (tuple1-field0 T0))

3))))

4

5 (declare-datatypes ((Tuple2 2)) ((par (T0 T1) (

6 (tuple2 (tuple2-field0 T0) (tuple2-field1 T1))

7))))

8

9 (declare-datatypes ((Tuple3 3)) ...)

10 ...

11 (declare-datatypes ((Tuple9 9)) ...)

5.4 Solver

After the encoding is done, the resulting SMT formula is handed over to an SMT solver.
By emitting a single check-sat command, we request the solver to find a satisfiable

11In Z3’s builtin List type the cons function is called insert instead.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

assignment for the encoded program. After some time, which can heavily vary depending
on the structure and size of the program, the solver returns a result. If the result is
unsatisfiable, meaning that all (LIR) assertions hold, the program is considered as safe12.
If the result is satisfiable, meaning that an (LIR) assertion has been violated, the
program is considered as insecure. For insecure programs, the solver’s interpretation
that made the formula satisfiable can be used to construct a counterexample.

5.4.1 Counterexample

A counterexample is represented as an annotated HIR program. The construction of a
counterexample is roughly done as follows:

1. The execution paths of both compositions are reconstructed. This is done by starting
at the entry block and walking along the edges whose conditions evaluate to true.
We denote the execution path of the first composition as A and the execution path
of the second composition as B.

2. Once both execution paths are reconstructed, all variable assignments along those
two paths are requested from the solver and added to the annotated program.

3. Finally, the annotated program is rendered as a DOT graph. The execution path A
is rendered as thick red path and B is rendered as thick blue path. If both execution
paths overlay each other, then only the red path is shown.

The annotations are shown beneath each instruction. We use prefix (i) «Composi-
tion»$ to show instructions with all read variables instantiated (ii) «Composition»@
to show the values of written variables (iii) «Composition»# to show the evaluated
effects. For example, let z = load((bvadd x y)) be an instruction which is part
of execution path A and let x be 0x1, y be 0x1 and the memory content at location
0x3 be 0x42. Then the annotations of this instruction for composition A would be:

– A$ z = load((bvadd 0x1 0x2))

– A@ z = 0x42

– A# cache_fetch(0x3)

Back to our example. For the Kocher01 program given in Listing 5.1 the solver
returns satisfiable, meaning that this program is insecure. Figure 5.10 shows the corre-
sponding counterexample. The transient execution starts at program location 1, where
the conditional branch is predicted to be not taken. This causes an out-of-bounds read
at program location 2, where a secret value is loaded into v. We have that register v
is 0x21450002407F08 in execution A, but 0x4092132218040004 in execution B.
The interesting part is the subsequent load instruction at program location 3. Because
the previously loaded secret value of v is used in the address calculation, the secret
value is encoded into the cache, thereby causing a data leak. The transient execution
data leak is indicated by A# cache_fetch(0xA756060A40870800, 64) and B#

cache_fetch(0x1824282004080400, 64).

12Safe for the given unwinding bound and recursion limit.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Additional Features

[Block: 0x0]
0 cond.1 = ((bool2bv 64) (bvslt x.1 array1_size.1))
 - A$ cond.1 = ((bool2bv 64) (bvslt 0x4004000120 0x4004000120))
 - A@ cond.1 = 0x0
 - B$ cond.1 = ((bool2bv 64) (bvslt 0x4004000120 0x4004000120))
 - B@ cond.1 = 0x0

[Block: 0x7]
1 branch 0x4 if (= cond.1 0x0)
 - A$ branch 0x4 if (= 0x0 0x0)
 - B$ branch 0x4 if (= 0x0 0x0)

(not (speculate 0x1))

[Block: 0x8, Transient]

[speculate]
(speculate 0x1)

[Block: 0x2]
2 v.2 = load(_memory.1, (bvadd array1.1 x.1))

cache_fetch((bvadd array1.1 x.1), 64)
3 tmp.2 = load(_memory.1, (bvadd array2.1 (bvshl v.2 0x8)))

cache_fetch((bvadd array2.1 (bvshl v.2 0x8)), 64)

[Block: 0x4]
4 skip

[Block: 0x6]

[Block: 0x5]

(not (= cond.1 0x0))

[taken]
(= cond.1 0x0)

[Block: 0xA, Transient]
2 v.3 = load(_memory.1, (bvadd array1.1 x.1))

cache_fetch((bvadd array1.1 x.1), 64)
 - A$ v.3 = load(_memory.1, (bvadd 0x800000C28A050 0x4004000120))
 - A@ v.3 = 0x21450002407F08
 - A# cache_fetch(0x800401028A170, 64)
 - B$ v.3 = load(_memory.1, (bvadd 0x800000C28A050 0x4004000120))
 - B@ v.3 = 0x4092132218040004
 - B# cache_fetch(0x800401028A170, 64)

(not (taken 0x1))

[Block: 0xE, Transient]

(bvsle _win.2 0x0)

[Block: 0x17, Transient]
3 tmp.3 = load(_memory.1, (bvadd array2.1 (bvshl v.3 0x8)))

cache_fetch((bvadd array2.1 (bvshl v.3 0x8)), 64)
 - A$ tmp.3 = load(_memory.1, (bvadd 0x8611060800080000 (bvshl 0x21450002407F08 0x8)))
 - A@ tmp.3 = 0x0
 - A# cache_fetch(0xA756060A40870800, 64)
 - B$ tmp.3 = load(_memory.1, (bvadd 0x8611060800080000 (bvshl 0x4092132218040004 0x8)))
 - B@ tmp.3 = 0x4040404040404040
 - B# cache_fetch(0x1824282004080400, 64)

(bvsgt _win.2 0x0)

[rollback]

(bvsle _win.3 0x0)

Figure 5.10: Counterexample for Kocher01 Example

5.5 Additional Features

5.5.1 Program Counter Model

In addition to the components model as defined in Chapter 4, we implemented an en-
hanced version of the program counter security model [37] similar to Spectector’s obser-
vation model [21]. In the program counter (PC) model an adversary is able to observe
the program counter and the accessed memory locations. In contrast to the compo-
nents model, the side effects aren’t encoded into the microarchitectual state but instead

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

observed as is.
The model tracks the program counter state in a two elements tuple PC ⊆ Word ×

Word, where the first element is the program counter and the second element is the
last accessed memory location. The derivation relation

pc
−→ works on a configuration

〈PC, ϕ, σ, pc, ϕ′, σ′, pc′〉, where PC defines the current state of the PC model, ϕ the
current register assignment, σ the current memory state, pc the current program counter,
ϕ′ the next register assignment, σ′ the next memory state and pc′ the next program
counter. The evaluation is defined as follows, where load and store instructions update
the observed memory location and branching instructions update the observed program
counter.

PcMemoryAccess
ρ(pc) ∈ {load x, e; store x, e} a′

obs = JeKϕ

〈(pcobs, aobs), ϕ, σ, pc, ϕ′, σ′, pc′〉
pc
−→ (pcobs, a′

obs)

PcBranch
ρ(pc) ∈ {beqz x, ℓ; jmp ℓ} pc′

obs = pc′

〈(pcobs, aobs), ϕ, σ, pc, ϕ′, σ′, pc′〉
pc
−→ (pc′

obs, aobs)

PcIgnore
ρ(pc) /∈ {load x, e; store x, e; beqz x, ℓ; jmp ℓ}

〈PC, ϕ, σ, pc, ϕ′, σ′, pc′〉
pc
−→ PC

Figure 5.11 shows the implementation and application of the PC model to the
Kocher01 example, using both the trace and parallel observations.

1 trace = nil

2 c <- x < array1_size

3

4 pc = Ite(c=0, EndIf, Then)

5 trace = trace ⊳ 〈pc, _〉
6 beqz c, EndIf

7 Then:

8

9 trace = trace ⊳ 〈pc, array1 + x〉
10 load v, array1 + x

11

12 trace = trace ⊳ 〈pc, array2 + v〉
13 load tmp, array2 + v

14 EndIf:

15 skip

16 observable(trace)

(a) PC Model with Trace Observation

1

2 c <- x < array1_size

3

4 pc = Ite(c=0, EndIf, Then)

5 observable(pc, _)

6 beqz c, EndIf

7 Then:

8

9 observable(pc, array1 + x)

10 load v, array1 + x

11

12 observable(pc, array2 + v)

13 load tmp, array2 + v

14 EndIf:

15

16 skip

(b) PC Model with Parallel Observation

Figure 5.11: Program Counter Model applied to Kocher01 Example

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Evaluation

In this chapter we evaluate SpecBMC and test it against different Spectre-STL/PHT
examples and mitigations. Additionally, we conduct a small case study to run SpecBMC
on a real-word program. In the following we let X indicate that the program is secure
and ✗ that the program contains a leak. The hard- and software configuration of the
test machine are given in Table 6.1. Compiler flags and SpecBMC specific settings are
mentioned for each individual test.

Hardware Intel Core i7-6700k, 40 GB DDR4-2133
Operating system Arch Linux (Kernel 5.8.12)
Compiler GCC (10.2.0), Clang (10.0.1)

Z3 4.8.7
Yices2 2.6.2 (Rev: 60aaae9e78a89dd56125f6aacfd46203b7ebf30e)
SpecBMC Rev: 56749f8fe4f1207064ccebfad874159948217cd0
Spectector Rev: 839bec7d96cd5b3387377cb42d26eb8ad55ecd4c

Table 6.1: Hard- and Software Configuration

6.1 Spectre-STL

We check if SpecBMC is able to detect Spectre-STL vulnerabilities. The example code
shown in Listing 6.1 is taken from the Transient Fail project1, which is a collection of
proof-of-concepts for transient execution attacks developed by Canella et al. [7]. As
explained in Section 3.1.3, Spectre-STL relies on mis-predicted data dependencies to
bypass store instructions. The example in Listing 6.1 uses two pointer indirections to
speculatively bypass the overwrite of the secret value. During transient execution, the

1Transient Fail Project: https://github.com/IAIK/transientfail

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/emmanuel099/specbmc/commit/56749f8fe4f1207064ccebfad874159948217cd0
https://github.com/spectector/spectector/commit/839bec7d96cd5b3387377cb42d26eb8ad55ecd4c
https://github.com/IAIK/transientfail

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

secret value is then encoded into the cache using a standard cache encoding gadget as
shown in Listing 6.2.

1 #define OVERWRITE '#'

2

3 char* data;

4

5 void access_array(int x) {

6 // store secret in data

7 strcpy(data, SECRET);

8

9 // flushing the data which is used in the condition increases

10 // probability of speculation

11 mfence();

12 char** data_slowptr = &data;

13 char*** data_slowslowptr = &data_slowptr;

14 mfence();

15 flush(&x);

16 flush(data_slowptr);

17 flush(&data_slowptr);

18 flush(data_slowslowptr);

19 flush(&data_slowslowptr);

20 // ensure data is flushed at this point

21 mfence();

22

23 // overwrite data via different pointer

24 // pointer chasing makes this extremely slow

25 (*(*data_slowslowptr))[x] = OVERWRITE;

26 #ifdef FENCE_MITIGATION

27 mfence();

28 #endif

29 // data[x] should now be "#"

30

31 // Encode stale value in the cache

32 cache_encode(data[x]);

33 }

Listing 6.1: Spectre-STL Example

1 sym.cache_encode:

2 0x00001750 movsx rcx, dil

3 0x00001754 imul rcx, qword [obj.pagesize]

4 0x0000175c add rcx, qword [obj.mem]

5 0x00001763 mov rax, qword [rcx]

6 0x00001766 ret

Listing 6.2: Assembly Code of cache_encode Function

1 analysis:

2 spectre_pht: false

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Spectre-STL

3 spectre_stl: true

4 check: only_transient_leaks

5 program_entry: "access_array"

6 architecture:

7 cache: true

8 btb: false

9 pht: false

10 policy:

11 registers:

12 default: low

13 memory:

14 default: high

15 low:

16 - # obj.data

17 start: 0x40e0

18 end: 0x40e9

19 - # obj.mem

20 start: 0x41c8

21 end: 0x41d1

22 - # obj.pagesize

23 start: 0x4258

24 end: 0x4261

25 setup:

26 init_stack: true

Listing 6.3: SpecBMC Environment for Spectre-STL Test

The example from Listing 6.1 is compiled with gcc -o stl -O2 -I. main.c,
meaning that the fence at line 27 is initially disabled. SpecBMC is invoked with the
environment defined in Listing 6.3. It’s assumed that all register are low security and all
memory content is high security by default. Additionally, it’s assumed that the data

as well as the mem pointer and the value of pagesize is known to the attacker. In this
test the check is limited to cache-based covert channels only.

SpecBMC detects a leak at program location 0x1763, which is the memory load
instruction in the cache encode gadget shown in Listing 6.2. As the address depends on
the value loaded from data[x], we have that the bypassed store leaks secret information
when loaded at line 32. SpecBMC provides the following counterexample for the encoded
secret value at program location 0x1763:

1 0x1763 rax = load(_memory, rcx)

2 - A# cache_fetch(0xFFFFFFFFFFCBC010, 64)

3 - B# cache_fetch(0x9FFFE2000000002F, 64)

6.1.1 Mitigation

As explained in Section 3.1.3, fences can be used to mitigate Spectre-STL vulnerabili-
ties. After enabling the fence mitigation at line 27 of Listing 6.1, SpecBMC marks the
function as secure. The example from Listing 6.1 is compiled with gcc -o stl_fence

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

-O2 -I. -DFENCE_MITIGATION main.c and run with the same environment as the
unmitigated example.

6.1.2 Summary

The evaluation results for Spectre-STL are summarized in Table 6.2. SpecBMC is able
to detect Spectre-STL vulnerabilities and shows that fences are successful in mitigation
them.

Mitigation

None ✗

Fence X

Table 6.2: Evaluation Results for Spectre-STL + Mitigation

6.2 Spectre-PHT

We check if SpecBMC is able to detect Spectre-PHT vulnerabilities. The example code
shown in Listing 6.4 is adopted from the proof-of-concept of Kocher et al. [28] and
SpectrePoC2. As described in Section 3.1.2, the index masking approach may not fully
mitigate the vulnerability. To test if SpecBMC is able to detect potential index masking
problems, we additionally run the test on the example shown in Listing 6.5. The only
difference compared to Listing 6.4 is, that the array size isn’t a power of two.

1 size_t array1_size = 16;

2 uint8_t array1[16] = {1, 2, 3, 4, ..., 15, 16};

3

4 void victim_function(size_t x) {

5 if (x < array1_size) {

6 y &= array2[array1[x] * 512];

7 }

8 }

Listing 6.4: Spectre-PHT Example (Array of Size 16)

1 size_t array1_size = 15;

2 uint8_t array1[15] = {1, 2, 3, 4, ..., 14, 15};

3

4 void victim_function(size_t x) {

5 if (x < array1_size) {

6 y &= array2[array1[x] * 512];

7 }

8 }

Listing 6.5: Spectre-PHT Example (Array of Size 15)

2SpectrePoC: https://github.com/crozone/SpectrePoC

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/crozone/SpectrePoC

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Spectre-PHT

1 analysis:

2 spectre_pht: true

3 spectre_stl: false

4 check: only_transient_leaks

5 program_entry: "victim_function"

6 architecture:

7 cache: true

8 btb: false

9 pht: false

10 policy:

11 registers:

12 default: low

13 memory:

14 default: high

15 low:

16 - # array1

17 start: 0x4050

18 end: 0x4060 # 0x405f for array size 15

19 - # array1_size

20 start: 0x4060

21 end: 0x4065

Listing 6.6: SpecBMC Environment for Spectre-PHT Test

The examples shown in Listings 6.4 and 6.5 are compiled with gcc -o pht -O2

main.c. The assembly output of the victim function is depicted in Figure 6.1. SpecBMC
is invoked with the environment defined in Listing 6.6. It’s assumed that all registers
are low security and all memory content is high security by default. Additionally, it’s
assumed that the array1 pointer and the value of array1_size is known to the
attacker. In this test the check is limited to cache-based covert channels only.

45: sym.victim_function (int64_t arg1);
; arg int64_t arg1 @ rdi
0x000013d0 mov eax, dword [obj.array1_size] ; [0x4060:4]
0x000013d6 cmp rax, rdi ; arg1
0x000013d9 jbe 0x13fc

0x000013db lea rax, obj.array1 ; 0x4050
0x000013e2 lea rdx, obj.array2 ; 0x40c0
0x000013e9 movzx eax, byte [rax + rdi]
0x000013ed shl eax, 9
0x000013f0 cdqe
0x000013f2 movzx eax, byte [rdx + rax]
0x000013f6 and byte [obj.temp], al ; [0x40a0:1]

0x000013fc ret

Figure 6.1: Assembly Code of Spectre-PHT Victim Function

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

SpecBMC detects a leak at program location 0x13F2, which is the memory load from
array2. As the address depends on the value loaded from array1[x], we have that the
memory load leaks secret information when the bounds check is speculatively bypassed.
SpecBMC provides the following counterexample for the program shown in Listing 6.4,
where the index variable x, located in register rdi, has value 0x2000000000000089.
The encoding of the secret value into the cache can be seen at lines 13 and 14.

1 0x13E9 rax = ((bvzext 56) load(_memory, (bvadd 0x4050 rdi)))

2 - A# cache_fetch(0x20000000000040D9, 8)

3 - B# cache_fetch(0x20000000000040D9, 8)

4 - A@ rax = 0x10

5 - B@ rax = 0x0

6 0x13ED rax = ((bvzext 32) (bvshl ((bvtrunc 32) rax) 0x9))

7 - A@ rax = 0x2000

8 - B@ rax = 0x0

9 0x13F0 rax = ((bvsext 32) ((bvtrunc 32) rax))

10 - A@ rax = 0x2000

11 - B@ rax = 0x0

12 0x13F2 rax = ((bvzext 56) load(_memory, (bvadd 0x40C0 rax)))

13 - A# cache_fetch(0x60C0, 8)

14 - B# cache_fetch(0x40C0, 8)

6.2.1 Mitigation

As described in Section 3.1.2, multiple proposed mitigations for Spectre-PHT vulnera-
bilities exist. We test each of them on the examples shown in Listings 6.4 and 6.5.

Speculative Load Hardening

When compiling the examples from Listings 6.4 and 6.5 with LLVM’s speculative load
hardening, the victim function is marked as secure, both for array size 15 and 16. The
compiler is invoked with clang -o pht_slh -mspeculative-load-hardening

-O2 main.c.

Fence

Inserting a memory fence prevents the CPU from speculating [25] and therefore should
make the load unreachable when speculatively bypassing the bounds check. Indeed, after
inserting the fence before the load as shown in Listing 6.7, SpecBMC marks the victim
function as secure, both for array size 15 and 16.

1 void victim_function(size_t x) {

2 if (x < array1_size) {

3 mfence();

4 y &= array2[array1[x] * 512];

5 }

6 }

Listing 6.7: Spectre-PHT Example Mitigated by Fence

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Spectre-PHT

Linux Kernel Mitigation

Linux uses a mitigation approach similar to SLH, but instead of relying on the compiler
to insert the required mitigations, the Linux kernel mitigations are manually inserted
by the developers. Linux’s mitigation gadget3 is shown in Listing 6.8. Instead of using
conditional moves as in SLH, the subtract instruction sbb is used to obtain the index
mask. The developers are supposed to protect all vulnerable code sequences with the
array_index_nospec4 macro. Note that this mitigation approach has also been used
in our motivating example from Section 1.1.1.

1 /**
2 * generate a mask that is ~0UL when the bounds check succeeds

3 * and 0 otherwise. Returns: 0 - (index < size)

4 */

5 static inline unsigned long

6 array_index_mask_nospec(unsigned long index, unsigned long size) {

7 unsigned long mask;

8 asm volatile ("cmp %1,%2; sbb %0,%0;"

9 :"=r" (mask)

10 :"g"(size),"r" (index)

11 :"cc");

12 return mask;

13 }

14

15 /**
16 * sanitize an array index after a bounds check

17 */

18 #define array_index_nospec(index, size) ({ \

19 unsigned long _mask = array_index_mask_nospec(index, size); \

20 (index & _mask); \

21 })

Listing 6.8: Linux Kernel Spectre-PHT Mitigation

When adding the Linux kernel mitigation to the victim function as shown in List-
ing 6.9, the victim function is marked as secure, both for array size 15 and 16.

1 void victim_function(size_t x) {

2 if (x < array1_size) {

3 x = array_index_nospec(x, array1_size);

4 y &= array2[array1[x] * 512];

5 }

6 }

Listing 6.9: Spectre-PHT Example Mitigated by Linux Kernel Mitigation

3https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/

arch/x86/include/asm/barrier.h
4https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/

include/linux/nospec.h

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/include/asm/barrier.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/include/asm/barrier.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/nospec.h
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/nospec.h

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Index Masking

As described in Section 3.1.2, index masking applies bit masks to index variables to
protect from arbitrary out-of-bounds reads. As the examples have an array of size 15
respectively 16, the necessary mask is 0x0F. When adding the index mask to the victim
function as shown in Listing 6.10, the victim function is marked as secure, but only
for array size 16. For array size 15, SpecBMC finds an counterexample where the index
variable x has value 15, causing an speculative out-of-bounds byte read at array1[15].

1 void victim_function(size_t x) {

2 if (x < array1_size) {

3 x &= 0x0F;

4 y &= array2[array1[x] * 512];

5 }

6 }

Listing 6.10: Spectre-PHT Example Mitigated by Index Masking

6.2.2 Summary

The evaluation results for Spectre-PHT are summarized in Table 6.3. SpecBMC is able
to detect Spectre-PHT vulnerabilities and shows that fences, SLH and the Linux Kernel
mitigation are successful in mitigation them. As expected, the index masking mitigation
still allows to leak sensitive information if the mask is too lax, albeit only within the
range of the mask.

Array Size 15 16
Mitigation

None ✗ ✗

Fence X X

SLH X X

Linux Kernel Mitigation X X

Index Masking ✗ X

Table 6.3: Evaluation Results for Spectre-PHT + Mitigation

6.3 Kocher Examples

We check if SpecBMC is able to detect Spectre-PHT vulnerabilities in all the 15 Kocher
examples, using different compiler optimization levels and mitigations. The C sources
of all 15 examples have been taken from the Spectector benchmark repository5. We use
the LLVM compiler for all examples. Each example is compiled with O0 and O2 opti-
mization level. The fence and SLH mitigations are automatically inserted by the com-
piler. For fence mitigation we use the additional -mspeculative-load-hardening

5https://github.com/spectector/spectector-benchmarks

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/spectector/spectector-benchmarks

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

-mllvm -x86-slh-lfence compiler flags. For SLH mitigation we use the additional
-mspeculative-load-hardening -mllvm -x86-slh-indirect compiler flags.

1 analysis:

2 spectre_pht: true

3 spectre_stl: false

4 check: only_transient_leaks

5 unwind: 1

6 recursion_limit: 1

7 architecture:

8 cache: true

9 btb: false

10 pht: true

11 policy:

12 registers:

13 default: low

14 memory:

15 default: high

16 low:

17 - # array1_size

18 start: 0x4030

19 end: 0x4035

20 setup:

21 init_stack: true

Listing 6.11: SpecBMC Environment for Kocher Example 1-14

1 policy:

2 registers:

3 default: low

4 memory:

5 default: high

6 low:

7 - # array1_size

8 start: 0x4030

9 end: 0x4035

10 - # *x (see rdi)

11 start: 0xffff0000

12 end: 0xffff0009

13 setup:

14 init_stack: true

15 registers:

16 rdi: 0xffff0000 # x pointer is first argument -> rdi

Listing 6.12: SpecBMC Environment for Kocher Example 15 (Reduced)

SpecBMC is invoked with the environment defined in Listing 6.11, expect for example
15 which uses the environment given in Listing 6.12. It’s assumed that all registers
are low security and all memory content is high security by default. Additionally, it’s
assumed that the value of array1_size is known to the attacker. The difference of the

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

environment shown in Listing 6.12 compared to Listing 6.11 is, that we additionally set
the initial value of register rdi, which holds the x pointer argument, to 0xffff0000

and assume that that word value at memory location 0xffff0000 is of low security.
This is motivated by the fact, that the adversary is in control of the index, which is in
example 15 passed on by pointer instead of value, as shown in Listing 6.15.

For the evaluation the execution time of SpecBMC is limited to 1800 seconds. In the
following we use TO to denote a timeout, meaning that SpecBMC didn’t terminate with
the specified time limit. We run SpecBMC with trace, sequential and parallel observe
using the components model. Additionally, we run SpecBMC using the program counter
model with parallel observe, as this setting is most similar to how Spectector models the
observations. For all checks we use Yices2 as solver, expect for the trace observe setting
where we use Z3.

The evaluation results for the different optimization levels and mitigations are sum-
marized in Table 6.4. As expected for these examples, an adversary who can only observe
sequentially, i.e., only after the victim function has finished, observes the same leaks as
an adversary running in parallel to the victim. The results also indicate that the trace
observe setting is much more time-consuming for the solver than the other settings. The
reason for this may be the additional overhead of the theory of lists and tuples required
to hold the intermediate states of the microarchitectural components. For example,
when we only consider the cache, we have that the type of the trace is an array within
a tuple within a list. Also interesting is, that only the program counter model is able
to check all examples within the given time limit. This indicates that the encoding into
the different microarchitectural components may be too expensive and the abstraction
level should maybe be lifted to a higher-level, such as only considering the side-effects
directly without encoding them into components’ states first. Apart from the timeouts,
all settings give the same secure/leak results, which match with Spectector’s results [21].

6.3.1 Evaluation Results Analysis

We give a short explanation for each outlier seen in Table 6.4.

• Example 8 (O2, None): The reason for example 8 to be secure when compiled
without any mitigation is, that the example has speculative load hardening quasi
built-in. As shown in Listing 6.13, the x < array1_size ? (x + 1) : 0

causes that the index is 0 when x is out of bounds. When the optimizations
are disabled, the conditional expression is translated into branching instructions,
thereby allowing the adversary to speculative bypass the protection. Whereas, the
conditional expression is translated into branchless code when the optimizations
are turned on. Therefore, the program leaks without optimization whereas the
branchless code generated by the optimizer is secure.

1 void victim_function_v08(size_t x) {

2 temp &= array2[array1[x < array1_size ? (x + 1) : 0] * 512];

3 }

Listing 6.13: Kocher Example 08

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

O0 O2

Ex. None Fence SLH None Fence SLH

01 ✗ X X ✗ X X

02 TO X X ✗ X X

03 TO X X ✗ X X

04 ✗ X X ✗ X X

05 TO X X TO X X

06 ✗ X X ✗ X X

07 TO X X ✗ X X

08 TO X TO X X X

09 ✗ X X ✗ X X

10 TO X X ✗ X TO
11 TO X X ✗ X X

12 ✗ X X ✗ X X

13 TO X TO ✗ X X

14 ✗ X X ✗ X X

15 TO X TO ✗ X X

(a) Components Model, Observe Trace

O0 O2

Ex. None Fence SLH None Fence SLH

01 ✗ X X ✗ X X

02 ✗ X X ✗ X X

03 ✗ X X ✗ X X

04 ✗ X X ✗ X X

05 ✗ X X ✗ X X

06 ✗ X X ✗ X X

07 ✗ X X ✗ X X

08 ✗ X X X X X

09 ✗ X X ✗ X X

10 ✗ X X ✗ X ✗

11 TO X TO ✗ X X

12 ✗ X X ✗ X X

13 ✗ X X ✗ X X

14 ✗ X X ✗ X X

15 ✗ X ✗ ✗ X X

(b) Components Model, Observe Sequential

O0 O2

Ex. None Fence SLH None Fence SLH

01 ✗ X X ✗ X X

02 ✗ X X ✗ X X

03 ✗ X X ✗ X X

04 ✗ X X ✗ X X

05 ✗ X X ✗ X X

06 ✗ X X ✗ X X

07 ✗ X X ✗ X X

08 ✗ X X X X X

09 ✗ X X ✗ X X

10 ✗ X X ✗ X ✗

11 ✗ X TO ✗ X X

12 ✗ X X ✗ X X

13 ✗ X X ✗ X X

14 ✗ X X ✗ X X

15 ✗ X ✗ ✗ X X

(c) Components Model, Observe Parallel

O0 O2

Ex. None Fence SLH None Fence SLH

01 ✗ X X ✗ X X

02 ✗ X X ✗ X X

03 ✗ X X ✗ X X

04 ✗ X X ✗ X X

05 ✗ X X ✗ X X

06 ✗ X X ✗ X X

07 ✗ X X ✗ X X

08 ✗ X X X X X

09 ✗ X X ✗ X X

10 ✗ X X ✗ X ✗

11 ✗ X X ✗ X X

12 ✗ X X ✗ X X

13 ✗ X X ✗ X X

14 ✗ X X ✗ X X

15 ✗ X ✗ ✗ X X

(d) Program Counter Model, Observe Parallel

Table 6.4: Evaluation Results of Kocher Examples for Different Settings

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

• Example 10 (O2, SLH): The reason for example 10 to be insecure with SLH
mitigation when compiled with optimizations turned on is, that the nested con-
ditional statement at line 3 in Listing 6.14 depends on the value of array1[x],
which can be a secret value in case of speculative bounds-check bypass. While
the compiler properly masks the loaded value when compiled with O0, the com-
piler fails to mask the loaded value when compiled with O2. A PHT-based covert
channel allows to reveal if the loaded secret value is equal to k or not.

1 void victim_function_v10(size_t x, uint8_t k) {

2 if (x < array1_size) {

3 if (array1[x] == k)

4 temp &= array2[0];

5 }

6 }

Listing 6.14: Kocher Example 10

SpecBMC provides the following counterexample for the O2 optimized assembly
output shown in Figure 6.2. The index variable x, located in register rdi, has value
0x8000000000000000 and the variable k, located in register rsi, has value
0x0. Transient execution begins at 0x1135 where the jump is predicted to be not
taken. As seen in lines 4 and 7, the masking is properly applied to array1 and
index variable x. This prevents attacker-controlled loads from arbitrary memory
locations, instead the only address which can be loaded during transient execution
is 0xFFFFFFFFFFFFFFFE. As the memory content is assumed to be high-security
by default, the byte loaded from this address is a secret value. Because the compiler
doesn’t add masking for the loaded value, some information about the secret value
can be leaked via the subsequent conditional branch instruction. The differing
effects of the secret value onto the PHT can be seen at lines 19 and 20.

1 0x1137 rcx = (ite (or CF ZF) 0xFFFFFFFFFFFFFFFF 0x0)

2 - A@ rcx = 0xFFFFFFFFFFFFFFFF

3 - B@ rcx = 0xFFFFFFFFFFFFFFFF

4 0x1142 rdi = (bvor rdi rcx)

5 - A@ rdi = 0xFFFFFFFFFFFFFFFF

6 - B@ rdi = 0xFFFFFFFFFFFFFFFF

7 0x1145 rdx = (bvor 0x4040 rcx)

8 - A@ rdx = 0xFFFFFFFFFFFFFFFF

9 - B@ rdx = 0xFFFFFFFFFFFFFFFF

10 0x1148 temp_0x1148 = load(_memory, (bvadd rdi rdx))

11 - A# cache_fetch(0xFFFFFFFFFFFFFFFE, 8)

12 - B# cache_fetch(0xFFFFFFFFFFFFFFFE, 8)

13 - A@ temp_0x1148 = 0x80

14 - B@ temp_0x1148 = 0x0

15 0x1148 ZF = (= (bvsub temp_0x1148 ((bvtrunc 8) rsi)) 0x0)

16 - A@ ZF = false

17 - B@ ZF = true

18 0x114C branch 0x1164 if (not ZF)

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

19 - A# branch_condition(0x114C, true)

20 - B# branch_condition(0x114C, false)

73: sym.victim_function_v10 (uint32_t arg1, uint8_t arg2);
; arg uint32_t arg1 @ rdi
; arg uint8_t arg2 @ rsi
0x00001120 mov rax, 0xffffffffffffffff
0x00001127 lfence
0x0000112a xor ecx, ecx
0x0000112c mov edx, dword [obj.array1_size] ; [0x4030:4]
0x00001132 cmp rdx, rdi
0x00001135 jbe 0x115f

0x00001137 cmovbe rcx, rax
0x0000113b lea rdx, obj.array1 ; 0x4040
0x00001142 or rdi, rcx
0x00001145 or rdx, rcx
0x00001148 cmp byte [rdi + rdx], sil
0x0000114c jne 0x1164

0x0000115f cmova rcx, rax
0x00001163 ret

0x0000114e cmovne rcx, rax
0x00001152 mov al, byte [obj.array2]
0x00001158 and byte [obj.temp], al
0x0000115e ret

0x00001164 cmove rcx, rax
0x00001168 ret

Figure 6.2: Assembly Code of Kocher Example 10 (O2, SLH)

• Example 15 (O0, SLH): The reason for example 15 to be insecure with SLH
mitigation when compiled without optimizations is, that the compiler doesn’t mask
the loaded value of array1[*x] before using it as an index for the second load.
The assembly code given in Figure 6.3 shows the problem. At line 0x118f the
value is loaded into register edi, which is then moved to rax at line 0x1196. The
register rax is then used in the second load at line 0x11a0. Similar to example 10,
the masking is properly applied to array1 and index variable *x. This prevents
attacker-controlled loads from arbitrary memory locations, instead the only address
which can be loaded during transient execution is 0xFFFFFFFFFFFFFFFE. But
as the memory content is assumed to be high-security by default, the byte loaded
from this address into register edi is a secret value which can be leaked through
a cache-based covert channel. When compiled with optimizations turned on, this
leak is eliminated.

1 void victim_function_v15(size_t *x) {

2 if (*x < array1_size)

3 temp &= array2[array1[*x] * 512];

4 }

Listing 6.15: Kocher Example 15

SpecBMC provides the following counterexample for the assembly output shown
in Figure 6.3. As seen in lines 2 and 3, the memory load is limited to address
0xFFFFFFFFFFFFFFFE. As the memory content is assumed to be high-security

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

by default, the byte loaded from this address is a secret value. The encoding of
the secret value into the cache can be seen at lines 16 and 17.

1 0x118F temp_0x118F = load(_memory, (bvadd rax rsi))

2 - A# cache_fetch(0xFFFFFFFFFFFFFFFE, 8)

3 - B# cache_fetch(0xFFFFFFFFFFFFFFFE, 8)

4 - A@ temp_0x118F = 0xE0

5 - B@ temp_0x118F = 0xFF

6 0x118F rdi = ((bvzext 56) temp_0x118F)

7 - A@ rdi = 0xE0

8 - B@ rdi = 0xFF

9 0x1193 rdi = ((bvzext 32) (bvshl ((bvtrunc 32) rdi) 0x9))

10 - A@ rdi = 0x1C000

11 - B@ rdi = 0x1FE00

12 0x1196 rax = ((bvsext 32) ((bvtrunc 32) rdi))

13 - A@ rax = 0x1C000

14 - B@ rax = 0x1FE00

15 0x11A0 temp_0x11A0 = load(_memory, (bvadd 0x4060 rax))

16 - A# cache_fetch(0x20060, 8)

17 - B# cache_fetch(0x23E60, 8)

6.3.2 Runtime Analysis

All benchmarks are repeated at least 5 times and the execution time is measured using
hyperfine6. The execution time of each run is limited to 300 seconds. The following
graphs show the average execution time in seconds as well as the 95 % confidence interval.

In the first analysis we compare the performance of the program counter model with
the components model, using parallel and trace observation. As the trace observation
requires the Z3 solver, we run all the 15 benchmarks with Z3 only. The benchmark
results are shown in Figures 6.4 to 6.6. The benchmark results affirm our assumption,
that the trace observation is expensive in terms of execution time. Interestingly, the
trace observation setting has a much lower execution time for example 11 (SLH, O0).
Another clearly identifiable pattern is, that the examples using O2 optimization are
usually much faster to check than their counterparts without optimizations. The reason
may be, that the optimizations removes many stack operations and therefore the number
of memory load and stores is much lower when optimization is turned on. Less memory
load and stores means less array operations, which may help the SMT solver.

In the second analysis we compare the performance of SpecBMC to Spectector. We
use the program counter model with parallel observe, as this setting is most similar to
Spectector’s observation model. This benchmark gives us a rough comparison between
our BMC approach and Spectector’s symbolic execution approach. We run the SpecBMC
benchmarks using the Yices2 and Z3 solver, whereas Spectector uses Z3 only. The
benchmark results are shown in Figures 6.7 to 6.9. The comparison shows that for O2
compiled binaries, the performance of SpecBMC and Spectector is pretty similar. For

6Hyperfine: https://github.com/sharkdp/hyperfine

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/sharkdp/hyperfine

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

152: sym.victim_function_v15 (int64_t arg1);
; var int64_t var_18h @ rbp-0x18
; var int64_t var_10h @ rbp-0x10
; var int64_t var_8h @ rbp-0x8
; arg int64_t arg1 @ rdi
0x00001120 push rbp
0x00001121 mov rbp, rsp
0x00001124 mov rax, 0xffffffffffffffff
0x0000112b lfence
0x0000112e xor ecx, ecx
0x00001130 mov edx, ecx
0x00001132 mov qword [var_8h], rdi
0x00001136 mov rsi, qword [var_8h]
0x0000113a mov rsi, qword [rsi]
0x0000113d mov ecx, dword [obj.array1_size] ; [0x4030:4]
0x00001143 mov edi, ecx
0x00001145 cmp rsi, rdi
0x00001148 mov qword [var_10h], rax
0x0000114c mov qword [var_18h], rdx
0x00001150 jae 0x115b

0x00001156 jmp 0x116c

0x0000115b mov rax, qword [var_18h]
0x0000115f mov rcx, qword [var_10h]
0x00001163 cmovb rax, rcx
0x00001167 jmp 0x11b6

0x0000116c mov rax, qword [var_18h]
0x00001170 mov rcx, qword [var_10h]
0x00001174 cmovae rax, rcx
0x00001178 mov rdx, qword [var_8h]
0x0000117c mov rdx, qword [rdx]
0x0000117f mov rsi, rax
0x00001182 or rsi, rdx
0x00001185 lea rdx, obj.array1 ; 0x4040
0x0000118c or rax, rdx
0x0000118f movzx edi, byte [rax + rsi]
0x00001193 shl edi, 9
0x00001196 movsxd rax, edi
0x00001199 lea rdx, obj.array2 ; 0x4060
0x000011a0 movzx edi, byte [rdx + rax]
0x000011a4 movzx r8d, byte [obj.temp] ; [0x4051:1]
0x000011ac and r8d, edi
0x000011af mov byte [obj.temp], r8b ; [0x4051:1]

0x000011b6 pop rbp
0x000011b7 ret

Figure 6.3: Assembly Code of Kocher Example 15 (O0, SLH)

O0 compiled binaries Spectector is in many cases much faster than SpecBMC with Z3.
The reason may be that the byte-based memory implementation in SpecBMC is more
expensive compared to Spectector’s memory model. If we compare only the SpecBMC
results of Yices2 and Z3, we can see that Yices2 in many cases much faster than Z3. It
comes as no surprise that Yices2 is faster, because Yices2 is the this year’s winner in the
QF_AUFBV single query track SMT competition 20207.

7https://smt-comp.github.io/2020/results/qf-aufbv-single-query

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://smt-comp.github.io/2020/results/qf-aufbv-single-query

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

None

SLH

Fence

M
iti

ga
tio

n
9.87

1.23

0.04

7.48

1.48

0.03

158.23

1.08

0.03

Example = 01 | Optimization = O0

0.05

0.07

0.03

1.67

0.06

0.03

9.97

0.06

0.03

Example = 01 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

9.32

0.04

0.04

21.31

2.12

0.03

TO

2.07

0.03

Example = 02 | Optimization = O0

0.05

0.07

0.03

1.13

0.06

0.03

16.39

0.06

0.03

Example = 02 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

9.71

0.05

0.04

18.86

1.72

0.03

TO

2.06

0.03

Example = 03 | Optimization = O0

0.09

0.05

0.04

1.58

0.13

0.04

235.54

0.09

0.03

Example = 03 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

5.52

1.41

0.04

7.52

0.78

0.03

208.31

0.90

0.03

Example = 04 | Optimization = O0

0.06

0.06

0.03

1.29

0.06

0.02

7.54

0.06

0.03

Example = 04 | Optimization = O2

10 2 10 1 100 101 102 103

Time [seconds]

None

SLH

Fence

M
iti

ga
tio

n

45.53

17.60

0.05

57.10

3.29

0.04

TO

2.87

0.04

Example = 05 | Optimization = O0

10 2 10 1 100 101 102 103

Time [seconds]

0.14

0.15

0.04

223.18

0.26

0.03

TO

0.17

0.03

Example = 05 | Optimization = O2

PC/Parallel (Z3)
Components/Parallel (Z3)
Components/Trace (Z3)

Figure 6.4: Execution Time of SpecBMC using different Settings (Examples 1-5)

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

None

SLH

Fence

M
iti

ga
tio

n

17.69

0.99

0.04

4.53

0.89

0.03

244.86

1.21

0.04

Example = 06 | Optimization = O0

0.08

0.06

0.04

0.92

0.04

0.02

6.50

0.04

0.02

Example = 06 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

77.53

53.56

0.09

TO

48.78

0.06

TO

35.06

0.06

Example = 07 | Optimization = O0

0.28

0.70

0.04

217.69

0.86

0.04

200.75

0.64

0.03

Example = 07 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

44.77

TO

0.04

34.90

TO

0.06

TO

TO

0.06

Example = 08 | Optimization = O0

0.03

0.04

0.04

0.04

0.04

0.04

0.02

0.02

0.02

Example = 08 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

1.65

3.36

0.04

24.15

1.92

0.03

TO

17.12

0.06

Example = 09 | Optimization = O0

0.05

0.06

0.03

2.05

0.11

0.02

25.82

5.71

0.03

Example = 09 | Optimization = O2

10 2 10 1 100 101 102 103

Time [seconds]

None

SLH

Fence

M
iti

ga
tio

n

0.89

4.10

0.04

14.77

0.11

0.03

TO

0.11

0.03

Example = 10 | Optimization = O0

10 2 10 1 100 101 102 103

Time [seconds]

0.10

0.09

0.03

11.00

5.66

0.03

45.78

186.15

0.03

Example = 10 | Optimization = O2

PC/Parallel (Z3)
Components/Parallel (Z3)
Components/Trace (Z3)

Figure 6.5: Execution Time of SpecBMC using different Settings (Examples 6-10)

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

None

SLH

Fence

M
iti

ga
tio

n
TO

169.16

0.08

TO

138.43

0.15

TO

36.33

0.06

Example = 11 | Optimization = O0

0.07

0.06

0.03

2.26

0.06

0.03

9.01

0.06

0.03

Example = 11 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

45.42

2.83

0.04

14.70

1.48

0.03

TO

1.64

0.03

Example = 12 | Optimization = O0

0.10

0.07

0.03

2.10

0.12

0.02

8.22

0.10

0.02

Example = 12 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

196.99

TO

0.05

209.86

TO

0.03

TO

TO

0.03

Example = 13 | Optimization = O0

0.06

0.07

0.03

1.52

0.06

0.02

9.68

0.06

0.03

Example = 13 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

28.50

1.67

0.04

3.82

1.03

0.03

166.43

0.92

0.03

Example = 14 | Optimization = O0

0.08

0.07

0.04

2.58

0.06

0.02

8.29

0.06

0.03

Example = 14 | Optimization = O2

10 2 10 1 100 101 102 103

Time [seconds]

None

SLH

Fence

M
iti

ga
tio

n

62.00

118.75

0.04

16.21

27.57

0.03

TO

TO

0.03

Example = 15 | Optimization = O0

10 2 10 1 100 101 102 103

Time [seconds]

0.10

0.08

0.04

3.00

0.48

0.02

26.60

0.08

0.02

Example = 15 | Optimization = O2

PC/Parallel (Z3)
Components/Parallel (Z3)
Components/Trace (Z3)

Figure 6.6: Execution Time of SpecBMC using different Settings (Examples 11-15)

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

None

SLH

Fence

M
iti

ga
tio

n

0.10

0.20

0.02

9.87

1.23

0.04

0.14

0.14

0.08

Example = 01 | Optimization = O0

0.02

0.03

0.01

0.05

0.07

0.03

0.11

0.10

0.07

Example = 01 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.32

0.70

0.02

9.32

0.04

0.04

0.16

0.14

0.09

Example = 02 | Optimization = O0

0.02

0.03

0.01

0.05

0.07

0.03

0.11

0.10

0.07

Example = 02 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.34

0.90

0.02

9.71

0.05

0.04

0.16

0.14

0.09

Example = 03 | Optimization = O0

0.03

0.02

0.02

0.09

0.05

0.04

0.11

0.09

0.07

Example = 03 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.09

0.20

0.02

5.52

1.41

0.04

0.14

0.14

0.08

Example = 04 | Optimization = O0

0.02

0.03

0.01

0.06

0.06

0.03

0.11

0.10

0.07

Example = 04 | Optimization = O2

10 2 10 1 100 101 102 103

Time [seconds]

None

SLH

Fence

M
iti

ga
tio

n

0.20

1.41

0.03

45.53

17.60

0.05

0.58

20.87

2.23

Example = 05 | Optimization = O0

10 2 10 1 100 101 102 103

Time [seconds]

0.04

0.26

0.03

0.14

0.15

0.04

0.59

26.63

1.08

Example = 05 | Optimization = O2

PC/Parallel (Yices)
PC/Parallel (Z3)
Spectector

Figure 6.7: Execution Time of SpecBMC and Spectector (Examples 1-5)

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

None

SLH

Fence

M
iti

ga
tio

n
0.07

0.17

0.02

17.69

0.99

0.04

0.14

0.14

0.09

Example = 06 | Optimization = O0

0.02

0.03

0.02

0.08

0.06

0.04

0.11

0.10

0.08

Example = 06 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.63

5.69

0.02

77.53

53.56

0.09

0.30

0.50

0.15

Example = 07 | Optimization = O0

0.17

0.35

0.02

0.28

0.70

0.04

0.24

0.34

0.13

Example = 07 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.41

0.90

0.02

44.77

TO

0.04

0.16

0.15

0.09

Example = 08 | Optimization = O0

0.01

0.02

0.02

0.03

0.04

0.04

0.05

0.05

0.05

Example = 08 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.10

0.24

0.02

1.65

3.36

0.04

0.11

0.16

0.10

Example = 09 | Optimization = O0

0.02

0.03

0.02

0.05

0.06

0.03

0.10

0.11

0.07

Example = 09 | Optimization = O2

10 2 10 1 100 101 102 103

Time [seconds]

None

SLH

Fence

M
iti

ga
tio

n

0.11

0.61

0.02

0.89

4.10

0.04

0.22

0.34

0.12

Example = 10 | Optimization = O0

10 2 10 1 100 101 102 103

Time [seconds]

0.02

0.02

0.01

0.10

0.09

0.03

0.15

0.16

0.10

Example = 10 | Optimization = O2

PC/Parallel (Yices)
PC/Parallel (Z3)
Spectector

Figure 6.8: Execution Time of SpecBMC and Spectector (Examples 6-10)

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. Kocher Examples

None

SLH

Fence

M
iti

ga
tio

n

13.19

11.15

0.06

TO

169.16

0.08

0.34

1.58

0.19

Example = 11 | Optimization = O0

0.02

0.04

0.02

0.07

0.06

0.03

0.11

0.10

0.07

Example = 11 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.11

0.41

0.02

45.42

2.83

0.04

0.16

0.15

0.09

Example = 12 | Optimization = O0

0.02

0.03

0.02

0.10

0.07

0.03

0.12

0.11

0.08

Example = 12 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.56

5.22

0.03

196.99

TO

0.05

0.26

0.30

0.12

Example = 13 | Optimization = O0

0.02

0.03

0.02

0.06

0.07

0.03

0.11

0.10

0.08

Example = 13 | Optimization = O2

None

SLH

Fence

M
iti

ga
tio

n

0.10

0.24

0.02

28.50

1.67

0.04

0.15

0.14

0.08

Example = 14 | Optimization = O0

0.02

0.03

0.02

0.08

0.07

0.04

0.11

0.11

0.08

Example = 14 | Optimization = O2

10 2 10 1 100 101 102 103

Time [seconds]

None

SLH

Fence

M
iti

ga
tio

n

0.33

0.41

0.02

62.00

118.75

0.04

0.10

0.12

0.08

Example = 15 | Optimization = O0

10 2 10 1 100 101 102 103

Time [seconds]

0.02

0.03

0.02

0.10

0.08

0.04

0.09

0.09

0.08

Example = 15 | Optimization = O2

PC/Parallel (Yices)
PC/Parallel (Z3)
Spectector

Figure 6.9: Execution Time of SpecBMC and Spectector (Examples 11-15)

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

6.4 Case Study

Based on the motivating example from Section 1.1.1, we want to check if SpecBMC is
able to find the Spectre-PHT vulnerability in the incorrectly backported Linux ptrace
patch and show if the proposed fix actually mitigates the vulnerability.

This case study revealed some interesting challenges:

• We had to deal with multiple different less commonly used instructions, such as
rep movsd. The lifting of the whole Linux kernel revealed many similar instruc-
tions. Fortunately, Falcon already has great support for such instructions, so only
the translation from Falcon IL to HIR as well as the loop unwinding have to be
extended. Additionally, many interesting control-flow specialties have been uncov-
ered, such as directly jumping to a function instead of calling it. This required
some improvements in the call reconstruction.

• The most challenging part was the sheer size of the Linux kernel, which caused that
SpecBMC almost immediately ran out of memory when lifting the full kernel. The
memory consumption has greatly been improved by tweaking the memory layout
of SpecBMC’s internals as well as using a tiny kernel instead of a full-featured
distribution kernel.

• Many additional features were required in SpecBMC to properly set up the initial
context of the ptrace functions, such as the possibility to set initial memory and
register content as well as the initial state of the CPU flag register.

• Last but not least, the huge size of the resulting control-flow graphs puts a lot
of pressure on SpecBMC’s internals as well as the back-end SMT solver. When
checking huge functions, the solving may take hours instead of just minutes as in
the previous tests. To improve this situation, we added the possibility to specify the
unwinding bound for individual loops in addition to the global unwinding bound.
Additionally, we allow to disable inlining for specific functions, thereby sacrificing
analysis soundness. But this is necessary to avoid that the CFG explodes when
inlining all the locking, scheduling and other deeply nested functions.

6.4.1 Preparation

We use the source code of Linux 5.8.12 downloaded from kernel.org. A minimal kernel
is produced using make tinyconfig with the x64 mode enabled. The reason for us-
ing a tiny kernel instead of a distribution kernel is simple the memory consumption of
SpecBMC, because loading a full featured distribution kernel 5.8.12 from Arch Linux re-
quires almost 28 GB of memory just for lifting and translating the whole kernel into HIR,
whereas the peek memory consumption for the tiny kernel is about 1.6 GB. Additionally,
we disable inlining for the ptrace_get_debugreg() and ptrace_set_debugreg()
functions, so that we can use them as program entry points in SpecBMC. The kernel is
compiled using the GCC compiler. We add -fno-jump-tables as additional compiler
flag to KCFLAGS, so that switch statements are translated into a sequence of branches

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Case Study

instead of a jump table. The reason for not using jump tables is simply that SpecBMC
lacks support for indirect jumps, therefore programs using jump tables cannot be checked
properly.

6.4.2 Environment

For this case study SpecBMC is invoked with the environment defined in Listing 6.16.
It’s assumed that all registers are low security and all memory content is high security
by default. As seen Listings 6.17 and 6.18, the first argument of the ptrace functions
is a pointer to a task struct. We assume that the pointer and the content of the task
struct is known to the adversary. By x86-64 calling convention we have that the first
argument is passed via the rdi register, meaning that rdi initially contains the pointer
to the task struct. From /sys/kernel/slab/task_struct/object_size we get
that the task struct has 7936 bytes in size. Therefore, we set the initial value of register
rdi to 0xffff0000 and require that memory content from address 0xffff0000 to
address 0xffff1f00 is of low security.

The assembly code of the inlined ptrace_set_breakpoint_addr() function
contains a rep movsd dword [rdi], [rsi] instruction, which repeatedly copies
a double word from memory address rsi to memory address rdi [24]. In this case the
copying is repeated exactly 30 times as the ecx register is initialized with 0x1e. In-
ternally this instruction decrements a counter and automatically adds the offset the the
source and target pointer. Based on the direction flag (DF), the instruction can either
automatically decrement or increment the addresses. As this instruction is translated
into a loop in HIR, we require that this loop, identified by 0x1a, is unrolled 30 times
instead of only 3 times as the other loops. As the DF flag is cleared by default, we
initialize it with false.

1 analysis:

2 spectre_pht: true

3 spectre_stl: false

4 check: only_transient_leaks

5 model: pc

6 unwind: 3

7 unwind_loop:

8 0x1a: 30 # rep movsd

9 inline_ignore:

10 - "register_user_hw_breakpoint"

11 - "modify_user_hw_breakpoint"

12 - "ptrace_register_breakpoint"

13 - "ptrace_write_dr7"

14 architecture:

15 cache: true

16 btb: false

17 pht: true

18 policy:

19 registers:

20 default: low

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

21 memory:

22 default: high

23 low:

24 - # child task (see rdi) with size 7936 bytes

25 start: 0xffff0000

26 end: 0xffff1f00

27 setup:

28 init_stack: true

29 registers:

30 rdi: 0xffff0000 # struct task_struct *child

31 flags:

32 DF: false # the direction flag is cleared by default

Listing 6.16: SpecBMC Environment for Linux Kernel Case Study

6.4.3 Checking ptrace_get_debugreg()

The current version of ptrace_get_debugreg() is shown in Listing 6.17. To check
if SpecBMC would have detected the backporting error explained in Section 1.1.1, we
reconstruct the problematic change by moving the index masking at line 7 after the mem-
ory load at line 8, thereby disabling the load hardening. When checking the incorrectly
backported fix of ptrace_get_debugreg(), we get a counterexample after about 9.7
seconds. SpecBMC detects that the unprotected memory load at line 8 can be controlled
by the adversary and therefore read arbitrary values during transient execution. The
secret value can be encoded using one of the two possible covert channels, either via the
branch at line 10 or via the memory load at line 11. Running SpecBMC on the current
mitigated version of ptrace_get_debugreg() shows that implementation in Linux
5.8.12 is secure. The successful check takes about 9.3 seconds.

1 unsigned long ptrace_get_debugreg(struct task_struct *tsk, int n)

2 {

3 struct thread_struct *thread = &tsk->thread;

4 unsigned long val = 0;

5

6 if (n < HBP_NUM) {

7 int index = array_index_nospec(n, HBP_NUM);

8 struct perf_event *bp = thread->ptrace_bps[index];

9

10 if (bp)

11 val = bp->hw.info.address;

12 } else if (n == 6) {

13 val = thread->debugreg6;

14 } else if (n == 7) {

15 val = thread->ptrace_dr7;

16 }

17 return val;

18 }

Listing 6.17: Linux Kernel ptrace_get_debugreg()

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Case Study

6.4.4 Checking ptrace_set_debugreg()

While we were running the checks on ptrace_get_debugreg() respectively its caller
arch_ptrace(), SpecBMC detected another similar Spectre-PHT vulnerability in a
related function, namely in ptrace_set_debugreg(). Compared to the vulnerability
in ptrace_get_debugreg(), the vulnerability in ptrace_set_debugreg() is a
little bit trickier as the bounds-check and the memory load are spread over two different
functions. The bounds-check is located in ptrace_set_debugreg() whereas the
memory load and the encode-gadget is located in ptrace_set_breakpoint_addr().
Both functions are shown in Listings 6.18 and 6.19.

1 int ptrace_set_debugreg(struct task_struct *tsk, int n,

2 unsigned long val)

3 {

4 struct thread_struct *thread = &tsk->thread;

5 int rc = -EIO;

6

7 if (n < HBP_NUM) {

8 rc = ptrace_set_breakpoint_addr(tsk, n, val);

9 } else if (n == 6) {

10 thread->debugreg6 = val;

11 rc = 0;

12 } else if (n == 7) {

13 rc = ptrace_write_dr7(tsk, val);

14 if (!rc)

15 thread->ptrace_dr7 = val;

16 }

17 return rc;

18 }

Listing 6.18: Linux Kernel ptrace_set_debugreg()

1 int ptrace_set_breakpoint_addr(struct task_struct *tsk, int nr,

2 unsigned long addr)

3 {

4 struct thread_struct *t = &tsk->thread;

5 struct perf_event *bp = t->ptrace_bps[nr];

6 int err = 0;

7

8 if (!bp) {

9 bp = ptrace_register_breakpoint(tsk,

10 X86_BREAKPOINT_LEN_1, X86_BREAKPOINT_WRITE,

11 addr, true);

12 if (IS_ERR(bp))

13 err = PTR_ERR(bp);

14 else

15 t->ptrace_bps[nr] = bp;

16 } else {

17 struct perf_event_attr attr = bp->attr;

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

18

19 attr.bp_addr = addr;

20 err = modify_user_hw_breakpoint(bp, &attr);

21 }

22

23 return err;

24 }

Listing 6.19: Linux Kernel ptrace_set_breakpoint_addr()

When checking the ptrace_set_debugreg() function as currently implemented
in Linux 5.8.12, we get a counterexample after about 626 seconds. SpecBMC detects
that the memory load at line 5 of function ptrace_set_breakpoint_addr() can
be controlled by the adversary and therefore read arbitrary values during transient ex-
ecution. The adversary speculatively bypasses the bounds-check at line 7 of function
ptrace_set_debugreg() to reach the memory load during transient execution. The
memory load at line 17 of function ptrace_set_breakpoint_addr() is then used
to encode the secret value stored in bp into the cache.

SpecBMC provides the following counterexample for the assembly output shown in
Figure 6.10. The index variable n, located in register rsi, has value 0x40000006.
Transient execution begins at 0xFFFFFFFF810120AB where the jump is predicted to
be not taken. The secret value is loaded at 0xFFFFFFFF810119B9 and later encoded
into the cache at 0xFFFFFFFF81011A04. The encoding of the secret value can be
seen at line 16 and 17. SpecBMC detects a second possible covert channel, namely the
conditional branch instruction at 0xFFFFFFFF810119C4 allows to leak information if
the secret is zero or not.

1 0xFFFFFFFF810119B1 rbx = (bvadd rsi 0x6)

2 - A@ rbx = 0x4000000C

3 - B@ rbx = 0x4000000C

4 ...

5 0xFFFFFFFF810119B9 r8 = load(_memory, (bvadd (bvadd 0xFFFF0000 (

bvmul rbx 0x8)) 0x588))

6 - A# cache_fetch(0x2FFFF05E8, 64)

7 - B# cache_fetch(0x2FFFF05E8, 64)

8 - A@ r8 = 0x1

9 - B@ r8 = 0x40

10 ...

11 0xFFFFFFFF810119F8 rsi = (bvadd r8 0xE0)

12 - A@ rsi = 0xE1

13 - B@ rsi = 0x120

14 ...

15 0xFFFFFFFF81011A04 temp_0xFFFFFFFF81011A04 = load(_memory, rsi)

16 - A# cache_fetch(0xE1, 32)

17 - B# cache_fetch(0x120, 32)

18 - A@ temp_0xFFFFFFFF81011A04 = 0x0

19 - B@ temp_0xFFFFFFFF81011A04 = 0x0

20 0xFFFFFFFF81011A04 _memory = store(_memory, rdi,

temp_0xFFFFFFFF81011A04)

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Case Study

After taking a closer look at the assembly code, the provided counterexample is
indeed a possible leak. Via the sys_ptrace() system call an adversary is able to
reach the unprotected array access in the ptrace_set_breakpoint_addr() func-
tion, shown in Listing 6.19. The input parameter nr, which is used as the array in-
dex at line 5, is controllable from userspace. An adversary could cause a speculative
out-of-bounds read and thereby load secret information into bp during transient exe-
cution. By using bp as a load address in a successive load, e.g., the load at line 17,
the secret information stored in bp can be encoded into the cache. The call chain is
as follows: (i) ptrace system call (ii) arch_ptrace with POKEUSR request and adver-
sary-chosen address (iii) ptrace_set_debugreg with chosen address in argument n
(iv) ptrace_set_breakpoint_addr with chosen address in argument nr.

The Spectre-PHT vulnerability can be mitigated by masking the value of n in func-
tion ptrace_set_debugreg() before calling ptrace_set_breakpoint_addr().
The mitigated version is shown in Listing 6.20. Running SpecBMC on the mitigated
version of ptrace_set_debugreg() shows that implementation is secure. The suc-
cessful check takes about 858 seconds.

1 int ptrace_set_debugreg(struct task_struct *tsk, int n,

2 unsigned long val)

3 {

4 struct thread_struct *thread = &tsk->thread;

5 int rc = -EIO;

6

7 if (n < HBP_NUM) {

8 int index = array_index_nospec(n, HBP_NUM);

9 rc = ptrace_set_breakpoint_addr(tsk, index, val);

10 } else if (n == 6) {

11 thread->debugreg6 = val;

12 rc = 0;

13 } else if (n == 7) {

14 rc = ptrace_write_dr7(tsk, val);

15 if (!rc)

16 thread->ptrace_dr7 = val;

17 }

18 return rc;

19 }

Listing 6.20: Mitigated ptrace_set_debugreg()

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

82: sym.ptrace_set_debugreg (arg1, arg2, arg3);
; arg int64_t arg1 @ rdi
; arg signed int64_t arg2 @ rsi
; arg int64_t arg3 @ rdx
0xffffffff810120a8 cmp esi, 3
0xffffffff810120ab jg 0xffffffff810120b2

0xffffffff810120ad jmp sym.ptrace_set_breakpoint_addr ...

113: sym.ptrace_set_breakpoint_addr (arg1, arg2, arg3);
; arg int64_t arg1 @ rdi
; arg int64_t arg2 @ rsi
; arg int64_t arg3 @ rdx
0xffffffff810119ac push rbp
0xffffffff810119ad movsxd rsi, esi
0xffffffff810119b0 push rbx
0xffffffff810119b1 lea rbx, [rsi + 6]
0xffffffff810119b5 sub rsp, 0x78
0xffffffff810119b9 mov r8, qword [rdi + rbx*8 + 0x588]
0xffffffff810119c1 test r8, r8
0xffffffff810119c4 jne 0xffffffff810119f5

...
ret

...

... ret

...

...
ret

...

0xffffffff810119f5 mov rdi, rsp
0xffffffff810119f8 lea rsi, [r8 + 0xe0]
0xffffffff810119ff mov ecx, 0x1e
0xffffffff81011a04 rep movsd dword [rdi], dword ptr [rsi]
0xffffffff81011a06 mov rsi, rsp
0xffffffff81011a09 mov rdi, r8
0xffffffff81011a0c mov qword [var_38h], rdx
0xffffffff81011a11 call sym.modify_user_hw_breakpoint

...

0xffffffff81011a16 add rsp, 0x78
0xffffffff81011a1a pop rbx
0xffffffff81011a1b pop rbp
0xffffffff81011a1c ret

Figure 6.10: Simplified Assembly Code of ptrace_set_debugreg()

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Related Work

7.1 Spectector

1 c <- x < array1_size

2 beqz c, 5

3 load y, array1 + x

4 load z, array2 + y * 512

Listing 7.1: Spectre-PHT Information Leak

Spectector is a tool for automatic detection of speculative information flows in binary
programs [21]. It can detect speculative data as well as control-flow leaks. Spectector
uses symbolic execution [5] to derive a set of symbolic traces for a given program. A sym-
bolic trace consists of a sequence of memory and program-counter observations, denoted
by load, store and pc, as well as path constraints. The transient execution behavior
is captured by so-called speculative transactions [21], delimited by start and rollback.
For checking speculative non-interference (SNI) [21], each enumerated symbolic trace
is duplicated by means of self-composition, encoded and finally passed on to an SMT
solver. If the SMT solver finds a satisfying assignment, then the program is considered
insecure and the satisfying assignment is a witness of a transient execution leak.

For example, consider the program shown in Listing 7.1. Spectector derives two
symbolic traces for this program. One of these symbolic traces, namely the trace which
transiently executes the load instructions, is depicted in Figure 7.1a1. The transient
execution is visualized by red dashed arrows and the non-speculative execution by red
solid arrows. The green path shows the speculative transaction beginning at start(0) and
ending at rollback(0). To check for SNI, the symbolic trace π shown in Figure 7.1a needs
to be duplicated. Figure 7.1b shows the self-composition of the symbolic traces π and πd,
symbols which are equal in both traces have been simplified. By asking the SMT solver

1Generated with https://github.com/emmanuel099/specgraph

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/emmanuel099/specgraph

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Related Work

1: c←x<array1_size

2: beqz(c,5)

@0
 # C=(A<B)

3: load(y,array1+x)

@1
cond(C=0)

start(0)
pc(3)

 t0

5: ⊥

4: load(z,array2+y*512)

@2
load(D+A)

element(D+A,F)
 t0

@4
 rollback(0)

pc(5)

@3
load(G+F*512)

element(G+F*512,H)
 t0

(a) Symbolic Trace π

π

C = (x < array_size)

cond(C = 0)

pc(3)

F = read(m,array1 + x)

load(array1 + x)

load(array2 + F ∗ 512)

pc(5)

πd

Cd = (x < array_size)

cond(Cd = 0)

pc(3)

F d = read(md,array1 + x)

load(array1 + x)

load(array2 + F d ∗ 512)

pc(5)

o
b
sE

q
v

¬
o
b
sE

q
v

o
b
sE

q
v

(b) Self-Composition of Symbolic Trace π

Figure 7.1: Spectre-PHT Information Leak in Spectector

for a satisfying assignment, such that both traces are observable equivalent during non-
speculative execution but not observable equivalent during transient execution, one can
obtain a satisfying assignment with distinct values for F and F d. The distinct values for
F and F d result in different load observations and therefore the symbolic trace shown
in Figure 7.1a and consequently the whole program violates SNI. In other words, the
example contains a speculative data leak.

As our work is based on the ideas of Spectector, our definition of SNI as well as
our semantics definition is in parts similar to Spectector’s definitions. The three major
differences are: (i) Spectector assumes a fixed adversary model [21], inspired by the pro-
gram-counter security model from Molnar et al. [37], where the adversary can observe
the program counter as well as the locations of memory loads and stores. Therefore,
Spectector completely abstracts away the microarchitectual components and instead de-
fines a sequence of memory and program-counter observations. In contrast to this, our
adversary model allows to select the microarchitectual components which are available
for encoding secret information. Therefore, our work introduces high-level definitions
of different microarchitectual components, allowing to selectively check for speculative
data and control-flow leaks depending on the actually available microarchitectual com-
ponents. (ii) The transient execution semantics of Spectector defines nested speculative
transactions [21], meaning that within a running speculative transaction additional spec-

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1. Spectector

ulative transactions can be initiated. This may result in long and partially duplicated
traces. As we show in Appendix A.3, a single speculative transaction is equally power-
ful in detecting transient execution bugs. Therefore, our transient execution semantics
works on a single speculative state, resulting in simpler traces. (iii) As Spectector is
based on symbolic execution, it suffers from the well-known path explosion problem.
Dealing with path explosion and loops is one of the major challenges in symbolic exe-
cution [5]. Spectector’s approach to mitigate this problem is to limit the path length,
thereby forfeiting the soundness of the analysis [21]. Additionally, Spectector requires
many SMT queries for each enumerated path, especially when checking for control-flow
leaks. In contrast to this, our work is based on BMC. This enables us to directly check
all program paths within the SAT/SMT solver [26], thereby allowing the solver to reuse
accumulated information across multiple program paths. BMC tackles the state explo-
sion problem by searching for counterexamples of bounded length [12], hence forfeiting
analysis soundness similar to Spectector. Nonetheless, BMC provides a strong technique
for catching software bugs [26], or in our case transient execution bugs.

1 uint8_t arr[256 * 512];

2 uint8_t size = 10;

3

4 void victim() {

5 if (secret == 0) {

6 x = 42;

7 } else {

8 x = 21;

9 }

10 if (x < size) {

11 tmp = arr[x * 512];

12 }

13 }

Listing 7.2: Artificial Example showing Differences between Spectector and Our Work

One big difference between Spectector and our approach is that Spectector enforces
the exact same (non-speculative) control-flow in both programs, while our approach
only requires the same (non-speculative) observations. In contrast to the control-flow
restriction, the observations restriction depends on the adversary’s capabilities. Suppose
that the adversary can only observe the cache in Listing 7.2. We have at line 10 that the
value of x can either be 21 or 42 depending on the value of secret. Without speculative
execution the adversary is unable to learn anything about secret, because line 11 is
unreachable for both possible values of x and therefore no secret-dependent load occurs.
With speculative execution the adversary can learn some information about the secret,
namely if the secret value equals 0 or not. This is possible because the processor will
start to speculate at line 10 if size isn’t available from cache. Proper training of the
branch predictor and flushing size from cache will make the secret-dependent memory
load at line 11 reachable during transient execution. Although Spectector has an option
to only detect speculation leaks caused by memory operations, it misses this speculative
leak because it forces that all path conditions of both traces match, meaning that for

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Related Work

both traces either secret = 0 ∧ secretd = 0 or secret 6= 0 ∧ secretd 6= 0 holds,
which results in identical values for x and xd.

7.2 A Formal Approach to Secure Speculation

The work of Cheang et al. [10] introduces a formal approach for secure speculation,
consisting of a speculative semantics definition as well as a hyperproperty called trace
property-dependent observational determinism (TPOD). Their approach captures tran-
sient execution leaks as well as leaks happening during non-speculative execution. A
proof-of-concept implementation based on the UCLID5 model checker has been imple-
mented by the authors.

TPOD SNI

(i) ∀π1, π2, π3, π4. ∀π̃3, π̃4.

(ii)

conformant(π1)

∧ conformant(π2)

∧ conformant(π3)

∧ conformant(π4)

(iii)

∧ ∀i.¬mispred(πi
1.n, πi

1.β, πi
1.pc)

∧ ∃i.mispred(πi
3.n, πi

3.β, πi
3.pc)

∧ opH(π1) = opH(π3)

π1 = ns(π̃3)

(iv)

∧ ∀i.¬mispred(πi
2.n, πi

2.β, πi
2.pc)

∧ ∃i.mispred(πi
4.n, πi

4.β, πi
4.pc)

∧ opH(π2) = opH(π4)

∧ π2 = ns(π̃4)

(v) ∧ π0
3 ≈L π0

4 ∧ π̃0
3 ∼L π̃0

4

(vi) ∧ opL(π1) = opL(π2) = opL(π3) = opL(π4)

(vii) ∧ π1 ≈L π2 ∧ π1 ≈Obs π2

(viii) =⇒ π3 ≈L π4 =⇒ π̃3 ≈Obs π̃4

Table 7.1: Comparison of TPOD and SNI Hyperproperty

Table 7.1 shows how our definition of SNI introduced in Section 3.5 relates to TPOD.
A rough comparison of both definitions: (i) As TPOD is defined as a 4-safety hyper-
property it requires four execution traces, whereas SNI requires only two speculative
execution traces. Meaning that our definition can be checked using only 2-way self-com-
position, which is likely to be more scalable than their approach. (ii) The conformant
predicate constrains the traces to valid executions only, required to constrain the adver-
sary component. As this is an implementation detail of TPOD our definition of SNI has
no counterpart. (iii) TPOD constrains the traces π1 and π3 such that both non-spec-

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. SCADET

ulatively execute the same instructions with low-equivalent memory. Additionally, it
allows transient execution only for trace π3. This corresponds roughly to our definition,
where we obtain the non-speculative trace π1 by simply removing all speculative con-
figurations from the speculative trace π̃3. The difference is that the SNI traces π1 and
π̃3 have low- and high-equivalent memory in all non-speculative configurations, whereas
the TPOD traces π1 and π3 have only low-equivalent memory in all non-speculative
configurations. (iv) Same as before but with traces π2 and π4. (v) Both definitions
require that the initial states are low-equivalent, meaning that low-security registers and
memory locations agree on the same values. (vi) TPOD enforces that the adversary
component executes the same instructions in all traces. As this is an implementation
detail of TPOD our definition of SNI has no counterpart. (vii) TPOD requires that the
non-speculative traces π1 and π2 are low-equivalent, where low-equivalence includes the
microarchitectual components as well as low-security registers and memory locations.
Compared to this, SNI requires that the non-speculative traces π1 and π2 have the same
observational effects on the microarchitectual components, meaning that in TPOD an
adversary can observe registers and memory in addition to the microarchitectual covert
channel, whereas in SNI only the microarchitectual covert channel is visible to the at-
tacker. (viii) In TPOD a program is considered secure if the speculative traces π3 and
π4 are low-equivalent. As before, low-equivalence includes the microarchitectual com-
ponents as well as low-security registers and memory locations. Therefore, TPOD will
also detect non-speculative memory leaks. In SNI a program is considered secure if an
attacker cannot distinguish between the speculative traces π̃3 and π̃4 by observing their
effects on the microarchitectual components.

In brief summary: TPOD detects non-speculative leaks in addition to transient exe-
cution leaks [10], including memory leaks, at the cost of a 4-safety hyperproperty, whereas
SNI defines a less expensive 2-safety hyperproperty but can only detect transient exe-
cution leaks. Note that our approach would also able detect non-speculative leaks in
addition to transient execution leaks when removing assumption (vii) π1 ≈Obs π2 which
requires that the non-speculative observations are indistinguishable.

7.3 SCADET

SCADET is a program analysis tool for detecting different variants of Prime+Probe
side-channel attacks, targeting the L1 as well as the last-level cache [44]. Because
Prime+Probe allows an adversary to reconstruct secrets from cache-based covert chan-
nels, this tool is also able to detect some sorts of Spectre-style attacks. SCADET uses
dynamic binary instrumentation to inject monitoring code for collecting memory access
traces while the program is running. As Prime+Probe attacks require many consecutive
memory accesses to fill the cache as well as to determine the set of replaced memory
locations [39, 50], such attacks have conspicuous memory access patterns. Therefore,
offline analysis is used to search for Prime+Probe patterns in the collected traces. Ac-
cording to the authors of SCADET, their technique achieves an TPR of 100% and an
average FPR of about 7.4% in detecting Prime+Probe attacks [44].

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Related Work

7.4 Spectre is here to stay

The work of Mcilroy et al. [33] introduces a formal model for analyzing and reasoning
about side-channels in the presence of speculative execution. Similar to our work, they
introduce state transition systems for both the architectural and microarchitectural view
of the processor. Their microarchitectural model includes a reorder buffer to keep track
of uncommitted instructions, both for out-of-order evaluation and branch predicition.
Furthermore, they define a timer model and explicitly formalize the timing behavior of
the different instructions in interplay with the microarchitectural components. Based on
this model they show that despite on constant-time implementations, full mitigation of
timing channels is impossible because of the various optimizations in place [33]. Addi-
tionally, they give a simulation relation from the microarchitectural to the architectural
STS, showing that each architectural state has one or more corresponding microarchitec-
tural states. They conclude that vulnerabilities resulting from speculative execution are
fundamental design flaws arising from the mapping of one architectural state to multiple
concrete microarchitectural states [33], therefore inevitable affecting all processors that
perform speculation.

7.5 CacheAudit

CacheAudit is a static, quantitative analysis tool for exploring cache-based side-channels
in binary programs [14]. In CacheAudit a program is considered secure if the observable
cache states are independent from any secret input. Secret-dependent cache states allow
an adversary to partially or completely reconstruct the secrets (i) by determining the
set of cached memory blocks upon termination of the program (ii) by observing traces
of cache hits and misses during execution of the program (iii) or by measuring the
program’s execution time depending on the memory access delays. In CacheAudit these
three different views are denoted as access-based, trace-based, respectively timing-based
adversary. As the interaction of the program with the cache heavily depends on the
actual type of the cache, CacheAudit defines a sophisticated cache model with multiple
different replacement strategies to increase its analysis precision.

In contrast to our work which focuses solely on non-interference, CacheAudit gives
quantitative security guarantees [14], meaning that it can give an upper bound of how
much information is actually leaked by the program. Additionally, our cache model de-
fined in Section 4.1 is rather simplistic compared to CacheAudit and therefore less accu-
rate, but extending our model with different replacement strategies similar to CacheAu-
dit should easily be doable. Because CacheAudit doesn’t model speculative execution it
can only detect non-speculative leaks in contrast to our work.

7.6 SpecFuzz

SpecFuzz is a dynamic testing tool to uncover speculative execution vulnerabilities by
means of fuzzing [38]. At compile-time the software under test is instrumented with

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.6. SpecFuzz

speculative execution simulation and integrity checks, such as absence of invalid mem-
ory accesses. Speculative execution simulation, currently limited to Spectre-PHT only,
forcefully executes code paths which would otherwise only be reached when a conditional
branch is mis-predicted on the CPU. This is achieved by adding additional control-flow
edges into the control-flow graph to cover the mis-predicted code paths.

After compilation the instrumented binary is then examined by a fuzzing tool. The
fuzzing tool repeatedly executes the program with random inputs to stress various dif-
ferent code paths. If the fuzzing process triggers an invalid memory access error in the
instrumented binary, a speculative execution vulnerability has been detected. The au-
thors of SpecFuzz evaluated their tool based on the well-known Kocher examples [27] and
some example applications, such as the OpenSSL library, the Brotli compression library
or the LibYAML parsing library. SpecFuzz successfully detected all 15 Kocher vulnera-
bilities [38] and uncovered a tremendous amount of speculative execution vulnerabilities
in the example applications.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Conclusion

First, we define a formal semantics for transient execution which covers the speculative
behavior of the instructions, the branch predictor as well as the memory disambiguator.
Furthermore, we formalize microarchitectual components such as the cache or the branch
target buffer to capture the microarchitectual side effects of the instructions. The mi-
croarchitectual components allow us to model cache- as well as branch-predictor-based
covert channels. A speculative non-interference hyperproperty is defined, which allows
to reason about the security of a program in respect to transient execution attacks. A
program is considered secure, if the program executed on a CPU with speculation has
the same adversary observable security sensitive side effects as if the program is executed
on a CPU without speculation.

Based on our definition of SNI, a bounded software model checker named SpecBMC is
implemented. SpecBMC can automatically detect Spectre-style vulnerabilities in binary
programs. We use self-composition to transform the SNI hyperproperty into a safety
problem which can then be checked by off-the-shelf SMT solvers like Z3 or Yices2. The
tool is released under the free and open source Apache-2.0 license and can be downloaded
from https://github.com/emmanuel099/specbmc.

Finally, we validate SpecBMC against different known Spectre-PHT/STL vulnera-
bilities and proposed mitigation approaches. Furthermore, we evaluate SpecBMC on
the Kocher examples and show that SpecBMC detects the same leaks as Spectector [21]
in all the 15 examples. By comparing the solving time of different observation models,
we show that the parallel observation model is less expensive than the trace observation
model. Additionally, we show that the components model has a measurable overhead
compared to the simpler program counter model. From this we conclude that our ab-
straction level may be to low and instead the side effects should be compared directly
without first encoding them into the microarchitectual state.

To complete this thesis, we conduct a small case study where we check the Linux
kernel backporting error from our motivating example in Section 1.1. We show that
SpecBMC can be used to check sizeable binaries and that the backporting bug could

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/emmanuel099/specbmc

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Conclusion

have been detected with static analysis tools like SpecBMC. Our case study revealed
a similar yet unpatched Spectre-PHT vulnerability in a related function of the Linux
kernel’s ptrace module.

The main contributions of this thesis are an extensible transient execution semantics
and a static binary analysis tool that detects Spectre-PHT and Spectre-STL vulnerabil-
ities in binary programs.

8.1 Future Work

While working on this thesis we identified some limitations and ideas for improvements:

• The transient execution semantics as well as the implementation lacks support
for indirect branches. As we have seen in our case study, indirect jumps are
almost unavoidable when working with real-word binaries. Indirect jumps are also
necessary when checking for Spectre-BTB and Spectre-RSB vulnerabilities, which
we ignored in this thesis.

• SpecBMC relies on the self-composition approach to transform the SNI hyper-
property into a safety problem. The current implementation uses eager self-
composition, meaning that we reason on two full copies of a program. The full du-
plication can become quite expensive. Some promising techniques for more efficient
self-composition have been proposed in literature, such as lazy self-composition
[51]. The lazy self-composition approach uses symbolic taint analysis to only du-
plicate the relevant parts of the program, while sharing the rest of the program in
both executions. We assume that such approaches would be well-suited for our use
case, as we basically restrict the non-speculation part of the program to be indis-
tinguishable for the adversary, meaning that many variables are basically forced
to be untainted. Changing from eager to lazy self-composition should be relatively
straightforward in the MIR to LIR lowering step.

• As shown in Section 5.4.1, counterexamples are currently exported as annotated
control-flow graphs. While this visualization works great for small programs, it be-
comes inconvenient when the programs get larger and larger. For large counterex-
amples the identification of the relevant side effects is relatively time consuming
and confusing. Automatically extracting the relevant parts of the counterexample
and giving a textual explanation of where the leak occurred and from where the
leaked secret values originate from would be a fantastic enhancement.

• SpecBMC is currently limited to single queries, meaning that once a leak is detected
the check is terminated. Incremental solving would allow SpecBMC to continue
after the first leak, meaning that multiple leaks could be detected in a single run.
As incremental solving allows the SMT solver to retain the state, we expect that
further leaks are detected relatively fast compared to the first leak. Incremental
solving requires some extensions in how SpecBMC interacts with the solver and
additionally it should be considered how already found leaks can efficiently be
“ignored” in the solver.

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Proofs

A.1 Trace obtained by ns(π) is valid

Let π̃s be a valid speculative trace. Let π̃ns be the corresponding non-speculative trace
obtained by ns(π̃s), then π̃ns is a semantically valid trace.

1. Barrier instruction: Let ρ be a program where ρ(pc) = spbarr. As the barrier
instruction cannot start a new speculative execution, we get the following simple
speculative trace:

π̃s = 〈ϕ, σ, pc, Υ,⊥〉
SpecBarrier-NS
−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ,⊥〉

By removing all speculative intermediate configurations we obtain the following non-
speculative trace:

π̃ns = ns(π̃s) = 〈ϕ, σ, pc, Υ,⊥〉
SpecBarrier-NS
−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ,⊥〉

This corresponds to the non-speculative SpecBarrier-NS rule.

2. Observe instruction: Same proof as for the barrier instruction.

3. Lifted instructions: Same proof as for the barrier instruction.

4. Branch instruction: Let ρ be a program where ρ(pc) = beqz x, ℓ and let ϕ be a
register assignment where ϕ(x) = 0. Assume that the branch instruction starts a new
transient execution with speculation window of size k, therefore we have a predictor
Υ with speculate(Υ, pc), ¬taken(Υ, pc) and speculation-window(Υ, pc) = k. We get the
following speculative trace where the transient execution ends after at most k steps:

π̃s = 〈ϕ, σ, pc, Υ,⊥〉
SpecBranchPred-NS
−−−−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ, (k, ϕ, σ, pc)〉

spec
−−→

j
〈ϕ′, σ′, pc′, Υ, (0, ϕ, σ, pc)〉

SpecRollback
−−−−−−−−−→ 〈ϕ, σ, ℓ, Υ,⊥〉

where 1 ≤ j ≤ k

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

By removing all speculative intermediate configurations we obtain the following non-
speculative trace:

π̃ns = ns(π̃s) = 〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ, ℓ, Υ,⊥〉

This corresponds to the non-speculative SpecBranch-NS rule. For ϕ(x) 6= 0 the
proof is similar.

5. Store instruction: Let ρ be a program where ρ(pc) = store x, e. Assume that the
store instruction starts a new transient execution with speculation window of size k,
therefore we have a predictor Υ with speculate(Υ, pc) and speculation-window(Υ, pc) =
k. We get the following speculative trace where the transient execution ends after at
most k steps:

π̃s = 〈ϕ, σ, pc, Υ,⊥〉
SpecStoreBypass-NS
−−−−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ, (k, ϕ, σ, pc)〉

spec
−−→

j
〈ϕ′, σ′, pc′, Υ, (0, ϕ, σ, pc)〉

SpecRollback
−−−−−−−−−→ 〈ϕ, σ′′, pc + 1, Υ,⊥〉

where 1 ≤ j ≤ k and σ′′ = σ[JeKϕ 7→ ϕ(x)]

By removing all speculative intermediate configurations we obtain the following non-
speculative trace:

π̃ns = ns(π̃s) = 〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ′′, pc + 1, Υ,⊥〉

where σ′′ = σ[JeKϕ 7→ ϕ(x)]

This corresponds to the non-speculative SpecStore-NS rule.

A.2 Well-definedness of instruction’s microarchitectural
effects

We show that the instruction’s microarchitectural effects are the same in case of correct
prediction as well as mis-prediction + rollback.

1. Branch instruction: Let ρ be a program where ρ(pc) = beqz x, ℓ and let ϕ be a
register assignment where ϕ(x) = 0.

Case A: Assume ¬speculate(Υ, pc).

〈ϕ, σ, pc, Υ,⊥, κ〉
µArch (SpecBranch-NS)
−−−−−−−−−−−−−−−−→ 〈ϕ, σ, ℓ, Υ,⊥, κ′〉

where κ′ = K-effects(κ, ϕ, σ, pc, ϕ, σ, ℓ)

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.3. Single speculative state is enough

Case B: Assume speculate(Υ, pc) and ¬taken(Υ, pc) and w.l.o.g.
speculation-window(Υ, pc) = 0.

〈ϕ, σ, pc, Υ,⊥, κ〉

µArch (SpecBranchPred-NS)
−−−−−−−−−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ, (0, ϕ, σ, pc), κ〉

µArch (SpecRollback)
−−−−−−−−−−−−−−−→ 〈ϕ, σ, ℓ, Υ,⊥, κ′′〉

where κ′′ = K-effects(κ, ϕ, σ, pc, ϕ, σ, ℓ)

By transitivity we obtain that κ′ = κ′′. Therefore, the branch instruction gives the
same microarchitectural effects in both cases. For ϕ(x) 6= 0 the proof is similar.

2. Store instruction: Let ρ be a program where ρ(pc) = store x, e.

Case A: Assume ¬speculate(Υ, pc).

〈ϕ, σ, pc, Υ,⊥, κ〉
µArch (SpecStore-NS)
−−−−−−−−−−−−−−−→ 〈ϕ, σ′, pc + 1, Υ,⊥, κ′〉

where σ′ = σ[JeKϕ 7→ ϕ(x)] and κ′ = K-effects(κ, ϕ, σ, pc, ϕ, σ′, pc + 1)

Case B: Assume speculate(Υ, pc) and w.l.o.g. speculation-window(Υ, pc) = 0.

〈ϕ, σ, pc, Υ,⊥, κ〉

µArch (SpecStoreBypass-NS)
−−−−−−−−−−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ, (0, ϕ, σ, pc), κ〉

µArch (SpecRollback)
−−−−−−−−−−−−−−−→ 〈ϕ, σ′′, pc + 1, Υ,⊥, κ′′〉

where σ′′ = σ[JeKϕ 7→ ϕ(x)] and κ′′ = K-effects(κ, ϕ, σ, pc, ϕ, σ′′, pc + 1)

By transitivity we obtain that σ′ = σ′′ and consequently also κ′ = κ′′. Therefore, the
store instruction gives the same microarchitectural effects in both cases.

A.3 Single speculative state is enough

We extend the transient execution semantics introduced in Section 3.3 with a stack
of speculative states. This allows us to capture nested speculative behavior similar to
Spectector [21]. In the following all the semantics rules of spec have been adjusted by
replacing the single speculative state ∆ with a stack of speculative states S, respectively
the empty speculative state ⊥ with an empty stack denoted as []. Notable differences
between spec+ and spec are: (i) Spec+BranchPred-S pushes a new speculative state
onto the stack, meaning that during transient execution the resolved branch is executed
in addition to the speculated one. (ii) Spec+StoreBypass-S pushes a new speculative
state onto the stack, meaning that during transient execution the non-bypassed store
path is executed in addition to the bypassed one. (iii) Rollback doesn’t immediately
stop the transient execution but instead only removes the speculative state from the top

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

of the stack, meaning that the transient execution continues until the stack is empty. If
multiple speculative states for the currently resolved p̂c exist (because of loops), then the
outermost speculative state with p̂c will be used for rollback instead of the top one. This
is motivated by the behavior of the re-order buffer. If a prediction for ρ(pc) gets resolved,
all corresponding entries depending on the prediction of ρ(pc) are either committed or
discarded [47].

Spec+Lift-NS
lift-inst(ρ(pc)) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, []〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ, []〉

Spec+Lift-S
lift-inst(ρ(pc)) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉 ω > 0

〈ϕ, σ, pc, Υ,S ⊳ (ω, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ,S ⊳ (ω − 1, ϕ̂, σ̂, p̂c)〉

Spec+Observe
ρ(pc) = obs

〈ϕ, σ, pc, Υ,S〉
spec+
−−−→ 〈ϕ, σ, pc + 1, Υ,S〉

Spec+Barrier-NS
ρ(pc) = spbarr

〈ϕ, σ, pc, Υ, []〉
spec+
−−−→ 〈ϕ, σ, pc + 1, Υ, []〉

Spec+Barrier-S
ρ(pc) = spbarr ω > 0

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c) :: S〉
spec+
−−−→ 〈ϕ, σ, pc, Υ, [(0, ϕ̂, σ̂, p̂c)]〉

Spec+Branch-NS
ρ(pc) = beqz x, ℓ ¬speculate(Υ, pc) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, []〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ, []〉

Spec+BranchPred-NS

ρ(pc) = beqz x, ℓ
speculate(Υ, pc) pc′ = ite(taken(Υ, pc), ℓ, pc + 1)

ω′ = speculation-window(Υ, pc)

〈ϕ, σ, pc, Υ, []〉
spec+
−−−→ 〈ϕ, σ, pc′, Υ, [(ω′, ϕ, σ, pc)]〉

Spec+Branch-S

ρ(pc) = beqz x, ℓ
¬speculate(Υ, pc) ω > 0 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,S ⊳ (ω, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ,S ⊳ (ω − 1, ϕ̂, σ̂, p̂c)〉

Spec+BranchPred-S

ρ(pc) = beqz x, ℓ
speculate(Υ, pc) ω > 0 pc′ = ite(taken(Υ, pc), ℓ, pc + 1)

ω′ = min(ω − 1, speculation-window(Υ, pc))
S ′ = S ⊳ (ω − 1, ϕ̂, σ̂, p̂c) ⊳ (ω′, ϕ, σ, pc)

〈ϕ, σ, pc, Υ,S ⊳ (ω, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ, σ, pc′, Υ,S ′〉

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.3. Single speculative state is enough

Spec+Store-NS
ρ(pc) = store x, e ¬speculate(Υ, pc) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, []〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ, []〉

Spec+StoreBypass-NS

ρ(pc) = store x, e
speculate(Υ, pc) ω′ = speculation-window(Υ, pc)

〈ϕ, σ, pc, Υ, []〉
spec+
−−−→ 〈ϕ, σ, pc + 1, Υ, [(ω′, ϕ, σ, pc)]〉

Spec+Store-S

ρ(pc) = store x, e
¬speculate(Υ, pc) ω > 0 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,S ⊳ (ω, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ,S ⊳ (ω − 1, ϕ̂, σ̂, p̂c)〉

Spec+StoreBypass-S

ρ(pc) = store x, e speculate(Υ, pc)
ω > 0 ω′ = min(ω − 1, speculation-window(Υ, pc))

S ′ = S ⊳ (ω − 1, ϕ̂, σ̂, p̂c) ⊳ (ω′, ϕ, σ, pc)

〈ϕ, σ, pc, Υ,S ⊳ (ω, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ, σ, pc + 1, Υ,S ′〉

Spec+Terminate
ρ(pc) = ⊥ ω > 0

〈ϕ, σ, pc, Υ,S ⊳ (ω, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ, σ, pc, Υ,S ⊳ (0, ϕ̂, σ̂, p̂c)〉

Spec+Rollback

S ⊳ (0, ϕ̂, σ̂, p̂c) = S ′
⋊⋉ [(_, ϕ̂′, σ̂′, p̂c′)] ⋊⋉ S ′′

p̂c = p̂c′ (_, _, _, p̂c) /∈ S ′ 〈ϕ̂′, σ̂′, p̂c′〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,S ⊳ (0, ϕ̂, σ̂, p̂c)〉
spec+
−−−→ 〈ϕ′, σ′, pc′, Υ,S ′〉

A.3.1 Proof Idea

We want to show that the simpler spec semantics allows us to observe the same leaks as
the more extensive spec+ semantics. The motivation for using spec instead of spec+ for
our purpose is, that spec gives shorter traces and thus provides smaller counter-examples
and additionally we expect that the resulting problem is “simpler” for the model checker
and therefore more scalable.

Suppose that we have a program ρ with two conditional branches at the beginning,
i.e. ρ = [1 : beqz x, ℓ1; 2 : beqz y, ℓ2; ...]. We evaluate program ρ with and without
nested speculation using both semantics to highlight the differences of both semantics in
case of speculation during transient execution. Given ϕ(x) = 0, ϕ(y) = 0, speculate(Υ, 1)
and ¬taken(Υ, 1).

Case 1: Assume that branch ρ(2) isn’t speculated, i.e. ¬speculate(Υ, 2).

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

π̃ = 〈ϕ, σ, 1, Υ,⊥〉
SpecBranchPred-NS
−−−−−−−−−−−−−−→

〈ϕ, σ, 2, Υ, (ω, ϕ, σ, 1)〉
SpecBranch-S
−−−−−−−−−→

〈ϕ, σ, ℓ2, Υ, (ω − 1, ϕ, σ, 1)〉
spec∗

−−−→

〈ϕ′, σ′, pc′, Υ, (0, ϕ, σ, 1)〉
SpecRollback
−−−−−−−−−→

〈ϕ, σ, ℓ1, Υ,⊥〉

π̃+ = 〈ϕ, σ, 1, Υ, []〉
Spec+BranchPred-NS
−−−−−−−−−−−−−−−→

〈ϕ, σ, 2, Υ, [(ω, ϕ, σ, 1)]〉
Spec+Branch-S
−−−−−−−−−−→

〈ϕ, σ, ℓ2, Υ, [(ω − 1, ϕ, σ, 1)]〉
spec∗

+
−−−→

〈ϕ′, σ′, pc′, Υ, [(0, ϕ, σ, 1)]〉
Spec+Rollback
−−−−−−−−−−→

〈ϕ, σ, ℓ1, Υ, []〉

Both semantics give the same program traces. Therefore, if π̃+ contains a leak
then π̃ contains the same leak.

Case 2: Assume that branch ρ(2) is mis-predicted, i.e. speculate(Υ, 2) and ¬taken(Υ, 2).

π̃ = 〈ϕ, σ, 1, Υ,⊥〉
SpecBranchPred-NS
−−−−−−−−−−−−−−→

〈ϕ, σ, 2, Υ, (ω, ϕ, σ, 1)〉
SpecBranchPred-S
−−−−−−−−−−−−→

〈ϕ, σ, 3, Υ, (ω − 1, ϕ, σ, 1)〉
spec∗

−−−→

〈ϕ′′, σ′′, pc′′, Υ, (0, ϕ, σ, 1)〉
SpecRollback
−−−−−−−−−→

〈ϕ, σ, ℓ1, Υ,⊥〉

π̃+ = 〈ϕ, σ, 1, Υ, []〉
Spec+BranchPred-NS
−−−−−−−−−−−−−−−→

〈ϕ, σ, 2, Υ, [(ω, ϕ, σ, 1)]〉
Spec+BranchPred-S
−−−−−−−−−−−−−→

〈ϕ, σ, 3, Υ, [(ω − 1, ϕ, σ, 1), (ω′, ϕ, σ, 2)]〉
spec∗

+
−−−→ (A)

〈ϕ′′, σ′′, pc′′, Υ, [(ω − 1, ϕ, σ, 1), (0, ϕ, σ, 2)]〉
Spec+Rollback
−−−−−−−−−−→ (B)

〈ϕ, σ, ℓ2, Υ, [(ω − 1, ϕ, σ, 1)]〉
spec∗

+
−−−→ (C)

〈ϕ′, σ′, pc′, Υ, [(0, ϕ, σ, 1)]〉
Spec+Rollback
−−−−−−−−−−→

〈ϕ, σ, ℓ1, Υ, []〉

The trace given by the spec semantics is a subset of the trace given by the
spec+ semantics, as the re-evaluation of the nested mis-predicted branch ρ(2) is
missing from π̃. If π̃+ contains a leak because of the nested mis-prediction (A),

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.3. Single speculative state is enough

then the same leak is also present in π̃. But what if π̃+ contains a leak because
of the re-evaluation of the mis-predicted branch ρ(2)? Then either resolving
of the branch instruction during rollback (B) or the subsequently executed
instructions (C) caused a leak. If we take a closer look at (C), we see that
the instructions are executed as if no mis-prediction has occurred, because the
register assignment and memory state from before the nested mis-prediction
have been restored. Meaning that if (C) contains a leak after resolving the
mis-prediction of branch ρ(2), the same leak is also present if branch ρ(2) has
been correctly executed in the first place. By Appendix A.2 we have that the
microarchitectural effects of the branch instruction in case of mis-prediction +
rollback are the same as in in case of correct execution. Therefore, if the leak
has been caused by the rollback at (B), the same leak is also present if branch
ρ(2) is correctly predicted. By combining the last two observations we get that
if π̃+ contains a leak because of the re-evaluation of the mis-predicted branch
ρ(2), the same leak is also present when correctly executing branch ρ(2) in the
first place as done in Case 1. For taken(Υ, 2) the reasoning is similar because
our semantics also performs a rollback in case of correct prediction.

We have that the simpler spec semantics allows us to observe the same leaks as the more
expensive spec+ semantics, given two initial predictors Υ1 and Υ2 with speculate(Υ1, 2)
respectively ¬speculate(Υ2, 2). Note that we don’t constrain the predictor and therefore
the solver can freely choose when and how to speculate and thus evaluate both cases.

A.3.2 Proof

By the definition of our semantics, the microarchitectural effects of each instruction
solely depend on the current register assignment, current memory state, current pro-
gram counter, next register assignment, next memory state and next program counter.
Therefore we show that spec yields the same microarchitectural effects as spec+. From
this follows that the spec semantics gives the same observations and consequently also
the same leaks as the spec+ semantics. Note that this proof requires that the effects are
modeled as an unbounded set, such as a cache with unbounded size.

In the following we let eff(ϕ, σ, pc, ϕ′, σ′, pc′) denote a microarchitectural effect, where
ϕ denotes the current register assignment, σ the current memory state, pc the current
program counter, ϕ′ the next register assignment, σ′ the next memory state and pc′ the
next program counter. We let effects(π) denote a set of such microarchitectural effects
for the instructions on path π.

Induction Hypothesis: Given ϕ, σ, pc, ϕ′, σ′, pc′ and Υ both semantics spec as
well as spec+ yield the same effects during transient execution. More formally, we

have that E = E+ where E = effects(〈ϕ, σ, pc, Υ, ∆〉
Spec
−−−→

∗
〈ϕ′, σ′, pc′, Υ, ∆′〉) and

E+ = effects(〈ϕ, σ, pc, Υ,S〉
Spec+
−−−−→

∗

〈ϕ′, σ′, pc′, Υ,S ′〉).

Base Case: Assume ¬speculate(Υ, pc), meaning no nested speculation.

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

1. Barrier instruction:

π̃+ = 〈ϕ, σ, pc, Υ,S〉
Spec+Barrier-S
−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ,S ′〉

π̃ = 〈ϕ, σ, pc, Υ, ∆〉
SpecBarrier-S
−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ, ∆′〉

We obtain {eff(ϕ, σ, pc, ϕ, σ, pc + 1)} for both, thus effects(π̃) = effects(π̃+).

2. Observe instruction:

π̃+ = 〈ϕ, σ, pc, Υ,S〉
Spec+Observe-S
−−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ,S〉

π̃ = 〈ϕ, σ, pc, Υ, ∆〉
SpecObserve-S
−−−−−−−−−−→ 〈ϕ, σ, pc + 1, Υ, ∆〉

We obtain {eff(ϕ, σ, pc, ϕ, σ, pc + 1)} for both, thus effects(π̃) = effects(π̃+).

3. Lifted instructions:

π̃+ = 〈ϕ, σ, pc, Υ,S〉
Spec+Lift-S
−−−−−−−−→ 〈ϕ′, σ′, pc′, Υ,S ′〉

where ϕ′, σ′ and pc′ is given by 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

π̃ = 〈ϕ, σ, pc, Υ, ∆〉
SpecLift-S
−−−−−−−→ 〈ϕ′′, σ′′, pc′′, Υ, ∆′〉

where ϕ′′, σ′′ and pc′′ is given by 〈ϕ, σ, pc〉 −→ 〈ϕ′′, σ′′, pc′′〉

Given that the default semantics is deterministic we have that ϕ′ = ϕ′′, σ′ = σ′′ and
pc′ = pc′′. We obtain {eff(ϕ, σ, pc, ϕ′, σ′, pc′)} for both, thus effects(π̃) = effects(π̃+).

4. Branch instruction:

π̃+ =〈ϕ, σ, pc, Υ,S〉
Spec+Branch-S
−−−−−−−−−−→ 〈ϕ, σ, pc′, Υ,S ′〉

where pc′ is given by 〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc′〉

π̃ = 〈ϕ, σ, pc, Υ, ∆〉
SpecBranch-S
−−−−−−−−−→ 〈ϕ, σ, pc′′, Υ, ∆′〉

where pc′′ is given by 〈ϕ, σ, pc〉 −→ 〈ϕ, σ, pc′′〉

Given that the default semantics is deterministic we have that pc′ = pc′′. We obtain
{eff(ϕ, σ, pc, ϕ, σ, pc′)} for both, thus effects(π̃) = effects(π̃+).

5. Store instruction:

π̃+ = 〈ϕ, σ, pc, Υ,S〉
Spec+Store-S
−−−−−−−−−→ 〈ϕ, σ′, pc′, Υ,S ′〉

where σ′ and pc′ is given by 〈ϕ, σ, pc〉 −→ 〈ϕ, σ′, pc′〉

π̃ = 〈ϕ, σ, pc, Υ, ∆〉
SpecStore-S
−−−−−−−−→ 〈ϕ, σ′′, pc′′, Υ, ∆′〉

where σ′′ and pc′′ is given by 〈ϕ, σ, pc〉 −→ 〈ϕ, σ′′, pc′′〉

Given that the default semantics is deterministic we have that σ′ = σ′′ and pc′ = pc′′.
We obtain {eff(ϕ, σ, pc, ϕ, σ′, pc′)} for both, thus effects(π̃) = effects(π̃+).

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.3. Single speculative state is enough

As we have shown the equality of microarchitectural effects for each instruction, we
have that for a sequence of non-speculated instructions effects(π̃) = effects(π̃+) holds.

Induction Step: Assume speculate(Υ, pc) for some transiently executed branch or
store instruction.

1. Branch instruction: Assume ϕ(x) = 0, ρ(pc) = beqz x, ℓ and ¬taken(Υ, pc).

By spec+ semantics we have a path π̃+ which yields the effects effects(π̃+). We split
the path into two cases, one for the nested speculation (A) and one for the resolved
speculation (B). We show that for both cases the same effects are observable by the
spec semantics.

π̃+ =
〈ϕ, σ, pc, Υ,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+BranchPred-S
−−−−−−−−−−−−−→

〈ϕ, σ, pc + 1, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (ω − 1, ϕ, σ, pc)]〉
spec∗

+
−−−−→

A

〈ϕ′, σ′, pc′, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (0, ϕ, σ, pc)]〉
Spec+Rollback
−−−−−−−−−−→

〈ϕ, σ, ℓ, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c)]〉
spec∗

+
−−−−→

〈ϕ′′, σ′′, pc′′, Υ,S ⋊⋉ [(0, ϕ̂, σ̂, p̂c)]〉

B

effects(π̃+) = effects(π̃A
+)

︸ ︷︷ ︸
A

∪ effects(π̃B
+)

︸ ︷︷ ︸
B

Case A: Let π̃A
+ be the sub-path covering the nested speculation. As the branch

speculation doesn’t have any immediate effects on the microarchitectural
component (see µArch in Section 3.4), we have that effects(π̃A

+) corre-
sponds to the effects of the following transiently executed instructions.
Let π̃A be the path given by the spec semantics. By the deterministic
behavior of both semantics we have that both yield the same final ϕ′, σ′

and pc′.

π̃A
+ = 〈ϕ, σ, pc, Υ,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+BranchPred-S
−−−−−−−−−−−−−→

〈ϕ, σ, pc + 1, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (ω − 1, ϕ, σ, pc)]〉
spec∗

+
−−−−→

〈ϕ′, σ′, pc′, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (0, ϕ, σ, pc)]〉

effects(π̃A
+) = effects(〈ϕ, σ, pc + 1, Υ,S ′〉

spec∗

+
−−−−→ 〈ϕ′, σ′, pc′, Υ,S ′′〉)︸ ︷︷ ︸

IH

π̃A = 〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
SpecBranchPred-S
−−−−−−−−−−−−→

〈ϕ, σ, pc + 1, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉
spec∗

−−−→

〈ϕ′, σ′, pc′, Υ, (0, ϕ̂, σ̂, p̂c)〉

effects(π̃A) = effects(〈ϕ, σ, pc + 1, Υ, ∆′〉
spec∗

−−−→ 〈ϕ′, σ′, pc′, Υ, ∆′′〉)︸ ︷︷ ︸
IH

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

By IH we obtain that effects(π̃A) = effects(π̃A
+).

Case B: Let π̃B
+ be the sub-path covering the resolved speculation. We have that

effects(π̃B
+) consists of the effect of the resolved branch instruction as well

as the effects of the subsequently executed instructions.

π̃B
+ = 〈ϕ, σ, pc, Υ,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+BranchPred-S
−−−−−−−−−−−−−→

〈ϕ′, σ′, pc′, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (0, ϕ, σ, pc)]〉
Spec+Rollback
−−−−−−−−−−→

〈ϕ, σ, ℓ, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c)]〉
spec∗

+
−−−−→

〈ϕ′′, σ′′, pc′′, Υ,S ⋊⋉ [(0, ϕ̂, σ̂, p̂c)]〉

By Appendix A.2 we have that the microarchitectural effects of the branch
instruction in case of speculation + rollback are the same as in in case of
correct execution. Therefore we can replace the nested speculation in π̃B

+

with a correct execution, while preserving its microarchitectural effects.
Let Υr be a predictor which is equal to Υ expect that ¬speculate(Υr, pc).
Let π̃B

+
′

denote the transformed sub-path with predictor Υr. Note that
this transformation is also valid in case of loops, because on rollback all
nested speculative executions of the branch at pc are resolved. Let π̃B be
the path given by the spec semantics. By the deterministic behavior of
both semantics we have that both yield the same final ϕ′′, σ′′ and pc′′.

π̃B
+

′
= 〈ϕ, σ, pc, Υr,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+Branch-S
−−−−−−−−−−→

〈ϕ, σ, ℓ, Υr,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c)]〉
spec∗

+
−−−−→

〈ϕ′′, σ′′, pc′′, Υr,S ⋊⋉ [(0, ϕ̂, σ̂, p̂c)]〉

effects(π̃B
+

′
) = {eff(ϕ, σ, pc, ϕ, σ, ℓ)} ∪

effects(〈ϕ, σ, ℓ, Υr,S ′〉
spec∗

+
−−−−→ 〈ϕ′′, σ′′, pc′′, Υr,S ′′〉)︸ ︷︷ ︸

IH

π̃B = 〈ϕ, σ, pc, Υr, (ω, ϕ̂, σ̂, p̂c)〉
SpecBranch-S
−−−−−−−−−→

〈ϕ, σ, ℓ, Υr, (ω − 1, ϕ̂, σ̂, p̂c)〉
spec∗

−−−→

〈ϕ′′, σ′′, pc′′, Υr, (0, ϕ̂, σ̂, p̂c)〉

effects(π̃B) = {eff(ϕ, σ, pc, ϕ, σ, ℓ)} ∪

effects(〈ϕ, σ, ℓ, Υr, ∆′〉
spec∗

−−−→ 〈ϕ′′, σ′′, pc′′, Υr, ∆′′〉)︸ ︷︷ ︸
IH

By IH and equality of eff(ϕ, σ, pc, ϕ, σ, ℓ) we obtain that effects(π̃B) =
effects(π̃B

+
′
). As the transformation of π̃B

+ was effect preserving we fur-
thermore obtain that effects(π̃B) = effects(π̃B

+).

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.3. Single speculative state is enough

We have effects(π̃A) = effects(π̃A
+) and effects(π̃B) = effects(π̃B

+). Consequently
it holds that effects(π̃+) = effects(π̃A) ∪ effects(π̃B). We can re-formulate it as
effects(π̃+) = effects(π̃speculate(pc)) ∪ effects(π̃¬speculate(pc)), meaning that for spec
semantics the transient execution started at p̂c needs to be evaluated twice, with
and without speculation for the transiently executed branch instruction at pc, to
observe the same effects. For ϕ(x) 6= 0 respectively taken(Υ, pc) the proof is similar.

2. Store instruction: Assume ρ(pc) = store x, e.

By spec+ semantics we have a path π̃+ which yields the effects effects(π̃+). We split
the path into two cases, one for the nested speculation (A) and one for the resolved
speculation (B). We show that for both cases the same effects are observable by the
spec semantics.

π̃+ =
〈ϕ, σ, pc, Υ,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+StoreBypass-S
−−−−−−−−−−−−−−→

〈ϕ, σ, pc + 1, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (ω − 1, ϕ, σ, pc)]〉
spec∗

+
−−−−→

A

〈ϕ′, σ′, pc′, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (0, ϕ, σ, pc)]〉
Spec+Rollback
−−−−−−−−−−→

〈ϕ, σr, pc + 1, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c)]〉
spec∗

+
−−−−→

〈ϕ′′, σ′′, pc′′, Υ,S ⋊⋉ [(0, ϕ̂, σ̂, p̂c)]〉

B

where σr = σ[JeKϕ 7→ ϕ(x)]

effects(π̃+) = effects(π̃A
+)

︸ ︷︷ ︸
A

∪ effects(π̃B
+)

︸ ︷︷ ︸
B

Case A: Let π̃A
+ be the sub-path covering the nested speculation. As the bypassed

store doesn’t have any immediate effects on the microarchitectural com-
ponent (see µArch in Section 3.4), we have that effects(π̃A

+) corresponds
to the effects of the following transiently executed instructions. Let π̃A

be the path given by the spec semantics. By the deterministic behavior

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

of both semantics we have that both yield the same final ϕ′, σ′ and pc′.

π̃A
+ = 〈ϕ, σ, pc, Υ,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+StoreBypass-S
−−−−−−−−−−−−−−→

〈ϕ, σ, pc + 1, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (ω − 1, ϕ, σ, pc)]〉
spec∗

+
−−−−→

〈ϕ′, σ′, pc′, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (0, ϕ, σ, pc)]〉

effects(π̃A
+) = effects(〈ϕ, σ, pc + 1, Υ,S ′〉

spec∗

+
−−−−→ 〈ϕ′, σ′, pc′, Υ,S ′′〉)︸ ︷︷ ︸

IH

π̃A = 〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
SpecStoreBypass-S
−−−−−−−−−−−−−→

〈ϕ, σ, pc + 1, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉
spec∗

−−−→

〈ϕ′, σ′, pc′, Υ, (0, ϕ̂, σ̂, p̂c)〉

effects(π̃A) = effects(〈ϕ, σ, pc + 1, Υ, ∆′〉
spec∗

−−−→ 〈ϕ′, σ′, pc′, Υ, ∆′′〉)︸ ︷︷ ︸
IH

By IH we obtain that effects(π̃A) = effects(π̃A
+).

Case B: Let π̃B
+ be the sub-path covering the resolved speculation. We have that

effects(π̃B
+) consists of the effect of the resolved store instruction as well

as the effects of the subsequently executed instructions.

π̃B
+ = 〈ϕ, σ, pc, Υ,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+StoreBypass-S
−−−−−−−−−−−−−−→

〈ϕ′, σ′, pc′, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c), (0, ϕ, σ, pc)]〉
Spec+Rollback
−−−−−−−−−−→

〈ϕ, σr, pc + 1, Υ,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c)]〉
spec∗

+
−−−−→

〈ϕ′′, σ′′, pc′′, Υ,S ⋊⋉ [(0, ϕ̂, σ̂, p̂c)]〉

where σr = σ[JeKϕ 7→ ϕ(x)]

By Appendix A.2 we have that the microarchitectural effects of the store
instruction in case of speculation + rollback are the same as in in case of
correct execution. Therefore we can replace the nested speculation in π̃B

+

with a correct execution, while preserving its microarchitectural effects.
Let Υr be a predictor which is equal to Υ expect that ¬speculate(Υr, pc).
Let π̃B

+
′

denote the transformed sub-path with predictor Υr. Note that
this transformation is also valid in case of loops, because on rollback all
nested speculative executions of the branch at pc are resolved. Let π̃B be
the path given by the spec semantics. By the deterministic behavior of

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.3. Single speculative state is enough

both semantics we have that both yield the same final ϕ′′, σ′′ and pc′′.

π̃B
+

′
= 〈ϕ, σ, pc, Υr,S ⋊⋉ [(ω, ϕ̂, σ̂, p̂c)]〉

Spec+Store-S
−−−−−−−−−→

〈ϕ, σr, pc + 1, Υr,S ⋊⋉ [(ω − 1, ϕ̂, σ̂, p̂c)]〉
spec∗

+
−−−−→

〈ϕ′′, σ′′, pc′′, Υr,S ⋊⋉ [(0, ϕ̂, σ̂, p̂c)]〉

where σr = σ[JeKϕ 7→ ϕ(x)]

effects(π̃B
+

′
) = {eff(ϕ, σ, pc, ϕ, σr, pc + 1)} ∪

effects(〈ϕ, σr, pc + 1, Υr,S ′〉
spec∗

+
−−−−→ 〈ϕ′′, σ′′, pc′′, Υr,S ′′〉)︸ ︷︷ ︸

IH

π̃B = 〈ϕ, σ, pc, Υr, (ω, ϕ̂, σ̂, p̂c)〉
SpecStore-S
−−−−−−−−→

〈ϕ, σr, pc + 1, Υr, (ω − 1, ϕ̂, σ̂, p̂c)〉
spec∗

−−−→

〈ϕ′′, σ′′, pc′′, Υr, (0, ϕ̂, σ̂, p̂c)〉

effects(π̃B) = {eff(ϕ, σ, pc, ϕ, σr, pc + 1)} ∪

effects(〈ϕ, σr, pc + 1, Υr, ∆′〉
spec∗

−−−→ 〈ϕ′′, σ′′, pc′′, Υr, ∆′′〉)︸ ︷︷ ︸
IH

By IH and equality of eff(ϕ, σ, pc, ϕ, σr, pc+1)} we obtain that effects(π̃B) =
effects(π̃B

+
′
). As the transformation of π̃B

+ was effect preserving we fur-
thermore obtain that effects(π̃B) = effects(π̃B

+).

We have effects(π̃A) = effects(π̃A
+) and effects(π̃B) = effects(π̃B

+). Consequently
it holds that effects(π̃+) = effects(π̃A) ∪ effects(π̃B). We can re-formulate it as
effects(π̃+) = effects(π̃speculate(pc)) ∪ effects(π̃¬speculate(pc)), meaning that for spec
semantics the transient execution started at p̂c needs to be evaluated twice, with and
without speculation for the transiently executed store instruction at pc, to observe
the same effects.

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX B
Miscellaneous

B.1 Predictor Comparison

In this section we compare our taken/not-taken predictor to the mis-predict predictor as
used in Spectector [21]. To avoid any confusions with out definitions from Section 3.3,
we denote the mis-predict predictor as mis-speculate predictor. First we give a short
definition of the branching behavior of both predictors, then we show that depending
on the adversary’s observational capabilities, the mis-speculate predictor may not be
sufficient to catch all transient execution vulnerabilities.

B.1.1 Taken/Not-Taken Predictor

The predicate speculate(Υ, pc) denotes if speculative execution should be started at pro-
gram location pc. In real attacks the adversary would for example flush specific values
from the cache to trigger the speculative execution. The predicate taken(Υ, pc) denotes if
a branch, when executed speculatively, should be taken or not. This models the behavior
of the branch predictor, more specifically the behavior of the PHT. In real attacks the
adversary would for example train the branch predictor accordingly to either take or not
take the branch.

SpecBranch-NS
ρ(pc) = beqz x, ℓ ¬speculate(Υ, pc) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ,⊥〉

SpecBranchPred-NS

ρ(pc) = beqz x, ℓ
speculate(Υ, pc) pc′ = ite(taken(Υ, pc), ℓ, pc + 1)

ω′ = speculation-window(Υ, pc)

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ, pc′, Υ, (ω′, ϕ, σ, pc)〉

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Miscellaneous

SpecBranch-S

ρ(pc) = beqz x, ℓ
¬speculate(Υ, pc) ω > 0 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

SpecBranchPred-S

ρ(pc) = beqz x, ℓ
speculate(Υ, pc) ω > 0 pc′ = ite(taken(Υ, pc), ℓ, pc + 1)

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ, σ, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

Note that SpecBranchPred-NS as defined above may also transiently execute
correctly predicted paths. Meaning that a path is first transiently executed until the
speculation limit is reached and then after rollback the exact same path is re-executed.
The reason for that is, that we only model “rollback” but not “commit”. While this
doesn’t affect the correctness of the semantics, it may introduce unnecessary paths which
need to be examined by the solver.

B.1.2 Mis-Speculate Predictor

The predicate mis-speculate(Υ, pc) denotes if the instruction at program location pc
should be mis-speculated. By mis-speculate(Υ, pc) the adversary can control for which
instruction mis-speculation should be enforced, in real attacks the adversary would for
example flush the cache and train the branch predictor accordingly.

The branch instruction may mis-predict the branch decision, meaning that the op-
posite decision compared to the non-speculative semantics is taken if the predicate
mis-speculate(Υ, pc) holds. Therefore, in contrast to the taken/not-taken predictor, the
path taken during mis-speculation depends on the actual condition value instead of
adversary controllable input.

SpecBranch-NS

ρ(pc) = beqz x, ℓ
¬mis-speculate(Υ, pc) 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ,⊥〉

SpecBranchMis-NS

ρ(pc) = beqz x, ℓ mis-speculate(Υ, pc)
pc′ = ite(ϕ(x) = 0, pc + 1, ℓ) ω′ = speculation-window(Υ, pc)

〈ϕ, σ, pc, Υ,⊥〉
spec
−−→ 〈ϕ, σ, pc′, Υ, (ω′, ϕ, σ, pc)〉

SpecBranch-S

ρ(pc) = beqz x, ℓ
¬mis-speculate(Υ, pc) ω > 0 〈ϕ, σ, pc〉 −→ 〈ϕ′, σ′, pc′〉

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ′, σ′, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

SpecBranchMis-S

ρ(pc) = beqz x, ℓ
mis-speculate(Υ, pc) ω > 0 pc′ = ite(ϕ(x) = 0, pc + 1, ℓ)

〈ϕ, σ, pc, Υ, (ω, ϕ̂, σ̂, p̂c)〉
spec
−−→ 〈ϕ, σ, pc′, Υ, (ω − 1, ϕ̂, σ̂, p̂c)〉

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B.1. Predictor Comparison

B.1.3 Comparison

beqz x, ℓ beqz xd, ℓ Mis-Speculate Taken/Not-Taken

ϕ(x) = 0 ϕ(xd) 6= 0

¬mis-speculate(Υ, pc) ¬speculate(Υ, pc)
pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

mis-speculate(Υ, pc) speculate(Υ, pc) ∧ taken(Υ, pc)
pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

speculate(Υ, pc) ∧ ¬taken(Υ, pc)
pc

pc + 1 ℓ

pc

pc + 1 ℓ

ϕ(x) = 0 ϕ(xd) = 0

¬mis-speculate(Υ, pc) ¬speculate(Υ, pc)
pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

mis-speculate(Υ, pc) speculate(Υ, pc) ∧ taken(Υ, pc)
pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

pc

pc + 1 ℓ

speculate(Υ, pc) ∧ ¬taken(Υ, pc)
pc

pc + 1 ℓ

pc

pc + 1 ℓ

Table B.1: Path Combinations of Mis-Speculate and Taken/Not-Taken Predictors for
Self-Composed Branch Instruction (correct paths are green, transient paths are red).

In Table B.1 the path combinations of both predictors for a self-composed branch in-
struction beqz x, ℓ are shown. The cases ϕ(x) 6= 0∧ϕ(xd) = 0 and ϕ(x) 6= 0∧ϕ(xd) 6= 0
are exactly contrary to the listed cases and therefore intentionally left out.

Without speculative execution, meaning neither mis-speculate(Υ, pc) nor speculate(Υ, pc)
holds, both predictors give the same path combinations in both cases. Additionally, when
the branch conditions are equal, meaning ϕ(x) = 0 and ϕ(xd) = 0, both predictors give
the same path combinations even in the presence of speculative execution.

The only case where the predictors give different path combinations is, when the

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Miscellaneous

branch is mis-predicted respectively speculatively executed and the branch conditions
are unequal, meaning ϕ(x) = 0 and ϕ(xd) 6= 0, which can only happen if the branch
condition depends on high-security input.

In a nutshell, the predictors give dissimilar path combinations when the control-flow
depends on high-security input with distinct condition values. This is problematic for the
mis-speculate predictor, as some transient execution leaks may be missed under specific
conditions.

• Suppose that the adversary cannot directly observe the program counter, meaning
that the branch condition can only be leaked indirectly.

• Assume that

pc

pc + 1 ℓ ≈Obs

pc

pc + 1 ℓ and

pc

pc + 1 ℓ ≈Obs

pc

pc + 1 ℓ holds,
meaning that the instructions on both branches yield equal observations when both
are executed correctly or both are executed transiently.

• This assumption doesn’t prevent that

pc

pc + 1 ℓ 6≈Obs

pc

pc + 1 ℓ respectively
pc

pc + 1 ℓ 6≈Obs

pc

pc + 1 ℓ holds, meaning that the instructions on both branches
yield differing observations when one is executed correctly while the other is exe-
cuted transiently.

In such a scenario only the taken/not-taken predictor is able to detect the transient
execution leaks. The mis-speculate predictor fails to detect the transient execution leaks
because of our assumption that both paths yield the same observations during transient
execution.

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B.1. Predictor Comparison

B.1.4 Example

1 int x = nondet() ? 1 : -1;

2 int zero = 0;

3

4 void victim() {

5 if (...) {

6 // transient execution

7 if (x >= zero) {

8 v = x;

9 } else {

10 v = -x;

11 }

12 cache_encode(v);

13 }

14 }

Listing B.1: High-Security Conditional

1 int xd = nondet() ? 1 : -1;

2 int zerod = 0;

3

4 void victimd() {

5 if (...) {

6 // transient execution

7 if (xd >= zerod) {

8 vd = xd;

9 } else {

10 vd = -xd;

11 }

12 cache_encode(vd);

13 }

14 }

Listing B.2: Self-Composition of B.1

Listings B.1 and B.2 show a small example to demonstrate the difference of both pre-
dictors as explained above. We have a high-security variable x respectively xd. W.l.o.g.
assume that x = +1 and xd = −1. We show for both predictors how the variables v and
vd as well as the program counter evolves from line 7 to 12.

1. Mis-Speculate Predictor:

Case A: Assume that ¬mis-speculate(Υ, 7).

(v : ⊥, pc : 7)→ (v : ⊥, pc : 8)→ (v : +1, pc : 12)

(vd : ⊥, pcd : 7)→ (vd : ⊥, pcd : 10︸ ︷︷ ︸
pc 6= pcd

)→ (vd : +1, pcd : 12)

Case B: Assume that mis-speculate(Υ, 7).

(v : ⊥, pc : 7)→ (v : ⊥, pc : 10)→ (v : −1, pc : 12)

(vd : ⊥, pcd : 7)→ (vd : ⊥, pcd : 8︸ ︷︷ ︸
pc 6= pcd

)→ (vd : −1, pcd : 12)

In both cases information about x is leaked via pc. An adversary who can observe
the control-flow, for example through the branch-predictor, is able to learn sensitive
information about x. We get that with the mis-speculate predictor the adversary
needs to be able to observe the control-flow to obtain the leak. For an adversary who
can only observe memory accesses, the program shown in Listing B.1 will be marked
as secure!

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Miscellaneous

2. Taken/Not-Taken Predictor:

Case A: Assume that ¬speculate(Υ, 7).

(v : ⊥, pc : 7)→ (v : ⊥, pc : 8)→ (v : +1, pc : 12)

(vd : ⊥, pcd : 7)→ (vd : ⊥, pcd : 10︸ ︷︷ ︸
pc 6= pcd

)→ (vd : +1, pcd : 12)

In this case information about x is leaked via pc. An adversary who can
observe the control-flow, for example through the branch-predictor, is able
to learn sensitive information about x.

Case B: Assume that speculate(Υ, 7) and taken(Υ, 7).

(v : ⊥, pc : 7)→ (v : ⊥, pc : 10)→ (v : −1, pc : 12)

(vd : ⊥, pcd : 7)→ (vd : ⊥, pcd : 10)→ (vd : +1︸ ︷︷ ︸
v 6= vd

, pcd : 12)

In this case information about x is leaked via v. An adversary who can
observe the value of v, for example by leaking it through a cache-based
covert-channel, is able to learn sensitive information about x.

Case C: Assume that speculate(Υ, 7) and ¬taken(Υ, 7).

(v : ⊥, pc : 7)→ (v : ⊥, pc : 8)→ (v : +1, pc : 12)

(vd : ⊥, pcd : 7)→ (vd : ⊥, pcd : 8)→ (vd : −1︸ ︷︷ ︸
v 6= vd

, pcd : 12)

In this case information about x is leaked via v. An adversary who can
observe the value of v, for example by leaking it through a cache-based
covert-channel, is able to learn sensitive information about x.

We get that the leak is visible to an adversary who can observe the control-flow
and/or memory accesses. In contrast to the mis-speculate predictor shown in 1., the
taken/not-taken predictor marks the program shown in Listing B.1 as insecure, even
when the adversary can e.g. only observe the cache.

B.2 SpecBMC Environment Reference

In this section we provide the reference of SpecBMC’s environment file:

HIR/LIR optimization level: none, basic, full [default: full]

- none: no optimizations

- basic: copy propagation

- full: constant folding & propagation, expression

simplification and copy propagation

optimization: full

132

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B.2. SpecBMC Environment Reference

SMT solver: z3, cvc4, yices2 [default: yices2]

solver: yices2

Analysis

analysis:

Search for Spectre-PHT? false, true [default: true]

spectre_pht: true

Search for Spectre-STL? false, true [default: false]

spectre_stl: false

Type of leak check: [default: only_transient_leaks]

- only_transient_leaks: Only find leaks which are there

because of transient execution

- only_normal_leaks: Find normal leaks (no transient

execution)

- all_leaks: Search for both types of leaks

check: only_transient_leaks

Branch prediction strategy: [default: choose_path]

- choose_path: predict taken/not-taken

- invert_condition: mis-predict (take the opposite)

predictor_strategy: choose_path

The default number of loop iterations to unwind: n >= 0

unwind: 0

The number of loop iterations to unwind for specific loops

(key is loop id, value is unwinding bound >= 0).

If no specific loop bound is given, the default unwinding bound

is used instead.

unwind_loop:

...

Use unwinding assumptions or assertions [default: assumption]

unwinding_guard: assumption

Recursion limit for recursive function-inlining: [default: 0]

recursion_limit: 0

Start with empty (flushed) cache? false, true [default: false]

Note: Only available when using CVC4 or Z3.

start_with_empty_cache: false

Type of observation: [default: parallel]

- sequential: Observe only at the end of the program.

- parallel: Observe each instruction and control-flow join.

- trace: Observe trace of side effects.

observe: parallel

Type of analysis model: components, pc [default: components]

- components: Observe microarchitectual components like

cache, branch-target buffer, ...

- pc: Observe program counter and memory locations

model: components

The program entry point: string [default: entry point from ELF]

program_entry: "main"

List of function names which should not be inlined

inline_ignore: []

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Miscellaneous

Architecture

architecture:

Is cache available to attacker? [default: true]

cache: true

Is branch target buffer available to attacker? [default: true]

btb: true

Is pattern history table available to attacker? [default: true]

pht: true

The length of the speculation window: n >= 0 [default: 100]

speculation_window: 100

Security policy

policy:

registers:

Default security policy of all registers: low, high

default: low

List of high-security registers

(only makes sense when default is low)

high: []

List of low-security registers

(only makes sense when default is high)

low: []

memory: # Sections with start and end address (end is exclusive)

Default security policy of all memory locations: low, high

default: high

List of high-security memory locations

(only makes sense when default is low)

high: []

List of low-security memory locations

(only makes sense when default is high)

low: []

Initial Setup

setup:

Prepare stack (0xffff_0000_0000 < rsp <= rbp) and return addr

init_stack: false

Initial register content (key is name, value is content)

registers:

...

Initial flag register content (key is name, value is state)

flags:

...

Initial memory content (key is address, value is content)

memory:

...

Debug mode: false, true [default: false]

debug: false

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 From Binary to µASM . 9

3.1 Out-of-order Execution and Retirement 13
3.2 Simplified Transient Execution Attack Classification Tree [7] 14
3.3 Cause of Transient Execution (adopted from [18]) 15
3.4 Four Phases of a Transient Execution Attack 16
3.5 Control-Flow Graph and Transient Attack Path of Victim Function . . . 18
3.6 Simplified Memory Instruction Sequence of Victim Function 21

4.1 From Memory Address to Cache Tag, Index and Block Offset 31
4.2 Cache State Depending on the Least-Significant Bit of y 34
4.3 Cache Example Traces for LSB(y) = 1 and LSB(y) = 0 35
4.4 AVX Unit State Depending on the Least-Significant Bit of y 37
4.5 AVX Unit Example Traces for LSB(y) = 1 and LSB(y) = 0 38
4.6 BTB State Depending on the Least-Significant Bit of y 42
4.7 PHT State Depending on the Least-Significant Bit of y 42
4.8 BTB Example Traces for LSB(y) = 1 and LSB(y) = 0 43

5.1 Architecture of SpecBMC . 45
5.2 High-level Intermediate Representation of Kocher01 Example 49
5.3 Function Inlining Example . 53
5.4 Loop Unrolling Example . 53
5.5 Transient Execution Transformation Example 54
5.6 Observation Models applied to Kocher01 Example 56
5.7 SSA Transformation Example . 58
5.8 Transformed High-level Intermediate Representation of Kocher01 Example 61
5.9 Mid-level Intermediate Representation of Kocher01 Example 64
5.10 Counterexample for Kocher01 Example 73
5.11 Program Counter Model applied to Kocher01 Example 74

6.1 Assembly Code of Spectre-PHT Victim Function 79
6.2 Assembly Code of Kocher Example 10 (O2, SLH) 87
6.3 Assembly Code of Kocher Example 15 (O0, SLH) 89
6.4 Execution Time of SpecBMC using different Settings (Examples 1-5) . . . 90
6.5 Execution Time of SpecBMC using different Settings (Examples 6-10) . . 91

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.6 Execution Time of SpecBMC using different Settings (Examples 11-15) . 92
6.7 Execution Time of SpecBMC and Spectector (Examples 1-5) 93
6.8 Execution Time of SpecBMC and Spectector (Examples 6-10) 94
6.9 Execution Time of SpecBMC and Spectector (Examples 11-15) 95
6.10 Simplified Assembly Code of ptrace_set_debugreg() 102

7.1 Spectre-PHT Information Leak in Spectector 104

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

6.1 Hard- and Software Configuration . 75
6.2 Evaluation Results for Spectre-STL + Mitigation 78
6.3 Evaluation Results for Spectre-PHT + Mitigation 82
6.4 Evaluation Results of Kocher Examples for Different Settings 85

7.1 Comparison of TPOD and SNI Hyperproperty 106

B.1 Path Combinations of Mis-Speculate and Taken/Not-Taken Predictors for
Self-Composed Branch Instruction (correct paths are green, transient paths
are red). 129

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] Onur Aciiçmez. „Yet Another MicroArchitectural Attack:: Exploiting I-Cache“.
In: Proceedings of the 2007 ACM Workshop on Computer Security Architecture.
CSAW ’07. Fairfax, Virginia, USA: ACM, 2007, pp. 11–18. isbn: 978-1-59593-890-
9. doi: 10.1145/1314466.1314469. url: https://doi.acm.org/10.
1145/1314466.1314469.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. „On the Power of Sim-
ple Branch Prediction Analysis“. In: Proceedings of the 2Nd ACM Symposium
on Information, Computer and Communications Security. ASIACCS ’07. Singa-
pore: ACM, 2007, pp. 312–320. isbn: 1-59593-574-6. doi: 10.1145/1229285.
1266999. url: https://doi.acm.org/10.1145/1229285.1266999.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. „Predicting Secret Keys
via Branch Prediction“. In: Proceedings of the 7th Cryptographers’ Track at the
RSA Conference on Topics in Cryptology. CT-RSA’07. San Francisco, CA: Springer-
Verlag, 2006, pp. 225–242. isbn: 3-540-69327-0, 978-3-540-69327-7. doi: 10.1007/
11967668_15. url: https://dx.doi.org/10.1007/11967668_15.

[4] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd Edition).
USA: Addison-Wesley Longman Publishing Co., Inc., 2006. isbn: 0321486811.

[5] Roberto Baldoni et al. „A Survey of Symbolic Execution Techniques“. In: ACM
Comput. Surv. 51.3 (2018).

[6] Gilles Barthe, Pedro R. D’argenio, and Tamara Rezk. „Secure Information Flow by
Self-Composition“. In: Mathematical. Structures in Comp. Sci. 21.6 (Dec. 2011),
pp. 1207–1252. issn: 0960-1295. doi: 10.1017/S0960129511000193. url:
https://doi.org/10.1017/S0960129511000193.

[7] Claudio Canella et al. „A Systematic Evaluation of Transient Execution Attacks
and Defenses“. In: CoRR abs/1811.05441 (2018). arXiv: 1811.05441. url: htt
ps://arxiv.org/abs/1811.05441.

[8] Chandler Carruth. LLVM: Introduce a new pass to do speculative load hardening
to mitigate Spectre variant #1 for x86. May 2018. url: https://reviews.
llvm.org/D44824.

[9] Chandler Carruth. Speculative Load Hardening. Mar. 2018. url: https://llvm.
org/docs/SpeculativeLoadHardening.html.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1145/1314466.1314469
https://doi.acm.org/10.1145/1314466.1314469
https://doi.acm.org/10.1145/1314466.1314469
https://doi.org/10.1145/1229285.1266999
https://doi.org/10.1145/1229285.1266999
https://doi.acm.org/10.1145/1229285.1266999
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/11967668_15
https://dx.doi.org/10.1007/11967668_15
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://arxiv.org/abs/1811.05441
https://arxiv.org/abs/1811.05441
https://arxiv.org/abs/1811.05441
https://reviews.llvm.org/D44824
https://reviews.llvm.org/D44824
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[10] Kevin Cheang et al. „A Formal Approach to Secure Speculation“. In: Proceedings
of the Computer Security Foundations Symposium (CSF). 2019.

[11] Edmund Clarke, Daniel Kroening, and Flavio Lerda. „A Tool for Checking ANSI-C
Programs“. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004). Ed. by Kurt Jensen and Andreas Podelski. Vol. 2988. Lecture
Notes in Computer Science. Springer, 2004, pp. 168–176. isbn: 3-540-21299-X.

[12] Edmund M. Clarke et al. „Model Checking and the State Explosion Problem“. In:
Tools for Practical Software Verification: LASER, International Summer School
2011, Elba Island, Italy, Revised Tutorial Lectures. Ed. by Bertrand Meyer and
Martin Nordio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–30.
isbn: 978-3-642-35746-6. doi: 10.1007/978-3-642-35746-6_1. url: https:
//doi.org/10.1007/978-3-642-35746-6_1.

[13] Purnendu Das. „Role of Cache Replacement Policies in High Performance Com-
puting Systems: A Survey“. In: Communication, Networks and Computing. Ed.
by Shekhar Verma et al. Singapore: Springer Singapore, 2019, pp. 400–410. isbn:
978-981-13-2372-0.

[14] Goran Doychev et al. „CacheAudit: A Tool for the Static Analysis of Cache
Side Channels“. In: Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13). Washington, D.C.: USENIX, 2013, pp. 431–446. isbn: 978-
1-931971-03-4. url: https://www.usenix.org/conference/usenixsecu
rity13/technical-sessions/paper/doychev.

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. „Jump over ASLR: At-
tacking branch predictors to bypass ASLR“. In: 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). Oct. 2016, pp. 1–13. doi:
10.1109/MICRO.2016.7783743.

[16] Qian Ge et al. „A survey of microarchitectural timing attacks and countermeasures
on contemporary hardware“. In: Journal of Cryptographic Engineering 8.1 (Apr.
2018), pp. 1–27. issn: 2190-8516. doi: 10.1007/s13389-016-0141-6. url:
https://doi.org/10.1007/s13389-016-0141-6.

[17] Corey Gough, Ian Steiner, and Winston Saunders. „CPU Power Management“. In:
Energy Efficient Servers: Blueprints for Data Center Optimization. Berkeley, CA:
Apress, 2015, pp. 21–70. isbn: 978-1-4302-6638-9. doi: 10.1007/978-1-4302-
6638-9_2. url: https://doi.org/10.1007/978-1-4302-6638-9_2.

[18] Daniel Gruss and Claudio Canella. transient.fail: Transient Execution Attacks. Feb.
2019. url: https://transient.fail/.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. „Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches“. In: 24th USENIX Security
Symposium (USENIX Security 15). Washington, D.C.: USENIX Association, Aug.
2015, pp. 897–912. isbn: 978-1-931971-232. url: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation

/gruss.

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://doi.org/10.1109/MICRO.2016.7783743
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/978-1-4302-6638-9_2
https://doi.org/10.1007/978-1-4302-6638-9_2
https://doi.org/10.1007/978-1-4302-6638-9_2
https://transient.fail/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[20] Daniel Gruss et al. „Flush+Flush: A Fast and Stealthy Cache Attack“. In: Lecture
Notes in Computer Science (2016), pp. 279–299. issn: 1611-3349. doi: 10.1007/
978-3-319-40667-1_14. url: https://dx.doi.org/10.1007/978-3-
319-40667-1_14.

[21] Marco Guarnieri et al. „SPECTECTOR: Principled Detection of Speculative In-
formation Flows“. In: CoRR abs/1812.08639 (2018). arXiv: 1812.08639. url:
https://arxiv.org/abs/1812.08639.

[22] David Gullasch, Endre Bangerter, and Stephan Krenn. „Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice“. In: Proceedings of the 2011
IEEE Symposium on Security and Privacy. SP ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 490–505. isbn: 978-0-7695-4402-1. doi: 10.1109/
SP.2011.22. url: https://doi.org/10.1109/SP.2011.22.

[23] Jann Horn. speculative execution, variant 4: speculative store bypass. Feb. 2018.
url: https://bugs.chromium.org/p/project-zero/issues/detail?
id=1528.

[24] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Vol. 1: Basic Architecture. 253665-060US. Sept. 2016.

[25] Intel Corporation. Speculative Execution Side Channel Mitigations. 336996-003.
May 2018.

[26] Ranjit Jhala and Rupak Majumdar. „Software Model Checking“. In: ACM Comput.
Surv. 41.4 (Oct. 2009), 21:1–21:54. issn: 0360-0300. doi: 10.1145/1592434.
1592438. url: https://doi.acm.org/10.1145/1592434.1592438.

[27] Paul Kocher. Spectre Mitigations in Microsoft’s C/C Compiler. Feb. 2018. url:
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMiti

gation.html.

[28] Paul Kocher et al. „Spectre Attacks: Exploiting Speculative Execution“. In: CoRR
abs/1801.01203 (2018). arXiv: 1801.01203. url: https://arxiv.org/abs/
1801.01203.

[29] Esmaeil Mohammadian Koruyeh et al. „Spectre Returns! Speculation Attacks us-
ing the Return Stack Buffer“. In: CoRR abs/1807.07940 (2018). arXiv: 1807.
07940. url: https://arxiv.org/abs/1807.07940.

[30] Moritz Lipp et al. „Meltdown: Reading Kernel Memory from User Space“. In: 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, 2018, pp. 973–990. isbn: 978-1-931971-46-1. url: https://www.
usenix.org/conference/usenixsecurity18/presentation/lipp.

[31] Giorgi Maisuradze and Christian Rossow. „ret2spec“. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security - CCS ’18
(2018). doi: 10.1145/3243734.3243761. url: https://dx.doi.org/10.
1145/3243734.3243761.

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://dx.doi.org/10.1007/978-3-319-40667-1_14
https://dx.doi.org/10.1007/978-3-319-40667-1_14
https://arxiv.org/abs/1812.08639
https://arxiv.org/abs/1812.08639
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/SP.2011.22
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.acm.org/10.1145/1592434.1592438
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1807.07940
https://arxiv.org/abs/1807.07940
https://arxiv.org/abs/1807.07940
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/3243734.3243761
https://dx.doi.org/10.1145/3243734.3243761
https://dx.doi.org/10.1145/3243734.3243761

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[32] Andrea Mambretti et al. Let’s Not Speculate: Discovering and Analyzing Specula-
tive Execution Attacks. Tech. rep. 2018.

[33] Ross Mcilroy et al. „Spectre is here to stay: An analysis of side-channels and specu-
lative execution“. In: arXiv e-prints, arXiv:1902.05178 (Feb. 2019), arXiv:1902.05178.
arXiv: 1902.05178 [cs.PL].

[34] Florian Merz, Stephan Falke, and Carsten Sinz. „LLBMC: Bounded Model Check-
ing of C and C++ Programs Using a Compiler IR“. In: Verified Software: Theo-
ries, Tools, Experiments. Ed. by Rajeev Joshi, Peter Müller, and Andreas Podelski.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 146–161. isbn: 978-3-642-
27705-4.

[35] Microsoft. Analysis and mitigation of speculative store bypass (CVE-2018-3639).
May 2018. url: https://msrc-blog.microsoft.com/2018/05/21/
analysis-and-mitigation-of-speculative-store-bypass-cve-

2018-3639.

[36] Microsoft. Spectre mitigations in MSVC. Jan. 2018. url: https://devblogs.
microsoft.com/cppblog/spectre-mitigations-in-msvc/.

[37] David Molnar et al. „The Program Counter Security Model: Automatic Detection
and Removal of Control-Flow Side Channel Attacks“. In: Information Security
and Cryptology - ICISC 2005. Ed. by Dong Ho Won and Seungjoo Kim. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 156–168. isbn: 978-3-540-33355-
5.

[38] Oleksii Oleksenko et al. „SpecFuzz: Bringing Spectre-type vulnerabilities to the
surface“. In: CoRR abs/1905.10311 (2019). arXiv: 1905.10311. url: https:
//arxiv.org/abs/1905.10311.

[39] Dag Arne Osvik, Adi Shamir, and Eran Tromer. „Cache Attacks and Counter-
measures: The Case of AES“. In: Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology. CT-RSA’06. San Jose, CA:
Springer-Verlag, 2006, pp. 1–20. isbn: 3-540-31033-9, 978-3-540-31033-4. doi: 10.
1007/11605805_1. url: https://dx.doi.org/10.1007/11605805_1.

[40] Peter Pessl et al. „DRAMA: Exploiting Dram Addressing for Cross-cpu Attacks“.
In: Proceedings of the 25th USENIX Conference on Security Symposium. SEC’16.
Austin, TX, USA: USENIX Association, 2016, pp. 565–581. isbn: 978-1-931971-
32-4. url: https://dl.acm.org/citation.cfm?id=3241094.3241139.

[41] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. Jan. 2018. url: htt
ps://webkit.org/blog/8048/what-spectre-and-meltdown-mean-

for-webkit/.

[42] Fabrice Rastello. SSA-Based Compiler Design. 1st. Springer Publishing Company,
Incorporated, 2016. isbn: 1441962018.

[43] J. Reineke. Caches in WCET Analysis: Predictability - Competitiveness - Sensi-
tivity. 2008.

142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://arxiv.org/abs/1902.05178
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://arxiv.org/abs/1905.10311
https://arxiv.org/abs/1905.10311
https://arxiv.org/abs/1905.10311
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
https://dx.doi.org/10.1007/11605805_1
https://dl.acm.org/citation.cfm?id=3241094.3241139
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[44] Majid Sabbagh et al. „SCADET: A Side-channel Attack Detection Tool for Track-
ing Prime+Probe“. In: Proceedings of the International Conference on Computer-
Aided Design. ICCAD ’18. San Diego, California: ACM, 2018, 107:1–107:8. isbn:
978-1-4503-5950-4. doi: 10.1145/3240765.3240844. url: https://doi.
acm.org/10.1145/3240765.3240844.

[45] Andrei Sabelfeld and Andrew C. Myers. „Language-Based Information-Flow Secu-
rity“. In: IEEE Journal on Selected Areas in Communications 21 (2003), p. 2003.

[46] Michael Schwarz et al. „NetSpectre: Read Arbitrary Memory over Network“. In:
CoRR abs/1807.10535 (2018). arXiv: 1807.10535. url: https://arxiv.
org/abs/1807.10535.

[47] J.P. Shen and M.H. Lipasti. Modern Processor Design: Fundamentals of Super-
scalar Processors. Waveland Press, 2013. isbn: 9781478610762. url: https://
books.google.at/books?id=ffQqAAAAQBAJ.

[48] Carsten Sinz, Stephan Falke, and Florian Merz. „A Precise Memory Model for
Low-Level Bounded Model Checking“. In: Proceedings of the 5th International
Conference on Systems Software Verification. SSV’10. Voncouver, BC, Canada:
USENIX Association, 2010, p. 7.

[49] Julian Stecklina and Thomas Prescher. „LazyFP: Leaking FPU Register State
using Microarchitectural Side-Channels“. In: CoRR abs/1806.07480 (2018). arXiv:
1806.07480. url: https://arxiv.org/abs/1806.07480.

[50] Eran Tromer, Dag Arne Osvik, and Adi Shamir. „Efficient Cache Attacks on AES,
and Countermeasures“. In: Journal of Cryptology 23.1 (Jan. 2010), pp. 37–71. issn:
1432-1378. doi: 10.1007/s00145-009-9049-y. url: https://doi.org/
10.1007/s00145-009-9049-y.

[51] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta and Sharad Malik.
„Lazy Self-composition for Security Verification“. In: Computer Aided Verification
- 30th International Conference. 2018, pp. 136–156. doi: 10.1007/978-3-319-
96142-2_11. url: https://doi.org/10.1007/978-3-319-96142-
2%5C_11.

[52] Yuval Yarom and Katrina Falkner. „FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack“. In: 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association, 2014, pp. 719–732.
isbn: 978-1-931971-15-7. url: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom.

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1145/3240765.3240844
https://doi.acm.org/10.1145/3240765.3240844
https://doi.acm.org/10.1145/3240765.3240844
https://arxiv.org/abs/1807.10535
https://arxiv.org/abs/1807.10535
https://arxiv.org/abs/1807.10535
https://books.google.at/books?id=ffQqAAAAQBAJ
https://books.google.at/books?id=ffQqAAAAQBAJ
https://arxiv.org/abs/1806.07480
https://arxiv.org/abs/1806.07480
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/978-3-319-96142-2_11
https://doi.org/10.1007/978-3-319-96142-2_11
https://doi.org/10.1007/978-3-319-96142-2%5C_11
https://doi.org/10.1007/978-3-319-96142-2%5C_11
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Linux Kernel: Backporting Error Reintroduced Spectre Vulnerability
	Microsoft Visual C/C++ Compiler: Missing Spectre Mitigations

	Problem Statement
	Methodological Approach
	Notation
	Set
	Sequence
	Tuple
	Sequence Builder
	Sequence Constructor
	Sequence Concatenation

	Intermediate Representation
	Syntax
	Default Semantics
	Configuration
	Trace
	Expression Evaluation
	Instruction Evaluation

	Speculative Execution
	Transient Execution Attacks
	Attack Phases
	Spectre-PHT
	Spectre-STL

	Setting
	Transient Execution Semantics
	Predictor
	Configuration
	Trace
	Instruction Evaluation

	Observations
	Speculative Non-Interference

	Microarchitecture
	Cache
	Model
	Configuration
	Instruction Evaluation
	Example

	AVX Unit
	Model
	Configuration
	Instruction Evaluation
	Example

	Branch Predictor
	PHT Model
	PHT Configuration
	PHT Instruction Evaluation
	BTB Model
	BTB Configuration
	BTB Instruction Evaluation
	Example

	Combination of Microarchitectural Components

	Implementation
	Important Concepts
	Bounded Software Model Checking
	Self-Composition

	Loader
	Falcon
	Translating Falcon IL into HIR

	ASM

	SpecBMC
	High-level Intermediate Representation (HIR)
	Function Inlining
	Loop Unrolling
	Transient Execution
	Observations
	Single Static Assignment (SSA) Transformation
	Optimization

	Mid-level Intermediate Representation (MIR)
	Lowering (HIR MIR)

	Low-level Intermediate Representation (LIR)
	Lowering (MIR LIR)

	SMT Encoding

	Solver
	Counterexample

	Additional Features
	Program Counter Model

	Evaluation
	Spectre-STL
	Mitigation
	Summary

	Spectre-PHT
	Mitigation
	Speculative Load Hardening
	Fence
	Linux Kernel Mitigation
	Index Masking

	Summary

	Kocher Examples
	Evaluation Results Analysis
	Runtime Analysis

	Case Study
	Preparation
	Environment
	Checking ptrace_get_debugreg()
	Checking ptrace_set_debugreg()

	Related Work
	Spectector
	A Formal Approach to Secure Speculation
	SCADET
	Spectre is here to stay
	CacheAudit
	SpecFuzz

	Conclusion
	Future Work

	Proofs
	Trace obtained by ns() is valid
	Well-definedness of instruction's microarchitectural effects
	Single speculative state is enough
	Proof Idea
	Proof

	Miscellaneous
	Predictor Comparison
	Taken/Not-Taken Predictor
	Mis-Speculate Predictor
	Comparison
	Example

	SpecBMC Environment Reference

	List of Figures
	List of Tables
	Bibliography

